
Factorization of a non-zero polynomial over an

Artinian, local, principal ideal ring

Ornella Greco

Abstract

In this work, we study the factorization in A[x], where A is an Artinian

local principal ideal ring, whose maximal ideal, (t), has nilpotency h.

This is not a unique factorization ring, indeed its elasticity is infinity, but

in this ring some uniqueness properties about factorization hold: in fact, we

prove that a non-zero polynomial in A[x] can be written in quite a unique

way as the product of a power of t, of a unit, and of finitely many primary,

monic, pairwise coprime polynomials.

1 Non-unique Factorization in A[x], where A

is an Artinian, principal and local ring.

The aim of this work has been to investigate the non-unique factorization of

polynomials in A[x] into irreducible elements, where (A,m) is an Artinian,

principal and local ring, that is not a domain.

Let us denote by µ : A[x]→ K[x], where K = A/m, the natural extension to

the polynomial rings of the canonical projection. We will use this notation

throughout the paper.

An Artinian, local, principal ideal ring is just the same as a special PIR

(SPIR), which is a principal ideal ring, with a single nilpotent prime ideal:

for this reason, throughout the paper we will not distinguish between these

two kinds of ring.
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Let us notice that the ring A is principal and local, so there is a t ∈ A
such that m = (t), moreover, because of the fact that A is Artinian, there

exists an h ∈ N, h > 0, such that th = 0.

From these facts, we deduce that each non-zero and non-unit element a ∈ A,

a 6= 0, can be represented in a unique way as

a = utk, where u is a unit and k ∈ N, k < h. (1)

We have also that the factorization of a = utk is unique, because of the

fact that tk is the greatest power of t that divides a.

Let (Nh; +;≤) be the ordered monoid with elements 0, 1, . . . , h − 1,∞
obtained factoring (N0∪{∞}; +;≤) by the congruence relation that identifies

all numbers greater and equal to h, including ∞. Let us define v : A → Nh

by putting v(a) = k ∈ Nh, if a 6= 0, and v(0) =∞.

This map is called t-adic valuation, since it behaves as a valuation.

We now announce some simple properties of this map.

Remark 1.1 The following statements hold:

1. v(a) =∞ ⇔ a = 0;

2. v(a+ b) ≥ min{v(a), v(b)};

3. v(ab) = v(a) + v(b).

We notice that the previous map can be naturally extended to a map,

that we will denote by v, by abuse of notation, defined in A[x], by putting:

v(f(x)) = v(
s∑

i=0

aix
i) = mini=0,...,sv(ai).

We notice that also this extended map behaves as a valuation, namely we

have the following properties.

Remark 1.2 The following statements hold:

1. v(f) =∞ ⇔ f = 0;
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2. v(f + g) ≥ min{v(f), v(g)};

3. v(fg) = v(f) + v(g).

So v is a t-adic valuation in A[x]. The following remark underlines the

relationship between the t-adic valuation in A[x] and the non-zerodivisors of

this ring.

Remark 1.3 If f ∈ A[x], the following statements are equivalent:

1. v(f) > 0, i.e. all the coefficients of f are divisible by t in A;

2. f is nilpotent;

3. f is a zerodivisor.

In the following, we will maintain the just introduced notation.

1.1 Nilpotent elements, regular elements, zerodivisors

In this section, we want to list some useful properties of the ring A[x], and

in particular we want to show that, even if many different definitions for

irreducible element can be given, in this case they coincide.

Definition 1.4 Let R be a commutative ring, let Nil(R) be the nilradical of

R, J(R) be the Jacobson radical of R, Z(R) be the set of all zerodivisors in

R, and U(R) be the group of all the units.

Definition 1.5 Let R be a commutative ring, let c ∈ R, c is a regular ele-

ment if c is not a zerodivisor.

Proposition 1.6 (see [2]) We have that

x ∈ J(R) ⇐⇒ 1− xy is a unit ∀ y ∈ R.

Proposition 1.7 We have that:

Nil(A[x]) = Z(A[x]) = J(A[x]) = (t)A[x] = m[x].
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Proof

From Remark 1.3, we have that Nil(A[x]) = Z(A[x]) = (t). Now we prove

that the maximal ideals of A[x] are precisely the ideals (t, f), where µ(f) ∈
A
m

[x] is irreducible, so we have that J(A[x]) = (t).

It is easy to prove that (t, f) is a maximal ideal of A[x]; conversely, suppose

that N is a maximal ideal of A[x], N ∩A = (t) because it is a prime ideal of

A, so t ∈ N , now we have that

A[x]

N
∼=

A[x]
m[x]

N
m[x]

∼=
A
m

[x]
N

m[x]

but the first ring is a field, so N/m[x] is a maximal ideal in (A/m)[x], so

there is an irreducible ideal f such that N/m[x] = (f). 2

Observation 1.8 In paper [4], we have introduced and compared three dif-

ferent definitions of irreducible element, finding out that they are equivalent

in a particular class of ring, i.e. the rings with only harmless zerodivisors.

We now notice that because of Proposition 1.6 and Proposition 1.7 we have

that

Z(A[x]) ⊆ 1− U(A[x]),

so this polynomial ring, by definition, is a ring with only harmless zero-

divisors, and this implies that we do not have to specify the definition of

irreducible element we are using.

1.2 Factorization of arbitrary polynomials into regular

elements

Now, we start a path, given by three steps, in order to generalize the results

found in the paper by Frei and Frisch (see [3]).

The first step is to study the factorization of non-zero polynomials in A[x]

into regular elements.

Lemma 1.9 Let f be in A[x], the following statements are equivalent

(i) f = tu, for some unit u ∈ A[x];
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(ii) f is prime;

(iii) f is irreducible and a zerodivisor.

Proof

(i) ⇒ (ii) Let v : A[x] → Nh be the t-adic valuation, since v(t) = 1, and

v(ab) = v(a) + v(b), if t divides ab in A[x], then v(a) + v(b) ≥ 1, so t divides

a or b, i.e. t is prime in A[x], and so is every associated to t.

(ii) ⇒ (iii) Prime elements of A[x] are irreducible. Since (f) is prime, it

contains Nil(A[x]) = (t), so f |t. As t is a zerodivisor, so is f : in fact, t is

irreducible, i.e. the relation t = fz implies that z is a unit and not a zero

divisor, hence f is a zerodivisor.

(iii) ⇒ (i) Since f is a zerodivisor, f ∈ Z(A[x]) = (t), i.e. f = tv, for some

v. And from the irreducibility of f , we deduce that v is a unit. 2

The following proposition is very important in order to factor non-zero poly-

nomials into regular polynomials.

Proposition 1.10 Let f be a non-zero polynomial in A[x].

1. There exist a regular element g ∈ A[x] and an integer k, with 0 ≤ k < h,

such that f = tkg. Furthermore, k is uniquely determined by k = v(f),

and g is unique modulo th−kA[x];

2. In every factorization of f into irreducibles, exactly v(f) of the irre-

ducible factors are associates of t.

Proof

1. follows from Remark 1.3 and from the definition of t-adic valuation: in

fact, if f is a zerodivisor, then let tk be the largest power of t that divides

f , so ∃ g such that f = tkg, where t - g, i.e. g is a regular polynomial.

Therefore, we notice that k = v(f), so k is uniquely determined.

2. follows from 1. and from the fact that t is prime in A[x], in fact, if

f = a1a2 · · · am is a factorization of f into irreducibles, using part 1., we

have that f = tv(f)g, with g regular polynomial, and ai = tv(ai)a′i, for each

i = 1, . . . ,m, and with a′i regular element, so we get the following relation

f = tv(f)g = tv(a1)+···+v(am)a′1 · · · a′m,
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hence, using the fact that t is prime and that g − a′1 · · · a′m is a regular poly-

nomial, we obtain that v(f) = v(a1) + · · ·+ v(am). 2

Remark 1.11 Let f1 and f2 be two polynomials ∈ A[x]. Then f1 and f2 are

coprime in A[x] if and only if µ(f1) and µ(f2) are coprime in K[x].

In order to do the second step of this path, we need a simple form of the

Hensel’s Lemma and also one corollary. The proofs of the following three

results are the generalizations of some result contained in [5].

Lemma 1.12 (Hensel’s Lemma) Let f ∈ A[x] and µ(f) = g1g2 · · · gn,

where gi are pairwise coprime. Then there exist g1, g2, . . . , gn ∈ A[x] such

that:

1. g1, . . . , gn are pairwise coprime;

2. µ(gi) = gi, 1 ≤ i ≤ n;

3. f = g1 · · · gn.

Proof

We first study the case n = 2. From µ(f) = g1g2 and from the fact that µ

is surjective, we deduce that there exist h1, h2 ∈ A[x] such that µ(h1) = g1
and µ(h2) = g2, and there is v ∈ m[x], such that f = h1h2 + v. Since g1 and

g2 are coprime, there exist λ1, λ2 ∈ A[x] such that λ1h1 + λ2h2 = 1.

Now we put

h11 = h1 + λ2v, h21 = h2 + λ1v

and we have

h11h21 = h1h2 + v(λ1h1 + λ2h2) + λ1λ2v
2 = h1h2 + v + λ1λ2v

2 = f + λ1λ2v
2,

so f = h11h21 mod(v2) where µ(hi1) = µ(hi) ∀ i = 1, 2.

We can repeat the procedure because of the fact that h11 and h21 are coprime,

so ∀ t ∈ N there are h1t and h2t in A[x] such that

f = h1th2t mod(v2t) and µ(hit) = µ(hi) for i = 1, 2,
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but v ∈ m[x], so it is nilpotent, then there is t ∈ N such that f = h1th2t, and

this concludes the case n = 2.

The result follows by induction by observing that if h1 is coprime to hi,

2 ≤ i ≤ n, then h1 and h2 · · ·hn are coprime. 2

The following result is a corollary of Hensel’s Lemma that is very important

to prove that a regular element can be factored in a unique way into monic

polynomials.

Lemma 1.13 Let f be a regular polynomial in A[x]. Then there exists a

sequence {fj} of monic polynomials in A[x] with

deg(fj) = deg(µ(f))

fj = fj+1 mod(mj)

and for some gj ∈ m[x] and unit bj ∈ A

bjf = fj + gjfj mod(mj).

Proof

Let f =
∑n

i=0 bix
i, where bn 6= 0; if deg(µ(f)) = u ≤ n, bu is a unit. Choose

g1 = 0 and f1 = b−1u (b0 + b1x+ · · ·+ bux
u).

We now proceed by induction. Assume that {fi}ji=1 satisfies the Lemma;

then bjf = fj + gjfj +h where h ∈ mj[x]. Since fj is monic, we may select q

and r in A[x], such that h = fjq + r, where deg(r) < deg(fj) = deg(µ(f))),

or r = 0.

Set fj+1 = fj + r and gj+1 = gj + q. Now we prove that gj+1 ∈ m[x] and

r ∈ mj[x].

If r = 0, the proof is trivial; otherwise suppose fj = a0 + a1x + · · · +

au−1x
u−1+xu and q = c0+c1x+ · · ·+csx

s. In the product fjq, the coefficient

of xs+u is cs, of xs+u−1 is cs−1 + au−1cs, etc. Since h = 0 mod(mj) and

deg(r) < deg(fj) = u, cs ∈ mj, so also cs−1 ∈ mj, etc, and consequently

q ∈ mj[x].

Then gj+1 ∈ m[x] and r = h− qfj ∈ mj[x].
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This ends the proof, because with this choice of fj+1 and gj+1 we have

bjf = fj + gjfj + h

= (fj + r) + (gj + q)(fj + r)− rgj − rq
= fj+1 + gj+1fj+1 − r(gj + q)

= fj+1 + gj+1fj+1 mod(mj).

2

Theorem 1.14 Every regular polynomial f ∈ A[x] is uniquely representable

as f = ug, with u unit and g monic in A[x]. Therefore, the degree of g is

deg(µ(f)).

Proof

We already know that h is the nilpotency of the ideal m. Using the Lemma

1.13, we have that f = b−1h (1 + gh)fh, where g = fh is monic and its degree is

the degree of µ(f), and bh is a unit, and because of the fact that gh ∈ m[x],

also 1 + gh is a unit.

The uniqueness follows from the fact that the only monic unit in A[x] is 1,

since a polynomial a0 + a1x+ · · ·+ anx
n ∈ A[x] is a unit if and only if a0 is

a unit and a1, . . . , an are nilpotent.

2

Theorem 1.15 Let f ∈ A[x] be a non-zero regular polynomial, and let u and

g be the unique unit and monic polynomial, respectively, in A[x] such that f =

ug. For every factorization into irreducibles f = c1 · · · ck, there exist uniquely

determined monic irreducible d1, . . . , dk ∈ A[x] and units v1, . . . , vk ∈ A[x]

such that ci = vidi, u = v1 · · · vk and g = d1 · · · dk.

By the last Theorem we have reduced the question of factoring regular

elements of A[x] into irreducibles to the question of factoring monic polyno-

mials into monic irreducibles. In the next section we will go another step

forward.
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1.3 Factorization of monic polynomials into primary

monic polynomials

In the following section, we start by giving a characterization for a primary

ideal that holds in A[x]. We recall that an element f ∈ A[x] is said to be

primary if the principal ideal (f) is primary. In the lemma above, we say

that f is primary if and only if µ(f) is a power of an irreducible polynomial,

which will be a very useful result.

Lemma 1.16 Let f ∈ A[x] be a non-zerodivisor, then (f) is a primary ideal

if and only if µ(f) is a power of an irreducible polynomial.

Proof

In the principal ideal domain K[x], where K = A/m, the non-trivial primary

ideals are the principal ideals generated by powers of irreducible elements.

So the projection µ induces a bijective correspondence between the primary

ideals of K[x] and the primary ideals of A[x] containing (t).

An ideal in A[x] in which there are non-zerodivisors is primary if and only

if its radical is a maximal ideal (since the only non-maximal prime ideal of

A[x] is (t) = Z(A[x])). Let f ∈ A[x], since every prime ideal of A[x] contains

(t) = Nil(A[x]), we have that the radical of (f) is equal to the radical of

µ−1(µ(f)) = (f) + (t). So (f) is primary if and only if (f) + (t) is primary,

because of the fact that if (f) is primary, since f is a non-zerodivisor,
√

(f)

is maximal, then
√

(f) + (t) is maximal too, and this implies that (f) + (t)

is primary, and conversely. The fact that (f) + (t) is primary is equivalent to

µ(f) being a primary element ofK[x], because of the bijective correspondence

described above.

2

Using Hensel’s Lemma, we prove the following theorem, that constitutes

the third step of the path, since in it we found out that a monic polynomial

can be factored in a unique way into primary elements.

We notice that this theorem is the generalization of the Theorem 13.8 con-

tained in [6].

Theorem 1.17 Let f ∈ A[x] be a monic polynomial, of degree ≥ 1. Then:
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(i) f can be factorized in the product of r coprime primary monic polyno-

mials f1, f2, . . . , fr ∈ A[x], and for each i = 1, 2, . . . , r, µ(fi) is a power

of a monic irreducible polynomial over k;

(ii) Let

f = f1 · · · fr = h1 · · ·hs (2)

be two factorizations of f into products of pairwise coprime monic pri-

mary polynomials over A, then r = s and after renumbering, fi =

hi, i = 1, 2, . . . , r.

Proof

(i) We can assume that µ(f) = he11 · · ·herr , where h1, . . . , hr are monic

irreducible distinct polynomials, by the Lemma 1.12 , there exist g1, . . . , gr ∈
A[x], such that f = g1 · · · gr and µ(gi) = heii for each i. Moreover, because of

the fact that the polynomials heii are coprime, using Remark 1.11, even the

polynomials gi are coprime.

(ii) From the equation (2), we deduce that f1 · · · fr ∈ (hi) for each i =

1, . . . , s. Since (hi) is a primary ideal, there exist an integer ki, 1 ≤ ki ≤ r,

and a positive integer ni, such that fni
ki
∈ (hi). We now prove that ki is

uniquely determined. Assume that there is another k′i 6= ki and n′i such that

f
n′
i

k′i
∈ (hi), since fki and fk′i are coprime in A[x], there are a, b ∈ A[x] such

that 1 = afki + bfk′i . Then

1 = 1ni+n′
i−1 = (afki + bfk′i)

ni+n′
i−1 ∈ (hi)

and this is a contradiction.

Similarly, for each j = 1, . . . , r, there is a uniquely determined integer lj,

1 ≤ lj ≤ s and a positive integer mj, such that h
mj

lj
∈ (fj). For every i, we

have that h
mki

ni

lki
∈ (hi), then µ(hlki )

mki
ni ∈ (µ(hi)). Since the polynomials

hi are coprime, using Remark 1.11, the polynomials µ(hi) are coprime and

so we must have lki = i, for every i = 1, . . . s. It follows that the map i 7→ ki
is well defined and injective, so we must have s ≤ r. Similarly, r ≤ s, i.e.
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r = s. After renumbering, we may assume that i = ki for i = 1, . . . , r, then

lj = j for j = 1, . . . , r. Thus, fni
i ∈ (hi) and hmi

i ∈ (fi) for i = 1, . . . , r.

Using Remark 1.11, for j 6= 1, fj and f1 are coprime, so also µ(fj) and

µ(f1) are coprime, and this implies µ(fj) and µ(f1)
n1 are coprime. Hence,

µ(f2) · · ·µ(fr) and µ(f1)
n1 are coprime. Using Remark 1.11, f2 · · · fr and fn1

1

are coprime. Since fn1
1 ∈ (h1), f2 · · · fr and h1 are coprime. Then, there exist

c, d ∈ A[x] such that

cf2 · · · fr + dh1 = 1.

Multiplying both sides of the above equality by f1, we obtain

f1 = cf1f2 · · · fr + df1h1 = ch1h2 · · ·hr + df1h1,

which implies h1|f1. Similarly, f1|h1. Since both f1 and h1 are monic, f1 = h1.

Similarly, fi = hi, i = 2, . . . , r.

2

Now, we have the following results.

Proposition 1.18 Each non-zero polynomial f in A[x] can be written as

f = tkuf1f2 · · · fr, (3)

where 0 ≤ k < h, u is a unit, and f1, f2, . . . , fr are monic polynomials,

such that µ(f1), µ(f2), . . . , µ(fr) are powers of irreducible and pairwise dis-

tinct polynomials, g1, g2, . . . , gr ∈ K[x], respectively .

Moreover, k ∈ Nh is unique, u ∈ A[x] is unique modulo th−kA[x], and

also the polynomials f1, . . . , fr are uniquely determined modulo th−kA[x].

Proof

We use at first Proposition 1.10, from which we deduce that ∃ g ∈ A[x], and

0 ≤ k < h, such that f = tkg, where g is a non-zerodivisor and k = v(f),

with v t-adic valuation, so k is uniquely determined, and g is unique modulo

th−kA[x].

Then we apply Theorem 1.14 to g, and so we have that g is uniquely

representable as g = uh, with u unit and h monic in A[x].

Finally, we apply Theorem 1.17 to the equivalence class of the monic

polynomial h modulo th−kA[x].
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The fact that u is unique modulo th−kA[x] follows from Theorem 1.14

and also from the presence of the factor tk in the equation (3), for the same

reason the polynomials fi are unique modulo th−kA[x].

2

1.4 The elasticity of A[x]

The ring A[x] is not a unique factorization ring and it easy to find an example

to show it.

This ring is actually more than a not-unique factorization ring as we are

going to see now.

In fact, we now present the concept of elasticity, that can be considered

as the measure of how much the ring is not a unique factorization ring, and

through an example we will show that the elasticity of this ring is infinite.

This concepts also presented in [1].

Definition 1.19 Let us consider a commutative ring with identity, R, and

let M be the set of the regular elements of R. Let k be ≥ 2, we define ρk(R) to

be the supremum of those m ∈ N, for which there is a product of k irreducible

regular elements that can be also be written as a product of m irreducible

regular elements. We also define the elasticity of R to be supk≥2(ρk(R)/k).

We notice that the set, M , of the regular elements of A is a cancellative

monoid, so it is also possible to consider the elasticity of a cancellative

monoid, as it is done in [3].

Here we have the example that shows that the elasticity of the ring A[x]

is infinity.

Let us consider the polynomial

xm + t;

we want to prove that this polynomial is irreducible in A[x].

By contradiction, let us suppose that there are two non-unit polynomials,
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f(x), g(x) ∈ A[x], such that xm + t = f(x)g(x). Then, we can write it in the

following way

xm + t = a0 + a1x+ · · · amxm =

= (b0 + b1x+ · · ·+ brx
r)(c0 + c1x+ · · ·+ csx

s),

where we can suppose that brcs 6= 0.

Because of the Lemma 1.9, we have that t is prime. So, from t = b0c0, it is

ensured that either t | b0 and t - c0 or t | c0 and t - b0. Suppose that the first

sentence occurs. We have that t - br and t - cs. because brcs = 1 and t - 1.

Let bn be the first coefficient of f(x) such that t - bn, and let us note that

an = c0bn + c1bn−1 + · · ·+ cnb0, if n ≤ s,

an = c0bn + c1bn−1 + · · ·+ csbn−s, if n > s,

and that in both cases t divides each term of this sum except the first, so

t - an, and then an = 1 and n = m. Here we get a contradiction, because we

have that the following relations hold

n = m ≤ r < m.

We have just proved that xm + t is an irreducible polynomial for each m.

Let us consider N > h and the following polynomial

(xm + t)N =
N∑
i=0

(
N

i

)
xm(N−i)ti =

(
N

0

)
xmN +

+

(
N

1

)
xm(N−1)t+ · · ·+

(
N

h− 1

)
xm(N−h+1)th−1 =

= xm(N−h+1)

(
xm(h−1) +Nxm(h−2)t+ · · ·+

(
N

h− 1

)
th−1

)
So here we have given an example of a polynomial that has a factorization

in N irreducible factors, on the left, and in more than m(N − h + 1) irre-

ducible factors on the right, where N is arbitrary but greater than h and m

is arbitrary: this proofs that ρN(M) =∞ and so also ρN(M)/N =∞.
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