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Scope

v

What is the problem?

v

What are the implications of privacy issues in smart meters?

» How to measure privacy in smart meter context?

v

Existing approaches and solutions

v

Remaining challenges, future research directions



Smart Energy Grid

Smart grid refers to the future energy grid that exploits
information and communication technologies

» to increase reliability,
» to increase efficiency and reduce carbon footprint,
» to incorporate renewable as well as traditional energy sources,

» to provide security,

v

to introduce new services that cannot be foreseen today.
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Smart Energy Grid Entities

Distributed
Generation
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Smart Energy Meters

Smart meters (SMs) are an essential component of smart grids;
they enable many “smart” grid functionalities.

SMs introduce the ability to provide bi-directional communication
between consumers and the energy supplier/ grid operator and to
promote services that facilitate energy efficiency within the home.

The European Commission’s Interpretative Note on Directive 2009/72/EC.
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Advanced Metering Infrastructure (AMI)
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Advanced Metering Infrastructure (AMI)

AMI uses two-way communication to both transmit usage
information and perform observation and maintenance tasks.
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What do Smart Meters (SMs) Measure?

SMs do more than measuring and reporting energy consumption:

>

Readings of active, reactive, and apparent power and energy
consumption (4-quadrant metering),

Energy generated by the user and sold to the grid,

Alerts about voltage quality measurements,

Data for billing (e.g., time-of-use tariff, balance and debts),
Tamper status,

Security credentials for enabling cryptographic protocols,

Firmware information and updates.
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Benefits to Consumers

» Ability to track energy consumption near real time, which
leads to better energy usage management,

» More accurate and timely billing services,

» Possibility to benefit from demand flexibility and time-of-use
(ToU) pricing,

» Possibility to introduce safety solutions through better power
quality and breakdown management,

» Appliance failure detection, detection of waste, detection of
unexpected activity or inactivity,

» Increase competition among energy providers due to ease of
switching for customers,

» Integrate microgeneration and energy storage capabilities.
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Benefits to Energy Providers

» Reduced cost of meter readings,

» More accurate billings: Reduced customer complaints and
back office rebilling,

» Energy theft detection,
» Introduce time-of-use pricing for demand management,

» Load-shaping to reduce peak loads thanks to improved
demand forecasts.
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Benefits to Distribution System Operators (DSOs)

» Reduced operational costs,
» Improved fault detection possibilities,
» Increased grid efficiency, reduced energy losses,

» Better matching distributed resources to user demand and
grid's power delivery,

» Improved distributed state estimation and Volt and Var
control,

» Reduced need for additional generation.

|IEEE ICASSP'18 - Privacy in Smart Metering Systems - Introduction - Giindiiz and Oechtering 12/170



Smart Metering Standardization
Open Smart Grid Protocol (OSGP)

European Telecommunications Standards Institute (ETSI)
approved, OSGP Alliance (Mitsubishi, Schneider, Vattenfall,
Ericsson, Oracle). Used with ISO/IEC 14908 control networking
standard for smart grid applications. Uses power-line
communications as physical layer. Over 40 million OSGP-based
SMs deployed worldwide -most widely used standard.

|IEEE 802.15.4g

Wireless Neighborhood Area Networking (NAN) standard
developed by IEEE Smart Utility Networks (SUN) Task Group
(Elster, Itron, Landis+Gyr, NICT, and Silver Spring Networks).

Telecommunications Industry Association (TIA)

TR-51 engineering committee, Smart Utility Networks, is also
developing air-interface, network and conformance standards to
support smart grids.
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Smart Metering Market

» Global smart meters market is estimated to grow from $12.79
billion in 2017 to $19.98 billion by 2022, at a compound
annual growth rate (CAGR) of 9.3% from 2017 to 2022.

» Global market for SM analytics to reach $2.6 million by 2022.

» Global penetration to grow from 30% (2016) to 53% by 2025
with nearly 1.2 billion smart residential meters worldwide.

» China leads the market: 350 million installed meters

» Directive of the European Parliament requires 80%
penetration by 2020: current installations 200 million.

» In UK, 53m meters in 30m households by 2020 is expected to
cost £10.9bn. Government estimate: £7 billion net benefits
to consumers, energy suppliers and networks over 20 years.
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Smart Meter Privacy Concerns

THE LEGEND GF
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» Netherlands: Senate voted against mandatory roll-out of SMs,
found to be against European Convention on human rights

» 9000 consumers polled in 17 countries: 1/3 discouraged from
using SMs if it gave utilities access to their energy use
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Smart Meter Privacy Concerns

Dutch anti-smart meter logo; Do M Install
il I Smart Meter

» “Security experts warn that the smart meters can be infected
with a virus that can spread between different devices, and

cutting some individual energy supplies off. Others warn that
they could even be hacked and used for terrorism.”

https://www.telegraph.co.uk/money/consumer-affairs/six-reasons-say-no-smart-meter/ (accessed on 15
March 2018).
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Smart Meter Privacy Concerns

Scots have topped a UK poll of box
set bingers

The data from Scottish Gas shows that in 2015 entertainment energy usage in Scotland hit
an annual high in April last year, coinciding with the release of Game of Thrones Season 5,
as the nation powered up their TVs, laptops and tablets to follow the latest instalment from
Jon Snow and friends.

The utility company collected the information from Smart meters which come with a smart
energy monitor, which gives households a better understanding of their energy use by
showing them exactly what energy they are using on entertainment devices.

http://www.brechinadvertiser.co.uk/news/scots-have-topped-a-uk-poll-of-box-set-bingers-1-4112286.
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Smart Meter Privacy Concerns

Generating value from smart meter data

Making the most of the smart meter roll-out

Programmers from CSE and the University of Bristol set out to develop a new computational system
that would allow the extraction of commercially valuable patterns from smart meter data. They came
up with a prototype 'Big Data' platform called '‘Smart Meter Analytics, Scaled by Hadoop' (SMASH).

In parallel, a data mining team from the University of Bristol applied new, experimental techniques
to a sample of real smart electricity meter data to identify interesting subgroups of consumers with
statistically different consumption patterns. Scottish and Southern Energy and Western Power
Distribution were partners in this project, providing an invaluable perspective from the electricity
industry, and confirmation that the tools and techniques being developed had real business relevance
for them. One key application they identified was that the tools would enable energy suppliers and
District Network Operators to generate more accurate profiles of consumption, where before they
were forced to generalise.

https://www.cse.org.uk/projects/view/1210.
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Smart Meter Privacy Concerns: USA

“Your smart meter data reveals binge TV viewing on Saturday
nights and frequent use of an electric can opener.
We thought you might enjoy an evening out.”

Naperville Smart Meter Awareness v. City of Naperville: Court
decides Fourth Amendment protects energy consumption data
collected by SMs:

“Individuals have a reasonable expectation that SM data should
remain private, and government'’s access of it constitutes a

‘search’ ".

https://bit.ly/2SENBI1
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Smart Meter Privacy: Technical Angle
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» Non-intrusive load monitoring (NILM) techniques

» Can track appliance usage patterns, home occupancy, even
the TV channel user is watching.

U. Greveler et al., “Multimedia content identification through smart meter power usage profiles,” Int’l Conf.
on Information and Knowledge Eng., July 2012.

|IEEE ICASSP'18 - Privacy in Smart Metering Systems - Introduction - Giindiiz and Oechtering

20/170



Smart Meter Privacy: Social Angle

» Patterns (behaviour profiling) » Non-grid use of data
» Watching too much TV? » Advertising and spam
» Another microwave meal? » Insurance
» Real-time surveillance » Appliance warranties
» Were you home last night? » Information leakage
» Did your friend move in? » Phishing, pharming, fraud

"Guidelines for Smart Grid Cyber Security,” National Institute of Standards and Technology (NIST), Privacy
and the Smart Grid, vol. 2, NIST IR 7628 Rev. 1, Sep. 2014.
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Potential Risks

Who wants meter data?

How could it be used?

Utilities

To monitor electricity usage and load;
to determine bills

Advisory companies

To promote energy conservation and awareness

Insurance companies

To determine premiums based on unusual
behaviors that might indicate illness

Marketers To profile customers for targeted advertisements
Law enforcers To identify suspicious or illegal activity
Civil litigators To identify property boundaries and
activities on premises
Landlords To verify lease compliance
Private investigators To monitor specific events
The press To get information about famous people
Creditors To determine behavior that might indicate
creditworthiness
Criminals To identify best times for a burglary, or

valuable appliances to steal

“Potential Privacy Impacts that Arise from the Collection and Use of Smart Grid Data,” NIST, vol. 2.
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Smart Meter Security

» Security # Privacy

» Remote switching off capability of smart meters opens up new
vulnerabilities (Stuxnet type cyber attacks)

» Meters can be hacked by consumers or third parties to
reduce/increase energy bill

» a utility in Puerto Rico lost $400 million in annual revenue after
criminals hacked into smart meters to under-report electricity usage.

» Smart meters are made to last (15-20 years). Encryption
mechanisms are not adaptive, and cannot last as long.

» Highly connected AMI allows spread of malware

» Wireless transmission of meter readings is prone to
eavesdropping and data injection attacks
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Smart Meter Security Problems

» Serious security risks reported in AMI architecture

» Flaws in authentication mechanism of Open Smart Grid
Protocol
» K. Kursawe and C. Peters, Structural Weaknesses in the Open
Smart Grid Protocol, Cryptology ePrint Archive, Report 2015/088.

» P. Jovanovic and S., Neves, Dumb Crypto in Smart Grids: Practical
Cryptanalysis of the Open Smart Grid Protocol, Aug. 2015.

» L. Feiten and M. Sauer, Extracting the RC4 secret key of the Open
Smart Grid Protocol, IACR Cryptology ePrint Archive, 2016.
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Security Measures against Attackers

» Authentication and authorisation

» Secure networks and communication links
» Secure data aggregation

» Secure multi-party computing

» Encrypted functions

» Zero-knowledge-proof cryptography

» Physically unclonable functions
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Confidentiality and Authorisation vs. Privacy

Confidentiality

set of rules that limit access or place restrictions on disclosure of
information, e.g., by means of encryption. It ensures that access to
information is restricted to authorized entities.

Authorisation
limits access to certain entities. Authorization is usually coupled
with authentication.

In SMs, privacy is not only against third parties/ attackers, but
also against the legitimate/ authorised receiver of data.
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What is Privacy?
Data privacy (OECD Glossary of Statistical Terms)

It is the status accorded to data which has been agreed upon
between the person or organisation furnishing the data and the
organisation receiving it and which describes the degree of
protection which will be provided.

Personal data (EU Data Protection Directive)
Any information relating to an identified or identifiable natural
person should (among other things) a) “be collected for a specified
purposes and not be further processed for other purposes”, and b)
“be merely adequate and not excessive for the purposes motivating
its collection”.

» Explains the notion of privacy

» Does not specify how privacy protection can be applied

» To protect privacy we first need to measure it
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Paradigm Shift: Privacy Against Energy Providers (EPs)/
Grid Operators

» Focus of current SMs is on protection against manipulation by
customers.

» Grid operators/ EPs can remotely update crucial meter
parameters (e.g., cryptographic keys, sampling frequency),
install new software, or disconnect energy.

» Masurement data collected and stored in database of the
operator.

» Trust in grid operators: customers are protected mainly by
guidelines, audits, codes of behaviour.
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Privacy - Utility Trade-off

Billing problem

EP needs to bill users. Perfect attribution and exactness required.
Low sampling frequency sufficient.

Grid management problem

Energy provider needs to manage the grid. High sampling
frequency required, attribution exactness not necessary (i.e., can
work with aggregate meter readings).

Meter data can leak sensitive information that should be kept
private. There is a trade-off between utility and privacy.
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Non-Intrusive Load Monitoring (NILM)

Content:

» Introduction
» Load categories, framework, features, ...

» Basic principles of some algorithmic approaches
» Supervised vs. unsupervised learning

» K-means clustering, neural networks
naive Bayes, hidden Markov models, ...

» Available datasets and toolboxes
» Few numerical examples

Zoha et al. “Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey” 2012.
Klemenjak and Goldsborough “Non-Intrusive Load Monitoring: A Review and Outlook” 2016.
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Load Monitoring

» Load monitoring is the process of estimating the energy
consumed by individual appliances.

» (Main) motivation and benefits
» Consumer: Smart and reasonable energy consumption
behaviour (e.g. for cost-saving)

» Energy provider & grid operator: Efficient energy generation
and management of the energy flows in the grid

» Approaches:
» Intrusive load monitoring (ILM): Sensors measure consumption

. . . . likel .
of appliance directly (intrusive, costly 55 desired, consensual)

» Non-intrusive load monitoring (NILM)
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Non-Intrusive Load Monitoring (NILM)

» SM readings

» provide aggregated consumption profile P(t) of all appliances
» obtained non-intrusively — low cost — processing consensual?

» used by NILM for disaggregation P(t) = p1(t) + p2(t) + p3(t)

D:’ NILM
R

fridge consumption

Smart Meter Reading

dishwasher consumption

water Kettle consumption
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Categories of Consumer Appliances

» Three main types of appliances
» ON/OFF state machines, e.g. light,

» Continuously variable devices (CVDs), e.g. heating device,

» Finite state machines (FSM), e.g. fridge.

FSM

3
>

ON/OFF CVD

AR

. L
Time

Real Power

4
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NILM Framework

1. Data acquisition by smart meter
» Low frequency readings

» High frequency readings

2. Feature extraction
» Steady state features

» Transient state features
» Non-traditional features
3. System training (initialization)

4. Inference and learning
» Supervised learning (training with labeled load profile)

» Unsupervised learning (training with unlabeled load profile)
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Feature Extraction

» Steady state features: Power change, time and frequency
domain characteristics of VI waveforms, etc.

» Transient features: Transient power, start-up current
transients, etc.

» Non-traditional features: Time of the day, on-off duration
distribution, frequency of appliance usage, etc.

Fridge load

Transient event

Steady state events

Real Power (W) )

R

“

A,..Tin.n.e o s sman s
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Supervised Learning - P-Q plane Classification

» Two-dimensional feature space
» Real power (P) and reactive power (Q)

» In order to identify ON/OFF events, changes in real power
(dP) and reactive power (dQ) are often used.

» Distance-based classification
» Given feature vector y of
an unknown load:

» ldentify a known load
signature y; (class) it
matches best, i.e.,

AP(W)

L1 | I [ — i — V.
QAR class i argimln lly = %ill

G.W. Hart “Non-intrusive appliance load monitoring,” in Proc. of the IEEE, 1992.
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Supervised Learning - P-Q plane Classification Extension

Various extensions have been proposed:
“"Weiss" algorithm: Take oscillations during start up and shut
down of an appliance into account.
> Let Pstart, pend  pstart gnd Pf”d be the mean of several real
power values from starting and ending periods of states i and j

» Four different types of edges
_ state g result in features with good
start of J end of j performance:

» d Pl Pstart P’:start

>
>

state ¢

Real power

» dP, = Pstart P;end

start of 7

A\ 4

» dP; = Pend P’_start

Time

_ pend __ pend
> dPy = Pf" — P
" in IEEE Pervasive Comp., 2012.

M. Weiss et al.“Leveraging smart meter data to recognize home appliances,
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Supervised Learning - P-Q plane Classification Extension

Improved distance-based classification in (dQ, dP)-space
(Appliance-dependent) classification rule: y, correct match if

Iy = Jill < Al F«|| + osck

with variable radius: oscy for oscillations, A scaling factor.

P-Q plane classification .
» simple to implement
» fails when different

appliances have overlapping o 9
P - Q featu res overlapping appliances

AQ(VAR)

AP(W)
[ ]
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Supervised Learning - Naive Bayes Approach

» Features:

power measurement

]

» S= {Dl :Sl,Dg :Sz,...Dn:S,,} Time
denotes load signature

» s; state of appliance/device D;

» Total real power measurement p

» Steady-state change e

Power

egde

1

» w set of all load signatures S

Power

Optimal classifier (MAP rule) ’ Tine
argmax P(S| > Di=pNE =¢)
Sew i=1

Marchiori et al. “Circuit-Level Load Monitoring for Household Energy Management,” |[EEE Pervasive Comp., 2011.
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Supervised Learning - Naive Bayes Approach
» Equivalent formulation after applying Bayes rule:

argmax P(E = e|S)P(S)
SEw,Zn: Di=p
i=1
Assumptions to simplify computation of P(E = e|S) and P(S):

» Naive approach!: Assume appliance states are independent of
each other

» Fair assumption in general, but devices such as a TV and a
DVD player can have a highly correlated operation.

» Assume only one device is changing at a time.

ZkeEs I(k =e)

P(S)=]] P(Di=s), P(E=elS)= |Es]
i=1

Naive Bayes approach often refers to assumption that features are conditionally independent given the class.
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Hidden Markov Model (HMM)

P(gilgi—1) P(ges1lar) P(qir2|qe41)

hidden

states

Hidden Markov Model (HMM)
Statistical (system) model with

» hidden states described by an Markov process, and
» observations that are independent given hidden states.
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Appliances as Hidden Markov Model

» HMM shown to be useful because
1. Learning of HMM parameters A works well

(i.e., P(qt|ge—1) and P(y:|qg:) for all t)

2. Temporal and appliance state transitions can be well modeled
» Ergodic topology to model the state transition of appliances
» Left-to-right topology to model temporal development

» HMM can model individual or combined loads

4-State HMM of two appliances combination

Ergodic state transition topology of a fridge @ @ @
@ <

"
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Supervised Learning - HMM Approach

General HMM framework

1. Decoding: Given the HMM parameters A, the observation
sequence Y = {y;} and the set of states S = {5;},

» calculate the probability P(Y, Q|)\) and

» determine the most probable state sequence Q = {q:},q: € S;

2. Learning: Given the observation sequence Y and the set of
states S, learn the HMM parameters A.

Supervised learning of state transition probabilities (labeled
load signature and state transition of appliances given)

#:S,'—>5j

# : all transitions from S;

P(515i) =

Decoding: Load disaggregation using Viterbi algorithm
T. Zia et al. “A hidden Markov model based procedure for identifying household electric loads,” in IECON 2011.
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Supervised Learning - Neural Network Approach

» Advantage of neural networks:
» extensibility to higher number of inputs, and

» many types of values or dissimilar kind of data

» Feature vectors used as the input of a neural network to also

train the classifier for different loads

» output denotes probability that load belongs to a certain class

X 1
wh
feature 1/ why sigmoid

output y

sigmoid sigmoid

sigmoid

input layer hidden layer output layer
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Unsupervised Learning - K-means Clustering Approach

» What if labeled load signatures are not available?
» Unsupervised clustering approaches such as K-means
clustering

K-means Clustering

Given a set of observation {xi,x2, ...., X, }, partition the n
observations into K sets S = {S1,S2, ..., Sk} that minimizes the
within-cluster sum of squares, i.e.,

K
argmin Y 3 [lx = gl

i=1 xeS;

where p; is the mean of vectors in S;., i.e. u; = |§

Z Xk -
€S;

il
Xk
» E.g., for P-Q plane feature space, x; denotes (p;, ;).

Goncalves et al. “Unsupervised disaggregation of appliances using aggregated consump. data,” Proc. SustKDD’11.

IEEE WIFS'18 - Privacy in Smart Metering Systems - N/LM - Giindiiz and Oechtering 45/170



Appliance Model: Temporal Correlations

1200
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Factorial HMM (FHHM)

» Use factorial HMM to characterize multiple underlying
independent causes or factors of the total load

» Complexity grows exponentially with number of underlying
appliances

» Standard approximation methods:
» Markov chain Monte Carlo

» Variational Bayes
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Unsupervised Learning - Expectation Maximization

» (F)HMM parameters can be iteratively updated by
expectation maximization algorithm (EM):

arg maxz P(Y,QI\)log P(Y, Q)
Ag

» )\ are the (F)HMM parameters to be estimated and A are the
parameters from the previous iteration

» Y is the observed aggregated load
» Q@ is the hidden sequence

» Decoding using Viterbi algorithm

argmax P(Y, Q|\)
Q

H. Kim et al, “Unsupervised disaggregation of low frequency power measurements,” in Proc. SIAM, 2011.
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Hidden Semi-Markov Model (HSMM)

» HSMM takes state occupancy duration into account
» for appliances that stay in a certain state for some time

observations 01 02 03 04 05 Og or
| | | | | | b oenns | .
) | — T T T T T T I
Time 1 2 3 4 5 6 T
-t C )
duration d; dy d,
state il 42 qn

transition \\/ \\/
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Conditional Factorial Hidden Semi Markov Model

» Conditional Factorial Hidden Markov Model (CFHMM):
Case when additional features affect the transition probability
between different states (e.g. occupancy of home)

e ! 5 5 » CFHSMM model combines
P o) CFHMM and HSMM

y >
o0 (O o often reasonable
: » Example (left figure):

o (On T AN A » multiple appliances with
on-off states,

| P(ds =3

0" (OF ON ON ON » number of people at home
act as additional features,

» the states dependency e.g.

Y (Y1 Y Yi+1 Yp4: .
' ' 3 = of a laptop and monitor.

H. Kim et al, “Unsupervised disaggregation of low frequency power measurements,” in Proc. SIAM, 2011
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Unsupervised learning - AFAMAP

Additive Factorial Approximate MAP (AFAMAP): unsupervised load disaggregation
» Snippets? of consumption data that likely correspond to an
appliance’s ON cycle are extracted.

» These snippets along with the total aggregate and difference
aggregate data are together modeled as an additive factorial
hidden Markov model (FHMM).

r HMM state

| Aggregate and
difference data

Kolter, Johnson, “REDD: A public data set for energy disaggregation research,” in Proc. SustKDD Workshop '11.

2 . . . P
A snippet is a section of data where consumption increases over some threshold and then eventually returns
to its original level.
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Unsupervised learning - AFAMAP (Cont.)

» Conditional likelihood of y;:

N
e X(l NI (Z l‘il()f), Z)

» Conditional likelihood of Ay;:

| X(l N)a igl ]I.V)aAZt ~N (Z A,U, t (i) + 21/2Azt’ Z)

Xe—1
i=1

where z; is a mixture component with a Laplace prior to
account for new and unmodeled devices.

» AFAMAP imposes a constraint that allows at most one HMM
changes at any given time and infers the individual HMM
states by maximizing the joint posterior of y; and Ay;.
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Reference datasets for NILM

» Reference Energy Disaggregation Data Set (REDD)

» Household-level and circuit level data from 6 US households
over various durations in 2011

» Lighting, fridge, microwave, oven, washer dryer, dish washer,
kitchen outlets etc

» Low frequency and high frequency data

» Electricity Consumption and Occupancy (ECO)
» 6 Swiss households over a period of 8 months in 2012 - 13

» Fridge, dryer, coffee machine, kettle, washing machine, PC,
freezer, stove, tablet, lamp, entertainment (consists of TV and
stereo), microwave, router etc

» Only low frequency data but occupancy information for some
houses is measured and provided
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Reference datasets for NILM (Cont.)

Dataset Locat. Resolution Features Other data Available Toolbox
15KHz  (Aggr), V and P (Aggr),
REDD USA 0.5 or 1Hz(Sub) P (Sub) NA NILMTK(Python)
BERDS USA 20sec P,Q and S climate data NA
on-site solar panels and
P and S (Aggr), wind turbines, outdoor
Smart UsA 1Hz P (Sub) weather, indoor tempera- NA
ture and humidity
indoor temperature, out-
DRED | NL 1Hz P side temperature, wind |\ \rric(python)
speed, pre-cipitation, hu-
midity and occupancy
AMPDS | Canada | 1min Zr;dlvp’—;:' P QS water and natural gas NILMTK(Python)
\a/r;dl’PE l:’eaIeres— water and natural gas,
AMPds2 | Canada | 1min L ! weather data and utility NILMTK(Python)
active and appar- L
3 billing data.
ent energies
UK- 16KHz  (Aggr), P and switch sta-
DALE UK 1/6Ha (Sub) b NA NILMTK(Python)
. . 1Hz (Aggr), 1 or V, I, F, P and Water and ambient condi-
iAWE India 6Hz (Sub) phase tions NILMTK(Python)
REFIT | UK 8sec P Gas and.environmental | | 7K (Python)
. . NILMTK(Python),
ECO CH 1Hz P and Q Occupancy information NILM-Eval(Matlab)
IHEP- .
DS France 1min V,I,Pand Q NA NA
HES UK 2min P NA NILMTK(Python)
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Classification measure F-score

o F-score is

B

I » aka F; measure

5 14 or F-measure

o 2 6 1

£ 10

S 2 » a measure of

= test's accuracy

& 10° i

+ > defined as

al 1

[ 1+ LENGFP

I 2 TP

< 1/8 1/4 1/2 12/3 .

z / / / / » harmonic mean

B % o o s s 1 between recall

o F d ision3

= -score and precision
3precision:% (aka as sensitivity) and recall= 55 (aka positive

predictive value), TP=True Positive, FP=False Positive, FN=False Negative
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Example disaggregation using NILM-Eval toolbox

» Dataset: ECO, Household 2 (Day 2012-06-02)

» Algorithm: Weiss'

4000 T

— Aggregate data
—Inferred stove consumption
3000 + |===Inferred kettle consumption

2000 [~

Power (W)

1000

bl

L L

L

12AM 3AM 6AM 12PM 3PM
> Dlsaggregatlon accuracy:
Appliance Precision Recall F-Score?
Water Kettle 1.0000 0.7500 0.8751
Stove 1.0000 1.0000 1.0000

4the higher the F-Score, the better is the accuracy of disaggregation
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Example disaggregation using NILMTK toolbox
» Dataset: REDD

» Data: Household 1 (Day 2011-04-30)
» Algorithm: FHMM (Supervised learning)

400 —— Inferred Fridge consumption
~——— Actual Fridge consumption
~ 300
z
53
£ 200
1)
&
100
0
06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time

» Disaggregation accuracy:

Appliance RMSE
Fridge 98.30
Microwave 250.43
Dish washer 237.47
Light 82.26
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Synthetic Data Set: Disaggregation Error vs. Number of
HMMs

1N7umber of states: 3; Data length T=1000; Number of samples: 100
“#KJ method
= ADMM

0.8r *ZGS method

*ADMM-RR

0.6

0.2F

Normalized error
o
~
;

[KJ] Kolter and Jaakkola, Approximate inference in additive factorial HMMs with application to energy
disaggregation, AISTATS 2012.

[ZGS] Zhong et al, Signal aggregate constraints in additive factorial HMMs with application to energy
disaggregation, NIPS 2014.

[ADMM] and [ADMM-RR] Shaloudegi et al., SDP relaxation with radonmized rounding for energy diaggregation,
NIPS 2016.
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Synthetic Data Set: Disaggregation Error vs. Number of
States

Nolg3 nber of appliances: 5; Data length T=1000; Number of samples: 100

>ADMM-RR
“#KJ method
0.6F < ADMM

5 *ZGS method

5]

5 041

o)

N

©

e 0.2

S

=z

O |-
0.2 . . . . .
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REDD Data Set: Precision/ Recall

Appliance ADMM-RR KJ method ZGS method
1 Oven-3 61.70/78.30% | 27.62/72.32% 5.35/15.04%
2 Fridge 90.22/97.63% | 41.20/97.46% | 46.89/87.10%
3 Microwave 12.40/74.74% | 13.40/96.32% | 4.55/45.07%
4 Bath. GFI-12 50.88/60.25% | 12.87/51.46% 6.16/42.67%

5 Kitch. Out.-15

6 Wash./Dry.-20-A
7 Unregistered-A

8 Oven-4

9 Dishwasher-6

10 Wash./Dryer-10
11 Kitch. Out.-16
12 Wash./Dry.-20-B
13 Unregistered-B

69.23/98.85%
98.23/93.80%
94.27/87.80%
25.41/76.37%
54.53,/90.91%
21.92/63.58%
17.88/79.04%
98.19/28.31%
97.78/91.73%

16.66/79.47%
70.41/98.19%
85.35/25.91%
13.60/78.59%
25.20/98.72%
18.63/25.79%
8.87/100%

72.13/77.10%
96.92/73.97%

5.69/26.72%
15.91/35.51%
57.43/99.31%
9.52/12.05%
20.42/31.01%
7.79/3.01%
0.00,/0.00%
27.44/71.25%
33.63/99.98%

Average

60.97/78.56%

38.68/75.02%

17.97/36.22%

» Phase A has 7 HMMs
» Phase B has 6 HMMs

» Spectral learning used for FHMM training
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REDD data set: Running time

In real-data experiments, with approximately 1 million decision

variables for each day:

ADMM-RR ADMM KJ
Memory 6 GB 6 GB 14 GB
Time 5 hours 2 hours 5 minutes
Solver MATLAB MATLAB MOSEK

» An optimized C++ version of ADMM-RR achieves a

comparable running time.
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NILM Concluding Remarks

v

Only basic principles shown
» underlying model, underlying features, learning & decoding alg

v

Conditional HMM exploit auxiliary information state
» could be directly privacy sensitive

v

Algorithmic advances in machine learning improve
disaggregation performance

» significant research takes place at (start-up) companies

v

Off-the-shelf algorithms and reference databases exist that
can be used for numerical experiments and benchmarks
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Privacy Preservation Techniques for Smart Meters

Two family of approaches to SM privacy problem:

1. Modify SM data before being reported to EP.

» Aggregation with/ without trusted third party (TTP), i.e.,
summing measurements over a group of users,

» Obfuscation, i.e., adding noise to data,

» Anonymization with/ without TTP, i.e., using pseudonyms
instead of real identities.

2. Modify energy consumption:
» Through storage devices, i.e., filtering energy consumption,

» Exploiting other energy sources (renewables, uninterrupted
power supplies),

v

Through elastic energy consumption (e.g., heating),

» Reducing sampling frequency.
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Aggregation with Trusted Third Party (TTP)

» SM readings sent to a TTP over secure links.
» TTP reports to EP:
» instantaneous sum consumption for a group of SMs (e.g.,
neighborhood),
» sum consumption of each user over billing period.
» EP learns exactly what it needs to learn, not more.
» TTP does not need to know real identities of users, but has to

be trusted.

J.-M. Bohli, C. Sorge, and O. Ugus, “A privacy model for smart metering,” in IEEE Int'l Conf. on Comm.
Workshops, Cape Town, South Africa, May 2010.
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Aggregation without Trusted Third Party (TTP)

» How to add a user’s data to the aggregate without revealing it
to other users?

» SMs have trusted elements (e.g., smart card or secure USB
stick) that cannot be controlled by the grid operator (i.e., it
cannot change keys remotely).

» These trusted elements provide secure storage and basic
cryptographic functionality

» Common tool: homomorphic encryption, thanks to its
additive homomorphic property.

» Proposed approaches differ mainly in:
» Who performs the aggregation,

» How keys are managed.
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Homomorphic Encryption

» Neighborhood groups of size N.
» Each node prepares N shares of its measurements.

» Encrypts one share with the public key of each user (N-1
users) and sends to the collector (except own share).

» The collector, using the properties of homomorphic
encryption, sums all N — 1 ciphertexts intended for a user and
sends the resulting ciphertext to her to decrypt.

» Each user adds its own share and sends the final result back
to the concentrator unencrypted.

F. D. Garcia and B. Jacobs, Privacy-friendly energy-metering via homomorphic encryption, in Proc. Int'l
Conf. on Security and Trust Management, 2011.
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Obfuscation

» Users add zero-mean independent noise to their readings
before forwarding to EP.

» Average sum consumption remains same at each period.

» Goal: low confidence for individual measurements (high
variance noise component), and high-confidence for total
consumption (too many users aggregated together: 99.9%
confidence requires aggregating 3.8 million users.)

» Meters should be tamper-proof.

J.-M. Bohli, C. Sorge, and O. Ugus, “A privacy model for smart metering,” in IEEE Int'l Conf. on Comm.
Workshops, May 2010.
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Information Theoretic SM Privacy

» Energy consumption of user is modeled as a sequence of real
numbers, X".

» SM readings, Y, represents information available to EP.

» Privacy is measured by average information leakage, defined
as average mutual information between X" and Y.

%/(x"; Y") = S [H(X") = H(X"|Y")]

p(x",y")

POy )08 o)

(X",y”)EX"XJ)”

S|k S|

IEEE WIFS'18 - Privacy in Smart Metering Systems - SM Data Manipulation Techniques - Guindiiz and Oechtering 68/170



Reporting Quantized Energy Consumption

v

SM maps X" to a predefined set of meter readings:
Encoder :X" - SMR = {SMRy, ..., SMRy}
» No matter what real consumption is, EP will receive

Y" e SMR, one of M readings,

» The closer Y" to X", the more useful it is for grid estimation/
monitoring, and the more data is leaked.

» There is a fundamental trade-off between privacy and utility
of reported SM readings

D. Rebollo-Monedero et al., “From t-Closeness-Like Privacy to Postrandomization via Information Theory,”
IEEE Trans. Knowl., Data Eng., Nov. 2010.

Sankar et al., “Smart Meter Privacy: A Theoretical Framework,” |IEEE Trans. Smart Grid, Jun. 2013.
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Privacy- Utility Trade-off

» Utility: The closer the estimates, the higher the utility:
1 n
A=E [ E d(X;, Y,)]
n
i=1

d(-,-): given distortion measure (distance between real energy
consumption and EP’s estimation)

» Average information leakage:
1

Z==1(X"Y"
n

» Question: What is the set of feasible (A,Z) pairs?
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Privacy- Utility Trade-off
» For given utility A, minimum information leakage is obtained
by the rate-distortion function R(A)
» Rate-distortion function, R(D): Minimum number of bits per
symbol that should be transmitted to a receiver, so that the

source (input signal) can be approximately reconstructed
within a given distortion, D (lossy data compression).

Privacy/ Information leakage

Utility 2
DistortionN
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Differential Privacy

» Introduced to privately release statistical queries on data sets

» Differential privacy measures privacy by parameter e that
bounds the log-likelihood ratio of the output for two
databases that differ in only a single entry.

Definition
A probabilistic algorithm F taking values in set T provides
e-differential privacy if

Pr(F(D) e S) < e - Pr(F(D) € S)

for all S € T, and all data sets D and D’ that differ in a single
entry.

C. Dwork, Differential privacy, in Automata, Languages and Programming, vol. 4052 of LNCS, 2006.
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Approximate Differential Privacy

Definition
A probabilistic algorithm F taking values in set T provides
(e, 9)-differential privacy if

Pr(F(D) € S) < & - Pr(F(D') € S) + 6

for all S € T, and all data sets D and D’ that differ in a single
entry.

» Weaker than e-differential privacy (equivalent when 6 = 0)

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via
distributed noise generation. In Proc. 25th International Cryptology Conference (EUROCRYPT), 2006.

IEEE WIFS'18 - Privacy in Smart Metering Systems - SM Data Manipulation Techniques - Guindiiz and Oechtering

73/170



Differentially Private Billing

>

Even billing information can reveal private data in the
presence of additional side information

Users add noise (only positive) to meter measurements to
create privacy

Noise = Money: Users minimize noise (trade-off between
additional cost and privacy)

Discrete noise: Geometric distribution (instead of Laplacian)

» Geometric distribution maximizes uncertainty for given mean

Rebates: With additional encrytion tools (zero-knowledge
proof, anonymous payment) added cost can be reimbursed to
customer

Negative noise can be possible by introducing deposit
payment in advance

G. Danezis, M. Kohlweiss, A. Rial, Differentially Private Billing with Rebates. IACR Cryptology ePrint

Archive, 2011, p. 134.
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Differentially Privacy + Modulo Encryption

Enc(X} +01) Enc(X}? + 02) Enc(Xt +on)

Supplier/Aggregator

l

Dec(3; Ene(X{ + 0:)) = X + L(X)

v

Group SMs into clusters.

v

X/ : Consumption of user i at time slot t

v

EP interested only in sum consumption of a cluster: SV | X/

v

Each user adds noise, and encrypts noisy measurement before
sending to EP.

G. Acs and C. Castelluccia, | have a DREAM! (DiffeRentially privatE smArt Metering), 13th Information
Hiding Conference, 2011.
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Distributed Noise Addition

» User i calculates X! = X/ + (N, \) — 2(N, \) in slot t and
sends it to the aggregator.

» (N, ) and T'a(N, ) independently drawn from gamma

distribution with shape parameter 1/N and scale parameter \.

N N N
i=1 i=1 i=1
— zn:Xt' + [Fl(l, )\) - r2(17 )‘)]
i=1
— Z X!+ [Exp(\) — Exp(\)]
i=1

=Y X[+ L(N)
i=1

L(A) : Laplace distribution

IEEE WIFS'18- Reivang ik SaestelMeciinghBystent3REAW DERiffeRensiallyipniveddh sidet Meterdiig)addtOdafoerivagion

Hidine Canfarance 2011
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Modulo Encryption

» Each SM is configured with a private key, and gets the
corresponding certificate from a trusted third party.

» Generate pairwise keys between each pair of SMs.

» Modulo addition based encryption: EP can only decode noisy
aggregate data (since it does not know pairwise keys).

» Aggregate noise enough to provide differential privacy to each
consumer.

G. Acs and C. Castelluccia, | have a DREAM! (DiffeRentially privatE smArt Metering), 13th Information
Hiding Conference, 2011.
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Privacy Through Energy Consumption Manipulation

» Physical approach to privacy, rather than cyber.

» Previous techniques do not provide full privacy. Grid operator
owns the grid, and has many other sensors, measurement
mechanisms that can provide some level of information.

» Obfuscation, data aggregation, etc. limit operator’s
capabilities to monitor grid for failures, energy quality
changes, renewable integration, etc.

» Alternative solution: Consumers manipulate energy
consumption over time by exploiting storage devices,
renewable energy sources, uninterruptible power supplies, or
elastic energy consumption.
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Privacy with an Energy Storage Device

Smart Grid " Energy E
3 o N anagement —

hmmi, Meter Y, Unit (EMU) X, ﬁ

—_— M) —_

I m grid|load ‘ :@ user load

» i
Y, ¢
leaa ¥ P
Utility Provider By

(UP) Rechargeable Battery (RB)

v

Rechargeable battery (RB) with capacity B (kWh).

Discrete-time consumption and pricing model

v

v

Consider N time slots that span time frame [0, T]

v

Duration of time slot i, 77 = t; — t;_1 (sec)

v

Total power consumption X(t) within time slot i: X; (kW)
» Cost of unit energy C(t) within time slot i: C; (cent/kWh)
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Energy Management Unit

v

v

v

>

Smart Grid
Smart Meter Y,

—_— (M) ey

tﬁTZA grid
I

Utility Provider

(UP)

Energy
Management

Unit (EMU)| Xt

I Y- X,

o

Rechargeable Battery (RB)

load '@ user load
L] ® Gimp

Energy Management Unit (EMU) satisfies

X(t) = Y(t) + P(t)

Y(t) > 0 (kW): power drawn from smart grid

P(t) (kW): power charged to, or discharged from RB
SM reports average Y(t) for each time slot to EP
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Energy Management (EM) Policy

» EM policy, i.e., Y(t)|[_,, jointly optimizes privacy and cost
» Assume user load known for following N time slots

Privacy measure:

» Flat power demand leads to perfect privacy

» Average power demand, E £ 1 T Z Ti - X
» Perfect privacy: Y(t) = E, Vt € [0, T]
» Privacy measured by Load Variance: V £ + fT(Y(t) — E)?dt

Cost measure:

» Average Energy Cost: C £ + OT Y (t)C(t)dt

O. Tan, D. Giindiiz, H. V. Poor, “Increasing smart meter privacy through energy harvesting and storage
devices,” IEEE Journal on Selected Areas in Communications, Jul. 2013.
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Constraints

v

Appliances should not incur any outages (no load shifting):

/tX(u)du < /t Y (u)du, vt € [0, T] (1)
0 0

v

Finite RB capacity, energy cannot be wasted (no battery
overflow):

/Ot(Y(u) ~ X(u))du < B, Vtelo,T] 2)

v

(V,C) pairs under (1) and (2) form a convex region

v

Sufficient to characterize Pareto boundary of achievable (V,C)
pairs
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Optimal Energy Management (EM) Policy

Optimization problem

Yn(‘nti)nZO/OT [0(Y(£) ~ ) + (1~ 0)Y(1)C(1)] ot

s.t. (1) and (2)

» 0 <0 <1is the trade-off parameter.
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Optimal Energy Management (EM) Policy

Dimensionality reduction

v

Cost and demand constant within a time slot

v

Due to convexity optimal Y(t) constant within a TS

v

Number of variables = Number of time slots (/)

v

Optimize over Y1,..., Yy

Convex optimization problem

N

r,rj1ii>noi§_:1[0-7',~(Y,-—E)2+(1—6)~T,~Y,-C,-}

s.t. ZT,"X,'SZT,"Y,', n=1,..., N, (3)
i=1 i=1
o (Yi=X)<B, n=1,...,N. (4)
i=1
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Optimal EM policy
» 0 = 0: Linear program

» For 0 < 0 <1, applying KKT optimality conditions:

§ (1-0)c1t ,
Y; [a, >0 L, 0<0<1,Vi
where
N
SNi—w)
T +E 0<0<1 Vi

20

» )\ and p; are Lagrange multipliers associated with (3) and (4),
respectively.
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Backward Water-filling

» Backward water-filling algorithm for optimal EM policy with
(a) infinite, and (b) finite capacity RB, and § = 1/3.
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Real Consumption Data

» A whole-day real power consumption data of a household
» Real pricing tariffs,

» The off-peak price (00:00 — 12:00) is 5 (cent/kWh).

» The on-peak price (12:00 — 20:00) is 20 (cent/kWh).

» The medium-peak price (20:00 — 00:00) is 10 (cent/kWh).

0157 T T 3
N —B=1kWh _
= —B=15kWh » Pareto optimal trade-off
24 —B =2kWh . .
N curves obtained varying 6
~ o
¢ from 0 to 1.
=
2
= 005 » Trade-off moves towards
=1 : . . .
k origin as RB capacity
increases.
oL

085 09 095 1 105 11 115
Average Energy Cost - C (euro/day)
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Energy Consumption Profile

—~6} Original Load Profile b
Z 5 ) | b
Zaf |7~ -EM policy, § =0,B=2 _ On-peak price period } i
g3p ! i 4
22 H J\ I R4 ]
1 [N ) . 1] ]
0 ~ = onl
0 2 4 6 8 10 _12 14 16 18 20 22 0
4 Time (hour)
=z 3l Original Load Profile 4
=
< 2} | = = =EM policy, 6 = 0.002, B = 2
£
N2 T TR SR O B BN ST S L
0 2 4 6 8 10 12 14 16 18 20 22 0
4
Z af Original Load Profile
Z 2f |-==EMpolicy, § =1,B=2
S
S pramsresruneanonene nosg o =
16 18 20 22 0

0 2 4 6 8 10 12 1 ‘%
Time (hour

» 0 = 0: EM policy minimizes only the energy cost
» Extra energy is stored in RB in the off-peak price period

» Peak demand satisfied from RB as much as possible

» 0 =1: EM policy maximizes only the privacy
» A smooth load profile is generated

» Peaks in the original load profile are masked
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Impact of Measurement Resolution

50 T : ; .
o —>5 minutes, B = 1.5 kWh
= —10 minutes, B = 1.5 kWh
= 40r 15 mi _ 1
~ —15 minutes, B = 1.5 kWh
Z —1 hour, B = 1.5 kWh
é 301 (sm il
=]
=
&
= 201 ]
9 10m
g
= 15m
= 10 1
S ot

0 ! T

0.95 1.1

1 1.05
Average Energy Cost - C (euro/day)

» Measurement time resolutions 5, 10, 15 minutes, and 1 hour.

» Optimal boundary moves downwards as SM resolution
decreases

» Higher privacy with decreasing meter resolution
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Limited Prediction Horizon

3||—User load 3||—User load
—-Grid load —-Grid load
— Target load 2.5} Target load
z z 2
= =
= =
g £15
5 5
< ~
1
] S
0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Time (day) Time (day)

» EMU can predict demand only for a limited future horizon
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Filtered Target Load Profile

3||—User load
—Grid load
2.5/ Target load
\E/ 2
= =4
GEJ 1.5
3
oW

—_

0.5

0 02 04 06 08 1

Time (day)
» Fixed target load equivalent to keeping the dc response
» We can keep more low-frequnecy components

» Most information in high-frequency components
IEEE WIFS'18 - Privacy in Smart Metering Systems - Heuristic Techniques - Glindiiz and Oechtering

91/170



Statistical Privacy Measures

» Treat user load as a random sequence

» Grid load is also random, and depends on the energy
management (EM) policy

» Privacy can be measured by the similarity between the two
time series

» Perfect privacy achieved when grid load is independent of user
load

» With no EM, grid load = user load: maximum leakage
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Statistical Privacy Measures

» Treat user load as a random sequence

» Grid load is also random, and depends on the energy
management (EM) policy

» Privacy can be measured by the similarity between the two
time series

» Perfect privacy achieved when grid load is independent of user
load

» With no EM, grid load = user load: maximum leakage

» We will first consider information theoretic privacy measure:
mutual information between user and grid loads
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Privacy with a Renewable Energy Source

l X, - Y
Energy E

Management ~

Unit (EMU)| X L ﬂ
l z‘@' user load

Smart Grid
(SG)

Smart Meter Y

> (SM)

m grid| load
-

— Yi 4
¥
Utility Provider
(UP)

» Discrete time model:
» Energy demand (user load): X;

» Energy from grid (grid load): Y;:
» Remainder from renewable energy source(RES): X; — Y;

» SM measures and reports Y;

J. Gomez-Vilardebo and D. Gunduz, “Smart meter privacy for multiple users in the presence of an alternative
energy source,” |IEEE Transactions on Information Forensics and Security, Jan. 2015.
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Energy Management Policy
» Energy management policy: f; : Xt x Y71 = ), st
0<X;— Y, <P

» Privacy: Information leakage rate
a1 vn yn
Ih==1(X",Y"
n

» Average power from RES:

Py =E “ >0 - Yt)]

t=1

» For given P, pair (I, ﬁ’) is achievable if there exist energy
management policies with lim,_ o I, < I and limp_oo Py < P.

» Privacy-power function, Z(P, P), is the minimum achievable
information leakage rate under peak power P, and average

power P constraints on renewable energy generation rate.
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Privacy- Power Function

» Assume independent identically distributed (i.i.d.) input
power sequence X" with distribution px

Theorem (Privacy-Power Function)
Privacy - power function for an i.i.d. input load X with distribution
px(x) is given by
(P, P) = inf (X Y)
py|x(yIx):E[X=Y]<P
0<X-Y<P

» Privacy - power function is a non-increasing convex function
of P.

» Optimal energy management policy is memoryless and
stochastic: randomly generate output load based on
instantaneous input load.
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Rate-Distortion Interpretation

Privacy-power function is a rate-distortion function with difference
distortion measure:

x—y if0<x—y<P,
d =
(x.y) { oo otherwise.
» No digital interface: Y is direct output of “encoder”, rather
than the reconstruction of the decoder based on the
transmitted index

» EMU does not operate over blocks: Y; decided
instantaneously based on previous input/output loads

» If all future energy demands were known, same privacy could
be achieved by deterministic block-based energy management

policy
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Continuous Grid Load

» Continuous grid load alphabet: Infinitely many variables

Theorem
Without loss of optimality grid load alphabet ) can be constrained
to the user load alphabet, i.e., Y = X.

» Discrete user/ grid load alphabets: Convex optimization
problem

» Blahut-Arimoto algorithm
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Uniform Grid Load

4.5

Optimal
4 =—©— Limit max output load | ]
=—#— Time division

0 0.2 0.4 0.6 0.8

» Uniform demand over {0, c,2c...,20c}, such that E[X] =1
» Time division: Either from RES or grid
» Limit max output load: Y(t) < C
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Continuous User Loads
» Continuous user and grid load alphabets

» No efficient numerical computation method (infinite
dimensional optimization problem)

» Shannon Lower Bound (SLB):
Z(P) > (h(X) = In(P))* nats
» Not tight in general
» Exponential input load, X ~ exp(\): SLB is tight

(x—y) _x

Px

> Achieved by fy;x, (v[x) = 5! e P e™fy(y), where fy. is a

mixture of a continuous and a discrete distribution specified by
P. 1 & P.
fr(y)=(1- =L ) —e ™ + -1
vi(¥) ( Px,-) Pt By (¥),
where §(y) is the Dirac delta function.

7(P) = <In <2)>+ nats.
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Shared Storage

SM vy Energy X1, User1
m m——>- | Management | = Z&\
e = Unit (EMU)

I SM Yy, : Xy, User N
()

—~
E,

» N independent appliances sharing a common RES
» Input load of appliance i: X;

» Goal: Minimize the total (or weighted) information leakage:

N
I(P)= inf Ix, (P;) .
Z;Vﬂ P"SP;

J. Gomez-Vilardebo and D. Gunduz, “Smart meter privacy for multiple users in the presence of an alternative
energy source,” |IEEE Trans. on Information Forensics & Security, Jan. 2015.
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Exponential User Loads
» Let X; ~ Exp(Px;)
» Optimal power allocation obtained by reverse water-filling:

pr _ A, A< Py,
P Px, if A> Py,

where ) is chosen such that SV, Pr=P.

» Satisfy all energy demands with average
A2 load below A from RES
A » Others receive exactly power A from the
A RES, and remainder of their demand from
" the grid

J. Gomez-Vilardebo and D. Gunduz, Smart meter privacy for multiple users in the presence of an alternative
energy source, |IEEE Trans. on Information Forensics & Security, vol. 10, no. 1, pp. 132-141, Jan. 2015.
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Instantaneous Power Constraints

» We have considered average power constraint: Appropriate for
alternative energy sources such as micro-grids,

» For RES, energy is generated online with some statistics
» For finite RB capacity, we have instantaneous constraints
» In general, a Markov decision process (MDP)

» We will first look at special cases
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RES with an Infinite Battery (B.x = o0)

» Cumulative energy constraints (E; random process):

n

S (Xe—Ye) <D Ee, vn.
t=1

t=1

Theorem
If Bpax = 00, minimum information leakage rate T, for average
renewable energy generation rate Pg, is

Too 2 Z(PE, 0)
» Scenario equivalent to average-power-constrained case. Lower

bound on minimum information leakage under battery
constraints.

G. Giaconi, D. Gunduz, and H. V. Poor, “Smart meter privacy with renewable energy and an energy storage
device,” IEEE Trans. on Information Forensics & Security, Jan. 2018.
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Store-and-Hide Scheme

Initial storage phase of duration
h(n): requests satisfied only
from grid, no privacy.

Consecutive hiding phase of
duration n — h(n). Energy from
grid and battery. Privacy
achieved.

Assumptions: h(n) € o(n), with
limp— 00 h(n) = 00, and

limp—00 N — h(n) = oo.
Constraints satisfied if

E[X — Y] < Pe. No
information about recharge
process required.

Achievable Schemes for B,,,, = o0

Best-Effort Scheme

» No initial charging phase. Same

stochastic policy of hiding
phase. If §; + E; > X; — Y4,
decide whether to take energy
from battery or from grid.

Battery update:

5t+1 - St + Et - ()(1_L - Yt) .
1(S: + E: > X: — Y:), where
1(x) =1 if x holds, and 0
otherwise.

If E[X — Y] < PE,

S¢ + E; < X¢ — Y; holds only
for finitely many time slots as
n — o0o.
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RES without Battery (Bmax = 0)

» FE; serves as a peak power constraint on the energy requested
from RES. Energy constraint:

OSXt_YtSEta tzl,...,n.

Remark: past has no influence.

» For random E;, two scenarios: RES state known only by
EMU, and known also by EP.
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No Battery (B.x = 0)

RES State Known only by EMU RES State Known also at UP
Instantaneous Harvested Energy Instantaneous Harvested Energy
| —
Input Lnad}—‘(>{ EMU }—y’{ Grid ‘ Input I,ne\(l}T—{ EMU }—Yt” Grid ‘
» UP still knows pg. » Worst case scenario.
If Bmax = 0, and RES is If Bjax = 0 and RES state
i.i.d. with pg, minimum known at the UP, minimum
information leakage rate information leakage rate:
Iy & inf (X Y). Zo inf 1(X; Y|E).

Py |x,ElrIx,e)0<X—Y<E Py|x,E(Ix,e)0<X—Y<E

» It is possible to prove Zg > T (I_DE,oo> = T hold, and
Ty < To.
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Binary Input Load

X ={0,1},

X ~ Bern (qx), aen e A T AT AT
Pr{X =1} = gx.
£=1{0,1},

E ~ Bern(pe),
Pr{E =1} = p.. Figure 1: Finite battery model.
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Figure 3: Privacy w.r.t. pe.
Figure 2: Privacy w.r.t. pe.
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Energy Manipulation against Statistical Inference Attacks

Content:

» Statistical inference based approaches based on

» unauthorized hypothesis detection
(Bayesian/Neyman-Pearson approach)

» unauthorized state estimation
(Fisher information-based approach)

» Problem modeling and recapitulations, privacy-by-design
approach based on worst-case asymptotics, fundamental
bounds, algorithmic design based on Markov-decision process
framework, ...

» Methods are applied to smart meter privacy problem, but
readily extend to other settings

» Binary hypothesis testing can be straightforwardly extended to
multiple hypotheses.
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Privacy Leakage as a Neyman-Pearson Test

Adversary

H— pyw L pay —f

» Neyman-Pearson hypothesis test

» Binary hypothesis H (e.g., watching TV or not)

» Observation Y and likelihood pyn 4

» Decision H

> Type | prob. of error pi = py;,(h1|ho) (false alarm, false neg.)

» Type Il prob. of error p;; = p,:,“_,(ho\hl) (miss, false positive)
Neyman-Pearson test approach
Phyjys = argminpy, s.t. pr < ¢

Piyn
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Privacy Leakage as a Neyman-Pearson Test (cont.)

» Privacy leakage measure: Minimal Type Il probability of error

min __

= min s.t. <
Pii 'y:y”LY}-[p”? p< ¢

Stein’s Lemma: Asymptotic privacy leakage measure
Let Y be i.i.d. sequence under each hypothesis, i.e., ~ py|s or ~ py|p,

n = lim
n—o00

= D(pY|ho ‘ |pY|h1)

log p{j'"
n

1

08

06
£
04

02

s

02 ¢ 04 06

» Note that n ddes not depend on ¢.
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Privacy Leakage as a Bayesian Hypothesis Test

Adversary

H—> Py > iy |—>A

» Bayesian hypothesis test
» Hypothesis H and prior distribution py
» Observation Y (smart meter reading) and likelihood py |y
» Decision A and decision cost c(h, h)

» Bayesian risk r = E{c(H, H)} (expected decision cost)
Bayesian test approach

=argminr

E3
Pay o
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Bayesian Testing Modeled Privacy Leakage (cont.)

» Design objective of the adversary: Minimize the Bayesian risk

r="Y" clhhpy (b h) =D ppy(bly) D c(h, h)pyiu(yIh)pu(h).

hheH YEY hen heH

» Deterministic likelihood test are sufficient for optimality

v*(y) = argmin >~ c(h, h)py|1(y|h)pH(h)
hen heH

» Privacy leakage measure: Minimal Bayesian risk of the adversary

rmn = min r:Z min Zc(ﬁ,h)pyw(ﬂh)pf.’(h)
v Y—H

yey VR Lncyn
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Adversarial Hypothesis Testing - Overview

» Assumptions on the adversary

» Informed about the smart metering system, access to smart
meter readings and knowledge on statistics

» Adversarial behavior: Neyman-Pearson or Bayesian hypothesis
testing

» Problem settings
» Worst-case analysis®
» Consumer energy demands: i.i.d. or Markov model

» Distortion source: renewable energy supplies (RES) or
rechargeable battery

» Objectives of Studies
» Privacy-enhancing energy management design

» Fundamental bounds on the privacy performance

5
Flipping the processing order of attacker and defender, i.e., attacker manipulates observation leads to
zero-sum game theoretic formulation of adversarial signal processing approaches, e.g. [Barni, Tondi '13, '16].
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SM System with Renewable Energy Supply

v

Binary hypothesis hy/h; (e.g. using the oven or not)

v

i.i.d. energy demands X"|hg or X"|hy

v

EMU: Random instantaneous energy management policy

Yi=yi(xy T h), sty < X

v

RES with a sufficiently-large energy storage

v

EMU policy over n-slot horizon 7"(s) = {v;}/_; satisfying

E“ﬁjm—n)
i=1

IEEE WIFS'18 tutorial - Privacy Against Statistical Inference Attacks - Giindiiz, Oechtering
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Adversarial Neyman-Pearson Hypothesis Test Design

» Informed adversary

» Operational privacy leakage measure:

ﬂ(n,g,"yn(s)) = ATgig;n{pY"\hl(An)|pY"|ho(Af1) < 5}7

where A, and A¢ denote decision regions for hy and hy of the AD.
Design objective for privacy enhancement

B(n,e,s) £ max B, (s))}-

y"(s)er(s

Li, Oechtering, Giindiiz, “Smart meter privacy based on adversarial hypothesis testing,” in Proc. IEEE ISIT 2017.
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Infimum Kullback-Leibler Divergence Rate

» Infimum Kullback-Leibler divergence rate® (s) is defined as

. | 1
0(s) = klean+ {Vk(sl)gfrk(S) {kD(pyklhoHkalhl)}} .

. , 1
0(s) = k"_>moo a,k(sl)gfrk(s) {kD(PykhoHPYth)} :

» The proof follows from the subadditive sequence of
7

inf k(s)erx(s) {D(pyk‘hoprth)} and Fekete's Lemma’.

» Thus, the infimum is obtained in the Iimit

°KL-divergence is defined as D(p||q) = >, p(i Iog
"Fekete Lemma: For every subadditive sequence {a,,},, 1r

the limit lim,— 2 exists and is equal to inf, 2.

n
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Asymptotic Privacy-Enhancement Performance Bounds

» Operational meaning of (s) for given s > 0:
Theorem 1

) 1
lim sup — log

msup m < 9(5)7 Ve € (O, 1),

1 1
o1 S .
elinl ll:m»!ﬂf n log B(n,e,s) — o(s)

» Proof ideas:

» Use the maximization(sup)/minimization(inf) and the
definition of 3(n,,s) to derive upper/lower bound;

» Use Stein's lemma, information spectrum, and Lemma 1 to
relate with the Kullback-Leibler divergence rate 6(s).
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Robustness: Worst Scenario with ¢ — 1

» Uncertainty about chosen ¢ at AD
» ¢ — 1 is most conservative assumption

» ¢ — 1 means Type | probability of error does not matter for
the AD.

» The bounds in Theorem 1 are tight when ¢ — 1.

Corollary 1
Given s > 0,

. 1 1
lim Jim 108 5 ey ~ 08)-
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Memoryless Hypothesis-Aware Policy

» Why memoryless energy management policy?
» Generally, 6(s) is difficult to evaluate and achieve.

» Memoryless policy is easy to design and implement in practice.

» Random instantaneous memoryless hypothesis-aware policy:
% = 7T,'(X,', h), s.t. yi < Xj.

» Memoryless hypothesis-aware policy over n-slot horizon
n(s) = {m;};_, satisfying

E [izn:(xi -Yi)

hj] <sVj=0,1
i=1
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Asymptotic Privacy-Enhancement Performance of 7"(s)

» Design objective for privacy enhancement policy:
max {B(n,e,7"(s))}.

AN
n,e,s) =
filn.e,s) m(s)ENn(s)
» [1"(s) denotes set of all memoryless policies 7"(s).

» Define an infimum Kullback-Leibler divergence rate 6, (s) as
1
2Py llPyen) ¢ o -

0 £ inf inf
L(S) klenZ+ {wk(sigﬂk(s)
Corollary 2
Given s > 0,
lim lim 1Io 1 =0.(s)
e—1ln—oco n & BL(I’I,E,S) -t '

120/170
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Single-Letter Expression

» Given sy, s; > 0, define

S0, 51) = min D .
é(s0,51) (PY\X,hO,pY\X,hl)EP(SO,SI){ (PyinollPyin) }

» Lemma: ¢(sp, s1) is a non-increasing, continuous, and jointly
convex function for so > 0 and s; > 0.

Theorem 2
Given s > 0,

. . 1 1
lim Jim 108 5y — (8 = (s 9):

» The proof is based on the chain rule of Kullback-Leibler divergence
and properties summarized in the above lemma.

Remark: ¢(s,s) can be achieved with an i.i.d. memoryless policy.
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Hypothesis-Unaware Policy with Memory

» The EMU may not have access to the correct hypothesis.

» Random instantaneous hypothesis-unaware policy with memory:

Y= pi(Xiv.yi_l)v st yi < x;.

» Hypothesis-unaware policy with memory over n-slot horizon
p"(s) = {pi}i, satisfying

E [izn:(xi =Y

i=1

hj] <sVj=0,1
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Asymptotic Privacy-Enhancement Performance of p"(s)

» Design objective for privacy enhancement:

ﬂM(m&,S) £ max ){5(”,5,‘0”(5))}.

p(s)eP (s

> Define an infimum Kullback-Leibler divergence rate Ou(s) as

. . 1
Om(s) = k'enii {pk(s)lgfl;k(s) {kD(PwhoHthl)}} :

Corollary 3
Given s > 0,

im i 1I 1
im lim =log ————
i 08 Bm(n, e, s)

= QM(S).

» Which information is more useful for the asymptotic energy
management? Correct hypothesis information or previous data?
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Comparison of Policies

Theorem 3
Given s > 0,

Ou(s) < ¢(s,s).

» Proof idea: Construct a two-phase hypothesis-unaware policy with
memory and bound its asymptotic performance by Ou(s), ¢(s,s).

» At the end of the first phase, the EMU makes a hypothesis
test.

» The energy management in the second phase depends on the
decision of the EMU.

» The EMU may make a wrong decision which can lead to a
violation of the expected RES energy generation constraint.
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Adversarial Bayesian Hypothesis Testing

» Assume that the informed AD also knows the hypothesis prior
probabilities pp and ps.

» Operational privacy leakage measure:

a(n.y"(s)) = min_ {Po - Pyrin(A5) + 1+ Pysia (An) }

with A, and A decision regions for hy and hy of the AD.

Design objective for privacy enhancement

a(n,s) £ 32 el ()

> i *= lim -1
Lowest asymptotic exponent D nll_)n;o - loga(n,s)

Li, Oechtering, Giindiiz, “Privacy against a Hypothesis Testing Adversary,” to be published IEEE T-IFS.
See also KTH PhD thesis of Z. Li (2016).
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Adversarial Bayesian Hypothesis Testing (cont.)

Theorem (Chernoff)

—

X

D* = D(px+||pyniny) = D(pr+llPyn|n,)

=

A ny,l—A n
, Py (Y IPynih (V")
with py(y") = 0l
) PICINEEEND

A € [0, 1] such that (x) holds.

and \* the value of

» It can be shown that D* is equal to the Chernoff information

. 1-X
C(Pyrinys Pyrimy) = — min 108 30 Py (v")Pyafy, (")

» Similar results are obtained while the asymptotic performances
are characterized by Chernoff information rates and
single-letter Chernoff information.

» Optimization of X is new and needs to be handled.
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Reduction of Energy Supply Alphabet

Theorem 4

The energy supply alphabet ) can be limited to the energy
demand alphabet X' under both hypotheses without loss of optimality
for the evaluations of ¢(s,s) and v(s,s).

Proof outline:
> Let {py, }i=o,1 be minimizer of D(py, [Py, )-
> Use certain quantization that maps y to y € X.
» Always next higher level in X.
> Let {py/j, }i=0,1 denote concatenation of {py,, }i=0,1 and
quantization, then " =" follows from

> D(pY 4 |1PY 1) < D(PyiylIPy ) since {pY }izo,1 is a
minimizer, and

> D(pY 4, 1Py ) = D(Pg |4, |lPy s, ) due to data processing
inequality for KL-divergence.
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Example

» Binary demand X = {0,2}= binary supply Y = {0, 2}.

> b= px|n(0), B = px|n (0).

U(s,5)

» Higher average renewable supply improves the privacy enhancement.
» Similar energy demand profiles improve the privacy enhancement.
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REDD Dataset Numerical Experiment
» hg: Type A dishwasher is used. h;: Type B dishwasher is used.

» The optimal i.i.d. memoryless hypothesis-aware policy is used.

x (W
2 Xk W) 0 200 500 1200
ho (Type A) 0.2528 | 0.3676 0 0.3796
1 (Type B) 0.1599 | 0.0579 | 0.2318 | 0.5504
"0 h‘
1 1
 1000] —s=0 1000 —s=0
>~ BN
500 500
0 200 400 600 800 1000 OC' 200 400 600 800 1000
i i
oo [—s-a000] 1000 [ s=4000]
B S
500 500
0 0 UI[J“I']‘]l ll I i Mll hll IILI ‘ W ”HH
0 200 400 600 800 1000 0 200 400 600 800 1000
i i
1 1
_ 1000 ] [—s=5000] o 1000 I [=—s-5000]
500 500
11 l a1, 1 A].I ll Iy 0 1 ll N 1 11, lll i1
(] 200 400 600 800 1000 0 200 400 600 800 1000

i i

Kolter, Johnson, “REDD: A public data set for energy disaggregation research,” in Proc. SustKDD Workshop'11.
IEEE WIFS'18 tutorial - Privacy Against Statistical Inference Attacks - Giindiiz, Oechtering 129/170



SM System with a Powerful Energy Storage

v

Binary hypothesis H

v

i.i.d. energy demand X; under each hypothesis

> i.i.d. energy management: py;y x;
= i.i.d. energy supply Y; under each hypothesis

v

Powerful energy storage device assumption: Infinite capacity

» Dependency: px; vi|xi-1,yi-1,H = Px;,Yi|H = PYi|X;,H * PX;|H

Li, Oechtering, “Privacy on hypothesis testing in smart grids,” in Proc. IEEE ITW 2015.
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Adversarial Neyman-Pearson Hypothesis Testing

> Set of feasible energy management policies:

E(Yilho) = E(Xi|ho) = fb}

Y|X,H {PY,IXI,H E(Y;|h1) = E(Xi|h1) = £

i.e., asymptotic balance 2 377 | Y; 23 E(X) under each hypothesis.
Design objective for privacy enhancement

n = min D(py. :
il PPy (PY,IhoHPY,\hl)

Observations:
» Sufficient to optimize py,y instead of py, x, 4 since both the
objective and constraints depend on py; 4 only.
» Equal sjupport confiition: S(p*Y,-|ho)_ = S(p*Y:Ihl) = Y*. Adversary
otherwise knows directly hypothesis for y; ¢ S(p’{(i‘ho) N S(pf,ilhl).
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Cardinality Bound of Energy Supply

Theorem 1
The optimal energy management policy requests at most two

supply states, i.e., |V*| < 2.
Proof outline:

» The problem minp, ,ep,,, D(Py|n||Py|n ) is @ convex optimization
and satisfies Slater’s condition.

» Optimal p’{,‘H has to satisfy KKT conditions.

» Conditions of stationarity and complementary slackness lead to
exp(—\y —1—vj)=w'y + vy, Vy € Y".
Denote the solution set of this equation by ).

> | V*| < |Vs|. Then, bound |Vs|.
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Optimal Energy Management

Corollary 1
If |[YV*| = 1, then we have equal expected energy demands for both
hypotheses fy = 1 = f € ), Y* = {f} and r;j = 0 (perfect privacy).

Theorem 2
If |Y*| =2, then Y* = {min Y, max Y} with

. . max )y — f;
pY,-Ihj(m'n V)= m,

Py, n(maxY) =1 — py,, (min}),

: * fo—min )Y fo—minY max Y —f max Y —f
J € {O’ 1} and h = maf()ifminy |0g f(l)fminy + maxyfmir?y |0g maxyff;)'
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Numerical Example

> fo,f1 €[4,6].

» Case l: minY =1, max)y =9

» Case 2: min)Y =3, max) =7

Two ways to suppress the privacy
risk:

» Increase the difference
max ) — min ).

» Decrease the difference
o — A.
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Adversarial State Estimation Approach

x — f(+) fx) é y="1f(x)+w

v

Consumption sequence x € X C R”

v

Continuously differentiable f : R” — R™

Additive noise w € W(x) C R™
» Conditional probability density function y(w|x) € T

v

v

Adversarial state estimation X(y)

7" € argmax E{|[x — X(y)|3}
~yel

Farokhi, Sandberg, “Fisher Information as a Measure of Privacy: Preserving Privacy of Households with Smart
Meters Using Batteries,” to be published in IEEE Trans. on Smart Grid. Thanks for providing material.
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Adversarial State Estimation Approach (cont.)

» Let Z(x) denote the Fisher Information

Cramér-Rao Bound
» E{X(y)} =x = E{[x = X(y)ll3} > trace(Z (x))

> E{X(y)} = g(x) =
E{llx—%(y)l12} = trace(G(x) "Z71(x)G(x)) + [Ix — g(x)I3

Privacy-by-design problems:

v* € arg max trace(Z~}(x)) Z71(x) not concave
yel

~* € arg min trace(Z(x)) relaxed problem
yel

» Solution of linear partial differential equation provides solution
(noise distr.) to relaxed problem sometimes even explicitly.
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Numerical Study Setup

» Real consumption data (April 23-May 21, 2011) from REDD

database [Kolter & Johnson, 2011]

» State-of-the-art non-intrusive load monitoring algorithm in
NILMTK toolbox [Kim, et al, 2011] [Barta, et al, 2014]

» Data over April 23-30 is used for learning and the rest is used

for evaluation
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Numerical Study

N 1o battory W battery 0.5kWh W battery LOKWh [ battery 2.0kWh

f-score

fridge dish socket light micro-
washer wave

» Resolution of the policy of the battery is an hour

» The appliance connected to the socket was always on during

the experiment
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Energy-flow Control Strategies Based on MDP Framework

» Concept of Markov decision process (MDP) provides a
framework with well-developed tools for the design the
optimal energy-flow control strategies

» MDP has been used with a reward function based on
» information-theoretic motivated privacy measures
» conditional entropy [Yao et al.2015]

» mutual information [G. Giaconi et al., 2016], [S. Li et al, 2016]

» statistical inference motivated privacy measures
» Bayesian risk [Z. Li et al, 2017]

» KL divergence [Y. Yang et al, 2018]

Yao, Venkit., “On the privacy-cost tradeoff of an in-home power storage mechanism,” in Allerton, 2013.

Giaconi, Giindiiz, “Smart Meter Privacy with Renewable Energy and a Finite Capacity Battery,” in SPAWC 2016.
Li, Khisti, & M., “Privacy-optimal strategies for smart metering syst. w. a rechargeable battery,” in ACC, 2016.
Li, Oechtering, Skoglund, “Privacy-preserving energy flow control in smart grids,” in Proc. IEEE ICASSP 2016.
Yang, et al., “Optimal Privacy-enhancing and Cost-efficient Energy Management ...,"” in Proc. IEEE SSP 2018.
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Markov Decision Process (MDP)

» MDP is a process with Markov property

» Task: Find optimal (decision) policies {d; : S — A}icz, to
optimize an objective in terms of rewards {R;}icz, .
» Decision on an action A; € A is based on the current state
Si € § and influences the reward R; and next state Si:1.

» Framework with established computational methods exists
» Suitable for modeling problems with Markov property setting
Krishnamurthy, “Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing,” 2016.
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Belief State Markov Decision Process

» Extension: Belief state

» Posterior distributions of the state S; conditioned on different
realizations of historical observations

» Belief state formulation allows the partially observed MDP to
be formulated as a standard (fully-observed) MDP
> Action

» For energy management, action a; decides on the amount of
energy supply based on the current state

» Deterministic action
» Certain energy supply at each state deterministically chosen.

» Random action

» Decide on different amounts of energy supply according to a
certain distribution at each state.
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SM System with a Finite Capacity Storage

v

v

Generation of X; follows time-invariant pmf pxy, x,_

v

Energy management policy 7; = py;x, z satisfies the constraint
Zi— ziy1 +yi = X, e,
(i) demand x; is always satisfied and (ii) no energy is wasted.

» Dependency setting:
PHHX“Z“yI,‘HFl’X/'fl’fol?yffl
= PYi|X:,Z; * PXi|H;,Xi—1 * PZ|X;—1,Zi—1 " PH;|H:_1
Li, Oechtering, Skoglund, “Privacy-preserving energy flow control in smart grids,” in Proc. IEEE ICASSP 2016.
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Belief State MDP Formulation

» Belief State Markov Decision Process:

» Current “reward” r; depends on “action” ; and “belief state”
PH; X, Z; -

» Next “belief state” py,,, x;,,,z., depends on current “action”
i and “belief state” pp;, x; 7.

Belief state MDP elements
» State: s; = (h;, x;, 2;)
> Belief state: b; = pu, x,,z € B
» Action (energy management policy): a; = v; = py,|x,,z, € A
» Reward: r;i(b;, a;)
» Policy §;: B— A
> Belief state transition: b;y1(b;, a;)
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Adversarial Bayesian Hypothesis Testing

» Informed adversary makes decision H; based on Y;.

» Instantaneous Bayesian risk of the adversary:

ri:Z min Z c(hi, hi)pyiix.z (ilxi, 2) pH, x,.z (hiy X3, 1)
Yi hi hi,xi,zi

» Observations: Depending on policy «; and “belief” py;, x;.z,
instead of (h;, x;, z;)
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Infinite Horizon Energy Management
Privacy leakage: Accumulated discounted minimal Bayesian risk

oo

Given initial "belief” py, x,.z, J(pH1,X1,Z1) = Zﬁi_lr,'
i=1

where 0 < 8 < 1 is a discount factor

» Applicable to the scenarios where privacy leakage risk decays with
time, e.g., considering the time-increasing exposure probability of
the adversary

Privacy-enhancing energy management

J*(thXth) = Tai( J(le,Xl,Z1)

i
Current energy management affects the future!
PH:1,Xi41,Zi01|Hi Xi,Zi = PZia|Xi,Zi * PXisa|His1,Xi * PHia|H;
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Optimal Policies

Bellman equation

J*(bi) = maxri(bi, ai) + 5 - J*(bis1(bi, ai))
(5,*(b,) — arg max r,-(b,-, 3,') + ﬁ . J*(b,'+1(b,'7 a,-))
aeA
» Optimal policy 67 is time-invariant.

» Established algorithms, e.g., value iteration (on the next slide),
policy iteration

» How an optimal energy management operates:
At time slot 1, implement an instantaneous energy management
policy v1 = 07(pH,,x,.z,); and update pu, x,,z,- Repeat the two
steps at the remaining slots.
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Value lteration

» Consider a finite discretized belief state alphabet
B ={bq), .- bz }-

1: input: a reward vector [J*(b()), - -, J*(b(8)))]

2: while the update of reward vector does not satisfy convergence crite-
rion do
for k€ {1,...,]|B||} do

Hbgwy) <= maxri(b), ai) + B - I (bis1(b), ai))
(57(b(k)) <—arg nl‘ax I‘,'(b(k), a,-) + ﬂ . J*(b,url(b(k), a;))
ajc
J*(beky) < J(by)

5: end for

s w

6: end while
output: [J*(b(l)), ceey J*(b(HBH))] and [5?([3(1)), - ,57([)(”3“))]
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Numerical Example

OO OO

o e —’ﬂifj » Binary hypotheses H;

N p — )

Zo ! xi,zi € {0,1}, y; € {0,1,2}
5075 =]

‘;E\w > 5 == 0.5

v

, A finite number of belief states
odb—a » (an approx.)

» Instantaneous optimal energy management policy (J¥), i.e., a
policy always maximizes instantaneous reward without considering
impact on the future

» Policy considering future impact = Privacy-enhancing improvement
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Privacy-Cost Trade-off

» Energy storage (ES) is also used for energy cost savings
» What is the policy f that achieves the optimal trade-off?

» Battery level evolves as 511 = St + Ye — X, 0 < 5¢ < smax

» Privacy measure: L(f) = %D(P(,T’PTMOHP\fﬂqu)

» Cost-saving rate with dynamic pricing Py: V(f) =
T
F 3 (B[ = Yool P(o) + B/ [(X = Yo Pl i]P(hy)}
t=

Yang, Li, Oechtering, “Optimal Privacy-enhancing and Cost-efficient Energy Management Strategies for Smart Grid
Consumers,” in Proc. IEEE SSP 2018.
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Belief-state MDP Design Approach

» Design objective: min C(f,\) = min AL(f) — (1 — A)V(f)
feF feF
» Solution approach: Belief-state MDP formulation & finite
horizon backward dynamic programing
-, . . S T L L e - —-_-_-_-_--_-_C
» Decomposition of f; in ) S S
02 * Battysen 1
> pO|Icy dr = 7Tt(yt_1, pt_l) g ¥ Without management
So1s *
. & *
> actions a; € {Py,|x,s,,p, } g-;m . ®
2o
. A A
> Belief state: 2 . .
PSPy P AT ) s A
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
> Per—step expected cost Expected cost-saving rate
Ct(Trl’vAa YtilaAtilvptil) .
Binary power levels toy problem
yp Yy p
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Energy Losses due to Privacy Control

; Y, X
Grid > . £ ‘ House
Meter I
Dy
l lHH
) l ESS T Dt
Hy | Adversary EMU

AC-DC DC-AC

¥
o

S

—~ C SR I

—

(a) Self dissipation loss  (b) Internal resistive loss (c) Converter loss

Reddy, Oechtering, Mansson, “Optimal Privacy-preserving Control Strategies for Smart Meters Including Energy
Storage Losses,” IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2018.
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Energy Loss Aware Bayesian Hypothesis Testing

» With energy loss accounted in battery state estimation®

Zt+At:(1_7)'Zt+5(\/V%C"“”'Dt'ét—voc)

» Optimal control strategy:
N
i = argmax > Ri(be-t, ze-1, )
{#1"" 7HN} k=1

where the instantaneous minimum Bayesian risk is given as

Rz(bk—l,Zk—h/f/k) = EE;/ET;I’E{ Z C(ha h) ' PYlek—lvzk—l(-y | sz)'
y

g,hxEH2IXX

PXk—l‘Hk—l(X ‘ g) ’ PHk\Hk—1(h | g) : PHk—l(g)}

8 . .
where v, r, 8, Voc are model parameters and D¢ - d; is control variable.
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Numerical Experiment

» The EMU when tasked to protect the events of a water kettle

between 8 AM and 9 AM in Household 2 of ECO dataset using 12V

100Ah battery:

2000F w —
House consumption

1500 —— Smart meter measurement| |
2 1000 Reduced peak 1
9] with initial battery of 50% SOC
§ 500

0
-500 £

Il Il Il Il Il |
12:00 AM 4:00 AM 8:00 AM 12:00 PM 4:00 PM 8:00 PM 12:.00 AM

Initial battery SOC (%) Energy loss (Wh) Accumulated minimum Bayesian risk (AMBR)”
Without battery 0 0
0 40.421 152.57
50 36.230 153.51
100 9.779 148.89

9The higher the AMBR, the better is the privacy control
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Differentially Private Battery Recharging

» Modify household’s consumption profile (first proposer of this
approach) by adding noise using a rechargeable battery to
achieve privacy in the sense of differentially privacy

» Use battery as buffer to apply Laplacian noise to the
consumption (either discharging or charging)

» Taking battery capacity and throughput (energy
charged/retrieved per time) into account
differential privacy in resource-bounded setting

» bounded mechanism (noise, can be high)

> (e, 0)-differential privacy guarantees with revised (increased) §
due to restrictions (without recharging, one step result)

» Battery recharging mechanism, noise generation via cascading
> ldea: Consider energy to be recharged as function that should
be made differentially private

» Formally only one activation of one device is protected

M. Backes, S. Meiser, “Differentially Private Smart Metering with Battery Recharging,” Proc. DPM 2013.
IEEE WIFS'18 tutorial - Privacy Against Statistical Inference Attacks - Giindiiz, Oechtering 154/170



Summary & Conclusion PET Approaches

» There exist several Privay Enhancing Technology (PET)
design approaches based on

» load signature manipulations
» various privacy measures objectives

» sources of distortion

v

control policy design approaches

» A few fundamental results
» based on simplified settings

» applicable to other applications

» A lot of opportunities for further research!
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In Summary

» Privacy is an important concern for smart meter roll-outs

» Privacy should be part of design, not something to be fixed
retrospectively

» "Physical layer privacy” for energy networks
» Hard to quantify and guarantee privacy
» Fundamental privacy - utility trade-off

» Information theory and signal processing provide powerful
tools to study this trade-off

» Based on known statistics: Provable guarantees vs.
Data-dependent approaches
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What Next?

» Some fundamental principles and concepts have been
developed, but for further developments of the technology
readiness we need to study:

» Technological implementation aspects, e.g., real energy storage
aspects

» Impact of privacy-enhancing methods on the power grid, e.g.,
energy management

» Incentives for its integration, e.g., dual use of (car) batteries

» Mostly initial studies have been pursued, refinements and
extensions are needed

» Comparison and assessment of different approaches should be
done
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Closing remarks

» Epochal change where Al advancements create more and
more information from data

» Protection of sensitive information to make it sustainable
» Legally enforced, e.g., European GDPR

» Privacy-by-design is an exciting research field
» Smart-meter privacy is a prominent prototype problem

» Concepts, methods, and approaches transfer to other privacy
problems

» Many open research questions at the intersection of computer
science, power systems, control theory, signal processing and
information theory.

IEEE WIFS'18 tutorial - Conclusions - Giindiiz, Oechtering 158/170



THANK YOU!

Deniz Gunduz
Imperial College London
d.gunduz®@imperial.ac.uk

Tobias Oechtering

KTH Royal Institute of Technology
oech@kth.se
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