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Scope

I What is the problem?
I What are the implications of privacy issues in smart meters?
I How to measure privacy in smart meter context?
I Existing approaches and solutions
I Remaining challenges, future research directions



Smart Energy Grid

Smart grid refers to the future energy grid that exploits
information and communication technologies

I to increase reliability,
I to increase efficiency and reduce carbon footprint,
I to incorporate renewable as well as traditional energy sources,
I to provide security,
I to introduce new services that cannot be foreseen today.
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Smart Energy Grid Entities
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Smart Energy Meters

Smart meters (SMs) are an essential component of smart grids;
they enable many “smart” grid functionalities.

SMs introduce the ability to provide bi-directional communication
between consumers and the energy supplier/ grid operator and to
promote services that facilitate energy efficiency within the home.

The European Commission’s Interpretative Note on Directive 2009/72/EC.
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Advanced Metering Infrastructure (AMI)
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Advanced Metering Infrastructure (AMI)
AMI uses two-way communication to both transmit usage
information and perform observation and maintenance tasks.
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What do Smart Meters (SMs) Measure?

SMs do more than measuring and reporting energy consumption:
I Readings of active, reactive, and apparent power and energy

consumption (4-quadrant metering),
I Energy generated by the user and sold to the grid,
I Alerts about voltage quality measurements,
I Data for billing (e.g., time-of-use tariff, balance and debts),
I Tamper status,
I Security credentials for enabling cryptographic protocols,
I Firmware information and updates.
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Benefits to Consumers

I Ability to track energy consumption near real time, which
leads to better energy usage management,

I More accurate and timely billing services,
I Possibility to benefit from demand flexibility and time-of-use

(ToU) pricing,
I Possibility to introduce safety solutions through better power

quality and breakdown management,
I Appliance failure detection, detection of waste, detection of

unexpected activity or inactivity,
I Increase competition among energy providers due to ease of

switching for customers,
I Integrate microgeneration and energy storage capabilities.
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Benefits to Energy Providers

I Reduced cost of meter readings,
I More accurate billings: Reduced customer complaints and

back office rebilling,
I Energy theft detection,
I Introduce time-of-use pricing for demand management,
I Load-shaping to reduce peak loads thanks to improved

demand forecasts.
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Benefits to Distribution System Operators (DSOs)

I Reduced operational costs,
I Improved fault detection possibilities,
I Increased grid efficiency, reduced energy losses,
I Better matching distributed resources to user demand and

grid’s power delivery,
I Improved distributed state estimation and Volt and Var

control,
I Reduced need for additional generation.
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Smart Metering Standardization
Open Smart Grid Protocol (OSGP)
European Telecommunications Standards Institute (ETSI)
approved, OSGP Alliance (Mitsubishi, Schneider, Vattenfall,
Ericsson, Oracle). Used with ISO/IEC 14908 control networking
standard for smart grid applications. Uses power-line
communications as physical layer. Over 40 million OSGP-based
SMs deployed worldwide -most widely used standard.

IEEE 802.15.4g
Wireless Neighborhood Area Networking (NAN) standard
developed by IEEE Smart Utility Networks (SUN) Task Group
(Elster, Itron, Landis+Gyr, NICT, and Silver Spring Networks).

Telecommunications Industry Association (TIA)
TR-51 engineering committee, Smart Utility Networks, is also
developing air-interface, network and conformance standards to
support smart grids.
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Smart Metering Market

I Global smart meters market is estimated to grow from $12.79
billion in 2017 to $19.98 billion by 2022, at a compound
annual growth rate (CAGR) of 9.3% from 2017 to 2022.

I Global market for SM analytics to reach $2.6 million by 2022.
I Global penetration to grow from 30% (2016) to 53% by 2025

with nearly 1.2 billion smart residential meters worldwide.
I China leads the market: 350 million installed meters
I Directive of the European Parliament requires 80%

penetration by 2020: current installations 200 million.
I In UK, 53m meters in 30m households by 2020 is expected to

cost £10.9bn. Government estimate: £7 billion net benefits
to consumers, energy suppliers and networks over 20 years.
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Smart Meter Privacy Concerns

I Netherlands: Senate voted against mandatory roll-out of SMs,
found to be against European Convention on human rights

I 9000 consumers polled in 17 countries: 1/3 discouraged from
using SMs if it gave utilities access to their energy use
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Smart Meter Privacy Concerns

I “Security experts warn that the smart meters can be infected
with a virus that can spread between different devices, and
cutting some individual energy supplies off. Others warn that
they could even be hacked and used for terrorism.”

https://www.telegraph.co.uk/money/consumer-affairs/six-reasons-say-no-smart-meter/ (accessed on 15
March 2018).
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Smart Meter Privacy Concerns

http://www.brechinadvertiser.co.uk/news/scots-have-topped-a-uk-poll-of-box-set-bingers-1-4112286.
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Smart Meter Privacy Concerns

https://www.cse.org.uk/projects/view/1210.

IEEE ICASSP’18 - Privacy in Smart Metering Systems - Introduction - Gündüz and Oechtering 18/170



Smart Meter Privacy Concerns: USA

Naperville Smart Meter Awareness v. City of Naperville: Court
decides Fourth Amendment protects energy consumption data
collected by SMs:
“Individuals have a reasonable expectation that SM data should
remain private, and government’s access of it constitutes a
‘search’ ”.

https://bit.ly/2SENBl1
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Smart Meter Privacy: Technical Angle
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I Non-intrusive load monitoring (NILM) techniques
I Can track appliance usage patterns, home occupancy, even

the TV channel user is watching.

U. Greveler et al., “Multimedia content identification through smart meter power usage profiles,” Int’l Conf.
on Information and Knowledge Eng., July 2012.
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Smart Meter Privacy: Social Angle

I Patterns (behaviour profiling)
I Watching too much TV?
I Another microwave meal?

I Real-time surveillance
I Were you home last night?
I Did your friend move in?

I Non-grid use of data
I Advertising and spam
I Insurance
I Appliance warranties

I Information leakage
I Phishing, pharming, fraud

”Guidelines for Smart Grid Cyber Security,” National Institute of Standards and Technology (NIST), Privacy
and the Smart Grid, vol. 2, NIST IR 7628 Rev. 1, Sep. 2014.
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Potential Risks

Who wants meter data? How could it be used?
Utilities To monitor electricity usage and load;

to determine bills
Advisory companies To promote energy conservation and awareness
Insurance companies To determine premiums based on unusual

behaviors that might indicate illness
Marketers To profile customers for targeted advertisements
Law enforcers To identify suspicious or illegal activity
Civil litigators To identify property boundaries and

activities on premises
Landlords To verify lease compliance
Private investigators To monitor specific events
The press To get information about famous people
Creditors To determine behavior that might indicate

creditworthiness
Criminals To identify best times for a burglary, or

valuable appliances to steal

“Potential Privacy Impacts that Arise from the Collection and Use of Smart Grid Data,” NIST, vol. 2.
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Smart Meter Security

I Security 6= Privacy
I Remote switching off capability of smart meters opens up new

vulnerabilities (Stuxnet type cyber attacks)
I Meters can be hacked by consumers or third parties to

reduce/increase energy bill
I a utility in Puerto Rico lost $400 million in annual revenue after

criminals hacked into smart meters to under-report electricity usage.

I Smart meters are made to last (15-20 years). Encryption
mechanisms are not adaptive, and cannot last as long.

I Highly connected AMI allows spread of malware
I Wireless transmission of meter readings is prone to

eavesdropping and data injection attacks
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Smart Meter Security Problems
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I Serious security risks reported in AMI architecture
I Flaws in authentication mechanism of Open Smart Grid

Protocol
I K. Kursawe and C. Peters, Structural Weaknesses in the Open

Smart Grid Protocol, Cryptology ePrint Archive, Report 2015/088.
I P. Jovanovic and S., Neves, Dumb Crypto in Smart Grids: Practical

Cryptanalysis of the Open Smart Grid Protocol, Aug. 2015.
I L. Feiten and M. Sauer, Extracting the RC4 secret key of the Open

Smart Grid Protocol, IACR Cryptology ePrint Archive, 2016.
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Security Measures against Attackers

I Authentication and authorisation
I Secure networks and communication links
I Secure data aggregation
I Secure multi-party computing
I Encrypted functions
I Zero-knowledge-proof cryptography
I Physically unclonable functions
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Confidentiality and Authorisation vs. Privacy

Confidentiality
set of rules that limit access or place restrictions on disclosure of
information, e.g., by means of encryption. It ensures that access to
information is restricted to authorized entities.

Authorisation
limits access to certain entities. Authorization is usually coupled
with authentication.

In SMs, privacy is not only against third parties/ attackers, but
also against the legitimate/ authorised receiver of data.
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What is Privacy?
Data privacy (OECD Glossary of Statistical Terms)
It is the status accorded to data which has been agreed upon
between the person or organisation furnishing the data and the
organisation receiving it and which describes the degree of
protection which will be provided.

Personal data (EU Data Protection Directive)
Any information relating to an identified or identifiable natural
person should (among other things) a) “be collected for a specified
purposes and not be further processed for other purposes”, and b)
“be merely adequate and not excessive for the purposes motivating
its collection”.

I Explains the notion of privacy
I Does not specify how privacy protection can be applied
I To protect privacy we first need to measure it

IEEE ICASSP’18 - Privacy in Smart Metering Systems - Introduction - Gündüz and Oechtering 27/170



Paradigm Shift: Privacy Against Energy Providers (EPs)/
Grid Operators

I Focus of current SMs is on protection against manipulation by
customers.

I Grid operators/ EPs can remotely update crucial meter
parameters (e.g., cryptographic keys, sampling frequency),
install new software, or disconnect energy.

I Masurement data collected and stored in database of the
operator.

I Trust in grid operators: customers are protected mainly by
guidelines, audits, codes of behaviour.
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Privacy - Utility Trade-off

Billing problem
EP needs to bill users. Perfect attribution and exactness required.
Low sampling frequency sufficient.

Grid management problem
Energy provider needs to manage the grid. High sampling
frequency required, attribution exactness not necessary (i.e., can
work with aggregate meter readings).

Meter data can leak sensitive information that should be kept
private. There is a trade-off between utility and privacy.
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Non-Intrusive Load Monitoring (NILM)

Content:
I Introduction

I Load categories, framework, features, ...
I Basic principles of some algorithmic approaches

I Supervised vs. unsupervised learning
I K-means clustering, neural networks

näıve Bayes, hidden Markov models, ...
I Available datasets and toolboxes

I Few numerical examples

Zoha et al. “Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey” 2012.
Klemenjak and Goldsborough “Non-Intrusive Load Monitoring: A Review and Outlook” 2016.
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Load Monitoring

I Load monitoring is the process of estimating the energy
consumed by individual appliances.

I (Main) motivation and benefits
I Consumer: Smart and reasonable energy consumption

behaviour (e.g. for cost-saving)
I Energy provider & grid operator: Efficient energy generation

and management of the energy flows in the grid
I Approaches:

I Intrusive load monitoring (ILM): Sensors measure consumption
of appliance directly (intrusive, costly likely→ desired, consensual)

I Non-intrusive load monitoring (NILM)
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Non-Intrusive Load Monitoring (NILM)
I SM readings

I provide aggregated consumption profile P(t) of all appliances
I obtained non-intrusively → low cost → processing consensual?
I used by NILM for disaggregation P(t) = p1(t) + p2(t) + p3(t)

Smart Meter NILM
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Categories of Consumer Appliances

I Three main types of appliances
I ON/OFF state machines, e.g. light,
I Continuously variable devices (CVDs), e.g. heating device,
I Finite state machines (FSM), e.g. fridge.
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NILM Framework

1. Data acquisition by smart meter
I Low frequency readings
I High frequency readings

2. Feature extraction
I Steady state features
I Transient state features
I Non-traditional features

3. System training (initialization)
4. Inference and learning

I Supervised learning (training with labeled load profile)
I Unsupervised learning (training with unlabeled load profile)
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Feature Extraction
I Steady state features: Power change, time and frequency

domain characteristics of VI waveforms, etc.
I Transient features: Transient power, start-up current

transients, etc.
I Non-traditional features: Time of the day, on-off duration

distribution, frequency of appliance usage, etc.
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Supervised Learning - P-Q plane Classification

I Two-dimensional feature space
I Real power (P) and reactive power (Q)
I In order to identify ON/OFF events, changes in real power

(dP) and reactive power (dQ) are often used.
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I Distance-based classification
I Given feature vector y of

an unknown load:
I Identify a known load

signature ŷi (class) it
matches best, i.e.,

class i = arg min
i
||y − ŷi ||

G.W. Hart “Non-intrusive appliance load monitoring,” in Proc. of the IEEE, 1992.
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Supervised Learning - P-Q plane Classification Extension
Various extensions have been proposed:

I “Weiss” algorithm: Take oscillations during start up and shut
down of an appliance into account.

I Let Pstart
i , Pend

i , Pstart
j and Pend

j be the mean of several real
power values from starting and ending periods of states i and j
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I Four different types of edges
result in features with good
performance:

I dP1 = Pstart
j − Pstart

i

I dP2 = Pstart
j − Pend

i

I dP3 = Pend
j − Pstart

i

I dP4 = Pend
j − Pend

i

M. Weiss et al.“Leveraging smart meter data to recognize home appliances,” in IEEE Pervasive Comp., 2012.
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Supervised Learning - P-Q plane Classification Extension

Improved distance-based classification in (dQ, dP)-space
(Appliance-dependent) classification rule: ŷk correct match if

||y − ŷk || < λ||ŷk ||+ osck

with variable radius: osck for oscillations, λ scaling factor.

P-Q plane classification
I simple to implement
I fails when different

appliances have overlapping
P − Q features
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Supervised Learning - Näıve Bayes Approach

I Features:
I Total real power measurement p
I Steady-state change e

I S = {D1 = s1,D2 = s2, ...Dn = sn}
denotes load signature

I si state of appliance/device Di

I ω set of all load signatures S

Optimal classifier (MAP rule)
arg max

S∈ω
P(S|

n∑
i=1

Di = p
⋂

E = e)

Time

Time

egde
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ow

er
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power measurement

Marchiori et al. “Circuit-Level Load Monitoring for Household Energy Management,” IEEE Pervasive Comp., 2011.
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Supervised Learning - Näıve Bayes Approach
I Equivalent formulation after applying Bayes rule:

arg max
S∈ω,

n∑
i=1

Di =p

P(E = e|S)P(S)

Assumptions to simplify computation of P(E = e|S) and P(S):
I Näıve approach1: Assume appliance states are independent of

each other
I Fair assumption in general, but devices such as a TV and a

DVD player can have a highly correlated operation.

I Assume only one device is changing at a time.

P(S) =
n∏

i=1
P(Di = si ), P(E = e|S) =

∑
k∈ES

I(k = e)
|ES |

1Näıve Bayes approach often refers to assumption that features are conditionally independent given the class.
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Hidden Markov Model (HMM)

observation

hidden
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Hidden Markov Model (HMM)
Statistical (system) model with

I hidden states described by an Markov process, and
I observations that are independent given hidden states.
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Appliances as Hidden Markov Model
I HMM shown to be useful because

1. Learning of HMM parameters λ works well
(i.e., P(qt |qt−1) and P(yt |qt) for all t)

2. Temporal and appliance state transitions can be well modeled

I Ergodic topology to model the state transition of appliances
I Left-to-right topology to model temporal development
I HMM can model individual or combined loads
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Ergodic state transition topology of a fridge
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4-State HMM of two appliances combination
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Supervised Learning - HMM Approach

General HMM framework
1. Decoding: Given the HMM parameters λ, the observation

sequence Y = {yt} and the set of states S = {Si},
I calculate the probability P(Y ,Q|λ) and
I determine the most probable state sequence Q = {qt}, qt ∈ S;

2. Learning: Given the observation sequence Y and the set of
states S, learn the HMM parameters λ.

Supervised learning of state transition probabilities (labeled
load signature and state transition of appliances given)

P(Sj |Si ) = # : Si → Sj
# : all transitions from Si

Decoding: Load disaggregation using Viterbi algorithm
T. Zia et al. “A hidden Markov model based procedure for identifying household electric loads,” in IECON 2011.
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Supervised Learning - Neural Network Approach
I Advantage of neural networks:

I extensibility to higher number of inputs, and
I many types of values or dissimilar kind of data

I Feature vectors used as the input of a neural network to also
train the classifier for different loads

I output denotes probability that load belongs to a certain class
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Unsupervised Learning - K-means Clustering Approach
I What if labeled load signatures are not available?

I Unsupervised clustering approaches such as K-means
clustering

K-means Clustering
Given a set of observation {x1, x2, ...., xn}, partition the n
observations into K sets S = {S1,S2, ...,SK} that minimizes the
within-cluster sum of squares, i.e.,

arg min
S

K∑
i=1

∑
x∈Si

||x − µi ||2,

where µi is the mean of vectors in Si ., i.e. µi = 1
|Si |

∑
xk∈Si

xk .

I E.g., for P-Q plane feature space, xi denotes (pi , qi ).
Goncalves et al. “Unsupervised disaggregation of appliances using aggregated consump. data,” Proc. SustKDD’11.
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Appliance Model: Temporal Correlations
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Factorial HMM (FHHM)
I Use factorial HMM to characterize multiple underlying

independent causes or factors of the total load
I Complexity grows exponentially with number of underlying

appliances
I Standard approximation methods:

I Markov chain Monte Carlo
I Variational Bayes
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Unsupervised Learning - Expectation Maximization
I (F)HMM parameters can be iteratively updated by

expectation maximization algorithm (EM):

arg max
λ

∑
q

P(Y ,Q|λ′) log P(Y ,Q|λ)

I λ are the (F)HMM parameters to be estimated and λ′ are the
parameters from the previous iteration

I Y is the observed aggregated load
I Q is the hidden sequence

I Decoding using Viterbi algorithm

arg max
Q

P(Y ,Q|λ)

H. Kim et al, “Unsupervised disaggregation of low frequency power measurements,” in Proc. SIAM, 2011.
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Hidden Semi-Markov Model (HSMM)

I HSMM takes state occupancy duration into account
I for appliances that stay in a certain state for some time

o1observations o5o3o2 o4 o6 oT

3 4 5Time 1 2 6

duration
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state q1 q2 qn

transition
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Conditional Factorial Hidden Semi Markov Model

I Conditional Factorial Hidden Markov Model (CFHMM):
Case when additional features affect the transition probability
between different states (e.g. occupancy of home)
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OFF OFFOFF
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I CFHSMM model combines
CFHMM and HSMM

I often reasonable
I Example (left figure):

I multiple appliances with
on-off states,

I number of people at home
act as additional features,

I the states dependency e.g.
of a laptop and monitor.

H. Kim et al, “Unsupervised disaggregation of low frequency power measurements,” in Proc. SIAM, 2011
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Unsupervised learning - AFAMAP
Additive Factorial Approximate MAP (AFAMAP): unsupervised load disaggregation

I Snippets2 of consumption data that likely correspond to an
appliance’s ON cycle are extracted.

I These snippets along with the total aggregate and difference
aggregate data are together modeled as an additive factorial
hidden Markov model (FHMM).

x
(1)
t−1 x

(1)
t xt

(1)
+1

. . .

x
(2)
t−1 x

(2)
t xt

(2)
+1

. . .

. . .

. . .

... ... ...

Δȳt−1

HMM state

Aggregate and 
difference data

ȳt−1,
Δȳt

ȳt,

Δȳt+1

ȳt+1,

Kolter, Johnson, “REDD: A public data set for energy disaggregation research,” in Proc. SustKDD Workshop ’11.

2A snippet is a section of data where consumption increases over some threshold and then eventually returns
to its original level.
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Unsupervised learning - AFAMAP (Cont.)

I Conditional likelihood of ȳt :

ȳt | x (1:N)
t ∼ N

( N∑
i=1

µ
(i)
x (i)

t
,Σ
)

I Conditional likelihood of ∆ȳt :

∆ȳt | x (1:N)
t , x (1:N)

t−1 ,∆zt ∼ N
( N∑

i=1
∆µx (i)

t ,x (i)
t−1

+ Σ1/2∆zt ,Σ
)

where zt is a mixture component with a Laplace prior to
account for new and unmodeled devices.

I AFAMAP imposes a constraint that allows at most one HMM
changes at any given time and infers the individual HMM
states by maximizing the joint posterior of ȳt and ∆ȳt .
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Reference datasets for NILM

I Reference Energy Disaggregation Data Set (REDD)
I Household-level and circuit level data from 6 US households

over various durations in 2011
I Lighting, fridge, microwave, oven, washer dryer, dish washer,

kitchen outlets etc
I Low frequency and high frequency data

I Electricity Consumption and Occupancy (ECO)
I 6 Swiss households over a period of 8 months in 2012 - 13
I Fridge, dryer, coffee machine, kettle, washing machine, PC,

freezer, stove, tablet, lamp, entertainment (consists of TV and
stereo), microwave, router etc

I Only low frequency data but occupancy information for some
houses is measured and provided
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Reference datasets for NILM (Cont.)
Dataset Locat. Resolution Features Other data Available Toolbox

REDD USA 15KHz (Aggr),
0.5 or 1Hz(Sub)

V and P (Aggr),
P (Sub) NA NILMTK(Python)

BERDS USA 20sec P,Q and S climate data NA

Smart USA 1Hz P and S (Aggr),
P (Sub)

on-site solar panels and
wind turbines, outdoor
weather, indoor tempera-
ture and humidity

NA

DRED NL 1Hz P

indoor temperature, out-
side temperature, wind
speed, pre-cipitation, hu-
midity and occupancy

NILMTK(Python)

AMPDS Canada 1min V, I, F, P, Q, S
and P.F. water and natural gas NILMTK(Python)

AMPds2 Canada 1min

V, I, F, P, Q, S
and P.F., real, re-
active and appar-
ent energies

water and natural gas,
weather data and utility
billing data.

NILMTK(Python)

UK-
DALE UK 16KHz (Aggr),

1/6Hz (Sub)
P and switch sta-
tus NA NILMTK(Python)

iAWE India 1Hz (Aggr), 1 or
6Hz (Sub)

V, I, F, P and
phase

Water and ambient condi-
tions NILMTK(Python)

REFIT UK 8sec P Gas and environmental
data NILMTK(Python)

ECO CH 1Hz P and Q Occupancy information NILMTK(Python),
NILM-Eval(Matlab)

IHEP-
CDS France 1min V, I, P and Q NA NA

HES UK 2min P NA NILMTK(Python)
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Classification measure F-score
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I aka F1 measure

or F-measure
I a measure of

test’s accuracy
I defined as

1
1 + 1
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TP
I harmonic mean

between recall
and precision3

3precision= TP
TP+FP (aka as sensitivity) and recall= TP

TP+FN (aka positive
predictive value), TP=True Positive, FP=False Positive, FN=False Negative
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Example disaggregation using NILM-Eval toolbox
I Dataset: ECO, Household 2 (Day 2012-06-02)
I Algorithm: Weiss’

12AM  3AM  6AM  9AM 12PM  3PM  6PM  9PM 12AM

0

1000

2000
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P
o
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)

Aggregate data

Inferred stove consumption

Inferred kettle consumption

I Disaggregation accuracy:
Appliance Precision Recall F-Score4

Water Kettle 1.0000 0.7500 0.8751
Stove 1.0000 1.0000 1.0000

4the higher the F-Score, the better is the accuracy of disaggregation
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Example disaggregation using NILMTK toolbox
I Dataset: REDD
I Data: Household 1 (Day 2011-04-30)
I Algorithm: FHMM (Supervised learning)

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time

0

100

200

300

400

Po
we

r (
W

)

Inferred Fridge consumption
Actual Fridge consumption

I Disaggregation accuracy:
Appliance RMSE

Fridge 98.30
Microwave 250.43

Dish washer 237.47
Light 82.26
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Synthetic Data Set: Disaggregation Error vs. Number of
HMMs
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Number of states: 3; Data length T=1000; Number of samples: 100

KJ method

ADMM

ZGS method

ADMM-RR

[KJ] Kolter and Jaakkola, Approximate inference in additive factorial HMMs with application to energy
disaggregation, AISTATS 2012.
[ZGS] Zhong et al, Signal aggregate constraints in additive factorial HMMs with application to energy
disaggregation, NIPS 2014.
[ADMM] and [ADMM-RR] Shaloudegi et al., SDP relaxation with radonmized rounding for energy diaggregation,
NIPS 2016.
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Synthetic Data Set: Disaggregation Error vs. Number of
States
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REDD Data Set: Precision/ Recall

Appliance ADMM-RR KJ method ZGS method
1 Oven-3 61.70/78.30% 27.62/72.32% 5.35/15.04%
2 Fridge 90.22/97.63% 41.20/97.46% 46.89/87.10%
3 Microwave 12.40/74.74% 13.40/96.32% 4.55/45.07%
4 Bath. GFI-12 50.88/60.25% 12.87/51.46% 6.16/42.67%
5 Kitch. Out.-15 69.23/98.85% 16.66/79.47% 5.69/26.72%
6 Wash./Dry.-20-A 98.23/93.80% 70.41/98.19% 15.91/35.51%
7 Unregistered-A 94.27/87.80% 85.35/25.91% 57.43/99.31%
8 Oven-4 25.41/76.37% 13.60/78.59% 9.52/12.05%
9 Dishwasher-6 54.53/90.91% 25.20/98.72% 29.42/31.01%
10 Wash./Dryer-10 21.92/63.58% 18.63/25.79% 7.79/3.01%
11 Kitch. Out.-16 17.88/79.04% 8.87/100% 0.00/0.00%
12 Wash./Dry.-20-B 98.19/28.31% 72.13/77.10% 27.44/71.25%
13 Unregistered-B 97.78/91.73% 96.92/73.97% 33.63/99.98%
Average 60.97/78.56% 38.68/75.02% 17.97/36.22%

I Phase A has 7 HMMs
I Phase B has 6 HMMs
I Spectral learning used for FHMM training
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REDD data set: Running time

In real-data experiments, with approximately 1 million decision
variables for each day:

ADMM-RR ADMM KJ
Memory 6 GB 6 GB 14 GB

Time 5 hours 2 hours 5 minutes
Solver MATLAB MATLAB MOSEK

I An optimized C++ version of ADMM-RR achieves a
comparable running time.
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NILM Concluding Remarks

I Only basic principles shown
I underlying model, underlying features, learning & decoding alg

I Conditional HMM exploit auxiliary information state
I could be directly privacy sensitive

I Algorithmic advances in machine learning improve
disaggregation performance

I significant research takes place at (start-up) companies

I Off-the-shelf algorithms and reference databases exist that
can be used for numerical experiments and benchmarks
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Privacy Preservation Techniques for Smart Meters

Two family of approaches to SM privacy problem:
1. Modify SM data before being reported to EP.

I Aggregation with/ without trusted third party (TTP), i.e.,
summing measurements over a group of users,

I Obfuscation, i.e., adding noise to data,
I Anonymization with/ without TTP, i.e., using pseudonyms

instead of real identities.

2. Modify energy consumption:
I Through storage devices, i.e., filtering energy consumption,
I Exploiting other energy sources (renewables, uninterrupted

power supplies),
I Through elastic energy consumption (e.g., heating),
I Reducing sampling frequency.
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Aggregation with Trusted Third Party (TTP)

I SM readings sent to a TTP over secure links.
I TTP reports to EP:

I instantaneous sum consumption for a group of SMs (e.g.,
neighborhood),

I sum consumption of each user over billing period.

I EP learns exactly what it needs to learn, not more.
I TTP does not need to know real identities of users, but has to

be trusted.

J.-M. Bohli, C. Sorge, and O. Ugus, “A privacy model for smart metering,” in IEEE Int’l Conf. on Comm.
Workshops, Cape Town, South Africa, May 2010.
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Aggregation without Trusted Third Party (TTP)

I How to add a user’s data to the aggregate without revealing it
to other users?

I SMs have trusted elements (e.g., smart card or secure USB
stick) that cannot be controlled by the grid operator (i.e., it
cannot change keys remotely).

I These trusted elements provide secure storage and basic
cryptographic functionality

I Common tool: homomorphic encryption, thanks to its
additive homomorphic property.

I Proposed approaches differ mainly in:
I Who performs the aggregation,
I How keys are managed.
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Homomorphic Encryption

I Neighborhood groups of size N.
I Each node prepares N shares of its measurements.
I Encrypts one share with the public key of each user (N-1

users) and sends to the collector (except own share).
I The collector, using the properties of homomorphic

encryption, sums all N − 1 ciphertexts intended for a user and
sends the resulting ciphertext to her to decrypt.

I Each user adds its own share and sends the final result back
to the concentrator unencrypted.

F. D. Garcia and B. Jacobs, Privacy-friendly energy-metering via homomorphic encryption, in Proc. Int’l
Conf. on Security and Trust Management, 2011.
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Obfuscation

I Users add zero-mean independent noise to their readings
before forwarding to EP.

I Average sum consumption remains same at each period.
I Goal: low confidence for individual measurements (high

variance noise component), and high-confidence for total
consumption (too many users aggregated together: 99.9%
confidence requires aggregating 3.8 million users.)

I Meters should be tamper-proof.

J.-M. Bohli, C. Sorge, and O. Ugus, “A privacy model for smart metering,” in IEEE Int’l Conf. on Comm.
Workshops, May 2010.
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Information Theoretic SM Privacy

I Energy consumption of user is modeled as a sequence of real
numbers, X n.

I SM readings, Y n, represents information available to EP.
I Privacy is measured by average information leakage, defined

as average mutual information between X n and Y n:

1
n I(X n; Y n) = 1

n [H(X n)− H(X n|Y n)]

= 1
n

∑
(xn,yn)∈X n×Yn

p(xn, yn) log p(xn, yn)
p(xn)p(yn)
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Reporting Quantized Energy Consumption

I SM maps X n to a predefined set of meter readings:

Encoder :X n → SMR = {SMR1, . . . ,SMRM}

I No matter what real consumption is, EP will receive
Y n ∈ SMR, one of M readings,

I The closer Y n to X n, the more useful it is for grid estimation/
monitoring, and the more data is leaked.

I There is a fundamental trade-off between privacy and utility
of reported SM readings

D. Rebollo-Monedero et al., “From t-Closeness-Like Privacy to Postrandomization via Information Theory,”
IEEE Trans. Knowl., Data Eng., Nov. 2010.

Sankar et al., “Smart Meter Privacy: A Theoretical Framework,” IEEE Trans. Smart Grid, Jun. 2013.
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Privacy- Utility Trade-off

I Utility: The closer the estimates, the higher the utility:

∆ = E
[

1
n

n∑
i=1

d(Xi ,Yi )
]

d(·, ·): given distortion measure (distance between real energy
consumption and EP’s estimation)

I Average information leakage:

I = 1
n I(X n; Y n)

I Question: What is the set of feasible (∆, I) pairs?
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Privacy- Utility Trade-off
I For given utility ∆, minimum information leakage is obtained

by the rate-distortion function R(∆)
I Rate-distortion function, R(D): Minimum number of bits per

symbol that should be transmitted to a receiver, so that the
source (input signal) can be approximately reconstructed
within a given distortion, D (lossy data compression).

U"lity	
  "
Distortion 

Privacy/	
  Informa"on	
  leakage	
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Differential Privacy

I Introduced to privately release statistical queries on data sets
I Differential privacy measures privacy by parameter ε that

bounds the log-likelihood ratio of the output for two
databases that differ in only a single entry.

Definition
A probabilistic algorithm F taking values in set T provides
ε-differential privacy if

Pr(F (D) ∈ S) ≤ eε · Pr(F (D′) ∈ S)

for all S ∈ T , and all data sets D and D′ that differ in a single
entry.

C. Dwork, Differential privacy, in Automata, Languages and Programming, vol. 4052 of LNCS, 2006.
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Approximate Differential Privacy

Definition
A probabilistic algorithm F taking values in set T provides
(ε, δ)-differential privacy if

Pr(F (D) ∈ S) ≤ eε · Pr(F (D′) ∈ S) + δ

for all S ∈ T , and all data sets D and D′ that differ in a single
entry.

I Weaker than ε-differential privacy (equivalent when δ = 0)

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via
distributed noise generation. In Proc. 25th International Cryptology Conference (EUROCRYPT), 2006.
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Differentially Private Billing
I Even billing information can reveal private data in the

presence of additional side information
I Users add noise (only positive) to meter measurements to

create privacy
I Noise = Money: Users minimize noise (trade-off between

additional cost and privacy)
I Discrete noise: Geometric distribution (instead of Laplacian)

I Geometric distribution maximizes uncertainty for given mean
I Rebates: With additional encrytion tools (zero-knowledge

proof, anonymous payment) added cost can be reimbursed to
customer

I Negative noise can be possible by introducing deposit
payment in advance

G. Danezis, M. Kohlweiss, A. Rial, Differentially Private Billing with Rebates. IACR Cryptology ePrint
Archive, 2011, p. 134.
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Differentially Privacy + Modulo Encryption

I Group SMs into clusters.
I X i

t : Consumption of user i at time slot t
I EP interested only in sum consumption of a cluster:

∑N
i=1 X i

t

I Each user adds noise, and encrypts noisy measurement before
sending to EP.

G. Acs and C. Castelluccia, I have a DREAM! (DiffeRentially privatE smArt Metering), 13th Information
Hiding Conference, 2011.
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Distributed Noise Addition
I User i calculates X̂ i

t = X i
t + Γ1(N, λ)− Γ2(N, λ) in slot t and

sends it to the aggregator.
I Γ1(N, λ) and Γ2(N, λ) independently drawn from gamma

distribution with shape parameter 1/N and scale parameter λ.
N∑

i=1
X̂ i

t =
N∑

i=1
X i

t +
N∑

i=1
[Γ1(N, λ)− Γ2(N, λ)]

=
n∑

i=1
X i

t + [Γ1(1, λ)− Γ2(1, λ)]

=
n∑

i=1
X i

t + [Exp(λ)− Exp(λ)]

=
n∑

i=1
X i

t + L(λ)

L(λ) : Laplace distribution

G. Acs and C. Castelluccia, I have a DREAM! (DiffeRentially privatE smArt Metering), 13th Information
Hiding Conference, 2011.
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Modulo Encryption

I Each SM is configured with a private key, and gets the
corresponding certificate from a trusted third party.

I Generate pairwise keys between each pair of SMs.
I Modulo addition based encryption: EP can only decode noisy

aggregate data (since it does not know pairwise keys).
I Aggregate noise enough to provide differential privacy to each

consumer.

G. Acs and C. Castelluccia, I have a DREAM! (DiffeRentially privatE smArt Metering), 13th Information
Hiding Conference, 2011.
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Privacy Through Energy Consumption Manipulation

I Physical approach to privacy, rather than cyber.
I Previous techniques do not provide full privacy. Grid operator

owns the grid, and has many other sensors, measurement
mechanisms that can provide some level of information.

I Obfuscation, data aggregation, etc. limit operator’s
capabilities to monitor grid for failures, energy quality
changes, renewable integration, etc.

I Alternative solution: Consumers manipulate energy
consumption over time by exploiting storage devices,
renewable energy sources, uninterruptible power supplies, or
elastic energy consumption.
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Privacy with an Energy Storage Device

I Rechargeable battery (RB) with capacity B (kWh).
I Discrete-time consumption and pricing model
I Consider N time slots that span time frame [0,T ]
I Duration of time slot i , τi , ti − ti−1 (sec)
I Total power consumption X (t) within time slot i : Xi (kW)
I Cost of unit energy C(t) within time slot i : Ci (cent/kWh)
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Energy Management Unit

I Energy Management Unit (EMU) satisfies

X (t) = Y (t) + P(t)

I Y (t) ≥ 0 (kW): power drawn from smart grid
I P(t) (kW): power charged to, or discharged from RB
I SM reports average Y (t) for each time slot to EP

IEEE WIFS’18 - Privacy in Smart Metering Systems - Heuristic Techniques - Gündüz and Oechtering 80/170



Energy Management (EM) Policy
I EM policy, i.e., Y (t)|Tt=0, jointly optimizes privacy and cost
I Assume user load known for following N time slots

Privacy measure:
I Flat power demand leads to perfect privacy

I Average power demand, Ē , 1
T

N∑
i=1

τi · Xi

I Perfect privacy: Y (t) = Ē , ∀t ∈ [0,T ]
I Privacy measured by Load Variance: V , 1

T
∫ T

0 (Y (t)− Ē )2dt

Cost measure:
I Average Energy Cost: C , 1

T
∫ T

0 Y (t)C(t)dt

O. Tan, D. Gündüz, H. V. Poor, “Increasing smart meter privacy through energy harvesting and storage
devices,” IEEE Journal on Selected Areas in Communications, Jul. 2013.
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Constraints

I Appliances should not incur any outages (no load shifting):∫ t

0
X (u)du ≤

∫ t

0
Y (u)du,∀t ∈ [0,T ] (1)

I Finite RB capacity, energy cannot be wasted (no battery
overflow): ∫ t

0
(Y (u)− X (u))du ≤ B, ∀t ∈ [0,T ] (2)

I (V, C) pairs under (1) and (2) form a convex region

I Sufficient to characterize Pareto boundary of achievable (V, C)
pairs
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Optimal Energy Management (EM) Policy

Optimization problem

min
Y (t)≥0

∫ T

0

[
θ
(
Y (t)− Ē

)2 + (1− θ)Y (t)C(t)
]

dt

s.t. (1) and (2)

I 0 ≤ θ ≤ 1 is the trade-off parameter.
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Optimal Energy Management (EM) Policy
Dimensionality reduction

I Cost and demand constant within a time slot
I Due to convexity optimal Y (t) constant within a TS
I Number of variables = Number of time slots (N)
I Optimize over Y1, . . . ,YN

Convex optimization problem

min
Pi≥0

N∑
i=1

[
θ · τi ·

(
Yi − Ē

)2 + (1− θ) · τi · Yi Ci
]

s.t.
n∑

i=1
τi · Xi ≤

n∑
i=1

τi · Yi , n = 1, . . . ,N, (3)

n∑
i=1

τi · (Yi − Xi ) ≤ B, n = 1, . . . ,N. (4)

I Can be solved numerically.
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Optimal EM policy

I θ = 0: Linear program

I For 0 < θ ≤ 1, applying KKT optimality conditions:

Y ∗i =
[
αi −

(1− θ)Ci
2θ

]+
, 0 < θ ≤ 1 ,∀i

where

αi ,

N∑
j=i

(λj − µj)

2θ + Ē , 0 < θ ≤ 1 ,∀i .

I λi and µi are Lagrange multipliers associated with (3) and (4),
respectively.
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Backward Water-filling
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I Backward water-filling algorithm for optimal EM policy with
(a) infinite, and (b) finite capacity RB, and θ = 1/3.
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Real Consumption Data
I A whole-day real power consumption data of a household

I Real pricing tariffs,
I The off-peak price (00:00− 12:00) is 5 (cent/kWh).
I The on-peak price (12:00− 20:00) is 20 (cent/kWh).
I The medium-peak price (20:00− 00:00) is 10 (cent/kWh).
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I Pareto optimal trade-off
curves obtained varying θ
from 0 to 1.

I Trade-off moves towards
origin as RB capacity
increases.
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Energy Consumption Profile
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Original Load Profile

EM policy, θ = 1, B = 2

Original Load Profile

EM policy, θ = 0.002, B = 2

Original Load Profile

EM policy, θ = 0, B = 2 On-peak price period

I θ = 0: EM policy minimizes only the energy cost
I Extra energy is stored in RB in the off-peak price period
I Peak demand satisfied from RB as much as possible

I θ = 1: EM policy maximizes only the privacy
I A smooth load profile is generated
I Peaks in the original load profile are masked
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Impact of Measurement Resolution
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I Measurement time resolutions 5, 10, 15 minutes, and 1 hour.
I Optimal boundary moves downwards as SM resolution

decreases
I Higher privacy with decreasing meter resolution
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Limited Prediction Horizon

I EMU can predict demand only for a limited future horizon
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Filtered Target Load Profile

I Fixed target load equivalent to keeping the dc response
I We can keep more low-frequnecy components
I Most information in high-frequency components
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Statistical Privacy Measures

I Treat user load as a random sequence
I Grid load is also random, and depends on the energy

management (EM) policy
I Privacy can be measured by the similarity between the two

time series
I Perfect privacy achieved when grid load is independent of user

load
I With no EM, grid load = user load: maximum leakage

I We will first consider information theoretic privacy measure:
mutual information between user and grid loads
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Privacy with a Renewable Energy Source

I Discrete time model:
I Energy demand (user load): Xt

I Energy from grid (grid load): Yt

I Remainder from renewable energy source(RES): Xt − Yt

I SM measures and reports Yt

J. Gomez-Vilardebo and D. Gunduz, “Smart meter privacy for multiple users in the presence of an alternative
energy source,” IEEE Transactions on Information Forensics and Security, Jan. 2015.
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Energy Management Policy
I Energy management policy: ft : X t × Yt−1 → Y, s.t.

0 ≤ Xt − Yt ≤ P̄

I Privacy: Information leakage rate

In ,
1
n I(X n; Y n)

I Average power from RES:

Pn = E

[
1
n

n∑
t=1

(Xt − Yt)
]

I For given P̄, pair (I, P̂) is achievable if there exist energy
management policies with limn→∞ In ≤ I and limn→∞ Pn ≤ P̂.

I Privacy-power function, I(P̄, P̂), is the minimum achievable
information leakage rate under peak power P̄, and average
power P̂ constraints on renewable energy generation rate.
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Privacy- Power Function

I Assume independent identically distributed (i.i.d.) input
power sequence X n with distribution pX

Theorem (Privacy-Power Function)
Privacy - power function for an i.i.d. input load X with distribution
pX (x) is given by

I(P̄, P̂) = inf
pY |X (y |x):E[X−Y ]≤P̂

0≤X−Y≤P̄

I(X ; Y )

I Privacy - power function is a non-increasing convex function
of P̄.

I Optimal energy management policy is memoryless and
stochastic: randomly generate output load based on
instantaneous input load.
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Rate-Distortion Interpretation

Privacy-power function is a rate-distortion function with difference
distortion measure:

d(x , y) =
{

x − y if 0 ≤ x − y ≤ P̄,
∞ otherwise.

I No digital interface: Y n is direct output of “encoder”, rather
than the reconstruction of the decoder based on the
transmitted index

I EMU does not operate over blocks: Yt decided
instantaneously based on previous input/output loads

I If all future energy demands were known, same privacy could
be achieved by deterministic block-based energy management
policy
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Continuous Grid Load

I Continuous grid load alphabet: Infinitely many variables

Theorem
Without loss of optimality grid load alphabet Y can be constrained
to the user load alphabet, i.e., Y = X .

I Discrete user/ grid load alphabets: Convex optimization
problem

I Blahut-Arimoto algorithm
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Uniform Grid Load
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Optimal

Limit max output load

Time division

I Uniform demand over {0, c, 2c . . . , 20c}, such that E [X ] = 1
I Time division: Either from RES or grid
I Limit max output load: Y (t) ≤ C
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Continuous User Loads
I Continuous user and grid load alphabets
I No efficient numerical computation method (infinite

dimensional optimization problem)
I Shannon Lower Bound (SLB):

I(P) ≥ (h(X )− ln (P))+ nats
I Not tight in general
I Exponential input load, X ∼ exp(λ): SLB is tight

I Achieved by fYi |Xi (y |x) = PXi
Pi

e−
(x−y)

Pi e
x

PXi fYi (y), where fYi is a
mixture of a continuous and a discrete distribution specified by

fYi (y) =
(

1− Pi

PXi

) 1
PXi

e
− y

PXi + Pi

PXi

δ(y),

where δ(y) is the Dirac delta function.

I(P) =
(

ln
(
λ

P

))+
nats.
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Shared Storage

I N independent appliances sharing a common RES
I Input load of appliance i : Xi

I Goal: Minimize the total (or weighted) information leakage:

I(P) = inf∑N
i=1 Pi≤P

N∑
i=1
IXi (Pi ) .

J. Gomez-Vilardebo and D. Gunduz, “Smart meter privacy for multiple users in the presence of an alternative
energy source,” IEEE Trans. on Information Forensics & Security, Jan. 2015.
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Exponential User Loads
I Let Xi ∼ Exp (PXi )
I Optimal power allocation obtained by reverse water-filling:

P∗i =
{

λ, if λ < PXi ,
PXi , if λ ≥ PXi ,

where λ is chosen such that
∑N

i=1 P∗i = P.

I Satisfy all energy demands with average
load below λ from RES

I Others receive exactly power λ from the
RES, and remainder of their demand from
the grid

J. Gomez-Vilardebo and D. Gunduz, Smart meter privacy for multiple users in the presence of an alternative
energy source, IEEE Trans. on Information Forensics & Security, vol. 10, no. 1, pp. 132-141, Jan. 2015.
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Instantaneous Power Constraints

I We have considered average power constraint: Appropriate for
alternative energy sources such as micro-grids,

I For RES, energy is generated online with some statistics
I For finite RB capacity, we have instantaneous constraints
I In general, a Markov decision process (MDP)
I We will first look at special cases
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RES with an Infinite Battery (Bmax =∞)
I Cumulative energy constraints (Et random process):

n∑
t=1

(Xt − Yt) ≤
n∑

t=1
Et , ∀n.

Theorem
If Bmax =∞, minimum information leakage rate I∞ for average
renewable energy generation rate P̄E , is

I∞ , I(P̄E ,∞)

I Scenario equivalent to average-power-constrained case. Lower
bound on minimum information leakage under battery
constraints.

G. Giaconi, D. Gunduz, and H. V. Poor, “Smart meter privacy with renewable energy and an energy storage
device,” IEEE Trans. on Information Forensics & Security, Jan. 2018.

IEEE WIFS’18 - Privacy in Smart Metering Systems - Information Theoretic Privacy - Gündüz and Oechtering 103/170



Achievable Schemes for Bmax =∞
Store-and-Hide Scheme

I Initial storage phase of duration
h(n): requests satisfied only
from grid, no privacy.

I Consecutive hiding phase of
duration n − h(n). Energy from
grid and battery. Privacy
achieved.

I Assumptions: h(n) ∈ o(n), with
limn→∞ h(n) =∞, and
limn→∞ n − h(n) =∞.

I Constraints satisfied if
E[X − Y ] < P̄E . No
information about recharge
process required.

Best-Effort Scheme
I No initial charging phase. Same

stochastic policy of hiding
phase. If St + Et ≥ Xt − Yt ,
decide whether to take energy
from battery or from grid.

I Battery update:
St+1 = St + Et − (Xt − Yt) ·
1(St + Et ≥ Xt − Yt), where
1(x) = 1 if x holds, and 0
otherwise.

I If E[X − Y ] < P̄E ,
St + Et < Xt − Yt holds only
for finitely many time slots as
n→∞.
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RES without Battery (Bmax = 0)

I Et serves as a peak power constraint on the energy requested
from RES. Energy constraint:

0 ≤ Xt − Yt ≤ Et , t = 1, ..., n.

Remark: past has no influence.

I For random Et , two scenarios: RES state known only by
EMU, and known also by EP.
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No Battery (Bmax = 0)
RES State Known only by EMU

I UP still knows pE .
If Bmax = 0, and RES is
i.i.d. with pE , minimum
information leakage rate

I0 , inf
pY |X,E (y|x,e):0≤X−Y≤E

I (X ; Y ) .

RES State Known also at UP

I Worst case scenario.
If Bmax = 0 and RES state
known at the UP, minimum
information leakage rate:

Ī0 , inf
pY |X,E (y|x,e):0≤X−Y≤E

I (X ; Y |E) .

I It is possible to prove Ī0 ≥ I
(

P̄E ,∞
)

= I∞ hold, and
I0 ≤ Ī0.
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Binary Input Load
X = {0, 1},
X ∼ Bern (qx ),
Pr{X = 1} = qx .
E = {0, 1},
E ∼ Bern (pe),
Pr{E = 1} = pe . Figure 1: Finite battery model.

qx = 0.7

Figure 2: Privacy w.r.t. pe .

qx = 0.5

Figure 3: Privacy w.r.t. pe .
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Energy Manipulation against Statistical Inference Attacks

Content:
I Statistical inference based approaches based on

I unauthorized hypothesis detection
(Bayesian/Neyman-Pearson approach)

I unauthorized state estimation
(Fisher information-based approach)

I Problem modeling and recapitulations, privacy-by-design
approach based on worst-case asymptotics, fundamental
bounds, algorithmic design based on Markov-decision process
framework, ...

I Methods are applied to smart meter privacy problem, but
readily extend to other settings

I Binary hypothesis testing can be straightforwardly extended to
multiple hypotheses.
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Privacy Leakage as a Neyman-Pearson Test

H H
Yn

pY |H pH|Y
^^

Adversary

n n

I Neyman-Pearson hypothesis test
I Binary hypothesis H (e.g., watching TV or not)
I Observation Y n and likelihood pY n|H

I Decision Ĥ
I Type I prob. of error pI = pĤ|H(h1|h0) (false alarm, false neg.)
I Type II prob. of error pII = pĤ|H(h0|h1) (miss, false positive)

Neyman-Pearson test approach

p∗Ĥ|Y n = arg min
pĤ|Y n

pII, s.t. pI ≤ φ
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Privacy Leakage as a Neyman-Pearson Test (cont.)
I Privacy leakage measure: Minimal Type II probability of error

pmin
II = min

γ:Yn→H
pII, s.t. pI ≤ φ

Stein’s Lemma: Asymptotic privacy leakage measure
Let Y n be i.i.d. sequence under each hypothesis, i.e., ∼ pY |h0 or ∼ pY |h1 ,

rII = lim
n→∞

− log pmin
II

n = D(pY |h0 ||pY |h1 )
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I Note that rII does not depend on φ.
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Privacy Leakage as a Bayesian Hypothesis Test

H H
YpY|H pH|Y

^^

Adversary

I Bayesian hypothesis test
I Hypothesis H and prior distribution pH

I Observation Y (smart meter reading) and likelihood pY |H

I Decision Ĥ and decision cost c(ĥ, h)
I Bayesian risk r = E{c(Ĥ,H)} (expected decision cost)

Bayesian test approach

p∗Ĥ|Y = arg min
pĤ|Y

r
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Bayesian Testing Modeled Privacy Leakage (cont.)

I Design objective of the adversary: Minimize the Bayesian risk

r =
∑

h,ĥ∈H

c(ĥ, h)pĤ,H(ĥ, h) =
∑
y∈Y

∑
ĥ∈H

pĤ|Y (ĥ|y)
∑
h∈H

c(ĥ, h)pY |H(y |h)pH(h).

I Deterministic likelihood test are sufficient for optimality

γ∗(y) = arg min
ĥ∈H

∑
h∈H

c(ĥ, h)pY |H(y |h)pH(h)

I Privacy leakage measure: Minimal Bayesian risk of the adversary

r min = min
γ:Y→H

r =
∑
y∈Y

{
min
ĥ∈H

{∑
h∈H

c(ĥ, h)pY |H(y |h)pH(h)
}}
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Adversarial Hypothesis Testing - Overview
I Assumptions on the adversary

I Informed about the smart metering system, access to smart
meter readings and knowledge on statistics

I Adversarial behavior: Neyman-Pearson or Bayesian hypothesis
testing

I Problem settings
I Worst-case analysis5

I Consumer energy demands: i.i.d. or Markov model
I Distortion source: renewable energy supplies (RES) or

rechargeable battery

I Objectives of Studies
I Privacy-enhancing energy management design
I Fundamental bounds on the privacy performance

5Flipping the processing order of attacker and defender, i.e., attacker manipulates observation leads to
zero-sum game theoretic formulation of adversarial signal processing approaches, e.g. [Barni, Tondi ’13, ’16].
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SM System with Renewable Energy Supply
EP

Xi EMU
YiMeter

Yi
h0/h1

Xi-Yi

AD

Yi

RES
h0/h1

I Binary hypothesis h0/h1 (e.g. using the oven or not)
I i.i.d. energy demands X n|h0 or X n|h1

I EMU: Random instantaneous energy management policy

Yi = γi (x i , y i−1, h), s.t. yi ≤ xi .

I RES with a sufficiently-large energy storage
I EMU policy over n-slot horizon γn(s) = {γi}n

i=1 satisfying

E
[

1
n

n∑
i=1

(Xi − Yi )
∣∣∣∣∣ hj

]
≤ s, ∀j = 0, 1
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Adversarial Neyman-Pearson Hypothesis Test Design

I Informed adversary

I Operational privacy leakage measure:

β(n, ε, γn(s)) , min
An⊆Yn

{pY n|h1 (An)|pY n|h0 (Ac
n) ≤ ε},

where An and Ac
n denote decision regions for h0 and h1 of the AD.

Design objective for privacy enhancement

β(n, ε, s) , max
γn(s)∈Γn(s)

{β(n, ε, γn(s))}.

Li, Oechtering, Gündüz, “Smart meter privacy based on adversarial hypothesis testing,” in Proc. IEEE ISIT 2017.
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Infimum Kullback-Leibler Divergence Rate
I Infimum Kullback-Leibler divergence rate6 θ(s) is defined as

θ(s) , inf
k∈Z+

{
inf

γk (s)∈Γk (s)

{1
k D(pY k |h0 ||pY k |h1)

}}
.

Lemma 1

θ(s) = lim
k→∞

inf
γk (s)∈Γk (s)

{1
k D(pY k |h0 ||pY k |h1)

}
.

I The proof follows from the subadditive sequence of
infγk (s)∈Γk (s)

{
D(pY k |h0 ||pY k |h1)

}
and Fekete’s Lemma7.

I Thus, the infimum is obtained in the limit.
6KL-divergence is defined as D(p||q) =

∑
i p(i) log p(i)

q(i) .
7Fekete Lemma: For every subadditive sequence {an}∞n=1,

the limit limn→∞
an
n exists and is equal to infn

an
n .
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Asymptotic Privacy-Enhancement Performance Bounds

I Operational meaning of θ(s) for given s > 0:

Theorem 1

lim sup
n→∞

1
n log 1

β(n, ε, s) ≤ θ(s), ∀ε ∈ (0, 1),

lim
ε→1

lim inf
n→∞

1
n log 1

β(n, ε, s) ≥ θ(s).

I Proof ideas:
I Use the maximization(sup)/minimization(inf) and the

definition of β(n, ε, s) to derive upper/lower bound;
I Use Stein’s lemma, information spectrum, and Lemma 1 to

relate with the Kullback-Leibler divergence rate θ(s).
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Robustness: Worst Scenario with ε→ 1

I Uncertainty about chosen ε at AD
I ε→ 1 is most conservative assumption
I ε→ 1 means Type I probability of error does not matter for

the AD.

I The bounds in Theorem 1 are tight when ε→ 1.

Corollary 1
Given s > 0,

lim
ε→1

lim
n→∞

1
n log 1

β(n, ε, s) = θ(s).
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Memoryless Hypothesis-Aware Policy

I Why memoryless energy management policy?
I Generally, θ(s) is difficult to evaluate and achieve.
I Memoryless policy is easy to design and implement in practice.

I Random instantaneous memoryless hypothesis-aware policy:

Yi = πi (xi , h), s.t. yi ≤ xi .

I Memoryless hypothesis-aware policy over n-slot horizon
πn(s) = {πi}n

i=1 satisfying

E
[

1
n

n∑
i=1

(Xi − Yi )

∣∣∣∣∣ hj

]
≤ s,∀j = 0, 1
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Asymptotic Privacy-Enhancement Performance of πn(s)
I Design objective for privacy enhancement policy:

βL(n, ε, s) , max
πn(s)∈Πn(s)

{β(n, ε, πn(s))}.

I Πn(s) denotes set of all memoryless policies πn(s).

I Define an infimum Kullback-Leibler divergence rate θL(s) as

θL(s) , inf
k∈Z+

{
inf

πk (s)∈Πk (s)

{
1
k D(pY k |h0 ||pY k |h1 )

}}
.

Corollary 2
Given s > 0,

lim
ε→1

lim
n→∞

1
n log 1

βL(n, ε, s) = θL(s).

I Any single-letter expression?
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Single-Letter Expression

I Given s0, s1 > 0, define

φ(s0, s1) , min
(pY |X,h0 ,pY |X,h1 )∈P(s0,s1)

{
D(pY |h0 ||pY |h1 )

}
.

I Lemma: φ(s0, s1) is a non-increasing, continuous, and jointly
convex function for s0 > 0 and s1 > 0.

Theorem 2
Given s > 0,

lim
ε→1

lim
n→∞

1
n log 1

βL(n, ε, s) = θL(s) = φ(s, s).

I The proof is based on the chain rule of Kullback-Leibler divergence
and properties summarized in the above lemma.

Remark: φ(s, s) can be achieved with an i.i.d. memoryless policy.
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Hypothesis-Unaware Policy with Memory

I The EMU may not have access to the correct hypothesis.

I Random instantaneous hypothesis-unaware policy with memory:

Yi = ρi (x i , y i−1), s.t. yi ≤ xi .

I Hypothesis-unaware policy with memory over n-slot horizon
ρn(s) = {ρi}n

i=1 satisfying

E
[

1
n

n∑
i=1

(Xi − Yi )

∣∣∣∣∣ hj

]
≤ s,∀j = 0, 1
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Asymptotic Privacy-Enhancement Performance of ρn(s)
I Design objective for privacy enhancement:

βM(n, ε, s) , max
ρn(s)∈Pn(s)

{β(n, ε, ρn(s))}.

I Define an infimum Kullback-Leibler divergence rate θM(s) as

θM(s) , inf
k∈Z+

{
inf

ρk (s)∈Pk (s)

{
1
k D(pY k |h0 ||pY k |h1 )

}}
.

Corollary 3
Given s > 0,

lim
ε→1

lim
n→∞

1
n log 1

βM(n, ε, s) = θM(s).

I Which information is more useful for the asymptotic energy
management? Correct hypothesis information or previous data?
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Comparison of Policies

Theorem 3
Given s > 0,

θM(s) ≤ φ(s, s).

I Proof idea: Construct a two-phase hypothesis-unaware policy with
memory and bound its asymptotic performance by θM(s), φ(s, s).

I At the end of the first phase, the EMU makes a hypothesis
test.

I The energy management in the second phase depends on the
decision of the EMU.

I The EMU may make a wrong decision which can lead to a
violation of the expected RES energy generation constraint.
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Adversarial Bayesian Hypothesis Testing
I Assume that the informed AD also knows the hypothesis prior

probabilities p0 and p1.
I Operational privacy leakage measure:

α(n, γn(s)) , min
An⊆Yn

{
p0 · pY n|h0(Ac

n) + p1 · pY n|h1(An)
}
,

with An and Ac
n decision regions for h0 and h1 of the AD.

Design objective for privacy enhancement

α(n, s) , max
γn(s)∈Γn(s)

{α(n, γn(s))} .

I Lowest asymptotic exponent D∗ = lim
n→∞

− 1
n logα(n, s)

Li, Oechtering, Gündüz, “Privacy against a Hypothesis Testing Adversary,” to be published IEEE T-IFS.
See also KTH PhD thesis of Z. Li (2016).
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Adversarial Bayesian Hypothesis Testing (cont.)

Theorem (Chernoff)

D∗ = D(pλ∗ ||pY n|h0) (x)= D(pλ∗ ||pY n|h1)

with pλ(yn) =
pλY n|h0

(yn)p1−λ
Y n|h1

(yn)∑
ŷn∈Yn

pλY n|h0
(ŷn)p1−λ

Y n|h1
(ŷn)

and λ∗ the value of

λ ∈ [0, 1] such that (x) holds.

I It can be shown that D∗ is equal to the Chernoff information
C(pY n|h0 , pY n|h1) = − min

0≤λ≤1
log
∑

yn pλY n|h0
(yn)p1−λ

Y n|h1
(yn)

I Similar results are obtained while the asymptotic performances
are characterized by Chernoff information rates and
single-letter Chernoff information.

I Optimization of λ is new and needs to be handled.
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Reduction of Energy Supply Alphabet

Theorem 4
The energy supply alphabet Y can be limited to the energy
demand alphabet X under both hypotheses without loss of optimality
for the evaluations of φ(s, s) and ν(s, s).
Proof outline:

I Let {p∗Y |hi
}i=0,1 be minimizer of D(p∗Y |h0

||p∗Y |h1
).

I Use certain quantization that maps y to ŷ ∈ X .
I Always next higher level in X .

I Let {pŶ |hi
}i=0,1 denote concatenation of {p∗Y |hi

}i=0,1 and
quantization, then ” = ” follows from

I D(p∗Y |h0
||p∗Y |h1

) ≤ D(pŶ |h0
||pŶ |h1

) since {p∗Y |hi
}i=0,1 is a

minimizer, and
I D(p∗Y |h0

||p∗Y |h1
) ≥ D(pŶ |h0

||pŶ |h1
) due to data processing

inequality for KL-divergence.
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Example

I Binary demand X = {0, 2}⇒ binary supply Y = {0, 2}.

I p̄ = pX |h0 (0), p̃ = pX |h1 (0).
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I Higher average renewable supply improves the privacy enhancement.

I Similar energy demand profiles improve the privacy enhancement.
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REDD Dataset Numerical Experiment
I h0: Type A dishwasher is used. h1: Type B dishwasher is used.
I The optimal i.i.d. memoryless hypothesis-aware policy is used.

h
pX|h x (W)

0 200 500 1200

h0 (Type A) 0.2528 0.3676 0 0.3796
h1 (Type B) 0.1599 0.0579 0.2318 0.5504

0 200 400 600 800 1000
0

500

1000

1500

h
0

i

y
i

 

 

s=0

0 200 400 600 800 1000
0

500

1000

1500

i

y
i

 

 

s=4000

0 200 400 600 800 1000
0

500

1000

1500

i

y
i

 

 

s=5000

0 200 400 600 800 1000
0

500

1000

1500

h
1

i

y
i

 

 

s=0

0 200 400 600 800 1000
0

500

1000

1500

i

y
i

 

 

s=4000

0 200 400 600 800 1000
0

500

1000

1500

i

y
i

 

 

s=5000

Kolter, Johnson, “REDD: A public data set for energy disaggregation research,” in Proc. SustKDD Workshop’11.
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SM System with a Powerful Energy Storage

h0/h1 EP
Xi

AD

EMU

ES
Yi

Meter

Yi

Yi

h0/h1

I Binary hypothesis H
I i.i.d. energy demand Xi under each hypothesis
I i.i.d. energy management: pYi |H,Xi
⇒ i.i.d. energy supply Yi under each hypothesis

I Powerful energy storage device assumption: Infinite capacity
I Dependency: pXi ,Yi |X i−1,Y i−1,H = pXi ,Yi |H = pYi |Xi ,H · pXi |H

Li, Oechtering, “Privacy on hypothesis testing in smart grids,” in Proc. IEEE ITW 2015.
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Adversarial Neyman-Pearson Hypothesis Testing
I Set of feasible energy management policies:

PY |X ,H =
{

pYi |Xi ,H :
E(Yi |h0) = E(Xi |h0) = f0

E(Yi |h1) = E(Xi |h1) = f1

}
,

i.e., asymptotic balance 1
n
∑n

i=1 Yi
a.s.→ E(X ) under each hypothesis.

Design objective for privacy enhancement

r∗II = min
pYi |Xi ,H∈PY |X,H

D(pYi |h0 ||pYi |h1 )

Observations:
I Sufficient to optimize pYi |H instead of pYi |Xi ,H since both the

objective and constraints depend on pYi |H only.

I Equal support condition: S(p∗Yi |h0
) = S(p∗Yi |h1

) = Y∗. Adversary
otherwise knows directly hypothesis for yi 6∈ S(p∗Yi |h0

) ∩ S(p∗Yi |h1
).
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Cardinality Bound of Energy Supply

Theorem 1
The optimal energy management policy requests at most two
supply states, i.e., |Y∗| ≤ 2.
Proof outline:

I The problem minpY |H∈PY |H D(pY |h0 ||pY |h1 ) is a convex optimization
and satisfies Slater’s condition.

I Optimal p∗Y |H has to satisfy KKT conditions.

I Conditions of stationarity and complementary slackness lead to

exp(−λ∗y − 1− v∗0 ) = w∗y + v∗1 , ∀y ∈ Y∗.

Denote the solution set of this equation by Ys.

I |Y∗| ≤ |Ys|. Then, bound |Ys|.
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Optimal Energy Management

Corollary 1
If |Y∗| = 1, then we have equal expected energy demands for both
hypotheses f0 = f1 = f ∈ Y, Y∗ = {f } and r∗II = 0 (perfect privacy).

Theorem 2
If |Y∗| = 2, then Y∗ = {minY,maxY} with

p∗Yi |hj
(minY) = maxY − fj

maxY −minY ,

p∗Yi |hj
(maxY) = 1− p∗Yi |hj

(minY),

j ∈ {0, 1} and r∗II = f0−minY
maxY−minY log f0−minY

f1−minY + maxY−f0
maxY−minY log maxY−f0

maxY−f1
.
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Numerical Example

I f0, f1 ∈ [4, 6].

I Case 1: minY = 1, maxY = 9

I Case 2: minY = 3, maxY = 7
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Case 2

Two ways to suppress the privacy
risk:

I Increase the difference
maxY −minY.

I Decrease the difference
|f0 − f1|.
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Adversarial State Estimation Approach

+x f (·)
f (x)

w

y = f (x) + w

I Consumption sequence x ∈ X ⊆ Rn

I Continuously differentiable f : Rn → Rm

I Additive noise w ∈ W(x) ⊆ Rm

I Conditional probability density function γ(w |x) ∈ Γ

I Adversarial state estimation x̂(y)

γ∗ ∈ arg max
γ∈Γ

E{‖x − x̂(y)‖2
2}

Farokhi, Sandberg, “Fisher Information as a Measure of Privacy: Preserving Privacy of Households with Smart
Meters Using Batteries,” to be published in IEEE Trans. on Smart Grid. Thanks for providing material.
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Adversarial State Estimation Approach (cont.)
I Let I(x) denote the Fisher Information

Cramér-Rao Bound
I E{x̂(y)} = x ⇒ E{‖x − x̂(y)‖2

2} ≥ trace(I−1(x))
I E{x̂(y)} = g(x)⇒

E{‖x− x̂(y)‖2
2} ≥ trace(G(x)>I−1(x)G(x)) + ‖x − g(x)‖2

2

Privacy-by-design problems:

γ∗ ∈ arg max
γ∈Γ

trace(I−1(x)) I−1(x) not concave

γ∗ ∈ arg min
γ∈Γ

trace(I(x)) relaxed problem

I Solution of linear partial differential equation provides solution
(noise distr.) to relaxed problem sometimes even explicitly.
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Numerical Study Setup

I Real consumption data (April 23-May 21, 2011) from REDD
database [Kolter & Johnson, 2011]

I State-of-the-art non-intrusive load monitoring algorithm in
NILMTK toolbox [Kim, et al, 2011] [Barta, et al, 2014]

I Data over April 23-30 is used for learning and the rest is used
for evaluation

REDD: A Public Data Set for
Energy Disaggregation Research

J. Zico Kolter
Computer Science and Artificial Intelligence

Laboratory
Massachusetts Institute of Technology

Cambridge, MA
kolter@csail.mit.edu

Matthew J. Johnson
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology
Cambridge, MA

mattjj@csail.mit.edu

ABSTRACT
Energy and sustainability issues raise a large number of
problems that can be tackled using approaches from data
mining and machine learning, but traction of such problems
has been slow due to the lack of publicly available data. In
this paper we present the Reference Energy Disaggregation
Data Set (REDD), a freely available data set containing de-
tailed power usage information from several homes, which is
aimed at furthering research on energy disaggregation (the
task of determining the component appliance contributions
from an aggregated electricity signal). We discuss past ap-
proaches to disaggregation and how they have influenced our
design choices in collecting data, we describe the hardware
and software setups for the data collection, and we present
initial benchmark disaggregation results using a well-known
Factorial Hidden Markov Model (FHMM) technique.

1. INTRODUCTION
Energy and sustainability problems represent one of the

greatest challenges facing society. More than 83% of the
world’s energy comes from (unsustainable) fossil fuels, with
renewable energy from wind, solar, geothermal and biomass
making up only approximately 2% of the total [11]. Mean-
while, the demand for energy is constantly growing: world-
wide energy production grew by 46% in the the 20 years
from 1987 to 2007 [11]. The simple physical limits of our
current energy resources, as well as the environmental and
climate impact of burning massive amounts of fossil fuels,
make a research focus on issues of sustainability imperative.
Furthermore, there are numerous problems in sustainability
that are fundamentally data analysis and prediction tasks,
areas where techniques from data mining and machine learn-
ing can prove invaluable.
Despite the importance of sustainability research and the

relevance of data mining and machine learning techniques,
there has been relatively little work in these areas, at least
compared to other applications areas such as computational

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SustKDD 2011 August 2011, San Diego, CA, USA
Copyright 2011 ACM 978-1-4503-0840-3 ...$10.00.
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Figure 1: An example of energy consumption over
the course of a day for one of the houses in REDD.

biology or machine vision. We argue that this situation is at
least partly due to the scarcity of publicly available data for
such domains. For example, although there are vast amounts
of data relevant to energy domains (the energy consumption
of each individual building and household in the country, the
loading of each electrical transmission and distribution line)
the majority of this data is unavailable to researchers. Fur-
thermore, there is significant evidence that publicly avail-
able data sets have spurred previous applications areas in
machine learning and data mining: biological applications
have been aided greatly by the data sharing mandates of
biological journals and government organizations [16, 12];
many early successes in natural language processing were
spawned by the now-classic Wall Street Journal corpus [10];
and machine vision research has been aided greatly by com-
mon benchmark datasest such as MNIST digit recognition
[9], CalTech 101 [3], and the PASCAL challenge [2]. De-
spite some initial progress towards this same goal for energy
and sustainability domains [17], there are currently few such
data sets geared to the ML and data mining communities.

In this paper, we present our work on developing a public
data set of this type, termed the Reference Energy Disag-
gregation Data Set (REDD). The data is specifically geared
towards the task of energy disaggregation: determining the
component devices from an aggregated electricity signal.
REDD consists of whole-home and circuit/device specific
electricity consumption for a number of real houses over
several months’ time. For each monitored house, we record
(1) the whole home electricity signal (current monitors on
both phases of power and a voltage monitor on one phase)
recorded at a high frequency (15kHz); (2) up to 24 individ-
ual circuits in the home, each labeled with its category of
appliance or appliances, recorded at 0.5 Hz; (3) up to 20

Figure 2: Schematic of the different components of
the REDD hardware and software system.

past work [8] we have considered this challenge of general-
izing across multiple homes, but the data used in that work
was only available at an extremely low resolution (one hour),
and was not permitted to be made publicly available, greatly
limiting the ability of researchers to directly compare to the
approach. In contrast, a goal of REDD is to consider several
different homes, such that work that attempts to generalize
across device types can be rigorously evaluated using this
data set. As expected, and as we illustrate concretely in
Section 4, generalization across homes and device categories
makes disaggregation a much more challenging problem.
Evaluation Metrics. Finally, previous work in power

disaggregation has used different metrics for evaluating per-
formance: initial work typically focused only on on/off changes
for devices, and the natural metric here is whether the al-
gorithm can correctly classify which device is turning on or
off given a change point in the whole home signal. An al-
ternative approach is to look at the percentage of energy
correctly classified (the original work by Hart et al., [6] con-
sidered both these metrics). The latter has the advantage
that it is more generally applicable to disaggregation tasks,
since it does not rely on extracting edges in the aggregate
power signal, and applies to devices with multiple states or
“smooth” power ons. This metric naturally weights high-
power devices more heavily than low-power devices. While
we argue that this feature is often desirable, since the ab-
solute power consumed is the ultimate quantity we hope to
influence, the metric may indicate good performance even
when low-power devices are classified poorly, and in some
cases these low-power devices are those over which the user
has greatest control. Thus, while we will consider the “total
energy properly classified”metric in our experiments, REDD
can accommodate many performance metrics.

3. THE REDD HARDWARE AND
SOFTWARE SYSTEMS

We developed the REDD hardware and software systems
with the considerations of the previous section in mind. The
hardware system in each house logs data from the whole-
home current and voltage (at high-frequency) from each in-

Figure 3: Enmetric router and Power Port, designed
and built by Enmetric Systems, Inc.

Figure 4: The eMonitor, designed and built by Pow-
erhouse Dynamics, Inc.

dividual circuit and from selected plugs. The data is logged
both locally and to central database, which stores informa-
tion from all the houses and can be accessed via a web in-
terface. A schematic of the system is shown in Figure 2.

3.1 Hardware Setup
For plug-level data, we use a wireless plug monitoring

system developed by Enmetric (http://www.enmetric.com),
shown in Figure 3. The system consists of several power
strips, each containing four independently monitored out-
lets, and a router that connects to the home’s internet con-
nection via DHCP and processes the reading from each of
the wireless devices. Energy information is then sent to a
central server at a rate of 1Hz. Because the system reports
at a sufficient rate and is fairly easy to install in most homes,
we use the system as-is for the plug level data collection.

Circuit-level data and whole-home data require a more in-
volved setup. For circuit level data, we again make use of
an off-the-shelf solution: the eMonitor, developed by Pow-
erhouse Dynamics (http://www.powerhousedynamics.com),
shown in Figure 4. The eMonitor comes with current trans-
formers (CTs) that attach to each individual circuit of the
home in a house’s circuit breaker panel; the version we use
monitors up to 24 circuits independently. However, the
eMonitor reports power consumption to a central server at a
maximum rate of once per minute. Since we are looking for
more frequent power readings, we directly request measure-
ments from the monitor using its API at the highest rate
possible (for the current hardware, about one reading for all
the circuits every 3 seconds).

To measure whole-home AC waveforms at high frequency,
we use CTs from a TED (http://www.theenergydetective.com)
to measure current in the power mains, a Pico TA041 oscillo-
scope probe (http://www.picotechnologies.com) to measure
voltage for one of the two phases in the home, and a National
Instruments NI-9239 analog to digital converter to transform
both these analog signals to digital readings. This A/D con-
verter has 24 bit resolution with noise of approximately 70
µV, which determines the noise level of our current and volt-
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Numerical Study
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I Resolution of the policy of the battery is an hour
I The appliance connected to the socket was always on during

the experiment
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Energy-flow Control Strategies Based on MDP Framework

I Concept of Markov decision process (MDP) provides a
framework with well-developed tools for the design the
optimal energy-flow control strategies

I MDP has been used with a reward function based on
I information-theoretic motivated privacy measures

I conditional entropy [Yao et al.2015]
I mutual information [G. Giaconi et al., 2016], [S. Li et al, 2016]

I statistical inference motivated privacy measures
I Bayesian risk [Z. Li et al, 2017]
I KL divergence [Y. Yang et al, 2018]

Yao, Venkit., “On the privacy-cost tradeoff of an in-home power storage mechanism,” in Allerton, 2013.
Giaconi, Gündüz, “Smart Meter Privacy with Renewable Energy and a Finite Capacity Battery,” in SPAWC 2016.
Li, Khisti, & M., “Privacy-optimal strategies for smart metering syst. w. a rechargeable battery,” in ACC, 2016.
Li, Oechtering, Skoglund, “Privacy-preserving energy flow control in smart grids,” in Proc. IEEE ICASSP 2016.
Yang, et al., “Optimal Privacy-enhancing and Cost-efficient Energy Management ...,” in Proc. IEEE SSP 2018.
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Markov Decision Process (MDP)
I MDP is a process with Markov property

S1 S2 S3

A1 A2 A3

R1 R2 R3

…

…

…

I Task: Find optimal (decision) policies {δi : S → A}i∈Z+ to
optimize an objective in terms of rewards {Ri}i∈Z+ .

I Decision on an action Ai ∈ A is based on the current state
Si ∈ S and influences the reward Ri and next state Si+1.

I Framework with established computational methods exists
I Suitable for modeling problems with Markov property setting

Krishnamurthy, “Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing,” 2016.
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Belief State Markov Decision Process

I Extension: Belief state
I Posterior distributions of the state Si conditioned on different

realizations of historical observations
I Belief state formulation allows the partially observed MDP to

be formulated as a standard (fully-observed) MDP

I Action
I For energy management, action ai decides on the amount of

energy supply based on the current state
I Deterministic action

I Certain energy supply at each state deterministically chosen.
I Random action

I Decide on different amounts of energy supply according to a
certain distribution at each state.
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SM System with a Finite Capacity Storage

EP
Xi

EMU

ES
Yi

Meter

Hi
^

Yi
Hi

Zi

AD

Yi

I Markov random hypothesis Hi with time-invariant transition pHi |Hi−1

I Generation of Xi follows time-invariant pmf pXi |Hi ,Xi−1 .

I Energy management policy γi = pYi |Xi ,Zi satisfies the constraint
zi − zi+1 + yi = xi , i.e.,
(i) demand xi is always satisfied and (ii) no energy is wasted.

I Dependency setting:

PHi ,Xi ,Zi ,Yi |H i−1,X i−1,Z i−1,Y i−1

= pYi |Xi ,Zi · pXi |Hi ,Xi−1 · pZi |Xi−1,Zi−1 · pHi |Hi−1

Li, Oechtering, Skoglund, “Privacy-preserving energy flow control in smart grids,” in Proc. IEEE ICASSP 2016.
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Belief State MDP Formulation
I Belief State Markov Decision Process:

I Current “reward” ri depends on “action” γi and “belief state”
pHi ,Xi ,Zi .

I Next “belief state” pHi+1,Xi+1,Zi+1 depends on current “action”
γi and “belief state” pHi ,Xi ,Zi .

Belief state MDP elements
I State: si = (hi , xi , zi )

I Belief state: bi = pHi ,Xi ,Zi ∈ B

I Action (energy management policy): ai = γi = pYi |Xi ,Zi ∈ A

I Reward: ri (bi , ai )

I Policy δi : B → A

I Belief state transition: bi+1(bi , ai )
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Adversarial Bayesian Hypothesis Testing

I Informed adversary makes decision Ĥi based on Yi .

I Instantaneous Bayesian risk of the adversary:

ri =
∑

yi

min
ĥi

 ∑
hi ,xi ,zi

c(ĥi , hi )pYi |Xi ,Zi (yi |xi , zi )pHi ,Xi ,Zi (hi , xi , zi )




I Observations: Depending on policy γi and “belief” pHi ,Xi ,Zi

instead of (hi , xi , zi )
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Infinite Horizon Energy Management
Privacy leakage: Accumulated discounted minimal Bayesian risk

Given initial “belief” pH1,X1,Z1 , J(pH1,X1,Z1 ) =
∞∑

i=1
βi−1ri

where 0 < β < 1 is a discount factor
I Applicable to the scenarios where privacy leakage risk decays with

time, e.g., considering the time-increasing exposure probability of
the adversary

Privacy-enhancing energy management

J∗(pH1,X1,Z1 ) = max
{γi}

J(pH1,X1,Z1 )

Current energy management affects the future!

pHi+1,Xi+1,Zi+1|Hi ,Xi ,Zi = pZi+1|Xi ,Zi · pXi+1|Hi+1,Xi · pHi+1|Hi
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Optimal Policies

Bellman equation

J∗(bi ) = max
ai∈A

ri (bi , ai ) + β · J∗(bi+1(bi , ai ))

δ∗i (bi ) = arg max
ai∈A

ri (bi , ai ) + β · J∗(bi+1(bi , ai ))

I Optimal policy δ∗i is time-invariant.

I Established algorithms, e.g., value iteration (on the next slide),
policy iteration

I How an optimal energy management operates:
At time slot 1, implement an instantaneous energy management
policy γ1 = δ∗1 (pH1,X1,Z1 ); and update pH2,X2,Z2 . Repeat the two
steps at the remaining slots.
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Value Iteration
I Consider a finite discretized belief state alphabet
B = {b(1), . . . , b(||B||)}.

1: input: a reward vector [J∗(b(1)), . . . , J∗(b(||B||))]

2: while the update of reward vector does not satisfy convergence crite-
rion do

3: for k ∈ {1, . . . , ||B||} do
4:

J(b(k))←max
ai∈A

ri (b(k), ai ) + β · J∗(bi+1(b(k), ai ))

δ∗i (b(k))← arg max
ai∈A

ri (b(k), ai ) + β · J∗(bi+1(b(k), ai ))

J∗(b(k))←J(b(k))

5: end for

6: end while

7: output: [J∗(b(1)), . . . , J∗(b(||B||))] and [δ∗i (b(1)), . . . , δ∗i (b(||B||))]
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Numerical Example
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I Binary hypotheses Hi

I xi , zi ∈ {0, 1}, yi ∈ {0, 1, 2}

I β = 0.5

I A finite number of belief states
(an approx.)

I Instantaneous optimal energy management policy (J#), i.e., a
policy always maximizes instantaneous reward without considering
impact on the future

I Policy considering future impact ⇒ Privacy-enhancing improvement
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Privacy-Cost Trade-off

EP
Xt EMU

YtMeter
Yt

h0/h1

St

AD

Yt

ES
h0/h1

I Energy storage (ES) is also used for energy cost savings
I What is the policy f that achieves the optimal trade-off?

I Battery level evolves as St+1 = St + Yt − Xt , 0 ≤ St ≤ smax

I Privacy measure: L(f ) = 1
T D(P f

Y T ,PT |h0
‖P f

Y T ,PT |h1
)

I Cost-saving rate with dynamic pricing Pt : V (f ) =
1
T

T∑
t=1
{Ef [(Xt − Yt)Pt |h0]P(h0) + Ef [(Xt − Yt)Pt |h1]P(h1)}

Yang, Li, Oechtering, “Optimal Privacy-enhancing and Cost-efficient Energy Management Strategies for Smart Grid
Consumers,” in Proc. IEEE SSP 2018.
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Belief-state MDP Design Approach

I Design objective: min
f ∈F

C(f , λ) = min
f ∈F

λL(f )− (1− λ)V (f )

I Solution approach: Belief-state MDP formulation & finite
horizon backward dynamic programing

I Decomposition of ft in
I policy at = πt(y t−1, pt−1)
I actions at ∈ {PYt |Xt ,St ,Pt}

I Belief state:
PXt ,St ,Pt |Y t−1

1 ,Pt−1
1 ,At−1

1 ,hi

I Per-step expected cost
Ct(πt , λ,Y t−1,At−1,Pt−1)

Binary power levels toy problem
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Energy Losses due to Privacy Control

Grid
Smart 
Meter

Adversary

House

EMU

Yk

Ĥk

Xk

Hk-1

Dk*

Dk

AC-DC DC-AC

Battery Zk

ESS

C IbatR VOC

r

Converter
Ibat Load

DC-AC

DC-AC

Ibat

(a) Self dissipation loss (b) Internal resistive loss (c) Converter loss

Q

Reddy, Oechtering, Månsson, “Optimal Privacy-preserving Control Strategies for Smart Meters Including Energy
Storage Losses,” IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2018.

IEEE WIFS’18 tutorial - Privacy Against Statistical Inference Attacks - Gündüz, Oechtering 151/170



Energy Loss Aware Bayesian Hypothesis Testing

I With energy loss accounted in battery state estimation8

Zt+∆t = (1− γ) · Zt + β

(√
V2

OC + 4r · Dt · δt − VOC

)
I Optimal control strategy:

µ∗ = arg max
{µ1,··· ,µN}

N∑
k=1
R∗k (bk−1, zk−1, µk )

where the instantaneous minimum Bayesian risk is given as

R∗k (bk−1, zk−1, µk ) =
∑
y∈Y

min
ĥ∈H

{ ∑
g,h,x∈H2×X

C(ĥ, h) · PYk |Xk−1,Zk−1 (y | x , z)·

PXk−1|Hk−1 (x | g) · PHk |Hk−1 (h | g) · PHk−1 (g)
}

8where γ, r , β, VOC are model parameters and Dt · δt is control variable.
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Numerical Experiment
I The EMU when tasked to protect the events of a water kettle

between 8 AM and 9 AM in Household 2 of ECO dataset using 12V
100Ah battery:
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Reduced peak 
with initial battery of 100% SOC

Reduced peak 
with initial battery of 50% SOC

Initial battery SOC (%) Energy loss (Wh) Accumulated minimum Bayesian risk (AMBR)9

Without battery 0 0
0 40.421 152.57

50 36.230 153.51
100 9.779 148.89

9The higher the AMBR, the better is the privacy control
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Differentially Private Battery Recharging
I Modify household’s consumption profile (first proposer of this

approach) by adding noise using a rechargeable battery to
achieve privacy in the sense of differentially privacy

I Use battery as buffer to apply Laplacian noise to the
consumption (either discharging or charging)

I Taking battery capacity and throughput (energy
charged/retrieved per time) into account
differential privacy in resource-bounded setting

I bounded mechanism (noise, can be high)
I (ε, δ)-differential privacy guarantees with revised (increased) δ

due to restrictions (without recharging, one step result)
I Battery recharging mechanism, noise generation via cascading

I Idea: Consider energy to be recharged as function that should
be made differentially private

I Formally only one activation of one device is protected

M. Backes, S. Meiser, “Differentially Private Smart Metering with Battery Recharging,” Proc. DPM 2013.
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Summary & Conclusion PET Approaches

I There exist several Privay Enhancing Technology (PET)
design approaches based on

I load signature manipulations
I various privacy measures objectives
I sources of distortion
I control policy design approaches

I A few fundamental results
I based on simplified settings
I applicable to other applications

I A lot of opportunities for further research!
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In Summary

I Privacy is an important concern for smart meter roll-outs
I Privacy should be part of design, not something to be fixed

retrospectively
I ”Physical layer privacy” for energy networks
I Hard to quantify and guarantee privacy
I Fundamental privacy - utility trade-off
I Information theory and signal processing provide powerful

tools to study this trade-off
I Based on known statistics: Provable guarantees vs.

Data-dependent approaches
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What Next?

I Some fundamental principles and concepts have been
developed, but for further developments of the technology
readiness we need to study:

I Technological implementation aspects, e.g., real energy storage
aspects

I Impact of privacy-enhancing methods on the power grid, e.g.,
energy management

I Incentives for its integration, e.g., dual use of (car) batteries

I Mostly initial studies have been pursued, refinements and
extensions are needed

I Comparison and assessment of different approaches should be
done
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Closing remarks

I Epochal change where AI advancements create more and
more information from data

I Protection of sensitive information to make it sustainable
I Legally enforced, e.g., European GDPR

I Privacy-by-design is an exciting research field
I Smart-meter privacy is a prominent prototype problem
I Concepts, methods, and approaches transfer to other privacy

problems

I Many open research questions at the intersection of computer
science, power systems, control theory, signal processing and
information theory.
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THANK YOU!

Deniz Gunduz
Imperial College London
d.gunduz@imperial.ac.uk

Tobias Oechtering
KTH Royal Institute of Technology

oech@kth.se
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References
S. Li, A. Khisti, and A. Mahajan,
“Information-Theoretic Privacy for Smart Metering Systems with a Rechargeable
Battery,”
in IEEE Trans. on Information Theory, May 2018.

Z. Li,
“Privacy-by-Design for Cyber-Physical Systems,”
PhD dissertation, KTH Royal Institute of Technology, 2017.
Online: http://kth.diva-portal.org/smash/get/diva2:1131655/FULLTEXT01.pdf

Z. Li and T. J. Oechtering,
“Privacy on hypothesis testing in smart grids,”
in Proc. IEEE ITW 2015 Fall, pp. 337-341.

Z. Li, T. J. Oechtering, and M. Skoglund,
“Privacy-preserving energy flow control in smart grids,”
in Proc. IEEE ICASSP 2016, pp. 2194-2198.

IEEE WIFS’18 tutorial - Conclusions - Gündüz, Oechtering 166/170
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References
O. Tan, J. Gomez-Vilardebo, and D. Gunduz,
“Privacy-cost trade-offs in demand-side management with storage,”
in IEEE Transactions on Information Forensics & Security, Jun. 2017.

O. Tan, D. Gunduz and H. V. Poor,
“Increasing smart meter privacy through energy harvesting and storage devices,”
in IEEE Journal on Selected Areas in Communications: Smart Grid
Communications, vJul. 2013.

D. Varodayan and A. Khisti,
“Smart meter privacy using a rechargeable battery: Minimizing the rate of
information leakage,”
in Proc. IEEE ICASSP 2011, pp. 1932-1935.

M. Weiss, A. Helfenstein, F. Mattern and T. Staake,
“Leveraging smart meter data to recognize home appliances,”
in IEEE PerCom, 2012, pp. 190-197.

Y. Yang, Z. Li, and T.J. Oechtering,
“Optimal Privacy-enhancing and Cost-efficient Energy Management Strategies
for Smart Grid Consumers,”
Proc. IEEE Statistical Signal Processing Workshop (SSP), June 2018.

IEEE WIFS’18 tutorial - Conclusions - Gündüz, Oechtering 169/170
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