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L’itération des applications en dimension un a une longue histoire. La méthode de
Newton-Raphson pour déterminer les zéros d'une fonction en est un exemple vieux de plus
de trois siecles. En essayant de trouver des méthodes effectives de calcul des itérées des
fonctions rationnelles, Schroder introduit la notion de conjugaison conforme. Toujours vers
la fin du XIXeme, siecle Poincaré étudie les propriétés des homéomorphismes du cercle.
Au début du XXeme siecle, en utilisant le théoreme de Montel, Julia et Fatou étudient
de fagon plus systématique l'itération des applications rationnelles. Ils partitionnent la
sphere de Riemann en deux ensembles d’apres le comportement des itérées de I'application.
Ainsi I’ensemble de Fatou est ’ensemble des points qui possedent un voisinage sur lequel
les itérées de l'application forment une famille normale. On appelle son complémentaire
I’ensemble de Julia. L’ensemble de Fatou est ouvert et invariant. L’ensemble de Julia est
soit toute la sphere, soit d’intérieur vide et il est lui aussi invariant. Son caractere fractal
a été mis en évidence des cette époque.

Les images obtenues a l'aide de l'ordinateur par Mandelbrot de l’ensemble des pa-
rametres ¢ pour lesquels 'ensemble de Julia du polynéme 2? + ¢ est connexe a attiré I'at-
tention de la communauté mathématique par leur complexité et par leur beauté. L’étude
de la dynamique complexe et spécialement de la famille quadratique s’est intensifiée depuis
le début des années 80, en commencant par les travaux de Douady et Hubbard. Toujours
dans les années 80, Sullivan montre que ’ensemble de Fatou n’a pas de composantes er-
rantes et par la suite on obtient une classification de ses composantes connexes. En méme
temps la dynamiques des applications de l'intervalle est le sujet de nombreux travaux.
Milnor et Thurston élaborent une théorie combinatoire des application unimodales. Collet
et Eckmann introduisent une condition sur la croissance de la dérivée sur 1'orbite critique
pour ces applications. A partir des années 80 la dynamique en dimension un connait un
développement impressionnant. Par la suite on se focalise sur les propriétés topologiques
et analytiques des orbites critiques et leur conséquences.

Les orbites critiques

Soit f une application rationnelle de degré d > 2 et J son ensemble de Julia. L’en-
semble de Julia est 'adhérence des orbites périodiques répulsives et 1’ensemble de Fatou
contient toutes les orbites périodiques attractives et leurs bassins d’attraction. Tout bassin
d’attraction d’une orbite périodique attractive contient un point critique de f. Si f est un
polynome, J est connexe si et seulement si toutes les orbites critiques sont bornées. On dit
que f est hyperbolique s’il existe des constantes C' > 0 et A > 1 telles que

}(f")/ (z)’ > C\" pour tous z € J et n > 1.

Les dynamiques hyperboliques sont totalement comprises et la conjecture de Fatou affirme
que pour un degré d fixé, 'ensemble des applications rationnelles hyperboliques est dense
dans I’ensemble des applications rationnelles de degré d. C’est toujours un probleme ouvert
sauf pour la famille quadratique réelle. On sait que f est hyperbolique si et seulement si
la fermeture de ses orbites critiques est disjointe de J. On peut aussi montrer que dans
ce cas J est de mesure de Lebesgue nulle. Il a été conjecturé que ’ensemble de Julia est



soit toute la sphere soit il est de mesure nulle. On dispose aujourd’hui d’un contre-exemple
quadratique construit récemment par Buff et Chéritat, voir [1].

Dans le cas ou I'ensemble de Julia contient des points critiques on peut se demander
si on peut obtenir une expansion uniforme sur des sous ensembles compacts invariants de
I’ensemble de Julia. Cela est vrai par exemple pour I’ensemble des points d’accumulation
w(c) des orbites critiques O(c) tels que w(c) est disjoint de ’ensemble des points critiques
Crit en I'absence d’orbite périodique parabolique (orbite périodique indifférente de mul-
tiplicateur rationnel). C’est la condition de Misiurewicz qui a été ensuite généralisée en
demandant seulement ¢ ¢ w(c) pour tout ¢ € CritNJ en 'absence d’orbite périodique
parabolique. On appelle cette condition semi-hyperbolicité. En dynamique unimodale ou
quadratique la condition de Collet-Eckmann est impliquée par la semi-hyperbolicité. On
dit qu'un point critique ¢ € Crit satisfait a la condition de Collet-Eckmann s’il existe des
constantes C' > 0 et A > 1 telles que

}(fn)/ (f(C))’ > C'A\" pour tout n > 1.

On dit que f satisfait a la condition de Collet-Eckmann si tous ses points critiques dans
J sont Collet-Eckmann en l’absence d’orbite périodique parabolique et on dénote cette
condition par CE. En dynamique réelle, au début des années 80, van Strien, Gucken-
heimer et Misiurewicz posent le probleme de I'invariance topologique de la condition de
Collet-Eckmann pour les application unimodales avec dérivée Schwarzienne négative (S-
unimodales). Nowicki et Sands ([10]) démontrent vers la fin des années 90 que la condition
CFE pour les applications S-unimodales est équivalente a la deuziéme condition de Collet-
Eckmann (CEy) mais aussi a [’hyperbolicité uniforme sur les orbites périodiques. Soient g
une application S-unimodale et ¢ son point critique. On dit qu’elle satisfait a la condition
C'Es(c) sl existe des constantes C' > 0 et A > 1 telles que pour toute préimage y € g~ "(c)
avec n > 0 du point critique on a

(9" (y)] > O™

On dit que g est uniformément hyperbolique sur les orbites périodiques (UH P) §’il existe
A > 1 tel que pour tout point périodique z si g™ (z) = x et m > 0 alors

[(g™)" (@)] > A"

On généralise cette définition pour les applications rationnelles en considérant seulement
les orbites périodiques dans ’ensemble de Julia. En introduisant une condition formulée
exclusivement en termes topologiques, la condition de Collet-Eckmann topologique (TCE),
et en démontrant qu’elle est aussi équivalente a C'Es(c) et a UH P, Nowicki et Przytycki
montrent 'invariance topologique de C'E dans le cas S-unimodal, voir [9]. On obtient
des contre-exemples S-multimodales (applications avec dérivée Schwarzienne négative sur
'intervalle avec plusieurs points critiques) pour l'invariance topologique de C'E. Tous ces
contre-exemples sont semi-hyperboliques et la question de l'invariance de C'E pour les
points critiques récurrents persiste en dynamique S-multimodale a la fin des années 90, voir
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[15]. L’étude de la condition C'E pour les applications rationnelles a commencé seulement
dans les années 90 dans l'article [12] de Przytycki.

L’étude de la régularité des composantes de l’ensemble de Fatou a été initiée par
Carleson, Jones et Yoccoz dans larticle [2]. Tls démontrent qu’un polynéme est semi-
hyperbolique si et seulement si le bassin d’attraction de I'infini est un domaine de John.
Graczyk et Smirnov montrent plus tard dans [6] que les composantes de I'ensemble de
Fatou sont des domaines de Hélder pour les applications rationnelles C'E, voir aussi [7]
pour une généralisation de la condition de Collet-Eckmann. Przytycki, Rivera-Letelier et
Smirnov établissent en [13] I'équivalence entre TCE, UHP, C'Ey(2) pour un z, € C et
la décroissance exponentielle du diamétre des composantes (ExpShrink). On dit que 1'ap-
plication rationnelle f satisfait a FaxpShrink s’il existe r > 0 et A > 1 tels que pour tout
zeJetn>0

diam Comp f7" (B(z,7)) < A™".

En utilisant aussi le résultat de Graczyk et Smirnov, en présence des cycles attractifs,
la regularité Holder des domaines de l’ensemble de Fatou devient équivalente a toutes
ces conditions. Carleson, Jones et Yoccoz ([2]) montrent aussi que les polynomes semi-
hyperboliques satisfont a ExpShrink et donc a toutes ces conditions équivalentes. La
réciproque n’est pas vraie, voir [13]. Egalement, la condition C'E' pour les applications
rationnelles n’est pas impliquée par ces conditions, sauf pour le cas ou l'application a
un seul point critique, voir [11]. Une application rationnelle satisfaisant & ces conditions
équivalentes a une dynamique presque hyperbolique, par exemple la dimension de Hausdorff
de T'ensemble de Julia est strictement inférieure a 2 dans le cas polynomial, voir [6]. De
plus, de telles dynamiques sont abondantes dans I’espace des parametres, voir [16], [17],
[14] et [8].

La condition de Collet-Eckmann pour les orbites critiques récurrentes

Cette these etudie une condition plus générale que la semi-hyperbolicité et que la condi-
tion de Collet-Eckmann. On 'appelle Collet-Eckmann pour les orbites critiques récurrentes
(RCE) et son étude a été inspirée par les résultats de [2] et [6]. Une application rationnelle
f satisfait a cette condition si elle ne possede pas d’orbite périodique parabolique et tout
point critique récurrent dans I’ensemble de Julia est Collet-Eckmann. On démontre qu’elle
a comme conséquence la régularité Holder des composantes de l’ensemble de Fatou. On
construit aussi un contre-exemple pour la réciproque.

La condition C'E pour les orbites critiques récurrentes a été déja formulée dans le
cas S-multimodal, voir [15]. Disposant seulement de contre-exemples semi-hyperboliques
pour l'invariance topologique de C'E pour ces applications, éwi@tek conjecture l'invariance
topologique de RC'E pour les applications S-multimodales. Les techniques développées
dans le troisieme chapitre pour construire un polynome ExpShrink qui ne satisfait pas a
RCE produisent aussi un contre-exemple pour cette conjecture.

Cette these comporte trois chapitres. Dans les sections 1.1, 1.2 et 1.3 ci-dessous nous
décrivons les résultats de chacun de ces trois chapitres et ’essentiel des méthodes utilisées.



1.1 La condition de Collet-Eckmann pour les orbites
critiques récurrentes implique I’hyperbolicité uni-
forme sur les orbites périodiques répulsives

Le deuxieme chapitre est dédié exclusivement a la preuve du théoreme suivant.

Théoreme 1. Les composantes de l’ensemble de Fatou de toute application rationnelle qui
satisfait a la condition de Collet-Eckmann pour les orbites critiques récurrentes sont des
domaines de Holder.

Soient f une application rationnelle RCE, J son ensemble de Julia et C' > 0, A > 1
tels que tout point critique récurrent ¢ € J satisfait

‘(fn)/ (f(c))} > C'A\" pour tout n > 0.

Nous démontrons que f satisfait a la condition de décroissance exponentielle du diametre
des composantes.

Une étape importante avant de démontrer la décroissance exponentielle est la stabilité
en arriere (BS, backward stability).

Definition 2.1.4. On dit que f est stable en arriere si pour tout € > 0 il existe 6 > 0 tel
que pour tout z € J et n >0

diam Comp f7" (B(z,6)) < e.

Dans le cas semi-hyperbolique, la stabilité en arriere garantit que le degré sur les
préimages des petits disques reste borné. Dans l'article [2] Carleson, Jones et Yoccoz
montrent que dans ce cas la distorsion en termes de diametres est bornée, ce qui im-
plique une décroissance uniforme des diametres des préimages. Grace a la méme borne
de la distorsion on peut itérer cette décroissance uniforme pour obtenir la décroissance
exponentielle du diametre.

Graczyk et Smirnov ([6]) utilisent aussi une construction du type télescope mais ils
calculent la dérivée sur une orbite en arriere au lieu de considérer le diametre des disques.
Ils obtiennent une borne explicite de la distorsion en utilisant la méthode des voisinages
emboités. Ils récuperent ainsi la croissance exponentielle de la dérivée sur une orbite en
arriere en enchainant trois types de tubes du télescope. A chaque étape ils considerent des
préimages univalentes.

Un outil employé pour développer la technique de voisinages emboités mais aussi fort
utile dans la preuve de la proposition 2.2.3 est le lemme de Koebe. C’est essentiellement une
borne de la variation de la dérivée d’une application holomorphe loin des points critiques
qui engendre aussi une borne pour la déformation des disques.

Lemme de Koebe. Soit g : B — C une application holomorphe univalente du disque
unité dans le plan compleze. L'image g(B) contient le disque B (g(0),1]g'(0)]) et pour
tout z € B on a )

(—l) _1gC) (412D

L+ 12’ = 190 = 1=zl
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et
z|(1 +2])

11z

19(2) — 9(0)] < lg'(=)) 1L LD

Pour démontrer le théoreme 1 on construit un télescope avec trois types de tubes. Nous
avons choisi de considérer les diametres des préimages au lieu de la dérivée sur une orbite
en arriere a cause des orbites critiques qui ne satisfont pas la condition de Collet-Eckmann.
Apres avoir démontré la stabilité en arriere, en I’absence des orbites Collet-Eckmann on
obtient une majoration du degré. On obtient une estimation explicite de la distorsion en
termes de diametre dans ce cas. Toutes les distances sont considérées dans la métrique
sphérique.

Lemme 2.2.1. Soient g une application rationnelle, z € C et 0 < r < R < 1. Soient W
et W' deux composantes connezes de g~ (B(z, R)) et de g=* (B(z,1)) respectivement, avec
W' CW etdiamW < 1. Sidegy g < u alors

: 1 1
dl.am w <64 ( ) i
diam W R

On peut ainsi utiliser les techniques de [2] et [6] ensemble, a priori de natures tres
différentes. Il faut remarquer que dans le cas rationnel, les préimages des disques ne sont
plus nécessairement simplement connexes. Grace a la stabilité en arriere on peut quand
méme choisir une échelle ou les préimages de composantes simplement connexes sont sim-
plement connexes. Toujours grace a BS' le télescope peut admettre des tubes avec un degré
arbitraire. C’est le cas des tubes qui contiennent des orbites critiques Collet-Eckmann. La
proposition suivante montre que leur diametre décroit exponentiellement. On définit un voi-
sinage () de J stable par préimage et qui ne rencontre pas d’orbite critique dans I’ensemble
de Fatou.

Proposition 2.2.3. Pour tout 1 < A\g < X et 0 < 1 il existe § > 0 avec la propriété
suivante. Soient N > 0 et W une composante connezxe de f~N(B(z, R)) avec B(z, R) C Q
et diam f"(W) < 6 pour toutn =0,..., N, si f=N=1(W) contient un point critique Collet-
Eckmann et UN LFi(W) contient aussi un point critique, alors

diam W < QR)\aN.

Comme dans [2] on obtient une décroissance uniforme du diametre quand le degré est
borné. On I'utilise en ’absence de points critiques Collet-Eckmann dans une suite donnée
de préimages.

Proposition 2.2.2. Pour tous § > 1, p > 1 il existe § > 0 tel que pour tous 0 < r <
R < % il existe N > 0 avec la propriété suivante. Pour tout z € J avec B(z,fR) C Q et

n>N si W' et W sont deur composantes connexes de f~"(B(z, R)) et de f~"(B(z,fR))
respectivement telles que W' C W et degy, (f™) < u alors

diam W' < r.
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Une premiere difficulté rencontrée est le fait que sans disposer de la stabilité en arriere
on doit travailler avec des préimages qui ne sont pas nécessairement simplement connexes.
Par conséquent on considere des anneaux et on les découpe pour éviter les valeurs critiques.
La preuve du lemme 2.2.1 utilise les propriétés de module des anneaux parmi lesquelles le
probleme extrémal de Teichmiiller.

Une deuxieme difficulté majeure de la preuve est la construction du télescope qui doit
comprendre des tubes de degré arbitraire. En utilisant le diametre au lieu de la dérivée sur
une orbite en arriere, on ne peut pas multiplier les estimées trouvées. Cela se fait en utilisant
le lemme 2.2.1 pour lire la contraction au bout du télescope. Par contre le lemme s’applique
seulement quand le degré est borné. La proposition 2.2.3 fonctionne des que les diametres
des préimages ne dépassent pas une borne fixée, ce qui permet de multiplier les estimées
sur des tubes consécutifs qui contiennent des orbites critiques CE. Ces deux méthodes
permettent de démontrer la décroissance exponentielle du diametre des composantes.

1.2 Exemples et contre-exemples

On se pose le probleme de la réciproque du théoreme 1. En utilisant le lemme de Koebe
ou I'inegalité (3.27) on observe que si W est ouvert et connexe et W' est une composante

dist (W1, Crit) ;
-1 ) diam W
connexe de f~H (W) tels que —g—57=r— est grand alors 322%-%; est comparable avec

|f/(2)| pour tout 2 € W=, voir aussi le lemme 3.4.3. Cela implique une certaine équivalence
entre des conditions sur la dérivée et des conditions exprimées en termes de diametre de
composantes connexes. Par contre, dans le cas contraire, |f/(2)| peut étre beaucoup plus
petit que %. L’inégalité (3.28) affirme qu'il existe M > 0 tel que si le diametre de
W est suffisamment petit alors pour tout z € W1 on a

diam W' < M |f'(z)|”" diam W. (2.17)

Le terme de droite peut étre beaucoup plus grand que celui de gauche et cela est précisé-
ment le motif pour lequel il existe une application rationnelle ExpShrink qui ne satisfait
pas a RCE.

On développe une technique basée sur les propriétés combinatoires des applications
multimodales pour construire un contre-exemple pour la réciproque du théoreme 1. C’est
un polyndéme de degré 3 tres proche du deuxieme polynome de Chebyshev, on le dénote
par g. Le premier point critique ¢; est envoyé en 1 qui est un point fixe répulsif. Przytycki
montre en [11] que tout point critique d'une application rationnelle TC' E qui ne s’accumule
pas sur d’autres points critiques est C'E. On doit alors rendre la deuxieme orbite critique
récurrente mais il faut aussi qu’elle s’accumule sur ¢;. Ce sont exactement aux temps p; ou
cette orbite se rapproche de ¢; que sa dérivée ’( g") ( g(CQ))} peut étre rendue plus petite que
1, pour que ¢, ne soit pas C'E. On construit g de telle facon que sur les segments d’orbites
qui ne comportent pas de tels moments p; la croissance de la dérivée soit exponentielle. En
utilisant ensuite les outils développés pour démontrer le théoreme 1 et une analyse plus
fine lorsqu’une préimage est tres proche de ¢q, on montre que g satisfait a ExpShrink.
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Pour pouvoir construire ’application g en suivant cette schéma de preuve on doit dis-
poser déja de plusieurs constantes - notamment les échelles - qui a priori dépendent de g.
Pour résoudre ce probleme on démontre des versions uniformes des résultats de contraction
utilisés dans la preuve du théoreme 1. Comme g est une limite d’une suite décroissante de
familles de polynomes, on peut utiliser ces résultats - corollaire 3.4.2 et proposition 3.4.4 -
pour montrer le théoreme suivant.

Théoreme 2. [l existe un polynome ExpShrink qui ne satisfait pas a RCE.

Les techniques développées pour construire ce contre-exemple produisent aussi une paire
d’applications polynomiales 2-modales h et h conjuguées et avec dérivées Schwarzienne
négatives telles qu'une seule des deux satisfait a RC'E. C’est un contre-exemple pour la
conjecture de Swiatek, [15].

Théoreme 3. La propriété RC'E n’est pas topologiquement invariante dans la classe des
applications S-multimodales.

En changeant le degré du point critique ¢; on obtient des phénomenes différents pour
h et h aux moments ot la deuxiéme orbite critique approche ¢;. On peut remarquer que
cette stratégie ne peut pas étre employée pour infirmer 'invariance topologique de RC'E
complexe, ou le degré des points critiques est preservé par conjugaison topologique.

Un exemple de polynéne RC'E

En utilisant le méme type de construction on peut obtenir un polynéme 2-modal semi-
hyperbolique tel que ¢, ne soit pas C'E. On choisit aussi une dynamique quadratique réelle
avec 'orbite critique récurrente et C'E et on colle les deux dynamiques pour produire
un exemple de polynome RCFE qui n’est pas semi-hyperbolique ni C'E. On peut réaliser
cela grace a la théorie générale des application multimodales. Elle garantit 'existence
d’un polynéome 3-modal de degré 4 qui réalise le triplet des itinéraires critiques (kneading
sequences) de l'application 3-modale continue qu’on vient de décrire. Toutes les racines de
sa dérivée sont réelles, par conséquent le polynome obtenu a dérivée Schwarzienne négative.
Comme il n’a pas d’orbite attractive, on peut conjuguer ses restrictions aux dynamiques
initiales et démontrer les propriétés annoncées.

1.3 Sur la dimension de Hausdorff des attracteurs
fractals des applications unimodales

Cette annexe présente un travail qui n’est pas lié a la condition RC'E. On y étudie les
applications unimodales infiniment renormalisables. Le motivation principale est le résultat
suivant obtenu par Graczyk et Kozlovski dans I'article [4].

Théoreme. Il existe une constante universelle o < 1 telle que tout attracteur d’une ap-
plication C* unimodale dont le point critique est non-dégénéré a dimension de Hausdorff
plus petite que o ou est une réunion finie d’intervalles fermés et non-dégénérés.
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Fi1G. 1.1 — Les attracteurs dans la famille quadratique

Ce théoreme a été généralisé par Li et Shen ([3]) pour les applications multimodales
dont les points critiques sont non-plats.

Des phénomenes universels ont été observés au début des années 80 dans plusieurs
familles d’applications parmi lesquelles la famille quadratique f,(z) = az(1 — z) pour
0 < a < 4. Un de ces phénomenes est la convergence exponentielle des bifurcations. Plus
précisément, soit a,, le plus petit parametre pour lequel f, a une orbite périodique d’ordre
2™, On obtient une convergence a,—a, mais aussi

lim Ty 6692
n—=00 Apy2 — Aptl
qui est universelle. La figure 1.1 représente les attracteurs dans la famille quadratique.

Les orbites périodiques attractives constituent I'exemple le plus simple d’attracteur.
Un attracteur est un ensemble invariant sur lequel s’accumulent une partie importante
des orbites de la dynamique, minimal pour cette propriété. On peut alors considérer une
définition topologique ou métrique de l'attracteur, voir la section A.1. Graczyk, Sands



14 §1 INTRODUCTION

et Swi@tek montrent que pour les applications C® unimodales dont le point critique est
non-dégénéré les deux notions d’attracteurs coincident, voir [5].

L’application f,  est appelée application de Feigenbaum et c’est un premier exemple
d’application infiniment renormalisable. De fagon générale, on dit que f est renormalisable
si elle possede un intervalle restrictif J sur lequel une itérée f™ avec n > 1 est unimodale,
voir aussi la définition A.3.1. Une application infiniment renormalisable possede une infinité
d’intervalles restrictifs. Les applications S-unimodales ont exactement un attracteur. Si f,
n’est pas infiniment renormalisable son attracteur est soit une orbite périodique soit une
réunion finie d’intervalles fermés. Par conséquent, du point de vue de la dimension de Haus-
dorff de I'attracteur, seules les applications infiniment renormalisables sont intéressantes.
On appelle ces attracteurs fractals.

On démontre le théoreme suivant qui caractérise les applications quadratiques infi-
niment renormalisables et leur type de renormalisation en termes d’itinéraires critiques
(kneading sequences). On dénote par I,(J) litinéraire fini de I'intervalle restrictif J de f
et par R l'opérateur de renormalisation.

Theorem 4. 5i f est une application quadratique et K, son itinéraire critique alors f est
infiniment renormalisable si et seulement si K, est une composition infinie d’itinéraires
finis maximauzr non-triviaux.

Pour toute suite (K,,),~, d’itinéraires mazimaux finis non-décomposables non-trivials
il existe une unique application quadratique g telle que

K, =K «Ky*...

et
Iriovy) (Ji) = K, pour tout i > 1

ou J; est l'intervalle restrictif maximal associé a la i-éme renormalisation de g.

La preuve est basée sur l'identification des permutations unimodales non-renormali-
sables a des itinéraires maximaux finis non-décomposables.

En utilisant ce théoreme et la théorie de Milnor et Thurston sur la monotonie de
I'itinéraire critique dans la famille quadratique on obtient un algorithme qui pour tout
type de renormalisation (o1, 09,...) produit une suite convergente a a € (0,4] tel que f,
est infiniment renormalisable du type (o1, 09,...). Jusqu'a présent, les seules applications
infiniment renormalisables accessibles numériquement étaient celles qui possedent une re-
normalisation conjuguée a l'application de Feigenbaum. Ces applications se trouvent aux
limites supérieures des fenétres de bifurcations, voir la figure 1.1. On estime numériquement
la dimension de Hausdorff de plusieurs types d’attracteurs. La plus grande valeur obtenue
est la dimension de 'attracteur de Feigenbaum.
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Abstract. We prove that the Collet-Eckmann condition for recurrent critical orbits inside
the Julia set of a rational map with no parabolic periodic orbits implies uniform hyperbolicity on
periodic orbits.

2.1 Introduction

Let f be a rational map, J its Julia set and Crit the set of critical points. We know
that J is hyperbolic if and only if the closure of the postcritical set O(Crit) is disjoint
from J. If we let some critical points with finite orbit be in the Julia set it becomes sub-
hyperbolic. The next step is to allow infinite critical orbits in J as long as they do not
accumulate on any critical point and rule out parabolic periodic orbits, the Misiurewicz
condition. Semi-Hyperbolicity is even weaker, it requires that critical orbits should not be
recurrent, in the absence of parabolic periodic points. Under this assumption Carleson,
Jones and Yoccoz show that the Fatou components are John domains for polynomials (see
[4]). Every John domain is a Holder domain. The property that all Fatou components are
Holder is equivalent to uniform hyperbolicity on periodic orbits (see [5] and [10]). Another
advance in this direction was done by Graczyk and Smirnov (initiated in [5] and developed
in [6]) by allowing recurrent critical points in the Julia set. If all the critical points in J
are Collet-Eckmann then all Fatou components are Holder. We propose a new sufficient
condition for Uniform Hyperbolicity on Periodic Orbits. It allows for both non-recurrent
and Collet-Eckmann critical points in the Julia set, in the absence of parabolic periodic
orbits.

It is known that a semi-hyperbolic rational map is not necessarily Collet-Eckmann and
vice-versa, see Section 6.1.1 in [10] and Section 1.2 in [7]. Therefore Uniform Hyperbolicity
on Periodic Orbits does not imply Collet-Eckmann nor Semi-Hyperbolicity. For unicritical
polynomials however, the Collet-Eckmann condition is equivalent to Uniform Hyperbolicity
on Periodic Orbits, see [5] and [9]. To our knowledge there is no counterexample to the
converse of our main theorem.

A related problem is the invariance of such regularity or growth conditions under topo-
logical conjugacy. Semi-Hyperbolicity (by definition) and Uniform Hyperbolicity on Peri-
odic Orbits (see [10]) are topologically invariant but the Collet-Eckmann condition is not
topological, except for unicritical polynomials, see Appendix C in [10]. In [2] the expansion
along every orbit in the Julia set is estimated with respect to the distance to critical points
and to the growth of the derivative along the critical orbits. Therefore the recurrence of
critical points and the growth of the derivative along their orbits play an important role
in the understanding of the dynamics.

Definition 2.1.1. We say that ¢ € Crit satisfies the Collet-Eckmann condition (¢ € C'E)
if |(f")(f(e))| > CA™ for all n > 0 and some constants C' > 0, A > 1. We say that f has
the Collet-Eckmann property if all critical points in J are C'E.

Given ¢ € Crit we say that it is non-recurrent (¢ € NR) if ¢ ¢ w(c), where w(c) is the w-
limit set, the set of accumulation points of the orbit (f"(c))n=0. We call f semi-hyperbolic
if all critical points in J are NR and f has no parabolic periodic orbits.
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Our new condition on critical orbits is weaker than Collet-Eckmann and Semi-Hyper-
bolicity.

Definition 2.1.2. We say that f satisfies the Recurrent Collet-Eckmann (RCE) condition
if every critical point in the Julia set is either CE or NR and f has no parabolic periodic
orbits.

Let us remark that a RC'E rational map may have critical points in J that are Collet-
Eckmann and non-recurrent in the same time. Moreover any critical orbit may accumulate
on the other critical points.

Several standard conditions are equivalent to Uniform Hyperbolicity on Periodic Orbits
(UHP), see [10]. Therefore any of them may be considered as a definition. Among these
conditions we recall Topological Collet-Eckmann condition (TCFE), Exponential Shrinking
of components (ExpShrink) and Backward Collet-Eckmann condition at some z € C
(CE2(z0)).

Definition 2.1.3. We say that f satisfies the Exponential Shrinking of components condi-
tion if there are A > 1, r > 0 such that for all z € J, n > 0 and every connected component
W of f(B(z1))

diam W < A™".

If not stated explicitly all the distances and derivatives are considered with respect
to the spherical metric. We denote by B, (z, R), dist, (z, W) and diam, W the Euclidean
balls, distances and diameters respectively.

Theorem 1. The Recurrent Collet-Eckmann condition implies Uniform Hyperbolicity on
Periodic orbits for rational maps.

We show that the Recurrent Collet-Eckmann implies the equivalent condition Expo-
nential Shrinking of components. An intermediary step to ExpShrink is to show that
arbitrary pullbacks of small balls stay small. This property is called Backward Stability in

[3].

Definition 2.1.4. We say that a rational map f has Backward Stability (BS) if for any
e > 0 there exists § > 0 such that for all z € J, n > 0 and every connected component W
of [7"(B(z,9))

diam W < e.

Inevitably, we borrow some ideas from [4], [5] and [10] to prove our theorem.

In [4], Carleson, Jones and Yoccoz prove the Backward Stability property in the Semi-
Hyperbolic case. Then there is r > 0 such that the degree of any pullback of a ball
B(z,r), with x € J, is bounded, as the critical points are non-recurrent. They use a
telescope construction which we sketch to prove the Exponential Shrinking of components
condition. There is ny > 0 such that any pullback of length ny of some B(z,r) with z € J
is contracting. So it can be nested inside some B(y,r) with y € J and inductively build
the telescope. A bounded degree distortion argument yields an exponential contraction of
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pullbacks of B(x, r) of arbitrary length. We should remark that this is done for polynomials,
a fact that guarantees that pullbacks of balls are simply connected.

We refine the distortion argument and obtain some specific bound for the distortion in
Lemma 2.2.1. Proposition 2.2.2 proves the contraction of long bounded degree pullbacks.

In [5], Graczyk and Smirnov prove the Backward Collet-Eckmann condition for some
2z € C. They also pull back balls around the backward orbit of z,, considering only
univalent pullbacks. Depending on the presence of critical points close to the backward
orbit of zy, there are three types of pullback. Using distortion arguments (the method
of shrinking neighborhoods) and the Collet-Eckmann property, they obtain exponential
growth of the derivative on the backward orbit.

Among our new methods we may count a precise bound for the distortion in a bounded
degree setting (Lemma 2.2.1) and a way to deal with non-simply connected pullbacks, using
rings. We build a telescope and show the Exponential Shrinking of components condition.
Although the idea of a telescope is not new, its originality consists in combining bounded
degree and unbounded degree segments. For a precise description of its construction one
may refer to Section 2.4. The general picture is that we modified the techniques of [4], [5]
and [10] to make them work together. As in [5], we distinguish three types of pullback. A
pullback of the first type does not have a bounded degree so Proposition 2.2.3, which deals
with this case, is crucial. Note that the Backward Stability property is needed to apply
Proposition 2.2.3 and it is proved in Section 2.3. In the absence of Collet-Eckmann critical
points, the Backward Stability property gives a bound for the degree of a pullback, as in
the semi-hyperbolic case. This case defines the second type of pullback. The third type
has a bound for the degree in the presence of Collet-Eckmann critical points. We obtain
exponential contraction along every block of the telescope, with the eventual exception of
the last one. Lemma 2.2.1 helps assemble all these estimates to obtain the Exponential
Shrinking of components condition.

2.2 Preliminaries

Without loss of generality we may assume that critical orbits (f™(c)),~, with ¢ € CritnJ
do not contain critical points, needed in the proof of Proposition 2.2.3. Indeed, suppose
some critical orbit contains a critical point inside the Julia set. Then we consider the iter-
ate of f that connects the critical points as one iterate of the dynamics. The critical points
that are on the same orbit collapse into a critical “block” for the new local dynamics. As
there are only finitely many such situations, our procedure does not affect global compact-
ness properties of the dynamics. The multiplicity of the critical block is the product of
multiplicities of critical points involved. This is a standard construction, see for example
[5] or [10].

Notation. For B C C connected we write B™" or f~"(B) for some connected compo-
nent of f~"(B), 0 < n. When z € B and some backward orbit z, € f~"(z) are fixed, B™"
is the connected component of f~"(B) that contains z,.

Let us recall that we denote by B, (z, R), dist, (z, W) and diam, W the Euclidean
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balls, distances and diameters respectively. We also recall some classical properties of the
spherical metric and of the modulus of an annulus (or ring or doubly connected region).

The spherical metric do satisfies

2|d
Jo — _2ldzl
1+ |22

so on B,(0,1) we have
|dz| < do < 2|dz|.

Thus for every W C B,(0,1)
diam, W < diam W < 2 diam, W. (2.1)
Moreover for 0 # z € B.(0,1) and 0 < o < 1 we have

dist (0, 2) 1 dist (0, 2)

dist (0, az) “a” diste (0, z)’

Let A(r,R) = (O R)\ B(0,r) and A.(r,R) = B.(0,R) \ B.(0,r) for 0 < r < R. If
A(r,R) = A.(r", R') with R’ < 1, by the previous inequality we obtain

R R

—<—.

roor

Asmod A (7', R') = % (modulus of A.(r", R')),

log(R/r)

™

mod A(r, R) > ,0<r<R<1 (2.2)
Let g : A — A’ be a conformal proper map of degree d and A, A’ two doubly connected
regions. Then

1
mod A = 7 mod A’. (2.3)

In particular, the modulus is a conformal invariant. _
Let A be an annulus and By, Bs the two connected components of C\ A. If Ay,..., Ay C
A are disjoint annuli that separate B; from B, then

mod A > Z mod A;. (2.4)

=1

For any connected open U C C, every connected component of C\U is simply connected.
If diam U < 1 then there is only one component of C\ U with diameter greater than 1.
Denote it by ext (U). Let fill(U) = C \ ext (U). It is a simply connected open with
diam U = diam(fill (U)) and diam, U = diam,(fill (U)).

Let us also recall the Teichmiiller extremal problem - Theorem 4-7 and relation (4-21)
in [1].
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Proposition 2.2.1. Let T > 0,
A(T) = mod (C\ ([-1,0] U [T, 0])),

and A some annulus that separates {—1,0} from {wo, 00} with |wo| = T. Then mod A <
A(T),

16T < exp (2nA(T)) <16 (T +1). (2.5)
and .
ATNT™) = T
Therefore
71im A(T) = oo and %in% A(T) =0. (2.6)

We are ready to prove our first lemma. It provides a way to control distortion in terms
of diameters of a bounded degree pullback.

Lemma 2.2.1. Let g be a rational map, z € C and 0 <r < R < 1. Let W = B(z,R)™*
and W' = B(z,r)"! with W' CW and diam W < 1. If degy, (g) < p then

diam W’ r\
YY) (— v
diam W < R)

Proof. Let Ay, ..., Ay, be disjoint concentric annuli inside A(z,r, R) that avoid critical
values of g|w and such that U™, A; = A(z,7, R). In this setting

Zmod A; = moddA(z,r, R). (2.7)

i=1

It is easy to check that g : A;' — A; is a finite proper cover for all i = 1,...,m and
A;7' C W a connected component of g~'(4;). Then A; ' is a doubly connected region and
by equality (2.3)

mod A; 1 = _ mod A; > 1 mod A;. (2.8)
degAi_l (9) H

For every w € OW and every A; there exists some A;' C W that separates W’ from
w. Suppose there is not. Then W’ could be joined to w by a path v C W\ g7 (A;), as W
connected. Then g(v) joins B(z,r) to dB(z, R) and g(v) N A; = 0, a contradiction.

We may suppose 0 € W so W C B(0,1). Let U = fill (W) and U’ = fill(W’). Let
a € OU" and w € OU with |a — w| = dist, (OU’,0U). Let also b € 90U’ be such that

b — a| = sup,cyr |v — al. The linear map h : z — 2=¢ sends a to 0, b to —1 and w to

w—a

a—b "’

Wy —
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Let A’ be the annulus U \ 7_’ For all 1 < i < m there exists an A 1 which separates
W' from w. Denote it A,. As W' N A, = (), A, separates U’ from w, inside W. Therefore
Al C A'. Using inequalities (2.4), (2.8), (2.7) and (2.2), we may immediately compute

log(R/r)

- 1
mod A" > Zmod Al > . mod A(z,r, R) > 2

i=1

Let us remark that h(A’) satisfies the hypothesis of the Teichmiiller extremal problem.
Combining the previous inequality with inequality (2.5), we obtain

(E) ' < exp(2rmod A’) < exp(27A(|wol)) < 16(|wo| + 1),
r

as mod A" = mod h(A"). Therefore

R\* . diam,U __diam, W
— R0 =32— 2.9
( r ) = diam, U’ diam, W’ (2.9)
as
wol + 1 |w—a|—|—|a—b|< diameW< diam, W
w = :
0 la — b ~  2la—0b] T diam, W’
Combining inequalities (2.1) and (2.9) we may conclude that
R\* _ diamW
— 44—
( r ) <6 diam W’
U

Lemma 2.2.2. Let g be a rational map, z € C and R > 0. Let W = B (z, R)f_1 and
w=degy (g). If g has no critical points on OW then the number of components of C\ W
satisfies

# Comp (@\W) < pu.

Proof. 1t is easy to check that W is a disjoint union of smooth closed paths. Moreover,

if 7y is such a path then

9() = OB (= R). (2.10)
Let Dy, ..., D, be the connected components of C\ W. As U{_,0D; = OW and (0D;)<i<s
are disjoint

s < # Comp OW.
For some x € OB (z, R) consider {x1,...,2x} = ¢ '(x) NOW. On a neighborhood of = on

which ¢g~! can be defined we see that k¥ = p. By equality (2.10), any component of dW
contains at least one x; with 1 <1 < u. We conclude that
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# Comp (C\ W) = s < # Comp OW < p.
0

If Ais an annulus and C}, Cy are the connected components of C \ A then we denote

Lemma 2.2.3. Let A C C be an annulus and C1,Cy the components of C\ A, with
diam Cy < diam Cy. For each a > 0 there exists 6, > 0 that depends only on « such that
if mod A > « then

dist (@ \ A) > §, diam C.

Proof. Let a € 9C; and w € OC; with dist (a, w) = dist (C\ A) < 1. By rotation we may
assume that a = 0. If C; C B, (0,1) let b € 0C, with dist (0,b) = max,esc, dist (0, x). If
Cy € B.(0,1) let b € Cy NIB.(0,1). In either case we may assume b € [—1,0), again
by rotation. The linear map h : 2 — —% sends b to —1 and w to wy. The Teichmiiller

extremal problem, combined with equality (2.6), gives
a < A(Jwp|) and lir%A(g) = 0.

Thus, there exists ¢/, > 0 a lower bound for |wp|. So, by inequality (2.1)

dist (0, w)
5(’1 < ‘w0| — M < /2 7
0] 0]

If [b] < 1 then C) C B.(0,1) and [b| > diam,(C1)/2. Moreover, by inequality (2.1) we
have |b| > diam(C})/4. If |b| = 1 then |b| > diam(C})/7 as diam C = 7. In either case

We choose 6, = &, /4. As dist (0, w) = dist (C\ A), we conclude that
0o diam(Cy) = %diam(@l) < dist (C\ A).
U

Let I C C be an infinite set. Then for every m > 0, there is din > 0 such that [
cannot be covered by m balls of radius d],. Moreover, if By, ..., B, C C are balls of radius
dy(I) =d],/2 there is x € I such that

<6 BZ) N B (x,d,(I)) = 0. (2.11)

i=1
We use the construction developed in the proof of Lemma 2.2.1 to obtain the next
corollary.
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Corollary 2.2.1. Let f a rational map, > 1 and u > 1 be fized. For all z € C, n > 0
and 0 < R < min(1, diam J¢/2), let W = B(z,R)™" and W = B (z,BR)™ " with W' C W,
There is Ag,, > 0 that depends only on 3, v and f such that if degy, () < p then at least
one of the following conditions is satisfied

1. There exists an annulus A C W \ W’ with dist (C\ A) > Ag, diam W’. Moreover,
f™(A) C B (z,BR) separates z from 0B (z, BR).

2. There is zg € Jy "W such that B (2, Ag,) C W.
In particular, if diam W < 1 then the first condition is satisfied.

Proof. By inequality (2.2)
log 8
2
and this is the only way 3 enters in the following estimates. So we may decrease 3 to some
" and still have
1
mod A(z, R, 'R) > ogﬁ.
2
So, without loss of generality, we may assume that f™ has no critical values on 0B (z, BR).
By Lemma 2.2.2, the number of components of C\ W is bounded by p. As degy, (™) < u
there are at most p — 1 critical points of f™ in W. So we may decompose, as in Lemma
2.2.1, the annulus A(z, R, BR) into Ay, ..., A, concentric and disjoint annuli, with m < p.
By equality (2.7) there is A;, with

mod A(z, R, BR) >

log (8
2

Moreover, using inequality (2.8), for all Aj € f~"(A;,) with A; C W
log 8
2’

Let d = d,(J;) be the positive number defined by the equality (2.11).
Suppose that

rﬂOdJ4m >

/
mod A; >

(2.12)

diam D < d, VD € Comp (C\ W).

Then every such component D is contained in a ball of radius d. There exists zy € J; such
that B (29, d) € W. It is enough to choose Ag, < d to satisfy the second condition of the
corollary.

Suppose now that there is Dy € Comp (@ \ W) with

diam Dgy > d.

Note that this is true if diam W < 1. Proceeding as in Lemma 2.2.1 we find an annulus

Al € [T(Ay,) with Aj C W that separates W' and Dy. We may apply Lemma 2.2.3 and

log 8
2

obtain 0 = dg, that depends only on mod A; > with the following property

dist (C\ Aj,) > 63, min(diam W', diam D).
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If diam W' < diam Dy, choosing Ag,, < g, satisfies the first condition of the Corollary. If
diam W’ > diam Dy > d, we may choose any Ag , < 56,;1% < dg,,, as the previous inequality
becomes

dist (C\ A})) > d5,d > Ag,m > Ag, diam W'
Finally, independently of the existence of Dy, if we choose

d
Aﬁ,M = (55#; < d,

then at least one of the two conditions of the conclusion holds. O

Our first goal is to prove contraction of a long, bounded degree pullback. This is true
only in a neighborhood €2 of the Julia set J. We define €2 with the following properties

L Q) ce,
2. (2N Crit) \ J =0 and
3. Q does not intersect attracting periodic orbits.

Let us fix a RCE rational map f. All the following statements apply to f. In the
absence of parabolic periodic orbits, the critical orbits in the Fatou set F' do not accumulate
on J. Indeed, any critical point ¢ € Crit N F' is sent to a periodic Fatou component which
is not parabolic. By Sullivan’s classification of Fatou components, the orbit of ¢ stays away
from J. Let O(Crit N F) = {f"(¢)|n > 0,c € Crit N F'}. Then

dy = dist (J,O(Crit N F)) > 0.

There is an open neighborhood V of the attractive periodic orbits such that V' C F and
f(V)C V. So

dy =dist (J, V) > 0.
Let 0 < n < min(dy, dy) and U the n-neighborhood of J. Then

UN(O(CritN F)uV) = 0.

We define
Q=Jrmwo.
0<n
Then QN O(Crit) = O(CritN J), QNV = 0 and f~1(Q) C Q. We prove a variant of
Mané’s lemma. Loosely speaking, the diameter of bounded degree pullbacks of small balls
in Q) stays small. It is stated for a fixed RC'E rational map but it applies to all rational
maps with no parabolic orbits.
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Lemma 2.2.4. Let e € (0,1),8 > 1 and p > 1 be fizred. For all z € Q, R > 0 such that
B(z,6R) CQ andn >0, let W = B(z, R)™™ and W = B(z, BR)™™ with W' C W. There
is 6ep, > 0 that depends only on e, 3 and p such that if BR < 0.3, and degy (f™) < u
then

diam W' < ¢.

Proof. Suppose the statement does not hold. Then there exist sequences (z;)o<; C 2,
(R;)o<; decreasing to 0 and (n;)o<; € N increasing such that degy, (f™) < p and

diam W, > e.

We apply Corollary 2.2.1 and we get A = Ag,/4 > 0 such that for all ¢ > 0 there is
a; € W,, with
B (ai,eA) CW,,. (2.13)

Indeed, suppose that only the first condition of the conclusion of Corollary 2.2.1 is satisfied.
As dist (C \ Ai) > Ag, diam WT’LZ,, we may choose a; € A; C W,,, such that

— A
dist (a;,C\ A;) > % diam W, > eA. (2.14)

Let a be an accumulation point of (a;)o<;. By (2.13) there exists a subsequence (n,)o<;
of (n;)o<; such that

B <a, %A) C W,,,Vj>0.

So f" (B (a, EA)) C Q for any n > 0 and

2
diam f" (B <a, %A)) — 0 as j — oo. (2.15)

B (a, %A) cannot intersect J because of the “eventually onto” property of the Julia set. It
cannot be in the basin of attraction of a periodic orbit as all of its images stay in 2. As
there are no parabolic components, some image has to land inside a Siegel disk or inside a
Herman ring. But this contradicts (2.15). O

Let us state inequality (2.14) in a more general form.

Lemma 2.2.5. Let A be an annulus with diam A < 1 and dist (C\ A) > 4. Then there
15 an annulus A’ C A with dist (@ \ A ) > 2a and

dist (A,C\ 4) > a.

Moreover, A’ separates the two connected components of C \ A.
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Proof. For any set E C C, let us define the a-neighborhood of E by
E.o=B(E,a)={r € C|dist (z, F) < a}.
Analogously, we define the a-cut of E by
E .= E\m: {z € C|dist (z,C\ E) > a}.

The a-neighborhood of E and the a-cut of E are open sets. If E is connected then
E., is connected. Moreover, if F is simply connected then every connected component of
E_,, is simply connected.

Let U = fill (A) and U’ = U\ A. Then U’ C U and U, U’ are simply connected open sets.
Let V' = fill (U jra) which is a simply connected open set. Moreover, as dist (U 'C\U ) >
4o

dist (V’,@\ U) > 3a.

Let also V = U_,. Then there is at most one connected component V of U_,, that intersects
V', This open V is simply connected. It is also easy to check that V/ C V and

dist (V',C\ V) > 2a.
Finally, we may set A’ =V \ V’. Then dist (C\ 4’) > 2a and
dist (A", C\ A) > «.
There could be no path disjoint from A’ that connects 0A. O

Now we have the tools needed to prove our first contraction result.

Proposition 2.2.2. Let 8 > 1, up > 1. There exists 6 = dg, > 0 such that for all
O<r<R< % there exists N = Ng, , r > 0 such that the following statement holds. For

all z € J with B(z, BR) C Q and for alln > N, let W' = B(z, R)™™ and W = B(z,R)™"
with W' C W. If degy (") < p then

diam W' < r.

Proof. There are finitely many Herman rings in the Fatou set. Let us denote them by
Hy,...,H,, Let h=min {diam Comp (C \ Hi) li=1,... ,m}. Let also

diam J h 1}

0< (5 < min {517\/&”, T, 5, 5

where 0, /3, is provided by Lemma 2.2.4.
Let W = B(z,v/BR)™™ with W/ C W” C W. Thus as R < § and degy, (") < i

diam W' < diam W” < 1.
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Now suppose that the conclusion of the proposition does not hold for the chosen 9.
Then there are sequences (n;)o<; increasing and (z;)o<; € J such that for all ¢ > 0, W,
and W,,, satisty the hypothesis but

diam W, > r.

Let A = A 5, > 0 and the annulus 4; C W)/ \W—/Ll be provided by Corollary 2.2.1.
Then dist (@ \ Ai) > Ar and we may apply Lemma 2.2.5 for « = A7 and obtain A] C 4;
with dist (C\ A}) > 2« and

B(z,a) C A;,Vz € Al
At least one of the following conditions holds for infinitely many i > 0
1. AinJ #0,
2. AAnJ =0.

So, taking a subsequence, we may assume at least one condition holds for all z > 0. That
could not be condition 1 as the compactness argument used in Lemma 2.2.4 would yield
a € J such that for ¢ sufficiently big

diam f™ <B (a, %)) < 28R < 26 < diam J.

Thus no image of B (a, «) could contain J. This contradicts the “eventually onto” property
of the Julia set.

The only possibility is that the second condition holds for all 7, so A, C F. We apply
Lemma 2.2.5 to check that A} contains some ball B (a;, «/2). If a is an accumulation point
of (a;)o<; then, taking a subsequence,

B <a, %) C A CQso fM(a) € Q.

Thus a cannot be contained in the basin of attraction of some periodic orbit. There are
no parabolic components. So a is sent to a rotation domain P, a Siegel disk or a Hermann
ring. We fix some big ¢ and omit it from notations.

Recall that we assumed the first condition of the conclusion of Corollary 2.2.1, as
diam W' < diam W” < 1. Thus f"(A) separates z from 9B (z, FR). We show that f"(A’)
has the same property. Suppose this is false. Then there is a path v that joins the two
components of df"(A) which does not intersect f"(A’). Then there is some pullback of
~ that connects 0A and does not intersect A’. This contradicts Lemma 2.2.5. We may
conclude that

z e fill(f(A")).

Let us also recall that z € J, diam f*(A4’) < 26 < diam J and f*(A4’) C f**(P) for
some 0 < ky < n, where P is a rotation domain. Thus f"(A’) separates the Julia set and
H = f*(P) is a Hermann ring. But this contradicts

diam f"(A") < 26 < h.
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Let us recall some general distortion properties of rational maps.

Distortion. This is a reformulation of the classical Koebe distortion lemma in the complex
case, see for example Lemma 2.5 in [2]. For all D > 1 there exists € > 0 such that if
the connected open W satisfies

diam W < e dist (W, Crit) (2.16)

then the distortion of f in W is bounded by D, that is

f'(x)
w28 <

Pullback. Once a small r > 0 is fixed, there exists M > 1 such that for any connected
open W with diam W < r and for all z € W1

diam W~ < M|f'(z)|~" diam W. (2.17)
We shall use this estimate for W~ close to Crit.

The second goal of this section is to obtain contraction when there is no bound for the
degree of the pullback. This can be done only in the presence of Collet-Eckmann critical
points. In the next section we show that if the pullback does not meet C'E points then the
degree is bounded.

Proposition 2.2.3. For any 1 < Ao < A and 0 < 1 there exists 6 = 5,0 > 0 such that
for all N > 0 and for any ball B = B(z, R) C Q with diam B™" < § for all 0 <n < N, if
BN-1NCE # 0 and UY. B~ N Crit # 0 then

diam B~ < R\, 2.18
0

Note that the hypothesis does not involve any condition on the length N of the orbit.
Instead, there is additional information on critical points. This situation occurs naturally
in our construction.

Proof. Let us fix z € C and D € (1,\/)\). Let € > 0 be provided by inequality (2.16).
Let also 7 > 0 be small and M > 1 defined by the inequality (2.17). Let [ > 1 such that

IMINCTIDINT < ON;7 for all j > 1. (2.19)

Let us recall that no critical point is sent to another critical point. Then there is r; < r
such that for any ¢ € Crit, B(c,2r;)~* satisfies the inequality (2.16) for all 0 < k < [. Let
us define

0 =ery.
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By hypothesis, diam B(z, R)™ < er; <r forall 0 <n < N.

Let ¢y € B(z,R)"N-1 N CE. Denote z;, = fNT17%(¢y) € W, = B~*. By hypothesis,
there exists 0 < k' < N with Wiy N Crit £ 0. Let 0 < kg < k1 < ... < k; < N be all the
integers 0 < k < N such that W does not satisfy the inequality (2.16). As er; > diam Wy,
we have r; > dist (Wy,, Crit) for all 0 < < ¢. Then for all 0 < ¢ < ¢ there is ¢; € Crit such
that Wy, C B(c;,2rq). By the definition of ry

ki—i—l — kfl > l, VO <1< t, (220)

where k;11 = N + 1. In fact Wi cannot satisfy inequality (2.16), as c¢g € Wi y1.
We may begin estimates. For all 0 < j < N with j # k; for all 0 <7 <, W; satisfies
the inequality (2.16) so the distortion on W; is bounded by D. Thus

diam W; < D|f'(z;)|" diam W;_;. (2.21)
If 7 = k; for some 0 < ¢ <t we use inequality (2.17) to obtain
diam W; < M|f'(x;)| " diam W,_,. (2.22)

Let us recall that xxy = f(co) with ¢g € CE and that Wy = B so diam W, = 2R.
Inequality (2.20) yields ¢t +1 < N/I. Multiplying all the relations (2.21) and (2.22) for all
0 < j < N we obtain

diam Wy < MFIDN=H (VY (25) |71 diam W
< 2MN!DNCTINNR
< RN,
The last inequality is inequality (2.19). O

2.3 Backward Stability

As we have already announced, an important intermediary step to NUH is BS, see page
19. It is a generalization of Lemma 2.2.4. Basically, the diameter of any pullback of
a small ball is small. The first condition in the hypothesis of Proposition 2.2.3 will be
satisfied automatically, thanks to B.S. So the only hypothesis of Proposition 2.2.3 will be
the presence of critical points in some pullbacks.

All the following constructions take place inside €2, the neighborhood of J constructed
in the previous section. Therefore critical point in the Fatou set do not play any role in the
sequel. For transparency we introduce additional notation Crit; = CritNJ, NR; = NRNJ
and CE; = Crit \ NR. So NR;,CE; C J form a partition of Crit;. For any ¢ € Crit let
e be the multiplicity of ¢, that is the degree of f at ¢. Let e = max{u.|c € Crit;},

trf = Teccnit, Hes o = p and py = (HCGNRJ fte) - max{yu.|c € CE;}. Let us observe that

Hmaz < H1 < Hp < Ho-
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Proposition 2.3.1. RCE implies BS.

Proof. Let 0 < &1 = min{dist (¢, ) |c # ; ¢, € Crit;} be the smallest distance between
two critical points.

Let us remark that there exists €5 > 0 such that every connected component U of
f~YV) is simply connected provided V is simply connected and diamV < g,. We may
assume that e, is so small that diam B~'(z,&;) < &, for all z € C. By the choice of ¢,
U contains at most 1 critical point. Hence, f : U — V is univalent if Crit "\U = () or its
degree is equal to . if ¢ € CritNU.

Let 0 < g5 = min{dist (¢, O(c)) |c € NR;)} be the smallest distance of a non-recurrent
critical point to its orbit.

Fix some Ay € (1,)) and consider 6y,,1/2 > 0 supplied by Proposition 2.2.3. Choose
€ > 0 such that

100p0e < €9 = min(ey, €2, €3, 0x9,1/2)- (2.23)

Let 0.9, > 0 be supplied by Lemma 2.2.4 and 6 = d.2,,/2. We call B (z,7) admissible if
B (z,4r) C Q. By diminishing ¢, we may suppose that any ball with radius at most ¢ that
intersects J is admissible.

Suppose BS is not satisfied. Consider ng the smallest n with the property that there
is an admissible ball B (z,7) with » < § such that diam B (z,7)"" > . Let us denote
B(z,r)™™ =W' CW = B(z,2r) ™. By Lemma 2.2.4, this choice of constants implies
that degy, (f™) > po.

Remark 2.3.1. This is the only exception to our construction of blocks of critical points,
developed in the first part of Section 2.2, in order to ensure that critical orbits avoid critical
points. Here ng and m (to be defined) are the “original” lengths of the orbits. Note that a
CEj critical point cannot be sent to Crity. Thus Proposition 2.2.3 still applies as it does
not assume anything on N, the length of the orbit.

We may cover 0B (z, 2r) with less than 100 balls B; = B (2},7/2) centered on 0B (z, 2r).
They are admissible as B (z,r) is admissible. Therefore diam B; " < ¢ for all n < ng. Thus
for all n < ng

diam B (z,2r)™" < 100e degp, 5,y (f")- (2.24)

Let us denote Wy = f *(W) for all 0 < k < ng. In particular Wy = B (z,2r)
and W,,, = W. Let also dy = degy, (f*) for all 0 < k& < ng. Thus d,, > po and
A1 = dydegyy,, (f) forall 0 <k <ng. Let m = max {0 <k <ng | di < po}. Inequalities
(2.23) and (2.24) show that

diam W, < g, for all £ < m. (2.25)
Recall that g9 < e, by its definition (2.23). Thus W contains at most one critical

point for all & < m. Equally by (2.23), g9 < e5. Therefore diam W,,11 < &1 so W41
contains at most one critical point also. For k < m + 1, degy, (f) = p. if ¢ € Wy, N Crit,
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and degy, (f) = 1 if otherwise. Thus for all n < m + 1

ceWNCrit
0<k<n
counted with multiplicity if some ¢ € Crit; N Wy, N Wy,, with 0 < k; < ks < m. By
the definition of m, d,, < po < d;11. Thus W, contains exactly one critical point so
1 < degyy, +1( ) < tmaz. Therefore o/ timez < dm. By definition py = uf[ and fmar < iy
thus
p1 < pig < pho/ tmaz < . (2.27)

Moreover, €5 < €3 thus
NR;NWy, "Wy, =0, for all 0 < ky < ko < m.

Otherwise there is ¢ € NR; with ¢, f*27%(c) € W}, and diam Wy, < e3, a contradiction.
Thus, in the product (2.26) that defines d,,,, non-recurrent critical points are counted at
most once. Since p; < d,, by inequality (2.27), there are at least two integers 0 < mg <
my < m such that each W,,, and W,,, contains exactly one Collet-Eckmann critical point.
As g9 < 0xy1/2 by inequality (2.23) and for all k& < m diam W, < gy by inequality (2.25),
we are in position to apply Proposition 2.2.3 for N = m; — 1. Thus

2
diam Wy < ?T)\EN <r<3d.

As Wy = W,,, contains a critical point, Wy contains a critical value v inside 2. As
2 does not intersect critical orbits in the Fatou set, v € J. So Wx C B (v,r) C B (v,0),
thus B (v, r) is admissible. Therefore

e < diam W' < diam W,,, < diam (B (Uﬂ«)*(no*N)) ’

which contradicts the minimality of ng and hence proves the proposition. O

In the previous section we fixed f a RCE rational map. We also defined €2, a neigh-
borhood of J = J;. Let us also define some constants using Proposition 2.3.1. They will
be used in the next section, in the proof of the main Theorem. They are also used to state
the following corollary.

Let =2, =1, Ao € (1,\) and 6 = %64*“. Proposition 2.2.2 provides 6z, > 0 and
Proposition 2.2.3 provides 0y, > 0 that depend only on 3, p, A\g and 6. Let

€ = min(ey, €2, €3, 08,45 Org,0)-

Proposition 2.3.1 provides § such that the diameter of any pullback of a ball of radius at
most d centered on .J is smaller than e. We may assume that ¢ and § are small § < ¢ <
diam .J/10 < 1/2 and that any ball of radius ¢ that intersects J is contained in 2. We set

R=6/4.
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Corollary 2.2.1 and Propositions 2.2.2; 2.2.3 and 2.3.1 apply for pullbacks of balls centered
on J of radius R' < 2R. Moreover, if we set 1y < 6R, Proposition 2.2.2 yields Ny =
N3 iro,r = 1, the minimum length of the orbits on which it applies.

If W is an open set and f*(W) contains at most one critical point for all 0 < k < n,
let us define

degr (/) = [ e (2.28)

cefk(W)NCrit
0<k<n
Corollary 2.3.1. For all z € J, 0 <1 < 2R and (Wy)r>o a backward orbit of B (z,r),
iof dp, > p, where dy, = degmfk for all k > 0, then there is 0 < ngg < n such that
Wher NCE # 0 and d,,.,, -1 > 1.

nNcE

Proof. This is a reformulation of the definition of mg and m; in the end of the proof of the
previous proposition. I

2.4 RCE implies UHP

We have discussed in the introduction some telescope-like constructions in the literature
and we also have announced that our proof uses one of its own. We do not give any general
definition of a telescope, instead we provide a self-contained description of the one we use.
We consider a pullback of an arbitrary ball B (z, R) with z € J, of length N. We prove the
Exponential Shrinking of components condition. We show that there are constants C; > 0
and A\; > 1 that do not depend on z nor on N such that

diam B (z, R) ™" < C/AT™.

It is easy to check that the previous inequality for all z € J and N > 0 implies the
ExpShrink condition.

Let us describe the construction. We nest B(z, R) inside a ball B(z, R[,) with Rj < 2R
and consider its preimages up to time N. We show that there is some moment N when
the pullback observes a strong contraction. Then B(z, R))~™6 can be nested inside some
ball B(zy;, R) where 2y, € f~No and R} < 2R. This new ball is pulled back and the con-
struction is achieved inductively. The pullbacks B(z, R}), B(z, Ry)~"... B(z, R))~™ form
the first block of the telescope. The pullbacks B(zny, Ry), B(zng, R}) ™' ... B(zny, Ry)~M
form the second block and so on. Lemma 2.2.1 is essential to manage the passage between
two such consecutive telescope blocks. We show contraction for every block using either
Proposition 2.2.2 or Proposition 2.2.3. This leads to a classification of blocks depending
on the presence and on the type of critical points inside them.

Let us recall that 3, u, Ao, 0, ¢, R,rg and Ny were defined at the end of the previous
section. Let R’ be the radius of the initial ball of some block and N’ be its length. Let
r" < R be the diameter of the last pullback of the previous block. It is a lower bound for
R’ thus consecutive blocks are nested. Recall that (z,)1<n<n is a fixed backward orbit of
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z, contained in the pullback. A block that starts at time n is defined by the choice of R’
with ¥ < R < 2R and of N with 1 < N’ < N —n. It is the pullback of length N’ of
B(z,, R'). For all n,t > 0 and r > 0 we denote

d(n,r,t) = degp, - (f") and

d(n,r,t) = deggzm=7(f)-

Fix n > 0 and ¢t > 1 and consider the maps d and d defined on [r’, 2R]. They are increasing
and d < d. Theset {r € [/,2R] | d(n,r,t) < d(n,r,t)} is the common set of discontinuities
of d and d. Note also that d is lower semi-continuous and d is upper semi-continuous.

For transparency, we also denote

Wi = B(zn, R)7F.

Let us define three types of block before we make any further considerations.
Type 1 Blocks with R’ =" and N’ such that d(n, R, N') > 1 and Wy, N CE # .
Type 2 Blocks with R' = R, N’ = min(Ny, N — n) and d(n,2R, N —n) < p.

Type 3 Blocks with d(n, R, N') > 1, Wy, NCE # 0 and d(n, R, N —n) < p.

The proof of the theorem has two parts. The first part is the construction of the
telescope. That is, every pullback of some B (z, R) with z € J of length N, can be nested
inside a telescope built of blocks of the three types. We show that diam B(z,,, R))™™ < R,
that is, the contraction along the ¢-th block is strong enough and that there is at least one
type of block to continue with. An upper bound C; A\ for the diameter of the pullback
of length N of B(z, R{)) completes the proof of the theorem.

Theorem 1. A rational map that satisfies the Recurrent Collet-Eckmann condition is
Uniformly Hyperbolic on Periodic orbits.

Proof. We shall reuse the notations z,, ', R', N’,d, d and W}, described before the definition
of the three types of pullback.

For the first block of the telescope we set 7’ = R. If d(0,7', N+1) > u then by Corollary
2.3.1 there is 1 < N’ < N that defines a type 1 pullback for R’ = +'. If d(0,2R, N) < u
then we define a type 2 block, as d < d. If d(0,2R, N + 1) > p there is a smallest R', with
7" < R < 2R, such that d(0, R, N +1) > u. Thus R’ is a point of discontinuity of d so
d(0,R',N +1) < d(0,R',N +1),s0 d(0, R, N) < d(0, R, N +1) < p. Then by Corollary
2.3.1 there is 1 < N’ < N that defines a type 3 pullback.

In the general case we replace 0 by n and N by N —n in the previous construction. Let
us be more precise with our notations. We denote by n;, N/, ri and R] the parameters n,
N', " and R’ of the i-th block. Let also W;; be W}, in the context of the i-th block with
i € {0,...,b}, where b+ 1 is the number of blocks of the telescope. So ny = 0, 1y = R,
ny = Ny and r{ = diam Wy ;. In the general case i > 0, we have

n
T

— / !/
= n;_;+ N, and

/
i
; )
;= diam Wiy .



36 §2 THE RECURRENT COLLET-ECKMANN CONDITION

Let us also denote by T; € {1,2,2’, 3} the type of the i-th block. The type 2’ is a particular
case of the second type, when N’ < Ny. This could only happen for the last block, when
N —nj < Ny. SoT; € {1,2,3} for all 0 < i < b. We may code our telescope by the type
of its blocks, from right to left

T, ... Ty Ty.

Our construction shows that
ri, <Rforall0<i<b (2.29)

is a sufficient condition for the existence of the telescope that contains the pullback of
B(z, R) of length N. If T; € {1,3} we apply Proposition 2.2.3 and find that

2R

diam W,y < ORI ™ < 5 (2.30)
as 0 < %, R, < 2R and )\aN’{ < 1. If T; = 2 we apply Proposition 2.2.2 so
diam W ny < 1o < 0R < R. (2.31)

In either case, rj,; = diam W; y/ satisfies inequality (2.29). Thus the telescope is well
defined.
We may start estimates. First note that if T; = 1 then, using Proposition 2.2.3

i < QTZ{)\(:NZ{ < rg)\aNi/. (2.32)
Recall also that if there are Ay > 1 and Cy > 0 such that
diam B(z, R)™ < diam Wy x < C1A[ Y (2.33)

then the theorem holds. We may already set
1 1
A1 = min (QW, )\6‘) : (2.34)

As inequality (2.32) provides an easy way to deal with the first type of block, we
compute estimates only for sequences of blocks of types 1...1,1...12 and 1...13, as the
sequence Ty, ...TyTiTy can be decomposed in such sequences. Sequences with only one
block of type 2 or 3 are allowed as long as the following block is not of type 1. For a
sequence of blocks T;y, ... T;, let

' AT/ /
Nl,p_NZ-‘rp—’_"'—i—NZ
be its length.

A sequence 1...1 may only occur as the first sequence of blocks, thus i = 0. Asr( = R,
iterating inequality (2.32) for such a sequence
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—N!

Ty < OPHIRN, 7
/ *“N(/),

< 20RyN, .

Combining inequalities (2.32), (2.31) and the definition (2.34) of A, for a sequence
1...12

(2.35)

_N!
/ i+1,p—1
7"i+1)‘0

29R2-1 ), Vit (2.36)
20RN ",
as N; = No, N/, = N/ + N/,,, , and R} = R.

/
Titp+1

IN A A

()

For a sequence 1...13, inequalities (2.32) and (2.30) yield

/ / i+1,p—1
Titpr1 < 7"z'+1)‘0N/ !
< ORI, N (2.37)

< 20RIN,"
We also find a bound for 7, in the case T; = 2'. Let us remark that R, = R therefore

/ _ —1
T < e=¢eR Ry

S 2.38
= (eRTAN)RIA ™ (2.38)

We decompose the telescope into m+1 sequences 1...1,1...12,1...13 and eventually
2" on the leftmost position
S - 525150.

Consider a sequence of blocks
" __ / " __ / no_ /" /
Denote nj = n;, N/'= N, ri =r; and R} = R;. Let also

Aj = diam Wi,N—n;

be the diameter of the pullback of the first block of the sequence up to time — V.
With the eventual exception of \S,,, inequalities (2.35), (2.36) and (2.37) provide good
contraction estimates for each sequence S;

—uN"
If T}, = 2/ then inequality (2.38) yields a constant 5R*1)\ivé <C, = 5R*1)\1V6 such that

" i \—NJ

as R = R, and N;! = N;. Note that the previous inequality also holds if 7}, € {1,2,3}.
We cannot simply multiply these inequalities as R} > r7 for all 0 < j < m.
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By the definitions of types 2 and 3, the degree d(n}, R}, N —nf) is bounded by y in all
cases. So Lemma 2.2.1 provides a bound for the distortion of pullbacks up to time —N

1
Ajq A
o< ot (#

" /! l
< 64 (200, )

7N/-/ R// 1
= A j—1 j—1 \#
- 1 R )

for all 0 < 7 < m. Therefore

Recall that R}’ <2R<1lforall0<j<mand A, =r,_,,so

Ao < ANV R ATV ( ;R)f
< AVOL(RE)
< O

By definition Ay = diam Wy n, therefore the previous inequality combined with inequality
(2.33) completes the proof of our theorem. O
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Abstract. We find a counterexample to the converse of Theorem 1, that is a polynomial with
Uniform Hyperbolicity on repulsive Periodic orbits (U H P) that is not Recurrent Collet-Eckmann
(RCE). Using the same techniques we also show that the Collet-Eckmann property of recurrent
critical orbits is not topological for real polynomials with negative Schwarzian derivative.

3.1 Introduction

We studied the Collet-Eckmann condition for the Recurrent critical orbits RC'E in the
complex setting in an attempt to characterize the Topological Collet-Eckmann condition
TCE in terms of properties of critical orbits. The results obtained by Carleson, Jones and
Yoccoz in [2], by Graczyk and Smirnov in [4] and by Przytycki, Rivera-Letelier and Smirnov
in [9] inspired the proof of Theorem 1 which states that RCE implies the equivalent
conditions TC'E and U H P. Finally we found that T'C'E’ does not imply RC'E as recurrent
critical orbits may approach other critical points and lose the expansion of the derivative,
see also [8]. The diameters of pullbacks of small components may still decay exponentially
in a similar fashion to semi-hyperbolic dynamics which are not C'E. This property that
we call Exponential Shrinking of components is again equivalent to TC'E, see [9)].

The first part of this chapter describes a technique of building real polynomials with
prescribed topological and analytical properties by specifying their combinatorial proper-
ties. By combinatorial properties we understand symbolic dynamics induced by means of
discretization of the phase space [0,1]. This is done using the partition induced by the
critical points. It turns out that it is enough to consider only the dynamics of critical
orbits. The sequences of symbols associated to the points of the critical orbits are called
kneading sequences and they are central objects in our study. Using the monotonicity of
the multimodal map on each interval of this partition we may define an order on the space
of itinerary sequences. The theory of multimodal maps and kneading sequences is well
understood but it is related mostly to topological properties of the dynamics. In Section
3.3 we develop a special theory of one parameter families of 2-modal polynomials which
provides the tools to obtain a prescribed growth of the derivative on the second critical
orbit.

The main idea of Theorem 2 is very simple but the construction of the counterexample
and the proof that it has UH P are rather technical. In the vicinity of critical points the
diameter of a small domain decreases at most in the power rate while the derivative can
approach 0 as fast as one wants. This important difference in the behavior of derivative
and diameter is used to produce an aforementioned counterexample.

Using careful estimates of the derivative on the critical orbits we construct two polyno-
mials with negative Schwarzian derivative with the same combinatorics thus topologically
conjugated such that only one is RC'E. An important feature of our counterexample is
that the corresponding critical points of this two polynomials are of different degree. We
rely on the tools developed in Section 3.3.

All our examples of dynamics in this chapter are polynomial therefore all distances and
diameters are considered with respect to the Euclidean metric.



43

3.2 Preliminaries

Let us define multimodal maps and state some classical theorems about their dynamics.
This results will be used in the construction of a counterexample.

Definition 3.2.1. Let I be the compact interval [0,1] and f : I — I a piecewise strictly
monotone continuous map. This means that f has a finite number of turning points 0 <
c1 < ... < ¢ <1, points where f has a local extremum, and f is strictly monotone on
each of the | + 1 intervals I} = [0,¢1), Iy = (c1,¢2), ..., 111 = (¢, 1]. Such a map is called
l-modal if f(OI) C OI. Ifl =1 then f is called unimodal. If f is C' 4+ r with r > 0 it is

called a smooth l-modal map if f' has no zeros outside {c1,...,¢}.

If f is a l-modal map, let us denote by Crit the set of turning points - or critical points
Crity = {c1,...,a}.
For all € I we denote by O(x) or Ot (z) its forward orbit

O(x) = (f*(2))nz0-

Analogously, let O~ (z) = {y € f™(x) | n > 0} and OF(z) = {y € f*(z) | n € Z}. We also
extend these notations to orbits of sets. For S C I let O*(S) = {f™(x) | x € S,n > 0},
O (S)={ye f™x)|xeSn>0}and OF(S) =0T (S)UO~(9).

One of the most important questions in all areas of dynamics is when two systems
have similar underlaying dynamics. A natural equivalence relation for multimodal maps is
topological conjugacy.

Definition 3.2.2. We say that two multimodal maps f,g : I — I are topologically conju-
gate or simply conjugate if there is a homeomorphism h : I — I such that

hof=goh.

We may remark that if f and ¢ are conjugate by h then h(f"(z)) = g"(h(z)) for all
x € I and n > 0 so h maps orbits of f onto orbits of g. It is easy to check that h is a
monotone bijection form the critical set of f to the critical set of g. We may also consider
combinatorial properties of orbits and use the order of the points of critical orbits to define
another equivalence relation between multimodal maps. Theorem I1.3.1 in [5] tells us that
it is enough to consider only the forward orbit of the critical set.

Theorem 3.2.1. Let f, g be two l-modal maps with turning points ¢y < ... < ¢; respectively
¢1 < ...<¢. The following properties are equivalent.

1. There exists an order preserving bijection h from O%(Crits) to O*(Crit,) such that

h(f(z)) = g(h(x)) for all x € OF(Crity).
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2. There exists an order preserving bijection h from O*(Crity) to OF(Crit,) such that

h(f(x)) = g(h(x)) for all x € O*(Crity).

If f and g satisfy the properties of the previous theorem we say that they are combinato-
rially equivalent. Note that if f and g are conjugate by an order preserving homeomorphism
h then the restriction of h to OT(Crits) is an order preserving bijection onto O (Crit,)
so f and g are combinatorially equivalent. The converse is true only in the absence of
homtervals. It is the case of all the examples in this chapter. There is a very convenient
way to describe the combinatorial type of a multimodal map using symbolic dynamics.
We associate to every point x € I a sequence of symbols i(z) that we call the itinerary of
x. The itineraries ky, ..., k; of the critical values f(c1),..., f(¢) are called the kneading
sequences of f and the ordered set of kneading sequences the kneading invariant. Combi-
natorially equivalent multimodal maps have the same kneading invariants but the converse
is true only in the absence of homtervals. We use the kneading invariant to describe the
dynamics of multimodal maps in one-dimensional families. We build sequences (F,,),>0 of
compact families of C* multimodal maps with F,,; C F, for all n > 0 and obtain our
examples as the intersection of such sequences.

When not specified otherwise, we assume f to be a multimodal map.

Definition 3.2.3. Let O(p) be a periodic orbit of f. This orbit is called attracting if its
basin
B(p)={zel| f'z) — Op) as k — oo}

contains an open set. The immediate basin By(p) of O(p) is the union of connected com-
ponents of B(p) which contain points from O(p). If Bo(p) is a neighborhood of O(p) then
this orbit is called a two-sided attractor and otherwise a one-sided attractor. Suppose f
is C and let m(p) = |(f™)'(p)| where n is the period of p. If m(p) < 1 we say that O(p) is
attracting respectively super-attracting if m(p) = 0. We call O(p) neutral if m(p) = 1 and
we say it is repulsive if m(p) > 1.

Let us denote by B(f) the union of the basins of periodic attracting orbits and by
By(f) the union of immediate basins of periodic attractors. The basins of attracting
periodic contain intervals on which all iterates of f are monotone. Such intervals do not
intersect O~ (Crity) and they do not carry too much combinatorial information.

Definition 3.2.4. Let us define a homterval to be an interval on which f" is monotone
for alln > 0.

Homtervals are related to wandering intervals and they play an important role in the
study of the relation between conjugacy and combinatorial equivalence.

Definition 3.2.5. An interval J C I is wandering if all its iterates J, f(J), f*(J),... are
disjoint and if (f™(J))n>0 does not tend to a periodic orbit.
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Homtervals have simple dynamics described by the following lemma, Lemma I1.3.1 in
[5]-
Lemma 3.2.1. Let J be a homterval of f. Then there are two possibilities:

1. J is a wandering interval;

2. J C B(f) and some iterate of J is mapped into an interval L such that fP maps L
monotonically into itself for some p > 0.

Multimodal maps satisfying some regularity conditions have no wandering intervals.
Let us say that f is non-flat at a critical point c if there exists a C? diffeomorphism
¢ : R — I with ¢(0) = ¢ such that f o ¢ is a polynomial near the origin.

The following theorem is Theorem I1.6.2 in [5].

Theorem 3.2.2. Let f be a C? map that is non-flat at each critical point. Then f has no
wandering intervals.

Guckenheimer proved this theorem in 1979 for unimodal maps with negative Schwarzian
derivative with non-degenerate critical point, that is with |f”(c)| # 0. The Schwarzian
derivative was first used by Singer to study the dynamics of quadratic unimodal maps
x — az(l —x) with a € [0,4]. He observed that this property is preserved under iteration
and that is has important consequences in unimodal and multimodal dynamics.

Definition 3.2.6. Let f: I — I be a C® I-modal map. The Schwarzian derivative of f at

x is defined as
WEONE: (f”(x))Z

S =Ty~ 2 U

Jorallz € I\ {cy,...,q}.
We may compute the Schwarzian derivate of a composition
S(go f)(@) = Sg(f(2) - | ()] + Sf (=), (3.1)

therefore if Sf < 0 and Sg < 0 then S(f o g) < 0 so negative Schwarzian derivative is
preserved under iteration. Let us state an important consequence of this property for C?
maps of the interval proved by Singer (see Theorem I1.6.1 in [5]).

Theorem 3.2.3 (Singer). If f : [ — I is a C® map with negative Schwarzian derivative
then

1. the immediate basin of any attracting periodic orbit contains either a critical point of
f or a boundary point of the interval I;

2. each neutral periodic point is attracting;

3. there are no intervals of periodic points.
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Combining this result with Theorem 3.2.2 and Lemma 3.2.1 we obtain the following

Corollary 3.2.1. If f is C® multimodal map with negative Schwarzian derivative that is
non-flat at each critical point and which has no attracting periodic orbits then it has no
homterval. Therefore O~ (Crity) is dense in I.

The following corollary is a particular case of the corollary of Theorem II.3.1 in [5].

Corollary 3.2.2. Let f,g and h be as in Theorem 3.2.1. If f and g have no homtervals
then they are topologically conjugate.

All our examples of multimodal maps in this chapter are polynomials with negative
Schwarzian derivative and without attracting periodic orbits. We prefer however to use
slightly more general classes of multimodal maps, as suggested by the previous two corol-
laries. As combinatorially equivalent multimodal maps have the same monotony type we
only use maps that are increasing on the leftmost lap I, that is exactly the multimodal
maps f with f(0) = 0. Let us define some classes of multimodal maps

S ={f:1— 1| fisasmooth [-modal map with f(0) =0},

S ={fe8& | fisC®and Sf <0},
P, ={f €S8/ | f non-flat at each critical point} and

P, ={f € P, | all periodic points of f are repulsive} .

We have seen that in the absence of homtervals combinatorially equivalent multimodal
maps are topologically conjugate. Using symbolic dynamics we find a more convenient way
to describe the combinatorial properties of forward critical orbits. Let Ay = {I1,..., [j11}
and A. = {c1,...,¢} be two alphabets and A = A; U A,.. Let

S =AU A x A)

n>0

be the space of sequences of symbols of A with the following property. If i € ¥ and
m = |i| € N is its length then m = oo if and only if i consists only of symbols of A;.
Moreover, if m < oo then i contains exactly one symbol of A. on the rightmost position.
Let ¥ = ¥\ A, be the space of sequences i € ¥ with [i| > 1. Let us define the shift
transformation o : ¥’ — ¥ by
0'(2021) 22122

If fe&leti: I — X be defined by i(z) = ig(z)ii(z) ... where i,(z) = I} if f*(x) € Iy
and i,(z) = ¢ if f"(z) = ¢ for all n > 0. The map i relates the dynamics of f on
I\ {ec1,...,¢} with the shift transformation o on ¥

i(f(z)) =o(i(x)) forall z € I\ {c1,...,¢}.

Moreover, we may define a signed lexicographic ordering on ¥ that makes ¢ increasing. It
becomes strictly increasing in the absence of homtervals.
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Definition 3.2.7. A signed lexicographic ordering < on X is defined as follows. Let us
define a sign e : A — {—1,0,1} where e(I;) = (—=1)7™ forallj =1,...,14+ 1 and (c;) =0
forall 3 =1,...,1. Using the natural ordering on A we say that x < y if there exists n > 0
such that x; = y; for alli=20,...,n—1 and -

01¢m>%<<[k@0yw

=0 i=0

Let us observe that < is a complete ordering and that € - f/ > 0 on I\ {ci,...,q},
that is € represents the monotony of f. The product H:Z()l €(x;) represents therefore the
monotony of f". This is the main reason for the monotony of i with respect to <.

Proposition 3.2.1. Let f € §; for some | > 0.
1 Iz <y then i(x) < i(y)
2. Ifi(x) < i(y) then x < y.
3. If f € P| then x <y if and only if i(x) < i(y).

Proof. The first two points are Lemma I1.3.1 in [5]. If f € P/ then by Corollary 3.2.1
O~ (Crity) is dense in I. Let us note that

O~ (Crity) ={z eI | |i(x)| < oo} .

Moreover, O~ (Crity) is countable as f~!(z) is finite for all € I, therefore i is strictly
increasing. 0

Let us define the kneading sequences of f € S, by k;, = i(f(¢;)) for i = 1,...,1,
the itineraries of the critical values. The kneading invariant of f is the sequence K(f) =
(ky,...,k;). The last point of the previous lemma shows that if f, g € P/ and K(f) = K(g)
then there is an order preserving bijection h : OF(Crity) — O*(Crit,). Therefore, by
Corollaries 3.2.1 and 3.2.2, f and g are topologically conjugate.

Let us define one-dimensional smooth families of multimodal maps. It is the main tool
in our constructions of examples of multimodal maps.

Definition 3.2.8. We say that F : [o, 5] — S is a family of [-modal maps if F is
continuous with respect to the C* topology of S;.

Note that we do not assume the continuity of critical points in such a family - as in the
general definition of a family of multimodal maps in [5] - as it is a direct consequence of
the smoothness conditions we impose.

When not stated otherwise we suppose F : [, 5] — & is a family of I-modal maps and

denote f, = F(v).

Lemma 3.2.2. The critical points ¢; : [a, 3] — I of f, are continuous maps for all
1=1,...,1.
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Proof. Fix vy € [a, 3] and € > 0. Let A = {x € [0,1] | min,; dist(x, ¢;(79)) > €} a finite
union of compact intervals and

6 = min|f, (x)] > 0

by Definition 3.2.1. Let § > 0 be such that || f,— fy,||cr < & for all y € (y9—6, y0+6)N|ev, B].
Therefore the critical points ¢;(y) satisfy

lci() — () <e
foralli=1,...,land v € (y0 — 6,7 +0) N[, B] as fi(z) - f! (z) >0 forallz € A. O

Let us show that the C* continuity of families of multimodal maps is preserved under
iteration.

Lemma 3.2.3. Let G, H : [a,b] — C'(I,I) be continuous. Then the map
c—G(c) o H(c) is continuous on |a, b].
Proof. Fix ¢y € [a,b] and € > 0. We show that there is § > 0 such that
[|G(c) o H(c) — G(cp) 0 H(co)||cn < € for all ¢ € (co —d,¢o+9) N [a,b].
For transparency we denote g. = G(c) and h, = H(c) for all ¢ € [a,b]. Let
M = max {llgllon s Iellen - 1| € [a b}

By the compactness of I, g is uniformly continuous therefore there is ' > 0 such that
€

i for all x,y € I with |z —y| < ¢

1960 (%) = geo (Y)] <
Let 6 > 0 such that
. [ €

U {[19. = geollr 1o = gl | € € (o = 6,0 +6) N1 [a, B} < min (1=, 9').
We compute a bound for |[|ge 0 he — gey © hey||on for all ¢ € (co — 6, ¢ +6) N [a, b]
|ge © he = ge © heglloc + [19e © ey = Geo © heo | oo
M+ am
€.

chohc — Yeo ohCOHOO

ANRVANIVAN

Analogously

llgi0ohe - h,— gl ohe - P lloe < |lglohe-hi,— gly o he - hif|oot
IIQ.;O ohe- h’c/— 929 0 hey - h’cllloo+
||gCO © hCO ) hc _gco © hCO ' hco||00
IS5 £ £

M4 M+ M

E

A A

as ||he = heploo < 6. O
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We may remark that by iteration y— /7' is continuous for all n > 1. This property is
therefore assumed in the sequel for all families of multimodal maps.

The following proposition shows that pullbacks of given combinatorial type of contin-
uous maps are continuous in a family of multimodal maps.

Proposition 3.2.2. Let y : [«, 5] — I be continuous and S € A}. The mazimal domain
of definition of the map v — x., such that

f2 () = y(v) and
i(ry) €S XX

is open and vy — T 18 unique and continuous.

Proof. Suppose that for some 7 there are x; < 2o € I with fI'(21) = fI'(z2) = y(7) and
such that i(xq) = i(z2) = Si(y(7)) for some v € [, 3]. But S € A} so f" is strictly
monotone on [r1, o], which contradicts fI'(x1) = fI'(z3) so v — z, is unique.

Let z., be as in the hypothesis and € > 0. We show that there exists ¢ > 0 such that
v — x is defined on (79 — 0,70 + ) N [a, F] and takes values in (z,, — &, 2, + €). Let

0= (1) (129) # 0

and by eventually diminishing € we may suppose that

0
‘( %)/(x) — 9‘ < 1 for all x € (xw — £, Ty, —0—5),

Let 1 > 6; > 0 be such that

s 0
11 = faller < 1 < 1 for all v € (70 — 61,7 + 61) N [, B].

Let also 93 > 0 be such that

O
[y(7) = y(0)| < - for all y € (70 = G2, % +02) N [, ],
We choose § = min(dy, d2) and show that

y(V) S ijl((xwo =&, Ty + 5) A I) for all S (70 - 5a Yo+ 5) A [O‘aﬁ]'
Indeed, f2' is monotone on (z,, — €, 2,, + ¢€) and

Oe

| [ (20 £ ) = y(0)| > 1

for all 7 € (7 — &30 + ) N o, B] a8 |f2(2 £ &) — y(q0)] = |f2 (g £ &) = f2 (2 ) +
%(x% :l:g) - %(x70>| and | %(x% :l:g) - %(x70>| > 298 O
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As an immediate consequence of the previous proposition and Lemma 3.2.2 we obtain
the following corollary.

Corollary 3.2.3. If F realizes a finite itinerary sequence i, € 3, that is for all v € [a, ]
there is x(iy)(y) € I such that

i(2(1p) (7)) = o,

then x(iy) : [, B] — I is unique and continuous.

We may observe that if =,y : [, 5] — I are continuous and for some k > 0

(fa(x(@) = y(@) - (£5(x(8)) —y(B)) <0

then there exists v € [a, §] such that

@) =y(v). (3.2)

Therefore if i(z(a)) # i(x(5)) then there exists v € [a, ] such that i(xz(y)) is finite.
Let m = min{k >0 | 3y € [a, (] such that i(x(a))(k) # i(z(7))(k)} then the itinerary
o™mi(x(y )) = i(f7(x(7))) changes the first symbol on [«, 5]. Without loss of generality
we may assume that o™mi(x(a)) < o™i(x(F)). Therefore there exists i € {1,...,{} such
that f1"(z(a)) < ¢i(a) and fI"(x(8)) = ci(a), which yields « using the previous remark.

A simplified version of the proof of Proposition 3.2.2 shows that if F : [«, 3] — C'(I)
is continuous, ro € I is a root of F(7y) and (F(70)) (r9) # 0 then there are J C [o, 3] a
neighborhood of 7y and r : J — I continuous such that F(y)(r(vy)) = 0 for all v € J. For
F(v)(z) = f2(x) — = we obtain the following corollary.

Corollary 3.2.4. Let ry be a periodic point of f., of period n > 1 that is not neutral. There
exists a connected neighborhood J C [, B] of vo and r : J — I continuous such that r(v)
is a non-neutral periodic point of f, of period n. Moreover, if r(v) is not super-attracting
for all v € J then the itinerary i(r(v)) is constant.

Proof. As a periodic point, r(7y) exists and is continuous on a connected neighborhood J
of 7o, using the previous remark. As |(f7)(r0)| # 1, there is a connected neighborhood .J;
of 7o such that

|(£7) (r(7))] # 1 for all v € Ji.

Let J = Jy N Jy so () is a non-neutral periodic point of period n for all v € J. Suppose
that its itinerary i(r(y)) is not constant, then there is 71 € J such that i(r (7)) is finite so
the orbit of (1) contains a critical point thus it is super-attracting,. O

Let us define the asymptotic kneading sequences kj () and k} (v) for all v € [o, ]
and j = 1,...,l. When they exist, the asymptotic kneading sequences capture important
information about the local variation of the kneading sequences.
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Definition 3.2.9. Let j € {1,...,l} and v € [a,B]. If v > « and for all n > 0 there
exists 6 > 0 such that k;(y — 0) € S, x X with S, € A} for all 0 € (0,0) then we set
ki (7)(k) = Su(k) for all 0 < k < n. Analogously, if v < 3 and for all n > 0 there
exists 0 > 0 such that k;(v + 0) € S, x X with S, € A} for all 0 € (0,6) then we set
Ey (y)(k) = S}, (k) for all 0 < k < n.

Let us define a necessary and sufficient condition for the existence of the asymptotic
kneading sequences for all v € [«, f].

Definition 3.2.10. We call a family F : o, 8] — & of I-modal maps natural if the set

k') ={v € [o, B] | k;(y) =i} is finite for all i € ¥ finite.

This property does not hold in general for C! families of multimodal maps, even poly-
nomial, as such a family could be reparametrized to have intervals of constance in the
parameter space. It is however generally true for analytic families such as the quadratic
family a—az(1 — z) with a € [0, 4].

One may easily check that the previous condition is necessary for the existence of all
asymptotic kneading sequences, considering an accumulation point of some @j_l(g') with ¢
finite. The following proposition shows that it is also sufficient.

Proposition 3.2.3. Let F : [a, 5] — & be a natural family of I-modal maps and j €
{1,...,1}. Then kj (v) exists for all v € (o, 8] and kJ (v) ezists for all v € [, §). More-
over, if k(1) € AR for some € (@, B) then k; (7) = k;(v) = k(7). IF &, () = S¢; with
S € A} for somen >0 and i € {1,...,1} then k; (y) = Shly... and kj (y) = Sriry...
with ll,Tl € {Iiali-‘rl}'

Proof. 1f F is natural then the set of all v € [«, ] that have at least one kneading sequence
of length at most n for some 0 < n

K= J{vela.f)] ()] <n}

is finite. This is sufficient for the existence of all asymptotic kneading sequences.

If kj(v) € Sx X with S € AF and n > 0,5 € {1,...,1} then by the continuity of
v—f1"(cj) and of y—¢; for all m = 0,...,n—1 and i = 1,...,[ there exists § > 0 such
that

k;(y) € S x Xforall vy € (v — 6,7 +0)N[a, .
Therefore if k;(v) € AP then k; () = k;(v) = kS (7). If k;(7) = Se; for some i € {1,...,1}
then k; () = Slhily ... and kj (y) = Sriry. ... Again by the continuity of y— f'(¢;) and of

y—c, forall k=1,...,1
ll,T’l c {Ii>Ii+1} .
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Figure 3.1: 2-modal map with &k, = [1¢;.

Note that we may omit the parameter v whenever there is no danger of confusion but

cj, 1 and k; for some j € {1,...,1} should always be understood in the context of some f..
However, the symbols of the itineraries of ¥ are Iy,..., [j11,¢1,...,¢ and do not depend
on 1.

3.3 Omne-parameter families of 2-modal maps

In this section we consider a natural family G : [«, 5] — Ps of 2-modal polynomials with
negative Schwarzian derivative satisfying the following conditions

0,1 € 91 are fixed and repulsive for g,, (3.3)
gy(c1) =1 for all v € [a, F], (3.4)
g(c2) = 0 if an only if v = a. (3.5)

Let us denote by v,, = gﬁ“(cQ) for n > 0 the points of the second critical orbit and let

k=ky(y)=koky.... If Se€ A¥ k> 1 and n > 1 we write S™ for SS...S € A% repeated
n times and S for SS... € AP.
Proposition 3.2.3 shows the existence of k" (a) = k(a) = I therefore, there is 5y > 0
such that
kel xY (3.6)

for all v € [a, @ + dg]. Figure 3.1 represents the graph of a 2-modal map with the second
kneading sequence Iyc; = k(v) for all v € [a, v + 9.

Let us observe that O*(Critg,) = {0, ¢y, c2,1} and that by Singer’s Theorem 3.2.3, g,
has no homtervals. Therefore by Corollary 3.2.2 if H : [o/, 3] — P, is a natural family
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satisfying conditions (3.3) to (3.5) then g, and h, are topologically conjugate. Therefore
ga 1s conjugate to the second Chebyshev polynomial (on [—2,2]) and topological properties
of its dynamics are universal. Let us study this dynamics and extend by continuity some
of its properties to some neighborhood of « in the parameter space.

We have seen that g, has no homtervals and that all its periodic points are repulsive.
Proposition 3.2.1 shows that the map

i(ga) : I — X is strictly increasing.
Let us denote by o~ (2) the set of all preimages of i by some shift
o (i) = {¢ € | Ik > 0 such that o*(i') =i} .
As (0,1) C go(1;) for all j = 1,2,3 and i(ga)(0) = I7°, i(ga)(1) = I5°
i(9a) ((0,1)) = B\ (¢~ (IF) Vo™ (I37)) -
Let us denote by Xy = i(go)(I). Then
i(ga) : I — X is an order preserving bijection.

As g, is decreasing on Iz, go(c1) > ¢ and g,(c2) < ¢ it has exactly one fixed point
r € Iy and it is repulsive. Moreover, g, has no fixed points in I; or I3 other than 0 and
1 as this would contradict the injectivity of i(g,). As 0 and 1 are repulsive fixed points
go(x) >z for all x € (0,¢;) and g, (z) < x for all z € (¢z,1). Then by the C' continuity of
G and Corollary 3.2.4 we obtain the following lemma.

Lemma 3.3.1. There is 6, > 0 such that g, has ezactly one fized point r(vy) in (0,1) and
all its fized points 0,1 and r(y) are repulsive for all v € o, + 01]. Moreover, the map
y—r(7y) is continuous and i(r) = 15°.

Let p be a periodic point of period 2 of g,. Then i(p) is periodic of period 2 and infinite
as the critical points are not periodic. So i(p) € {([;1x)> | j,k =1,2,3}. But i(g,) is
injective, i(gq)(0) = I{°, i(ga)(r) = I5° and i(g,)(1) = I$° so

i(p) € {(L;1x)® | j # k and j,k =1,2,3} C%.

Therefore g, has exactly 3 periodic orbits of period 2 with itinerary sequences (1;15)>,
(I113)°, (I213)> and their shifts. Figure 3.2 illustrates the periodic orbits of period 2 of
go. By the C! continuity of g—>g§ and Corollary 3.2.4 we obtain the following lemma.

Lemma 3.3.2. There is 9, > 0 such that g, has exactly 3 periodic orbits of period 2
with itinerary sequences (I112)*, (I113)%°, (I213)*° and their shifts for all v € o, v + d3].
Moreover, the 6 periodic points of period 2 are repulsive and continuous with respect to
on o, o+ ds).
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Figure 3.2: g, and its periodic orbits of period 2, p; with i(p;) = (I112)>, pe with i(ps) =
(1113)> and p3 with i(ps) = (I213)*.

Let us define
ﬁ/ = oz+min{50,51,52} (37)

so that G satisfies equality (3.6), Lemma 3.3.1 and the previous lemma for all y € [a, ].

Let us consider the dynamics of all maps ¢, with v € [, '] from the combinatorial
point of view. We observe that if x > v = g,(cz) then gZ(z) > v for all n > 0. This means
that any itinerary of g, is of the form i, = Ifa... € ¥ with k >0, a # I, and such that
a“pzv = k for all p > 0. Let (k) denote the set of itineraries satisfying this condition.
We observe that (v, 1)Cg,(;) for j =1,2,3 and ¢1,¢2 € (v,1) for all v € [a, /'] by relation
(3.6) so we obtain the following lemma. The continuity is an immediate consequence of
Proposition 3.2.2.

Lemma 3.3.3. Let v € [, '] and k = ky(g,,). Then every finite itinerary
ip € {i € X(k) | || < oo}
is realized by a unique point x(i) € I and y—x(i) is continuous on a neighborhood of 7.
A kneading sequence k € Y¥(k) satisfies the following property.
Definition 3.3.1. We call m € ¥y minimal if

m = o*m for all 0 < k < |m].

The following proposition shows that the minimality an almost sufficient condition for
an itinerary to be realized as the second kneading sequence in the family G. This is very
similar to the realization of maximal kneading sequences in unimodal families but the proof
involves some particularities of our family G. For the convenience of the reader, we include
a complete proof.
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Proposition 3.3.1. Let a < ap < Gy < B’ and m be a minimal itinerary such that
k(ag) <m < k().
Then there ezists v € (o, Bo) such that
k() = m.
Proof. Suppose that k() # m for all v € (ao, ). Let v = sup {7 € [ao, fo] | k(v) = m}

son =min{j > 0| k(v)(j) #m(j)} < co. Then, using the continuity of ¢, ¢; and ¢y
one may check that

v

kn = k(70)(n) € A,

otherwise the maximality of v, is contradicted as k(0),...,k(n — 1) and k(n) would be
constant on an open interval that contains ~y. There are two possibilities

1. k, =c¢; so gﬁo(cg) = ¢; therefore ¢, is preperiodic.
2. k, = cy 50 gTyLO(CQ) = ¢y therefore ¢y is super-attracting.

Therefore v > a and vy < ' < (3. Let us recall that G is a natural family so the
asymptotic kneading sequences k™ (v9) and k" (7o) do exist and are infinite. Then the
definition of g shows that

min(k(70), k™ (70)) = m < k" (7). (3.8)

Let m = mgmy...m, ... and S = mg...m,_1 € A} be the maximal common prefix
of k(y) and m, so k(y) = Sc¢; with j € {1,2}. Therefore, using Proposition 3.2.3,
my, € Ij, Ij+1.

Suppose k, = ¢ so g5 = c;. Lemma 3.3.3 and property (3.6) show that the sequences
1 1[502 and IQI:ﬂfCQ are realized as itineraries by all ¢, with v € [a, '] for all £ > 0. Moreover
x(I1I%cy) is strictly increasing in k for all v € [a, '] and it is continuous in 7. Analogously,
x(IyI5ey) is strictly decreasing in k for all v € [, 4] and it is continuous in 7. Then by
compactness and by the continuity of y—g7 and of y—¢;

k™ (v0), k" (0) € S x {I1, I} x I3°.
Therefore inequality (3.8) shows that
min(cy, [115°) = L15° < 0"m = [LI° = max(cq, [,15°).

But m € ¥ so
[1[3?0 < O'nm =< ]2]300

therefore m,, = ¢; as [115° = max ]y x ¥ and [,15° = min I, x ¥, a contradiction.
Consequently k(79) = Sca s0 ¢a(9) is super-attracting. Then by Corollary 3.2.4 there is
a neighborhood J of g such that a() is a periodic attracting point of period n for all y € J,
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y—a(7y) is continuous and a(7y) = ¢2(7p). By Singer’s Theorem 3.2.3, ¢5 is contained in the
immediate basin of attraction By(a(y)) for all v € J, which is disjoint from ¢;. Therefore,
considering the local dynamics of g on a neighborhood of a(y), k() = i(g,(a)) is also
periodic of period n or finite of length n for all v € J. As the family G is natural, there
exists € > 0 such that ¢ is not periodic for all v € (y0—¢,v +¢)\{70}. Again by Corollary
3.2.4, k(v) = k™ (y) for all v € (yo—¢&,7) and k() = k" (7o) for all v € (79,70 +¢). Then
Proposition 3.2.3 shows that

E™(70), k" (10) € {(ST)™, (S15)}.
Let m; = min((S13)>, (S13)*) and m, = max((S12)*, (SI3)>°) and
K ={i €Y |iminimal and m; <7 < my}.

As the sequences Sca, k™ (70) and k™ (7o) are all realized as a kneading sequence k() with
v € |a, (], using inequality (3.8) it is enough to show that

K= {SCQ}.

Let i € K\{Scy} so
1€ S % {[2,[3} X 2.

Suppose €(S) = 1 so m; = (SI)* and m, = (SI3)*°. Suppose i(n) = I, then as
€(SIy) = —1 and 7 is minimal

i 20"(0) < (512)% = o"(m),
s0 i € (SI,)? x X. Therefore
o?(m,) = (SL)™ < 0®"(i) < 0"(i) € ST, x X,
s0 i € (SI)? x ¥ and by induction i = m; ¢ K. Suppose i(n) = I3, then
i 2 0"(i) < (S13)% = 0" (my),
as €(S13) = 1 and ¢ minimal, so i € (S13)* x X. For the same reason
i 2 0%(i) < (SI)™ = 0™ (my,),

so i € (SI3)? x ¥ and by induction i = m, ¢ K.
The case €(S) = —1 is symmetric so we may conclude that K = {Scy} which contradicts
our initial supposition. O

Let us prove a complementary combinatorial property.

Lemma 3.3.4. Let S € A} with k(«) = SI3° < k(5') and such that SIS° is minimal. If
ilig L EX and il,ig, ... € A\{Il} then

SIFiyiy... € X is minimal for all k > |S].
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Proof. Let i = SI¥iyiy... € ¥, n =S| and k > n. Suppose there exists j > 0 such that

o (i) < .
As SIF k(B =1 ...

1€ I x 2.
Then j < n and we set m = min {p > 0 | 07(i)(p) # i(p)}. Therefore m <n — 1 so

ol (SI5°) < SIs°
as ¢ coincides with SI5° on the first 2n symbols, a contradiction. O
Using relation (3.6), k() = ... so I§¢; € S(k(v)) for all k > 0, j = 1,2 and
v € |a, #']. Then by Lemma 3.3.3 the maps
v=pi(7) = 2(I3er) () and y—qi(y) = z(Iye2)(7)
are uniquely defined and continuous on [«, #] for all & > 0. Let us recall that g, is
decreasing on I so
c1 = Iyeg < I2c) < I3cy < ... < I* < ... < I3c; < I3cy < Iyey < co,
therefore
ClL =P <1 <Pa<@gz<...<r<...<p3<@2<p1<q=CcCy

for all v € [«, (].
Let us show that py—r and gy—r as k—oo for all v € [« #]. Let

r~ = lim pop = lim @941 and
k—oo k—oo

rT = lim go = lim Pok+1-
k—o00 k—o00

Suppose that r~ < r* then by continuity g,(r~) = r* and g,(r*) =r~, as g,(pr+1) = Dk
and ¢,(qx+1) = g for all £ > 0. Then r~ and r* are periodic points of period 2 and with
itinerary sequence I5°, which contradicts Lemma 3.3.2. By compactness

P, @r—7 uniformly as k—oo. (3.9)

The following proposition shows that these convergences have a counterpart in the
parameter space.

Proposition 3.3.2. Let S € A" for somen > 0 be such that SIS is minimal and k™ (SI5°)
is finite. Let a < ag < By < 3 be such that k(ag) < SIS® < k(B) and S" = SIS with
k >0 and such that €(S") = 1. Ifi; = S'cy, iy = S'cy and k is sufficiently big then we may
define
v =max (k™ (4,) N (o, o)) and (3.10)
Y2 = min (k™ (i3) N (71, o)) '

and then
Jim (72 —71) = 0.



o8 §3 COUNTEREXAMPLES

Proof. First let us remark that the condition €(S") = 1 guarantees that
1y < S < iy,

Using for example convergences (3.9) and the bijective map i(g,) there exists Ny > 0 such
that for all & > Ny, k(ao) < i; < iy < k(8y). Moreover, if k& > n then i, and i, are
minimal, using Lemma 3.3.4.

Therefore for k > max(Ny, n) we may apply Proposition 3.3.1 to show that there exist
1 € k7)) N (o, Bo) and v, € k(i) N (71, o). As 4, and 4, are finite and the family G
is natural, k~'(4,) and k' (i,) are finite.

We may apply again Proposition 3.3.1 to see that v, is increasing to a limit vy~ as
k—o00. Again by Proposition 3.3.1 and by the finiteness of £~ '(SI$°) there exists

o = max (k™ (S15°) N (e, o)) < fo and 7~ < 7.

For the same reasons there is N > 0 such that v, > vy for all £ > N, therefore v, becomes
decreasing and converges to some vyt > 7.
Suppose that the statement does not hold, that is

7T <9t

The map i(g,) : I — X is bijective and order preserving and p;—r, ¢;—r as i—oc therefore

{i€X|i 2i=i,forall k >0} ={S[°}.

Then the definitions of v~ and 4" imply that
Ek(y) = SI3* for all v € [y, 7]
which contradicts the hypothesis. O
From the previous proof we may also retain the following Corollary.

Corollary 3.3.1. Assume the hypothesis of the previous proposition. Then

li = i =
kl_{lcf)lo% kl_)fglow Yo

and k(o) = SI5°.

We may also control the growth of the derivative on the second critical orbit in the
setting of the last proposition. In fact, letting k—o0, the second critical orbit spends most
of its time very close to the fixed repulsing point r. Therefore the growth of the derivative
along this orbit is exponential.

Let us also compute some bounds for the derivative along two types of orbits.
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Lemma 3.3.5. Let [y1,72|Cla, B'], n >0, S € A} and iy,i, € S X ¥ with i; < i, be finite
or equal to I7°, I or IS°. If iy, iy are realized on [y1,72] then there exists 0 > 0 such that

0<|(@) @)|<0o

for all v € [y, ], @ € [a(iy), 2(@y)] and j = 1,...,n.

Proof. Let us remark that i(z) € S x X therefore (gg)/ (x) # 0 for all v € [y,72), z €
[z(1y),x(iy)] and j = 1,...,n. As z(i;) and z(iy) are continuous by Lemmas 3.3.1 and
3.3.3, the set

{(v.2) €R* |y € 11,72l @ € [2(iy), 2(6p)] }

is compact. Therefore the continuity of (v, z)— (g%'), (x) for all j = 1,...,n implies the
existence of 6. O

The previous lemma helps us estimate the derivative of g7(z) on a compact interval of
parameters if i(x) € I} x ¥ and n is sufficiently big. Let us denote

Lin)(v)={zel;|dgi(x)eljforallk=1,...,n}

for j=1,2,3, the interval of points of I; that stay in /; under n iterations. Let also s; be
the unique fixed point in I;.

Lemma 3.3.6. Let [y1,7]Ca, F'], j € {1,2,3} and € > 0. Let also

A= min |¢.(s;)],
! YEM 2] ’gw( J>}
Xo = max |g.(s;)].
? YE[Y1,72] ’gw( J>}

There exists N > 0 such that for all k >0
N < [(68) ()] < A5
for all v € [y1,72) and x € I;(m) where m = max(k, N).
Proof. Let us first observe that by the definition (3.7) of 5’
1< )\1 < )\2.

Lemma 3.3.3 shows that the itinerary sequences I7'c, Ij'cy are realized on [, #] for all
n > 0. We may easily obtain analoguous convergences to (3.9) if j € {1, 3} therefore

x(I}c1), x(I} cz)—s; uniformly as n—oo.

Moreover 01;(n)C{z([}c1), (I} cy), s} for all v € [y1,72] and n > 0. Using the continuity
of s; and of (v, x)—g! () there exists Ny > 0 such that

)\1 2 < }g;(x)’ < )\;Jr%
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for all v € [y1,72] and x € 1;(Ny).
Using Lemma 3.3.5 there exists 6 > 0 such that

0 < ’(g,:”)/ (x)’ <!
for all v € [y1,7] , x € I;(No) and 1 <m < Ny. Let Ny > 0 be such that
/\lelg > g-1\No+e)

and set N = Ny + N;y. Let £k > Ny and n = max(/Ny, k — Np) then

n(1-5 _1.n(1+5

9)\1( ) < )(gﬁ)/(x)’ <0 1)\2( )

for all v € [y1,72] and x € I;(m). Asn > Ny and 1 < A\ < Ao

)\llg(lfz-:) < )(gl;;) )) < )\ (1+¢)
for all v € [y1,72] and = € I;(m). If kK < Ny then g7 (x) € [;(No) for all n =0,...,k—1s0

)\119(175) < )\116(17%) < ’(g’l:)/(x>’ < )\];( ) < )\k(1+5

for all v € [y1,72] and € 1;(m). O

We may remark that if we assume the hypothesis of the previous lemma then g,’j is
monotone on [;(m) therefore

Ay S <L) < AR, (3.11)
Let d,, : [, '] — R, be defined by

da(1) = |(92) (v)

where v = g,(c) the second critical value. As y—wv is continuous and y—gZ is C! con-
tinuous, d, is continuous. The family G is natural so d, has finitely many zeros for all
n > 0.

Corollary 3.3.2. Assume the hypothesis of Proposition 3.8.2 and let o = |g} (r)| > 1.
For all 0 < e <1 there exists N > 0 such that if k > N then

AT < () < AT for all oy € [, ).

Proof. Let us remark that |k(y)| > n for all 4 € [v;,72] therefore there exists 6 > 0 such
that

)

0 < d,(v) <6 for all y € [y1, 72).
Using the previous lemma and Corollary 3.3.1 there exists Ny > 0 such that if £ > Ny then

k(1-% !
20 < () )
Therefore it is enough to choose N > Ny such that
A s o tant)

< )\IS(HE) for all v € [y1, 7o)




61

3.4 UHP does not imply RCE

In this section we consider a family G : [a, 3] — P satisfying all properties (3.3) to (3.6)
and Lemmas 3.3.1 and 3.3.2 for all v € [, f]. We build a decreasing sequence of families
Gn @ o, Bn] — P2 with Gy = G, ay, /" 7 and B, \, 7 as n — oo. This means that
Gn(y) = G(n) for all n > 0 and v € [ay, 5,]. We obtain our counterexample as a limit
Gvo = G(70) = Gn(0) for all n > 0. For all n > 0 we choose two finite minimal itinerary
sequences i;(n + 1) and i,(n + 1) as in Proposition 3.3.2 such that

ky(an) < iy(n+1) <idy(n +1) < Ey(Bn).

We set a1 = 7 and f(,41 = 72 and choosing sufficient long sequences i,(n + 1) and
i5(n + 1) we obtain the convergences a,,—7y and 3,—y as n—o0.

Let Ty(z) = 2% — 32 be the second Chebyshev polynomial. Observe that —2, 0 and 2
are fixed and that the critical points ¢; = —1 and ¢, = 1 are sent to 2 respectively —2.
Its Schwarzian derivative S(T5)(x) = — (i’fj; is negative on R\ {¢1, c2}. Let h > 0 small
and for each v € [0, h] two order preserving linear maps P,(z) = (4 + ) —2 — 7 and

Q,(y) = % that map [0, 1] onto [—2 — ~, 2] respectively [To(—2 — 7), T2(2)] onto

[0,1]. Let then

gy = QyoTr0 P, (3.12)

be a 2-modal degree 3 polynomial. As S(P,) = S(Q,) = 0 for all v € [0, h], using equality
(3.1), one may check that

S(gy) <0on I\ {ci1(7),ca(y)} for all v € [0, A

If we write 5
0 () = S ax()at (3.13)
k=0
it is not hard to check that v — ag(7) is continuous on [0, h] for k = 0,...,3 therefore

v — g, is continuous with respect to the C* topology on I. By the definition of Py (see
page 46), as g,(0) = 0 for all v € [0,h], G : [0, h] — P, with G(vy) = g, for all v € [0, h] is
a family of 2-modal maps with negative Schwarzian derivative. Observe that 0 and 1 are
fixed points for all 4 € [0,h] and that they are repulsive for gy, with g;(0) = g4(1) = 9,
which is condition (3.3). Moreover, g,(c;) =1 for all v € [0, k] thus G satisfies also (3.4).
Observe that if v € [0, h] then @, (—2) = 0 if and only if v = 0 so G satisfies also condition
(3.5). We show that G is also natural and that any minimal sequence SI5° with S € A7}
and n > 0 equals the second kneading sequence k() for at most finitely many ~ € [0, h].
This allows us to use all the results of the previous section for the family G.

Let G : [0, h] x [0,1] — R be defined by
G(v,z) = g,(z) for all v € [0,h] and z € [0, 1].
Then

G0 = T
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where P; and P, are polynomials. Using definition (3.12), we may compute P; easily

Py(y) =2-Ta(-2—7) = (v + 1)*(y + 4).

We may therefore extend G analytically on a neighborhood QCR? of [0, 4] x [0,1]. The
critical points ¢; and ¢y are continuously defined on [0, h] by Lemma 3.3.3. They are also
analytic in v as a consequence of the Implicit Functions Theorem for real analytic maps
applied to %—f. Therefore for all n > 0 the map g(cs) is analytic on a neighborhood of
0, h] so

cj(7) — g (cz) has finitely many zeros in [0, h]

for all j € {1,2} and n > 0 as gj/(c2) = 0 and ¢1(7), c2(y) € (0,1) for all v € [0, h]. The
family G is therefore natural so by eventually shrinking h we may also suppose that G
satisfies property (3.6) and Lemmas 3.3.1 and 3.3.2 for all 4 € [0, h]. Then the repulsive
fixed point 7 is continuously defined on [0, ] and again by the Implicit Functions Theorem
applied to G(v, ) — x, it is analytic on a neighborhood of [0, 4]. Then

7(7) — g (cz) has finitely many zeros in [0, A

for all n > 0 as r(0) — g (c2) = 3.

Let then Gy = G so ap = 0 and 3y = h. Our counterexample g,, should be UH P but not
RCE. Its first critical point is non-recurrent as g,(c;) = 1 and 1 is fixed for all v € [y, Go).
Therefore the second critical point ¢y should be recurrent and not Collet-Eckmann. We
let ¢y accumulate on ¢; also to control the expansion of the derivative along its orbit. In
order to obtain UH P we build g, such that its second critical orbit spends most of the

time near r or 1 so its derivative accumulates sufficient expansion.

3.4.1 A construction

The construction of the sequence (G,)n>o is realized by imposing at the n-th step the
behavior of the second critical orbit for a time span ¢,_1 + 1,¢,_1,...,t,. This is achieved
specifying the second kneading sequence and using Proposition 3.3.2. We set t; = 0.

We have seen that k*(0) = I and that g,(x) > z for all x € (0,¢;) and all v € [0, h]
as 0 is repulsive and g, has no fixed point in (0, ¢;). Therefore the backward orbit of ¢; in
I; converges to 0 and by compactness the convergence is uniform. Then

k1 ([fcl) —0 as k—o0,

using Proposition 3.3.1 for their existence. Then for any ¢q > 0 there is ky > 0 such that
If°c; < E(Bo) and ||go — g+||cr < &0 for all y € [0,k (I}°¢;)]. In particular, if

L< A< X <go(r)l =3 <g0(0) = lgo(1)| = 9
then for ¢, sufficiently small

N < gy (m)], XN < |g5(0)] and X < |g.(1)] (3.14)
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for all v € [0,k (I}°¢;)]. Let Sy = IFot € A%t 504 < IFo¢; for all i € Sy x ¥. Moreover,
Sol3° is minimal. Using Proposition 3.3.2 we find ap < 71 < 72 < (y such that

k(o) < k(1) < Sol5® < E(v2) < E(Bo)
with k(71), k(72) € Soly X ¥ and

"}/2 — ’}/1‘ < 271.

We set ag = 71 and ;1 = 72 and define G; : [o, 1] — P2 by Gi(y) = G(v) = g, for all
v € [, B1]. Moreover, let t; = k+ |Sy| and S; = SpI}, where k is specified by Proposition
3.3.2, then

E(’Y) c 51]2 X 2 (315)

for all v € [y, 1], and using Corollary 3.3.2 we may also suppose that

dp(7) > A™ (3.16)

for all v € [y, £1], where m = t; = |Sy|. Let us recall that d,(vy) =

/
(92) )|

Then we build inductively the decreasing sequence of families (G, ),>o such that for all
n > 1, G, satisfies

k()| [E(Bn)| < o0, (3.17)
|8 — am| <277, (3.18)
k(an) = Sply® < k(Bn) (3.19)

and conditions (3.14) to (3.16) for all v € [, 8,], for some S,, € A} with S, I3° minimal,
where m = t,. As the sequence (G,,),>0 is decreasing, inequality (3.14) is satisfied by all
G, with n > 1. For transparency we denote

A7) = |(92)' (v0)

which also equals d,,,(7)d,, () whenever |k(v)| > n so d,(vy) # 0.

Let us describe two types of steps, one that takes the second critical orbit near ¢; to
control the growth of the derivative and the other that takes it near c; to make the second
critical point ¢y recurrent. We alternate the two types of steps in the construction of the
sequence (G,)n>0 to obtain our counterexample.

The following proposition describes the passage near c;.

Proposition 3.4.1. Let the family G, with n > 1 satisfy conditions (3.14) to (3.19) and
0< A <A <A

Then there exists a subfamily G,1 of G, satisfying the same conditions and such that there
exists 2t, < p < t,y1 with the following properties
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1. max
YE[an+1,8n+1]

)‘117 < dp(’w < )‘]22 fOT‘ all 7€ [OénJrlaﬁnJrl]'

log }g;(r)’ — zﬁ logd,—_1(7)| < log Ay —log A;.

di, 1(7) > A for all v € [api1, Bnsi] and l=1,....,p—1—t,.

dpi(7) > N for all v € [ani1, Bnya) and L =1,... t,y1 — p.

dtn,tn+1—tn (7) > )‘thrl_tn fOT CLZZ Y € [an-f-laﬁn-i-l]'
Proof. This proof follows a very simple idea, to define the family G, with
Spi1 = SIS I I,

as described by properties (3.15) and (3.19). For ky and ks sufficiently big there exist ko
such that the conclusion is satisfied for p = t,, + k;.

Let us apply Proposition 3.3.2 to S,, a,, and 3,. Let ky = k+ 1, \g = }g’%(r)} and
A3 = |gt,(1)|. By inequality (3.14)

0< A <A< A< A
therefore there exists gy € (0, 1) such that

(1 + 60) 10g /\0 — lOg /\2 < (1 — 80) IOg /\0 — 10g )\1
(1 —80) 10g)\3 (]. ‘I—Z‘:Q) lOg/\g ’

We choose 0 < £ < ¢ such that

lOg /\2 — lOg )\1

<
c 8log \g

Let us recall that
E(*}/l) = S,Jé“cl =< Sn-i—l X 2 < E(’}/Q) = Sn]§102. (320)

Using Lemma 3.3.6 and Corollaries 3.3.1 and 3.3.2 there exists Ny such that if k; > Ny
then the first and the third conclusions are satisfied provided [ay, 11, Bns1]C[V1, Y2)-

Let y(v) € I with i(y) € LIPI, x ¥ and ' = g,(x). By Corollary 3.3.1, Lemma 3.3.6
and inequality (3.11) there exist Ny, Nj > 0 such that if k&; > Ny and ke > N{ then for all
v € 1,7

)\ng(lJrE) < |1 _y/‘ < )\g(szl)(lfs)’ (321)

as y € I3(ks — 1)\ I3(k2).

Let us recall that g,(z) = 3", _, ar(v)2* with a; continuous and g.(c1) =0, gi(c1) #0
for all v € [, /'] and ¢; is continuous. Therefore there exist constants M > 1, § > 0 and
Ny > 0 such that if k; > Ny and 7 € [y1,72] then

MY r—c)? < 1—g(x)] < M(z—c¢)?*and

MY (z—-¢) < }gfy(:p)} < Mz —c) (3.22)
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for all z € (¢; — 6, ¢; +6). Using inequality (3.21) there exists N such that if ky > N| then
11— /| < M~15? therefore

k
2 (14e

k2_1(1—5)

M7 < g ()] < MBS

Let ky; > max(t,,, No, N1, Na) and ks > max(N/, N7). Lemma 3.3.4 shows that S,;115°
is minimal. We may therefore apply Proposition 3.3.2 with S = Sn[§1+11§2 using also
inequality (3.20). Let k3 = k and «,,1; and (3,41 be the new bounds for v provided by
Proposition 3.3.2. Let us recall that p =1, + k; and v, = gQLH(cQ) for all n > 0, therefore

i(v,) € LIP x ¥ so we may set y = v, and y' = v,41. Let us remark that
dy(7) = dp-1(7) - g5 (y)] for all 7 € o, Buta]-
By the choice of k; and ko, for all v € [ay41, Bnti]

—22(1+¢) B2 (1)

M2 AP0 < dy(y) < MNPV N3 .

Therefore the second conclusion is satisfied if
3 k
plog A1 < —3 logM + (p—1)(1 — ) log Ao — 52(1 + ) log A3

and
ko — 1

3
plog Ay > alog]\/[—i—(p—l)(l—l—g)log)\o— (1 —¢)log As.

We may let p—oo and g—;—m so it is enough to find 1 > 0 such that

logh1 < (1—¢)logAg—n(1l+¢)logA; and
loghy > (1+¢)logho—n(1—¢e)logAs.

The existence of 7 is guaranteed by the choice of ¢ < &.

Again by inequality (3.14), Lemma 3.3.6 and Corollary 3.3.2, if k3 and k3 are sufficiently
big then the last two conclusions are satisfied. If k3 is sufficiently big then by Corollary
3.3.1 inequality (3.18) is also satisfied. O

The following proposition describes the passage near cs.
Proposition 3.4.2. Let the family G,, with n > 1 satisfy conditions (3.14) to (3.19) and

A > 0.

Then there exists a subfamily G,1 of G, satisfying the same conditions and such that there
exists t, < p < t,o1 with the following properties

1. }95(02) — eo| <A for all y € [y, Buya]-

2. dtn,l(’w > )‘l fOT‘ all Y € [OénJrlaﬁnJrl] and | = 17 s '7tn+1 - tn-
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3. dpt,—p(7) > XNmt17P for all v € [ang1, Boyal]-

Proof. Once again, we build the family G, using the prefix of the kneading sequence
Spi1 = SpI S, I 1153

and show that we may choose ky such that if ky and k3 are sufficiently big then the
conclusion is satisfied for p = t,, + k.
We apply Proposition 3.3.2 to S,,, a,, and 3,. Let ky =k 4+ 2, \g = }g’%(r)} > )\ and

S = S, I
In the sequel ky is chosen such that €(S”) = 1 therefore k(vyy) = Sp,15° < 5" ... so
Sp4115° is minimal if &y — 1 > ko > ¢,,.

Indeed, suppose that there exists j > 0 such that o7 (S,;115°) < S, 115°. Let us recall
that t,, = |S,| and S,75° is minimal, using property (3.19) of G,,. A similar reason to the
proof of Lemma 3.3.4 shows that j can only be equal to ¢, + k1 so

S < S,
which contradicts S,13° < S"... as k; > ko + 2. Moreover
k(v1) = Suls' rer = Spii I < k(12) = S, 1y e

and i’ = I25'c; < I3S5'cy = 1" < ¢y are realized for all y € [y1,72], using Lemma 3.3.3. Let
us remark that g, has no homterval as v;, = r, using Singer’s Theorem 3.2.3. Therefore

lim g, (2(2")) = ¢

ko—o00

as g, (2(")) = x(0i") < ¢ is increasing with respect to ks and

{ZE >0 | _[25,02 <1 <cy for all ky > O} = @

Let ko be such that |ca — (z(0i”))| < A. Using Corollary 3.3.1 and the continuity of ¢; and
of x(01") < x(ai') < ¢y there exists Ny > 0 such that if k1 > Ny then

lco —z| < A

for all v € [y1,72) and z € [z(0i"),x(07’)]. Lemma 3.3.5 applied to " and i" yields 6 > 0
such that if [ =¢,, + ko + 4 then

f < ‘(gg‘)’ (x)) <p (3.23)

for all v € [y1,7], € [x(¢),z(i")] and 7 = 1,...,l. Lemma 3.3.6 provides N; > 0 such
that if k; > N; then

(XY < dy, j(7) for all y € [y1,79) forall j=1,... ky — 2. (3.24)
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As X > ) there exists also Ny > 0 such that
0—1)\N2—2+l < (A/)N2—2.

Let ky > max(ke + 1, No, N1, Np) and S” = SnlflS’. Let us remark that S”15° = S, 115°
thus we may apply Proposition 3.3.2 to S”, 7, and ~,. Let «a,,.1 and [,,1 be the new

bounds for v provided by Proposition 3.3.2 and k3 = k.
As gb(cz2) = v, and oP~t (S”Ié”’ .. ) =0LS'I,...

;(c2) € [x(0"), z(01')]

for all v € [a11, Bny1] thus the first conclusion is satisfied. Moreover, using inequalities
(3.23) and (3.24)

N < d, i(7) for all ¥ € [pi1, Buga] and j=1,...,|5" | =k —2+1.

Using Lemma 3.3.6 and Corollary 3.3.2, for k5 sufficiently big the last two conclusions are
satisfied. If k3 is sufficiently big then by Corollary 3.3.1 inequality (3.18) is also satisfied.
O

3.4.2 Some properties of polynomial dynamics

Let us recall some notation introduced in the previous chapter. For any set £ C C, we
defined the a-neighborhood of E by

E.o=B(E,a)={r € C|dist (z, F) < a}.
One may easily check that if f, g : Q — C with QCC and 6 > ||f — ¢|~ then for all BCC
9~ (B)Sf ™ (Bys). (3.25)

Using this simple observation we show that in a neighborhood of an ExpShrink polynomial
(see Definition 2.1.3) some weaker version of Backward Stability (see Definition 2.1.4) is
satisfied, see Proposition 3.4.3. Let us first show that the Julia set is continuous in the
sense of Lemma 3.4.1. For transparency we introduce additional notations. We denote by
Cy4lz] the space of complex polynomials of degree d. If f(z) = Zf:o a;z" € Cyl2] let us also
denote
/] = max |a;].

By convention, when f € C,4[z] and we compare it to another polynomial g writing |f — ¢
we also assume that g € Cylz].

Let us observe that the coefficients of f* = fo fo...o f, the n-th iterate of f, are
continuous with respect to (ag, ai, . .., aq) € R4 for all n > 0. Therefore given f € Cyl2],

m > 0 and € > 0 there exists § > 0 such that if |f — g| < ¢ then

’fi—gi’ <eforali=1,...,m.
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Given a compact KCC, the map R4 3 (ag, ay, . ..,aq9)—f € Cyl2] is continuous with
respect to the topology of C(K,C). Therefore for all f € Cy[z], ¢ > 0 and m > 0 there
exists 0 > 0 such that if | f — g| < ¢ then

Hfi—g"HOQK<5forallz':1,...,m. (3.26)

Lemma 3.4.1. Let f € Cylz] with d > 2 and such that its Fatou set is connected and let
J be its Julia set. For all € > 0 there exists § > 0 such that if |f — g| < 0 then

Jgg‘]—l—a-

Proof. The Fatou set of f is the basin of attraction of co and J is compact and invariant.
Let |J]| = ma}<|z|, then for all M > |J|
ze

J={z€C||f"(z)] <M foralln>0}.
Let f(z2) = Zf:o ;7 € Cylz]. There exists R > 1 such that if | f — g| < 3|aq| then
<R
Indeed, it is enough to choose
d—1
R > 4d + 2|ag| ™" <1 +) |ai\>
i=0

and check that if |z| > R then [g(z)| > |2| + 1.
Let T = {z€C|dist(z,J) >c}. As T is compact and contained in the basin of
attraction of oo, there is m > 0 such that

lf"(2)] >R+ 1forall zeT.

Let K = B(0, R+ 1) a compact such that J,., J,CK if | f — g| < %]ag|. Inequality (3.26)
yields 0 < 6 < 3|aq| such that if | f — g| < ¢ then

Hfi—giHooK <lforalli=1,...,m.
Therefore by the definitions of R and m, if |f — g| < ¢ then
lg"(2)] > Rforall z€T

thus J,NT = 0. O

Remark 3.4.1. The hypothesis f polynomial and its Fatou set connected are somewhat
artificial, introduced for the elegance of the proof. It may be easily generalized to rational
maps with no parabolic periodic points and no rotation domains.
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Proposition 3.4.3. Let f be an ExpShrink polynomial satisfying the hypothesis of Lemma
3.4.1. There exists 6 > 0 such that for all 0 < r < § there exist N > 0 and d > 0 such that
for all g with |f — g| < d and z € J,

diam Comp gV (B(z,9)) < .

Proof. Let us denote J the Julia set of f. Let o > 0 and Ag > 1 be provided by Definition
2.1.3 such that for all z € J

diam Comp f7" (B(z,19)) < A" for all n > 0.
Let 6 = 7 and choose N > 1 such that
NN <
Inequality (3.26) provides dy such that if |f — g| < dp then
|fY(2) = g"V(z)] <6 for all z € Jyp.

Lemma 3.4.1 yields d; > 0 such that if |f — ¢g| < d; and z € J, then there exists 2’ € J
such that |z — 2’| < 2§ therefore

B (2,28) CB (2,r) .
We choose d = min(dy, d;) and g € Cy[z] with |f — g| < d. Using inequality (3.25)
diam Comp g~ (B(z,6)) < AN < r for all z € J,,.
U

Corollary 3.4.1. Let f satisfy the hypothesis of Proposition 3.4.3 and € > 0. There ezist
d,0 > 0 such that if |f — g| < d then for all z € J, andn >0

diam Comp g " (B(z,0)) < e.

Proof. Let us use the notations defined by the proof of Proposition 3.4.3. It is straight-
forward to check that f has Backward Stability and that, by eventually decreasing rq, we
may also suppose

diam Comp f~" (B(z,79)) < € for all z € J and n > 0.

Let m > 1 such that
Ap <0

Inequality (3.26) provides dy such that if |f — g| < dp then

|/1(2) —g'(2)| <dforall z € Jpy and i =1,...,m.
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Let dy, d and g be as in the proof of Proposition 3.4.3. By inequality (3.25), for all z € J,
diam Comp g~ (B(z,9)) < 6

and '
diam Comp g~ " (B(z,9)) < e foralli =0,...,m.

For some z € Jg, let W € Comp g™ (B(z,9)) and z; € W N J,. Then
WCB(z1,9)
and the proof is completed by induction. O
Let us show that the hypothesis of Lemma 3.4.1 is easy to check for polynomials in Gj.

Lemma 3.4.2. If g, € Gy and its second critical orbit (v,),~, accumulates on a repulsive
periodic orbit then g, satisfies the hypothesis of Lemma 5.4.1. Moreover, if (Un)nzo is
preperiodic then g, has ExpShrink.

Proof. By Theorems II1.2.2 and II1.2.3 in [1] the immediate basin of attraction of an
attracting or parabolic periodic point contains a critical point. But ¢; is preperiodic and
(Vn),,> accumulates on a repulsive periodic orbit thus it cannot converge to some attracting
or parabolic periodic point. Using Theorem V.1.1 in [1] we rule out Siegel disks and Herman
rings as their boundary should be contained in the closure of the critical orbits which is
contained in [0, 1] for all g, € Gy. Using Sullivan’s classification of Fatou components,
Theorem IV.2.1 in [1], the Fatou set equals the basin of attraction of infinity which is
connected for all polynomials by the maximum principle.

If (vn),>o is preperiodic then g, is Semi-Hyperbolic therefore by Theorem 1 it has
ExpShrink. O

3.4.3 A counterexample

Using Propositions 3.4.1 and 3.4.2 we build a sequence of families (G,,), -, which converge to
a 2-modal polynomial g that is Uniformly Hyperbolic on repulsive Periodic orbits (U H P).
Its first critical point ¢; is non-recurrent as g(c¢;) = 1 and 1 is a repulsive fixed point. The
second critical point ¢, is recurrent and it does not satisfy the Collet-Eckmann condition.
Therefore g does not satisfy the Recurrent Collet-Eckmann condition (RCE).

We obtain the following theorem which states that the converse of Theorem 1 does not
hold.

Theorem 2. There exists an UH P polynomial that is not RCE.

The proof that g has UH P is analogous to that of Theorem 1. As g is not RCE we
have to modify some of our tools like Propositions 2.2.2, 2.2.3 and 2.3.1. The polynomial
go is Collet-Eckmann and Semi-Hyperbolic thus RC'E. By Theorem 1 gy has UHP and
ExpShrink. Choosing the family G; in a sufficiently small neighborhood of gy we show
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two contraction results similar to Propositions 2.2.2 and 2.2.3 that hold on G;, Corollary
3.4.2 and Proposition 3.4.4 below. As g € G; we may choose constants yu,6,e, R and Ny -
as described in the final part of Section 2.3 - that do not depend on g.

The main idea of the proof of Theorem 2 is that in inequality (2.17) the right term
may be much bigger than the left term, see also Lemma 3.4.4. This means that when
pulling back a ball B to B~! near a second degree critical point, the diameter of B~! is
comparable to the square root of the radius of B but |f’(z)|_1 may be as big as we want
for some z € B~!. This is the main difference between growth conditions in terms of the
derivative or in terms of the diameter of pullbacks.

An immediate consequence of Proposition 3.4.3 replaces Proposition 2.2.2 in the proof
of Theorem 2.

Corollary 3.4.2. There exists 0 > 0 such that for all 0 < r < R < there exist § > «
and N > 0 such that for all v € [ag, 8] and z € J the Julia set of g,

diam Comp g;N(B(Z, R)) <.

Proof. Using Lemma 3.4.2, go satisfies the hypothesis of Proposition 3.4.3. Using the
continuity of coeflicients of g, (3.13) there exists 5 > aq such that

90— g,] < d for all 5 € [a, B].

O

The following consequence of Corollary 3.4.1 is a weaker version of uniform Backward
Stability. We use it only twice therefore it can replace Proposition 2.3.1 in the proof of
Theorem 2. The proof is analogous to the proof of the previous proposition.

Corollary 3.4.3. For all € > 0 there exist 3 > oy and 6 > 0 such that for all v € |, (]
and z € J the Julia set of g,

diam Comp g "(B(2,9)) < ¢ for alln > 0.
Let us compute en estimate of the diameter of a pullback far from critical points.

Lemma 3.4.3. Let h : B(z,2R) — C be an analytic univalent map and U > z a connected
open with diamU < R. If
W(z)

Wiy =

sup
z,y€B(z,2R)

then
diam U < D |W'(2)|”" diam h(U).

Proof. Let x,y € OU such that |z — y| = diam U. Let a = h(z), b = h(y) and consider the
pullback of the line segment [a, b] that starts at z. Then there exists ¢y € (0, 1] such that

[, toa + (1 — to)b]Ch (B(z, 2R))
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and such that the length of h=! ([a, tga + (1 — t()b]) is at least diam U. We also notice that
(571 (ta+ (1= 0)1)| < DI ()| for all ¢ € [0,4

which completes the proof as |(tg — 1)a + (1 — to)b| < diam h(U). O

Proposition 2.2.3 relies on inequalities (2.16) and (2.17). We remark that they are
satisfied uniformly on a neighborhood of gy. By the Koebe lemma, the definition (2.16) of
¢ does not depend on f. Let us prove the uniform version of inequality (2.17) in G.

Lemma 3.4.4. There exist M > 1, By > «g and ryy > 0 such that for all v € [ag, Bu]
if W is a connected open with diam W < ry;, W1 a connected component of g;l(W) and
x € W then

diam W < M ¢/ (x)| " diam W.

Proof. Let v € [ap, 1], * € W~ and suppose
3diam W~ < dist (W_l, Crit)

where we denote by Crit the set of critical points {cy,co}. Then by the Koebe lemma
the distortion is bounded by an universal constant M; > 1 on the ball B (z,2 diam W™1).
Using Lemma 3.4.3

diam W~ < M, }g;(x)}_l diam W. (3.27)

Let us remark some properties of the map f, : C — C defined by f,(z) = bz? for all
z € Cand b > 0. Let U be a connected open and V = f,(U). If 3diamU > dist (U, 0)
then there exist universal constants My, M3 > 1 such that
bMy ' diamU < sup|fi(z)] < bMydiamU,

zeU

bM; ! (diamU)® < diamV < bM; (diamU)>.
Let us also remark that using equality (3.13) if v € [ap, £1] and ¢ € Crit then

gv(x) = g,(c) + gVT(C)(x —c)?+ %T(d(x — ).

As go(c) # 0 and g,(c), g5(c) and g7'(c) are continuous there exist ry; > 0, By > ap and

M, > 1 such that if v € [ag, Ba], dlam W < 7y, and
3diam W > dist (W_l, Crit)
then

M diam W' < sup |g(z)] < Mydiam W,
) zeW—1 9 (328)
M (diamW~1)* < diam W < M, (diam W—1)~.

The previous inequality together with inequality (3.27) complete the proof. O
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We may now prove a uniform contraction result on a neighborhood of gy in G. It
replaces Proposition 2.2.3 in the proof of theorem Theorem 2.

Proposition 3.4.4. For any 1 < Ay < X and 0 < 1 there exist § > ag, § > 0 and
N > 0 such that for all v € [ap, 3], 0 < R <, n> N and z € J, the Julia set of g, if

W € Comp g5 (B(z, R)) and there exists x € W such that ’(g;‘)/ (x)) > \" then

diam W < ORN\;". (3.29)

Proof. Let us fix z € C and D € (1,\/)g). Let € € (0, 1) be provided by inequality (2.16).
Let also rp; > 0 be small and M > 1 provided by the Lemma 3.4.4. Let [ > 1 such that

IMI'DINTT < 9N, for all j > 1. (3.30)

Let us define N = 2. There exists r; < rj; such that forallt=1,2, k=1,..., N and
any connected component W of g5 (B(c;,4r1))

diam W < 2e dist (W, Crit) .

An argument similar to the proof of Proposition 3.4.3 and the continuity of the critical
points and of the coefficients (3.13) of g, show that there exists by > «y such that for all
v e [Oéo,bo],’i: 1,2 and k = 1,...,N

9, " (B(ci,2r1)) Cgo ™ (B(ei, 4r1)) -

There are only a finite number of connected components of g;* (B(c;,4r;)) for all i = 1,2
and k£ = 1,..., N. Therefore by the continuity of the critical points there exists b; > ay
such that for all v € [ag,b1], ¢ = 1,2 and k = 1,..., N all connected components of
95 % (B(ci, 2r1)) satisfy inequality (2.16).
Corollary 3.4.3 provides by > g and § > 0 such that for all v € [ag, bs], 2 € J, and
k>0
diam Comp g;k(B(z, 9)) < er.

Let us define 8 = min (B, bo, b1, b2) and fix v € [ap, 5], z € J, and n > N. Then
diam Comp g;k (B(z, R)_k) <erp<rforall 0 <k <n.

Let us also fix W and z as in the hypothesis. Denote z, = g7 *(x) € W), = g2~ *(W) for
all k=0,...,n.

Let 0 < by < ... < k; < N be all the integers 0 < k£ < n such that W}, does not satisfy
the inequality (2.16). As ery > diam W,

ry > dist (Wy,, Crit) for all 1 <i <t

Then for all 1 < ¢ <t there exists ¢ € {cy, ¢o} such that Wy, C B(e, 2rq). By the definition
of r
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We may begin estimates. For all 0 < j < n with j # k; for all 1 <14 <¢, W; satisfies
the inequality (2.16) so the distortion on W; is bounded by D. Thus

diam W; < D|g/,(z;)|~" diam W;_;. (3.32)
If 7 = k; for some 1 <14 <t we use Proposition 3.2.2 to obtain

diam W; < Mg (;)|~" diam W;_,. (3.33)

Let us recall that z,, = = with ’ (gl})/ (x)’ > A" and that W, = B(z, R) so diam W, = 2R.
If ¢t > 2 inequality (3.31) yields It < 2[(t—1) = N(t—1) < n. Consequently, asn > 2] = N,

t<
I

Multiplying all the relations (3.32) and (3.33) for all 0 < j < n we obtain

-1
diam W, < M!'D"? ’(gz)/ (x,)| diam W,
< 2M™'D"\T"R
< ORN".
The last inequality is inequality (3.30). O

As a direct consequence of inequality (3.31) we obtain the following corollary.

Corollary 3.4.4. Assume the hypothesis of Proposition 3.4.4. If there exist

—1<k<k<n

such that v € g8 (W) and ¢ (W) N {ci, co} # O then ky — ky > N therefore condition
n > N 1is superfluous.

Let us compute a diameter estimate similar to (3.11).

Lemma 3.4.5. There exist 6 > 0 and N > 0 such that for all v € [ag, (1], k > 1 and
x € I3(N) with i(x) = I§I.... where I, € {I5, 13}, the following statement holds. If
x € WCC a connected open such that diamg@(W) <6 foralli=0,...,k—1 then

diam W < A% diam glj(W)
Proof. Let us denote 2; = ¢! () and W; = g2(W) for all i = 0,..., k. Using Lemma 3.3.6,

inequalities (3.14) and Lemma 3.3.5 for i, = Iscq, iy = I3co if I, = I, and iy = I3¢o, iy = I$°
if I, = I3 there exists Ny > 0 that does not depend on v such that if N > Ny then

(94 (@) > W)
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Let D € (1, )‘7/) and € > 0 given by inequality (2.16). Using Lemma 3.4.3 it is enough
to show that B(xz;,2d) satisfies inequality (2.16) for all i =0,...,k — 1.
Let us recall that g,(y) < yforally € (¢co,1) = I3\{1}. Therefore foralli =0,...,k—1

dist (x4, {c1, ca}) > dist (zg—1, {c1, c2}) > dist (x(I3¢1), {c1, c2}) -

Let
d= min dist (x(I3¢1),{c1,c2})

~YE[0,51]

and recall that € does not depend on . Therefore there exists

d
TR

such that if dist (y, {c1,c2}) > d then B(y,20) satisfies inequality (2.16). O
The following corollary admits a very similar proof.

Corollary 3.4.5. There exist 6 > 0 and N > 0 such that for all v € |, (1], k > 1 and
x € I3(max(k, N)) the following statement holds. If x € WCC a connected open such that
diam g! (W) < 6 for alli =0,...,k —1 then

diam W < A™* diam g¥(W).

Let us recall that all distances and diameters are considered with respect to the Eu-
clidean metric, as we deal exclusively with polynomial dynamics. Let us state Lemma 2.2.1
in this setting.

Lemma 3.4.6. Let f be a polynomial, 2 € C and 0 < r < R. Let W € Comp f~! (B(z, R))
and W' € Comp f~1 (B(z,r)) with W CW. If degy, (f) < u then

diam W’ r\ »
GV 39 (— "
diam W < R)

Let us set some constants that define the telescope construction used in the proof of
Theorem 2. Let p = 2 and 0 = %32_”. Let 99 > 0 be provided by Corollary 3.4.2 and
By > g, 61 > 0, N7 > 0 be provided by Proposition 3.4.4 applied to Az, Let & > 0, Ny > 0
be provided by Lemma 3.4.5, §” > 0, N3 > 0 be provided by Corollary 3.4.5 and Gy > «q,
ry > 0 and M > 1 defined by Lemma 3.4.4.

Let us observe that

Ifo < Ilcg < < ]202 < Igo < IQCl < 2 < ]301 < I?C:o
and that all these sequences are continuously realized on [ag, §1]. Let us define

go= min (|lz(lic2) — a1, |x(Iaca) — 1|, |x(Lacr) — ol , |x(I3¢1) — cal)
Y€E[v0,81]
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therefore €9 > 0 is smaller than |c; — ¢s|, |¢1| and |1 — ¢y| for all v € [ag, £1]. We set
e =min (9,0, 8", rp1) (3.34)

Corollary 3.4.3 provides 3] > ag and d3 > 0 such that for all v € [ap, #1] the diameter
of any pullback of a ball of radius at most d, centered on .J, is smaller than . Let

B = min (41, 5y, 81, Bu) and
R = min (507 51, 52)

such that Proposition 3.4.4 applies for balls centered on J, of radius at most R, for all
v € |, B5]. Moreover, Lemma 3.4.5 and Corollary 3.4.5 apply and inequalities (3.27) and
(3.28) hold on all pullbacks of such balls.

Corollary 3.4.2 applied to r = R yields 3} > oy and Ny > 0 the time span needed to
contract the pullback of a ball of radius R into a component of diameter smaller than R
for all v € [, 3]. We define

Let us also prove a version of Corollary 2.3.1 for all g, with v € [, 8] that works
together with Corollary 3.4.4. Let us recall that degy- g’j is defined by equality (2.28).

Corollary 3.4.6. For all v € [ag, 3], 2 € J,, 0 < 1r < R and (Wi)k>o a backward
orbit of B(z,r) = Wy, if d, > p, where dy = degmglj for all k > 0, then there exist
0 < ky < ky < n such that Wy, N {c1, o} # 0 and ¢y € W,.

Proof. By the definition of R, diam W}, < € < gy < |¢; — ¢o| therefore W, contains at most
one critical point for all & > 0. As u = p, = pe, there exist 0 < k; < ko < n such that
Wi, and Wy, contain exactly one critical point each. Suppose ¢; € W, therefore 1 € W,
for all 0 < k < ko which contradicts diam Wy, < e < ¢. O

Let us prove the main result of this section.

Proof of Theorem 2. This proof has two parts. The first part describes the construction of
a convergent sequence of families (G, ),~, of 2-modal polynomials with negative Schwarzian
derivative. Its limit ¢ does not satisfy the RC'E condition. The second part shows that g
has FxpShrink and it is very similar to the proof of Theorem 1.

Let us recall the construction of the family G;. It is described by the common prefix
Sy of its kneading sequences k() for all v € [ay, 51]. We defined Sy = IF°™ I3 so 5, <
k7 (Ifocl) which converges to ag = 0 as kp—oo. Using this convergence, inequalities
(3.14), Lemma 3.3.6 applied to v and Lemma 3.3.5 applied to i; = [;¢1, i, = [1¢5 to bound
} g;(vko)‘ there exists kg > 0 such that the following inequalities hold

By < max k! ([focl) < 3,

d,(k) > N for all v € [ap, 3] and k= 1,... ko + 1.
Again by Lemma 3.3.6, property (3.15) and inequalities (3.14), if & is sufficiently big then

d,(k) > N for all v € [ay, B] and k= 1,...,t; (3.35)
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where t; = ko + 1 + k; = |S1]. Let us choose ki such that the previous inequality holds
and such that ¢; > N; and

max (eR™,2My (OR) ™", €2 (OR) ™%, 2M;) < A~ (3.36)

where M; and M, are defined by inequalities (3.27) respectively (3.28). This achieves the
construction of the family G;.
For all £ > 1 we construct Gy, using Proposition 3.4.1 with

A< <<l
and Gop. 1 using Proposition 3.4.2 with
Ap=27"

Using inequality (3.18) the sequence (Gy,),~, converges to a map g = g,,. Let us denote

d(n) = du(v0) = |(g") (v)| and d(n,p) = dnp(70) = [(¢") (vn)| for all n,p > 0, where
v is the second critical value and v, = ¢™(v). For all n > 2 let p, = p be provided by
Proposition 3.4.1 or Proposition 3.4.2 used to construct G,. Therefore for all n > 1

tn < Pn+1 < thrl

where t,, = |S,| the length of the common prefix S, of kneading sequences in G,,. Let us
set to = 1. As vy € [ap, B,) for all n > 1

k=Fk(y) €S, xXforalln > 1.
Let us also recall that for all £ > 1
Sop = Sop1 Iy T IS
and that we may choose kq, ko and k3 as big as we need. We impose therefore for all k£ > 1
k1 > N3, ko > Ny and k3 > Ns. (3.37)

Let us remark that g(c;) = 1, g(1) = 1 and |¢’(1)| > 1 therefore ¢; € J the Julia set
of g and ¢; is non-recurrent and Collet-Eckmann. Let us remark that Ay—0 as k—oo
and vy € [agki1, Poxs1] for all & > 1 therefore the second critical orbit is recurrent. By
construction and inequality (3.11) the second critical orbit accumulates on r and on 1.
Therefore ¢y € J using for example a similar argument to the proof of Lemma 3.4.2. Let
us show that ¢y is not Collet-Eckmann. Indeed, by Proposition 3.4.1 for all £ > 1

d(par) < X <1
and pop—00 as k—oo. Therefore by Definition 2.1.2

g is not RCE.
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Combining inequalities (3.35) and (3.16), the third claim of Proposition 3.4.1 and the
second claim of Proposition 3.4.2

d(n) > \" for all n € U {tok, .- Parso — 1}. (3.38)

k>0
Let us check that for all m > 0 such that |g"(c2) — 2| < &
d(m) > \™. (3.39)

Let us recall that ¢ < gy by its definition (3.34) so |¢"(c2) — co| < € implies that v, =
g™ (¢cy) € I therefore k(m) = I, so there exists k > 1 such that

top < m < topy1

as Proposition 3.4.1 extends Sy, 1 to Sy, using only the symbols I, and I3 for all n >
1. Therefore m € {tog,...,poxr2 — 1} thus inequality (3.39) is a direct consequence of
inequality (3.38).

Let us show that g has ExpShrink. We use a telescope that is very similar to the one
used in the proof of Theorem 1. We make a minor change to the definition of type 2 as
Corollary 3.4.2 does not need to consider a ball of radius 2R. Let us reuse all notations
defined in Section 2.4 and redefine the three type of blocks.

Type 1 Blocks with R’ =" and N’ such that d(n, R, N’) > 1 and ¢y € Wyr,;.

Type 2 Blocks with R' = R, N’ = min(Ny, N —n) and d(n, R, N —n) < p.

Type 3 Blocks with d(n, R, N') > 1, ¢c; € Wxr41 and d(n, R, N —n) < p.

Another minor modification of the telescope is that if ¢ > 0 and T;_; = 2 then we set
r,=0R

instead of the eventually smaller diameter of W; . This is harmless for the construction
and estimates. We use Corollary 3.4.2 instead of Proposition 2.2.2 and Corollary 3.4.6 in-
stead of Corollary 2.3.1 to construct the telescope. We cannot however replace Proposition
2.2.3 by Proposition 3.4.4 as ¢y is not Collet-Eckmann. We find Ay such that inequality
(2.30) holds for all blocks of the first and the third type. This also implies inequality (2.32)
thus it completes the proof as all estimates remain unchanged.

Let us fix ¢ > 0 such that T; € {1,3}. Suppose that ¢ > 0 and T;_; € {1,3} also,
therefore

C2 € VVz‘—l,N{_l—f—lgVVi,l = B(2,, R})~' = gNi/ (sz‘,Nngl)QB(ZniaR)fl-

But c; € W;n/41 also and diam B(z,,, R)™! < ¢ by the definition of R. Therefore by
inequality (3.39)
d(N}) > \Ni
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so by Corollary 3.4.4 we may apply Proposition 3.4.4 to obtain

/

diam W, y/ < ORI

We have proved that for all i > 0 with 7j_; € {1, 3} inequality (2.30) holds for all Ay < Az.
If i =0 or T;,_; = 2 then R, € [AR, R]. Therefore it is enough to show that there exist
Ao > 1 such that for all z € J, r € [R,R], n > 0 and W a connected component of
g~ (B(z,7)) the following statement holds. If v € W and there exist 0 < m < n such that
g™(W) N Crit # () then

diam W < 6rA;". (3.40)

Again, if d(n) > A" using Corollary 3.4.4 and Proposition 3.4.4 the previous inequality is
satisfied for all 1 < Ay < Az. Therefore using inequality (3.38) we may suppose that there
exist k' > 1 such that

Dokt << lopr.

Let us denote p = pops, t = tow_y and Wy, = ¢gF(W) for all k = 0,...,n. By the
definition of p in Proposition 3.4.1
2 < p. (3.41)

Using Corollary 3.4.5, inequalities (3.37) and (3.36)
diam W, < A~ P=17D) diam Wyo1 < A1t - R

As t; > Nj, inequality (3.16) lets us apply Proposition 3.4.4 to B (v, diam W;) which
combined to the previous inequality shows that

diam W < oA~ (P172) diam W, _,. (3.42)
Using Lemma 3.4.5 and eventually Corollary 3.4.5 if v, € I and inequalities (3.37)
diam W, < A~""P) diam W, = 22~ Py, (3.43)

Therefore the only missing link is an estimate of diam WW,_; with respect to diam WW,,.
We distinguish the following two cases.

1. dist (Wy—1,¢1) < 3diam W,_;.
2. dist (W,_1,¢1) > 3diam W,,_;.

Suppose the first case. The by the definition (3.34) of ¢ we may use inequality (3.28)
therefore )
diam Wp,1 < (M4 diam Wp> 2
< (2Myr)2 A2
using inequality (3.43). Using also inequalities (3.42), (3.41) and (3.36) we obtain

NI
NN

diamW < OA"3r (2AMyr—1)
< OA e

-
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Therefore in the first case it is enough to choose \y < Az
Suppose the second case. Using inequalities (3.42), (3.41) and (3.36) we may compute

diam W < ox~(r~17%)
< OX20R < OA"=r (3.44)
= 9)\_”(%)7“.

This is not enough as A\ should depend only on g. We may remark that we are in position
to use inequality (3.27) for W), therefore

diam W,_; < M, |g'(vp—1)| " diam W,

Let us compute an upper bound for |¢'(v,_1)| " = d(p—1,1)~'. Using the first two claims
of Proposition 3.4.1

dip) ' =dlp—-1)""dp—1,1)"" < AP <N

and
d(p—1) < 2=yt

where we denote A\, = |¢'(r(7))| and v = lfoz’y.

Combining the previous inequalities
d(p—1,1)7" < \?+2)
therefore using also inequalities (3.42), (3.43), (3.41) and (3.36)

diam W < 2M oA~ (P=175) \p(42) \~(n-p),.
< O(2My)AvptptlEg \ny
< O\ THPWE3))

If n > 2p(v + 3) then inequality (3.40) is satisfied for all Ay < A2. If n < 2p(v + 3) then
using inequality (3.44), inequality (3.40) is satisfied for all

1
o < AT < \%n

which completes the proof. O

3.5 RCE is not topological for real polynomials with
negative Schwarzian derivative

Let H : [0, h] — Py be equal to the family G defined in the previous section. Let us define
another family of 2-modal maps H : [0, /'] — P, in an analogous fashion. Let T' € R;[z] be
a degree 7 polynomial such that 7'(0) = 0 and such that 7"(x) = (x+1)3(z—1)3. Therefore
T has two critical points —1 and 1 of degree 4 and T'(—x) = —T'(x) for all x € R. Let
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yo = T(—=1) and xo > 1 such that T'(zg) = yo. Let A’ > 0 be small and for each v € [0, /']

. . —T(—xo—"
two order preserving linear maps R (z) = z(2zo +7') — 29 — 7 and S, (y) = W;O_%
that map [0, 1] onto [—x¢ — 7/, xo] respectively [T'(—zg — '), T'(zo)] onto [0,1]. One may
show by direct computation that if a real polynomial P is such that all the roots of P’ are
real then P has negative Schwarzian derivative. Therefore

iL’Y’ = S’Yl (@) T (e} R’Yl (- PQ fOI' all ")// c [O, h/]

We define H (') = h.s for all 4/ € [0, 4]. Let us remark that z, € (2,2) therefore all three
fixed points of hg are repulsive. Let 7(7') be the only fixed point of ;W in (0,1) and ¢ < é&
its critical points. The proofs that for A" > 0 sufficiently small H satisfies properties (3.3)

to (3.6), Lemmas 3.3.1 and 3.3.2, that it is natural, that 7, ¢ and & are continuous and
that for all n > 1

7(7') — h%,(é2) has finitely many zeros in [0, ']

go exactly the same way as for G. As h{(r(0)) = =3, hi(1) =9, yo = 32 and 3 < zy < 2
one may compute that

L loglhy(Wl _ | _ §M
21og M O)] ~ ™ 4105 (7 (0|

0g

We may also suppose h > 0 and A’ > 0 sufficiently small such that there exist 1 < X < X,
1 <A< X and 6; < 65 such that for all v € [0, h] and 1" € [0, I]

/~\’ < mm(’ff’w(O) : hg(r) : hll(l)’) and
Vo< mm(hg,(())), hg,(f)), h;,(1)))
and ) ’
L logn W 3 log |1, (1)
2log [l (r()] ~ 7T T A, ()| (3:49)

Let us denote k(v) the second kneading sequence of h., and k(') the second kneading
sequence of h.,. We construct two decreasing sequences of families of 2-modal maps (H,,)n>1

and (H)n>1. Let M, : [an, B,] — P2 with H,(y) = H(y) for all v € [ay, 8,] and H,, :
[, Bl] — Py with H,(v) = H(y) for all 4" € [, B,]. By construction we choose that for
all n > 1

k(o) = k() and k(8,) = k(3,).
Let us denote v = hy(c3), ¥ = hoy(é) and v, = h2(v), Un = BQL,(T)) foralln > 0, v € [, O]
/

and 7 € [o,, 3]. Let also dy(7) = ‘(h:)’ )|, du(+) = ‘(ﬁg,) @), dyp() = ‘(hg)' (vn)
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~ ~ /
and d,,(7) = '(hg,) (0n)| for all n,p > 0, v € [y, By) and v € [, B.]. The basic

construction tool is again Proposition 3.3.2 and we build the sequences (Hn)ﬂzl and (H)n>1
by specifying the common prefix S,, of the kneading sequences in ‘H,, and H,, for all n > 1.
We also reuse the notation t,, = |.S,| for all n > 1. In an analogous way to the construction

of the family G;, see inequality (3.35), we choose

_ gko+1 7k

such that . .
di(7) > A and di (7)) > N (3.46)

for all v € [y, 1], ¥ € [of, By] and k= 1,...,t; and

B < h and 3] <.

Let us describe the construction of the sequences (H,,)n,>1 and (H),>1 which satisfy
properties (3.15) to (3.19) and ) )
dp, () > A (3.47)

for all n > 1.
Let us recall that Proposition 3.4.1 employs twice Proposition 3.3.2 to construct a
subfamily G, ., of G, with
Spy1 = SpIN IE2 1),

Let 7o and 7} be provided by Proposition 3.3.2 such that k(o) = k(7)) = Spl3°. We use
the same strategy as in the proof of Proposition 3.4.1 to define both H,,.; and H,,,; with
the same combinatorics. Taking ki, ko and k3 sufficiently big we may control the growth

of d,(y) and a?m(fy’ ) uniformly for all t,, < m <t,.;. We let

k1
— >0
kQ —)77 b

p = t, + k1 and compute some bounds for d,(y) and dNP(v’ ). For transparency, let us denote

Ao = |B,(r)], Ao = ﬁgé(f) , A3 = |kl (1)| and A3 = ﬁ’%(l)’ As in the proof of Proposition
3.4.1 we obtain
1 1
khm . log dy(7) = log Ao — 5 log A3 for all v € [an41, Bni]- (3.48)
1—00 K1 n

We may observe that inequalities (3.22) hold exactly when ¢; is a second degree critical
point. We may however write similar bounds for H,,;;. By the same arguments there exist
constants M > 1, > 0 and Ny > 0 such that if k; > Ny and v € [, 5] then

M_l(l‘ — 61)4

<
M71(1E — 61)3 <
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for all z € (¢ — 0, 1+ 0), where 7/, ~ are the bounds for 4/ provided by Proposition 3.3.2
applied to S,, and ‘H,,. Therefore we obtain

1 3
lim —logd,(7') = log \g — — log A3 for all v € [, B\.1]- (3.49)
k1—oo kq 477

Using inequalities (3.45) and the limits (3.48) and (3.49) it is enough to choose
91 <n< 02
to obtain the following corollary of Proposition 3.4.1.

Corollary 3.5.1. There exist
O<)\1<1<)\2<min()\,/~\)

that depend only on Hy and Hy such that if H,, is a subfamily of Hy and H,, is a subfamily of
H, both satisfying conditions (3.15) to (3.19) and (5.47) then there exist Hyy1 a subfamily
of H,, and Hyiq a subfamily of H,, satisfying the same condition and 2t, < p < tn41 with
the following properties

1. dp(v) > A3 for all 7y € [ani1, Buta]-

2. dy(7) < N for all v € [y, 3]

3. dy, 1(v) > N for all v € [any1, Bnsa] and l=1,...,p—1—t,.

4o dy (V) > N for all ' € [y, B ] and1=1,...,p—1—t,.

5. dpi(y) > Al for all v € [any1, Brra] and 1= 1,... tyy1 — p.

6. dpi(y') > N for all o' € [y, Bhia] and L =1,.. . tyis —D.
Proposition 3.4.2 has an immediate corollary for the families H and H.

Corollary 3.5.2. Let the subfamilies H,, and H, of Hy respectively Hy with n > 1 satisfy
conditions (3.15) to (3.19) and (3.47) and

A > 0.

Then there exist subfamilies H,y1 of H, and 7:£n+1 of H, satisfying the same conditions
and such that there exists t, < p < t,y1 with the following properties

1. }hg’(@) — o < A for all ¥ € [, Buta]-

2. ;lg/(éz) — G| < A forall ' € |ay, 4, B, 1]

3. dtn,l(’w > )‘l fOT‘ all Y € [OénJrlaﬁnJrl] and | = 17 s '7tn+1 - tn-
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4o dp (V) > N for all ' € [y, B y] and 1 =1, ..ty — t.

For all & > 1 we define Hy, and Hayp, using Corollary 3.5.1 and Haogyq and ﬂQkJrl
using Corollary 3.5.2 with A = 27%. Let h be the limit of (H,)n>1 and h be the limit of
(ﬂn)nZL Then h is CE therefore RCE and the second critical point & of A is recurrent
but not CE therefore h is not RCE. Both h and h have negative Schwarzian derivative
and their second critical orbits accumulate on r and 1 respectively on 7 and 1. Moreover,
using Lemma 3.4.2, h and h do not have attracting or neutral periodic points. We may
therefore apply Corollaries 3.2.1 and 3.2.2 to obtain the following theorem that contradicts
Conjecture 1 in [10].

Theorem 3. The RC'E condition for S-multimodal maps is not topologically invariant.
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§A HAUSDORFF DIMENSION OF FRACTAL ATTRACTORS



Annexe A

On the Hausdorff dimension of
fractal attractors of unimodal maps
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Abstract. We consider C* infinitely renormalizable unimodal maps of the interval with non-
degenerate critical point. A recent result of Graczyk and Kozlovski (see [4]) shows that there is
o < 1 such that every attractor of such a map has Hausdorff dimension less than or equal to o.

We find a correspondence between the renormalization type and the kneading sequence. This
yields an algorithm that finds the quadratic map z — ax(1 — z) with a given renormalization
type. For periodic and preperiodic renormalization types we estimate the Hausdorff dimension
of the fractal attractor. The results suggest that the attractor of the Feigenbaum map has the
highest dimension.

A.1 Introduction

One-dimensional dynamics have been the subject of intense research during the last three
decades. Despite their apparent simplicity these models present an interesting mathe-
matical structure going far beyond the simple equilibrium solutions. They may arise as
time-discretizations of higher dimension problems. They are computationally accessible
and provide examples and counter-examples for a large spectrum of phenomena.

The simplest examples of one-dimensional dynamical systems are maps of the interval
and maps of the circle. On the interval unimodal and multimodal maps are considered
while on the circle homeomorphisms are usually studied.

Definition A.1.1. We say that a map f : I — I, where I = [a,b] is a compact interval,
s unimodal if

1. f is continuous,

2. f(a) = f(b) €01,
3. dc € (a,b) such that f is strictly monotone on |[a,c] and on [c, .

We say that f is C"-unimodal for r > 1 if f is C"-continuous and

4. fl(x) #£0if x #c.

If fis a C%-unimodal map we say that its critical point is non-degenerate if

f"(e) #0.

In the sequel, when not explicitly stated, we only consider unimodal maps on [0, 1] that
are increasing on the left lap [0, ¢) and decreasing on the right lap (c, 1].

Definition A.1.2. We define a family of unimodal maps as a path F : [a, ] — U', where
U' is the topological space of Ct-unimodal maps.

Note that F should be continuous with respect to the C! topology of 4! and that in
such a family, the critical point c¢(a) of F(a) is continuous on [«, 3]. One may check [9]
for the theory of families of unimodal and multimodal maps in its full generality - not
necessarily smooth maps or families, for example.

A computationally accessible, full family of unimodal maps is the quadratic family.
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Definition A.1.3. We define the quadratic family Q of unimodal maps by
Q={f.:10,1] = [0,1],a € [1,4]|fu(x) = ax(l — x)}.

Indeed a — f, is continuous in the C* topology and by Definition A.2.3 it is easy to
check that Q is a full family (f; = fi and f, = f4).

The understanding of high iterates of maps is a central problem in dynamics. The bal-
ance between expansion and contraction features plays an important role. In the quadratic
case, the high degree of iterates (as polynomials) induces expansion and the presence of the
critical point induces contraction. When the critical orbit accumulates on an attracting
periodic orbit, the dynamics is well understood (hyperbolic). Attracting periodic orbits
are the simplest example of attractors.

An attractor is an invariant set where a large part of the phase space accumulates. If f
is an unimodal map, a forward invariant compact set A is called a (minimal) metric attrac-
tor of f if its basin of attraction B(A) = {z € [0,1] | w(z) C A)} has positive Lebesgue
measure and A has no proper subset with the same property. A topological attractor is a
minimal forward invariant compact set A with B(A) of second Baire category.

The metric and topological attractors of a C? unimodal map with non-degenerate crit-
ical point coincide, see [5]. Unimodal maps with negative Schwarzian derivative are known
to have exactly one metric attractor. In particular, quadratic maps have exactly one at-
tractor - metric and topological. It is either an attracting periodic orbit, a transitive cycle
of intervals or a Cantor set of solenoid type, see [5]. The interesting case from the point of
view of the Hausdorff dimension is when the attractor is a Cantor set - we call it a fractal
attractor. This happens exactly when the quadratic map is infinitely renormalizable (see
Definition A.3.1). In [4], Graczyk and Kozlovski show that the Hausdorff dimension of
such an attractor is bounded by an universal constant o < 1. The Feigenbaum map is the
limit of the period doubling cascade in the quadratic family. Its renormalization type is
the simplest at any scale - period two renormalization. This work and [4] both suggest
that its attractor maximizes the Hausdorff dimension of fractal attractors in the quadratic
family:.

A.2 The Kneading Sequence

Symbolic dynamics arose as an attempt to study dynamics by means of discretizing the
phase space. One of its simplest forms is illustrated by the itinerary and kneading sequences
of unimodal maps of the interval. Let f be a unimodal map and c its critical point. Let
{[0,¢),{c}, (¢, 1]} be a partition of the interval [0, 1] corresponding to the monotonicity of
f. We associate the symbols of an alphabet A = {L, C| R} to the elements of the partition,
with respect to their order. We may assign to any orbit of the dynamics a sequence of
symbols of A. The dynamics of f on the orbit is represented by the left shift S.

Definition A.2.1. For f unimodal and x € [0, 1] we define the itinerary I,(x) of z, the
sequence (I,)o<n<n of symbols of A such that



90 §A HAUSDORFF DIMENSION OF FRACTAL ATTRACTORS
1. m=min{n > 0|f"(z) = c} €N,
2. I, = C if and only if f"(z) =c,
3. I,=Lif fr(r) <cand I, =R if f*(x) > c.

We define the kneading sequence K, of f by

Ky =1:(f(c)).

The map I conjugates the dynamics of f on [0, 1]\ {c} to the left shift S, that is

Li(f(z)) = S(Lg(x)),Vz # c, (A1)

where S(Ipl11s...) = I11515 . ... The shifts of Kf are the itineraries of the elements of the
post-critical orbit.
Let

Z = {I;(x)|f unimodal, z € [0, 1]}

be the space of itinerary sequences of unimodal maps. We define a total order on [ - a
signed lexicographic order - that makes I increasing for each f unimodal (see Proposition
I1.3.1 in [9]).

Let us first define a sign function € : A — {—1,0,1} - that corresponds to the sign of
the derivative of a quadratic map - by €(L) = 1,¢(C) = 0 and €(R) = —1. We extend € to
finite sequences Iyl ... I, of symbols of A by

6([0]1 e In) = G(IZ)

0<i<n
If feQand [;(v)=1Ily...I,...then
e(Ioly ... I,) = sgn(f™) (x).

Observe that for all I # I' € Z, I cannot be a prefix of I’ as I’ contains at most one symbol
C on the rightmost position, if finite.

Definition A.2.2. A signed lexicographic order < on Z is defined as follows. We say that
I < I' if there exists n > 0 such that I, = I; fori=0,1,...,n—1 and

We call a sequence I € Z maximal if

S*I < I,Vk >0 such that S*I € I.
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For f unimodal I, is increasing and f(c) is its maximal value therefore, using equality
(A.1), the kneading sequence K ; is maximal. Let

K ={K €7 | K maximal}

be the space of maximal itinerary sequences of unimodal maps.

Let us consider families of unimodal maps from the point of view of the kneading
sequence. We may observe that L = LLL ... is the minimal element of Z, R = RLLL ...
is its maximal element and L, R € K. Let us state a classical result on the realization of
the kneading sequence - Theorem I11.1.1 in [2].

Theorem A.2.1. Let F be a family of unimodal maps, f,qg € F and K € K such that
Ky <K<K,

Then there exists h € F such that

This result motivates the following definition of full families of unimodal maps, such
families that realize all maximal sequences as kneading sequences.

Definition A.2.3. Let F be a family of unimodal maps. We say that F is a full family if
there exist fi, fr € F with K; = L and K; = R.

The kneading sequence extracts important features of the quadratic dynamics. We
use the following theorem to prove our main result (see [2], page 69). We formulate it
for quadratic maps but it applies for a larger class (S-unimodal maps) that is stable by
renormalization.

Theorem A.2.2. If f € Q then K, is periodic or finite if and only if f has a stable
periodic orbit. If K; is not periodic and K, = K, for some g € Q then f and g are
topologically conjugate.

Let us define the composition of itinerary sequences.

Definition A.2.4. Let A = Ay... A,C and B be itinerary sequences and A =A,.. A,
the mazimal prefiv of A. Let L= R and R =L ife(A") = —1 and L = L ,R = R otherwise.
We define
I / /&) / . . .
A% B = { A'B{A ... AB,,AC if B is finite,

A'B1A'B,A ... if otherwise.

It is easy to check that this operation is associative. The next lemma describes the
maximality properties of itinerary sequences.

Lemma A.2.1. Let A be a finite maximal sequence. If B is maximal then AxB is mazimal.
Conversely, if A x B is mazimal then B is mazimal.

Proof. The first implication is Corollary 11.2.4 in [2]. Considering the shifts S™ (A x B) for
all £ > 0, where n = |A|, one may check the second implication. O
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A.3 Renormalization

We say that a unimodal map f is renormalizable if it has a restrictive interval on which
an iterate of f is unimodal. If this is true for infinitely many iterates we call f infinitely
renormalizable. In the quadratic family those are exactly the maps with a fractal attractor.
The existence of restrictive intervals simplifies the study of high iterates of f. We define
the combinatorial type of the renormalization and state a classical theorem of existence of
any type of renormalization in full families of unimodal maps.

Definition A.3.1. Let f : I — I be a unimodal map. A closed proper subinterval J of I
that contains the critical point ¢ is called restrictive with period n > 2 for f if

1. the interiors of J,..., f*"1(J) are disjoint,
2. the restriction of f™ to J is unimodal,

3. J is mazimal with respect to these properties: if J' is a closed interval with J C J’
and such that the previous properties also hold for J' (for the same integer n) then
J=J.

Let f be renormalizable and J a restrictive interval of period n. We define a unimodal
map R(f,J) : [0,1] — [0,1] that is an affine conjugate of f* : J — J such that it is
increasing on the left lap and decreasing on the right lap. We define the renormalization
operator R(f) = R(f, Jo) where Jy is the maximal restrictive interval (with minimal
period).

We use the following lemma on several occasions to prove the existence of restrictive
intervals. For a proof one may check [9] (Lemma II.5.1).

Lemma A.3.1. Let f : I — I be unimodal. Ifn > 2 and J is an interval that contains the
critical point ¢ such that f*(J) C J and the interiors of J,..., f*"Y(J) are disjoint then J
s contained in a restrictive interval of period n.

Let us fix f a renormalizable unimodal map on [0, 1] that is increasing on [0, ¢) and
decreasing on (¢, 1]. Let J be a restrictive interval for f and n its period. We switch our
attention to the combinatorial features of the renormalization. We define the itinerary of
the restrictive interval lf(J) = KoK, ... K,_1C that has the same prefix of length n —1 as
the kneading sequence K ;. The correspondence S*¢(J) — f*(J) fori=0,...,n —1is
order preserving with respect to the natural order on the interval, as f(J),..., f"(J) are
intervals with disjoint interiors.

We define a permutation oy € S, that captures the dynamics of f on the orbit of the
restrictive interval with respect to the order on the real line. Let 7 € S,, be a permutation
such that

O < 7OT) < ..o< ).
We set o(i) = 7 1(7(i) + 1) for i # 771 (n) and o4(77(n)) = 77'(1) = n. Then f,J and

o satisfy . -
PO € PO fori =1,
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as fTU(J) C f(J).
One may check that o, is a cycle that is increasing on {1,...,77'(n)} and decreasing
on {771(n),...,n}. This motivates the following definition of an unimodal permutation.

Definition A.3.2. We call a cycle v € S, unimodal if there is k € {1,...,n — 1} such
that ~y is increasing on {1,...,k} and decreasing on {k,...,n}. If v is unimodal we also

call it renormalizable if there are 1 < k,m < n with km = n such that v acts on m blocks
B; = {ik+1,... ik + k}, that is

VO0<i<m30<j<m such that v(B;) = B;.

For a better picture of a unimodal permutation ~y let us define its graph G(v) : [0,n +
1] — [0,n + 1], a piecewise affine continuous map. Let G(0) = G(n+ 1) = 0, G(i) = (i)
and G affine on [i,7 + 1] for all i = 0,...,n. It is easy to check that v is unimodal if and
only if G(v) is unimodal. Using Lemma A.3.1 one may check that v is renormalizable if
and only if G(v) is renormalizable. Moreover, o is non-renormalizable if and only if J is
a maximal restrictive interval for f.

Let us state the existence theorem of infinitely renormalizable unimodal maps of arbi-
trary combinatorial type for full families of unimodal maps (see [9], Theorem I1.5.3).

Theorem A.3.1. Let f,,;n € A be a full family of unimodal maps and let (0;);>0 be a
sequence of non-renormalizable unimodal permutations. Then for each n € N, the set

{uw € A | f, n times renormalizable, o(R'(f,)) = 04,1 =0,...,n}

is closed, non-empty and contains an interval Ny, 5, o, such that R*(fu), t € Doy.oy....on s
a full family of unimodal maps. Furthermore Ny, o1...0n C Doooroon - 1IN particular,
Agyor.... 18 non-empty and Ao = UA,, o, .. contains a Cantor set.

A.4 Duality

In this section we identify finite maximal sequences to unimodal permutations and prove
our main result, an existence theorem for infinitely renormalizable quadratic maps, in terms
of the kneading sequence.

Let K be a fixed maximal sequence of length n > 1. We define ok, the permutation
that captures the dynamics of the left shift on K. Let 7 € S,, be the permutation for which

ST(I)_1K = 87(2)—1K <= ST(n)_IK,

and k = 7' (n). We construct ok in a similar way to oy, that is ox (i) = 77 1(7(i) + 1) for
i#kand og(k) =7"'(1) =n. We have

8 (ST(Z)flg) — ST(Uﬁ(i))flﬁ for 7 7§ k’

and STW-1K = C. As 7(n) = 1 the orbit of n under oy is {1,...,n} therefore oy is a

cycle. Moreover STO1K < Cfori=1...k—1and SO 'K = Cfori=k+1...n. As
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the left shift is increasing on sequences L ... and decreasing on sequences R..., ok is a
unimodal permutation.

Let us consider the kneading sequence K of a unimodal permutation o € .S,,, defined
by K, = K¢ the kneading sequence of the graph of o. It is a maximal sequence of
length n as the critical point of G(o) is periodic with period n. As they capture the same
dynamics it is not hard to see that o — K is the inverse of K — ok. Therefore the
correspondence is one to one and onto.

This duality comes into play in the following proposition and in the main theorem.

Proposition A.4.1. If f is a renormalizable unimodal map and J its maximal restrictive
interval then

Ky =1,(J)* K(R(f))-
Proof. Let n be the period of J and K; = K1K,.... As f¥*'(c) € f'(J) for all k,i >0
and ¢ ¢ f(J) fori=1,...,n — 1 we already obtain
Kipri=K;fori=1,...,n—1and k > 0.
But I,(J)=K;...K, ;Cso
Kf :lf(J) * K’

and K’ is maximal by Lemma A.2.1. Let J = [a,b] so R(f) = go ["|japj09 " with g an affine
homeomorphism from [a,b] to [0,1]. If €(K; ... K,_1) =1 then f*(c) is a local maximum
and f"(a) = f"(b) = aso K' = K(R(f)) as g is increasing. If ¢(K;... K, ;) = —1 then
f™(c) is a local minimum, f"(a) = f™(b) = b and g is decreasing. Therefore K(R(f)) is
the complement of K', that is, the sequence with the positions of L and R exchanged in
K'. By the definition of the composition this proves the proposition.

0

We say that a maximal finite sequence K # C' is prime if there are no non-trivial
maximal sequences K, K, such that

K:K1*K2~

Let us recall that if a unimodal permutation ¢ is renormalizable so is G(o). Apply-
ing the previous proposition, if K is a finite maximal prime sequence then o is non-
renormalizable.

Theorem 4. If f is a quadratic unimodal map and K its kneading sequence then f is
infinitely renormalizable if and only if K, is the composition of infinitely many prime
sequences. There exists a unique quadratic map f with

K, =K «K,*...
iof K, are prime sequences and
Igioigpy (Ji) = K; for alli > 1, (A.2)

where J; is the mazimal restrictive interval of R*(f).
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Proof. The first implication is obtained directly from Proposition A.4.1. Suppose K =
K, * K, % ... with K, finite maximal non-trivial sequences for all « > 0. Without loss
of generality we may suppose K, prime for all 7 > 0, otherwise we write it as a product
of prime sequences. Therefore the unimodal permutations o; = og, for all « > 0 are
non-renormalizable. By the existence Theorem A.3.1 there is a quadratic map f that is
infinitely renormalizable and

o; = o(R'(f)) for all i > 0.

This also implies equality (A.2). We show that f is the unique quadratic map with K ; = K
and this ends the proof.

Suppose there is a quadratic map g # f such that K, = K; = K. Infinitely renormal-
izable maps do not have stable periodic orbits so by Theorem A.2.2 the maps f and g are
conjugate. Using the definition of restrictive intervals one may check that ¢ is infinitely
renormalizable. Then by the Milnor-Thurston theory - the kneading sequence is increasing
in the quadratic family - there is an interval I C [1,4] such that f,,a € I is infinitely
renormalizable. But this contradicts the main result of [6] that hyperbolic dynamics is
dense in the quadratic family, as infinitely renormalizable maps are not hyperbolic. O

Remark A.4.1. Except for the uniqueness of f, one may prove the second part of the
theorem directly, that is without using the result of [6]. This can be done using some
variant of Proposition A.5.1.

A.5 Applications

Motivated by the result of [4] that the Hausdorff dimension of fractal attractors is bounded
away from 1, the aim of this section is to estimate the Hausdorff dimension of several types
of fractal attractors of quadratic maps. Our work was inspired by the work of Grassberger
[7]; however we do not use any of its methods. Grassberger estimates by two methods
the dimension of the Feigenbaum attractor - with kneading sequence RC' * RC % ..., or
simply, with renormalization periods (2,2, ...) - using the box dimension. Attractors with
renormalization periods (k,2,2,...) for some k > 2 are considered in [7] but they all have
the same dimension. In fact, it is not hard to see that after renormalization, the dimension
of the attractor does not change. Moreover, for periodic and preperiodic renormalization
types of period k > 1, the sequence of renormalizations (R’”( f ))i>0 converges to a universal
analytic map (see [11]). Therefore the Hausdorff dimension of such a map depends only on
the periodic part of the renormalization type. This also means that the numerical approach
could not deal with non-preperiodic renormalization types.

A.5.1 The Algorithm

Feigenbaum-like maps are easy to trace in the quadratic family as they are the limit of
cascades of bifurcations - using the graph of w(c), a forward invariant compact contained



96 §A HAUSDORFF DIMENSION OF FRACTAL ATTRACTORS

in the attractor of f, € Q for all a € [1,4]. To the best of our knowledge there is no
known method to search for quadratic maps of other renormalization types. This is the
main application of Theorem 4, an algorithm that finds - up to arbitrarily small error -
the quadratic map of a given renormalization type. We are able to estimate this error
- in terms of the renormalization class of the result - and the time requirements of the
algorithm (the space requirements are O(1)).

Let o; be non-renormalizable unimodal permutations and K; = K, the corresponding
prime maximal sequences for ¢ > 1. Let f be the unique quadratic map of renormalization
type (Ui)i21 SO

K, =K «K,*...

Let K(a) = K; , for all a € [1,4] and f, € Q. We know that K (a) is increasing in a
and that all maximal sequences are realized by this application. Our algorithm computes
ap € [1,4] with

K(ap) = Kf-

More precisely it computes I; D Iy D ... such that ay = ﬂn21 I,,. Let Iy = [1,4] and let b;
be the center of the interval I;, then for all # > 0

L[ LnLb] i K, < K(b),
LT LN, 4]  if otherwise.

Therefore
|I;| =3-27" for all i > 0. (A.3)

This equality is used to compute the time requirements of the algorithm. For the evaluation
of the quality of the answer we prefer a lower bound for the number of good renormalizations
of fp,

rp <max{j >1|R(fy,) =opfork=1,...,5}. (A.4)

Our algorithm simply computes the critical orbit and the kneading sequence so we need
a method to compute r, using only combinatorial properties of the critical orbit. The
following proposition is a first step in that direction.

Let g be a unimodal map and = € [0, 1]. We define s(x) to be such that g(x) = g(s(x))
and s(z) # z if x # ¢, well defined on [0, 1]. If ¢ is quadratic or some renormalization of a
quadratic map, it is symmetric thus s(z) = 1 — z. Let us also denote by |a, b the closed
interval I with I = {a, b}.

Proposition A.5.1. Let g be unimodal and c; = g'(c) for alli > 0 its critical orbit. If for
somen > 1

Cont1 > Cpy1 > ¢ forallk € {2,...,n}U{n+2,...,2n} and (A.5)
¢ &lcj, cnyj forall j €{1,...,n—1} (A.6)

then g is renormalizable of period n.
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Proof. Using Lemma A.3.1 we show that the interval

J =len, s(en)|

is contained in a restrictive interval of period n. As ¢ € J, one may check that ¢g(J) =
|1, ¢nta] and using (A.6)

G (J) =lej, cnyy] for all j € {1,...,n}.
As ¢9,41 > ¢pa1 We may observe that

g"(J)C J.

Inequality (A.5) shows that g(J) is disjoint from ¢*(.J) for all k¥ € {2,...,n} and using
also (A.6), J is disjoint from ¢*(J) for all k € {1,...,n — 1}.

Suppose that there are 1 < i < j < n such that ¢'(J) and ¢’(J) are not disjoint. Then
g"U=9(J) and ¢"(J) C J have a common point, a contradiction. O

The following proposition shows that conditions (A.5) and (A.6) are pertinent, that
they are satisfied by a good approximation of an infinitely renormalizable map.

Proposition A.5.2. If g is renormalizable of period n such that
K(R(9) =RL... <R

then g satisfies conditions (A.5) and (A.6). This hypothesis is satisfied by all infinitely
renormalizable maps.

Proof. Let J = [a, b] be the restrictive interval of period n of g. Then ¢"(a) = ¢™(b) € {a,b}
so s(a) = b and s(b) =a. As ¢, € J,

Jen, s(en) S,

therefore Jcg, coyx[C ¢*(J) for all k = 1,...,n. Thus condition (A.6) is satisfied by g.
Let ¢ be the critical point of g; = R(g) and ¢}, = g7 (/) forallk > 1. As K(¢1) = RL . ..

< d<d.
By definition g(s(c})) = g(c}) = ¢, and g is increasing on [0, ¢|. Then ¢, > s(c}) otherwise

S?’K(g1) = SK(g1) = L... so K(q1) = RLLL... = R which violates the hypothesis.
Therefore ¢y, lies in the interior of |c,, s(c,)[ so

Con+1 > Cpyl-

Moreover ¢ €|c,, co,[ and s(c,) is not a fixed point for g" so |e,, s(¢,)[ is contained in the
interior of J. As J, g(J),...,¢" '(J) have disjoint interiors, ¢; # ¢; for all 1 <1i # j < 2n.
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The interval g(J) is the rightmost among J, g(J),...,g" *(J), cp,con € J and ¢;,cpyi €
gi(J)foralli=1...n—1s0

Cni1 >cp forall ke {2,...,n}U{n+2...,2n}.

If ¢ is infinitely renormalizable so is R(g) therefore K(R(g)) cannot be periodic or
finite by Theorem A.2.2. The only maximal sequences that do not start with RL are
L=LLL....C, RRR... and RC. Thus

K(R(g))=RL...<R.
]

Propositions A.5.1 and A.5.2 provide a method to check in 2n + 1 steps if a given
quadratic map is renormalizable of period n. Moreover, it can be applied to any renormal-
ization R",n > 1. Let

P, = H ||

1<i<n

be the renormalization period of R". Let A,, = A,, _,, be the interval defined by Theorem
A.3.1. Then the time requirements for the algorithm to find some b € A,,, using equality
(A.3), is

O(=Py - logy | Anl).

One may check that for n € {2, 3,4} there is only one finite prime maximal sequence of
length n. For n = 5 there are three such sequences RLRRC', RLLRC and RLLLC'. Let
us denote those renormalization types by 5, 5y and 53 respectively. Table A.1 presents
the values of some parameters of quadratic maps as a function of the preperiodic renor-
malization type.

A.5.2 Hausdorff Dimension

Let us briefly discuss Grassberger’s numerical method employed in [7] to compute the
Hausdorff dimension of Feigenbaum-like fractal attractors. It is in fact an algorithm that
approximates the box dimension. Let A C [0, 1] be the attractor. We divide the interval
[0,1] in N equal intervals. Let A(N) be the number of such intervals that intersect A. We
define the box dimension of A

BD(4) = lim w,
—00 Og

when the limit exists. For a detailed discussion on the box dimension and Hausdorff
dimension one may check [12]. We know that

HD(A) < BD(A),
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Table A.1: Parameter b, as a function of the renormalization type.

Renormalization Type b, |1, T
(2,2,2,2,...) 3.5699456719 8.5-1072% 32
(3,2,2,2,2,...) 3.8494336812 3.4-1072' 26
(51,2,2,2,2,...) 3.7430055309 8.5-10722 28
(52,2,2,2,2,...) 3.9064536326 2.1-10722 28
(53,2,2,2,2,...) 3.9903214465 2.1-1072*2 28
(2,3,2,3,...) 3.6330072770 2.0-10728 23
(3,2,3,2,...) 3.8504152723 2.5-107% 23
(2,2,3,2,2,3,...) 3.5833031348 8.5-10722 24
(2,2,2,3,2,2,2,3,...) 3.5728060660 2.1-10"** 26
(3,3,3,3,...) 3.8540779636 1.9-1073* 20
(4,4,4,4,...) 3.9615565872 8.8-107%" 13

where HD(A) is the Hausdorff dimension of A. The inequality is strict for Q N [0, 1] and
{% | n> 1}. That is because the box dimension behaves rather badly under topological
and set-theoretical operations. For example

BD(S) = BD(S) for all S C [0, 1].
Moreover the box dimension of a countable union of sets cannot be computed as a function
of the dimensions of those sets - in the case of the Hausdorff dimension, it is the supremum
of their dimensions.

Figures A.1 and A.2 represent the graph of A(N) in a logarithmic scale, for the Feigen-
baum attractor and for the attractor of renormalization type (3,2,3,2,...) respectively.
As the scale is logarithmic, the convergence of computer estimates is weak.

We propose a new method, inspired by the definition of the Hausdorff dimension and
by the definition of restrictive intervals. We observe faster convergence compared to the
previous method.

Let f be infinitely renormalizable and J be some restrictive interval of period n. Its
attractor A is the closure of the critical orbit (¢;);>0, a Cantor set. We have seen in Section

A5.1 that A C U~ fi(J). Moreover,

A Q U]CZ‘, Cn+i[ (A?)

and this is a minimal cover of A with n intervals - from the point of view of the inclusion
of covers. For a € [0, 1] we define

n
S(a,n) = Z le; — |
i=1
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Figure A.1: Grassberger’s method for the Feigenbaum attractor.

Figure A.2: Grassberger’s method for the attractor of type (3,2,3,2,...).
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Table A.2: The Hausdorff dimension HD(A) for several renormalization types.

Renormalization type Hausdorff dimension

(2,2,2,2,..) 0.53804514358
(3,2,2,2,2,...) 0.5380451436
(51,2 2,2,2,..) 0.5380451436
(52,2,2,2,2,...) 0.5380451436
(53,2,2,2,2,...) 0.5380451436
(2,3,2,3,...) 0.420917432
(3,2,3,2,...) 0.420917432
(2,2,3,2,2,3,...) 0.4448735455
(2,2,2,3,2,2,2,3,...)  0.46275047
(3,3,3,3,...) 0.3502283975126
(4,4,4,4,...) 0.2689433270892

If (A.7) would be an optimal cover, then

lim S(a,n) =

n—o0

(A.8)

oo ifa< HD(A),
0 ifa> HD(A),

where n — oo means for increasing n renormalization periods.

However, the Hausdorff dimension is constructed using countable covers of sets. There-
fore, from the point of view of computer experiments, it is not computationally accessible.
Let us recall that we consider only preperiodic renormalization types. Let k such a period,
then (R"“( f ))i>0 converges uniformly to an analytic universal map - depending of the pe-
riodic renormalization type, see [11]. Therefore the attractor A is a self-similar set and [3]
indicates that

HD(A) = BD(A).
Therefore we compute our estimates using our best finite cover (A.7). They are always an
upper bound for HD(A).

Let n; be the renormalization period of R¥(f). As one may expect, the experiments
show that the following limit exists

and it is decreasing. This means that the convergences (A.8) are exponential with base
¢(a). Therefore
HD(A) =c(1).

Table A.2 presents the estimated Hausdorff dimension for several renormalization types.
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Résumé.

Cette these est consacrée a ’étude des relations entre les propriétés dynamiques des orbites
critiques et la géométrie des ensembles de Fatou et de Julia des applications rationnelles. La
régularité des composantes de I’ensemble de Fatou est équivalente & une version faible de ’hy-
perbolicité, conséquence des résultats de Graczyk et Smirnov et de Przytycki, Rivera-Letelier
et Smirnov. Plus précisément, les composantes de I’ensemble de Fatou sont des domaines de
Hoélder si et seulement si le diametre des préimages des petits disques centrés sur ’ensemble de
Julia décroit exponentiellement. On s’intéresse désormais aux applications rationnelles sans or-
bite périodique parabolique. En dynamique polynomiale, Carleson, Jones et Yoccoz ont montré
I’équivalence entre la semi-hyperbolicité (toute orbite critique dans I’ensemble de Julia est non-
récurrente) et la régularité John (qui implique la régularité Holder) des composantes de ’ensemble
de Fatou. Graczyk et Smirnov ont montré plus tard que si tout point critique dans ’ensemble
de Julia est Collet-Eckmann alors les composantes de 1’ensemble de Fatou sont Hélder. On in-
troduit la condition de Collet-Eckmann pour les orbites critiques récurrentes qui généralise ces
deux dernieres conditions et on montre qu’elle a comme conséquence la régularité Holder. On
construit un contre-exemple pour la réciproque. Un deuxieme contre-exemple contredit la conjec-
ture de Swi@tek qui affirme l'invariance topologique de la propriété Collet-Eckmann des points
critiques récurrents dans la classe des applications S-multimodales. Le dernier chapitre présente
une étude sur la dimension de Hausdorff des attracteurs des applications unimodales infiniment
renormalisables.

Mots-Clés : dynamique rationnelle, orbites critiques, géométrie de ’ensemble de Fatou,
hyperbolicité, semi-hyperbolicité, Collet-Eckmann, invariance topologique, attracteurs, dimension
de Hausdorff.

Abstract.

This PhD thesis is devoted to the study of the relations between dynamical and geometric
properties of the Julia set. The regularity of the components of the Fatou set is equivalent to
a weaker version of hyperbolicity. This follows from results by Graczyk and Smirnov and by
Przytycki, Rivera-Letelier and Smirnov. More precisely, the components of the Fatou set are
Holder domains if and only if the diameter of preimages of small balls centered on the Julia
set decay exponentially. In the sequel we consider rational maps without parabolic orbits. In
polynomial dynamics, Carleson, Jones and Yoccoz show that semi-hyperbolicity (every critical
orbit in the Julia set is non-recurrent) and John regularity (which is stronger than Hélder) of the
components of the Fatou set are equivalent. Graczyk and Smirnov show that if every critical point
in the Julia set is Collet-Eckmann then the components of the Fatou set are Holder domains. We
introduce the recurrent Collet-Eckmann condition (every recurrent critical point in the Julia set
is Collet-Eckmann) which is more general than semi-hyperbolicity and than Collet-Eckmann and
show that it also implies Holder regularity. We also provide a counter-example for the converse. A
second counter-example shows that the Swi@teks conjecture (topological invariance of the Collet-
Eckmann property of recurrent critical orbits in the S-multimodal setting) does not hold. The
last chapter presents a (numerical) study of the Hausdorff dimension of attractors of infinitely
renormalizable unimodal maps.

Key-words : rational dynamics, critical orbits, geometry of the Fatou set, hyperbolicity,
semi-hyperbolicity, Collet-Eckmann, topological invariance, attractors, Hausdorff dimension.
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