
ON A CLASS OF EXTREMAL POLYMATROIDS

Abstract. We study a new family of extremal problems over a class C of

polymatroids. The extremal numbers we define are partially motivated by [2],

where they were used to establish bounds in counterexamples to stronger al-
gebraic versions of the Generalized Lax Conjecture. We prove a global bound

for all instances of our problem. In the rank two case we note a couple of inter-

esting combinatorial consequences and compute exact values in some special
cases.

1. Introduction

Matroids serve as a common generalization of objects from many different areas in-
cluding graph theory, linear algebra and finite geometry. From a broad perspective
one could therefore also view the extremal theory of matroids as a generalization
of the extremal theories of either areas. Extremal problems on matroids have been
studied by a number of authors, see surveys by Kung [5], Bonin [3] and references
therein. In the words of Kung [5] it is reasonable to say that extremal matroid
theory, and by extension extremal polymatroid theory, is predominantly concerned
with the following set of questions:
Let C be a class of polymatroids satisfying given properties. Determine the size
function

h(C;n) = max{|P | : P ∈ C and rank(P ) = r}.
and characterise the polymatroids of maximum size for each rank.

In this paper we are concerned with polymatroids up to some fixed maximum
rank with prescribed spanning conditions that have the property of not containing
a given number of spanning sets (of size equal to the maximal rank) confined to
a subset of fixed size. The extremal numbers we define are interesting in their
own generality, but they also form upper bounds to some intriguing families of
extremal problems that arise by restricting the extremum over specific subclasses
of polymatroids.

2. Preliminaries

Let E be a finite set. A polymatroid P = (E, r) is given by a function r : 2E → N
satisfying

(i) r(∅) = 0,
(ii) r(S) ≤ r(T ) whenever S ⊆ T ⊆ E,
(iii) r is submodular, i.e.,

r(S) + r(T ) ≥ r(S ∩ T ) + r(S ∪ T ),

for all S, T ⊆ E.

A matroid M = (E, r) is a polymatroid for which r({x}) ≤ 1 for all x ∈ E. The
rank of P is defined as r(E). With abuse of notation we will also denote the rank
of P simply by r. A subset S ⊆ E is said to be spanning if r(S) = r. A hyperplane
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Figure 1. The sets involved in Definition 3.1

of P is a maximal subset of E that is not spanning. An element x ∈ E is called a
loop if r({x}) = 0.

Below we list some examples of polymatroids that we shall mention again later
in the context of our extremal number.

Example 2.1.

(i) Let V be a vector space of rank r and let V1, . . . , Vn be a collection of
subspaces of V . Define r : 2[n] → N by r(S) = dim

(∑
i∈S Vi

)
for all

S ⊆ [n]. Then r : 2[n] → N is a polymatroid on [n] of rank r. In particular
if V1, . . . , Vn are subspaces of dimension at most one, then we obtain a
matroid of rank r on [n].

(ii) Let P be a set of points and L ⊆ 2P a set of lines. A point-line configuration
(P,L) defines a rank 3 matroid on P if and only if all lines in L pairwise meet
in at most one point. Three points define a base in such a configuration
if and only if the points are non-collinear (i.e not all contained in a single
line).

(iii) Let G be a bipartite graph with vertex classes A and B of size n and r
respectively. For a subset S ⊆ A let Γ(S) denote the set of neighbours
of S in G. Then r : 2A → N given by r(S) = |Γ(S)| defines a rank r
polymatroid. In particular if f : A → B is a function, then r(S) = |f(S)|
defines a rank r matroid where f(S) denotes the image of S.

Recall that a hypergraph H consists of a set V (H) of vertices together with a
set E(H) ⊆ 2V (H) of hyperedges. We say that a hypergraph H is r-uniform if all

hyperedges have size r. The complete r-uniform hypergraph on n vertices K
(r)
n , is

the r-uniform hypergraph on [n] with all possible hyperedges.
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3. Definition and basic properties

Definition 3.1. Let C be a class of polymatroids and let r, s, k, `,m be nonnegative
integers such that k ≥ r + 1,m ≥ r and ` ≤

(
m
r

)
. The number ACr,s(k, `,m) is the

least number n such that if P1, . . . , Ps ∈ C are polymatroids of rank at most r
on an n-element set E where all subsets S ⊆ E of size k are spanning (for each
Pi, i = 1, . . . , s), then there exists a subset T ⊆ E of size m containing at least `
distinct r-subsets of T which are spanning in Pi for all i = 1, . . . , s.

We may think of r and s as fixed ambient parameters. If C = P, the set of all poly-
matroids, then we will abbreviate and write Ar,s(k, `,m), instead of APr,s(k, `,m).

Clearly for any class C ⊆ P we have ACr,s(k, `,m) ≤ Ar,s(k, `,m). In particular this
enables us to prove global estimates on problems over any given C by finding upper
bounds on Ar,s(k, `,m). We will therefore mainly be concerned with the numbers
Ar,s(k, `,m).

It is in place to justify the shape of our definition, especially given the intro-
duction of so many parameters. The original source of motivation for studying the
numbers Ar,s(k, `,m) comes from the following lemma figuring in [2], used to es-
tablish bounds in counterexamples to stronger algebraic versions of the Generalized
Lax Conjecture.

Lemma 3.1. Let Pi, i = 1, . . . , s, be polymatroids on [n] of rank at most r such
that no hyperplane has more than r + 1 elements. If n ≥ (2s+ 1)(r + 1)− 1, then
there is a set T of size r+ 1 such that there are at least two r-subsets of T that are
spanning in all Pi, i = 1, . . . , s.

Remark 3.2. In our notation, Lemma 3.1 gives an upper bound for the number
Ar,s(r + 2, 2, r + 1).

The parameters s and ` are introduced in Definition 3.1 to strictly generalize the
situation in Lemma 3.1. We also have a general bound for the numbers Ar,s(k, `,m)
via Theorem 4.2. However for many purposes it is more natural to focus on the
special case s = 1 and ` =

(
m
r

)
. As may be seen in Example 3.1 there are also many

interesting extremal problems that arise by varying the polymatroid class C.
It is not a priori clear that the numbers Ar,s(k, `,m) exist. To merely show

existence and to better illustrate the definition we will give a preliminary short proof
using Ramsey theory. The Ramsey bound however will be improved significantly
in Theorems 4.2 and 4.3 by better taking into account the polymatroid structure.

Recall that the multicolour hypergraph Ramsey number Rr(t1, . . . , ts) is the least
number n such that any s-colouring of the edges of the complete r-uniform hyper-

graph K
(r)
n on [n] contains a monochromatic i-coloured copy of K

(r)
ti for some i ∈ [s].

The well-definedness of this number follows from Ramseys theorem [6]. The num-
bers Rr(t1, . . . , ts) grow rapidly and have known superexponential lower bound for
r ≥ 3 (see [4]). We may view a rank r polymatroid P as a complete r-uniform
hypergraph on E where a hyperedge is coloured blue if it is spanning in P and
coloured red otherwise. Thus rank r polymatroids on Rr(k,m) elements suffices to
guarantee a monochromatically blue m-subset T ⊆ E, since by definition we are
prohibiting the existence of monochromatically red (non-spanning) k-subsets. The
following argument generalizes this observation.

Proposition 3.3. The number Ar,s(k, `,m) is well-defined.
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Figure 2. The Fano configuration. Every line contains 3 points
and no 5 points lie in general position. Thus AG3,1

(
4,
(
5
3

)
, 5
)
> 7.

Proof. Colour an r-uniform hypergraph on E using 2s colours indexed by c =
(c1, . . . , cs) ∈ {0, 1}s. We label a hyperedge e by 1 with respect to Pi if e is
spanning in Pi, and label e by 0 otherwise. We colour a hyperedge e with colour c
if e is labelled by ci with respect to Pi for all i = 1, . . . , s. We require an m-subset
T ⊆ E containing at least ` common r-subsets in colour c = 1. It follows that

Ar,s(k, `,m) ≤ Ar,s
(
k,

(
m

r

)
,m

)
≤ Rr(k, · · · , k︸ ︷︷ ︸

2s−1

,m)

so the number Ar,s(k, `,m) is well-defined by the existence of Ramsey numbers.
�

Below we give examples of interpretations of our extremal number for some inter-
esting polymatroid classes C. Clearly since the examples below concern extremal
problems on a more restricted class, we may only get a crude upper bound to the
problems using the numbers Ar,s (k, `,m). Nevertheless the same setup could be
used to study these problems in isolation using the additional structure contained
in the class. The numbers ACr,s(k, `,m) (as far as we know) have not been studied
for any polymatroid class C, not even for the natural class of representable matroids
(see Example 3.1 (i)).

Example 3.1.

(i) Let R denote the class of representable matroids in Example 2.1 (i). Then
any r×n matrix, where n ≥ ARr,1

(
k,
(
m
r

)
,m
)
, in which any k columns have

full rank must contain a subset of m columns in which any r columns have
full rank.

(ii) Let G denote the class of matroids in Example 2.1 (ii). Any point-line
configuration in G of order at least AG3,1

(
k,
(
m
3

)
,m
)

having at most k − 1

collinear points, contains m points in general position (i.e no three of which
are collinear).

(iii) Let F denote the class of matroids in Example 2.1 (iii). For any set A with
at least NFr,1

(
k,
(
m
r

)
,m
)

elements and any set B with r elements we have
that any function f : A → B which is surjective when restricted to any
k-subset of A, must contain a subset of size m on which f restricts to a
bijection on any r-subset.
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(iv) Let M denote the class of matroids. Then any rank r matroid with at
least AMr,1

(
k,
(
m
r

)
,m
)

elements in which the maximum size of a hyperplane
is k − 1, must contain a copy of the uniform matroid Ur,m of rank r with
m elements.

Clearly the number Ar,s(k, `,m) is monotone non-decreasing in the parameters
r, s, k, ` and monotone non-increasing in the parameter m, keeping remaining pa-
rameters fixed (and valid). Below we show that the numbers must at least be
strictly increasing in the parameter k.

Lemma 3.4. If k′ < k, then Ar,s(k
′, `,m) < Ar,s(k, `,m).

Proof. It suffices to consider k′ = k − 1. Let P1, . . . , Ps be polymatroids on E of
size Ar,s(k − 1, `,m) − 1 with rank at most r for which any (k − 1)-subset of E
is spanning in Pi (for each i = 1, . . . , s) and contains no m-subset of E in which
there exists at least ` distinct r-subsets that are spanning in Pi for all i = 1, . . . , s.
Extend the polymatroids Pi to polymatroids P ′i of the same rank by adding a new
element x 6∈ E which is a loop in P ′i for all i = 1, . . . , s. Then P ′1, . . . , P

′
s are rank

at most r-polymatroids on Ar,s(k − 1, `,m) elements with every k-element subset
of E t x spanning. For this set of polymatroids there is no m-subset of E t x in
which there exists at least ` distinct r-subsets which are spanning in P ′i for each
i = 1, . . . , s. Hence Ar,s(k

′, `,m) < Ar,s(k, `,m).
�

Lemma 3.5. Let LF denote the class of all loop-free polymatroids, then

ALFr,1 (k, `,m) = Ar,1(k, `,m).

Proof. Consider polymatroids P of rank at most r with non-empty set of loops L
(|L| ≤ k), for which any k-subset is spanning in P . This implies that every (k−|L|)-
subset of P \L must be spanning. Let Li denote the class of all polymatroids with
i loops. Then it follows that

ALi
r,1(k, `,m) = i+Ar,1(k − i, `,m).

By Lemma 3.4 we have that

i+Ar,1(k − i, `,m) ≤ Ar,1(k, `,m).

Since P =
⋃
i≥1 Li ∪ LF , the statement follows.

�

Lemma 3.6. Let Pr denote the class of all rank r polymatroids, then

APr
r,s(k, `,m) = Ar,s(k, `,m).

Proof. Let Pi = (ri, E) be polymatroids of rank at most r on E where |E| =
Ar,s(k, `,m)−1 such that any k-subset of E is spanning in Pi (for each i = 1, . . . , s)
but for which there is no m-subset of E in which at least l number of r-subsets are
spanning in Pi for all i = 1, . . . , s. Define P ′i = (r′i, E) where

r′i(S) =

{
0 if S = ∅
ri(S)− ri(E) + r otherwise

for all S ⊆ 2E and i = 1, . . . , s. It is easy to check that P ′1, . . . , P
′
s are indeed rank

r-polymatroids. Moreover it is clear from the definition that we have a one-to-one
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correspondence between the spanning sets of Pi and P ′i for all i = 1, . . . , s. Hence
the statement follows.

�

4. Bounds

In this section we establish bounds for various instances of the numbersAr,s(k, `,m).
The following lemma can be seen as the bottleneck in our upper bound estimate of
Ar,s(k, `,m) in Theorem 4.2. The lemma appeared in [2], but we include it here in
its rightful context for completeness.

Lemma 4.1. For n, r, c ≥ 1, let P(n, r, c) be the family of all rank at most r
polymatroids on n elements such that each hyperplane has at most r−1+c elements.
If α(n, r, c) denotes the maximal number of non-spanning sets of size r taken over
all polymatroids in P(n, r, c), then

α(n, r, c) ≤ c
(

n

r − 1

)
. (4.1){anrc}

Proof. If r = 1, then each hyperplane has at most c elements, i.e., there are at most
c loops so that α(n, r, c) = c as desired. The proof is by induction over n ≥ 1 where
r ≥ 1. The lemma is trivially true for n = 1.

Let P ∈ P(n, r, c), where n, r ≥ 2. If n ≤ r, then (4.1) is trivially true. Assume
n > r. Let i be a non-loop of P . If r(E \ i) < r(E), then E \ i is a hyperplane and
hence n − 1 ≤ r − 1 + c, so that

(
n
r

)
≤ c
(
n
r−1
)
. Hence we may assume r(E \ i) =

r(E) > 0.
If S is a non-spanning r-set of P , then either S is a non-spanning r-set of P \ i,

or S \ i is a non-spanning (r − 1)-set of P/i. Hence P \ i ∈ P(n − 1, r, c) and
P/i ∈ P(n− 1, r − 1, c), and thus

α(n, r, c) ≤ α(n− 1, r, c) + α(n− 1, r − 1, c)

≤ c
(
n− 1

r − 1

)
+ c

(
n− 1

r − 2

)
= c

(
n

r − 1

)
,

by induction. �

We may now improve upon the Ramsey bound from Proposition 3.3.

Theorem 4.2. If r, s, k, `,m are nonnegative integers such that k ≥ r + 1, r ≤ m
and ` ≤

(
m
r

)
, then

Ar,s(k, `,m) ≤ r − 1 + sr(k − r)
(
m
r

)(
m
r

)
− `+ 1

.

Proof. Let P1, . . . , Ps be polymatroids on a set E = [n] of rank at most r with
hyperplanes of size at most k − 1. Suppose

n > r − 1 + sr(k − r)
(
m
r

)(
m
r

)
− `+ 1

and that there exists no m-subset of E containing at least l common r-subsets
which are spanning in Pi for all i = 1, . . . , s. Let

A =

{
(S, T ) :

(
[n]

r

)
3 S ⊂ T ∈

(
[n]

m

)
, S is not spanning in Pi for some i ∈ [s]

}
.
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Then

|A| ≥
((

m

r

)
− `+ 1

)(
n

m

)
since each T ∈

(
[n]
m

)
contains most `− 1 distinct r-subsets which are spanning in Pi

for all i = 1, . . . , s. Furthermore by Lemma 4.1 we have

|A| = #

{
S ⊆

(
[n]

r

)
: S is not spanning in Pi for some i ∈ [s]

}
·
(
n− r
m− r

)
≤ sα(n, r, k − r)

(
n− r
m− r

)
≤ s(k − r)

(
n

r − 1

)(
n− r
m− r

)
.

Hence ((
m

r

)
− `+ 1

)(
n

m

)
≤ s(k − r)

(
n

r − 1

)(
n− r
m− r

)
.

Solving for n gives n ≤ r − 1 + sr(k − r)
(
m
r

)
/
((
m
r

)
− `+ 1

)
, a contradiction.

�

When requiring m-subsets with very densely populated spanning r-subsets, such as
the case ` =

(
m
r

)
, the following theorem essentially gives an O(rm) improvement

over the bound in Theorem 4.2.

Theorem 4.3. If r, s, k, `,m are nonnegative integers such that k ≥ r + 1, r ≤ m
and r∗ = min{r − 1, b(m− 1)/2c}, then

Ar,s

(
k,

(
m

r

)
,m

)
≤ m+ s(k − r∗ − 1)

(
m− 1

r∗

)
.

Proof. Let P1, . . . , Ps be polymatroids on a set E = [n] of rank at most r with
hyperplanes of size at most k − 1. Suppose a maximal (with respect to inclusion)
subset S ⊆ E of size N < m have been chosen such that any r-subset of S has
full rank with respect to P1, . . . , Ps. By maximality of S the elements in E \ S
must each belong to a hyperplane of Pi containing at most r − 1 elements of S
for some i = 1, . . . , s. The number of such hyperplanes is at most s

(
N

r∗(N)

)
where

r∗(N) = min(r − 1, bN/2c). Moreover each such hyperplane may contain at most
k − r∗(N) − 1 elements in E that do not belong to S given that the size of each
hyperplane is bounded by k − 1. Therefore

n ≤ N + s(k − r∗(N)− 1)

(
N

r∗(N)

)
.

Hence taking n ≥ m + s(k − r∗(m − 1) − 1)
(

m−1
r∗(m−1)

)
ensures the existence of an

m-set with the required properties.
�

Below we give a constructive lower bound for the numbers Ar,s
(
k,
(
m
r

)
,m
)
.

Theorem 4.4. If r, s, k,m are nonnegative integers such that k,m ≥ r + 1, then

max

{
m, 1 +

⌊
k − 1

2(r − 1)

⌋
(s+ 1)(m− 1)

}
≤ Ar,s

(
k,

(
m

r

)
,m

)
.
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Proof. Note that m is the trivial lower bound. Suppose k − 1 ≥ 2(r − 1). Let

N = 1
2 (s+1)(m−1) and let E1, . . . , EN be disjoint element classes of size 2

⌊
k−1

2(r−1)

⌋
(the smallest even integer less than (k− 1)/(r− 1)). Let M be the rank r matroid
on E = E1 t · · · t EN with base set B given by

{{x1, . . . , xr} ⊂ E : xi ∈ Eσ(i) for all i = 1, . . . , r for some injection σ : [r]→ [N ]}.

It is not difficult to verify that M is a matroid by checking the base exchange
axiom. Such a matroid is called a partial transversal matroid. By construction any
k-subset of E contains an element of B. Hence every k-subset is spanning in M .

We now define matroids M1, . . . ,Ms on E using the construction above to realize
the lower bound in the theorem. Since |Ei| is even we may partition Ei = E′i tE′′i
where E′i and E′′i are disjoint subsets of equal size. Now let E

(j)
1 , . . . , E

(j)
N denote

the disjoint element classes (to be defined) of the matroid Mj on E for j = 1, . . . , s.
We partition the classes E1, . . . , EN consecutively into m− 1 blocks of t = 1

2 (s+ 1)
classes each. In each block we create obstructions by ensuring that every pair of

elements appear together in at least one element class E
(j)
i for some 1 ≤ j ≤ s.

This implies that one may pick at most one point out of the elements in each block
to form a subset of E in which all r-subsets simultaneously belong to the base sets
Bi of the matroids Mi for all i = 1, . . . , s. However such a set can have size at most
m− 1 since there are m− 1 blocks and hence the theorem follows.

We define the classes E
(j)
i (j = 1, . . . , s) in the first block (i = 1, . . . , t) by

considering the set A of all
(
s+1
2

)
pairs of subsets in {E′1, E′′1 , . . . , E′t, E′′t } (note

that st =
(
s+1
2

)
). The set A may be decomposed into s disjoint families of disjoint

pairs. This follows from a well-known fact in graph theory that the complete graph
K2t admits a decomposition into 1-factors (i.e. perfect matchings). Each of these s

families of t disjoint pairs make up the definition of the element classes E
(j)
i for the

first block in Mj for i = 1, . . . , t and j = 1, . . . , s. We construct the element classes
for the remaining blocks similarly. This definition ensures that all elements within

each block appears together at least once in the element class E
(j)
i of some matroid

Mj and can therefore not be selected together. Hence the lower bound follows.
�

5. Special cases

The upper bound in Theorem 4.2 is not sharp, however for r = 2 and ` =
(
m
2

)
The-

orems 4.3 and 4.4 together imply an essentially tight bound. Through a graph the-
oretic characterization of rank 2 polymatroids we find interesting consequences for
the existence of common partial transversals of partitioning families with bounded
block size, or equivalently, the clique number of an intersection of complete multi-
partite graphs with bounded class size.

There exists a bijection between loop-free rank 2 matroids and complete multi-
partite graphs, originally due to Acketa [1]. Given a rank 2 matroid M we may
associate a graph G where V (G) = E(M) and E(G) = B(M), in other words

{x, y} ∈
(
E(M)

2

)
forms an edge in G if and only if {x, y} is spanning in M . A graph

which corresponds to a rank 2 matroid is said to be matroidic. Denote by G′ the
graph which remains after deleting all degree zero vertices.
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Theorem 5.1 (Acketa [1]). A graph G is matroidic if and only if G′ is a complete
multipartite graph.

Remark 5.2. Note that the degree zero vertices in a matroidic graph G correspond
to the loops of the matroid. Note that Theorem 5.1 also implies a characterization
of polymatroidic graphs, since a rank 2 element is simply a vertex class of size one
in G′.

Let A = {A1, . . . ,As} be a family of s partitions of a set E where Ai has blocks

A
(i)
1 , . . . , A

(i)
ki

for i = 1, . . . , s. A set X = {x1, . . . , xm} ⊆ E is a common partial

transversal of size m if there exists injections σi : [m] → [ki] for i = 1, . . . , s such
that

xj ∈
s⋂
i=1

A
(i)
σi(j)

for all j = 1, . . . ,m.

Example 5.1. Let A = {A1,A2,A3} be the family of partitions of [16] given by

A1 = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}
A2 = {{1, 2, 5, 6}, {3, 4, 7, 8}, {9, 10, 13, 14}, {11, 12, 15, 16}}
A3 = {{1, 2, 7, 8}, {3, 4, 5, 6}, {9, 10, 15, 16}, {11, 12, 13, 14}}.

The family A has a (maximal) common partial transversal of size 2, e.g {1, 9} (cf.
Corollary 5.3).

Corollary 5.3. A family of partitions A = {A1, . . . ,As} of [n] with maximum
block size k contains a common partial transversal of size at least b n−1

s(k−1)+1c+ 1.

Proof. Construct a family of complete multipartite graphs G1, . . . , Gs from the
partitions A1, . . . ,As with vertex classes given by the partition blocks. By Theorem
5.1 the graphsGi are matroidic and every (k+1)-subset is spanning since each vertex
class has size at most k. Thus Theorem 4.3 implies that any family of partitions of
a set E of size at least n = m+ s(k − 1)(m− 1) and with blocks of size at most k,
contains a common partial transversal of size m. Solving for m proves the corollary.

�

In similar vein we have the following interpretation.

Corollary 5.4. If G1, . . . , Gs be complete multipartite graphs on [n] with vertex
classes of size at most k, then

ω

(
s⋂
i=1

Gi

)
≥
⌊

n− 1

s(k − 1) + 1

⌋
+ 1,

where ω(G) denotes the clique number of a graph G.

Corollary 5.5.

N2,1

(
k,

(
m

2

)
,m

)
= (k − 1)(m− 1) + 1.
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Proof. Follows directly from Theorem 4.3 and Theorem 4.4. Alternatively note
that by Lemma 3.5 we may restrict ourselves to loop-free polymatroids. Now use
the characterization of rank 2 matroids in Theorem 5.1 (and by extension, rank 2
polymatroids) to see that the extremal polymatroids are constructed via complete
multipartite graphs with m− 1 independent classes of size k − 1.

�

For polymatroids of rank greater than 2 there is no simple characterization sim-
ilar to Theorem 5.1. Nevertheless we may attempt to find exact values for other
notable specializations. Closest to hand are the ‘diagonal’ numbers ACr,1(r + 1, r +

1, r + 1). Below we find an exact answer to AM3,1(4, 4, 4).

Theorem 5.6. We have

AM3,1(4, 4, 4) = 6,

where M denotes the class of all matroids.

Proof. Let e1, . . . , e6 denote the standard basis of R6. By considering the vectorial
matroid M on {x1, . . . , x5} where xi = ei for i = 1, . . . , 3, x4 = e3 and x5 = e1 +e2,
we see that AM3,1(4, 4, 4) > 5.

Suppose for a contradiction that M is a matroid of rank at most 3 on 6 elements
in which any 4 elements are spanning, but for which there is no subset of 4 elements
in which all 3-subsets are spanning. Clearly since

AMr(M),1(4, 4, 4) ≤ AM3,1(4, 4, 4),

we may assume r(M) = 3. Thus M contains a base B = {x1, . . . , x3}. It follows by
assumption that the remaining three elements y1, y2, y3 ∈ E(M)\B must belong to
distinct hyperplanes containing 2 of the elements in B. For elements z1, . . . , zk ∈
E(M) we adopt the shorthand r(z1, . . . , zk) = r({z1, . . . , zk}). Thus without loss
of generality assume

r(x2, x3, y1) = 2, r(x1, x3, y2) = 2, r(x1, x2, y3) = 2.

If r(x2, x3, yi) = 2 for some i ∈ {2, 3}, then by submodularity we have

r ({x2, x3, yi} ∪ {x2, x3, y1}) + r ({x2, x3, yi} ∩ {x2, x3, y1}) ≤ r (x2, x3, yi) + r (x2, x3, y1) ,

where the left hand side equals 3 + 2 and the right hand side equals 2 + 2, a
contradiction. Thus r(x2, x3, yi) = 3 for all i ∈ {2, 3}. Hence without loss of
generality

r(x3, y2, y3) = 2,

since not all 3-subsets of the 4-set {x2, x3, y2, y3} can be spanning by assumption.
Using submodularity on the sets

{x3, y2, y3} and {x1, x3, y2}
we deduce that the rank of their intersection satisfies

r(x3, y2) ≤ 1 and hence r(x3, y2) = 1

By an argument similar to above we have (without loss of generality) that

r(x2, y1) = 1.

Using submodularity a final time we get

r ({x2, y1} ∪ {x3, y3}) + r ({x2, y1} ∩ {x3, y3}) ≤ r (x2, y1) + r (x3, y2) ,
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where the left hand side equals 3 + 0 and the right hand side is equals 1 + 1, a
contradiction. Hence AM3,1(4, 4, 4) = 6.

�

6. Remarks and open questions

There exist plenty of further questions concerning the numbers ACr,s(k, `,m), espe-
cially since they to our knowledge have not been studied elsewhere in the literature
(even in special form). To begin with it would be good to understand if working
on the level of polymatroids is unnecessary in the sense that there always exist
extremal matroids.

Question 1. Is it true that AMr,s(k, `,m) = Ar,s(k, `,m), whereM denotes the class
of matroids?

Furthermore the estimate in Theorem 4.2 is not sharp. Ideally we would like to find
an explicit characterization of the extremal polymatroids, but more likely improve
the bounds via for example probabilistic methods.

The inflexibility of the parameter k is partly the reason we have not been able
to prove any interesting recursive inequalities (other than monotonicity).

Question 2. Do the numbers Ar,s(k, `,m) satisfy any reasonable recursions or
recursive inequalities?

Computing exact answers to some of these numbers for small or specialized pa-
rameters is also helpful. Closest to hand are the numbers Ar,s(k, 1,m) and the
diagonal numbers Ar,1(r + 1, r + 1, r + 1). Finally we would like to remark that
the problem remains interesting for many subclasses of polymatroids (see Example
3.1). The additional structure in a more restricted class may render the problem
more manageable.

Question 3. Are there any interesting classes C for which ACr,s(k, `,m) have better
estimates?

Especially good would be to understand these numbers for the class of representable
matroids. For ` =

(
m
r

)
this is a statement about the existence of an r×m submatrix

with r-wise independent columns. In information theory literature such matrices
are also known as parity-check matrices for linear codes with minimal distance at
least r + 1.
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