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Abstract

The performance of learning based algorithms largely depends on the
given representation of data. Therefore the questions arise, 7) how to obtain
useful representations, ) how to evaluate representations, and ) how to
leverage these representations in a real-world robotic setting. In this thesis,
we aim to answer all three of this questions in order to learn structured rep-
resentations for rigid and deformable object manipulation. We firstly take
a look into how to learn structured representation and show that imposing
structure, informed from task priors, into the representation space is bene-
ficial for certain robotic tasks. Furthermore we discuss and present suitable
evaluation practices for structured representations as well as a benchmark
for bimanual cloth manipulation. Finally, we introduce the Latent Space
Roadmap (LSR) framework for visual action planning, where raw observa-
tions are mapped into a lower-dimensional latent space. Those are connected
via the LSR, and visual action plans are generated that are able to perform
a wide range of tasks. The framework is validated on a simulated rigid box
stacking task, a simulated hybrid rope-box manipulation task, and a T-shirt
folding task performed on a real robotic system.



Sammanfattning

Prestandan av inldrningbaserade algoritmer beror pa stor del av hur datan
representeras. Av denna anledning stélls foljande fragor: (7) hur vi tar fram
anviandarbara representationer, (77) hur utviarderar vi dem samt (7%) hur kan
vi anvdnda dem i riktiga robotikscenarier. I den hér avhandlingen férsoker vi
att svara pa dessa fragor for att hitta inldrda, strukturerade, representationer
for manipulation av rigida och icke-rigida objekt. Forst behandlar vi hur man
kan ldra in en strukturerad representation och visar att inkorporering av
struktur, genom anvidndandet av statistiska priors, ar fordelaktigt inom vissa
robotikuppgifter. Vidare sa diskuterar vi passande tillvigagangssétt for att
utvardera strukturerade representationer, samt presenterar ett standardiserat
test for tygmanipulering for robotar med tva armar. Till sist sa introducerar
vi ramverket Latent Space Roadmap (LSR) for visuell beslutsplanering, dar
raa observationer mappas till en lagdimensionell latent rymd. Dessa punkter
kopplas samman med hjélp av LSR, och visuella beslutsplaner genereras for
en simulerad uppgift for att placera objekt i staplar, fér manipulation av ett
rep, samt for att vika T-shirts pa ett riktigt robotiksystem.
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Chapter 1

Introduction

1.1 Scope of the Thesis

Object manipulation has been a central focus of a large part of robotic research [1].
Manipulation of rigid objects in an industrial environment is addressed by heavily
controlling the environment and employing manipulators with high accuracy and
repeatability. Performing the same complex manipulation in semi-structured en-
vironments such as shared workspaces between robots and humans, or completely
unstructured and unpredictable environments as found in people’s homes remains
an open problem. Moreover, rigid object manipulation has received the bulk of
the research attention in earlier works, while the handling of deformable objects
only recently enjoyed more and more considerations. One reason is the difficulty in
estimating and controlling the state of deformable objects. The degrees of freedom
of a deformable object are infinite in many cases and an analytical description is
often unfeasible. This facts alone makes transferring classical approaches developed
for rigid object manipulation that rely on exact state estimation and descriptions
unfeasible. With the onset of deep learning, a powerful new tool was added to the
robotics researcher’s toolbox. Learning-based methods are a promising direction
to tackle the challenges of very high dimensional state-spaces and how to describe
the object state, assisting in the solution to challenging manipulation tasks such
as handling deformable objects. While these methods have their own shortcom-
ings, the need for an extreme amount of data in an end-to-end setting or a general
lack of interpretability, the ability to automatically extract beneficial features from
the provided data and encode them into internal representations is a particularly
intriguing trait.

Specifically, the field of representation learning aims to represent given input
data in a favorable format that can be efficiently exploited for further downstream
tasks. Downstream tasks in the computer vision community are defined as “.. com-
puter vision applications that are used to evaluate the quality of features learned by
self-supervised learning. These applications can greatly benefit from the pretrained
models when training data are scarce. [2]”. In robotics, a downstream task can be

3



4 CHAPTER 1. INTRODUCTION

any task that uses the given representations to achieve a goal such as reaching,
pushing, stacking, folding, etc. In general an example of a simple representation
learning scenario involves a supervised feedforward neural network, weights in the
last layer can be thought of as representations to perform the downstream classi-
fication task. When updating these weights during the learning process, they are
shaped into a more favorable representation. Therefore a simple way of obtaining a
potentially useful representation is to take the internal representation of a certain
layer of a supervised trained model. The question of what layer to take as represen-
tations from a pre-trained model highlights an important aspect of representation
learning, if an early layer is used the representations are still high dimensional
but are more likely to contain all the relevant information. The deeper the layer
the more compact the representation becomes but the higher the risk that crucial
information that is necessary for the success of the downstream task is missing.
Therefore this approach can only succeed given that the structure of these internal
representations manage to strike the trade of between complexity and richness of
information preserved. As when using a to complex representation that contains
all necessary (and unnecessary) information the downstream learner has to be very
expressive and can be difficult to train.

Furthermore when considering robotic tasks such as folding one can also impose
explicit constraints on these intermediate representations in a more direct manner
thus imposing structure into the representation. The information needed to impose
the wanted constraints can be informed by task priors instead of explicit class
labels like in a supervised learning setting. An aspiring goal for representation
learning is therefore to produce representations that can be leveraged by weak
networks or methods that rely on more classical approaches to address a given
task. This requirement often requires imposing an additional degree of structure
into the learned representation, as the input needs to be fitting for the employed
downstream method.

In this thesis, we address the following two specific questions:

e How to learn structured representations for rigid and deformable object ma-
nipulation?

e How to leverage the learned structured representations for improving the per-
formance of challenging robotic tasks such as folding in a real-world setting?

1.2 List of Papers

The following is a list of all papers this thesis is based upon. Three papers are pub-
lished papers (Chapters A, C, D) and two papers currently under review (Chapters
B, E) where paper B is an extension of the published paper (X-3). Papers not
included are denoted X-1 to X-5. We indicate the respective robotics venue as well
as specify the contribution.
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Chapter 2

Learning Structured
Representations

This chapter first provides a overview of existing approaches concerning the learning
of representations. We follow by providing the problem definition as well as the
motivation for employing addition structure. Next the three question posed at
the beginning, how to obtain, how to evaluate and how to leverage structured
representation in a real world setting are addressed and related to the included
publications.

2.1 Overview of Existing Approaches

A good representation to facilitate the manipulation of objects is one that makes
it easier to perform state estimation, dynamic prediction, and planning. In [3]
the authors perform an exhaustive review focused on deformable object manip-
ulation. The authors split existing methods presented into two distinct groups,
model-based and data-driven methods. Model-based approaches encompass works
that base their models of deformable objects on physics-based approaches such as
mass-spring systems, point-based dynamics, and continuum mechanics. In contrast
the data-driven approaches infer the required properties directly from the data.
These different approaches often have an inherent trade-off between model accu-
racy, robustness, and computational costs. A combination of physics-based model
approaches has been integrated into simulation environments [4], [5], [6], [7], [8],
with more and more focusing specifically on deformable objects recently. While
these simulators have achieved significant progress in recent years, the formentioned
trade-offs have to be considered when coupling them with deformable manipula-
tion methods. Many approaches are opting therefore to learn their own, often
task-specific representation.

The data-driven approaches can be divided into End-to-End and latent planning
methods. In End-to-End methods, there is no explicit separation between the
representation produced and the downstream task, while in latent planning methods

9
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the representations are constructed first, and planning is done leveraging these
representations. We will also discuss a subset of the latent planning methods called
visual action planning, since they are at the focus of this thesis.

End-to-End: The End-to-End setting was to a large extent popularised with the
introduction of Deep Q-Networks (DQN) [9], [10]. Which achived average human-
level performance on a large number of Atari games taking the raw observations
as input and outputting directly the control actions required to play the games.
The success of DQN established deep reinforcement learning as a separate research
direction and spawned a number of now widely used methods such as for example
Deep Deterministic Policy Gradients (DDPG) [11], Hindsight Experience Replay
(HER) [12], and Proximal Policy Optimization (PPO) [13].

One of the earliest applications of deep reinforcement learning onto the field
of object manipulation was presented in [14]. The authors framed the problem
of manipulation skills as a policy search problem where the policy is producing a
probability distribution over possible actions given the current state. Leveraging
this formulation, the authors were able to demonstrate that their method can learn
controllers that are robust to small perturbations for contact-rich tasks such as
stacking Lego blocks or screwing caps on bottles. In [15], the authors take the
End-to-End deep reinforcement learning approach towards the manipulation of de-
formable objects. DDPG was leveraged in order to facilitate policy learning in
simulation with domain randomization, which was then applied to a real system.
The authors considered manipulation tasks using a cloth towel; folding the towel as
well as draping it over a hanger. The policy learned in simulation is then to be ap-
plied on a real-world system (Sim-to-Real). While Sim-to-Real is demonstrated to
be possible using a simulation environment and domain randomization, seeding the
training with demonstration is necessary for the method to succeed. The quality
of the simulated data is a large potential impediment of data-hungry End-to-End
approaches as getting accurate simulation data of more complex clothing items is
still an open problem.

Latent planning: In latent planning the goal is to create a representation that is
not only useful for neural networks but can also be leveraged by established planning
and control methods, thereby aiming to use the best of two worlds. Deep learning
methods are employed to deal with the sparse high dimensional observations (often
in form of images) that the system receives, while tried and proven concepts from
the planning and control field are subsequently used directly on the latent represen-
tations. In [16] one of the landmark frameworks is introduced: Embed to Control
(E2C), where a Variational Autoencoder (VAE) [17] is used to learn so called image
trajectories from a latent space where the dynamics are constrained to be locally
linear using an optimal control formulation. The authors showcased their method
on a simple planar system, swing-up of an inverted pendulum, balancing a cart-
pole, and a two-joined robotic arm. They furthermore tested enforcing temporal
slowness during the learning process, by augmenting the standard VAE loss func-
tion with an additional Kullback-Leibler (KL)-divergence [18] term that enforces
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temporally close images to also be encoded close in the latent space. While the
authors showed a slightly better coherence of similar states, they remarked that
the slowness term alone is not sufficient to impose the required structure in the
latent space. The idea of learning latent dynamics from raw observation is also
discussed in [19], where a Deep Planning Network (PlaNet) was proposed, with
the goal of modeling the environment dynamics from experience. The method is
therefore iteratively collecting data by first performing a model fitting step on the
data collected so far and then using the achieved planning performance to collect
additional data. The authors showed that a recurrent state-space model is most
successful when splitting the state into a stochastic and deterministic part. An-
other core insight is to roll out multiple latent prediction steps and to incorporate
the results into the loss function. To plan using the latent model PlaNet employs
the cross entropy method (CEM [20], [21]) that aims to recover a probability distri-
bution over actions given the model. Employing a sample-based motion planning
method on the other hand was presented in [22]. In detail, the authors proposed to
leverage an Autoencoder (AE) [23] network to construct the latent space, a dynam-
ics network, and a collision checking network. These three components are then
combined to perform sampling-based motion planning - namely rapidly-exploring
random tree (RRT). The authors showcased their learned latent RRT (L2RRT') on a
top-down visual planning problem, as well as on a humanoid robot as an example of
a high-dimensional dynamical system. Using the latent representation directly for
planning is, however, not the only way to leverage the representation’s advantages.
Another way is to deploy graph structures on top of the latent space to make plan-
ning more suitable for the task at hand. For example, in [24] the idea of employing
a graph directly in the latent space was considered. The authors encoded every
new observation obtained in a 3D maze exploration setting. Given a trajectory,
the images are encoded using an encoder network and added to a memory graph,
where subsequent encodings are connected to each other. A number of shortcuts
are then build to connect the encodings of nodes that are close to each other. This
procedure results in a graph with a large number of nodes, where a single step
can sometimes be too small of an increment to produce a meaningful action. The
authors address this by employing a hyperparameter to select a sensible waypoint
to traverse.

Visual Action Planning: While planning can be performed directly on latent
representations, there are additional benefits if the method is also able to visualize
the planned steps in the form of images. In visual action planning, the goal is to
produce not only a sequence of actions but also a sequence of images showing the
intermediate states on the path towards reaching goal. These images can be used
to perform the control step directly, for example as in [25], where a video prediction
model is fed with a large number of raw observations from self-supervised object
manipulation in a real robot scenario. The model is conditioned on the correspond-
ing actions making it possible to generate images depending on planned actions.
A Model Predictive Control (MPC) approach was then implemented directly on
the generated images. Interestingly the same authors observed in [26], a follow-
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up work where they generated sub-goal images to guide the planning, that using
the pixel distance was more beneficial than using representations. Work exploiting
the images directly is also presented in [27] where a model based upon the Causal
InfoGAN framework was used in order to generate visually plausible images from
start to goal state using data obtained in self-supervision. The “imagined” path
is then used in a visual servoing controller to move the rope into the desired con-
figuration. The authors performed background removal and gray-scaling to make
the generated images easier to achieve and be invariant to potential color changes
of the rope. [28] went a step further and directly learned a state representation of
the rope consisting of 64 rope segments. This was achieved by first estimating 8
straight segments using the Visual Geometry Group (VGG) network [29] followed
by using three consecutive spatial transformer networks [30] to double the number
of segments at every step. Self-supervised approaches are, however, not limited to
1D deformable objects like ropes. In [31] not only a rope was considered, but also a
2D square cloth. In this case, the authors were able to learn the latent dynamics for
these deformable objects from simulation. Here the InfoNCE contrastive loss [32]
was used, where a similar pair is defined as having a (small) action between the
states, while a negative/dissimilar pair is a given observation to any other obser-
vation in the dataset. Note that this notion of similar pairs holds as long as the
perpetuating action is very small. Simulated data of square cloth items was also
leveraged in [33]. Here, no task demonstrations were needed and the CEM was
used to select promising action sequences. The authors not only considered specific
folds for the piece of cloth but also smoothing it from a crumbled starting position.
While we employ similar and dissimilar pairs in our works as well, in contrast to
[31] we employed higher-level action, that results in a guaranteed state change and
defined these pairs therefore as dissimilar pairs. The definition of the similar pairs
is in agreement with [31] by having small permutations between the observations.

2.2 Motivation and Problem Definition: Structured
Representations for Object Manipulation

Before going into the details of learning structured representations that are favor-
able for object manipulation, we clarify certain assumptions and desired properties
that the representations should exhibit.
i) We assume that our method has access to observations and can change the
underlying states of the system by performing known actions.
it) We assume that we have access to enough observations and transition between
some of the observations to cover the task-relevant part of the system.

This assumptions are illustrated in Fig. 2.1, and formalized in the following:

Assumption 1. Let the underlying system states x € X of a system X be hidden,
let A be the set of all possible actions for X, and let Z be the representation space
of X. Let O be the space of all possible observations of a given system X, Let there
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Figure 2.1: A hidden state x € X in a system X can emit a number of different
observations o € O. An agent can interact with the system by performing actions

ac A

be a random agent f(-) that can interact with the system by performing a known
random action a € A changing the system’s state.

We are interested in obtaining a mapping £ : O — Z. Before detailing the

mapping & we define what kind of properties are desirable for the representation
space Z.
Representation properties: As [34] points out, a good representation is
one that captures the posterior distribution of the underlying explanatory factors
for the observed input [34]” Furthermore, a good representation should also be
useful as input to a supervised predictor. [35] points to the particular case of state
representation learning, which focuses on learned features of low dimensionality,
evolving through time and are influenceable by the actions of an agent. Similarly
the authors outline the desired state representations in [36] “..

“

e Markovian, i.e. it summarizes all the necessary information to be able to
choose an action within the policy, by looking only at the current state.

o Able to represent the true value of the current state well enough for policy
improvement.

e Able to generalize the learned value-function to unseen states with similar
futures.

e Low dimensional for efficient estimation. ”

Note that the desire for structured representation is not explicitly stated.

The Need for Structured Representation

As we can see in Fig. 2.1, the states z;,...,x, have a one-to-many relationship
to the observations o, meaning that the same state can have an infinite number
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“00”-shaped

C “L”'Shaped ELD?) 'Shaped

Figure 2.2: An illustrative example of hidden states (“L”-shaped, “[0”-shaped)
emitting a number of visually different observations. The mapping £ is used to
obtain the representations z, the downstream classifier f(-) is subsequently used to
determine the class of the representations (mapping many representations to the
same underlying state).

of unique observations. Naturally, we would want to design the representation
mapping & to have the inverse, a many-to-one relation (many different observations
o get mapped to the one true underlying representation z). This relationship is
common for state classification tasks. An illustrative example is shown Fig. 2.2,
where the arrangement of the boxes constitute the hidden state. Each state emits
several visually different observations that then get mapped from observation space
O to the representation space Z using the mapping £&. A downstream classifier
f(-)c is then subsequently used to determine the class of a given representation,
performing a many-to-one mapping.

As we can see from the example above the performance of a downstream learner
f(-)c depends heavily on the representation space Z and therefore on the mapping
¢. In principle the more ezpressive the downstream learner f.(-), the fewer require-
ments are set on the mapping £. As a concrete example if £ maps the observation
to Z in such a way that the representations are linearly separable, the downstream
learner only needs to be a simple linear classifier, while if it maps it to a less-favored
structure the downstream learner needs to be more expressive. Fig. 2.3 illustrates
this example were two different mappings £; and £ map the same observations into
different representation spaces Z; and Z; respectively. We can easily see that Z; is
linearly separable, while Z5 is not. An expressive enough downstream learner can
solve the task given any of the representations, but a weaker, strictly linear classi-
fier can only succeed in the case of Z;. We can therefore summarise the benefits of



2.2. MOTIVATION AND PROBLEM DEFINITION: STRUCTURED

REPRESENTATIONS FOR OBJECT MANIPULATION

o ...g

Zif e, e sz Ceeen

15

Figure 2.3: Example of two different mappings £; and & map the same observa-
tion into different representation spaces. The resulting representation space 27 is
linearly separable while Z5 is not.

structure in the representations as follows:

The more structured a representation is the less expressive a downstream learner
needs to be in order to fulfill the same objective.

Given the benefits of structure in the representation space we add a fifth desired
property to the list [36] of desired properties for representations:

e Representations should be well structured.

Given the full list of desired representation properties we can formulate our goal
of learning structured representations for object manipulation as follows:

Goal 1. The goal is to find a mapping & : O — Z that maps o € O containing the
underlying state x to a structured representation z € Z such that it is possible to
construct a simple agent f(-) that fulfills a given downstream task by transitioning
the system from the current observation to the goal.

Dividing the Problem

Given the goal formulation, we can divide the overarching problem into three sub-
problems that can then be addressed separately and later be combined to present
a complete framework.

The three sub-questions addressed are:

e How to build a mapping £ such that we achieve representations exhibiting the
desired properties?

e How to leverage the obtained representations to fulfill the task?
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e How to evaluate obtained structured representations and how to compare full
frameworks?

The next sections will address these questions and highlight the publications
associated with them. In detail, section 2.3 will address the question about how to
build the mapping £ and section 2.4 will discuss the evaluation of representations
and full frameworks. Finally we present the Latent Space Roadmap in section 2.5, a
combined framework for learning structured representation for rigid and deformable
object manipulation.

2.3 Feature Extraction and Structuring Representations

When building a mapping £ to encode given observations into a suitable represen-
tation space Z, one often employs a pretext task. A pretext task is an pre-defined
tasks for networks to learn that forces them to produce representation that are more
general in nature by optimising for the tasks objective. The intuitive reasoning for
employing pretext tasks is that while the task itself is arbitrary the network needs
to construct general representation to solve it. These representations can have cer-
tain structures or properties that can be exploited by a downstream task, in which
we are actually interested.

A representation learning pretext task can be a specific supervised task, such
as object classification [29] and simply taking an intermediate layer as a represen-
tation, or a generative model relying on reconstruction and KL-Divergence losses
as presented in [17]. Other pretext tasks are more arbitrary and are constructed
for the sole purpose of later extracting the obtained representation, such as solving
a jigsaw puzzle [37], motion segmentation [38], or instance discrimination [39], the
latter being the basis for the recent success of the state of art unsupervised visual
representation learning methods [40], [41], [42].

In our work in [43] (included as paper A) extending our earlier work [44], we
employed a standard VAE. It is based on the idea that similar-looking 2D objects
should be encoded close to each other in the model’s representation space. The goal
is to obtain representations that preserve their closeness from observation space to
representation space. Since computing the euclidean distance between the 128
dimensional representation is much faster than computing the Hamming Distance
between the original images and query image, the use of representations makes the
cage acquisition procedure viable for real-world settings.

One of the most appealing aspects of many of the mentioned representation
learning pretext tasks is that they are completely unsupervised. Furthermore, the
current state-of-the-art unsupervised representation learning methods [40], [45],
[41], [46], [42], [47], [48], [49], [50] have been closing the gap between the represen-
tation obtained from the fully supervised models. It is however important to note
that the supervised models are trained not on the instance discrimination task but
on a classical multi-class classification task. The way the unsupervised models are
able to achieve such useful representation despite not having access to the exact
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Figure 2.4: Example of similar and dissimilar pairs. Here, similar pairs are ob-
tained by capturing the same scene from two different views, while dissimilar pairs
are obtained by performing an action (moving the blue box).

class labels is by generating their own labels for the given pretext tasks. For the
case of instance discrimination one considers that every image instance is different
from any other image in the given dataset, which constitutes dissimilar pairs. In
order to obtain similar pairs, one uses different transformations of the same image.

This is however, not directly applicable in the robotic context. As described in
Section 2.2, we can have significantly different observations of the same underlying
state and, most importantly, the robotic agent can interact with the environment.
We can leverage these task priors in order to obtain supervisory signals in a similar
way as in the unsupervised representation learning setting. For dissimilar pairs,
we can perform an action that changes the state and, as we know what action we
performed, we can record the observation before and after the action as a dissimilar
pair. For the similar pairs we also have a couple of options, if we are in a setting
where task-irrelevant factors change fast, for example, a ceiling fan changes light-
ning conditions, we can simply wait a certain time between recording observations.
Furthermore, if the task has reversible actions, meaning applying the inverse of
an applied action brings the system to the previous state, we can apply an action
and its inverse to obtain different observations from the same underlying state. If
multiple viewpoints or an actuated camera is available, we can be leverage this to
collect different views of the same underlying states in order to generating more
stmilar pairs.

In our work in [51] we use given task priors in order to collect similar and
dissimilar pairs in a self-supervised manner for a box manipulation task as shown
in Fig. 2.4. The similar pairs were collected by swapping boxes with each other,
as the underlying state was the arrangement of the boxes. In this way, the robot
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could collect the entire dataset in a self-supervised manner. We also established
the usefulness of generating additional dissimilar pairs by randomly sampling from
the full dataset, even if the number of different states is not very high (i.e. = 12).
Models that leverage this similar/dissimilar information without relying on any
other type of loss exhibited the most structured representations.

In summary, when aiming for structured representations one wants to have
similar pairs that are as visually different as possible while still being semanti-
cally similar, as well as dissimilar pairs that are visually similar but semantically
dissimilar. When employing task priors and the fact that the agent can actively
change its environment and therefore the state of the system, further structuring
of representations becomes possible.

2.4 Evaluation of Frameworks and Structured
Representations

Comparing methods and /or frameworks with each other in a fair and unbiased way
is paramount to the continuous improvement of the robotic research field. When
dealing with representation based methods there are two principal options:

1. To compare full resulting framework on standardized task(s).
2. To evaluate the representation directly.

The first option is not only restricted to the case that uses representations in
their framework, but also aims to compare a wider range of methods/frameworks
on a representative benchmark task establishing clear rules and defined scoring
functions. Indeed the prevalence of classification benchmark datasets in the field of
computer vision such as the well-known CIFAR-10 [52] and ImageNet [53] datasets
for object classification, or the Coco [54] and the PASCAL-VOC [55] dataset for seg-
mentation, shows that the community makes heavy use of standardized benchmark
datasets that are accessible to anyone. In the field of robotics, making a dataset
or a benchmark has additional challenges, as the goal of most robotic frameworks
is to perform a specific task in a limited real-world setting. A method that works
for one specific task might be unsuitable in another context. For example, when
developing grasping methods the success will heavily depend on the objects one
wants to grasp. A big step towards standardizing and making approaches more
comparable was the YCB Object and model dataset [56] which is a standardized
set of objects (mostly rigid) that is available to order on the author’s website. In
this way, different labs can benchmark their methods on the same set of objects
making them much more comparable.

In our work in [57] (included as paper C), we followed the YCB benchmark
outlaid standards and produced a clear protocol for three different tasks considering
typical deformable object manipulation for cloth. We used widely available and
standardized objects as well as laid out a precise way to score and compare different
approaches.
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Figure 2.5: Example of disentangling
factors of variation, each latent code en-
codes a specific factor of variation. Here
zp encodes the color of the box, z; en-
codes the scale, and z5 encodes the ori-
entation.

Figure 2.6: Example of a representa-
tion space in the shape of a hypersphere,
Pushing different classes away from each
other on a hypersphere makes classifi-
cation with a linear classifier possible.
Figure inspired by [58].

Evaluating representation directly, on the other hand, has its own challenges.
By definition, the representations are supposed to be useful for a certain task or
range of tasks, so finding surrogate scores is not a trivial endeavor. One approach
that got popularised in [34] is considering the notion of disentanglement.

The basic notion of disentanglement is illustrated in Fig. 2.5, where three latent
codes (z1, 2o, z3) are associated with three underlying factors of variation (color,
scale, and orientation). A representation is disentangled if changing a single latent
code results in a change of a single factor of variation i.e. one independent factor
of variation or an underlying generative factor is associated with exactly one la-
tent code, as defined by the authors in [34]. Over the following years a number of
disentanglement scores have emerged [59], [60], [61], [62], [63], [64], [65]. However,
there is currently no agreement in the community about what score serves best as a
surrogate score to evaluate representations. In [66] the authors challenge a number
of common assumptions regarding unsupervised learning of disentangled represen-
tations and demonstrate that the random initialization and model parameters can
have a much larger impact than the different models used for learning disentangled
representation. While there has been some works leveraging disentangled represen-
tation in a reinforcement learning context [67], on the topic of Sim2real transfer
[68] , and for predicting out-of-distribution (OOD) performance [69], the benefits
in a real-world robotic manipulation context are currently not established.

A more agreed-upon evaluation protocol in visual unsupervised representation
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learning is to evaluate the representations by the accuracy of a simple linear clas-
sifier [40], [45], [41], [46], [42]. The idea is that a representation that facilitates
good classification results for a simple linear classifier is more useful than one that
needs a more complex or expressive downstream learner. For example, [58] provides
an in-depth analysis on normalizing the representation space onto a hypersphere,
where a linear classifier is able to perform well if classes are correctly clustered.
This concept is sketched in Fig. 2.6, where different observation instances are clus-
tered together, and the different classes are uniformly distributed throughout the
hypersphere. The caveat of this method, however, is that it requires ground truth
state labels, while they are readily available in computer classification tasks, or in
simulated settings, they are seldom present in more complex robotic manipulation
scenarios especially when dealing with deformable objects.

In our work in [51] (included as paper E), we were specifically interested in
evaluating the structure of the representations, as well as their utility in a robotics
visual planning task. Therefore, we propose a two-pronged approach:

i) As the structure we are interested in is very closely related to clusterability,
we perform a number of cluster related scores such as recording the number of
clusters, the homogeneity and completeness [70], as well as the mean silhouette
coefficient [71], whereof the latter does not rely on ground truth labels.

it) The planning performance is evaluated on our Latent Space Roadmap (LSR)
framework [72] (paper X-3, not included) and the assumption that all potential
actions are always correct. With this setup, we compared the effect of different
kinds of loss functions. Namely we showed that a contrastive loss is more beneficial
in the context of visual task planning in robotics than a reconstruction based one.

2.5 Latent Space Roadmap - An Example of a Combined
Framework

Our work presented in [73] (included as paper B ,currently under review) which is
an extended version of our work presented in [72] (not included paper X-3) gives
an example of a combined framework that learns representations and then employs
them in order to perform rigid and deformable object manipulation. An overview
of the framework is shown in Fig. 2.7, which consists of three components:

i) A Mapping Module &, which takes a start and goal observation and maps them
into the latent space Z. We realized this map £ with a VAE where we added an
additional contrastive loss term (called action loss in [73]) that makes use of the
manually obtained similar/dissimilar pairs information in order to produce a more
structured representation. We established that adding a contrastive term improves
the structure of the latent space in our work in [51] (included as paper E (under
review)), however an important point in the provided framework is that we produce
visual action plans, and we therefore decode any given latent representation with a
decoder w.
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Figure 2.7: Overview of our LSR framework, consisting of the Mapping Module &,
the Latent Space Roadmap (LSR), and the Action Proposal Module. The frame-
work takes in a start and goal observation and produces a visual action plan that
contains the intermediate observations and actions needed to reach the desired goal
configuration (Figure is excerpt from our work in [73]).

it) The Latent Space Roadmap (LSR) which is a graph built directly inside the
latent space where the nodes ideally represent the underlying states and the edges
represent possible transitions. It is constructed in three phases: a) in the first phase
a reference graph is constructed using the information if a pair in the dataset is a
similar pair (no edge is built between them) or a dissimilar pair (an edge is built).
b) For the second phase, the latent space is clustered using agglomerative clustering,
we measure the distance of inter-cluster dissimilarity using the unweighted average
distance between points in the considered clusters. The final clustering is then ob-
tained by applying the clustering threshold 7 to the obtained stepwise dendrogram,
as shown in Fig. 2.8 top right. ¢) In the last phase, the LSR is built where each
cluster obtained in the previous phase corresponds to a node in the LSR, and they
are connected if there is an edge between the individual pairs (as obtained in phase
a) located inside different clusters. We can have an optional additional pruning step
that removes nodes that only have a certain number of data points as members or
edges that have less than a specified number of edges connecting the same nodes.
This step can be helpful if the collected training data is noisy and contains outliers.

The attentive reader might have noticed that the performance of the cluster-
ing heavily depends on the clustering threshold 7, which is not trivial to tune and
subject to ongoing research [74], [75]. For this reason, we propose an outer op-
timization loop that substitutes the hard-to-tune 7 hyperparameter with a much
more robust and easier to tune parameter c¢,,... In our outer optimization, we
analyze the number of edges as a measurement of LSR quality and optimize for a 7
that gives the most edges in the LSR while having fewer than c¢,,,, separate graph
connected components. The intuitive motivation is that we want to have an LSR
that is well connected, and therefore should have many edges. But we also want
to have only a limited number of connected components as this lowers the connec-
tivity significantly without affecting the total number of edges. When optimizing
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Figure 2.8: Illustration of the outer optimisation for the clustering threshold 7. A
reference graph (top left) results in a stepwise dendogram after applying agglom-
erative clustering. The different thresholds 71, 72, and 73 results in different LSRs.
(Figure is excerpt from our work in [73])

with a set hyperparameter we can obtain an LSR that is very well connected and
consists of at least one large connected component. When employing a very low 7
the LSR receives more edges but a large number of disconnected components, while
if 7 is large it exhibits few disconnected components but also few edges. Fig. 2.8
shows this principle. On the top row we see the reference graph and the resulting
stepwise dendrogram. This dendrogram can then be cut by the clustering threshold
7 resulting in different LSRs (shown on the bottom row). The diamond markers
indicate separate nodes while the edges are visualized with connecting black lines.
We can see that the left most LSR (71) has the most edges but also two connected
components, while the 7 and 73 result in a single connected component where o
obtains more edges.

1i) The final part of the framework is the action proposal model, which takes as
input a latent plan, produced by the LSR, and proposes actions to translate from
one state to the next. In our case, we employed a Multilayer Perceptron network
trained on the representations obtained with the mapping £. Note that it is also
possible to integrate the action proposal directly into the LSR, for example, a simple
baseline action can be obtained by averaging the actions associated with each edge
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Figure 2.9: Different tasks addressed with the LSR framework. A rigid box stacking
task in two variants shown in a), a hybrid rope-box manipulation task shown in b),
and a folding task on a highly deformable object in c).

in the reference graph into the corresponding edges in the LSR.

Overall the framework uses these three components to obtain visual action plans
that can be executed on a real robotic system. This framework works best in the
setting where the feasible states of the system are finite and can be distinguished
from each other in such a way that unambiguous actions to transition between them
can be defined. We extensively evaluated and showcased the performance of this
framework on three different tasks (shown in Fig. 2.9), namely a rigid box stacking
task, a hybrid rope-box task where two boxes are connected with a rope, and a
real-world T-shirt folding task.






Chapter 3

An Overview of Publications

A general overview of the published papers (included and not-included in this thesis)
is shown in Fig. 3.1. This will serve as an overall orientation, highlighting the links
between different publications and how they contributed by addressing the specific
questions asked in this thesis. Papers that are not included in this thesis are shown
with a purple background and marked with X-1 to X-5, while works included are
appearing with a green background and labeled with the letters A-E.

Paper X-1 “From visual understanding to complex object manipulation” [76]
gave an overview of the whole manipulation pipeline that is required to successfully
manipulate objects. The process starts with a visual step where relevant objects
and obstacles need to be identified, it continues with a planning step taking into
account the environment as well as the constraints imposed by the capabilities
of the manipulator, the follow-up step is sensor feedback where several potential
sources of information like tactile readings or visual feedback can be considered.
The final step is then the manipulation itself, where the grasped object is put into
the desired configuration or employed as a tool. The project gave a good overview
of the challenges to overcome when realizing such a system in the real world as well
as insights into each step required to successfully perform object manipulation.

One part that was of tangential interest was how a real-world vision system
specialized for cloth manipulation could be realized and how to address the spe-
cific scene encountered in robotic cloth manipulation. The resulting publication
X-4 “Fashion Landmark Detection and Category Classification for Robotics” [77]
presents an elastic warping method to augment training data found in large fash-
ion datasets to make them more relevant for a robotic context. It furthermore
investigated how robust landmark detection is under occlusion from a robotic arm.

Paper A “Partial caging: a clearance-based definition, datasets and deep learn-
ing” [43] is the extended version of paper X-2. This paper is directly relevant for
the thesis as we are using a VAE trained on known objects to then encode novel ob-
jects, select the closest known objects in the latent space and propose high-quality
partial cages inspired by the known object for the novel object. Here the latent
space generated by the VAE was used in order to facilitate a different downstream

25
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Figure 3.1: Overview of publications. PhD started with the two projects in the top left corner. The arrows symbolise high
level questions that where explored and led to the subsequent publications. Items with green background are included in
this thesis while items with purple are not.
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task (partial cage acquisition). Our findings however showed that while the use of
representation was significantly faster compared to the Hamming distance from the
novel object to any other known object, the quality of the proposed partial cages
was higher using the Hamming distance compared to using the representation of
the VAE. This showed that while representations are a promising direction one
needs to introduce more structure that shapes the latent representation to a more
favorable state given the downstream tasks.

The lessons learned from paper X-1 regarding the real-world challenges and the
usefulness of representations for downstream tasks from paper A laid the ground-
work for paper X-3 “Latent Space Roadmap for visual action planning of deformable
and rigid object manipulation” [72]. In this work, the core question was how to
learn structured representation as well as how to leverage it into a real-world sys-
tem that is able to complete challenging robotic tasks like folding. We tackled
the problem of visual action planning where given a start and goal observation a
visual action plan is produced that shows the planned steps as well as the actions
required to traverse from the start state to the desired goal state. We leveraged the
task priors that, when successfully performing an action, the subsequent state is
different from the initial one but the same if only minor changes are performed that
do not change the underlying state. This knowledge is leveraged when generating
the representation space using a VAE. We augmented the loss function of the VAE
to include a contrastive term that pushes pairs of states that are dissimilar apart
and contracts pairs of states that are similar. Using this representation the LSR
was built in the latent space by first performing clustering and then connecting
the cluster with edges representing the possible actions observed in the training
dataset. We validated our LSR method on a simulated box stacking and real-world
shirt folding task. While this project addresses the core of the thesis, there were
many open questions: i) how to best achieve the mapping from observation into
representation space? Is a VAE the only option? ¢) Which clustering method
for building the LSR is most suited? Can the clustering hyperparameter be au-
tomatically tuned? 4#) How does the method compare to other methods? What
are the limitations of the framework and can it perform on tasks where rigid and
deformable objects are combined? This questions directly relates to the LSR and
are subsequently addressed in paper B. However, there were also more fundamental
questions arising that are also relevant for the overall topic of this thesis. Namely,
iv) how can one compare different cloth manipulation systems? v) Can additional
sensory readings be leveraged to gain more insights about the clothing items? And
vi) can specific task constraints be incorporated into the framework?

Question -3¢ were answered in paper B “Enabling Visual Action Planning for
Object Manipulation through Latent Space Roadmap” [73], where the framework
is split into three distinct parts, a Mapping Module that can be realized with
any encoder like model (we compared AE with VAE), the LSR built with a new
core clustering algorithm (unweighted average linkage) as well as the inclusion of
an outer optimization loop with easier-to-tune hyperparameters, and finally the
Action Proposal Model realizable with either simple average action aggregations
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or any neural network. Furthermore, an additional hard box stacking task was
introduced to complement the normal box stacking task and make the ablation
study more relevent and wider in scope. A new hybrid task, where two boxes are
connected with a deformable rope is also added. In this work, we showed extensively
how a system that learns structured representation is used for simulated rigid and
real-world deformable object manipulation.

Our work presented in paper C “Benchmarking Bimanual Cloth Manipulation”
[67] takes a step towards resolving question iv), of how to compare different meth-
ods/systems. We proposed a benchmark featuring three standardized tasks, spread-
ing a tablecloth, folding a towel, and a dressing task. The tasks were designed in
such a way that they are easily reproducible and come with a consistent scoring
protocol that allows to benchmark and compare different approaches against each
other. Defining standardized tasks in a reproducible and comparable way is an
important step to make it easier to evaluate and compare different methods. It also
highlights the strengths and weaknesses in a standardized manner such that future
research can be easily extended and improve existing approaches.

When dealing with deformable objects any information the system can obtain
thanks to additional sensory readings might be of great benefit. In the specific
case of cloth manipulation, inferring the dynamic behavior by knowing something
about the material or construction techniques could be of significant benefit. In our
work presented in paper D “Textile Taxonomy and Classification Using Pulling and
Twisting” [78] we take a step towards this direction. First we introduced a taxonomy
that not only considers the material of garments but also the constructing technique
such as if it is woven or knitted. We postulated that the construction technique
plays a significant factor in the dynamics of garments that have not been considered
in prior work. In a small-scale experiment, we demonstrated that one can infer the
construction technique with higher accuracy than the material using force/torque
readings and pulling actions.

The final question, whether specific task constraints can be incorporated, was
considered in our work published in paper X-5 “Learning Task Constraints in Visual
Action Planning from Demonstration” [79], where we used Linear Temporal Logic
(LTL) formulation to label demonstrated sequences that either fulfill the given
constraint or not. An Long short-term memory (LSTM)-model [80] was then used
to distinguish between the binary case. Different LTL-formulated constraints can
be acquired this way and then combined with simple logical operators such as AND
or OR to combine simple constraints into more complex ones.

While we performed an extensive ablation study in paper B, the nature of
developing a full system with many components is that one does not have the space
to extensively analyse every aspect of such a framework. While we showed that a
VAE is a more suitable mapping module than an AFE for the tasks considered, we
did not perform a fundamental analysis that compared models based on the type of
loss function they employ and their usefulness for higher-level planning tasks. This
is addressed in paper E “Comparing Reconstruction-and Contrastive-based Models
for Visual Task Planning” [51] (currently under review) where we first analyzed
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an extensive body of related work and discovered that despite the introduction
of contrasting losses in 2006, many current state-of-the-art methods and proposed
frameworks still rely on the reconstruction loss. We performed a systematic study
comparing seven different models that either employed pure reconstruction loss,
reconstruction- and KL-loss, pure contrastive loss, of a combination of the three
different loss types. We evaluated the models on three different visual planning tasks
where irrelevant factors of variations are present in the observations given to the
system. We showed that purely contrastive-based losses are best suited to address
such tasks especially if observations of the same underlying state can significantly
differ from each other because of task-irrelevant factors such as distractor objects,
or different view angles.






Chapter 4

Conclusion and Future Work

In this thesis, we looked at how to learn representation for rigid and deformable
object manipulation. We presented our work and the contribution on learning
structured representations for rigid and deformable object manipulation, concluding
with a framework incorporating the lessens learned that was successfully applied
to tasks from the rigid, hybrid, and deformable object manipulation domain. To
conclude this thesis we will shortly highlight potential future work that expands
the lessons learned and try to uncover more relevant insights.

4.1 Cage-Flow - A Flow-based Cage Proposal Model

The mapping £ : O — Z considered so far was predominantly modeled using a
VAE wich optimizes the evidence lower bound (ELBO). There exists however a
different group of likelihood-based generative models - namely normalizing flow
models [81], [82], [83]. In normalizing flow models, the goal is to map a simple
distribution (one that can easily be sampled from) to a more complex one (inferred
from the data). A core difference to VAEs is that the mapping from observation
space O to the representation space Z is deterministic and invertible. A flow-
based model therefore directly approximates the distribution of the given training
data. Flow-based models have been successfully applied in many domains like video
generation [84], graph generation [85], and reinforcement learning [86], [87].

In our future work, we want to employ normalizing flow model to predict promis-
ing cages for 2D and 3D objects, as well as investigate the estimated distributions.
Another interesting aspect we want to consider is that cages can be represented in
different ways. Therefore, an additional goal is to examine what kind of cage repre-
sentations is most suitable for flow-based models. In order to achieve this goal, we
produce a number of promising cages on randomly generated objects (so far only
2D), by employing a number of handcrafted heuristics such as placing a caging tool
inside the symmetric difference of the object and it’s convex-hull, perpendicular to
the longest line, on opposite sides of the predominate object axis, and more. We
represent these cages as geometric graphs with a central anchor node and define
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Figure 4.1: Example of 2D cages, represented as a graph having a center anchor-
node. The cages where obtained employing a number of handcrafted heuristics.

the location of the caging points using polar coordinates. Another potential rep-
resentation is a simple set of points in planar coordinates. Fig. 4.1 shows some
examples of cages obtained using the mentioned heuristics with varying amounts
of caging points.

Our next step is to train a conditional flow-based model on either the graph
structure or the set of points representations while conditioning it on the object to
be caged. In detail, we plan to investigate the following questions:

1. Can promising caging configuration for novel objects be obtained for 2D and
3D objects using Cage-Flow?

2. How does the estimated distribution change when adding more objects or
caging tools to the training data?

4.2 Hierarchical-LSR - A LSR framework for Continuous
Problems

The current LSR framework has been successfully applied to different domains and
a number of diverse tasks. It works best in the setting of higher-level planning em-
ploying action primitives, and considering systems that have a relatively low number
of clearly separated underlying states. We are planning to expand this framework
also to tasks of a more continuous nature. The problem of separating states can
be seen as a discretization problem with multiple layers, where the higher level
corresponds to the current application of the LSR. A potential approach would be
to develop a hierarchical approach where states are further discretized, for exam-
ple, the highest level describes the arrangement of boxes while at a lower level the
state descriptor identifies the rotation or exact position. Such a framework could
be employed to solve a wider range of tasks than the current one presented in this
thesis.

Furthermore, we are planning to investigate how to integrate the LSR in a
reinforcement learning setting. We plan to build an initial LSR and based on this
decide what kind of states transitions are needed, actively explore those, and extend
the LSR step by step. Such an approach could also be leveraged to find shortcuts
between states, currently, we can only transition between states with actions that
have been observed in the training data, however, there are some problem settings
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where the action observed between two different states could also be generalized
onto a different pair of states. An LSR explorer could attempt to traverse from one
state to another with the most promising action and extend the connectivity of the
LSR in this way.

In conclusion, this thesis provided a step towards learning structured representa-
tions for rigid and deformable object manipulation, by answering relevant research
questions as well as advancing the state of the art with the new Latent Space
Roadmap method.
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Paper A

Partial Caging: A Clearance-Based
Definition, Datasets, and Deep Learning

Michael C. Welle, Anastasiia Varava, Jeffrey Mahler, Ken Goldberg,
Danica Kragic and Florian T. Pokorny

Abstract

Caging grasps limit the mobility of an object to a bounded component
of configuration space. We introduce a notion of partial cage quality based
on maximal clearance of an escaping path. As computing this is a compu-
tationally demanding task even in a two-dimensional scenario, we propose a
deep learning approach. We design two convolutional neural networks and
construct a pipeline for real-time planar partial cage quality estimation di-
rectly from 2D images of object models and planar caging tools. One neural
network, CageMaskNN; is used to identify caging tool locations that can sup-
port partial cages, while a second network that we call CageClearanceNN
is trained to predict the quality of those configurations. A partial caging
dataset of 3811 images of objects and more than 19 million caging tool con-
figurations is used to train and evaluate these networks on previously unseen
objects and caging tool configurations. Experiments show that evaluation of
a given configuration on a GeForce GTX 1080 GPU takes less than 6 ms.
Furthermore, an additional dataset focused on grasp-relevant configurations
is curated and consists of 772 objects with 3.7 million configurations. We also
use this dataset for 2D Cage acquisition on novel objects. We study how net-
work performance depends on the datasets, as well as how to efficiently deal
with unevenly distributed training data. In further analysis, we show that the
evaluation pipeline can approximately identify connected regions of success-
ful caging tool placements and we evaluate the continuity of the cage quality
score evaluation along caging tool trajectories. Influence of disturbances is
investigated and quantitative results are provided.

Al
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1 Introduction

A rigid object is caged if it cannot escape arbitrarily far from its initial position.
From the topological point of view, this can be reformulated as follows: an object
is caged if it is located in a bounded connected component of its free space. This
notion provides one of the rigorous paradigms for reasoning about robotic grasping
besides form and force closure grasps [1], [2]. While form and force-closure are
concepts that can be analyzed in terms of local geometry and forces, the analysis
of caging configurations requires knowledge about a whole connected component
of the free configuration space and is hence a challenging problem that has been
extensively studied analytically. However, since global properties of configuration
space may also be estimated more robustly than subtle local geometric features
used in classical force closure analysis, caging may hold promise particularly as a
noise-tolerant approach to grasping and manipulation.

not a

partial
cage

max
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clearance

=
[ ] [ ]
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...... o Si‘i.zldl min
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LNASEs 9f CageMaskNN CageClearanceNN
configurations

Figure A.1: Given an image of an object (depicted in black) and 3 or 4 caging
tools (depicted in green), CageMaskNN determines whether a configuration belongs
to the “partial cage" subset. If it does, CageClearance NN, evaluates its quality
according to the clearance measure learned by the network. On the figure, the
blue region corresponds to successful placements of the fourth finger according to
CageMaskNN, and their quality predicted by CageClearance NN.

In its topological formulation, caging is closely related to another global charac-
teristic of configuration spaces — path-connectedness, and, in particular, is a special
case of the path non-existence problem [3, 4]. This is a challenging problem, as
it requires reasoning about the entire configuration space, which is currently not
possible to reconstruct or approximate [3, 4].

Another interesting global characteristic of a configuration space is the maxi-
mum clearance of a path connecting two points. In path planning, paths with higher
clearance are usually preferred for safety reasons. In contrast, in manipulation, if
an object can escape from the manipulator only through a narrow passage, escaping
is often less likely. In practical applications, it might be enough to partially restrict
the mobility of the object such that it can only escape through narrow passages
instead of completely caging it. Such configurations are furthermore less restrictive
than full cages, thus allowing more freedom in placing caging tools.
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This reasoning leads to the notion of partial caging. This generalization of
classical caging was first introduced by Makapunyo et al. [5], where the authors
define a partial caging configuration as a non-caging formation of fingers that only
allows rare escape motions. While [6] and [7] define a similar notion as energy-
bounded caging, we propose a partial caging quality measure based on the maximum
clearance along any possible escaping path. This value is directly related to the
maximum width of narrow passages separating the object from the rest of the free
space. Assuming motion is random, the quality of a partial cage depends on the
width of a “gate” through which the object can escape.

Our quality measure is different from the one proposed in [5], where the authors
introduced a measure based on the complexity and length of paths constructed by
a sampling-based motion planner, thus generalizing the binary notion of caging to
a property parameterized by cage quality.

One challenge with using sampling-based path planners for partial caging eval-
uation is that a single configuration requires multiple runs of a motion planner and
— in the case of rapidly exploring random tree (RRT) — potentially millions of tree
expansion steps each, due to the non-deterministic nature of these algorithms. This
increases the computation time of the evaluation process which can be critical for
real-time applications, such as scenarios where cage quality needs to be estimated
and optimized iteratively to guide a caging tool from a partial towards a final cage.
We significantly speed up the evaluation procedure for partial caging configurations
by designing a deep learning-based pipeline that identifies partial caging configu-
rations and approximates the partial caging evaluation function (we measured an
evaluation time of less than 6 ms for a single given configuration on a GeForce GTX
1080 GPU). For this purpose, we create a dataset of 3811 two-dimensional object
shapes and 19055000 caging tool configurations and use it to train and evaluate our
pipeline.

Apart from evaluating given partial caging configurations, we also use the pro-
posed quality measure to choose potentially successful placements of 1 out of 3 or 4
caging tools, assuming the positions of the remaining tools are fixed. In Fig. A.1, we
represent the output as a heat map, where for every possible translational place-
ment of a caging tool along a grid the resulting partial caging quality value is
computed. Another application of the pipeline is the evaluation and scoring of
caging configurations along a given reference trajectory.

Furthermore, we explore different shape similarity measures for objects and
evaluate them from the partial caging perspective. We propose a way to generate
partial caging configurations for previously unseen objects by finding similar objects
from the training dataset and applying partial caging configurations that have
good quality score for these objects. We compare three different definitions of
distance in the space of shapes: Hausdorff, Hamming, and the distance in the
latent space of a variational autoencoder (VAE) trained on a set of known objects.
Out experiments show that Hamming distance is the best at capturing geometric
features of objects that are relevant for partial caging, while the VAE-induced
distance has the advantage of being computationally efficient.



PAPER A. PARTIAL CAGING: A CLEARANCE-BASED DEFINITION,
A4 DATASETS, AND DEEP LEARNING

This paper is a revised and extended version of our previously published con-
ference submission [8]. The contribution of the extension with respect to the con-
ference paper can be summarized as follows:

1. we define a grasping band for planar objects — the area around the object
that is suitable for placing caging tools, created a new dataset! consisting of
partial caging configurations located in the grasping band;

2. we approximate our partial caging quality measure with a deep neural network
trained on this new dataset;

3. we perform ablation studies to evaluate our deep network architecture;

4. we evaluate the adequacy of our partial caging quality measure by modeling
the escaping process as a random walk, and measuring the escape time;

5. we propose a cage acquisition method for novel objects based on known partial
caging configurations for similar objects; for this, we explore several different
distance metrics;

6. we further evaluate the robustness of the cage acquisition with respect to
noise.

2 Related Work

One direction of caging research is devoted to point-wise caging, where a set of
points (typically two or three) represents fingertips, and an object is usually rep-
resented as a polygon or a polyhedron , an example of a 2D cage can be seen in
Fig. A.2 on the left-hand side. Rimon and Blake in their early work [9] proposed
an algorithm to compute a set of configurations for a two-fingered hand to cage
planar non-convex objects. Later, Pipattanasomporn and Sudsang [10] proposed
an algorithm reporting all two-finger caging sets for a given concave polygon. Va-
hedi and van der Stappen in [11] described an algorithm that returns all caging
placements of a third finger when a polygonal object and a placement of two other
fingers are provided. Later, Rodriguez et al. [2] considered caging as a prerequisite
for a form closure grasp by introducing a notion of a pregrasping cage. Starting
from a pregrasping cage, a manipulator can move to a form closure grasp without
breaking the cage, hence guaranteeing that the object cannot escape during this
process.

One can derive sufficient caging conditions for caging tools of more complex
shapes by considering more complex geometric and topological representations.
For example, an approach towards caging 3D objects with ‘holes’ was proposed
by some of the authors in [12, 13, 14]. Another shape feature was later proposed
in [15], where we presented a method to cage objects with narrow parts as seen

Thttps://people.kth.se/~mwelle/pc_datasets.html
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in Fig. A.2 on the right-hand side. Makita et al. [16, 17] have proposed sufficient
conditions for caging objects corresponding to certain geometric primitives.

2D cage 3D cage

Figure A.2: Example of a 2D cage (left) and a 3D cage exploiting a narrow part of
the object.

Finally, research has studied the connectivity of the free space of the object by
explicitly approximating it. For instance, Zhang et al. [18] use approximate cell
decomposition to check whether pairs of configurations are disconnected in the free
space. Another approach was proposed by Wan and Fukui [19], who studied cell-
based approximations of the configuration space based on sampling. McCarthy et
al. [3] proposed to randomly sample the configuration space and reconstruct its
approximation as a simplicial complex. Mahler et al. [6, 7] extend this approach
by defining, verifying and generating energy-bounded cages — configurations where
physical forces and obstacles complement each other in restricting the mobility of
the object. These methods work with polygonal objects and caging tools of arbitrary
shape, and therefore are applicable to a much broader set of scenarios. However,
these approaches are computationally expensive, as discretizing and approximating
a three-dimensional configuration space is not an easy task.

To enable a robot to quickly evaluate the quality of a particular configuration
and to decide how to place its fingers, we design, train and evaluate a neural network
that approximates our caging evaluation function (see [20] for an overview of data-
driven grasping). This approach is inspired by recent success in using deep neural
networks in grasping applications, where a robot policy to plan grasps is learned
on images of target objects by training on large datasets of images, grasps, and
success labels. Many experiments suggest that these methods can generalize to a
wide variety of objects with no prior knowledge of the object’s exact shape, pose,
mass properties, or frictional properties [21, 22, 23]. Labels may be curated from
human labelers [24, 25, 26], collected from attempts on a physical robot [27, 28], or
generated from analysis of models based on physics and geometry [29, 30, 31, 32].
We explore the latter approach, developing a data-driven partial caging evaluation
framework. Our pipeline takes images of an object and caging tools as input and
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outputs (i) whether a configuration is a partial cage and (%) for each partial caging
configuration, a real number corresponding to a predicted clearance, which is then
used to rank the partial caging configuration.

Generative approaches to training dataset collection for grasping typically fall
into one of three categories: methods based on probabilistic mechanical wrench
space analysis [32], methods based on dynamic simulation [29, 31], and methods
based on geometric heuristics [30]. Our work is related to methods based on grasp
analysis, but we derive a partial caging evaluation function based on caging condi-
tions rather than using mechanical wrench space analysis.

3 Partial Caging and Clearance

3.1 Partial Caging

In this section, we discuss the notion of partial caging defined in [8]. Let C be the
configuration space of the object?, C.,; C C be its subset containing configurations
in collision, and let C¢pee = C — Ccoi be the free space of the object. Let us assume
Ceor is bounded. Recall the traditional definition of caging:

Definition 1. A configuration ¢ € Cygree is a cage if it is located in a bounded
connected component of Csree-

In practical applications, it may be beneficial to identify not just cages, but also
configurations which are in some sense ‘close’ to a cage, i.e., configurations from
which it is difficult but not necessarily impossible to escape. Such partial caging
can be formulated in a number of ways: for example, one could assume that an
object is partially caged if its mobility is bounded by physical forces, or it is almost
fully surrounded by collision space but still can escape through narrow openings.

We introduce the maximal clearance of an escaping path as a quality measure.
Intuitively, we are interested in partial caging configurations where an object can
move within a connected component, but can only escape from it through a nar-
row passage. The ‘width’ of this narrow passage then determines the quality of a
configuration.

Let us now provide the necessary definitions. Since, by our assumption, the
collision space of the object is bounded, there exists a ball Bg C C of a finite radius
containing it. Let us define the escape region X ;. C C as the complement of this
ball: X.sc =C — Bpg.

Definition 2. A collision-free path p : [0,1] = Cjree from a configuration c to
Xese is called an escaping path. The set of all possible escaping paths is denoted by
SP(CfT»ee, C).

2Note that in this paper we focus on the case where C C SE(2), but the definition of partial
caging holds for arbitrary configuration spaces
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Let cl : EP(Cfree,c) — R4 be a cost function defined as the minimum distance
from the object along the path p to the caging tools: cl(p) = min,e,(dist(o, g))
where o, is the object placed in the configuration ¢ and g denotes the caging tools.
We define the caging evaluation function as follows:

Qu(c) = { PIPEEPCrrece) cl(p), EP(Cpree,c) # 0
’ 0, 8P(Cfreey c)= (.

3.2 The set Ceqge

Observe that a low value of clearance measure on arbitrary configurations of C frce
does not guarantee that a configuration is a sufficiently “good” partial cage. For
example, consider only one convex caging tool located close to the object as in
Fig. A.3 (left). In this case, the object can easily escape. However, the clearance of
this escaping path will be low, because the object is initially located very close to
the caging tool. The same clearance value can be achieved in a much better partial
caging configuration, see Fig. A.3 (right). Here, the object is almost completely
surrounded by a caging tool, and it can escape through a narrow gate. Clearly, the
second situation is much preferable from the caging point of view. Therefore, we
would like to be able to distinguish between these two scenarios.

Figure A.3: On the left, an object (blue) can easily escape from the caging tool
(grey); on the right, the object is partially surrounded by the caging tool and
escaping is therefore harder. Both escaping paths will have the same clearance e.

Assume that caging tools are placed such that the object can escape. We in-
crease the size of the caging tools by an offset, and eventually, for a sufficiently large
offset, the object collides with the enlarged caging tools; let us assume that the size
of the offset at this moment is €.,; > 0. We are interested in those configurations
for which there exists an intermediate size of the offset 0 < €¢j0seq < €col, such that
the object is caged by the enlarged caging tools, but is not in collision. This is not
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always possible, as in certain situations the object may never become caged before
colliding with enlarged caging tools. Fig. A.4 illustrates this situation.

Figure A.4: The object (hook) is shown in blue while the caging tools are gray, the
red symbolises the enlargement of the caging tools. The RRT nodes and edges are
depicted in purple. From left to right, three enlargements of the caging tools are
depicted. The object can always escape until its initial configuration stops being
collision-free.

Let us formally describe this situation. Let C%,., be the free space of the object
induced by e—offset of caging tools. As we increase the size of the offset, we get a
nested family of spaces Cjcj,"ele C .. CCfee €. C C?ree, where €., is the smallest
size of the offset causing a collision between the object and the enlarged caging tools.
There are two possible scenarios: in the first one, there is a value 0 < €¢jpsed < Ecol
such that when the offset size reaches it the object is caged by the enlarged caging
tools. This situation is favorable for robotic manipulation settings, as in this case
the object has some freedom to move within a partial cage but cannot escape

arbitrarily far as its mobility is limited by a narrow gate (see Fig. A.5)3

OGG

Figure A.5: From left to right: the object (hook) can escape only in the first case,
and becomes completely caged when we enlarge the caging tools before a collision
with the object occurs.

We denote the set of all configurations falling into this category as the caging
subset Ccqge. These configurations are promising partial cage candidates, and our
primary interest is to identify these configurations. In the second scenario, for any
€ between 0 and e.,;, the object is not caged in the respective free space C5% as
shown in Fig. A.4.

free’

3In Fig. A.5 the enlarged caging tools (in red) cage the hook by trapping the larger base.



4. GATE-BASED CLEARANCE ESTIMATION ALGORITHM A9

We define the notion of partial caging as follows:

Definition 3. Any configuration ¢ € Ceqge of the object is called a partial cage of
clearance Qq(c).

Note that the case where EP(Ceage, ¢) = () corresponds to the case of a complete
(i.e., classical) cage. Thus, partial caging is a generalization of complete caging.

Based on this theoretical framework, we propose a partial caging evaluation
process that consists of two stages. First, we determine whether a given configura-
tion belongs to the caging subset Ceqge. If it does, we further evaluate its clearance
with respect to our clearance measure @), where, intuitively, configurations with
smaller clearance are considered more preferable for grasping and manipulation
under uncertainty.

4 Gate-Based Clearance Estimation Algorithm

Algorithm 1 Gate-Based Clearance Estimation

Require: object O, caging tools G, emax
Emin < 0
while Can-Escape(O, G, €9) do
el < (Emin + €Emaz)/2
if Can-Escape(O, G, ) then
Emin £ Ecl
else

Emax

<— Ecl .
return ¢, # clearance of an escaping path

In this section, we propose a possible approach to estimate Q. (c) — the Gate-
Based Clearance Estimation Algorithm. Instead of finding a path with maximum
clearance directly, we gradually inflate the caging tools by a distance offset until
the object becomes completely caged. For this, we first approximate the object and
the caging tools as union of discs, see Fig. A.8. This makes enlarging the caging
tools an easy task — we simply increase the radii of the discs in the caging tools’
approximation by a given value. The procedure described in Alg. 1 is then used to
estimate Q. (c).

We perform bisection search to find the offset value at which an object becomes
completely caged. For this, we consider offset values between 0 and the radii of the
workspace. We run RRT at every iteration of the bisection search in order to check
whether a given value of the offset makes the object caged. In the experiments,
we choose a threshold of 4 million iterations * and assume that the object is fully

40ur experimental evaluation for our test dataset suggested that if after 4 million iterations
RRT had not found an escaping path, then the object was caged with overwhelming likelihood.
We thus considered RRT with this setting to provide a sufficiently good approximation for training
the neural network.
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caged if RRT does not produce an escaping path at this offset value. Note that this
procedure, due to the approximation with RRT up to a maximal number of itera-
tions, does not guarantee that an object is fully caged; however, since no rigorous
bound on the number of iterations made by RRT is known, we choose a threshold
that performs well in practice since errors due to this RRT-based approximation
become insignificant for sufficiently large maximal numbers of RRT sampling iter-
ations. In Alg. 1, Can-Escape(O, G, e.) returns True if the object can escape and
is in a collision-free configuration.

5 Grasping favorable configuration in C.

Depending on the size of the object with respect to the workspace, the bisection
search performed in Alg. 1 can be computationally expensive. Uniformly sampling
caging tools placements from the entire workspace in order to find configurations
in Ceqge is also rather inefficient and the number of partial caging configurations of
high quality can be low.

Furthermore, not all partial caging configurations defined by Def. 3 (¢ € Ceage)
are equally suitable for certain applications like grasping or pushing under uncer-
tainty. Namely, we would like to place caging tools such that they are not too close
and not too far away from the object.

To overcome these limitations, we define a region around the object called partial
caging grasping band (Fig. A.6 illustrates this concept):

Definition 4. Let O be an object and assume the caging tools have a maximal
width® ctq. Let Opin and Opmqs be objects where the composing disks are enlarged
by dismin = %ctd -(1+B) and dismaz = diSmin + %ctd -y respectively.

We can then define the grasping band as follows:

gB = {.%' € Cfree : (Z‘ € Omin) 2] (-'L‘ S Omam)}y

Here, § and y are parameters that capture the impreciseness of the system, such
as vision and control uncertainties.

6 Learning Planar

As RRT is a non-deterministic algorithm, one would need to perform multiple
runs in order to estimate Q.. In real-time applications, we would like the robot
to be able to evaluate caging configurations within milliseconds. Thus, the main
obstacle on the way towards using the partial caging evaluation function defined
above in real time is the computation time needed to evaluate a single partial caging
configuration.

5The caging tools are composed of disks with ctg as diameter. As we only consider composed
line configurations as caging tools the width never exceeds ctq.
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Figure A.6: An illustration of a grasping band for a duck and hook object. The
object O is in the center (gray) overlaid by Oy, (O enlarged by dis,n, light green)
overlaid by Oy (O enlarged by disaq, light orange). The grasping band (GB) is
the disjunctive union between O, and O,z -

Alg. 1 requires several minutes to evaluate a single partial cage, while a neural
network can potentially estimate a configuration in less than a second.

To address this limitation of Alg. 1, we design and train two convolutional neural
networks. The first, called CageMaskNN, acts as a binary classifier that identifies
configurations that belong to Ceqge following Def 3. The second, architecturally
identical network, called CageClearanceNN, approximates the caging evaluation
function Q. to estimate the quality of configurations. The network takes two
images as input that correspond to the object and the caging tools.The two networks
are separated to make training more efficient, as both can be trained independently.
Operating both networks sequentially results in pipeline visualized in Fig. A.1: first,
we identify if a configuration is a partial cage, and if it is, we evaluate its quality.

Our goal is to estimate Q. given O C R? — an object in a fixed position, and
G ={g1, 92, .-, gn} — a set of caging tools in a particular configuration. We assume
that caging tools are normally disconnected, while objects always have a single
connected component. In our current implementation, we consider n € {3,4}, and
multiple caging tool shapes.

While neural networks require a significant time to train (often multiple hours),
evaluation of a single configuration is a simple forward pass through the network
and its complexity is therefore not relying on the input size or data size but rather
on the number of neurons in the network. In this work, our goal is to show that
we can successfully train a neural network that can generalise to unseen input
configurations and approximate the algorithm 1 in milliseconds.
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6.1 Dataset Generation

We create a dataset of 3811 object models consisting of two-dimensional slices of
objects’ three-dimensional mesh representations created for the Dex-Net 2.0 frame-
work [32]. We further approximate each model as a union of one hundred discs, to
strike a balance between accuracy and computational speed. The approximation

error is a ratio that captures how well the approximation (A,p,) represents the

original object (Ayrg, and is calculated as follows: a. = m. Given the set

of objects, two partial caging datasets are generated. The ﬁrs(‘)crgdataset, called PC-
general, consists of 3811 objects, 124435 partial caging configurations (belonging to
Ceage), and 18935565 configurations that do not belong to Ceqge-

One of the limitations of the PC-general dataset is that it contains relatively few
partial caging configurations of high quality. To address this limitation, generate a
second partial caging dataset called PC-band where caging tools placements are only
located inside the grasping bands of objects, as this strategy increases the chance
that the configuration will be a partial cage of low Q.; as well as the likelihood of
a configuration belonging to Ccqge-

The PC-band dataset consists of 772 object with 3,785,591 configurations of
caging tools, 127,733 of which do belong to the partial caging subset C.qg.. We set
£ to the approximation error a. for each object and v = 6 to define the grasping
band.

All configurations are evaluated with Q. (see algorithm 1). The distribution of
partial cages can be seen in Fig. A.7.

8000 4

0 25 50 75 100 125 150 175

Figure A.7: Distribution of Q. estimates for the PC-general (blue) and the PC-
band(orange) datasets.
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Examples of configurations for both datasets can be seen in Fig. A.8. The disk
approximation of the object is shown in blue, while the original object is depicted
in red. PC-general contains configurations placed in the entire workspace while
PC-band is limited to configuration sampled inside the grasping band.
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Figure A.8: Left: original representations of a hook objects (red) and in blue their
approximation by a union of discs of various sizes closely matching the polygonal
shape (a. = 0.051); second and third column: configurations that do not belong to
Ceage; last column: a partial caging configuration(c € Ceqge). The top row is from
PC-general, the bottom from PC-band.

6.2 Architecture of Convolutional Neural Networks

We propose a multi-resolution architecture that takes the input image as 64x64x2,
32x32x2, and 16x16x2 tensors. This architecture is inspired by inception blocks [33].
The idea is that the global geometric structure can be best captured with differ-
ent image sizes, such that the three different branches can handle scale-sensitive
features. The network CageMaskNN determines whether a certain configuration
belongs to Ccqge, while CageClearanceNN predicts the clearance Q. value for a
given input configuration.

The architecture of the networks is shown in Fig. A.9. Both networks take an
image of an object and caging tools on a uniform background position and orien-
tation belonging to the same coordinate frame constituting a two-channel image
(64x64x2) as input. CageMaskNN performs binary classification of configurations
by returning 0 in case a configuration belongs to Ccege, and 1 otherwise. Cage-
Clearance NN uses clearance Q. values as labels and outputs a real value — the
predicted clearance of a partial cage. The networks are trained using the Ten-
sorflow [34] implementation of the Adam algorithm [35]. The loss is defined as
the mean-squared-error (MSE) between the prediction and the true label. The
batch size was chosen to be 100 in order to compromise between learning speed
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Figure A.9: As caging depends on global geometric properties of objects, a CNN
architecture with multi-resolution input was designed to capture these features
efficiently.

and gradient decent accuracy. The networks were trained on both of our datasets
— PC-general and PC-band.

7 Training and evaluation of the networks

In this section we describe how we train and evaluate the two networks and perform
an ablation study of the architecture. In detail, for CageMaskNN, we investigate
to what extent the training data should consist of samples belonging to Ccqge and
evaluate the performance of the best such composition against a simpler network
architecture. Following that, we investigate how the number of different objects as
well as the choice of dataset influences the performance of CageMaskNN.

For CageClearance NN, we also perform an analysis of the effect of the the num-
ber of objects in the training data and to what extent the choice of dataset influences
the performance and compare it to a simpler architecture. As a final investigation,
we investigate the error for specific Q. intervals.

Note that the training data is composed of samples where the ground truth of the
configuration was obtained using algorithm 1. A main goal of the presented evalua-
tion is hence to investigate how well the proposed networks are able to generalise to
examples that were not included in the training data (unseen test data). High such
generalization performance, is a key indicator for the potential application of the
proposed fast neural network based approach (execution in milliseconds) instead of
the computationally expensive underlying algorithm 1 (execution in minutes) that
was used to generate the training data.
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Single-res Architecture: In order to perform an ablation of the previous dis-
cussed multi-resolution architecture we compare the performance so a architecture
that has only a single resolution as input. The Single-res Arch. Takes only the
64x64x2 as input and is missing the other heads completely. In this way we want
to see if our assumption that different sized inputs are beneficial to the networks
performance.

7.1 CageMaskNN - % of C..4 and Ablation

We generate 4 datasets containing 5%, 10%, 15%, and 20% caging configurations
in Ceqge respectively from PC-general. This is achieved by oversampling as well
as by performing rotational augmentation with 90, 180 and 270 degrees of the
existing caging configurations. The Single-res Arch. is trained with 10% caging
configurations in Ceqge for comparison.

The evaluation is performed on a test set consisting of 50% caging examples from
Ceage- In Fig. A.10, we show the Fl-curve and Accuracy-curve. All five versions of
the network where trained with 3048 objects with 2000 configuration each, using a
batch size of 100 and 250000 iterations. To avoid overfitting, a validation set of 381
objects is evaluated after every 100" iteration. The final scoring is done on a test
set consisting of 381 previously unseen objects. The mean squared error (MSE)
on the unseen test set was 0.0758, 0.0634, 0.0973 and 0.072 for the 5%, 10%, 15%
and 20% version respectively, indicating that CageMaskNN is able to generalize
to novel objects and configurations from our test set. The MSE for the single
resolution network was 0.155 showing the significant gain obtained by utilizing the
multi-resolution branches.

F1-Score Accuracy
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Figure A.10: Fl-score and accuracy of the network depending on different thresh-
olds

We observe that the network that was trained on the dataset where 10% of the
configurations are partial cages performs slightly better than the other versions.
Note however that only the one that was trained with 5% of partial cages performs
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significantly worse. All versions of the multi-resolution architecture outperform the
Single-res Arch, which justifies our architecture design.

7.2 CageMaskINN - Number of Objects and Datasets

We investigate how the performance of the networks depends on the size of the
training data and how the two training datasets, PC-general and PC-band, affect
the performance of the networks. Table A.1 shows the area under ROC curve
(AUC) andthe average precision (AP) for CageMaskNN for training set composed
of 1, 10, 100, and 1000 objects from the dataset PC-general, as well as 1, 10, 100,
and 617 objects from PC-band. We observe that having more objects in the training
set results in better performance. We note that the network trained on PC-general
slightly outperforms the one trained on PC-band.

. . pc-general pc-band
Training set AUC | AP | AUC | AP
1 object 0.92 | 0.88 | 0.88 | 0.83
10 objects 091 | 088 | 0.88 | 0.84
100 objects 0.97 | 092 | 092 | 0.89
1000 || 617 objects | 1.00 | 1.00 | 1.00 | 0.96

Table A.1: The area under ROC curve (AUC) and the average precision (AP) for
different training set constitutions, evaluated on the test set with 50 % of partial
cage configurations. In all training sets 10 % of configurations belong to Ceqge. We
observe that PC-general has a slightly better performance than PC-band.

Fig. A.11 demonstrates how the performance of the networks increases with
the number of objects in the training dataset by showing the Fl-score as well as
the accuracy for both datasets. We observe that the network, independently of the
training dataset, demonstrates acceptable performance even with a modest numbers
of objects in the training dataset. One key factor here is the validation set which
decreases the generalisation error by choosing the best performance during the
entire training run, thus reducing the risk of overfitting. Similarly to the previous
results, PC-general slightly outperforms PC-band.

7.3 CageClearanceNN - Number of Objects and Ablation

The purpose of CageClearance NN is to predict the value of the clearance mea-
sure @, given a partial caging configuration. We trained CageClearanceNN on
1, 10, 100 , 1000 and 3048 objects from PC-general as well as a single resolution
variant with the same training sets. Additionally, we trained another instance of
CageClearance NN with 1, 10, 100, and 617 objects from PC-band, and the cor-
responding single-resolution architecture version for each number of objects. The
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Figure A.11: Fl-score and accuracy of the network trained with 1, 10, 100, and 1000
|| 617 objects,for PC-general (top row) and PC-band (bottom row) respectively on
a test set with 50 % Clqge configuration .

label is scaled with a factor of 0.1, as we found that the networks performance
improves for smaller training input values. The left-hand side of Fig.A.12 shows
a rapid decrease of MSE as we increase the number of training data objects to
1000, and a slight performance increase between 1000 and 3048 training objects
for the PC-general dataset. We can also see that employing the multi-resolution
architecture only leads to significant performance increase when going up to 1000
objects and more. The right-hand side of Fig.A.12 presents the analogous plot for
the network trained on PC-band. We observe the same rapid decrease of MSE as
we include more objects in the training set. Note that the different number of
parameter plays a role as well in the performance difference. Since our current
dataset is limited to 617 training examples of object shapes, we do not observe the
benefits of the multi-resolution architecture. Note that the difference in absolute
MSE stems from the different distributions of the two datasets (as can be seen
in Fig. A.7). This indicates that further increases in performance can be gained
by having more training objects. Increasing the performance for more than 3000
objects may however require a significant upscaling of the training dataset.
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Figure A.12: left: MSE of CageClearance NN trained on PC-general with different
numbers of objects and a single-resolution architecture; right: MSE of the single-
resolution architecture trained on PC-band with different numbers of objects.

7.4 CageClearanceNN - Error for specific Q)

We investigated the MSE for specific Q; value intervals. Fig. A.13 shows the MSE
on the test set with respect to the Q. values (as before, scaled by 0.1). Unsur-
prisingly, we observe that the network, trained on PC-general, that was trained
only on one object, does not generalise over the entire clearance/label spectrum.
As we increase the number of objects, the performance of the network increases.
The number of outliers with large errors decreases significantly when the network
is trained on 1000 objects. On the right side, we can see the MSE for the final
CageClearance NN network trained on PC-general. We observe that low values of
Q. are associated to higher error values. Analysing this behavior on CageClear-
anceNN trained on PC-band demonstrates a very similar behavior and is therefore
omitted.

8 Planar Caging Pipeline Evaluation

8.1 Last caging tool placement

In this experiment, we consider the scenario where n — 1 out of n caging tools are
already placed in fixed locations, and our framework is used to evaluate a set of
possible placements for the last tool to acquire a partial cage. We represent possible
placements as cells of a two-dimensional grid and assume that the orientation of the
caging tool is fixed. Fig. A.15 illustrates this approach. We use the pipeline trained
with PC-general as it covers the entire workspace. In the example a, we can see
that placing the caging tool closer to the object results in better partial caging con-
figurations. This result is consistent with our definition of the partial caging quality
measure. We note furthermore, that CageMaskNN obtains an approximately cor-
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Figure A.13: MSE for each test case sorted for labels. Left: shows performance
of 1, 10, 100, 1000 objects (top left, top right, bottom left, bottom right). Right:
shows MSE of entire test set for the final CageClearance NN. Note that the figure
on the right is zoomed in as errors are significantly smaller (see the left y-axis of
that figure).

rect region-mask of partial caging configurations for this novel object. Example b
demonstrates the same object with elongated caging tools. Observe that this results
in a larger region for possible placement of the additional tool. Example ¢ depicts
the same object but the fixed disc-shaped caging tool has been removed and we
are considering three instead of four total caging tools. This decreases the number
of possible successful placements for the additional caging tool. We can see that
our framework determines the successful region correctly, but is more conservative
than the ground truth. In the example d, we consider an object with two large
concavities and three caging tools. We observe that CageMaskNN identifies the
region for Ccqge correctly and preserves its connectivity. Similarly to the previous
experiments, we can also observe that the most promising placements (in blue) are
located closer to the object.

8.2 Evaluating (), along a trajectory

We now consider a use case of Q). along a caging tool trajectory during manipula-
tion enabled by the fact that the evaluation of a single caging configuration using
CageMaskNN and CageClearance NN takes less than 6ms on a GeForce GTX 1080
GPU.

The results for two simulated sample trajectories are depicted in Fig. A.14.
In the first row, we consider a trajectory of two parallel caging tools, while in the
trajectory displayed in the bottom row, we consider the movement of 4 caging tools:
caging tool 1 moves from the top left diagonally downwards and then straight up,
caging tool 2 enters from the bottom left and then exits towards top, caging tool
3 enters from the top right and then moves downwards, while caging tool 4 enters
from the bottom right and then moves downwards.

The identification of partial caging configurations by CageMaskNN is rather
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stable as we move the caging tool along the reference trajectories, but occurs at
a slight offset from the ground truth. The offset in CageClearance NN is larger
but consistent, which can be explained by the fact that similar objects seen during
training had a lower clearance as the novel hourglass shaped object. In the second
example, the clearance of the partial cage decreases continuously as the caging tools
get closer to the object. Predicted clearance values from CageClearance NN display
little noise and low absolute error relative to the ground truth. Note that a value
of —1 in the quality plots refers to configurations identified as not being in Ccqge
by CageMaskNN.

Trajectory CageMaskNN CageClearanceNN

] [ ]
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Figure A.14: Evaluation of the pipeline along two trajectories. The trajectory (left,
green) is evaluated with CageMaskNN (middle) and CageClearanceNN (right),
which evaluates Q. for those configurations where CageMaskNN returns 0. The
predictions by the networks are displayed in orange while ground truth is shown in
blue.

8.3 Experimental evaluation of ()

In this section, we experimentally evaluate our partial caging quality measure Q)
by simulating random shaking of the caging tools and measuring the needed time for
the object to escape. Intuitively, the escape time should be inversely proportional
to the estimated @.;; this would indicate that it is difficult to escape the partial
cage. A similar approach to partial caging evaluation has been proposed in [5].
Where the escape time was computed using probabilistic motion planning methods
like RRT, RRT*, PRM, SBL as well as a random planner was measured.

8.3.1 Random partial caging trajectories

We apply a simple random walk X, as a sequence of independent random variables
51,99, ..., 8, where each S is is randomly chosen from the set
{(1,0),(0,1),(1,1),(-1,0),(0,—1), (—=1,—1)} with equal probability.
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Figure A.15: Here, we depict the results of four different experiments. The green
region indicates configuration where the additional caging tool completes the con-
figuration in such a way that the resulting configuration is a partial cage. The small
squares in the ground truth figures depict the caging tools that are being placed
(for simplicity the orientations are fixed). We plot the output for each configuration
directly and visualize the result as a heatmap diagram (blue for partial caging con-
figurations, white otherwise). The best placements according to CageClearanceNN
are depicted in dark blue, and the worst ones in yellow. The results are normalized
between 0 and 1. Grey area corresponds to the placements that would result in a
collision.

o
a

Xn=X0+ 51+ 52+ ...4+5),

where X is the start position of the caging tools. and a stride factor a determines
at what time the next step of the random walk is performed.

In this experiment, unlike in the rest of the paper, caging tools are moving along
randomly generated trajectories. We assume that the object escapes a partial cage
when it is located outside of the convex hull of the caging tools. If the object
does not escape within t,,,, seconds, the simulation is stopped. The simulation is
performed with the software pymunk that is build on the physic engine Chipmunk
2D [36]. We set the stride factor o = 0.05s so that a random step S of the random
walk X, is applied to the caging tool every 0.05 seconds. As pymunk also facilitates
object interactions, the caging tool can push the object around as well as drag it
with them. Figure A.16 illustrates this process.

The experiment was performed on 5 different objects, depending on the object
we used between 437-1311 caging tool configurations. For each of them the escape
time was estimated as described above. As it is not deterministic, we performed
100 trials for each configuration and computed the mean value. The mean escape
time of 100 trials was normalized such that the values range between 0 and 1.
Furthermore, for each configuration we computed ). and the Pearson correlation
coefficient®. Fig. A.17 illustrates the results.

6The Pearson correlation coefficient measures the linear correlation between the escape time
from random shaking and the defined clearance measure Q;.
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Figure A.16: Random trajectory for caging tools. Left: time ¢t = Os(transparent) to
t = 0.83s(not escaped), middle: ¢ = 0.83s(transparent) to t = 1.67s (not escaped),
right: time ¢ = 1.67s (transparent) to ¢ = 2.47s (escaped). Note that the caging
tools do not necessarily run in a straight line but rather follow the randomly gener-
ated trajectory with a new step every 0.05s. As a simple physics simulator is used,
the caging tools can also induce movement of the object by colliding with it.
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Figure A.17: Correlation between escape time from random shaking and Q.. Top
row shows evaluated objects (disk, clench, cone, balloon animal, and hook, on the
bottom row the partial cages are sorted according to respective average escape
time, and plot the average escape time (in blue), its variance (in gray), and Qg
(in orange). Pearson correlation coefficient of the escape time and @ (from left to
right) are: —0.608, —0.462, —0.666, —0.566, —0.599

Our results show that the longer it takes for the object to escape the partial
cage, the higher the variance of the escape time is. This indicates that a partial cage
quality estimate based on the average escape time would require a high number of
trials, making the method inefficient.

Furthermore, we demonstrate that our clearance-based partial caging quality
measure shows a trend with the average escape time for strong partial cages, which
suggests the usefulness of the proposed measure.

8.4 Different metrics in the space of shapes for partial caging

A natural extension of our partial caging evaluation framework is partial cage ac-
quisition: given a previously unseen object, we would like to be able to quickly
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synthesise partial cages of sufficient quality. In this section, we make the first step
in this direction, and propose the following procedure: given a novel object, we
find similar objects from the training set of the PC-band, and consider those partial
caging configurations that worked well for these similar objects.

The key question here is how to define a distance function for the space of ob-
jects that would capture the most relevant shape features for partial caging. In
this experiment, we investigate three different shape distance functions: Hausdorff
distance, Hamming distance, and Euclidean distance in the latent space of a vari-
ational autoencoder, trained on the set of objects used in this work. Variational
autoencoders (VAEs) are able to encode high-dimensional input data into a lower-
dimensional latent space while training in an unsupervised manner. In contrast
to a standard encoder/decoder setup, which returns a single point, a variational
autoencoder returns a distribution over the latent space, using the K L-cost term
as regularisation.

We evaluate different distance functions with respect to the quality of the re-
sulting partial cages. Given a novel object, we calculate the distance to each known
object in the dataset according to the three distance functions under consideration,
and for each of them we select five closest objects. When comparing the objects,
orientation is an important factor.We compare 360 rotated versions of the novel
object with the known objects from the dataset and pick the one closest following
the chosen metric.

8.4.1 VAE-based representation

For our experiment, we train a VAE based on the ResNet architecture with skip
connections with six blocks [37] for the encoder and the decoder. The imput images
have resolution 256x256. We use a latent space with 128 dimensions, dropout of
0.2 and a fully connected layer of 1024 nodes. The VAE loss was defined as follows:

Loae(®) = Ezng(zla) [log p(]2)] + 5 - Drcr(q(2]2)][p(2))

The first term achives reconstruction, while the second term tries to disentegel the
destinct features. z denotes latent variable, p(z) the prior distribution,and g(z|z)
the approximate posterior distribution. Note that the Bernoulli distribution was
used for p(z|z), as the images are of a binary nature. The batch size was set to 32.
As the sizes of the objects vary significantly, we invert half of the images randomly
when loading a batch. This prevents the collapse to either pure black or pure white
images.

8.4.2 Hausdorff distance

The Hausdorff distance is a well known measure for the distance between two sets of
points in a metric space (R? for our case). As the objects are represented with disks
we use the set of x and y points to represent the object. This is a simplification
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of the object as the radius of the circles is not considered. The general Hausdorff
distance can be computed with [38]:

dg(X,Y) =max< sup inf d(x,y), sup inf d(z,
u(X,Y) {Iegyey( y) ye%ex( y)}

8.4.3 Hamming Distance

The Hamming distance [39] is defined as the difference of two binary data strings
calculated using the XOR operation. It captures the exact difference between the
two images we want to match, as it calculates how many pixel are different. We
pre-process the images by subtracting the mean and reshaping the images to a 1D
string.

8.5 Performance

We compare the performance of the three different similarity measures, as well as
a random selection baseline, on 500 novel object. The percentage of collision-free
caging tools placements, as well as the average clearance score is shown in Table A.2.
We report the average percentage of collision-free caging tool placements taken from
the PC-band of partial cages for top 1 and top 5 closest objects.

Furthermore, we evaluate the collision-free configurations using Alg. 1 to pro-
vide Q. values as well as check if the configuration still belongs to Ccqge. In the
Table A.2, the top 1 column under cage evaluation shows the percentage of configu-
rations that belong to Ccqge. To the right is the average @ for the most promising
cage from the closest object. The top 25 column shows the same results for the five
most promising cages for each of the five closest objects. Examples for three novel
objects and the closest retrieved objects are shown in Fig. A.18. In the left column,
the closest objects with respect to the chosen metric are shown given the novel
query object. The right column shows the acquired cages, transferred from the
closest known objects. Note that a collision free configuration does not necessarily
have to belong to Ceage-

.. cage evaluation
collision-free

top 1 top 25
top 1 top 5 € Ccag€ ch S Ccage ch
VAE 90.9% | 86.6% | 53.2% 5.05 48.4% 5.92

Hausdorft | 75.5% | 75.2% | 33.6% 5.21 32.2% 5.83
Hamming | 74.4% | 73.9% | 35.4% | 3.87 | 34.3% | 4.51
Random 61.6% | 62.3% | 27.0% | 13.31 | 25.4% | 14.12

Table A.2: Average results for 500 novel objects cage acquisition using different
distance metrics to find similar objects in PC-band, and applied cages from retrieved
objects to novel objects.
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Figure A.18: On the left-hand side, we consider 3 different query objects washer(a),
pin(b) and hook(c), and for each distance function visualize respective 5 closest
objects from the training dataset; on the right-hand side, for each of the query
object (a)-¢)) and each distance function, we visualize the acquired partial caging
configurations.

For the VAE-model, it takes approximately 5 milliseconds to generate the la-
tent representation, any subsequent distance query can then be performed in 0.005
milliseconds. The Hausdorff distance requires 0.5 milliseconds to compute, while
the Hamming distance takes 1.7 milliseconds per distance calculation”.

"The time was measured on a Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz.
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Figure A.19: Performance of CageMaskNN and CageClearance NN given different
numbers of training objects and evaluated on a single novel object. The top left
(al) displays the ground truth mask and clearance values for a fourth missing disc-
shaped caging tool, a2: only 1 object is used for training, a3:10 objects are used
for training, bl: 100 objects, b2: 1000 objects, b3: all 3048 objects are used for
training. Note that the threshold had to be adjusted to 0.6 for the single object
(a2) and 0.61 for the 10 object case (a3) to yield any discernible mask results at
all.

Our experiments show that, while the VAE-induced similarity measure performs
best in terms of finding collision-free caging tools placements, Hamming distance
significantly outperforms it in terms of the quality of acquired partial cages. We
did not observe a significant difference between Hausdorff distance and the VAE-
induced distance. While Hamming distance appears to be better at capturing shape
features that are relevant for cage acquisition task, it is the least efficient approach
in terms of computation time. Furthermore, in our opinion, VAE-induced distance
may be improved significantly if instead of using a general-purpose architecture we
introduce task-specific geometric and topological priors.

9 Limitations and Challenges for Future Work

In this section, we discuss the main challenges of our work and the possible ways
to overcome them.

9.1 Data generation challenges

One of the main challenges in this project is related to data generation: we need to
densely sample the space of the caging tools’ configurations, as well as the spaces
of shapes of objects and caging tools. This challenge is especially significant when
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using the PC-general dataset, as the space of possible caging tools configurations
is large.

While the experimental evaluation indicates that the chosen network architec-
ture is able to achieve low MSE on previously unseen objects, in applications one
may want to train the network with either a larger distribution of objects, or a
distribution of objects that are similar to the objects that will be encountered in
practice.

In Fig.A.19, we illustrate how a lack of training data of sufficiently similar shapes
can lead to poor performance of CageMaskNN and CageClearance NN, for example,
when only 1, 10, 100, or 1000 objects are used for training. Similarly, even when
the networks are trained on the full training dataset of 3048 objects, the subtle
geometric details of the partial caging region cannot be recovered for the novel test
object, requiring more training data and further refinement of the approach.

9.2 Robustness under noise

In the cage acquisition scenario, the VAE-induced and Hamming distances work
directly with images, and hence can be susceptible to noise. To evaluate this effect,
we generate salt and pepper noise as well as Gaussian blur and analyse the perfor-
mance of the VAE-induced and Hamming metrics under four different noise levels
(0.005%, 0.01%, 0.05%, 0.1%) and four different kernel sizes (11x11, 21x21, 41x41,
61x61) ®. Fig. A.20 shows the result of the top 3 retrieved objects for the hook
object. Left column shows the query objects with respective disturbance. The next
three columns depict the closest objects retrieved according to the VAE-induced
metric, while the last three columns show the objects retrieved with Hamming
metric.

Table A.3 reports the performance with respect to finding collision-free config-
urations, configurations belonging to Ccqge, and their average values of Q. The
results are averaged over 500 novel objects. We can see that the VAE-induced metric
is affected by strong salt and pepper noise as the number of generated collision-free
and partial caging configurations decreases. Furthermore, the resulting @Q.; of the
generated partial cages increases, meaning it is easier to escape the cage. According
to the experiment, the Hamming distance-based lookup is not significantly affected
by salt and pepper noise. One explanation here may be that this kind of distur-
bance leads to a uniform increase of the Hamming distance for all objects. The
Gaussian blur has a more negative effect on the Hamming distance lookup then the
VAE-based lookup, as can be seen in the retrieved example objects in Fig. A.20.
Table A.3 shows small decrease in the percentage of collision-free and partial caging
configurations. Interestingly, the quality of the partial cages does not decrease.

8Note that sigma is calculated using the standard OpenCV [40] implementation (o = 0.3 -
((ksize —1)-0.5 —1) +0.8).
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Figure A.20: Top three retrieval results for query images with different levels of dis-
turbance for the VAE-induced and Hamming metric. a results without disturbance,
b show retrieval for different level of salt and pepper noise, ¢ retrieved objects when
Gaussian blur is applied to query object (hook).

9.3 Real World Example and Future Work

As the VAE-framework just takes an image in order to propose suitable cages for
a novel object, we showcase a concluding application example in Fig. A.21 where
a novel object (a hand drill) is chosen as input to the VAE cage acquisition. The
image is preprocessed by a simple threshold function to convert it to a black and
white image, next the closest object from the dataset are found by comparing
the distances in the latent space of the VAE and the three best partial caging
configurations are retrieved and applied to the novel object.
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. VAE Hamming
Dist.
' Cf’r‘ee Ccage ch Cf’ree Ccage ch
no dist. 90.9 % | 53.2 % | 5.05 74.4 % | 35.4 % | 3.87

S&P 0.005 | 91.1 % | 52.8 % | 4.94 749 % | 345 % | 3.86
S&P 0.01 | 90.5% | 52.4 % | 4.98 74.6 % | 35.4 % | 3.88
S&P 0.05 | 83.4% | 45.0 % | 10.12 || 71.8 % | 35.0 % | 3.81
S&P 0.1 832 % | 435 % | 10.95 || 73.2 % | 33.8 % | 3.87
Gb 11x11 | 91.8 % | 52.5 % | 4.93 73.7 % | 34.6 % | 3.78
Gb 21x21 | 90.3 % | 52.8 % | 4.83 73.1% | 33.8% | 3.78
Gb 41x41 | 84.7 % | 49.2 % | 4.59 69.8 % | 334 % | 3.74
Gb 61x61 | 84.7 % | 45.3 % | 4.21 68.0 % | 29.3 % | 3.73

Table A.3: Performance for VAE-induced and Hamming metrics given different
level of salt and pepper noise as well as Gaussian blur for different kernel sizes.

a3l A A

Figure A.21: Proposed partial cages using the VAE cage acquisition method. The
novel object (hand drill) is feed into the cage acquisition and the best three cages
from the closest object in the dataset are shown (in red).

In the future, we would like to ex-
tend our approach to 3-dimensional ob-
jects, Asillustrated in Fig. A.22, partial
cages may be a promising approach for
transporting and manipulating 3D ob-
jects without the need for a firm grasp,
and fast learning based approximations
to analytic or planning based meth-
ods may be a promising direction for
such partial 3D cages. Furthermore, we
would also like to to investigate the pos- Figure A.22: An example for future par-
sibility of leveraging other caging veri- tial caging in 3D. A complex object needs
fication methods such as [4] for our ap-  to be safely transported without the need
proach. to firmly grasp it.
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Enabling Visual Action Planning for
Object Manipulation through Latent
Space Roadmap

Martina Lippi*, Petra Poklukar*, Michael C. Welle*, Anastasia Varava,
Hang Yin, Alessandro Marino, and Danica Kragic

Abstract

We present a framework for visual action planning of complex manipu-
lation tasks with high-dimensional state spaces, focusing on manipulation of
deformable objects. We propose a Latent Space Roadmap (LSR) for task
planning which is a graph-based structure globally capturing the system dy-
namics in a low-dimensional latent space. Our framework consists of three
parts: (1) a Mapping Module (MM) that maps observations given in the form
of images into a structured latent space extracting the respective states as well
as generates observations from the latent states, (2) the LSR which builds and
connects clusters containing similar states in order to find the latent plans be-
tween start and goal states extracted by MM, and (3) the Action Proposal
Module that complements the latent plan found by the LSR with the corre-
sponding actions. We present a thorough investigation of our framework on
simulated box stacking and rope/box manipulation tasks, and a folding task
executed on a real robot.

1 Introduction

In task and motion planning, it is common to assume that the geometry of the
scene is given as input to the planner. In contrast, modern representation learn-
ing methods are able to automatically extract state representations directly from

* Authors contributed equally, listed in alphabetical order.
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Figure B.1: Examples of visual action plans for a stacking task (top), a rope/box
manipulation task (middle) and a shirt folding task (bottom).

high-dimensional raw observations, such as images or video sequences [1]. This is
especially useful in complex scenarios where explicit analytical modeling of states is
challenging, such as in manipulation of highly deformable objects which is recently
gaining increasing attention by the research community [2, 3].

Unsupervised State Representation Learning. Given raw observations, state
representation learning is commonly performed in an unsupervised way using for
example Autoencoders (AEs) [4] or Variational Autoencoders (VAEs) [5]. In these
frameworks, two neural networks — an encoder and a decoder — are jointly trained
to embed the input observation into a low-dimensional latent space, and to re-
construct it given a latent sample. The resulting latent space can be used as a
low-dimensional representation of the state space, where the encoder acts as a map
from a high-dimensional observation (an image) into the lower-dimensional state (a
latent vector).

However, to be useful for planning, it is desirable to have a particular struc-
ture in the latent space: states that are similar should be encoded close to each
other, while different states should be separated. Such information does not al-
ways coincide with the similarity of the respective images: two observations can
be significantly different with respect to a pixel-wise metric due to task-irrelevant
factors of variation such as changes in the lighting conditions and texture, while the
underlying state of the system (e.g., the shape and the pose of the objects) may be
identical. The opposite is also possible: two observations may be relatively close
in the image space, because the respective change in the configuration of the scene
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does not significantly affect the pixel-wise metric, while from the task planning
perspective the two states are fundamentally different.

Challenges of State Representation Learning for Planning. For planning,
the system dynamics should also be captured in the latent space. We therefore
identify three main challenges when modeling the state space representation for
planning: ) it needs to be low dimensional, while containing the relevant informa-
tion from high-dimensional observations; ii) it needs to properly reflect similarities
between states; and i) it needs to efficiently capture feasible transitions between
states allowing to perform complex tasks such as deformable object manipulation.
In this work, we address i) by extracting the low-dimensional states directly
from images of the scene through a Mapping Module (MM). For this, we deploy a
VAE framework and compare it to AE. We address i) by explicitly encouraging the
encoder network to map the observations that correspond to different states further
away from each other despite their visual similarity. This is done by providing a
weak supervision signal: we record a small number of actions between observation
pairs, and mark the observations as “same" or “different" depending on whether or
not an action is needed to bring the system from one state to the successor one.
We use this action information in an additional loss term to structure the latent
space accordingly. Finally, we tackle 44) by building the Latent Space Roadmap
(LSR), which is a graph-based structure in the latent space used to plan a manipu-
lation sequence given a start and goal image of the scene. The nodes of this graph
are associated with the system states, and the edges model the actions connecting
them. For example, as shown in Fig. B.1, these actions can correspond to moving
a box or a rope, or folding a shirt. We identify the regions containing the same
underlying states using hierarchical clustering [6] which accounts for differences in
shapes and densities of these regions. The extracted clusters are then connected
using the weak supervision signals. Finally, the action specifics are obtained from
the Action Proposal Module (APM). In this way, we capture the global dynamics
of the state space in a data-efficient manner without explicit state labels, which
allows us to learn a state space representation for complex long-horizon tasks.

Contributions. Our contributions can be summarized as follows: ¢) we define the
Latent Space Roadmap that enables to generate visual action plans based on weak
supervision; ) we introduce an augmented loss function with dynamic parameter
to favourably structure the latent space; i) we validate our framework on simulated
box stacking tasks involving rigid objects, a combined rope and box manipulation
task involving both deformable and rigid objects, and on a real-world T-shirt folding
task involving deformable objects. Complete details can be found on the website®.

This work is an extensively revised version of our earlier conference paper [7],
where we first introduced the notion of Latent Space Roadmap. The main novelties
of the present work with respect to [7] are:

Thttps://visual-action-planning.github.io/lsr-v2/
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1. Extension of the LSR building algorithm with an outer optimisation loop
improving its performance;

2. New training approach for the MM with a dynamic adjustment of the key
hyperparameter used in the additional loss term;

3. Large scale simulation campaigns investigating the effect of the additional
loss term and hyperparameter choices;

4. Restructuring of the framework into three main components leading to a more
modular setup;

5. Introduction of a more challenging box stacking task and a task involving
manipulation of a rope and two boxes, enabling a thorough ablation study on
all components of our framework;

6. Comparison with the state-of-the-art solutions in [8] and [9] on the simulation
tasks as well as comparison of the improved framework with its predecessor [7]
on the T-shirt folding task performed on a real robot;

7. Comparison with other potentially suitable clustering algorithms used to build
the LSR;

8. Comparison of VAE and AE for the mapping module;

9. Comparison of different realizations of the APM.

2 Related Work

The state representation, in terms of shape and poses of objects in the robot’s
workspace, is generally assumed to be known in task and motion planning and
represents an input to the planner. As an example, robot and grasping knowledge
was exploited in [10] to carry out sequential manipulation tasks, while semantic
maps were designed in [11] to integrate spatial and semantic information and per-
form task planning. In addition, the notion of belief space, representing all possible
distributions over the robot state space, was introduced in [12] to tackle partially
observable control problems. Alternatively, sampling-based planning approaches,
such as Rapidly exploring Random Tree (RRT) or Rapidly exploring Dense Tree
(RDT) [13], can be adopted to probe the state space when an explicit representation
of it is difficult to achieve.

However, traditional planning approaches, like the ones mentioned above, are
generally prone to fail when high-dimensional states, such as images, are involved in
the system [14]. For this reason, data-driven low-dimensional latent space represen-
tations for planning are gaining increasing attention, which, nonetheless, introduce
problems to properly capture the global structure and dynamics of the system,
as discussed in Sec. 1. To tackle these, imitation learning can be leveraged as
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in [15, 16]. In particular, a latent space Universal Planning Network was designed
in [15] to embed differentiable planning policies. The process is learned in an end-
to-end fashion from imitation learning and gradient descent is used to find optimal
trajectories. A controller based on random forests was built in [16] to perform
cloth manipulation assuming the presence of optimal demonstrations provided by
experts. Alternatively, a motion planning network with active learning procedure
was developed in [17] to reduce the data for training and actively ask for expert
demonstrations only when needed. In particular, the approach relies on an encoder
network, that maps the robot surrounding environment in a low-dimensional state
space, and on a prediction network, that is iteratively queried to provide states in
the planned path on the basis of environment encoding and the robot initial and
goal states.

In contrast to imitation learning methods, self-supervised learning approaches
can be applied to mitigate the reduced generalization capabilities of the former at
the expense of a costly data collection phase. Existing methods leverage physical
simulators to acquire interaction data and then adapt skills from simulation to real-
ity [18]. New simulation techniques have also opened up research on manipulating
cloth-like objects involving multiple actions [19, 20]. However, these methods are
often limited to handling objects of a simple shape, such as a square cloth, and
simplify the interaction modeling with kinematic constraints [18, 19, 20]. Simu-
lating complex dynamics of deformable objects/robot interaction remains an open
problem. This was the motivation in [21] which learned folding directly on the real
robotic platforms by meticulously designing convolutional observation features and
a discrete action space, managing to generalize to objects of untrained sizes. Still,
the scalability of collecting real interactive data undermines the applicability of
self-supervised learning approaches. This problem becomes even more severe when
dealing with long-horizon task planning, where the range of possible variations in
the state space is large. In this context, a framework for global search in latent space
was designed in [22] which is based on three components: 7) a latent state represen-
tation, i7) a network to approximate the latent space dynamics, and 4ii) a collision
checking network. Motion planning is then performed directly in the latent space
by an RRT-based algorithm. Embed-to-Control (E2C) [23] pioneers in learning a
latent linear dynamical model for planning continuous actions. Variational infer-
ence is used to infer a latent representation and dynamical system parameters that
can reconstruct a sequence of images. The extracted latent variables were shown
to be well aligned to the underlying states in a visual inverted pendulum domain.
In addition to estimating transition and observation models, [9] proposed a deep
planning network which also learns a reward function in the latent space. Then,
the latter is used to find viable trajectories resorting to a Model Predictive Control
(MPC) approach. A comparison between our method and a baseline inspired by
this approach can be found in Sec. 9.3.1. Reinforcement Learning (RL) using self
play was employed in [24], where a VAE encodes trajectories into the latent space
that is optimized to minimize the KL-divergence between proposed latent plans
and those that have been encountered during self-play exploration. In contrast to
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using full plans, we optimized the structure of the latent space using pairs of states.
The manipulation of a deformable rope from an initial start state to a desired goal
state was analyzed in [25]. It builds upon [26] and [27] where 500 hours worth of
data collection were used to learn the rope inverse dynamics, and then produced
an understandable visual foresight plan containing the intermediate steps to deform
the rope using a Context Conditional Causal InfoGAN (C3IGAN). Similarly, con-
trastive learning was used in [28] to learn a predictive model in the latent space,
which is used to plan rope and cloth flattening actions. Goal-conditioning was then
introduced in [29] to carry out long-horizon visual planning by reducing the search
space and performing hierarchical optimization. Visual foresight was also realized
in [30] where a video prediction model based on Long-Short Term Memory blocks
was employed to predict stochastic pixel flow from frame to frame. Trained on
video, action and state sequences, the model provides an RGB prediction of the
scene that is then used to perform visual model predictive control. The data was
collected using ten identical real world setups with different camera angles. In this
work, instead of performing imitation learning from experts or exploring the latent
space in a self-supervised manner, we leverage a weak supervision given by demon-
strated actions in the dataset to capture the global structure of the state space and
its dynamics in a data-efficient manner.

Finally, the idea of employing graphs as data representation has recently been
investigated in several works. In [31], the authors introduced contrastive learning
for structured world models. An end-to-end framework was presented that uses a
Convolutional Neural Network (CNN) extractor to segment objects from the given
scene observations and a Multi-Layer Perceptron encoder to produce their repre-
sentations. A graph neural network (GNN) was then learned to model the relations
and transitions given the representations of objects in the scene. Moreover, as
graphs naturally decompose a long-horizon task into short-horizon tasks, authors
of [32] improved RL performance on long-horizon tasks by building a graph whose
nodes are the states contained in the replay buffer. Combining RL with the idea of
connecting states in the latent space via a graph was proposed in Semi-Parametric
Topological Memory (SPTM) framework [8], where an agent explores the envi-
ronment and encodes observations into a latent space using a retrieval network.
Each encoded observation forms a unique node in a memory graph built in the
latent space. This graph is then used to plan an action sequence from a start to
a goal observation using a locomotion network. As discussed in Sec. 9.3.1, where
we compare our method with the SPTM framework, the latter is optimized for the
continuous domain, having action/observation trajectories as input and building on
the assumption that each observation is mapped to a unique latent code. Finally,
the graph representation was also used in [33] for learning block stacking. The
scene/object relations are expected to be captured by a GNN so as to boost the
efficiency of curriculum learning and to generalize to stacking untrained number
of blocks. In this work, we use graphs to capture the structure and the dynamics
of the system, where nodes represent states of the system and edges the possible
transitions between them.
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3 Problem Statement and Notation

Variable Meaning

T Space of observations, i.e. , images

u Space of actions

Z Low-dimensional latent space

P, P,, P, | Planned sequence of images, actions and latent states from assigned
start and goal observations, respectively

Zgys Covered region 4 of the latent space

Zoys Overall covered region of the latent space

P Specifics of the action that took place between two images I; and
I

Tr, 7. Datasets containing image tuples (I1,l2,p) and their embeddings
(21,22,p), respectively

& Latent mapping function from Z to Z

w Observation generator function from Z to Z

dm Minimum distance encouraged among action pairs in the latent
space

P Metric L,

T Clustering threshold for LSR building

Cmax Maximum number of connected components of the LSR

Nc_(2) The €,-neighbourhood of a covered state z containing same covered
states

= e, associated with all the states in the covered region Z[, ., i.e.
e =e,VzeZl,

Table B.1: Main notations introduced in the paper.

The goal of visual action planning, also referred to as “visual planning and act-
ing" in [25], can be formulated as follows: given start and goal images, generate
a path as a sequence of images representing intermediate states and compute dy-
namically valid actions between them. We now formalize the problem and provide
notation in Table B.1.

Let Z be the space of all possible observations of the system’s states represented
as images with fixed resolution and let U be the set of possible control inputs or
actions.

Definition 5. A visual action plan consists of a visual plan represented as a se-
quence of images Py = {Isiare = Lo, 1., IN = Igoar} where Igart, Igoas € T are
images capturing the underlying start and goal states of the system, respectively,
and an action plan represented as a sequence of actions P, = {ug,u1,...,un—_1}
where u, € U generates a transition between consecutive states contained in the
observations I, and I,y for eachn € {0,....,N —1}.
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Figure B.2: Tllustrative representation of the latent space Z. In the middle, possible
transitions (arrows) between covered regions (sketched with circles) are shown. On
the left, details of the covered regions with different shapes and representative points
are provided. On the right, observations from a box stacking tasks are shown. In
detail, the ones obtained from covered regions (in pink and blue) contain meaningful
task states, while the ones generated from not covered regions (in red) show fading
boxes that do not represent possible states of the system.

To retrieve the underlying states represented in the observations as well as to
reduce the complexity of the problem we map Z into a lower-dimensional latent
space Z such that each observation I,, € 7 is encoded as a point z, € Z extracting
the state of the system captured in the image I,,. We call this map a latent mapping
and denote it by £ : Z — Z. In order to generate visual plans, we additionally
assume the existence of a mapping w : Z — 7 called observation generator.

Let Ty = {I1,...,Ip} C Z be a finite set of input observations inducing a set of
covered states T, = {z1,....,zm} C Z,1.e., T, = &(T1). In order to identify a set of
unique covered states, we make the following assumption on 7.

Assumption 2. Let z € T, be a covered state. Then there exists €, > 0 such that
any other state z' in the £,—neighborhood N._(z) of z can be considered as the same
underlying state.

This allows both generating a valid visual action plan and taking into account
the uncertainty induced by imprecisions in action execution. Let

Zoys = U N..(z)Cc 2 (B.1)
z€T,

be the union of €.-neighbourhoods of the covered states z € 7,. Given Zgy,, a
visual plan can be computed in the latent space using a latent plan P, = {zstart =
20,21, s ZN = Zgoal }, Where z, € Zg,s, which is then decoded with the observation
generator w into a sequence of images.

To obtain a valid visual plan, we study the structure of the space Z,,, which
in general is not path-connected. As we show in Fig. B.2 on the right, linear
interpolation between two states z; and z3 in Z,,, may result in a path containing
points from Z — Z,,, that do not correspond to covered states of the system and
are therefore not guaranteed to be meaningful. To formalize this, we define an
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equivalence relation in Zg
z~ 2 <= zand 2’ are path-connected in Zs, (B.2)

which induces a partition of the space Z, s into m equivalence classes [z1], ..., [zm].
Each equivalence class [z;] represents a path-connected component of Z,

Zzys = U NEz (Z) c ZSZJS (B3)

z€|[z4]

called covered region. To connect the covered regions, we define a set of transitions
between them:

Definition 6. A transition function fiJ Zgys XL{ — Zgys maps any point z € Zgys
to an equivalence class representative 2}, € ZI ., where i,j € {1,2,...,m} and
15 j.

Equivalence relation (B.2) and Assumption 2 imply that two distinct observa-
tions I; and Iy which are mapped into the same covered region Zéys contain the
same underlying state of the system, and can be represented by the same equiva-
lence class representative z., .. Given a set of covered regions Z,_ in Z,, and a set
of transition functions connecting them we can approximate the global transitions
of Z,,s as shown in Fig. B.2 on the left. To this end, we define a Latent Space

Roadmap (see Fig. B.2 in the middle):

Definition 7. A Latent Space Roadmap is a directed graph LSR = (ViLsr, ELSR)
where each vertex v; € Visr C Zsys for i € {1,2,...,m} is an equivalence class
representative of the covered region Z., . C Zgys, and an edge e; ; = (vi,v;) € ELsr
represents a transition function ) between the corresponding covered regions Z, .
and 2], for i # j. Moreover, weakly connected components of an LSR are called

graph-connected components.

4 Methodology

We first present the structure of the training dataset and then provide an overview
of the approach.

4.1 Training Dataset

We consider a training dataset 77 consisting of generic tuples of the form (I1, I, p)
where I; C 7 is an image of the start state, Is C Z an image of the successor
state, and p a variable representing the action that took place between the two
observations. Here, an action is considered to be a single transformation that
produces any consecutive state represented in [y different from the start state in
I;,i.e., p cannot be a composition of several transformations. On the contrary, we
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Figure B.3: Overview of the proposed method. Start and goal images (on the
left) are mapped to the latent space Z by the latent mapping £ of the Mapping
Module. A latent plan is then found with the Latent Space Roadmap (cyan circles
and arrows) and is decoded to a visual plan using the observation generator w of
the Mapping Module. The Action Proposal Module (red) proposes suitable actions
to achieve the transitions between states in the visual plan. The final result is a
visual action plan (green) from start to goal. A re-planning step can also be added
after every action to account for execution uncertainties as shown in Fig. B.12 on
the T-shirt folding task.

say that no action was performed if images I; and I> are observations of the same
state, i.e. , if £(I1) ~ &(I2) with respect to the equivalence relation (B.2). The
variable p = (a,u) consists of a binary variable a € {0, 1} indicating whether or not
an action occurred as well as a variable u containing the task-dependent action-
specific information. The latter, if available, is used to infer the transition functions
fi3. We call a tuple (I1, I, p = (1,u)) an action pair and (I, Iz, p = (0,u)) a no-
action pair. For instance, Fig. B.4 shows an example of an action pair (top row)
and a no-action pair (bottom row) for the folding task. In this case, the action
specifics u contain the pick and place coordinates to achieve the transition from the
state captured by I; to the state captured by I, while the no-action pair images
are different observations of the same underlying state of the system represented
by slight perturbations of the sleeves. When the specifics of an action u are not
needed, we omit them from the tuple notation and simply write (I3, I,a). By
abuse of notation, we sometimes refer to an observation I contained in any of the
training tuples as I € 7;. Finally, we denote by 7, the encoded training dataset 7T
consisting of latent tuples (z1, 22, p) obtained from the input tuples (I3, I, p) € T;
by encoding the inputs I; and I5 into the latent space Z,,, with the latent mapping
&. The obtained states z1, 22 € Z4y, are called covered states.

Remark 1. The dataset Ty is not required to contain all possible action pairs of
the system but only a subset of them that sufficiently cover the dynamics, which
makes our approach data efficient.
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Figure B.4: Example of action (a) and no-action (b) pairs in folding task.

4.2 System Overview
Generation of visual action plans consists of three components visualized in Fig. B.3:

o Mapping Module (MM) used to both extract a low-dimensional repre-
sentation of a state represented by a given observation, and to generate an
exemplary observation from a given latent state (Sec. 5);

o Latent Space Roadmap (LSR) built in the low dimensional latent space
and used to plan (Sec. 6);

o Action Proposal Module (APM) used to predict action specifics for ex-
ecuting a latent plan found by the LSR (Sec. 7).

The MM consists of the latent mapping £ : Z — Z and the observation gen-
erator w : £ — Z. To find a visual plan between a given start observation Igsq.¢
and goal observation 4,4, the latent mapping & first extracts the corresponding
lower-dimensional representations zsiqrt and zgoq of the underlying start and goal
states, respectively. Ideally, ¢ should perfectly extract the underlying state of the
system such that different observations containing the same state are mapped into
the same latent point. In practice, however, the unknown true latent embedding
& is approzimated with a neural network which implies that different observations
containing the same state could be mapped to different latent points. In order to
perform planning in Z, we thus build the LSR which is a graph-based structure
identifying the latent points belonging to the same underlying state and approxi-
mating the system dynamics. This enables finding the latent plans P, between the
extracted states zgtqrs and zgoq1. For the sake of interpretability, latent plans P, are
decoded into visual plans Pr, consisting of a sequence of images, by the observation
generator w.

We complement the generated visual plan P; with the action plan P, produced
by the APM, which proposes an action w; that achieves the desired transition
Fit (2 u;) = 2;11 between each pair (2;,2;11) of consecutive states in the latent
plan P, found by the LSR.
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The visual action plan produced by the three components can be executed by
any suitable framework.

Remark 2. If open loop execution is not sufficient for the task, as for deformable
object manipulation, a re-planning step can be added after every action. This im-
plies that a new visual action plan is produced after the execution of each action
until the goal is reached. A visualization of the re-planning procedure is shown in
Fig. B.12 on the T-shirt folding task presented in Sec. 10.

Remark 3. Our method is able to generate a sequence of actions {ug,...,un—1}
to reach a goal state in Iy from a given start state represented by Iy, even though
the tuples in the input dataset Ty only contain single actions u that represent the
weak supervision signals.

5 Mapping Module (MM)

The mappings £ : 7 — Z and w : Z — 7 as well as the low-dimensional space
Z can be realized using any encoder-decoder based algorithms, for example VAEs,
AEs or Generative Adversarial Networks (GANs) combined with an encoder net-
work. The primary goal of MM is to find the best possible approximation £ such
that the structure of the extracted states in the latent space Z resembles the one
corresponding to the unknown underlying system. The secondary goal of MM is to
learn an observation generator w which enables visual interpretability of the latent
plans. Since the quality of these depends on the structure of the latent space Z, we
leverage the action information contained in the binary variable a of the training
tuples (I1, I, a) to improve the quality of the latent space. We achieve this by in-
troducing a contrastive loss term [34] which can be easily added to the loss function
of any algorithm used to model the MM.
More precisely, we introduce a general action term

max(0,dp, — [|21 — 22l|p) ifa=1

Laction(ll712): { (B4)

l|z1 — 22||p ifa=0

where 21,20 C Z,ys are the latent encodings of the input observations Iy, I» C 77,
respectively, d,, is a hyperparameter, and the subscript p € {1,2, 00} denotes the
metric L,,. The action term Lgcti0n naturally imposes the formulation of the covered
regions Zgys in the latent space. On one hand, it encodes identical states contained
in the no-action pairs close by. On the other hand, it encourages different states to
be encoded in separate parts of the latent space via the hyperparameter d,,.

As we experimentally show in Sec. 9.2.1, the choice of d,, has a substantial
impact on the latent space structure. Therefore, we propose to learn its value
dynamically during the training of the MM. In particular, d,, is increased until
the separation of action and no-action pairs is achieved. Starting from 0 at the
beginning of the training, we increase d,, by Ad,, every kth epoch as long as the



6. LATENT SPACE ROADMAP (LSR) B13

maximum distance between no-action pairs is larger then the minimum distance
between action pairs. The effect of dynamically increasing d,,, is shown in Fig. B.5
where we visualize the distance ||z; — 22||1 between the latent encodings of every
action training pair (in blue) and no-action training pair (in green) obtained at
various epochs during training on a box stacking task. It can be clearly seen that
the parameter d,, is increased as long as there is an intersection between action
and no-action pairs. Detailed investigation of this approach as well as its positive
effects on the structure of the latent space are provided in Sec. 9.2.1. Note that the
dynamic adaptation of the parameter d,, eliminates the need to predetermine its
value as in our previous work [7].

We use a VAE such that its latent space represents the space Z, while the
encoder and decoder networks realize the mappings ¢ and w, respectively. We
validate this choice in Sec. 9.2.3 by comparing it to AE. In the following, we first
provide a brief summary of the VAE framework [5, 35] and then show how the action
term can be integrated into its training objective. Let I C 7; be an input image, and
let z denote the unobserved latent variable with prior distribution p(z). The VAE
model consists of encoder and decoder neural networks that are jointly optimized to
represent the parameters of the approximate posterior distribution g(z|I) and the
likelihood function p(I|z), respectively. In particular, VAE is trained to minimize

ﬁvae(I) :Ezwq(z\l) [].ng(ﬂZ)} + 5DKL (Q(Z‘I” |p(Z)) (B5)

with respect to the parameters of the encoder and decoder neural networks. The
first term influences the quality of the reconstructed samples, while the second
term, called Kullback-Leibler (KL) divergence term, regulates the structure of the
latent space. The trade-off between better reconstructions or a more structured
latent space is controlled by the parameter [, where using a f > 1 favors the
latter [36, 37]. The action term (B.4) can be easily added to the VAE loss (B.5) as
follows:

1
E(Ila 12) = i(ﬁvae(ll) + Evae(IQ)) + v Eaction(lly 12) (BG)

where I, Is C T; and the parameter y controls the influence of the distances among
the latent encodings on the latent space structure. Note that the same procedure
applies for integrating the action term (B.4) into any other framework that models
the MM.

6 Latent Space Roadmap (LSR)

The Latent Space Roadmap, defined in Definition 7, is built in the latent space Z
obtained from the MM. LSR is a graph that enables planning in the latent space
which identifies sets of latent points associated with the same underlying state and
viable transitions between them. FEach node in the roadmap is associated with
a covered region Zgys. Two nodes are connected by an edge if there exists an
action pair (I1, Iz, p = (1,u1)) in the training dataset 77 such that the transition
E2(21,u1) = 29 is achieved in Zgys.
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Figure B.5: An example showing histograms of distances ||z1 — 23||1 for latent action
(in blue) and no-action pairs (in green) obtained at epochs 1, 5 and 50 during the
training of VAE on the hard box stacking task (more details in Sec. 9). The figure
shows the separation of the action and no-action distances induced by dynamically
increasing the minimum distance d,,, in Laction-

The LSR building procedure is summarized in Algorithm 2 and discussed in
Sec. 6.1. It relies on a clustering algorithm that builds the LSR using the encoded
training data 7. and a specified metric L, as inputs. The input parameter 7 is
inherited from the clustering algorithm and we automatically determine it using
the procedure described in Sec. 6.2.

6.1 LSR Building

Algorithm 2 consists of three phases. In Phase 1 (lines 1.1 — 1.5), we build a
reference graph G = (V, £) induced by 7, and visualized on the top left of Fig. B.6.
Tts set of vertices V is the set of all the latent states in 7., while edges exist only
among the latent action pairs. It serves as a look-up graph to preserve the edges
that later induce the transition functions fi.

In Phase 2, Algorithm 2 identifies the covered regions Z{,, C Z,,,. We achieve
this by first clustering the training samples and then retrieving the covered regions
from these clusters. We start by performing agglomerative clustering [6] on the
encoded dataset T, (line 2.1). Agglomerative clustering is a hierarchical clustering
scheme that starts from single nodes of the dataset and merges the closest nodes,
according to a dissimilarity measure, step by step until only one node remains. It
results in a stepwise dendrogram M, depicted in the top right part of Fig. B.6,
which is a tree structure visualizing the arrangement of data points in clusters
with respect to the level of dissimilarity between them. We choose to measure this
inter-cluster dissimilarity using the unweighted average distance between points in
each cluster, a method also referred to as UPGMA [38]. More details about other
possible clustering algorithms and dissimilarity measures are discussed in Sec. 9.3.4.
Next, the dissimilarity value 7, referred to as clustering threshold, induces the set
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Algorithm 2 LSR building

Re(lt}ure Dataset 7., metric Ly, clustering threshold 7
hase

1: 1n1t graph G = (V, &) .= ({},{})
2: for each (z1,22,a) € 7. do

3: V < create nodes z1, 22

4: if a =1 then

5: & <« create edge (z1, 22)

Phase 2
M <+ Average-Agglomerative-Clustering(7~, L,) [6]

W < get-Disjoint—Clusters(M, 7)
Zoys — {} .
for each W' € W do
" + get-Cluster-Epsilon(W?)
Zgys = UwEW'L Ns’(w)
Zsys = Zsys U {Zzys}

Phase 3
1: init graph LSR = (VLsr, €usr) == ({}, {})
2: for each Ziys € Zsys do
3: w' = ﬁ ZwEVW w
4: Zlys 1= argmin ¢ zi Hz —w|p
5: VLsr ¢ create node Ziys
6: for each edge e = (vi,v2) € € do
7: find Z;ys, Zgys containing v1, v2, respectively
8: ELsr  create edge (zsyS7 zsys)
return LSR

of disjoint clusters W, also called flat or partitional clusters [39], from the stepwise
dendrogram M [6] (line 2.2). Points in each cluster W* are then assigned a uniform
g’ (line 2.5), i.e. the neighbourhood size from Assumption 2 of each point z € W*
is ¢, = &'. We discuss the definition of the £’ value at the end of this phase. The
union of the e’-neighbourhoods of the points in W? then forms the covered region

Zg,s (line 2.6). Tllustrative examples of covered regions obtained from different
values of 7 are visualized on the bottom row of Fig. B.6 using various colors. The
optimization of 7 is discussed in Appendix12.3. The result of this phase is the set
of the identified covered regions Z,,s = {Z{,.} (line 2.7).

We propose to approximate e as
=y 4o (B.7)

where zi" and o are the mean and the standard deviation of the distances ||z —z} ||,
among all the training pairs (Z z1) € T, belonging to the ith cluster. The approx-
imation in (B.7) allows to take into account the cluster density such that denser
clusters get lower . In contrast to our previous work [7], we now enable clusters
to have different e values. We validate the approximation (B.7) in Secs. 9.3.5 and
10.3.1 where we analyze the covered regions identified by the LSR.
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Figure B.6: Illustrative example visualising the LSR building steps and the effect
of the clustering threshold 7. The top left shows the reference graph built in Phase
1 of Algorithm 2. The top right part visualizes a dendrogram M obtained from the
clustering algorithm in Phase 2. On the bottom row, three examples of LSRs are
shown together with the covered regions (marked with various colors) corresponding
to different clustering thresholds 7 (with 7 < 79 < 73) chosen from M.

In Phase 3, we build the LSR = (Vigr, ELsr). We first compute the mean value
w® of all the points in each cluster W (line 3.3). As the mean itself might not be
contained in the corresponding path-connected component, we find the equivalence
class representative zzyg € Zﬁyg that is the closest (line 3.4). The found representa-
tive then defines a node v; € Visr representing the covered region ZZ,  (line 3.5).
Lastly, we use the set of edges £ in the reference graph built in Phase 1 to infer
the transitions f27 between the covered regions identified in Phase 2. We create
an edge in LSR if there exists an edge in £ between two vertices in V that were
allocated to different covered regions (lines 3.6 — 3.8). The bottom row of Fig. B.6
shows the final LSRs, obtained with different values of the clustering threshold 7.

Note that, as in the case of the VAE (Sec. 5), no action-specific information u
is used in Algorithm 2 but solely the binary variable a indicating the occurrence of
an action.
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6.2 Optimization of LSR Clustering Threshold 7

The clustering threshold 7, introduced in Phase 2 of Algorithm 2, heavily influences
the number and form of the resulting clusters. Since there is no inherent way to
prefer one cluster configuration over another, finding its optimal value is a non-
trivial problem and subject to ongoing research [40], [41], [42]. However, in our
case, since the choice of 7 subsequently influences the resulting LSR,, we can leverage
the information about the latter in order to optimize 7.

As illustrated in Fig. B.6, the number of vertices and edges in LSR,, changes
with the choice of 7;. Moreover, the resulting LSRs can have different number
of graph-connected components. For example, LSR,, in Fig. B.6 has 2 graph-
connected components, while LSR,, and LSR,, have only a single one. Ideally, we
want to obtain a graph that exhibits both good connectivity which best approx-
imates the true underlying dynamics of the system, and has a limited number of
graph-connected component. Intuitively, high number of edges increases the possi-
bility to find latent paths from start to goal state. At the same time, this possibility
is decreased when the graph is fragmented into several isolated components, which
is why we are also interested in limiting the maximum number of graph-connected
components.

While we cannot analyze the clusters themselves, we can evaluate information
captured by the LSR that correlates with the performance of the task, i.e. , we can
assess a graph by the number of edges and graph-connected components it exhibits
as discussed above. This induces an objective which we can use to optimize the
value of the clustering threshold 7. We formulate it as

w(T; cmax) = (BS)

|€Lsr, | if cLsr, < Cmax;

—00 otherwise,
where |ELgr. | is the cardinality of the set Ergr,, cLsr, represents the number
of graph-connected components of the graph LSR, induced by 7, and the hyper-
parameter cpax represents the upper bound on the number of graph-connected
components. The optimal 7 in a given interval [Timin, Tmax] can be found by any
scalar optimization method. In this work, we use Brent’s optimization method [43]
maximizing (B.8):

max (T, Cmax)- (B.9)

Tmin ST <Tmax

This optimization procedure is summarized in Algorithm 3. It takes as an
input the encoded training data 7, the metric L,, the search interval where the
clustering parameter 7 is to be optimized, and the upper bound cp.x to compute
the optimization objective in (B.8). After initialization of the parameter 7 (line 1),
for example, by considering the average value of its range, the Brent’s optimization
loop is performed (lines 2-5). Firstly, the LSR with the current 7 is built according
to Algorithm 2 (line 3). Secondly, the optimization objective (B.8) is computed on
the obtained LSR, (line 4). Thirdly, the parameter 7 as well as the bounds Tyin
and Tyax are updated according to [43] (line 5). The optimization loop is performed
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until the convergence is reached, i.e. , until |Tmax — Tmin| is small enough according
to [43]. Lastly, the optimal 7* (line 6) is selected for the final LSR. .

Note that even though Algorithm 3 still needs the selection of the hyperpa-
rameter Cpax, we show in Sec. 9.3.3 that it is rather robust to the choice of this
parameter.

Algorithm 3 LSR input optimization

Require: Dataset T, metric Ly, search interval [Tmin, Tmax], Cmax

1: 7 ¢ init(Tmin, Tmax)

2: while |Tmax — Tmin| not small enough do

3: LSR, < LSR-building(7%, Ly, 7) [Algorithm 2]
4: 1 + Evaluate(LSR,) [Eq. (B.8)]

5: T, Tmin, Tmax < Brent-update(y)  [43]

6: TN =T

return LSR «

6.3 Visual plan generation

Given a start and goal observation, a trained VAE model and an LSR, the obser-
vations are first encoded by ¢ into the VAE’s latent space Z where their closest
nodes in the LSR are found. Next, all shortest paths in the LSR between the identi-
fied nodes are retrieved. Finally, the equivalence class representatives of the nodes
comprising each of the found shortest path compose the respective latent plan P,,
which is then decoded into the visual plan P; using w.

7 Action Proposal Module (APM)

The final component of our framework is the Action Proposal Module (APM) which
is used to complement a latent plan, produced by the LSR, with an action plan that
can be executed by a suitable framework. The APM allows to generate the action
plans from the extracted low-dimensional state representations rather than high-
dimensional observations. The action plan P, corresponding to a latent plan P,
produced by the LSR is generated sequentially: given two distinct consecutive latent
states (z;, z;41) from P,, APM predicts an action u; that achieves the transition
fo (2, u;) = z;41. Such functionality can be realized by any method that is
suitable to model the action specifics of the task at hand.

We model the action specifics with a neural network called Action Proposal
Network (APN). We deploy a multi layer perceptron and train it in a supervised
fashion on the latent action pairs obtained from the enlarged dataset T, as de-
scribed below. We validate this choice in Sec 10.4 where we compare it to different
alternatives that produce action plans either by exploiting the LSR or by using the
observations as inputs rather than extracted low-dimensional states.
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The training dataset 7, for the APN is derived from 7; but preprocessed with
the VAE encoder representing the latent mapping £. We encode each training
action pair (I1,Is,p = (1,u)) € T; into Z and obtain the parameters u;,o; of
the approximate posterior distributions q(z|I;) = N(u;,0;), for i = 1,2. We then
sample 25 novel points z§ ~ ¢(z|I1) and z5 ~ ¢(z|I2) for s € {0,1,...,S}. This
results in S + 1 tuples (u1, pe2, p) and (2§,25,p),0 < s < S, where p = (1,u) was
omitted from the notation for simplicity. The set of all such low-dimensional tuples
forms the APN training dataset 7.

Remark 4. It is worth remarking the two-fold benefit of this preprocessing step:
not only does it reduce the dimensionality of the APN training data but also enables
enlarging it with novel points by factor S + 1. Note that the latter procedure is not
possible with non-probabilistic realizations of &.

8 Assumptions, Applicability and limitations of the method

In this section, we briefly overview our assumptions, describe tasks where our
method is applicable, and discuss its limitations. In order for our method to suc-
cessfully perform a given visual action planning task, the observations contained in
the training dataset 77 should induce the covered states (defined in Sec. 3) that are
considered in the planning. Furthermore, it is required that sufficiently many tran-
sitions among them are observed such that the obtained LSR adequately approxi-
mates the true underlying system dynamics. For example, the training datasets 7;
in the box stacking tasks consist of 2500 pairs of states of the system instead of all
(i.e., 41616) possible combinations. On the other hand, if the system contains many
feasible states, it can be challenging to collect a dataset T; that covers sufficiently
many states and transitions between them. Even though the performance of the
LSR would deteriorate with such incomplete dataset, we do not consider this as
the limitation of the method itself as this can be mitigated with online learning
approaches, e.g. , [44], that dynamically adapt the LSR based on the interaction
with the environment.

Given the assumptions on the format of the dataset 7 introduced in Sec. 4.1, our
method is best applicable to visual action planning tasks where feasible states of the
system are finite and can be distinguished in 77 such that meaningful unambiguous
actions to transition among them can be defined.

Therefore, our approach does not generalize well to entirely novel states of the
system not contained in the training set. This is expected, as the model has no
prior knowledge about the newly appeared state, such as, for example, an entirely
new fold of a T-shirt or a new piece of garment. Such generalization could be
achieved by integrating active learning approaches which is indeed an interesting
future direction.

We emphasise that the proposed method is not limited by the dimensionality
of the system’s states since that is reduced via MM.
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9 Simulation results

We experimentally evaluated our method on three different simulated tasks: two
versions of a box stacking task (Fig. B.7 left) and a combined rope and box manip-
ulation task (Fig. B.7 right), which we refer to as rope-box manipulation task. We
considered the initial box stacking task used in our previous work [7] (top left), and
a modified one where we made the task of retrieving the underlying state of the
system harder. We achieved this by ¢) using more similar box textures which made
it more difficult to separate the states, and i) by introducing different lighting con-
ditions which made observations containing the same states look more dissimilar.
We refer to the original setup as the normal stacking task denoted by ns, and to
the modified one as the hard stacking task denoted by hs.

In the rope-box manipulation task (Fig. B.7 right), denoted by 7b, a rope con-
nects two boxes constraining their movement. To challenge the visual action plan-
ning, we again introduced different lighting conditions as well as the deformability
of the rope.

These three setups enable automatic evaluation of the structure of the latent
space Zgys, the quality of visual plans P; generated by the LSR and MM, and
the quality of action plans P, predicted by the APN. Moreover, they enable to
perform a more thorough ablation studies on the introduced improvements of our
framework which were not possible in our earlier version of the LSR [7] since the
resulting visual action plans achieved a perfect evaluation score.

All setups were developed with the Unity engine [45] and the resulting images
have dimension 256 x 256 x 3. In the stacking tasks, four boxes with different
textures that can be stacked in a 3 x 3 grid (dotted lines in Fig. B.7). A grid
cell can be occupied by only one box at a time which can be moved according
to the stacking rules: i) it can be picked only if there is no other box on top of
it, and ii) it can be released only on the ground or on top of another box inside
the 3 x 3 grid. In both versions of the stacking task, the position of each box in
a grid cell was generated by introducing ~ 17% noise along x and y axes which
was applied when generating both action and no-action pairs. The action-specific
information u, shown in Fig. B.7 left, is a pair u = (p,r) of pick p and release r
coordinates in the grid modelled by the row and column indices, i.e. , p = (py, pc)
with p,, p. € {0, 1,2}, and equivalently for r = (r,,r.).

In the rope-box manipulation task, two boxes and a rope can be moved in a 3 x 3
grid with 4 pillars according to the following manipulation rules: i) a box can only
be pushed one cell in the four cardinal directions but not outside the grid, ii) the
rope can be lifted over the closest pillar, iii) the rope cannot be stretched over more
that two cells, meaning the boxes can never be more than one move apart from
being adjacent. In this task, the action-specific information u, shown in Fig. B.7
right, denotes whether the rope is moved over the closest pillar (top) or a box is
moved in the grid (bottom) with respective pick p and release r coordinates.

According to the above rules, the training datasets 77 for stacking tasks contain
all possible 288 different grid configurations, i.e. , the specification of which box,
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action u action u

((70)7(2a)) ‘rope’ ((')7('))

action u action u

((2,2),(2,0)) ‘box’ ((0,2),(0,1))

Figure B.7: Examples of actions u in the normal (top) and hard (bottom) box
stacking tasks (left) and in the rope-box task (right). The blue circle shows the
picking location p, and the green one the release position r. The action ‘rope’ for
moving the rope over the closest pillar is shown in top right.

if any, is contained in each cell. In case of the rope-box manipulation task, 7;
contains 157 different grid configurations comprising the position of the rope and
boxes. These 288 /157 grid configurations represent the covered states in these
tasks. Note that the exact number of underlying states is in general not known.
Given a pair of states and the task rules, it is possible to analytically determine
whether or not an action is allowed between them. In addition, we can determine the
grid configuration associated with an image (i.e. , its underlying state) contained
in the produced visual plan P; using classifiers. These were trained on the decoded
images and achieved accuracy greater than 98.8% on a holdout dataset composed
of 750 samples for both versions of the stacking task and the rope-box task. All
the implementation details can be found on our code repository?.

9.1 Experiment Objectives and Implementation Details

Our experiments are designed to answer the following questions:

1. MM What is the impact of the action term (B.4) in the augmented loss
function (B.6) on the structure of the latent space? How do the respective
parameters (e. g. , minimum distance) influence the overall LSR, performance?
Lastly, how does the VAE framework perform compared to the AE one for
modelling the mappings £ and w in the MM?

2 https://github.com/visual-action-planning/lsr-v2-code
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2. LSR What is the performance of the LSR compared to state of the art solu-
tions like [8] and [9], and what is the influence of the action term (B.4) on it?
How do the respective LSR parameters (e.g. , number of components) and
the choice of the clustering algorithm impact the overall LSR performance?
How good is the LSR approximation of the covered regions?

3. APM What is the performance of the APN model?

In this section, we present the implementation details and introduce the nota-
tion used to easily refer to the models in consideration. For VAEs (used in MM),
each model is annotated by VAE;;-task-d where ld denotes the dimension of the
latent space, task denotes the version of the task and is either ns, hs or rb for the
normal stacking task, hard stacking tasks or rope-box manipulation task, respec-
tively. The parameter d indicates whether or not the model was trained with the
action loss term (B.4). We use d = b to denote a baseline VAE trained with the
original VAE objective (B.5), and d = Ly to denote an action VAE trained with
the loss function (B.6) including the action term (B.4) using metric L;. Compared
to [7], we consider only L; metric in our simulated experiments due to its superior
performance over the Ly and Lo, metrics established in [7].

All VAE models used a ResNet architecture [46] for the encoder and decoder
networks. They were trained for 500 epochs on a training dataset 77, composed of
65% action pairs and 35% no-action pairs for stacking tasks, and 50% action pairs
and 50% no-action pairs for rope-box manipulation task. For each combination of
parameters [d, task, and d, we trained 5 VAEs initialized with different random
seeds. Same seeds were also used to create training and validations splits of the
training dataset. The weight 8 in (B.5) and (B.6) was gradually increased from 0
to 2 over 400 epochs, while v was fixed to 100. In this way, models were encouraged
to first learn to reconstruct the input images and then to gradually structure the
latent space. The minimum distance d,, was dynamically increased every fifth
epoch starting from 0 using Ad,, = 0.1 as described in Sec. 5. The effect of this
dynamic parameter increase is shown in Fig. B.5.

For LSR, we denote by LSR.-L; a graph built using the metric L in Algorithm 2.
The parameters Tin and Tpax in the LSR optimization (B.9) were set to 0 and 3,
respectively. Unless otherwise specified, we fixed Id = 12 for all tasks. Moreover,
the number of graph-components cp,,x in the optimization of the clustering thresh-
old (B.8) was set to 1 for ns, and 20 for hs and rb. These choices are explained
in detail in the following sections. Given an LSR, we evaluated its performance by
measuring the quality of the visual plans found between 1000 randomly selected
start and goal observations from an unseen holdout set containing 2500 images. To
automatically check the validity of the found paths, we used the classifiers on the
observations contained in the visual plans to get the respective underlying states.
We then defined a checking function (available on the code repository) that, given
the states in the paths, determines whether they are allowed or not according to
the the stacking or the manipulation rules. In the evaluation of the planning per-
formance we considered the following quantities: i) percentage of cases when all
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shortest paths from start to goal observations are correct, denoted as % All, ii)
percentage of cases when at least one of the proposed paths is correct, denoted as
% Any, and i) percentage of correct single transitions in the paths, denoted as %
Trans. We refer to the % Any score in i) as partial scoring, and to the combination
of scores i)-ii7) as full scoring. Mean and standard deviation values are reported
over the 5 different random seeds used to train the VAEs.

For APNs, we use the notation APN,4-task-d analogous to the VAEs. The APN
models were trained for 500 epochs on the training dataset 7, obtained following
the procedure described in Sec 7 using S = 1. Similarly as for LSR, we report the
mean and standard deviation of the performance obtained over the 5 random seeds
used in the VAE training.

9.2 MM Analysis

In this section, we validate the MM module answering the questions in point 1)
of Sec. 9.1. In the first experiment, we investigated the influence of the dynamic
parameter d,,, on the LSR performance. We then studied the structure of the latent
space by analyzing the distance between encodings of different states. Lastly, we
compared the LSR performance when modelling MM with an AE framework instead
of a VAE.

9.2.1 Influence of dynamic d,,

A key parameter in the action term (B.4) is the minimum distance d,,, encouraged
among the action pairs. We considered the hard stacking and rope-box manip-
ulation tasks and validated the approach proposed in Sec. 5, which dynamically
increases d,, to separate action and no-action pairs (see Fig. B.5). At the end of
the training, the approach results in d,,, = 2.3+0.1 and d,,, = 2.6 £0.2 for the hard
stacking and rope-box tasks, respectively.

Figure B.8 shows the performance of the LSR using partial scoring on the hard
stacking task (blue) and rope-box manipulation task (orange) obtained for the
dynamic d,,, (solid lines), and a selected number of static d,, parameters (cross
markers with dashed lines) ranging from low (d,, = 0) to high (d,,, = 100) values.
Among the latter, we included the static d,,, = 11.6 and d,, = 6.3 obtained using
our previous approach in [7] on the stacking and the rope-box tasks, respectively.
We observed that: i) the choice of d,, heavily influences the LSR performance,
where same values of d,,, can lead to different behavior depending on the task (e. g.
, d = 11.6), ii) the dynamic d,, leads to nearly optimal performance regardless of
the task compared to the grid searched static d,,. Note that even though there are
static d,, values where the performance is higher than in the dynamic case (e.g.
, A, = 3 with 93.1% for stacking and d,,, = 9 with 91.2% for the rope-box task),
finding these values a priori without access to ground truth labels is hardly possible.

This approach not only eliminates the need for training the baseline VAEs as in
[7] but also reaches a value of d,, that obtains a better separation of covered regions
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Figure B.8: Comparison of LSR performance using the dynamic d,, (solid lines)
and static d,, (cross markers with dashed lines) for the hard stacking (blue) and
rope-box manipulation (orange) tasks. Non linear x-axis scale showing the values
of d,, is used for better visualization.

Zgys without compromising the optimization of the reconstruction and KL terms.
In fact, as discussed in Sec. 5, the reconstruction, KL and action terms in the loss
function (B.5) have distinct influences on the latent space structure which can be
in contrast to each other. The proposed dynamic increase of d,, results in a lower
d, value than in [7], which in turn yields small distances between the action pair
states while still being more beneficial than a simple static d,, = 0. Such small
distances in the action term are desirable as they do not contradict the KL term.
This can explain why the LSRs with higher values of d,, reach worse performance

compared to the dynamic one.

9.2.2 Separation of the states

We investigated the effect of the action loss (B.4) on the structure of the latent
space by analyzing the separation of the latent points z € 7T, corresponding to
different underlying states of the system. For simplicity, we report only results
for the normal stacking task but we observed the same conclusions for the hard
stacking and the rope-box manipulation tasks. Recall that images in 77 containing
the same state looked different because of the introduced positioning noise in the
stacking tasks (and different lightning conditions in the case of hs as well as the
deformability of the rope in rb).

Let z; be the centroid for state s defined as the mean point of the training latent
samples {zs;}; C T, associated with the state s. Let dintrq(2s,, 2s) be the intra-
state distance defined as the distance between the latent sample ¢ associated with
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the state s, namely z, ;, and the respective centroid zs. Similarly, let dipter(Zs, Zp)
denote the inter-state distance between the centroids z, and Zz, of states s and p,
respectively.

Figure B.9 reports the mean values (bold points) and the standard deviations
(thin lines) of the inter- (in blue) and intra-state (in orange) distances for each
state s € {1,...,288} in the normal stacking task when using the baseline model
VAE3-ns-b (top) and the action model VAE 5-ns-L; (bottom). In case of the
baseline VAE, we observed similar intra-state and inter-state distances. This implies
that samples of different states were encoded close together in the latent space which
can raise ambiguities when planning. On the contrary, when using VAE5-ns-L,
we observed that the inter- and intra-state distances approach the values 5 and 0,
respectively. These values were imposed with the action term (B.4) as the minimum
distance d,, reached 2.6. Therefore, even when there existed no direct link between
two samples of different states, and thus the action term for the pair was never
activated, the VAE was able to encode them such that the desired distances in the
latent space were respected. Similar conclusions also hold for the hard stacking and

VAE-ns-b
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Figure B.9: Mean values (bold points) and standard deviations (thin lines) of inter-
(blue) and intra- (orange) state distances for each state calculated using the baseline
VAE (top) and the action VAE;5-ns-L; model (bottom) on normal stacking task.

the rope-box manipulation tasks, whose plots are omitted for the interest of space.

Finally, we analyzed the difference between the minimum inter-state distance
and the maximum intra-state distance for each state. The higher the value the
better separation of states in the latent space since samples of the same state are
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in this case closer to each other than samples of different states. When the latent
states were obtained using the baseline VAE15-ns-b, we observed a non-negative
distance for 0/288 states with an average value of &~ —1.2. This implies that only
weak separation occurred in the latent space for samples of different states. On the
other hand, when calculated on points encoded with VAE5-ns-L1, the difference
became non-negative for 284/288 states and its mean value increased to =~ 0.55, thus
achieving almost perfect separation. In the hard stacking task, we similarly found
that VAE5-hs-b reached an average difference of —5.86 (being non-negative for
0/288 states), while the action model VAE;s-hs-L; reduced the average difference
to —0.04 (being non-negative for 121/288 states). This result demonstrates the
difference in the difficulty between the two versions of the box stacking task and
highlights the challenges of visual action planning on the harder stacking task where
worse separation of states was achieved. For the rope-box manipulation task we
obtained, coherently with the box stacking results, an average difference of —2.95
(being non-negative for 37/157 states) with the baseline model, which improved to
0.15 with the action model VAE 5 -rb-L; (being non-negative for 100/157 states).
In Appendix12.2, we performed an ablation study on the latent space dimension,
justifying the choice Id = 12 in our simulations. For each considered latent dimen-
sion, we then additionally analyzed the influence of the action loss on the structure
of the latent space by calculating relative contrast [47, 48] in Appendix12.1, which
evaluates the significance of distances among points in the latent space. We ob-
served higher values for action VAEs compared to the baseline VAEs, showing that
the action loss leads to higher relative contrast in the latent space.
We conclude that the action term (B.4) and the dynamic d,, contribute to a
better structured latent space Zgys.

9.2.3 VAE compared to AE

VAE framework is only one of the possible models for the MM. We justify this
modeling choice by comparing it to the AE framework. Similarly as VAE, an AE
model consists of an encoder and a decoder network which are jointly trained to
minimize the the Mean Squared Error (MSE) between the original input and its
decoded output. In contrast to VAEs, the two networks in AEs do not model a
probability distribution. Since the KL divergence in VAE acts as a regularization
term, we employed the stable weight-decay Adam optimizer from [49] with default
parameters to make the comparison more fair. We denote the model by AE-b.
Analogously to VAE, the original AE loss was augmented with the action loss (B.4)
weighted by the parameter v, which we denote by AE-L;. Note that L; refers only
to the metric in (B.4) and not in the calculation of MSE.

We modelled the AE encoder and decoder networks using the same ResNet [46]
architecture as in case of VAEs. We set Id = 12, v = 1000 and increased the
minimum distance d,;, dynamically every fifth epoch starting from 0 using Ad,, =1,
as described in Sec. 5. The LSR was built using the same 7, = 0 and T = 3
(Algorithm 3).
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Table B.2 shows the LSR performance using partial scoring on all simulated
tasks when MM was modelled as an AE (top two rows) and as a VAE (bottom
row). Not only we observed a superior performance of VAE compared to the AE
but once again the effectiveness of the action term (B.4) on all the tasks as it
increased the average AE performance from 0.1% to 36.3% for ns, from 0.1% to
33.6% for hs, and 0.1% to 9.8% for rb. This comparison shows that the probabilistic
modeling adopted by VAEs resulted in a latent space that is more adequate for visual
action planning with respect to the considered AFEs.

Model ns %) hs %] rb [%]
AE-b+LSR-L, 0.1+0.0 0.0+0.0 0.1+0.1
AE-L1+LSR-L; | 36.3+26.9 | 33.6+10.3 9.8+54
VAE-L;+LSR-L; | 100.0+0 | 92.1 +2.9 | 90.4 +2.9

Table B.2: Comparison of the LSR performance using partial scoring when mod-
elling MM with an AE (top two rows) and a VAE (bottom row) framework on all
the simulated tasks. Best results in bold.

9.3 LSR Analysis

In this section, we analyze the LSR performance by answering the questions stated
in point 2) of Sec. 9.1. Firstly, we compared the LSR performance to the method
in [8] and one inspired by [9]. Secondly, we investigated the influence of the action
term (B.4) on the LSR performance. Thirdly, we investigated the influence of the
upper bound on the number of connected components ¢y used in (B.8). Next, we
performed an extensive comparison of the LSR algorithm using different clustering
algorithms in Phase 2 of Algorithm 2. Finally, we analyzed the covered regions
determined by the LSR.

9.3.1 LSR comparison

We compared the performance of the LSR on all simulated tasks with two bench-
mark methods introduced below. In all the experiments, we considered the baseline
models VAEq5-b and the action VAE15-L; trained with the action term (B.4).

We compared our method with Semi-Parametric Topological Memory (SPTM)
framework presented in [8] and an MPC-based approach inspired by [9].

In SPTM, we connected action pairs (treated as one-step trajectories) and
no-action pairs (considered temporarily close) in the latent memory graph. As
in [8], we added Ny, more shortcut edges connecting the encodings that are con-
sidered closest by the retrieval network to the memory graph. In the localization
step, we used the median of k¥ = 5 nearest neighbours of the nodes in the mem-
ory graph as recommended in [8]. To select the waypoint, we performed a grid
search over Speach € {0.75,0.9,0.95} and chose Syeach = 0.95. We also performed
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a grid search over Ny € {0,2-10%,1-10%,1-10%,1-10%1.5-105,2- 10} and used
the values Ny, = 1.0 - 10%, 1.5 - 10°, 2.0 - 10° for ns, hs and rb, respectively. We
used high number of shortcuts compared to Ny = 2-10% in [8] because we only
had access to one-step trajectories instead of full roll-outs. Using low number of
shortcuts resulted in a memory graph consisting of large amount of disconnected
components which impeded planning. For example, in hard stacking task using
Ny = 2-10? yielded a graph with 2243 connected components which led to almost
zero correct transitions over the 1000 test paths. A higher number of shortcuts
instead improved the connectivity of the graph and thus its planning capabilities.

The MPC-inspired baseline is composed of a learned transition model f;(-) and
a learned action validation model f,(-), both taking the current latent state z;
and the applied action u as inputs. The transition model then predicts the next
state zo = fi(21, u), while the validation model f,(z1,u) predicts whether the given
action u was allowed or not.

These models are used in a MPC-style approach, where first a search tree is
constructed for a given start state z; by iterating over all allowed action using
fa(z1,u) with w € U and predicting the consecutive states with the transition
model f¢(-). The search is performed at each time step and until the search tree
has reached a specified horizon N. Lastly, the path in the built tree leading to
the state closest to the goal using L; distance is selected and the first action in
the sequence is applied. This procedure is repeated until all proposed actions lead
further from the goal. In our case, the resulting state and action sequence is decoded
into a visual action plan and evaluated in the same way as the LSR.

We implemented f; and f, as a three layer MLP-regressor and MLP-classifier,
respectively, with 100 hidden units. For a fair comparison, we trained f; and f,
using training encodings 7, from the same MM that was used for building the LSR.
As T, only includes allowed actions, we augmented the training data for f,(-) with
an equal amount of negative examples by randomly sampling v € Y. We used
horizon N = 4. The trained f; models achieved R? coefficient of determination [50]
of 0.96, 0.96, and 0.88 (highest 1) for the normal, hard stacking and rope-box
datasets, respectively. The f,() model was evaluated on 1000 novel states and
by applying all possible actions on each state. It achieved an accuracy score of
88.5 + 1.8, 97.3 £ 0.2, and 87.4 £+ 0.8 for the normal, hard stacking and rope-box
datasets, respectively. Note that the normal and hard stacking tasks has exactly 48
unique actions with & 9.4% of them being allowed on average. The rope-box task
on the other hand has 25 unique actions with an average of ~ 17.1% being allowed
per state.

Table B.3 shows the result of our method (VAE-L; + LSR-L;), the SPTM
framework and the MPC-based approach (VAE-L; + MPC) evaluated on the full
scoring on the normal box stacking (top), hard box stacking (middle), and rope-box
manipulation task (bottom). We observed that the proposed approach (VAE-L; +
LSR-L;) significantly outperformed the considered benchmark methods. This can
be explained by the fact that SPTM- and MPC-based methods are more suited
for tasks where the provided data consists of rolled out trajectories in which small
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state changes are recorded in consecutive states. In contrast, as discussed in Sec. 8,
our method is best applicable when actions lead to distinguishable different obser-
vations. This allows to consider only pairs of observations as input dataset instead
of requiring entire trajectories. Moreover, a core difference between our approach
and SPTM is that we do not assume that each observation maps into a unique
underlying state, but rather, as described in Sec. 4, we structure and cluster obser-
vations in such a way that observations associated with the same underlying state
are grouped together. We reiterate that this approach is best suited for tasks with
finite and distinguishable states, which differ from continuous RL setting used by

SPTM.

Task Model % All % Any % Trans.
VAE-L; + MPC 234+0.3 234+0.3 69.3£1.0
ns SPTM [§] 0.2£0.1 0.5£0.3 519+14
VAE-b+ LSR-1, 2.5+0.5 41+£1.0 59.7+4.9
VAE-L,;+ LSR-L; | 100.0 £ 0 100.0+0 | 100.0£0
VAE-L; + MPC | 2.1+£04 21+£04 76.8 £ 0.3
hs SPTM [§] 0.0+0.0 0.0+0.0 23.6 £0.7
VAE-b+ LSR-L; | 0.2+0.1 0.2£0.1 38.0 £ 2.0
VAE-L1+ LSR-L; | 90.9 +3.5 | 92.1 £2.9 | 95.8 = 1.3
VAE-L; + MPC | 6.2+£0.5 6.2+ 0.5 73.8 £0.8
b SPTM |[§] 0.0+0.0 0.4+0.3 25.24+9.7
VAE-b+ LSR-L; | 0.2+0.1 0.2£0.1 0.2£0.1
VAE-L;+ LSR-L; | 89.74+3.7 | 90.4 +£2.9 | 96.2+ 1.5

Table B.3: Planning performance using full scoring for the normal (top) and hard
(middle) box stacking tasks and rope-box manipulation task (bottom) using MPC
and SPTM [8] methods, baseline VAE-b and action VAE-L;. Best results in bold.

9.3.2 Influence of the action term

We investigated how the LSR performance is affected by the action term (B.4)
by comparing it to the variant where MM was trained without it (VAE-b + LSR-
Ly). The results on the full scoring for all the tasks are shown in Table B.3. We
observed deteriorated LSR performance when using baselines VAE;5-b compared
to the action VAEs regardless the task. This indicates that VAEs-b were not able
to separate states in Z,,;. We again conclude that the action term (B.4) needs
to be included in the VAE loss function (B.6) in order to obtain distinct covered
regions Z.,.. In addition, the results underpin the different level of difficulty of the
tasks as indicated by the drop in the LSR performance on hs and rb compared to
ns using the action VAE-L;.

In summary, this simulation campaign demonstrates the effectiveness of the LSR
on all the considered simulated tasks involving both rigid and deformable objects
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compared to existing solutions, as well as supports the integration of the action
term in the VAE loss function.

9.3.3 Influence of the maximum number of connected components

The optimization method described in Sec. 6.2 requires setting an upper bound on
the number of graph-connected components cp,,x of the LSR. Table B.4 shows how
different choices of upper bounds influence the LSR performance on all simulated
tasks.

Crmaz ns (%] hs %] rb %)
1 100.0 = 0.0 | 65.3 +24.6 4.5+£5.6
) 99.5+£04 88.6£5.4 95.8 £ 28.8
10 99.0£0.3 91.5£38 80.4 £10.6
20 975+ 0.5 92.1 £ 2.9 90.4 £+ 2.9
50 91.3+£1.1 88.2£2.0 89.4+1.9
100 80.0+1.4 779+ 2.1 76.0 + 2.8

Table B.4: LSR performance on all simulated tasks for different c;,q, values. Best
results in bold.

We observed that the results are rather robust with respect to the cpax value.
For all tasks, the performance dropped for a very high c¢pax, such as ¢pax = 100,
while in the hard stacking task and especially in the rope-box manipulation task, we
additionally observed a drop for a very low cpax, such as cpax = 1. This behavior
can be explained by the fact that the lower the ¢y, the more the system is sensitive
to outliers, while the higher the cyax the greater the possibility that the graph is
disconnected which potentially compromises its planning capabilities. For example,
in the hard stacking task, outliers arise from different lightning conditions, while
in the rope-box manipulation task they arise from the deformability of the rope.
In contrast, no outliers exist in the normal stacking task which is why a single
connected component is sufficient for the LSR to perform perfectly. For all further
evaluation, we set ¢, = 1 for ns and ¢4, = 20 for hs and rb.

This result demonstrates the robustness of the approach with respect to cmax as
well as justifies the choices of the Cpqz values in the rest of simulations.

9.3.4 Comparing different clustering methods for Phase 2

We showcase the effect of the outer optimization loop described in Algorithm 3
on several different clustering methods used in Phase 2 in Algorithm 2 on the
hard stacking task. We considered Epsilon clustering used in our earlier work [7],
Mean-shift [51], OPTICS [52], Linkage (single, complete and average) [53] and
HDBSCAN [54] algorithms. We provide a summary of the considered algorithms
in Appendix12.3. The performance of the considered clustering methods (except
for HDBSCAN) depends on a single input scalar parameter that is hard to tune.
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However, as described in Sec. 6.2, we are able to optimize it by maximizing the
objective in (B.8).

Table B.5 reports the LSR performance with different clustering algorithms
when performing grid search to determine their input scalar parameters (left) and
when using our automatic optimization (right). Partial scoring using VAE15-hs-Lq
is shown. Note that the grid search was only possible in this problem setting as the
ground truth can be retrieved from the trained classifiers but it is not generally ap-
plicable. Firstly, the results show that average-linkage, used for our LSR in Sec. 6.1,
together with our automatic input parameter optimization outperformed the other
alternatives. The results of the grid search show that the automatic criteria for
identifying different cluster densities, adopted by OPTICS and HBDSCAN, did
not effectively retrieve the underlying covered regions. Meanshift performed better
but its approximation of spherical clusters did not lead to the optimal solution.
Similar performance to Meanshift was obtained with single- and complete-linkage
algorithms showing that the respective distance functions are not either suited for
identifying covered regions. The same applies for the epsilon clustering.

Concerning the optimization results, they highlight the effectiveness of the op-
timization procedure in Algorithm 3 as they are comparable to the ones obtained
with the grid search for all clustering methods. Note that grid search led to a
slightly lower performance than the optimization for meanshift, complete-linkage
and average-linkage. In these cases, the grid was not fine enough which points out
the difficulty of tuning the respective parameters.

This investigation demonstrates the effectiveness of our proposed optimization
loop and shows that the average-linkage clustering algorithm led to the best LSR
performance among considered alternatives for the hard box stacking task.

Clust. method Grid Search [%)] | Optimization [%)]
Epsilon [7] 83548 65.8 £ 12.2
Meanshift 78.2+ 3.3 80.2£5.9
OPTICS 44.3 £ 8.7 40.8 £6.1
HDBSCAN 16.1 £5.7 -
Single-linkage 79.3 £ 8.8 65.8 £12.2
Complete-linkage 79.1+6.4 81.4+£48
Average-linkage 91.1+£25 92.1 + 2.9

Table B.5: Comparison of the LSR performance for different clustering algorithms
for the hard box stacking task. Partial scoring is reported when applying grid search
(left column) and when using the optimization in Algorithm 3 (right column). Best
results in bold.
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9.3.5 Covered regions using LSR

To show that the LSR captures the structure of the system, we checked if ob-
servations corresponding to true underlying states of the system, that have not
been seen during training, are properly recognized as covered. Then, we checked
if observations from the datasets of the remaining simulated tasks as well as from
the 3D Shapes dataset [55] are marked as uncovered since they correspond to out-
of-distribution observations. The covered regions Zgys were computed using the
epsilon approximation in (B.7).

Table B.6 reports the results of the classification of covered states obtained by
the models trained on normal (first row) and hard (second row) box stacking tasks
and rope-box manipulation task (third row). Holdout datasets for each simulated
task were used. For the normal stacking task, results show that the LSR almost
perfectly recognized all the covered states (ns column) with the average recognition
equal to 99.5%, while it properly recognized on average 4694/5000 samples (93.9% -
hs column) hard version. An almost perfect average recognition was also obtained
on the rope-box manipulation task (99.6% - rb column). For out-of-distribution
observations, the lower the percentage the better the classification. Table B.6 shows
that the models trained on ns (first row, columns hs, rb, 3D Shapes) and hs
(second row, columns ns, rb, 3D Shapes) were able to perfectly identify all non-
covered states, while worse performance was observed for the rope-box models
which misclassified ~ 10% of the uncovered datasets (third row, columns ns, hs,
3D Shapes). This decrease in performance could be explained by the fact that
capturing the state of a deformable object is much more challenging than rigid
objects.

We conclude that LSR provides a good approximation of the global structure of
the system as it correctly classified most of the observations representing possible
system states as covered, and out-of-distribution observations as not covered.

ns [%] hs [%)] rb [%) 3D Sh. [%]
ns | 99.47 +0.27 0.0+£0.0 0.0+0.0 0.0+0.0
hs 0.0+0.0 93.71£0.61 | 0.0+0.0 0.0+0.0
rb | 9.48 +7.45 13.5+8.57 | 99.6 £0.1 | 9.72 +8.38

Table B.6: Classification of covered states for the normal (first row) and hard
(second row) box stacking models and rope-box models (third row) when using as
inputs novel images from the tasks (ns, hs and rb columns) and the 3D Shapes (3D
Sh. column) datasets.

9.4 APM Analysis

We evaluated the accuracy of action predictions obtained by APN-L; on an unseen
holdout set consisting of 1611, 1590 and 948 action pairs for the normal stacking,
hard stacking and rope-box manipulation tasks, respectively. As the predicted
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actions can be binary classified as either true or false, we calculated the percentage
of the correct proposals for picking and releasing, as well as the percentage of
pairs where both pick and release proposals were correct. For rope-box task, we
additionally calculated the percentage of the correct proposal for either rope or
box action. We evaluated all the models on 5 different random seeds. For both
stacking versions, all the models performed with accuracy 99% or higher, while
rope-box models achieved ~ 96%. This is because the box stacking task results in
an 18-class classification problem for action prediction which is simple enough to
be learned from any of the VAEs, while the classification task in the rope-box is
slightly more challenging due to the required extra prediction whether to move a
rope or a box.

10 Folding Experiments

In this section, we validate the proposed approach on a real world experiment
involving manipulation of deformable objects, namely folding a T-shirt. As opposed
to the simulated tasks, the true underlying states were in this case unknown and it
was therefore not possible to define an automatic verification of the correctness of
a given visual action plan.

The folding task setup is depicted in Fig. B.12 (middle). We used a Baxter
robot equipped with a Primesense RGB-D camera mounted on its torso to fold a
T-shirt in different ways. The execution videos of all the performed experiments
and respective visual action plans can be found on the project website. A summary
of the experiments can also be found in the accompanying video. For this task,
we collected a dataset T; containing 1283 training tuples. Each tuple consists
of two images of size 256 x 256 x 3, and action specific information u defined as
u = (p,r, h) where p = (p,, p.) are the picking coordinates, r = (r,., 7.) the releasing
coordinates and h picking height. An example of an action and a no-action pair
is shown in Fig. B.4. The values p,,p., 7, 7. € {0,...,255} correspond to image
coordinates, while h € {0,1} is either the height of the table or a value measured
from the RGB-D camera to pick up only the top layer of the shirt. Note that the
separation of stacked clothing layers is a challenging task and active research area
on its own [56] and leads to decreased performance when it is necessary to perform
it, as shown in Sec. 10.5.2. The dataset 77 was collected by manually selecting pick
and release points on images showing a given T-shirt configuration, and recording
the corresponding action and following configuration. No-action pairs, representing
~ 37% of training tuples in 77, were generated by slightly perturbing the cloth
appearance.

10.1 Experiment Objectives and Implementation Details

The experiments on the real robot were designed to answer the following questions:
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1. MM Does the action loss term (B.4) improve the structure of the latent space
for the folding task?

2. LSR How good is the approximation of the covered regions provided by the
LSR for a real world dataset?

3. APM How does the APN perform in comparison to alternative implementa-
tions of the APM?

4. System How does the real system perform and how does it compare to our
earlier work [7]? What is the performance on a folding that involves picking
the top layer of the shirt?

Following the notations introduced in Sec. 9.1, we denote by VAE;;-f-d a VAE
with ld-dimensional latent space, where f stands for the folding task and d indicates
whether or not the model was trained with the action loss (B.4). We use d = b for
the baseline VAEs which were trained with the original training objective (B.5).
We use d = L, for the action VAEs trained with the objective (B.6) containing
the action term (B.4) using metric L, for p € {1,2,00}. We modelled VAEs with
the same ResNet architecture and same hyperparameters 3, v and d,, as in the
box stacking task introduced in Sec. 9 but increased the latent space dimension to
ld = 16. We refer the reader to the code repository? for implementation details.

For the LSR, we denote by LSR-L, a graph obtained by using metric L, in
Algorithm 2. We set the upper bound ¢pax in (B.8) to 5, and the search interval
boundaries Tiin and Tax in Algorithm 3 to 0 and 3.5, respectively.

The performance of the APMs and the evaluation of the system was based on
the VAEq4-f-L1 realization of the MM. We therefore performed the experiments
using APNyg-f-L; which was trained on latent action pairs 7, extracted by the
latent mapping & of VAE 4-f-L1. We trained 5 models for 500 epochs using dif-
ferent random seeds as in case of VAEs, and used 15% of the training dataset as a
validation split to extract the best performing model for the evaluation.

We compared the performance of our system S-OUR, consisting of VAE14-f-L1,
LSR-L; and APNyg-f-Ly with the systems S-L;, S-Lo and S-Lo, introduced in [7]
on the same 5 folding tasks. The start configuration was the fully unfolded shirt
shown in Fig. B.10 on the left, while the goal configurations are shown on the right.
The latter are of increasing complexity requiring a minimum of 2, 2, 3, 3, and 4
folding steps for folds 1-5, respectively.

Each fold was repeated 5 times and scored in the same way as in [7]. In partic-
ular, we scored the system performance where a folding was considered successful if
the system was able to fold the T-shirt into the desired goal configuration. As the
state space of the T-shirt is high-dimensional, there exists no objective measure that
would evaluate the success of the fold automatically. Therefore, the evaluation of
the full folding procedure was manually done by a human (one of the authors) but
all execution videos of all folds and repetitions can be found on the project website.
We additionally evaluated the percentage of successful transitions of the system.
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Figure B.10: Start state (right) followed by 5 different goal configurations for the
folding task [7]. The lower right configuration requires to pick a layer on top of the
T-shirt.

A transition was considered successful if the respective folding step was executed
correctly. Lastly, we evaluated the quality of the generated visual plans P; and the
generated action plans P,. We considered a visual (action) plan successful if all the
intermediate states (actions) were correct. Even for a correctly generated visual
action plan, the open loop execution is not robust enough for a real robot system.
We therefore added a re-planning step after each action completion as shown in
Fig. B.12. This accounts, as instance, for potential execution uncertainties, inaccu-
racies in grasping or in the positioning phases of pick-and-place operations which
led to observations different from the ones planned in P;. Note that after each
action execution, the current observation of the cloth was considered as a new start
observation, and a new visual action plan was produced until the goal observation
is reached or the task is terminated. Such re-planning setup was used for all folding
experiments. As the goal configuration does not allude to how the sleeves should be
folded, the LSR suggests multiple latent plans. A subset of the corresponding visual
action plans is shown on the left of Fig. B.12. If multiple plans were generated, a
human operator selected one to execute. After the first execution, the ambiguity
arising from the sleeve folding was removed and the re-planning generated a single
plan, shown in the right.

To deal with the sparse nature of the collected dataset, if no path was found
from the start to the goal node, the planning was repeated using the closest nodes
to the current start and/or goal nodes in the latent space. This procedure was
repeated until a path was found.
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Figure B.11: Histograms of action (in blue) and no-action (in green) pair distances
at different training epochs (1, 100 and 500 from the left, respectively) for the
folding task. Results obtained with baseline (top, a)) and action (bottom, b))
models are shown.

10.2 MM Analysis

Analogously to the box stacking task in Sec. 9.2, we answered question 1) by ana-
lyzing the relative contrast (reported in Appendix12.1) as well as by evaluating the
separation of action and no-action pairs during the training.

10.2.1 Influence of dynamic d,,

We investigated the influence of the dynamic increase of d,,, in the action term (B.4)
on the structure of the latent space. Figure B.11 shows the histogram of action (in
blue) and no-action (in green) pair distances calculated at different epochs during
training using VAEqg-f-b (top row) and VAEg-f-L; (bottom row). We observed
that the separation was complete in case of action VAEs but was not achieved with
the baseline VAEs. To precisely quantify the amount of overlap between action
and no-action pairs, we calculated the difference between the minimum action-pair
distance and maximum no-action pair distance on the training dataset. Therefore,
a positive value implies that action pairs were successfully separated from the no-
action pairs. For VAE;g-f-b (top row), the difference evaluated to —31.8, —19.2,
and —19.4 for epoch 1, 100, and 500, respectively, while it was improved to —6.3,
—1.6, and 1.5 in case of the action VAE g -f-L; (bottom row). This shows that the
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Figure B.12: Execution of the folding task with re-planning. On the left, a set
of initial visual action plans reaching the goal state is proposed. After the first
execution, only one viable visual action plan remains.

dynamic selection of d,, successfully separated the actions and no-action pairs also
for the folding task.

10.3 LSR Analysis

Similarly to the simulated tasks, we exploited the LSR to investigate the covered
regions of the latent space Z, thus answering question 2) listed in Sec. 10.1. Note
that in Sec. 10.5, the LSR was also employed to perform the folding task with the
real robotic system.

10.3.1 Covered regions using LSR

We used VAEq¢-f-L1 model and reproduced the experiment from Sec. 9.3.5, where
we measured the accuracy of various novel observations being recognized as covered.
We inputted 224 novel observations that correspond to possible states of the system
not used during training, as well as 5000 out-of-distribution samples from each of
the three datasets of the simulated tasks and the standard 3D Shapes dataset. We
observed that the LSR achieved good recognition performance even in the folding
task. More precisely, on average 213/224 samples representing true states of the
system were correctly recognized as covered, resulting in 95 + 2.4% accuracy aver-
aged over the 5 different random seeds. For the four out-of-distribution datasets,
all samples were correctly recognized as not covered.

This analysis illustrates the effectiveness of the LSR in capturing the covered
regions of the latent space.

10.4 APM Comparison

In this section we validate the choice of the APM by comparing it to several possible
alternatives.

The Action Proposal Network, described in Sec. 7, was built upon the one intro-
duced in [7] to which we added dropout regularization layers. The APN receives as
inputs latent action pairs contained in a latent plan found by the LSR, and outputs
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Method X Pick Y Pick X Release
e-APN [7] 144.1 + 52.2 52.8 £18.3 317.2 £143.3

C-APN 498.0 £ 63.8 474+ 7.7 818.8 £121.9
R-APN 697.2 +345.1 | 246.2+174.9 | 792.4 £ 388.8
AAB 113.0 22.4 201.4
APN (Ours) | 82.6 + 22.9 29.3+22 270.6 £ 158.2
Method Y Release Height Total
e-APN [7] 1599+ 174 0.0 + 0.0 674.0 £ 147.6
C-APN 226.5+£92.5 0.0 £ 0.0 1590.8 +155.0
R-APN 268.9 £ 157.0 0.0 + 0.0 2004.6 £ 908.2
AAB 194.7 0.0 531.5
APN (Ours) | 71.8 £15.0 | 0.0 £0.0 | 454.3 + 153.8

Table B.7: Comparison of MSE achieved with different realizations of the Action
Proposal Modules. Best results in bold.

the predicted action specifics. We refer to the earlier version in [7] as e-APN and
to the current version APNy4-f-L; as APN. We compared the performance of APN
to e-APN as well as several alternatives introduced below.

Action Averaging Baseline (AAB) Firstly, we investigated whether the action
predictions can be retrieved directly from the LSR instead of a separate module.
The basic idea is to use the latent action pairs in the training dataset to calculate
the average action specifics associated with each edge in the LSR. Let £7, =
{(z1,22) € €|z1 € 2L, 20 € Z],,} be the set of edges from the reference graph £
connecting covered regions ZZ . and ZJ . (Algorithm 2). We parameterized each
edge eijsr{ = (ziSR,zI{SR) € &usr with the action u]i;jSR obtained by averaging

actions corresponding to the edges in £

Ursp = 51J| oo une (B.10)
S (21,22)€80,

where u*1#2 is the action specification associated with the action pair (21, 23) in the

training dataset 7.. The parametrization (B.10) yields the action plan associated

with a path P,.

Secondly, we investigated how the use of the latent encodings as inputs to the

APM influences the LSR performance. We compared APN-d with two distinct
versions of APMs that use images as inputs.
C-APN is a neural network that uses a convolutional encoder followed by the APN.
The encoder in C-APN was trained using only MSE loss. During the inference, the
observations given to C-APN as input are obtained by decoding the latent plan
found by the LSR with the observation generator w.
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R-APN is an extension of C-APN that uses a ResNet encoder identical to the
VAE encoder.

Detailed architectures of all the models can be found in our code repository.
The training details for APN and APN-d are described in Sec. 10.1. For C-APN-d
and R-APN-d, we similarly trained 5 models using different random seeds but on
a training dataset 77 obtained by decoding T, with the observation generator w of
VAEis-f-L1. This is because the visual plans, given to C-APN-d and R-APN-d,
are produced by decoding the latent plans with w. Moreover, C-APN-d and R-
APN-d were trained for 1000 epochs to ensure the convergence of the initialized
encoders. Note that we can only obtain one AAB model for a chosen VAE as AAB
is defined by the LSR.

We evaluated the performance of all the models on a holdout dataset consisting
of 41 action pairs. Given a holdout action pair, we calculated the mean squared
error (MSE) between the predicted and the ground truth action specifics. We
report the mean and standard deviation of the obtained MSE calculated across the
5 random seeds (except for AAB). The results are shown in Table B.7 where we
separately report the error obtained on picking and releasing as well as the total
model error. Firstly, we observed that the added regularization layer positively
affected the result as APN achieved lower error than our earlier version e-APN [7].
Secondly, APN significantly outperformed both C-APN and R-APN. Using the
latent encodings as inputs also significantly decreased the size of the models and
reduces the computational power needed for their training. Lastly, our APN also
on average outperformed AAB with respect to the total model error. Although the
enhancement compared to the AAB was not as significant as for the other models,
APN is beneficial since it is less prone to averaging errors obtained from the LSR
and can be easily adapted to any realization of action specifics. Moreover, a neural
network realization of the APM potentially allows more accurate modeling of more
complex action specifics. In summary, using a separate neural network to predict
action specifics from latent representations led to a lower prediction error and can
be easily adapted to different types of actions.

10.5 System Analysis

We benchmarked our method against our earlier method in [7] on the same T-shirt
folding task, and additionally measured the performance on a more challenging fold
involving picking a layer of the cloth on top of another layer.

10.5.1 Folding performance and comparison with [7]

We performed each fold 5 times per configuration using the goal configuration
shown in Fig. B.10 and framework S-OUR, consisting of VAEq4-f-Ly, LSR -1,
and APNyg-f-L1, and compared the performance with the results from our earlier
work [7] obtained using S-L1, S-Lo and S-L.
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Method \ Syst. \ Trans. \ Py \ Pu
Fold 1 to 5 - comparison to [7]
S-OUR | 96% | 99% 100% | 100%
S-Ly [7] | 80% | 90% 100% | 100%
S-Ly [7] | 40% | 7% 60% 60%
S-Loo [7] | 24% | 44% 56% 36%
Fold layer
S-OUR [ 50% | 83% [ 100% | 100%

Table B.8: Results (best in bold) for executing visual action plans on 5 folding
tasks (each repeated 5 times) shown in the top. The bottom row shows the results
on the fold requiring to pick the top layer of the garment (repeated 10 times).

The results are shown in Table B.8, while, as previously mentioned, all execution
videos, including the respective visual action plans, are available on the website!.
We report the total system success rate with re-planning, the percentage of correct
single transitions, and the percentage of successful visual plans and action plans
from start to goal. We observed that S-OUR outperformed the systems from [7]
with a notable 96% system performance, only missing a single folding step which
results in a transition performance of 99%. As for S-L;, S-OUR also achieved
optimal performance when scoring the initial visual plans P; and the initial action
plans P,. We thus conclude that the improved MM, LSR and APM modules together
contribute to a significant better system than in [7].

10.5.2 Folding with multiple layers

As the previous folds resulted in nearly perfect performance of our system, we
challenged it with an additional much harder fold that requires to pick the top
layer of the garment. The fold, shown in Fig. B.10 bottom right, was repeated 10
times. An example of the obtained visual action plan is shown in Fig. B.13 and the
final results are reported in Table B.8 (bottom row).

Generated visual action plan i Goal

WO wem

Figure B.13: Visual action plan for the fold requiring to pick the top layer of the
garment. The step where the top layer is to be picked is indicated in purple (see
accompanying video for further details).

Experiments showed that the system had no trouble planning the folding steps
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from the initial configuration and was able to properly plan layer folds (with pick lo-
cation marked in purple). Concerning the ezecution of the plan, the robot managed
to correctly fold in 80% of the cases, excluding the last fold, using the re-planning
strategy. However, failure cases often occurred during the execution of the last
layer fold, resulting in the robot picking up multiple layers at the same time. When
this happened, the T-shirt deformed into unseen states that were very dissimilar
from the ones in 7; and that rendered the re-planning step inefficient. A more
precise manipulation system, either using a specialized gripper or custom methods
for separating cloth layers, could potentially boost the performance of our system
on this specific folding task. We leave these improvements for future work.

11 Conclusions

In this work, we presented an extended version of the Latent Space Roadmap first
introduced in [7] which allows visual action planning of manipulation tasks. Firstly,
we improved the building procedure of the LSR in the latent space by introducing
an outer optimization loop that eliminates the need for a hard-to-tune clustering
parameter. Secondly, we improved the training procedure of the VAE, used to
represent the Mapping Module, by dynamically increasing the desired distance
between action pairs. We thoroughly investigated the structure of the latent space,
and presented a deep insight into the effects that each of the improvements have for
the system. In addition, we compared different realizations of the Action Proposal
Module and showcased the benefits of using latent representations for generating
action plans. Lastly, we evaluated the LSR on three simulated tasks as well as
real-world folding task. We introduced a harder version of the box stacking task
and a rope-box manipulation task involving a rigid and deformable object, which
enabled a more informative ablation study. We showed that the improved LSR
significantly outperforms the one presented in [7] on the same folding task.

We are convinced that in order to advance state-of-the-art manipulation tech-
niques for rigid and deformable objects, improvements on two fronts are necessary:
learning a structured latent space as well as its exploration. We believe that our
proposed method is a step toward achieving this goal which also opens many in-
teresting future directions. For example, we wish to expand our method to encode
full trajectories that could be leveraged to further structure the latent space, or to
apply it to reinforcement learning settings with active exploration.

12 Appendix

This section provides complementary results on the separability of data samples for
the simulation and the folding tasks, an ablation study considering different latent
dimensions as well as a short overview of the different clustering methods.
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ns hs rb

ld | VAE-b VAE-L, VAE-b VAE-L, VAE-b | VAE-L,
4 73.9 159.7 £ 23.9 29.2 93.8+10.1 23.4 97.6 = 4.6
6 19.4 59.8 £4.1 11.7 39.24+2.3 9.7 41.0£5.1
8 11.7 45.6 = 1.6 8.3 24.1+1.8 6.3 30.7+4.4
12 5.7 46.0+ 7.0 4.8 20.6 £ 1.6 4.4 19.0+1.9
16 4.4 40.4 £ 8.1 3.9 21.6 £2.3 3.8 188+ 1.9
32 3.7 46.0 + 4.3 3.7 29.9+3.9 3.1 17.0£14

Table B.9: Evaluation of the relative contrast rc on 7, obtained with baseline and
action VAEs. Results for all simulated tasks are reported.

12.1 Separability of data samples

To further analyze how the action loss influences the structure of the latent space,
we resorted to the concept of relative contrast, introduced in [47] and based on [48].
Given a dataset T containing ld-dimensional data points, the relative contrast rc
of T with respect to the metric L, is defined as

Dmax - Dmin

re(T,ld,p) = —F—

(B.11)
where Dy and Dy, denote the distances of the furthest and the closest points in
the dataset T from a chosen point [47], respectively. We calculated rc of the latent
training dataset T, using VAEs with different latent dimensions Id. The rc values
were used to evaluate significance of distances among points in the latent space Z,
where a lower rc implies diminishing contrast in distances. Authors of [48] show
that, under broad assumptions, rc converges to 0 when [d approaches infinity, as
in this case the distance from a point to its nearest neighbor is identical to the one
to its furthest neighbor.

In our case, measuring rc on the full dataset can be misleading since the latent
no-action pairs are encoded closeby because of the action term (B.4). This would
lead to a deceptively small D ,;, and therefore to a higher rc than warranted. To get
a reliable estimate of rc¢ given T, we therefore chose to measure it in the following
way. We split the latent training dataset 7, into datasets 7! and T2 containing the
first and the consecutive states of all the training tuples in 7, respectively. We then
measured D, and Dy, with respect to each state in 7-21 and 7;2 separately. More
precisely, we considered each latent state z; € T! as the origin, and calculated Dy,
(and Dyyay) within T2\ {2;}. We repeated the same process for all z; € 72. Finally,
we used the average of the obtained Dy, and Dy, values in the computation of
rc as in (B.11).

Simulation tasks: Table B.9 reports the relative contrast of 7, for all simulation
tasks. We observed that VAE;4-L; achieved a higher rc than the baseline VAE; -
b. This is because the action loss (B.4) encourages no-action pairs to be encoded
closeby, hence minimizing D, and action pairs to be encoded at least d,,, apart,
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hence encouraging D,.x to be at least d,,. From the same reason, rc decreased
with increasing ld for baseline VAEs, while it was rather constant for the action
models VAE,;;-L1. Moreover, we obtained higher rc values for ns than hs or rb
which once more highlights the differences in difficulty between the three tasks.

Folding task: Table B.10 shows the relative contrast rc of 7, produced by the
baseline models VAE ¢ - f-b (left) and action models VAE1¢ - f-L; (right) when vary-
ing the latent space dimension Id. For the action models (right) we report the mean
and standard deviation of r¢ computed over 5 seeds.

Id | VAE-f-b | VAE-f-L
4 | 242 37743
6 | 13.7 26.1+2.7
8 | 102 23+22
1272 158 +32
16 | 5.8 21+1.2
32 | 45 82+0.8
64 | 3.7 81+08

Table B.10: Relative contrast evaluation comparing baseline (left) and action VAEs
(right) when varying ld.

We observed that the action term (B.4) significantly increased the relative con-
trast for all tasks but clearly dropped for higher latent dimensions. We thus conclude
that the action term and the dynamic setting of d,, improve the relative contrast.

12.2 Latent space dimension

The problem of choosing a suitable latent space dimension has not received much
attention in the literature. Even though the action term alleviates the problem
of indistinguishable distances in higher dimensions by increasing the relative con-
trast, it is still important to choose a latent dimension large enough so that the
relevant features can be encoded. In Table B.11 we report the partial scoring on
normal and hard stacking and rope-box tasks using VAE models with various la-
tent dimensions. The results demonstrate an evident drop in the performance when
the latent dimension was too small, such as Id = 4. As ld increased, we observed
gradual improvements in the performance where a satisfactory level was achieved
using {d > 6 for ns, and Id > 12 for hs and rb. Therefore, hs and rb required
more dimensions in order to capture all the relevant and necessary features. This
result not only demonstrates the complexity of each task version but also justifies
the choice ld = 12 in the simulations.
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ld ns [%)] hs (%] rb [%)

4 7.9+£22 8.8+7.9 62.7£13.9
6 |99.96+£0.08 | 56.2+23.1 | 749£5.0
8 19996 £0.08 | 62.7+18.7 | 80.6+5.3
12 | 100.0+0.0 92.1£29 904£29
16 | 100.0+0.0 959+14 92.2+1.1
32 | 97.5+£4.33 96.4+04 92.6 £2.0

Table B.11: Comparison of the LSR performance when using VAEs with different
latent dimensions for all the simulated tasks.

12.3 Overview of clustering algorithms

In this section, we provide a brief overview of the ablated clustering methods con-
sidered in Sec. 9.3.4.

Epsilon clustering: used in our earlier work [7] and functionally coincident with
DBSCAN [57]. TIts performance is affected by the parameter e, i.e. , radius of
the e-neighborhood of every point, and deteriorates when clusters have different
densities.

Mean-shift: centroid-based algorithm [51] with moving window approach to iden-
tify high density regions. At each iteration, the centroid candidates associated to
the windows are updated to the mean of the points in the considered region. The
window size has a significant influence on the performance.

OPTICS: improved version of DBSCAN introduced by [52] in which a hierarchical
reachability-plot dendrogram is built, whose slope identifies clusters with different
densities. The parameter = € [0,1] is used to tune the slope and heavily affects
the outcome of the algorithm. However, its influence is not easy to understand
intuitively, as discussed in [58].

Linkage: hierarchical, agglomerative clustering algorithm discussed in Sec. 6.1.
Possible dissimilarity functions to merge points are single, based on the minimum
distance between any pair of points belonging to two distinct clusters, complete,
based on the maximum distance, and average, based on the unweighted average of
the distances of all points belonging to two distinct clusters. As discussed in Sec. 6.1,
the clustering threshold 7 determines the vertical cut through the dendrogram and
consequently influences the performance of the algorithm.

HDBSCAN: agglomerative clustering algorithm in which the branches of the den-
drogram are optimized for non-overlapping clusters using a notion of “cluster sta-
bility" based on their longevity. HDBSCAN automatically identifies clusters with
different densities and requires specifying only the minimum cluster size prior to
the training.
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Abstract

Cloth manipulation is a challenging task that, despite its importance, has
received relatively little attention compared to rigid object manipulation. In
this paper, we provide three benchmarks for evaluation and comparison of
different approaches towards three basic tasks in cloth manipulation: spread-
ing a tablecloth over a table, folding a towel, and dressing. The tasks can
be executed on any bimanual robotic platform and the objects involved in
the tasks are standardized and easy to acquire. We provide several complex-
ity levels for each task, and describe the quality measures to evaluate task
execution. Furthermore, we provide baseline solutions for all the tasks and
evaluate them according to the proposed metrics.

1 Introduction

Manipulationof highly deformable objects, such as cloth, is an important area of
robotics research that has applications both in industrial scenarios and in domestic
environments. Despite its relevance, this research direction has historically received
relatively little attention compared to rigid object manipulation due to the chal-
lenges it entails. Recently, a stronger interest in deformable object manipulation
emerged and the survey in [1] presents the latest advances.

* Authors contributed equally, listed in alphabetical order.
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In order to effectively evaluate robotics methods, it is beneficial to provide spe-
cialized benchmarks [2]. A benchmark is a set of well-defined tasks to be performed
in a standardized setup which needs to be easy to reproduce in different robotics
laboratories. Existing manipulation benchmarks include large object sets [3], uni-
fied protocol procedures [4], robotic competitions [5], task specific benchmarks such
as [6] for the picking task and also manipulation task taxonomies [7]. However, to
the best of our knowledge, they all involve only rigid objects. In this paper, we
provide benchmarks that will help assess the capability of a robotic system for
manipulation of cloth-like objects.

To handle high degree of uncertainty about deformable objects’ state, perception
and manipulation often need to be intertwined. Furthermore, the choice of grasping
and re-grasping strategies can significantly impact subsequent manipulation. Thus,
one challenge in designing a benchmark for cloth manipulation is that different
components of a robotic system, such as perception, grasping and manipulation
planning, are highly dependent on each other. Therefore, we propose to evaluate the
performance of the entire system rather than evaluating perception versus action
components separately. We also recognize that for some tasks it is common to
treat grasping of the initial target points as a sub-task. Hence, we provide a way
to evaluate grasp execution, followed by evaluation of the task after the cloth is
grasped.

We propose three benchmarks corresponding to three evaluation tasks that, in
our opinion, form a basis for more complex tasks for handling clothes and dressing
a human. (%) The first task is unfolding a tablecloth and spreading it over a
table. The need to spread cloth-like objects, such as bed sheets and tablecloth, is
ubiquitous in our everyday life. In addition, this task can be seen as preparatory,
e.g spreading on a flat surface for ironing or folding. (4¢) The second task is folding
a towel on a table. This is one of the most common tasks in textile manipulation
literature [8], and can be seen as a preparatory action before placing on a shelf or in a
box for storage/packaging. Although prior works proposed methods for folding [9,
10, 11, 12, 13], these have never been systematically compared or benchmarked.
(iit) The third task consists of fitting the neck of a T-shirt over a 3D printed head.
This task is a simplification of a dressing scenario: a basis for more complex tasks
like putting a T-shirt or a sweater on a human or mannequin.

We define performance metrics to evaluate a cloth manipulation method which
are based on success of the task, execution time, force measures and, if possible,
quality of the final result, e.g., we define how a tablecloth should be placed on
the table. In this way, each proposed benchmark is well-equipped to distinguish
approaches that are likely to perform general cloth manipulation well. Finally,
we provide baseline solutions for all the tasks and evaluate them according to the
proposed scoring, recording decreasing success rate as the complexity of scenarios
increases.

Despite initial progress, cloth manipulation remains mostly unsolved, with in-
novative techniques still under development. Our proposed benchmarks form a
systematic testbed for the prototypical cloth manipulation tasks, helping to evalu-



2. THE BENCHMARKS C3

Code Objects for manipulation

Tablecloth | IKEA Fullkomlig 1.45 X 2.4 m

[st] | Small towel | IKEA towel Héren 0.3 x 0.5 m or 0.3 x 0.3 m
[bt] | Big towel | IKEA towel Héren 0.5 x 1 m or 0.4 x 0.7 m
T-Shirt | Any T-shirt in accordance to Figure C.1

Code Environmental objects

Any table with dimension in the range
Length: [1.2,1.85] m

Width: [0.7,0.8] m

Height: [0.72,0.75] m

[sh] | Small head | Generate 3D model with provided script
[bh] Big head | Generate 3D model with provided script

Table

Table C.1: List of objects with instructions for acquisition

ate emerging approaches and to gain technical insights for further improvement.

2 The Benchmarks

We propose three benchmarks for manipulation of highly deformable cloth-like ob-
jects which can be performed by any bimanual setup. In particular, our benchmarks
focus on three basic tasks in cloth manipulation which involve textile objects of dif-
ferent sizes and types: spreading a tablecloth, folding a towel, and dressing. To
foster easy modular use of the benchmarks, we separate each task into sub-tasks
that can be evaluated individually, varying the level of difficulty on the basis of
the cloth initial configuration and involved objects. Protocols (RAL-SI-2020-P19-
0832_1-V1.0, RAL-SI-2020-P19-0832_ 2-V1.0, RAL-SI-2020-P19-0832_3-V1.0 for
the three tasks, respectively) can be found in the attached material and at the
link! with their respective explanatory videos and benchmark documents.

In the following we give a summary of the benchmarks tasks, setup and evalu-
ation. For the sake of clearness, setup, sub-task decomposition and evaluation are
common to three benchmarks and will thus be presented jointly. Further informa-
tion can also be found on the website!.

2.1 Tasks description
2.1.1 Task 1: Spreading a tablecloth

This task consists of grasping a tablecloth and spreading it on a table, using the
table and the tablecloth indicated in Table C.1. An example of implementation is
shown in Figure C.2-left.

Similarly to the other tasks, this task requires to grasp the cloth at two grasping
points, usually two of the corners, and then to manipulate it to spread it. For
the first grasp, we consider different starting cloth configurations: from folded to

Thttps://ral-si.github.io/cloth-benchmark/
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\ T-shirt measures

A | [0.13,0.25] m
B | 05m

C | [0.015, 0.05] m
D | [0.07,0.13] m

Figure C.1: Representation of the allowed measures for the T-shirt; B measure is
fixed to equalize the level of difficulty when performing the dressing.

Figure C.2: From left to right, example of implementations of tasks one to three,
respectively.

crumpled on the table (see Figure C.3). Grasping crumpled cloth at a desired
grasping point has been attempted many times in literature by localizing corners
or edges [9, 14] or more specific parts [15, 16, 17]. In contrast, starting from a
folded configuration was rarely considered, despite it being a common cloth state
in domestic environments. The challenge in this case lies in grasping just one single
corner of the many layers that are folded together. After the first grasp, the cloth
needs to be grasped at the second grasping point to unfold the cloth. Then it
needs to be spread on the table. The task requires manipulating a big piece of
cloth, which is challenging for many robots and may call for additional strategies.
Overall, our protocol does not impose a specific strategy. This gives more freedom
to researchers to develop and compare innovative approaches.

2.1.2 Task 2: Folding a towel

This task consists of grasping a towel and folding it. The task uses the same table
as the previous task and two different sizes of towels, as indicated in Table C.1.
An example of implementation is shown in Figure C.2-middle. This is a classic
cloth manipulation task. Since the early example of PR2 robot folding towels in
2010 [9], there have been many other works focusing on folding towels and other
items [11, 18, 12, 19, 20]. However, as stated in Section 1, this task has never been
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benchmarked or properly compared based on the quality of the folds or execution
time.

Folds location varies significantly depending on the garment geometry [13]. Even
for a rectangular napkin or towel, there are multiple fold strategies one could follow.
However, once the fold line has been decided, we want to focus on finding manipu-
lation that can best realize it. For this reason, we focus on the simplest strategy for
rectangular items: always fold in half and perform a maximum of three folds which
we evaluate individually. This strategy has the advantage that it can be easily eval-
uated by taking top view snapshots after every fold. Besides the starting crumpled
configuration (as in Task 1), we also consider a ‘flat on the table’ configuration,
also shown in Figure C.3.

When the cloth is crumpled, the main difference for grasping, compared to
Task 1, is the size of the object. A small/medium versus large size would entail
the need for different strategies to enable initial grasping. We do not impose a
specific folding strategy. Small towels can be folded using the classic strategy of
placing them on a table and picking two corners to fold [9, 12], but bigger ones
might require alternatives [21].

2.1.3 Task 3: Partial dressing

The goal of the third task is to put a T-shirt over a simple head model starting from
different initial configurations of the garment, as shown in Figure C.2-right. Putting
on the sleeves is not included in the task. The complex geometric shape of T-shirts
makes their manipulation towards desired states a difficult process that requires a
tight integration of perceptive sensors, such as cameras and force/torque sensors,
into the manipulation strategy. Thus, the focus of this task lies in evaluating the
combination of perception and manipulation strategies.

Analogously to the previous tasks, the success of the manipulation task highly
depends on the way the garment is grasped, therefore we consider several initial
configurations of the T-shirt which allow to explore different grasping strategies:
crumpled, flat or folded on the table. Previous approaches to this task used rein-
forcement learning and topology coordinates [22, 23|, but with a different starting
configuration and assuming the cloth is pre-grasped.

Another important aspect is the relative size of the head with respect to the
collar circumference: the larger the head is, the harder it is to execute the task. For
this reason, we provide head models of two different sizes as reported in Table C.1.
Finally, to avoid damaging the head and the garment, it is desirable to monitor
applied forces especially when the collar is tight.

2.2 Setup description
2.2.1 Hardware description

Any bimanual setup with grasping capabilities can be employed and any sensor
that can aid in completing the task is allowed (e.g., RGBD-cameras).
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i

[fd] - [cr] B [ft]

Figure C.3: Examples of starting configurations with a towel: [fd]: folded on the
left, [cr]: crumpled on the middle and [ft]: flat on the right.

2.2.2 Objects description

Table C.1 lists all the objects involved in the tasks with the link or information to
acquire them. The YCB object set [4] includes two cloth items, that are a tablecloth
and a T-shirt. The YCB tablecloth is designed to cover a standard 1.8 m long table
until the floor. However, we propose a smaller IKEA tablecloth because its size is
already challenging for the current state of the art. Regarding the YCB T-shirt, we
observed how even T-shirts from the same batch have a high variance of measures.
This also holds true for other available T-shirts. Therefore, we define a range of
measures that are accepted for the T-shirt as reported in Figure C.1. In this way,
greater flexibility is guaranteed compared to the case of a predefined single T-shirt
and the possibility of adopting the benchmark is maintained despite continuous
changes in fashion. Any size from S to XL of the YCB T-shirt should fall into the
allowed range. The length of the T-shirt (measure B in Figure C.1) is fixed to allow
comparability of different methods, since it determines the amount of garment that
needs to pass through the head. Note that every T-shirt that is used needs to be
measured even if it comes from the same batch to account for production variance.
Finally, concerning the towel for Task 2, we include two sizes, a small towel ([st])
and a bigger one ([bt]). However, the sizes of the big and small towels slightly
change depending on the country, therefore, we provide two options for the small
towel and two for the big towel. Note that the use of big towels is already a step
forward in the literature in terms of object size.

In addition, two environmental objects are required, a table (for Tasks 1 and 2)
and a human-like head (for Task 3). Following the idea of flexibility to make the
setup easy to reproduce, we do not fix lightning conditions and we do not provide a
specific table model but just an interval of table sizes. Concerning the human-like
head, two different sizes are considered which are small ([sh]) and big ([bh]) and
their models are defined according to the T-shirt measures. A script is provided in
the attached material to automatically generate the 3D model. Refer to protocols
for further details.
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2.2.3 Initial cloth configuration descriptions

In general, when a task on cloth manipulation is attempted, the initial state of the
cloth falls in one of these categories:

[pg2] Cloth is pre-grasped at two points.

[pgl] Cloth is pre-grasped at one point.
[ft] Cloth is lying flat on a table (Figure C.3-right).
[fd] Cloth is folded on a table (Figure C.3-left).
[er] Cloth is crumpled on a table (Figure C.3-middle).

These starting configurations will be common for all the protocols benchmarking
each task, although not all starting configurations are used for all task. For instance,
it is pointless to consider the folded configuration for the folding task.

We will refer to the parts of the cloth that need to be grasped as grasping points.
In a towel, the grasping points are usually the corners but they can be redefined;
instead, for a T-shirt, these strictly depend on the manipulation strategy.

2.3 Sub-Tasks description

Given a task, the respective sub-tasks are obtained by considering all the possible
combinations of involved objects and initial cloth configurations: a tablecloth with
4 initial configurations for Task 1, two towels with 4 initial configurations for Task 2
and two head sizes with 5 initial configurations for Task 3.

In addition, each sub-task can be decomposed in the following phases:

[GR1] Grasp first grasping point.
[GR2] Grasp second grasping point with other hand.
[MAN] Perform the manipulation (depending on the task).

Note that both [GR1] and [GR2] may require manipulation; for instance, in order
to grasp a crumpled cloth from a table and reach the first grasping point, the cloth
may need to be pre-manipulated, and all this actions constitute the [GR1] phase.
Obviously, no [GR1] and [GR2] phases are required in case of starting configuration
[pg2] as well as no [GR1] phase is executed for the initial configuration [pgl].

Users can submit all phases of one sub-task, or just one phase alone. This sub-
division in phases and sub-tasks allows to achieve incremental complexity, letting
the user choose the desired level of difficulty to face, e.g., dressing task with small
head and [pg2] initial configuration is clearly less challenging than the case of big
head with [fd] initial configuration.
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2.4 Evaluation of results

To enhance progress, allow reproducibility of results and easy comparison between
different works, we propose the following list of performance metrics: success of each
phase, execution time, force measures (if available) and quality measures. The choice
not to provide a single value to assess goodness but a set of values is motivated by
the fact that, in such complex tasks, the former may be too reductive; in this way,
instead, each user can focus on the aspects of interest, e.g solutions that require
longer time but exert lower forces. In the following, the proposed performance
metrics are detailed.

2.4.1 Swuccess of each phase

In light of the phases subdivision in Section 2.3, each phase can be evaluated in-
dividually in regards to completeness. Phases [GR1] and [GR2] are considered
successfully completed if the grasping is performed and is held during the whole
manipulation and, in Tasks 1 and 3, if the cloth is unfolded with starting configu-
ration [fd]. The condition of success for phase [MAN] depends on the considered
task: the tablecloth is successfully spread if it covers the table top; the folded towel
is successfully folded if one fold is done and opposing corners are together (each
fold is evaluated individually); for the dressing task we assume this phase is accom-
plished when the neck hole of the T-shirt is put over the head and the entirety of
the T-shirt lies below the head. We let the users define different grasping points ac-
cording to their strategy, not to limit the possible approaches in the [MAN] phase.
In case the manipulation phase is successful, the grasping phases will be considered
successful in turn.

To increase the flexibility of the benchmarks and promote participation, we
leave the freedom to report only the manipulation part [MAN], which may be the
case for end-to-end learning-based approaches, or only the grasping part [GR1]
and [GR2] if a group is strong in grasping but lacks the perception solutions to
successfully execute the manipulation. We believe this can be valuable to share
solutions and combine different approaches to push the solutions forward.

2.4.2 Execution time

The execution time comprises the times needed for all the phases, and it is measured
from the moment the first robot starts to move until the end of the manipulation.

2.4.3 Force measures

Force measures at the end effectors quantify the interaction between the robots
and the environment; they are only acquired during phase [MAN] and minimum,
maximum and average norms are considered. Note that, in order not to limit the
possibility of using the benchmarks, force measures are not mandatory but are
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Figure C.4: Representation of the measures to evaluate how well the tablecloth has
been placed.

highly encouraged especially in dressing task, where monitoring of exerted forces
on the head represents a key feature.

2.4.4 Quality measures

For the tasks of tablecloth spreading and folding, the quality of the result of the
execution can be measured, e.g., poor results are achieved if the tablecloth is com-
pletely tilted or if towels are folded wrinkly or with the corners not matching.

To take that into account, we define a quality function that measures the per-
centage of error of the task result. Note that for the dressing task, no measures can
be defined because of the binary nature of the task.

Quality measures for Task 1
We evaluate how much the tablecloth is rotated and translated with respect to
the table. To this aim, as represented in Figure C.4, a total of 6 tablecloth drop
lengths at different sides of the table need to be measured after the tablecloth is
spread. Measures can be taken from the middle of each table edge. For a table with
length ¢; and width ¢,, and a tablecloth with length ¢; and width ¢,,, the proposed
percentage of errors are:

. arctan(lhe’t;hl‘)
% rotation error: F, = L
/4
he — h
% length translation error: E; = % (C.1)
a—1
ha —h
% width translation error: E,, = [ha = hs|
Cw — tw

These quality functions can only be applied if the task has been successfully accom-
plished, meaning that the tablecloth is covering all the table top. Then, a 100%
rotation error occurs when the tablecloth is rotated by /4 radians (45°), which
is unlikely to happen if the tablecloth is fully covering the table. The maximum
translation error occurs when one of the hanging parts is zero, meaning the table is
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almost uncovered. If the hanging part of the table cloth is touching the floor, one
needs to measure the tablecloth drop length ignoring the floor. If any circumstance
occurs (e.g., one of the hanging parts of the tablecloth is wrinkled), one should
report this with a picture, even if it does not affect the quality function. Note
that this error measure is independent of the size of the table and tablecloth, thus
allowing a fair comparison among different setups.

Quality measures for Task 2
We assume a one fold manipulation is successful if the corners of the original spread
cloth are matching two by two. That means if one of the corners is bent, we assume
the robot should correct that, otherwise the task cannot be reported as a success. In
addition, we measure how well the corners match by evaluating the ratio between
the surface of the spread cloth before and after the fold. Because our task is
restricted to folding in half, each fold needs to cut in half the area of the spread
cloth on the table. This has to be measured at each fold either by measuring
manually the area or by automatically computing it with a top view image.

Then, the proposed quality function for this task is

100 A
% of error in a fold By = - ij — 05|, (C.2)

where Ay is the final area of the cloth from the top view, and A; is the initial area
of the cloth. Assuming A will always be smaller than A;, 100% error occurs when
A; = Ay, but also if Ay is less than half of A;, which can only happen if there are
wrinkles or extra folds.

We promote the use of vision software to assess the area or the wrinkle state? of
the towel [24].

2.5 Reporting results

Based on the above, we require that, for each sub-task, five trials are performed
and then, for each trial, measures 2.4.1-2.4.4 are acquired. In addition, videos of
the experiments and snapshots (or equivalent stylized figures) clearly representing
the grasping points must be provided. A summary table, as shown in Table C.2,
must be filled where, given a starting configuration, the success rate of each phase
and average and variance of execution time, force measures and quality functions
over the five trials are reported. When necessary, the size of the different elements
must be reported as well, that are the table size for Tasks 1 and 2, the towel size
for Task 2, and the head size for Task 3. Note that, in the folding task, results
associated with each fold must be provided and top view pictures of each fold state
have to be reported. Moreover, in order to assess the generality of the proposed
approach, it is required to specify which assumptions (in a set in the respective
scoring sheet) are made for completing the task, e.g., knowledge of the cloth color
and pattern. In the case new assumptions are considered with respect to those in

*https://gitlab.iri.upc.edu/labrobotica/algorithms/finddd_descriptor
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the scoring sheets, a detailed description on how they affect the solution must be
reported. Finally, a discussion on:

o Employed hardware/software setup with specification of robots’ details and
respective number of motors;

e What makes the system successful;
e What makes the system fail;
e What is improved compared to other methods;

should be provided. A thorough description for the scoring of each task can be
found in the provided Benchmark documents’.

3 Baseline Systems

To showcase how the presented Benchmarks should be used and promote compari-
son of different methods, we describe our own systems tackling the Benchmarks.

3.1 Task 1: Spreading a tablecloth

The robotic system used for the baseline solution for Task 1 (and also 2) is composed
of two TTAGo robots (shown in Figure C.2-left). Because the tablecloth size is large,
we can take advantage of the base mobility. The arms are equipped with a modified
parallel gripper that is flexible when it touches the table to allow to safely contact
the table before grasping but rigid in the grasped direction. A table with measures
1.20 x 0.7 x 0.73 m is used.

The solution for [GR1] to unfold the tablecloth is to grasp the first grasping
point and pull the cloth up (Figure C.5-left). The solution for [GR2] is to grasp
an edge point next to the first hand (Figure C.5-right) and trace the edge until the
corner is reached. This implies sliding the cloth inside the gripper without loosing
it. This manipulation has been previously applied only to very small clothes in [10],
and there are some cloth specialized grippers designed to ease this manipulation
[25]. Each grasp is performed by a different TIAGo robot, and after they have the
tablecloth grasped, they move across the table to spread the tablecloth. Note that
this strategy is applicable to different sized tables because bimanual manipulation
is achieved with two independent robots.

Our method depends on some simplifying assumptions, reported in the Bench-
mark sheet. We assume the folded piece is oriented on the table so that the grasping
point is the closest to the robot. However, the tablecloth can be placed anywhere
on the table. The second grasp in [GR2], shown in Figure C.5-right, is assumed to
be at a fixed position with respect to the hand that is already grasping. This holds
true for most of the cases, but may fail when the cloth is twisted differently than
expected. Finally, the robot knows the size of the cloth and the table, so that we
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Task 1: Spreading a tablecloth Task 2: Folding a towel
Start. Mean quality funcs. Success |Success [ Success Time [s] Towel size [bt]
Config. (Ea, By, Ew) [MAN]|[GR2]|[GR1]| "™ ¥ Fold First fold
pg2| |(1.44%, 8.23%, 17.67% )| 80% 18.28 Start. Success | Success | Success | Mean quality Time [s]
pgl] | (1.61%, 7.50%, 46% ) | 60% | 80% 72.24 Config. |[MAN]|[GR2]|[GR1]| func. E;
cr - 0% 0% | 80% - pg2 30% 277% 24.35
fd - 0% 0% 60% - pgl np np np np
[cr] np np np np np
[ft] np np np np np
Task 3: Partial dressing
Head Size [sh] [bh]

Start. Success | Success | Success | .. Force measures [N] || Success | Success | Success |, .. Force measures [N]
Config. | [MAN]|[GR2]|[GR1] Time [s] min | avg| max || [MAN]|[GR2]|[GR1] Time [s] min | avg | max
Pg2 100% 29.30 | 0.54 |3.02| 7.29 100% 30.76 | 0.38 | 2.94 | 7.46
pgl 100% 100% 65.48 | 0.49 [3.89| 9.34 80% 100% 66.98 | 0.94 | 4.76 | 9.88
[cr] 40% 80% 80% 138.50 | 0.41 |3.25| 6.43 20% 60% 60% 1274 | 0.39 | 4.32 | 8.15
[ft] 0% 60% 80% - - - - 0% 80% 100% - - - -
[fd] 0% 20% 60% - - - - 0% 20% 40% - - - -

Table C.2: Result summary tables. Notation “np” denotes that the respective sub-task has not been implemented in the
baseline. For the sake of space, no variance values of execution times and forces are reported.
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Figure C.5: The circles in red signal the location of the first grasping point for
[GR1] (left) and on the initial grasp for the edge tracing in [GR2].

can estimate beforehand the amount of displacement needed when both the robot
tracks the edge and puts the tablecloth.

3.2 Task 2: Folding a towel

For the task of folding a towel, we use the same robotic system as in the previous
task and we consider the big towel ([bt]) with measures 0.5 x 1 m. The two mobile
manipulators are placed at different sides of the table as shown in Figure C.2-
middle. We only report the [MAN] phase, as the other phases are similar to those
in Task 1. Thus, we start with the two corners already grasped, and we then perform
the folding motion. For the folding strategy, we focus on the first fold and we use a
Dynamic Movement Primitives (DMP) representation of the motion for each robot
learned by demonstration, and execute both trajectories in synchronization. The
size of the towel and the localization of the robot with respect to the table are
assumed to be known.

3.3 Task 3: Partial dressing

For the dressing task, we propose a human inspired solution based on a vision/force-
feedback informed strategy with hand-tuned hyperparameters. All the possible
head sizes described in 2.2.2 and starting configurations in 2.2.3 are considered.
Moreover, experiments with two T-shirts are carried out to show the validity of
the protocol as long as the T-shirt complies with the range of measures provided.
In detail, the following set of measures {4, B,C, D} hold for the two T-shirts,
respectively: {0.19,0.5,0.029,0.1} m and {0.154,0.5,0.025,0.08} m.

The robotic system, shown in Figure C.2-right, is composed of two Franka
Emika Panda 7-DOFs manipulators equipped with parallel grippers. Customized
long fingers have been adopted for one robot in order to have the fabric slipping
into them during second grasping phase. The head is mounted on a podium stand
in the middle of the workspace and its configuration is assumed to be known (in
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particular, its position is represented by the upper point along the axis of symme-
try). Moreover, a Logitech USB camera is mounted over the setup to provide a bird
eye view of the workspace and link-side torque sensors at each link of the robots
are available; based on these, an estimate of the forces exerted at the end effector
of each robot is given. For details on sensors and estimates accuracy, the reader
can refer to [26].

Concerning the grasping phases [GR1] and [GR2], pre-defined grasping poses
are selected with all the initial configurations, thus no visual feedback is exploited in
these stages. Concerning the manipulation phase [MAN], the formulation in [27] is
leveraged for the dual-arm manipulation according to which the cooperative motion
is expressed in terms of centroid and formation of the two end effectors. The basic
idea of the devised strategy is to use the visual information to guide the team
motion and, at the same time, to perform random wiggling motions which emulate
human-like dressing. More specifically, the vision system splits the top-view circle
associated with the head into two halves and measures the free area in each of them
(see top right of Figure C.2-right). These measures are then exploited to determine
in which direction to move the team centroid in such a way that both areas exceed a
certain threshold. When the latter condition is fulfilled, the opening of the T-shirt
is such that a sufficient surface of the head is visible through it, thus the downward
motion to put on the T-shirt is started. In addition, small wiggling motions are
introduced to facilitate the sliding of the garment along the head model. Finally, a
continuous monitoring of end effector forces and of the elapsed time is performed:
a restart procedure is planned when either force measurement exceeds a maximum
allowed value or the elapsed time exceeds a time limit. For further details on the
proposed baseline, the reader is referred to the document with solution comments
in the accompanying material. Note that our baseline solution does not involve
re-grasping phases but these are generally allowed.

4 Results

In this section, the evaluation of the baseline strategies according to the proposed
Benchmarks is presented. Videos of each experiment and complete score sheets can
be found in the results section at the website!. A summary video is also provided
in the accompanying multimedia material. For all the 3 tasks, performance results
of the baseline solutions are shown in Table C.2.

4.1 Task 1: Spreading a tablecloth

Regarding the manipulation ([pg2] row), the mobile base of the robots is very
effective. Only occasional entanglements of the tablecloth cause strong forces and
make the grippers loose the garment.

The second grasp ([pgl] row) is quite robust because the strategy of following
the edge has proven to be effective: the first interest point is always at the same
point under the other robot gripper, and the edge tracing takes advantage of the



4. RESULTS C15

robot mobile torso to keep a vertical trajectory during as much time as possible.
Failures are due to this last edge tracing phase: as the gripper has no force sensors,
the edge is sometimes lost at the beginning of the movement.

Finally, in both [fd] and [cr] initial configurations, the first grasping phase re-
sulted challenging. When [fd], because sometimes several layers are grasped causing
the second grasp to fail. The image used to locate the corner is taken from the head
of the robot, and the viewpoint and distance make difficult to localize a single gar-
ment layer. When [cr], because the friction of the fingers does not allow them to
slide gently under the garment. In both cases, grasping fails and the task cannot
be completed?.

4.2 Task 2: Folding a towel

Here we concentrate on the [MAN] itself and not on the [GR1] and [GR2] phases.
Starting from initial configuration [pg2], [MAN] achieves quite a good success ratio
of 80% and we only detected one problem in the final release step. In particular,
in one of the trials our grippers, that have high friction fingertips, and the towel
remained stuck until the arm moved away, creating an unwanted bending. As
corners are not matching two and two, and our system is not able to correct this,
we evaluated this trial as failure?.

4.3 Task 3: Partial dressing

Performance results of the baseline solution with one T-shirt sample are summa-
rized in Table C.2. In detail, success rates for the different phases are reported
in case of both small and big heads which make evident the increasing complexity
and challenges introduced by the different combinations of starting configurations
and head sizes. Indeed, different starting configurations lead to a wide variety of
achievable grasping points but our manipulation strategy is only able to deal with
a subset of them; in particular, our manipulation strategy assumes that the T-shirt
is grasped at two points along the neck collar and that one side of the T-shirt is en-
closed in the fingers in such a way to minimize the amount of fabric hanging under
them. Indeed, most manipulation failures with starting configurations [ft] and [fd]
are due to the fact that there is too much fabric below the grasping points and the
robots are unable to find an opening of the T-shirt to pass it through the head. In
addition, blind pre-defined grasping poses make manipulation in [cr] configuration
generally challenging. Finally, grasping failures are recorded with starting configu-
rations [fd] when several layers of the T-shirt are grasped with the first gripper and
unfolding does not happen. Table C.2 shows that the dressing task offers a wide
range of possible improvements primarily in the manipulation phase but also in the
grasping phases as each phase influences the following. For the sake of space, no
further results are reported herein but complete scoring sheets and videos of the

3The complete score sheets can be found at https://ral-si.github.io/cloth-benchmark/
#results
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experiments are available at the link3, for the other T-shirt sample as well. Finally,
it is worth remarking that, even in cases with a 100% success rate, there is still a
considerable margin for improvement with respect to execution times and exerted
forces reported in Table C.2.

5 Conclusions

In this paper, we proposed benchmarks for cloth manipulation with three represen-
tative tasks focusing on bimanual manipulation; they include cloth and garment
items of various sizes. Each benchmark is hardware agnostic and flexible with re-
spect to the strategies for solving the task. We believe that various robotics groups
would find the benchmarks easy to use for comparing existing works and reporting
new results. A simple well-defined object set and the possibility of reporting partial
results make these benchmarks accessible to researchers targeting different stages
of the tasks at various levels of difficulty. Our modular protocols also make the
benchmarks potentially extendable to other tasks in the future.

We believe the baseline solutions give a valid initial point for comparison and
show the increasing level of complexity of the different sub-tasks. Overall, this
provides a good start for the research community to push the boundaries on what
is possible in cloth manipulation further.
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Textile Taxonomy and Classification
Using Pulling and Twisting
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Abstract

Identification of textile properties is an important milestone toward ad-
vanced robotic manipulation tasks that consider interaction with clothing
items such as assisted dressing, laundry folding, automated sewing, textile re-
cycling and reusing. Despite the abundance of work considering this class of
deformable objects, many open problems remain. These relate to the choice
and modelling of the sensory feedback as well as the control and planning of
the interaction and manipulation strategies. Most importantly, there is no
structured approach for studying and assessing different approaches that may
bridge the gap between the robotics community and textile production indus-
try. To this end, we outline a textile taxonomy considering fiber types and
production methods, commonly used in textile industry. We devise datasets
according to the taxonomy, and study how robotic actions, such as pulling
and twisting of the textile samples, can be used for the classification. We
also provide important insights from the perspective of visualization and in-
terpretability of the gathered data.

1 Introduction

Interaction with deformable objects is an integral part of our everyday life but still
a challenge for robotic systems. Work on robotic handling of textile or fabric traces
back several decades [1] and, despite the clear need in industrial and domestic
applications, many of the problems related to perception, planning and control
remain open. From the industrial perspective, textile production and subsequent
processes of garment design in fashion industry are largely not automated. Fashion
industry is also undergoing an important transformation to address sustainability
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Figure D.1: System setup: Two 7 DoF Franka Emika Panda arms with force-toque
sensors on the wrists, twisting and pulling a textile sample. Microscope images are
used to define textile classes prior to training.

concerns, given that textile and clothing overproduction has a significant negative
impact on the environment.

From the scientific perspective, robotic interaction with deformable materials
has gained significant attention recently [2, 3]. Important milestones regarding the
modelling, perception, planning, control and simulation of deformable materials
have been identified but not yet reached. It may even be so that until robots
reach the dexterity, flexibility and sensing that to some extend resembles human
capabilities, successful interaction with deformable objects will remain a challenge.
In robotics, textile has been used to study manipulation tasks like folding [4, 3, 5],
robot-assisted dressing [6, 7, 8], garment recognition and classification [9, 10, 11, 12].
In most of these works, only a subset of textile properties is commonly considered,
and textile is merely a tool for testing sensors [13] or control strategies [14].

In our work, we aim to study textile materials and their properties using phys-
ical interactions and wrist-mounted force-torque sensing. Similarly to humans, we
aim at using actions such as pulling and twisting, to learn more about the textile
properties, see Fig. D.1. The properties are defined using a textile taxonomy that
follows the classification used in the textile production industry. Textile properties
in general, and thus interaction dynamics, are affected by factors such as fiber ma-
terial and production method - the fiber may be raw, coated or it may be a blend of
several materials. Once used to produce garments or bed-clothing, the properties
will change overtime based on washing, wearing, steaming - the textile can become
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Figure D.2: Textile taxonomy considering yarn/fabric material and production
method. Classes considered in this work are highlighted in red.

harder or softer, less or more elastic, thinner. The change in properties will also
have an impact on the planning and control strategies used to interact with it - how
we wash, iron and fold them, how we hold and manipulate garments when dressing
somebody, whether we decide to recycle or reuse old garments.

The focus of this paper is to asses how a dual arm robotic system can be used
to identify textile production methods through pulling and twisting. We propose
to do so by learning a classifier on a dataset of textile samples that are annotated
by their construction type, determined by inspecting their microscopic structure.
We first outline a textile classification taxonomy related to both fiber type and
production method, following notation used in textile industry. We then make a
thorough study using a subset of materials and production techniques to assess
the validity of our approach. We analyse two manipulation strategies as well as
investigate which measurements are most relevant for classification. We conclude
by discussing challenges and open problems.

2 Textile Taxonomy

Textile or fabric, is a deformable and flexible material made out of yarns or threads,
which are put together by a construction or manufacturing process such as weaving,
knitting, crocheting, knotting, tatting, felting, bonding or braiding. Most of the
everyday clothing items we wear are constructed through weaving or knitting prior
to sewing, although in high fashion other processes are used frequently too. Yarns
and threads are produced by spinning raw fibers that may have different origin: an-
imal, plant, mineral, synthetic or their blend. We summarize some of these aspects
in Fig. D.2, showing also some of the further distinctions in terms of differences in
the manufacturing process.

Woven fabric is usually produced by using two sets of yarn, while knitted fabric
employs a single set. To produce woven fabric, the yarn is interlaced, as opposed to
knitting where it is interloped. Due to its construction, woven fabric is often hard
and nonelastic, allowing it to hold creases well, and can be only stretched diagonally
if the yarn itself is not a blend that includes elastic material. It is commonly used
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Figure D.4: Textile can look different
on the macro level, but very similar
on the micro level. Left) two different
materials (Wool and Cotton) using a
regular camera. The microscope im-
age (right) reveals that they have the
same underlying construction - knit-
ted jersey.

to produce garments such as shirts and jeans. On the other hand, knitted fabric is
soft and can be stretched in all directions, making it rather wrinkle-resistant. One
example of its frequent use is for t-shirts. One important aspect is that it usually
does not stretch equally in all directions - for example, a t-shirt will stretch more
horizontally than vertically to more naturally follow body shape. A more complete
account of the properties of fabric can be found in [15].

The above is of importance for various robotics applications that consider active
interaction with the textile. For assisted dressing applications, it is important for
the robotic system to generate relevant control strategies when pulling up pants,
helping with the sleeves or pulling down the t-shirt: hard textile may require com-
pletely different manipulation strategies and safety considerations than the flexible
one. Most of the clothing items will have a content label attached to them and
may offer information about the type of yarn used. However, the manufacturing
process is never described on the label, neither is the fact that a clothing item may
be a combination of woven and knitted parts and a combination of different type
of textiles being put together in the sewing step. For example, both a pair of jeans
and a t-shirt may be made with 100% cotton textile that, in the first case, is woven
and in the second case, knitted. With the proposed taxonomy and the work in this
paper, we report on some initial insights on how some of the textile properties can
be examined by using force-torque measurements and actions such as pulling and
twisting of the textile samples.

Even for humans, the manufacturing method may not be visible with the naked

eye and the label only provides the yarn material. We use our experience of previ-
ously interacting with clothing items to choose appropriate actions when dressing
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ourselves or others, washing, ironing, repairing or sewing. To shed some light on
this, we collected microscope images of our textile samples. While a regular camera
image may not provide enough signal resolution in actual robot interaction with
the textile, the high-resolution microscope images show different ways of interlac-
ing yarn that has a huge effect on the elasticity of the textile Fig. D.3. Similarly,
garments with different reflection or texture properties may look rather different
under a regular camera but their dynamical properties may be the same if the
manufacturing method and yarn type are the same, see Fig. D.4.

In this paper, we therefore set out to investigate how force-torque measurements
together with actions such as pulling and twisting may be used to classify the textiles
according to the proposed taxonomy. We chose pulling and twisting since these are
also the two most common actions humans use for inspecting textile properties.

In robotics, textile materials have been considered from perception, learning,
planning and control perspectives. Most notable applications consider folding, as-
sisted dressing or material classification [16, 2].

Despite the broad interest in the computer vision community, most works con-
centrate on building clothing item taxonomies [9] rather than identifying material
properties. Problems such as garment motion prediction [17], classification [10],
dressing 3D simulated humans [18], have also been addressed. It has also been
shown that wrinkle detection may be helpful for classification [19, 20]. However,
with vision alone it may be difficult to estimate the physical attributes of textiles
[21] although the results in [22] indicate that vibrations captured in video can be
correlated to the stiffness and density of fabrics.

In robotics, identifying textile properties is important, but there is no com-
mon taxonomy that allows for comparison and benchmarking of the proposed ap-
proaches. Recent work in [23] proposes a taxonomy of 184 materials including
leather, fur and plant fiber but there is no focus on textile in particular or the
production method. Haptic feedback has often been used to label various types of
materials [24, 13, 25]. The authors in [26] study compliance and texture to classify
32 materials including textile. Non-contact techniques have been used in [27] to
distinguish among five material categories, one of which was textile. Thus, none
of these works focuses specifically on textile material, or considers fiber and pro-
duction method in particular. When considering textile classification, it has been
studied from the fiber material perspective [28, 7] or properties such as thickness,
softness and durability [29]. Material texture identification has been addressed in
[30, 31, 32], without considering the difference between fiber material and textile
production method. Given these, we believe that our initial study and outlined
taxonomy provides examples of how textile classification can be studied in a more
structured manner.

3 Data collection and dataset design

For this initial study, we relied on 40 textile samples, 10 each of polyester and wool,
and 20 cotton samples. From the samples, we cut out pieces 40 x 17 cm in size.
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Polyester samples are woven and wool samples are knitted. Out of the 20 cotton
samples, 10 are woven and 10 are knitted. We cut the pieces so that the yarn
direction is along the axis of pulling, with the more elastic direction of stretching
being orthogonal to the axis of pulling as can be seen in Fig. D.5. Two Franka
Emika Panda arms are equipped with wrist-mounted Optoforce 6-axis Force-Torque
(FT) sensors and flat 3D-printed grippers.

Active arm
Active arm
—

wiy anissed
uuy anssed

Figure D.5: (Top) Flat 3D-printed grippers holding wool sample. The yarn direc-
tion coincides with the pulling direction. FT sensors are mounted on the wrist of
the manipulators. (Bottom) Schematic example of pull and twist.

For data collection, we aimed to capture the samples’ properties by means of
two exploratory procedures [33], pulling and twisting, and investigate if they are
consistently classifiable. To further analyse different data collection strategies, we
decided to let just one arm move (also called active arm) while the other one is kept
still (passive arm), see Fig. D.5. A precise definition of these two manipulation
actions is the following:

e Pull The active arm exerts force on the sample by steadily moving 2 cm away
from the static passive arm, maintaining a motion direction parallel to the
grasping plane.

o Twist The active arm’s end-effector rotates 90 degrees, while the arm is
pulling to ensure the sample is stretched adequately to capture its reaction
to torsion.
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Each textile sample was held with a grasping force of 20N by both robot arms
and pulled and twisted 20 times. As each sequence of pulling and twisting may
result in a slight offset of the contact point, we re-positioned the sample in the hand
to the original starting points after every five pulls/twists. Force and torque signals
were recorded for a duration of 2s from each sensor at a frequency of 1kHz. Thus,
for each textile sample, we have 20 examples, one for each arm, with 2 x 1000 x 6
raw F'T measurements.

3.1 Dataset design

We first sub-sampled the raw measurements for each F'T dimension. We performed
average downsampling to 150 values as a trade-off between noise reduction and
information loss. Given these, we build 6 datasets:

twist pull twist pull ! ;
* Dyctiver Pactiver Ppassives Ppassive: 4 datasets corresponding to the two ac-

tions for each arm individually.

o Dtwist and PPl 2 datasets corresponding to the two actions and the inte-
grated measurements from the two arms.

In summary, the datasets were labelled to represent the samples of the tax-
onomy in Fig. D.2 highlighted in red. Therefore, by considering the "Production
Method" branch we obtained 2 classes: woven and knitted, while on the "Yarn/Fiber
Material" branch, we obtained 3 classes: wool, polyester and cotton.

4 Data Visualization and Dataset Insights

We first inspect the generated datasets to assess to what extent the collected data,
labelled according to the proposed taxonomy, are representative for classification.
To this end, we employ t-SNE[34] and project the datasets into a two-dimensional
space. More specifically, we want to answer the following questions:

e Can the generated data and employed actions show a clear distinction between
woven and knitted textiles?

¢ Is there a difference between pulling and twisting, in terms of how informative
they are, for the woven vs knitted classification?

o What is the effect of fiber type on the classification performance and can we
distinguish not only the production method, but also the fiber type given our
datasets?
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Figure D.6: Effect of splitting construction method on Cotton samples. t-SNE plot
of measurements obtained from the active (top row) and passive (bottom row) arms
during pulling Cotton samples.

4.1 Insight 1: Production Method

First, we visually inspect if the datasets are representative of the production method.
Fig.D.6 shows the distribution of the data projected in 2D when only cotton is con-
sidered, where the left side of the figures shows how the data are separated by
the production method, woven (also called Cotton-Twill) and knitted (also called
Cotton-Jersey). The top row corresponds to the active arm and the bottom row to
the passive arm during a pulling trial. From the figure we observe that by consid-
ering the actual production method we obtain clearly structured groups of samples
that would have been otherwise masked by categorizing them as the same material.

4.2 Insight 2: Pulling vs Twisting

Second, we assess whether there is an advantage in using both pulling and twisting.
As a first step, Fig. D.7 shows that measurements for the two actions exhibit dif-
ferent behaviors. For example, the force measurements during pulling exhibit more
variety than they do for twisting, indicating that they may carry more information
for the different classes.

To further examine how important the different measurements are and how they
can affect classification, we train a simple SVM [35] classifier to predict the sample’s
class, while trained on individual signals (Fy, Fy, F,, Ty, Ty, T,). The classifier
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Figure D.7: Pull vs twist measurements on the active arm.
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has a linear kernel and it is implemented with Scikit-learn [36]. Table D.1 shows
the test set accuracy based on the individual signals for the pull (left) and the twist
(right) strategies of the active arm, when learning on a material-based dataset and
a construction-based ones.

Signal Pull Twist
Material | Construction | Material | Construction
F, 30% 82% 45% 57%
F, 32% 63% 38% 52%
F, 70% 100% 53% 73%
T, 42% 75% 38% 63%
T, 44% 83% 38% 63%
T, 40% 53% 45% 59%
All 80% 100% 70% 87%

Table D.1: SVM test set performance based on the individual signals for a dataset

with 3 classes for material distinction and 2 classes for the production methods.

From the SVM results, we observe that for the material-based classification, the
accuracy scores for the two actions are comparable and rather low. However, when
considering the proposed labels, the accuracy increases and in almost all signal
cases, pulling outperforms twisting.

These results reinforce that following construction-based taxonomy is advanta-
geous as well as the notion that the sensory feedback varies a lot depending on how
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textile is manipulated. It is therefore of fundamental importance to understand how
to choose the proper exploration strategy. Moreover, as mentioned in Section 2,
the way in which textile threads are interlocked leads to different elastic properties.
Knitted textiles for example, can be stretched lengthwise or along the horizontal
direction. Woven textiles instead, are usually not stretchable, apart from a bias
direction that for example, for denim is the diagonal one. All these concepts play
an important role in classification and highly increase the complexity of the task.

4.3 Insight 3: Fiber Material vs Production Method

Lastly, we assess to what extent the fiber type can be identified in addition to the
production method. An example of this can be seen in Fig. D.8 for dataset DLwist
that depicts the difference between samples categorized using just their production
method and sample categorized using both their material and production method.
More specifically, the figure portrays the differences between a simple categorization
of knitted/woven and a further distinction of the Cotton class, which is split into
Cotton-Twill (woven) and Cotton-Jersey (knitted). We can see that Cotton-Twill
visually belongs to a separate cluster as observed in section 4.1. It can be also
noticed that some of the Cotton-Twill samples are closer to Polyester as to Wool,

while Cotton-Jersey is closer to Wool than to Polyester.

® Knitted ®  Woven Wool Poly ®  Cotton-Jersey Cotton-Twill
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Figure D.8: Twist on the passive arm: visualization with respect to (left) production
method, (right) fiber material.

We can also observe the effect of the proposed taxonomy on the individual signal
level, by considering the dataset Dgzﬁve for example. Fig. D.9 depicts how the split
of Cotton by construction method highlights the difference between the mean force
used for Cotton-Twill and Cotton-Jersey at the end of the pulling action, further
showing the necessity of splitting the Cotton class. Moreover, besides the detectable
distinction among Polyester, Wool, Cotton-Twill and Cotton-Jersey signals, woven
materials keep being the ones with higher mean force while knitted ones are in

general less tension-resistant, reflecting the behaviour of the construction methods.
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Figure D.9: Mean and standard deviation of the measurements sensed by the active
arm while pulling.

5 Classification and Interpretability

The next step is to assess the classification performance using a more complex
architecture, like a CNN model. The input of the network are vectors of the six
concatenated FT measurements, the network consists of four 2D convolutional lay-
ers and its activations are rectified linear units (ReLU). Furthermore, we adopt
rectangular kernels of size 5 x 1 which convolve across measurements of the same

signal as done in [37]. The output sizes of the convolutional layers are respectively
24,12,8 and 4.

The features learned from the last convolutional layer are flattened and fed to
a fully connected layer with 48 hidden neurons. The outputs of this block are the
predicted class probabilities. We also consider the case of the joined measurements
for the active and passive arm, using the same architecture but adjusting the size
of the fully-connected layer to accommodate the 150 x 12 signal.

We partitioned each dataset into 90/10 train/test splits. Table D.2 summarizes
the classification results. Firstly, we observe that the construction-based labeling
outperforms the material-based one for any dataset or action. More specifically,
using our taxonomy both actions provide enough information for accurate predic-
tions. However, twisting is consistently less accurate than pulling for all labeling
and datasets considered.

These observations are validated in the case of the joined datasets with DPu!
achieving excellent performance in distinguishing the construction method of the
textile, leading to the conclusion that pulling is a better option for classification.
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Input Dataset | Materials | Construction
prull 87.5% 100%
DU e 85.8% 96.7%
Diwist, 76.7% 95.0%
DSt e 78.3% 89.2%
prull 95.0% 100%
Dtwist 79.0% 91.7%

Table D.2: Test accuracy with a CNN model for all the different datasets when
following the material-based labelling and the proposed, construction-based one.

5.1 Interpretability and measurement assessment

To further examine the effect of the different measurements for classification, we
interpret the results from the CNN model through GradCAM [38]. GradCAM is an
interpretability technique that produces visual explanations in the form of heatmaps
that portray which parts of the input contribute the most to the predicted label.
We follow the same methodology as in [39] to produce and inspect the contribution

of each feature in samples from datasets PP and Dggtlfve of Table D.2.

An example of the heatmaps can be seen in Fig. D.10 for two correctly classified
samples of woven cotton and knitted cotton from the dataset DP*!. Every row
corresponds to a different measurement channel and its color is defined by how
important it is for the prediction. The importance is scaled between 0 and 1 and
follows the colormap on the right of the images. Fig. D.10 shows that for both
cotton instances, the network is focusing on the same features between the passive
and the active arm. Concretely, for woven cotton, the forces on both axes Z are the
most important features, followed by the torques T2, T and some parts of 17, T}'.
However, for knitted cotton, the network utilized all the force measurements for
both arms and the torque on axis Z for the active arm. These results indicate
that even when utilizing the material based-labeling, the CNN network focuses
on different patterns when classifying samples of the same material but different

construction methods.

Finally, we inspect two classification results from dataset Dgﬂfw when it is

labelled according to the proposed taxonomy. The left heatmap corresponds to
a correct classification of a woven sample and the right heatmap on the correct
classification of a knitted one. The important features agree with the intuition



6. DISCUSSION AND CONCLUSION D13

gained from Table D.1 as the decisions are heavily based on the ones highlighted
also by the SVM, namely forces F, and torques 1%, T),.

Woven Cotton Knitted Cotton
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Figure D.10: Heatmaps of feature importance for the classification using dataset
Dl The intensity of each row (with red being the most important) denotes what
the network focuses on to classify the sample.

Woven Knitted

|040

Figure D.11: Heatmaps for the dataset Dggtlfv .. activations for a correctly classified

Woven sample (left) and a correctly classified Knitted sample (right)) correctly
classified Knitted sample.

We note that the visualization shows only where the neurons of the network are
most active for single examples. It is possible for a network to construct multiple
patterns to classify the same class, making generalisation difficult. We can however,
observe that certain measurements are more important for classification than others,
which is a valuable insight when designing future active exploration strategies.

6 Discussion and Conclusion

In this work, we outlined a textile taxonomy and showed our initial results on textile
sample classification using pulling and twisting actions. The focus of the study was
to assess to what extent a taxonomy used in textile industry is a viable model to
structure robotic interaction and provide a basis for a whole new area of structured
studies of this class of deformable materials.
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We provided insights on how a combination of different actions and FT measure-
ments vary with respect to textile production method and fiber material. Pulling
and twisting, as inspired by the human interaction with textile, are viable choices
of actions and they provide relevant information for classification. One interesting
question that arises is what other actions can be potentially employed and to what
extent dexterous hand/finger motion could be exploited in addition to pulling and
twisting. Other works in literature demonstrated the use of specialized fingers and
sensors for this purpose and it is yet to be seen to what extent we can consider such
solutions to become commercial.

Combining multiple actions, as well as passive and active interaction, is also an
interesting aspect to be explored. We may start with pulling/stretching and based
on the first step classification, subsequent routines may be performed more suitably
for identifying categories of interest, such as for example fiber material, elasticity,
whether the textile is wet or dry, etc. Here, reinforcement learning may be used
to learn actions that maximize the utility of the sensor readings for discriminating
various textile properties.

We also performed an initial study using visual feedback under pulling and
twisting. However, for the considered categories, regular cameras do not provide
enough resolution to bring sufficient information on the production method or the
fibre type. One could potentially rely on the reflectance properties of textile ma-
terials, but most of the works in this area that stem from the computer vision
community, are not applicable in uncontrolled settings that would occur in real-life
applications. An idea supported by our experimental/empirical observations was
the fact that creases and wrinkles on the textile fabric may be a useful feature
to exploit for certain applications. When pulling or stretching the fabric in many
different directions, creases and wrinkles will vary dependent on the properties of
the textile: dense and hard textile creases differently from soft and thin textile. In
such cases, integrating vision and FT may be useful. Careful consideration on what
visual features are used needs to be taken into account. For example, using flow-
based methods [40] or specified wrinkle detectors [41] dealing with various texture
properties may be considered.

An additional important aspect to be considered is the ability to assess how
textile properties change over time. Certain textiles are made to be more durable,
fibers are blended, their use and handling in terms of washing, ironing, folding, will
affect how clothing items deteriorate over time. In other words, the information
of the fiber content usually available on the label sewn on the clothing item, may
be helpful but it is not fully relevant. For example, a T-shirt made out of cotton,
may be more elastic and thicker when new, and rather thin and almost non-elastic
after many washings. Thus, its handling in terms of washing and ironing will be
different, as well as one may decide to keep or reuse a newer one, and recycle a
well-used one.

The outlined taxonomy, visualization, CNN classification and measurement in-
terpretability are important tools that can provide more insight into the difficulty
of the considered problem. The taxonomy provides a structured approach to study
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textile materials and has not been previously considered in the area of robotics. We
also need an approach that brings the robotics community closer to textile produc-
tion industry and this is one way of achieving that. We provided several examples
of how the generated textile material classes are a viable approach and how these
can be studied together with actions such as pulling and twisting.

Initial classification results using deep neural networks show a good potential
and we will build on these with a more extensive database of samples, actions
and multimodal sensory feedback. More specifically, we will study a richer set of
pulling actions, with samples of different sizes also considering standardized textile
for the purpose of repeatability, reproducibility and replicability. We believe that
this study is an important step toward a more robust and versatile textile handling
and manipulation for applications such as various household tasks, assisted dressing
and recycling.
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Abstract

Learning state representations enables robotic planning directly from raw
observations such as images. Most methods learn state representations by
utilizing losses based on the reconstruction of the raw observations from a
lower-dimensional latent space. The similarity between observations in the
space of images is often assumed and used as a proxy for estimating simi-
larity between the underlying states of the system. However, observations
commonly contain task-irrelevant factors of variation which are nonetheless
important for reconstruction, such as varying lighting and different camera
viewpoints. In this work, we define relevant evaluation metrics and perform
a thorough study of different loss functions for state representation learning.
We show that models exploiting task priors, such as Siamese networks with
a simple contrastive loss, outperform reconstruction-based representations in
visual task planning.

1 Introduction

Learning of low-dimensional state representations from high-dimensional observa-
tions such as images have gained significant attention in robotics [1, 2]. For complex
manipulation planning tasks, this approach is a viable alternative since analytic

* Authors contributed equally, listed in alphabetical order.
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Figure E.1: Examples of visually different observations (different views) of the same
state (arrangement of the boxes).

approaches may be computationally expensive or impossible to define. Existing ap-
proaches are generally based on an implicit assumption that similar observations,
close in the image space, correspond to similar system states. However, the same
underlying state may be related to very different observations due to other factors
of variation, such as different views or background of the scene, see Figure E.1. This
is especially true in task planning, which we focus on, where states are typically
discrete and their observations may be captured in very different time intervals,
leading to the natural occurrence of task irrelevant factors of variation. Similar
considerations also hold for task and motion planning (TAMP) settings [3].

To address this, it is crucial to identify the task-relevant factors of variation. A
step in this direction is done by [4], where an agent interacts with the environment
and tries to disentangle the controllable factors of variation. However, if data is
being collected in realistic scenarios, irrelevant factors of variation may occur that
are difficult to control.

Although several solutions exist in literature, a unified analysis of representa-
tion losses and their influence to the performance of learned representations for
high-level visual task planning is currently missing. In this work, we perform a sys-
tematic comparison of different representation learning methods which can possibly
leverage task priors in quasi-static tasks. To this aim, we also design and collect
datasets where the underlying states of the system do not uniquely correspond to
observations (images). We study a box manipulation task on a real robotic system
as well as a simulated shelf arrangement task. In all tasks, different task-irrelevant
factors, such as different viewpoints of the same scene or “distractor” objects, are
present. Our work makes the following contributions: ¢) We introduce evaluation
metrics and provide a systematic study for assessing the effect of different loss
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functions on state representation. Robotic tasks on both real hardware and sim-
ulation are analyzed. i) We examine a simple data augmentation procedure for
contrastive-based models. 7i7) We show how task priors in contrastive-based mod-
els combined with simple data augmentations can lead to the best performance in
visual task planning with task-irrelevant factors of variation and demonstrate the
performance of the best derived representations on a real-world robotic task. iv)
We create and distribute datasets for comparing state representation models’.

2 Related Work

State representation learning from high-dimensional data has been successfully used
in a variety of robotic tasks. As shown in Table E.1, the used loss functions are
usually a combination of the reconstruction, Kullback-Leibler (KL)-divergence, and
contrastive loss functions. A common approach to use learned state representations
is through learned forward dynamic models as in [5, 6, 7, 8]. These dynamic models
predict future observations (images) and are trained to minimize the pixel distance
between the observed image and the decoded predicted observation. Among these
works, [5] also exploits a KL loss to regularize the latent space. Future rewards and
actions are predicted instead in [9], and the image reconstruction loss is solely used
to regularize. Since in many cases predicting full images is not practical, some ap-
proaches attempt to remove task-irrelevant information from the predicted images.
In [10], the residual of goal and the current state is reconstructed which contains
more relevant information comparing to a raw image. Similarly, in [11] images
are transformed through specialized layers that enhance spatial features, such as
object locations. Learned representations leveraging reconstruction loss have also
been used in specific robotic applications, such as [12] for fabric manipulation and
[13] for pendulum swing up.

Related works Recon. KL  Contr.
6,7, 8,9, 12, 13] v

[5, 10, 11, 25] v v

[2, 15, 16, 17, 18] v
[23] v v v

Table E.1: Overview of loss functions (reconstruction, KL divergence and con-
trastive) used by state-of-the-art methods.

As shown in Table E.1, all the aforementioned methods rely on the reconstruc-
tion loss. However, in many real scenarios, full images might contain redundant in-
formation, making the reconstruction loss not applicable. Inspired by the revival of
contrastive methods in computer vision [14], some recent works rely on contrastive
losses to learn efficient state representations. The works in [2, 15, 16] augment pixel

! https://state-representation.github.io/web/
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Figure E.2: Examples of mapping functions £* &1, €2 (arrows) from observation
space O (top row) to latent spaces Z*, 2%, Z2 (bottom row). Boxes arrangement
represents the system state and images marked with variations of the same color
contain the same state.

frames through transformations and use a forward momentum encoder to gener-
ate positive and negative examples. These examples are then exploited to learn
state representations directly in the latent space without the need for a decoder.
n [17], a purely contrastive loss is used to learn robotic states from video demon-
strations where states that are temporally close are considered similar. In addition,
the authors of [18] remove task-irrelevant information by adding distractors during
simulation and considering such states similar in their contrastive loss formulation.
Contrastive-like losses have also been formulated using task or robotic priors [19]
such as slowness [20]. The latter has been applied in reinforcement learning [21]
with visual observations, and humanoid robotics state representation [22]. A no-
action/action prior was also used in our previous work [23], which was used to
formulate a combined reconstruction, KL, and contrastive loss. Here, we leverage
the same task prior of [23] as explained in section 3.

The vast majority of the aforementioned methods are concerned with continuous
control tasks, whereas in this work we are focusing on quasi-static states tailored to-
wards long-horizon high-level planning [1]. In detail, we take representative models
employing different loss functions and perform a thorough study by analyzing their
performance in robotic planning tasks with and without task priors. Such discrete
state representations have been learned in literature by object-centric or compo-
sitional models like [16, 24], however we do not assume any structural relations
between observations.

3 Problem Formulation
Our objective is to define appropriate state representations for visual task planning

given high-dimensional observations provided as images. Let O be the observation
space and Z be a low-dimensional state space, also referred to as latent space. The
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goal is to define a mapping function £ : O — Z which extracts the low-dimensional
representation z € Z given a high-dimensional observation o € 0. We consider
that task-irrelevant factors can be present in the observations which cause them to
be possibly visually dissimilar even if they contain the same underlying states.

An ideal mapping function £* should be able to perfectly capture the underlying
states of the system despite possible task-irrelevant factors. This means that, given
two observations o; and o; containing the same state, it holds £*(0;) = £*(0;), i.e.,
they are mapped into the same latent encoding. We aim to understand how to
model £ such that it is as close as possible to £* when task-irrelevant factors are
present in O.

Although a perfect mapping £* might not be achievable, a good approximation
should be able to properly structure the latent space such that encodings associated
with the same states are close by, while encodings that are associated with different
states are well separated in the latent space. This implies that the encodings should
be clustered in the latent space such that each cluster is associated with a possi-
ble underlying state of the system. Note that if such clustering is achieved, task
planning can be easily solved by properly connecting the clusters when an action is
allowed between the respective states of the system. Therefore, better mapping re-
sults in improved clusters and requires an easier planning algorithm. An illustrative
example is provided in Figure E.2, where three latent spaces Z*, Z1, Z2, obtained
with different mapping functions, ¢*, &%, €2, are shown. Considering that observa-
tions (top row) in the same colored box contain the same underlying state, it can
be observed that ) the latent space Z* (bottom left) is optimal since observations
containing the same states are mapped exactly into the same latent encoding, i) a
sub-optimal latent space Z! (bottom middle) is obtained since the latent encodings
are properly clustered according to the states of the system, 7) a very hard-to-use
latent space Z2 (bottom right) is obtained where the encodings are not structured
according to the states.

Training Dataset: To model the mapping function, we assume task priors are
available to build the training dataset. In detail, a training dataset 7T, is composed
of tuples (o;, 04, s) where 0;,0; € O are observations of the system, and s € {0,1}
is a signal, obtained from task priors, specifying whether the two observations are
similar (s = 1), i.e., they correspond to the same state and £*(o;) = £*(0;), or
whether an action occurred between them (s = 0), i.e., they represent consecutive
states, implying that o; and o; are dissimilar and £*(0;) # £*(0;). An action
represent any high-level operation as in [1], e.g., pick and place, pushing, and
pouring operations. We refer to the tuple as a similar pair when s = 1, and as
an action pair when s = 0. In addition, the encoded training dataset composed of
tuples (z;, 25, $), with z; = £{(0;) and z; = £(0;), is denoted by 7.

Note that in both similar and action pairs task-irrelevant factors can change in
the observations o;, 05, i.e., it generally holds o; # o;, while task-relevant factors
only change through actions in action pairs. Moreover, no knowledge of the under-
lying states of the training observations is assumed. Examples of action and similar
pairs are shown in Figure E.3 for a box manipulation task (with interchangeable
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action pair similar pair

Figure E.3: Example of action (left) and similar (right) pairs. We consider the
boxes interchangeable (only the resulting arrangement matters).

boxes), as detailed in section 7. The training dataset can be generally collected
in self-supervised manner. Indeed, action pairs can be obtained by randomly per-
forming high-level actions with the environment similar to [1] and recording the
respective consecutive observations. Regarding similar pairs, they can be obtained,
for example, by recording observations in the tuple with a certain time separation,
leading to the occurrence of different lighting conditions and/or the presence of fur-
ther irrelevant objects in the scene, or, as in our experiments, by swapping objects
if they are interchangable for the task.

Data Augmentation: Inspired by the training procedure in [26], we consider
a synthetic procedure to generate an additional training dataset 7, from 7,. Let
Or be the set of all observations in 7,. The basic idea is that by randomly sampling
pairs of observations in the dataset, they will likely be dissimilar. Therefore, T,
is first initialized to 7,. Then, for each similar pair (0;,05,s = 1) € 7,, we ran-
domly sample n observations {03, ...,05} C Or in the dataset and define the tuples
(04,03,8 = 0), k = 1,..,n, which are added to T,. In this way, for each similar
pair, n novel tuples are introduced in 7T, with respect to 7,. We experimentally
validate that this procedure allows to improve the latent mapping despite possible
erroneous tuples in 7 ,, i.e., novel tuples for which it holds £*(o;) = £* (0%)-
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4 Latent Mapping Modeling

We employ and compare different unsupervised and prior-based, i.e., using the
similarity signal s, models as follows.

i) The classic Principal Component Analysis (PCA) method [27] is used as an unsu-
pervised baseline method. It obtains the latent mapping by finding the eigenvectors
with the highest eigenvalue from the dataset covariance matrix.

it) Auto-Encoder (AE) |28] is considered as another unsupervised approach. AE
is composed of an encoder and a decoder network trained jointly to minimize the
Mean Squared Error (MSE) between the input o and decoded output o:

Lae(0)=(0—5)2.

iii) A standard §-Variational Auto-Encoder (VAE) [29] is considered as an addi-
tional unsupervised model. Similarly to the AE, the 5-VAE consists of an encoder
and a decoder network which are jointly trained to embody the approximate pos-
terior distribution ¢(z|o) and the likelihood function p(o|z) providing generative
capabilities. The following loss function is minimized:

»Cﬁfvae(o) :Ezwq(z\o) [10gp(0|2)} + ﬂDKL (q(Z|O)Hp(Z))

with z the latent variable, p(z) the prior distribution realized as a standard normal
distribution and Dk, (+) the KL divergence.

iv) The similarity signal can be exploited through a Pairwise Contrastive (PC)
loss [23], encouraging the encodings of action pairs to be larger than a certain
distance while minimizing the distance between similar pairs. This loss is used to
augment the standard AE loss as follows [30]:

1
Lpe—ae(0i 05, 8) = 5 (Lae(0i) + Lae(05)) + aLpe (04, 05, 5)
with « a hyperparameter and £,.(0;, 05, s) defined as

max (0, d,,, — ||z; — 2;][3) ifs=0 (E.1)
Hzl—z]H% ifs=1

Epc(oi,oj,s):{

where d,, is a hyperparameter denoting the minimum distance that is encouraged
between encodings of the action pairs. We denote the resulting model as PC-AE.
v) Similarly to the PC-AE, the task priors can also be used to combine the 5-VAE
loss with the PC loss, leading to the following loss function [23]

1
ch—vae(oia 0y, 5) :i (EB—’IJae (Oz) + ﬁﬁ—vae (Oj))
+ PyﬁpC(Oia 0j7 S)

with ~ a hyperparameter. We denote this model as PC-VAE.
vi) A pure contrastive-based model is then considered which is a Siamese network
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Model Recon. loss KL loss Contr. loss
PCA

AE

B-VAE
PC-AE
PC-VAE
PC-Siamese
CE-Siamese

NINNS
\

ANENENEN

Table E.2: Summary of the considered models with respect to their loss functions.

with pairwise contrastive loss [31], referred to as PC-Siamese. This model structures
the latent space such that it minimizes the pairwise distance between similar pairs
and increases it between dissimilar pairs. As dissimilar pairs, the action pairs are
used (s = 0). This model is based on the sole PC loss L,.(0;,0;, ) in (E.1), i.e., it
only relies on the similarity signal while no use of reconstruction loss is made.

vig) A further Siamese network model is considered with different contrastive loss
function. In particular, the following normalized temperature-scaled Cross Entropy
(CE) loss [26, 32] is leveraged which minimizes the cross-entropy between similar
pairs using the cosine similarity: This model relies on the following normalized
temperature-scaled cross-entropy loss [26, 32]:

’ | e(sim(zi,z;)/7) £
ce(0i70j)—_ og Zi}ll ]lk#e(sim(zmz;c)/r) ( ' )

where sim(u,v) = u ' v/||ul||[v]| is the cosine similarity, 1 is the indicator function,
T is the temperature parameter and N is the number of similar pairs that are given
in each batch. The resulting model is denoted by CE-Siamese. We use the training
procedure in [26] where, for every similar pair, the rest 2(N — 1) examples are
considered dissimilar as in (E.2).

Models Summary: As summarized in Table E.2, the considered models allows to
cover a wide range of losses. The PCA model is employed as a simple baseline to
show that the tasks at hand have adequate complexity and cannot be solved with
a PCA model. The AE and 5-VAE models are mostly based on the reconstruction
loss and therefore implicitly assume that a visible change in the observations cor-
responds to a state change. The latter models are then augmented in the PC-AE
and PC-VAE models with a pairwise contrastive loss which exploits the task priors
ameliorating the visual similarity assumption. In addition, PC-Siamese and CE-
Siamese only rely on a contrastive loss without generative capabilities. However,
the latter are often not required for downstream tasks. For the sake of complete-
ness, in our experiments in section 8, we also compare to the case in which no model
is used, and raw observations are directly exploited.
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5 Latent Planning

As we are interested in ultimately use learned representations for task planning, we
leverage planning in the latent space as a quality measure itself of the representa-
tion, as detailed in the following section. We resort to our latent space planning
method from [23] that builds a graph structure in the latent space, called Latent
Space Roadmap (LSR). Algorithm 4 shows a high level description of the LSR
building procedure.

Algorithm 4 Adapted LSR building [23]

Require: Dataset 7, min cluster size m

G = build-reference-graph(7;) # Phase 1
C. = HDBSCAN-clustering(7., m) # Phase 2
LSR = build-LSR(G, C.) # Phase 3
return LSR

The basic idea is to first build a reference graph using the encodings of action
and similar pairs in 7, (Phase 1), i.e., nodes are created for each encoding and
they are connected in case of action pairs. Next, in Phase 2, the latent space is
clustered. We substitute the e-clustering used in [23] with the HDBSCAN ([33]
which only requires the minimum samples per cluster m to be set. The LSR is
then built in Phase 3 where each cluster is represented by a node that embodies the
underlying state and clusters are connected through edges if they are one action
apart, i.e., they contain encodings of action pairs. To use the LSR for planning,
we first encode the start and goal observations with the model of interest and then
select the respective closest nodes in the LSR as start and goal nodes of the path.
Finally, we find the shortest paths from the start node to the goal one. Note that
the objective of the planning is to produce a sequence of actions that lead from
start to goal states. No decoded images are then needed and the LSR can be built
in the latent space generated by any model in section 4.

6 Representation Evaluation Metrics

To evaluate the performance of the different latent mapping models, we propose two
types of metrics. First, as stated in section 3, the structure of the latent space can
be assessed through clustering, i.e., a good latent space should be easy to cluster.
Second, the latent space should be suitable for task planning - a good latent space
should result in easier planning. Thus, we also evaluate the planning performance
of learned representations.

6.1 Clustering metrics

Homogeneity & Completeness: Given the ground truth states, the homogeneity
score [34], denoted by h., measures the purity of the created clusters, i.e., that
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each cluster contains elements from the same state. Completeness, denoted by c.,
measures the preservation of the states in clusters, i.e., that each state is assigned
to the same cluster. Both the metrics have range [0, 1], with 1 being the best value.
Assigning all elements in different clusters would results in A, = 1 and ¢. = 0, while
assigning all elements in the same cluster would results in h, = 0 and ¢, = 1. These
quantities are calculated based on cross-entropy as formulated in [34].

Mean silhouette coefficient: The silhouette coefficient [35], denoted by si, is
defined for each sample ¢ and, in contrast to the previous metrics, does not rely
on ground truth labels. Let di_, ., be the mean distance between sample i and all
the other points in the same cluster and let d’,, .., be the mean distance between
sample i and all other points in the closest cluster. The silhouette coefficient for

sample ¢ is defined as:

i i
i (dclosest — dintra)
i %
max(dintra’ dclosest)

which can assume values in [—1,1], with higher values indicating dense and well-
separated clusters. We report the mean silhouette coefficient s, over all samples.

6.2 Planning Evaluation

To assess the planning performance achieved through the LSR, we evaluate both
graph structure and the obtained start to goal paths. We define the true represen-
tative state for each node in the LSR as the state that is contained the most. The
following metrics are considered:

Number of Nodes: It is the number of nodes in the LSR and is denoted by |V|.
This number should ideally be equal to the number of possible underlying states of
the system.

Number of Edges: It represents the number of edges that are built between nodes
in the LSR and is denoted by |£|. In the case of optimal latent mapping and graph,
the number of edges should be equal to the number of possible transitions between
states of the system.

Correctness of the Edges: It is denoted by c. and quantifies how many nodes
are improperly connected in the LSR. In detail, it is defined as the number of legal
edges, i.e., the edges associated to allowed state transitions according to the task
rules, divided by the total number of edges. This score has range [0, 1], with 1 being
the best value.

Path Metrics: To evaluate the latent planning capabilities, we evaluate the cor-
rectness of the shortest paths between random novel start and goal observations
(taken from holdout datasets). We consider 1000 different start and goal observa-
tions and evaluate the percentage that all found paths are correct, denoted by %
all, and the percentage that at least one path is correct, denoted by % any.
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Figure E.4: a) Box manipulation dataset with two viewpoints. b) Shelf arrange-
ment dataset with the task relevant objects (top object row) and the five distractor
objects (bottom object row).

7 Validation Setting

Two tasks are considered: a box manipulation task on a real robotic system, and a
simulated shelf arrangement, in Unity [36] environment. An additional simulated
box stacking task can be found in our preliminary workshop paper [37] as well as
in Appendix 10.1. It is worth highlighting that the goal of this work is not to solve
these tasks in an innovative manner, but rather to gain general insights that can
be transferred to cases where a determination of the exact underlying state is not
possible.

In each task, the task-relevant objects are interchangeable — i.e., swapping two
objects results in the same state. Their arrangement in the scene specifies the
underlying state of the system. Other objects that are irrelevant for the task,
referred to as distractor objects, can be present in the observations. The objective
of all tasks is to plan a sequence of states to arrange the relevant objects according to
a goal observation. Transitions between states — i.e., actions, can be then retrieved
through the LSR [23]. All datasets are available on the website!.

Box Manipulation: The setup of this real-world case study is shown in Fig-
ure E.4a). The task is composed of four interchangeable boxes, and each box can
only move to adjacent tiles in a 3 x 3 grid. The robot is tasked with moving the
boxes to the state of the goal image. This task has 126 possible states with 420
allowed state transitions. Two different viewpoints are considered to capture the
scene and three datasets are built as follows: i) BM,, where all the observations
are taken from the side view (in orange in Figure E.4), 4) BM,, where the obser-
vations are only taken from the top view (in blue in Figure E.4), and iii) BM g,
where views are randomly picked from the side or top view. Images have naturally
occurring task-irrelevant factors such as distractor objects changing in the back-
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ground (side view), as well as out-of-focus images. In Figure E.4a) the mean image
of all training images for side and top view are depicted. In the following, we report
the considered self-supervised data collection procedure.

Real world Training. As actions, we employ pick and place operations realized

by the following sequence: moving the robot, through a motion planner, to the
pick location, closing the gripper, moving to the place location, and opening the
gripper. To generate an action pair, the robot performs a random action — moves a
box to an adjacent tile. To create similar states, it swaps two boxes. The swapping
is simply three consecutive pick and place operations. Before executing each action
the robot needs to check that the preconditions of that action are true, e.g., pick
location is occupied and place location is empty. This can be verified by moving
and closing the gripper to the pick and place locations. If the gripper fully closes
(sensed through the gripper encoder), the location is empty, otherwise a box is
present and can be picked. A similar verification could be achieved with a depth
camera. This formulation is consistent with the high-level actions in [1]. Using
this procedure 2800 training data samples with 1330 action pairs were collected in
a self-supervised manner by randomly performing actions. Note that no access to
the underlying state nor human labeling is required to generate this dataset. See
the supplementary video for more details.
Shelf Arrangement: As depicted in Figure E.4b), the scene of the shelf arrange-
ment task is composed of two shelving units with a total of four shelves, and a
table where four objects can be placed. Four task-relevant objects — a bowl, a pot,
a mug and a plate (shown in the figure) — are present in the scene. This task has 70
possible states and 320 possible transitions. In addition, distractor objects (bottom
right part of Fig. E.4) can be present on the shelves and change their position. Two
datasets are thus defined: i) SAgq4, that contains the four relevant objects and zero
distractor objects (2500 tuples with 1240 action pairs), i) SAsg4, that contains all
five distractor objects with each distractor having a probability of 0.8 to appear on
the shelf (2500 tuples with 1277 action pairs). For more information about the
tasks and their rules see Appendix 10.2-10.3.

We trained each of the seven models in Sec. 4 (PCA, AE, 3-VAE, PC-AE, PC-
VAE, PC-Siamese, and CE-Siamese) with the datasets of the above defined tasks
(BMg, BM;, BMg, for box manipulation; SAgg, SAsq for shelf arrangement) as
well as their augmented versions (BM,, BM;, BMy;, SApq, SAsq), with n = 1
in Sec. 3. The evaluation was performed on respective holdout datasets composed
of 334 and 2500 novel tuples, respectively. Further details on the architectures,
hyperparameters, and additional plots can be found in the Appendix 10.4, the
website!, and the code?.

8 Results and Discussion

Two main questions are discussed in detail:

2https://github.com/State-Representation/code
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Dataset BM;

Models Paths scores
Id he Ce Se €] Ce % all | % any

- 1016 | 0.92 | 0.92 | 0.79 583 | 0.78 | 0.0 0.0
PCA 496 | 0.75 | 0.78 | 0.52 452 | 0.52 | 0.0 0.0
AE 233 | 049 | 0.57 | 029 234 | 0.27 | 0.0 0.0
B-VAE 539 | 0.85 | 0.85 | 0.51 422 | 0.62 | 0.0 0.0
PC-AE 246 | 0.54 | 0.6 0.3 258 | 0.28 | 0.0 0.0
PC-VAE | 570 1.0 1.0 0.58 488 | 1.0 29.9 29.9
PC-Sia. | 389 | 0.99 | 1.0 0.52 458 | 0.97 | 47.37 | 57.3
CE-Sia. 150 | 1.0 1.0 0.67 325 | 1.0 98.3 98.3

Dataset BM;
PC-AE 218 0.99 1.0 0.71 375 | 0.98 | 72.12 82.5
PC-VAE | 395 1.0 1.0 0.56 461 | 1.0 89.7 89.7
PC-Sia. 133 1.0 1.0 0.9 314 | 1.0 97.7 98.2

Dataset BMg;
- 710 0.83 | 0.83 | 0.5 496 | 0.58 | 0.0 0.0
PCA 400 0.59 | 0.62 | 0.46 453 | 0.25 | 0.0 0.0
AE 554 0.87 | 0.88 | 0.56 454 | 0.69 | 0.0 0.0
B-VAE 407 0.72 | 0.74 | 0.44 361 | 0.38 | 0.0 0.0
PC-AE 318 0.62 | 0.91 | 0.61 325 | 0.47 | 0.0 0.0
PC-VAE | 381 0.84 | 0.85 | 0.42 295 | 0.65 | 0.1 0.1
PC-Sia. 289 096 | 096 | 0.4 312 | 0.92 | 26.34 27.5
CE-Sia. 232 | 0.99 | 0.99 | 0.41 354 | 0.99 | 78.39 | 78.7

Dataset BM;
PC-AE 158 093 | 098 | 0.5 310 | 0.79 26.01 36.4
PC-VAE | 164 0.89 | 0.94 | 0.36 198 | 0.77 | 7.39 9.2

PC-Sia. 136 0.99 | 0.99 | 0.45 282 | 0.98 | 69.37 | 72.4

Table E.3: Evaluation results for the latent mapping models and raw observations
on BM,(top row) and BM; (third row) and their augmented versions (second and
forth row respectively) BM; and BM g, for the box manipulation task. Best results
in bold.

1. Do contrastive-based losses outperform reconstruction-based losses when task-
irrelevant factors of variations are present in the observations?

2. Can simple data augmentation as described in Sec. 3 boost the representation
performance?

Influence of Contrastive Loss: To answer question 1, we carry out a quantitative
and a qualitative analysis on the box manipulation task. The former is summarized
in Table E.3 (top and third row). We observe that models PC-VAE, PC-Siamese
and CE-Siamese, employing a contrastive loss, manage to achieve almost perfect
performance in terms of homogeneity (h.), completeness (c.) and edge score (c.)
with top view dataset BMy, enabling planning in their latent spaces. In particular,
best planning performance (98.3% for % any) is achieved by the pure contrastive
model CE-Siamese, followed by PC-Siamese (57.3% for % any) and PC-VAE (29.9%
for % any). In contrast, the case of no latent mapping (first row), i.e., the use of
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Figure E.5: Two-dimensional t-SNE plots for the box manipulation task for the
mixed view (top row) and the shelf arrangement task for the distractor case (second
row). Each color is associated with a possible underlying state. On the third and
forth row we display the plots for the augmented contrastive models. Full results
are accessible on the website

raw observations, the PCA and the reconstruction-based models achieve very low
clustering and planning performance, reaching no correct paths. This also con-
firms the unsuitability of directly using raw high-dimensional observations for task
planning with task-irrelevant factors of variations. Similarly, model PC-AE obtains
poor performance, reporting c. = 0.28 which leads the planning to fail due to an
excessive number of erroneous edges. This suggests that the sole addition of the
contrastive loss to the reconstruction one may be not sufficient to effectively struc-
ture the latent space. For the dataset BMg; (third row), having observations taken
from different viewpoints, it can be noticed that the pure contrastive-based models
CE-Siamese and PC-Siamese obtain the best performance in terms of clustering and
planning, with CE-Siamese (78.7% for % any) outperforming PC-Siamese (27.5%
for % any), while zero success correct paths are obtained by PC-VAE and PC-AE,
mixing reconstruction and contrastive losses, as well as by PCA, AE and S-VAE.
This confirms the relevance of leveraging task priors to handle task-irrelevant factors
of variation, like the different viewpoints. The effectiveness of the best performing
model (CE-Siamese) in regards to planning was also validated on the real robotic
system shown in the supplementary video. Results with BM can be found in
Appendix 10.5.

The above results are also reflected in the qualitative analysis in Figure E.5 (top
two rows) where the latent encodings obtained with the different models as well as
raw observations (O column) are visualized through 2D t-SNE [38] plots. Results
with BM; are shown. We can notice that the raw observations, PCA and purely
reconstruction-based models AE and S-VAE fail in structuring the representations,
forming spurious clusters in which different states are mixed up. Non-homogeneous
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Dataset SAoq
Models V) he c s B c %’zﬁs S(%)rsfly
PC-AE 5 0.28 | 1.00 | 0.93 | 4 0.75 | 0.00 0.00
PC-VAE | 5 0.28 | 1.00 | 0.78 | 4 0.75 | 0.00 0.00
PC-Sia. 16 0.64 | 1.00 | 0.96 | 32 0.59 | 1.01 1.8
CE-Sia. 296 1.00 | 1.00 | 0.54 | 842 | 1.00 | 95.90 | 95.90
Dataset SApg
" PC-AE 97 0.87 | 0.95 | 0.51 | 368 | 0.77 | 20.30 | 35.90
PC-VAE | 64 090 | 0.99 | 0.32 | 235 | 0.77 | 33.13 | 55.40
PC-Sia. 225 1.00 | 1.00 | 0.74 | 772 | 1.00 | 100.0 | 100.0
Dataset SAsq
' PC-AE 5 0.28 | 1.00 | 0.9 4 0.75 | 0.40 0.40
PC-VAE | 5 0.28 | 1.00 | 0.79 | 4 0.75 | 0.40 0.40
PC-Sia. 16 0.64 | 1.00 | 0.98 | 32 0.69 | 2.42 4.10
CE-Sia. 286 1.00 | 1.00 | 0.46 | 841 | 0.99 | 95.12 | 95.30
Dataset ﬂsd
PC-AE 18 0.49 | 098 | 0.01 | 34 0.44 | 0.24 0.40
PC-VAE | 16 0.64 | 1.00 | 0.52 | 32 0.69 | 2.42 4.10
PC-Sia. 30 0.78 | 1.00 | 0.61 | 87 0.74 | 6.66 13.10

Table E.4: Evaluation results for the contrastive-based latent mapping models on
SApa (top row) and SAsg (third row) and their augmented versions SApg (second
row) and SAsy (forth row) for the shelf arrangement task. Best results in bold.

clusters are also obtained by PC-AE and PC-VAE, while a significant improvement
of the latent space structure is recorded by the purely contrastive loss based Siamese
networks (PC-Siamese and CE-Siamese), leading to visually distinct clusters.

In summary, we observe that the contrastive-based models (PC-Siamese, CE-Siamese)
outperform the other ones by a significant margin. Notably, the architectures of the
Siamese networks are much shallower® than the AE and VAE ones, leading to con-
siderably faster training processes ( < 3.5 minutes vs ~ 2.5 hours on a GeForce
GTX 1080 Ti).

Influence of Data Augmentation: To evaluate the influence of the data aug-
mentation in Sec. 3, we first analyze the representation performance on the shelf
arrangement task when it is applied and when it is not. For the sake of space, we
focus only on the four contrastive-based models since the unsuitaibility of raw ob-
servations, PCA, AE and 5-VAE has been shown above. Full results can be found
in Appendix 10.6. Table E.4 reports the obtained evaluation metrics. When no aug-
mentation is applied (top and third row), all the models, except for CE-Siamese,
show very low performance for both clustering and planning on both datasets, cre-
ating a small number of clusters (< 70) that are erroneously connected. In contrast,
CE-Siamese generates a large amount of pure clusters (~ 300 clusters with h, ~ 1
for both datasets) which are almost perfectly connected (c. ~ 1), leading to high
path metrics (% any ~ 95% for both datasets). When the augmentation is used,
the performance of all models improves for the no distractors dataset (second row),
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leading the PC-Siamese to reach perfect path metrics (100% for % any) and PC-AE
and PC-VAE to reach ~ 36% and ~ 55% for % any. This confirms the beneficial
effect of the considered augmentation which, however, is not equivalently effective
when distractor objects are present in the scene (forth row). More specifically, only
PC-Siamese is positively influenced by the augmentation with S.As4, reaching path
metrics % any ~ 13% (from ~ 4%). This suggests that a higher number of dissim-
ilar pairs should be synthetically generated for this case study, i.e., n > 1. Note
the augmented datasets are only used for the latent mapping but not for the LSR,
building to avoid building wrong edges. Moreover, the CE-Siamese is not evalu-
ated with the augmentation technique since it does not use action pairs. Similar
observations also hold for the box manipulation dataset in Table E.3, where we can
notice that, when the augmentation is used (second and forth row), PC-Siamese
manages to achieve almost perfect performance on the top view dataset BM, with
|V| = 133 clusters and path performance 98.2% for % any, as well as good perfor-
mance on the mixed view dataset BM;, with path performance 78.8% for % any.
General improvements are also recorded for PC-AE and PC-VAE which, however,
underperform the purely contrastive-based models.

Figure E.5 reports the t-SNE plots for the shelf stacking task with five distractors
(8A54) obtained with (forth row) and without (second row) augmentation. In this
task the optimal number of clusters is 70. It is evident from the t-SNE visualizations
that, in the absence of augmentation, only the CE-Siamese model can structure
the encodings such that clusters of different states are not overlapping. This is
due to the training procedure of CE-Siamese [26], which only relies on similar pairs
and synthetically builds a large number of dissimilar pairs [26]. In contrast, better
separation of the states is observed with data augmentation. Notably, in SAsq4, PC-
Siamese, which solely relies on the contrastive loss, achieves a better clustering than
PC-AE and PC-VAE, which also exploit reconstruction loss. Similar considerations
also hold for the box manipulation task (top and third row of Figure E.5). In
summary, we observe that a simple data augmentation boosts the performance of
the contrastive-based models.

9 Conclusion

In this work, we investigated the effect of different loss functions for retrieving the
underlying states of a system from visual observations applied to task planning.
We showed that purely reconstruction-based models are prone to fail when task-
irrelevant factors of variation are present in the observations. In contrast, the
exploitation of task priors in contrastive-based losses as well as of an easy data
augmentation technique resulted in a significant representation improvement. We
analyzed two robotics tasks with different task-irrelevant factors of variation: i) box
manipulation, on a real robotic system with different viewpoints and occlusions, and
it) shelf arrangement, with distractor objects that are irrelevant for the task itself.
We thus believe that contrastive-based losses as well as simple data augmentations
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go a long way toward obtaining meaningful representations that can be used for
a wide variety of robotics tasks and provide a promising direction for the research
community.

10 Appendix

10.1 Simulated Box Stacking Task

Figure E.6: Box stacking simulation task setup. Three different views are consid-
erate.

Box Stacking setup: The objective of this task is to plan a sequence of states
leading the boxes to be stacked according to a goal image observation. Transitions
between states, i.e., actions, can then be retrieved through the LSR [23]. The scene,
shown in Figure E.6, is composed of four boxes that can be stacked in a 3 x 3 vertical
grid. The boxes are interchangeable i.e., color does not matter, and each cell can
only be occupied by one box at a time. The box stacking task has the following
rules: ¢) a box can only be moved if there is no other box on top of it, #) a box
can only be placed on the ground or on top of another box (but never outside the
grid), iii) no boxes can be added or completely removed from the grid (there are
always 4 boxes in play). The arrangement of the objects in the scene represents the
underlying state of the system.

Three different viewpoints are considered to capture the scene and four datasets
are built as follows: i) BS¢, where all the observations are taken from view front
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Figure E.7: Example observations of the 12 different possible states of the system.
Note that the color of the boxes does not matter, i.e. boxes are interchangeable.

-AE PC-VAE PC-Sia. CE-Sia.

Ao
Y

LS

Figure E.8: Two-dimensional t-SNE plots of the latent representations from all
models for the box stacking task. The rows show the results of the front view
dataset (BSy), the left view (BS;), right view (BS,) and the different viewpoints
dataset (BSq).

(blue in Figure E.6), it) BS,, where the observations are only taken from view
right (red in Figure E.6), iii) BS;, where the observations are only taken from
view left (green in Figure E.6), and i) BS4, where we enforce that the views for
0; and o; in a training tuple are different. In each dataset, we randomly change
lighting conditions, background, and table color in the observations. Moreover,
we introduce a planar position noise of ~ 17% on the position of each box. Note
that all of these changes are irrelevant factors of variation i.e., do not change the
underlying system state for the box stacking task. For each dataset, we use 2500
data samples for training, with 1598 action pairs.

Underlying states:  Given the box stacking rules, we can determine all the
possible underlying states of the system. In particular, each state is given by a
possible grid configuration specifying for every cell whether it is occupied by a box
or not. Given the grid size and stacking rules, there are exactly 12 valid different
box placements are shown in Figure E.7 and 24 legal state transitions.

Result and Discussion: We describe the results of this additional simulated box
stacking task in the following section. In particular, we are interested to supplement
the answer to the question from section 8: Do contrastive-based losses outperform
reconstruction-based losses when task-irrelevant factors of variations are present in
the observations?.
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Similar to the other two tasks, (box manipulation and shelf arrangement task),
we carry out both a qualitative and quantitative analysis on the box stacking task.
Regarding the qualitative analysis, we visualize the latent encodings obtained with
the different models using the respective 2D t-SNE [38] plots in Figure E.8 for the
box stacking task.

The top row shows the results from BS, containing pairs taken from the frontal
viewpoint. The second and third rows show the results with left BS; and right BS,
views, respectively. Note that retrieving the system state from the observations
in these datasets is more complex than in the frontal viewpoint dataset BS s since
the boxes occupy different sized portions of the image depending on their location.
Finally, the last row reports the results on the dataset BS,;, where having obser-
vations taken from different viewpoints, making it extremely difficult to relate any
visual changes to underlying state changes.

We can observe that raw observations as well as PCA fail completely in structur-
ing the representations on all datasets. The purely reconstruction-based AE is able
to exploit the visual similarity in the front view dataset (top row) to a certain ex-
tent structuring the encodings in a promising manner, even if not exactly separating
different underlying states. However, this model clearly fails in the other datasets
where few spurious clusters are formed in which the different states are mixed up.
Similar results are obtained with the S-VAE, which shows a less structured latent
space for the dataset BS;. A significant improvement of the latent space structure
is recorded by introducing the PC loss term to the AE and 8-VAE, leading to 12
visually distinct clusters for BSy, BS; and BS, (corresponding to the 12 underly-
ing states of the system). The same applies to both purely contrastive loss-based
Siamese networks (PC-Siamese and CE-Siamese). The different viewpoint dataset
however is clearly more challenging for all models.

The qualitative observations based on t-SNE plots are confirmed by the nu-
merical analysis reported in Table E.5. We observe that all models employing a
contrastive loss (PC-AE, PC-VAE, PC-Siamese, and CE-Siamese) perform nearly
perfectly for the frontal view dataset BS; (first row) in regard to all the perfor-
mance metrics: the recorded homogeneity (h.) and completeness (c.) show a perfect
clusterability and therefore enable the LSR to successfully plan in 100% of the cases
(the exception being the CE-Siamese with 98.8% which indicates that only a start
or goal state was misclassified). In contrast, directly using the raw observation,
the PCA or reconstruction-based models achieve very low clustering and planning
performance, reaching values < 5% for the existence of at least one correct path.

As far as the left viewpoint dataset is concerned (third row), all the models not
employing any form of contrastive loss (PCA, AE, 5-VAE) achieve low clustering
(i.e., low hg,ce, s.) and planning performance (i.e., low ¢e, % any and % all with
V # 12 and € # 24). The results show that the best performing model is the
PC-AE that achieves 100% for % all and % any in the planning scores. It manages
to build 16 clusters (only 4 clusters more than the ideal number) that have perfect
homogeneity, completeness and a good silhouette score (0.85).

The other purely contrastive-based models (PC-Siamese and CE-Siamese) achieve
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Dataset BS ¢
Models Paths scores
VI he Ce Se €] Ce % all | % any
- 118 | 0.61 | 0.62 | 0.29 | 119 | 0.78 | 2.53 2.8
PCA 107 | 0.67 | 0.72 | 0.33 | 123 | 0.79 | 4.04 4.20
AE 28 | 0.85 | 0.87 | 0.38 | 19 1.00 | 2.60 2.60

B-VAE 52 | 0.8 | 081 |0.36 | 38 |0.82 | 1.60 1.60
PC-AE 23 | 1.00 | 1.00 | 0.86 | 59 | 1.00 | 100.0 100.0
PC-VAE 19 | 1.00 | 1.00 | 0.84 | 48 | 1.00 | 100.0 100.0
PC-Sia. 18 | 1.00 | 1.00 | 0.84 | 44 | 1.00 | 100.0 100.0
" CE-Sia. 13 | 1.00 | 1.00 | 0.35 | 28 | 0.96 | 98.80  98.80
Dataset BS,
= 92 [0.15 [0.24 [0.28 [ 157 | 0.61 | 0.95 1.0
PCA 40 [ 0.03 | 008 |0.16 | 91 | 0.63 | 2.65 2.70
AE 21 | 004 | 012 | 0.13 | 43 | 058 | 1.07 1.20
B-VAE 29 | 005 |0.10 | 0.05 | 49 | 0.61 | 2.17  2.40
PC-AE 80 | 092 [ 092 [ 0.26 | 136 | 0.89 | 59.61 63.20
PC-VAE 43 | 0.70 | 093 [ 0.05 | 92 | 0.74 | 30.70  33.70
PC-Sia. 28 | 0.94 [ 0.99 | 0.48 | 60 | 0.83 | 57.23  66.30
CE-Sia. 37 | 0.89 [ 097 [0.19 | 66 | 0.92 | 54.38  59.40

Dataset BS;

| - 131034 | 053 035 | 192 ] 068 | 5.4 5.6
PCA 85 | 032 | 051 | 0.27 | 154 | 0.75 | 13.74 15.90
AE 33 [ 028 052 | 012 | 33 |0.67 | 890 890
B-VAE 29 | 044 | 060 | 0.05 | 35 | 0.66 | 350  3.50
PC-AE 16 | 1.00 | 1.00 | 0.85 | 38 | 1.00 | 100.0 100.0
PC-VAE 18 | 090 | 1.00 | 0.75 | 40 | 1.00 | 76.30  76.30
PC-Sia. 17 | 091 | 1.00 | 0.72 | 39 | 0.87 | 56.67 64.20
CE-Sia. 16 | 0.92 | 1.00 | 0.33 | 39 | 0.87 | 61.40 69.20

Dataset BS,.
- 123 [0.67 [ 0.71 [ 03 [ 124 [ 0.69 | 0.6 0.6
PCA 119 | 054 | 0.56 | 0.33 | 151 | 0.62 | 2.30  2.80

" AE '35 (071 | 074 | 033 |24 | 088 | 1.10 1.10
B-VAE 41 | 0.76 | 0.79 | 0.37 | 32 | 0.81 | 1.20  1.20
PC-AE 21 | 1.00 | 1.00 | 0.74 | 54 | 0.96 | 90.70 95.40
PC-VAE 21 | 093 | 1.00 | 059 | 53 | 0.91 | 6850 73.90
PC-Sia. 22 | 0.96 | 1.00 | 0.63 | 54 | 0.91 | 73.56  80.80
CE-Sia. 27 | 0.97 | 1.00 | 0.31 | 63 | 0.92 | 81.70 83.70

Table E.5: Evaluation results according to section 6 for the mapping models (rows
2 — 8 of each table) and the raw observation (first row of each table) on datasets
BS¢, BS4, BS;, and BS, from top to bottom for the simulated box stacking task.
Best results in bold.

both lower performance of 65 — 70% and fall behind the PC-VAE with 76% plan-
ning performance for % any path. This is explained by imprecise clustering (shown
by sub-optimal homogeneity scores a2 0.9) that compromises the planning perfor-
mance.

Similar considerations also hold for results of the right viewpoint dataset in
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Figure E.9: 70/126 example observation from the side and top view for the box
manipulation task.

Table E.5 (forth row). More specifically, poor clustering and planning metrics are
achieved by the models that do not rely on the contrastive loss, while best general
performance is obtained with PC-AE, which reaches 95.4% for % any as well as best
clustering scores (h. = ¢. = 1 and s, = 0.74). Acceptable planning performance
is also achieved by the other models using the contrastive loss (= 73 — 83% for
% any).

However, note that the good performance of the PC-AE does not translate to
the dataset where different views are enforced (BSg) (second row). This suggests
that it is able to combine reconstruction and contrastive losses beneficially as long
as all the observations are obtained with a fixed viewpoint, but fails when the
differences in observation become too large. In contrast, the purely contrastive
models can effectively handle such differences. In this regard, it can be noticed that
PC-AE, PC-Siamese, and CE-Siamese achieve the best (comparable) performance
in terms of clustering and planning. Interestingly, the PC-AE is able to combine
the reconstruction loss with the additional contrastive loss more effectively than
the PC-VAE model. Possibly this is due to a better PC loss coefficient « choice
or to the absence of the KL-term. Finally, on the performance of the other models
on dataset BS 4, we observe poor clustering and planning performance when using
raw observations, PCA, AE, and 5-VAE, confirming the relevance of task priors to
handle task-irrelevant factors of variation.

In summary, we observe that models involving the contrastive term (PC-AE,
PC-VAE, PC-Siamese, CE-Siamese) outperform the ones that do not (PCA, AE,
B-VAE) by a significant margin.

10.2 Box Manipulation Setup and Underlying States

Box Manipulation setup: The box manipulation task involves 4 boxes which
are arranged in a predetermined 3 x 3 grid. The rules for the task are the following:
i) a box can not be moved into a cell that already contains a box, ) a box can
only be moved into the four cardinal directions (as it happens in a box pushing
task), ) a box can only be moved one cell at the time. A similar pair is done by
swapping the position of boxes and an action pair by performing a random move.
Before executing an action we check its validity (preconditions) as described in 7.
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During the collection, a number of task-irrelevant objects (hat, coffee-mug,
mask, etc.) are placed in the view field of the side camera and people are moving in
the background along with several other objects. The top view often performs auto
focus when the robotic arm is moving the boxes which lead to blurry observations.
Example observations are shown in Figure E.9.

In total 2135 training data pairs were collected in a self-supervised manner in ~
30 hours. As the action between states are reversible, we also included the reversed
version of each action pair, i.e., given the tuple (01, 02,5 = 0) we add (03,01, s = 0).
Underlying states: Given the box manipulation rules, we can determine all the
possible underlying states of the system. In particular, each state is given by a
possible grid configuration specifying for every cell whether it is occupied by a box
or not. Given the grid size and manipulation rules, there are exactly 126 different
box placements, i.e. grid configurations.

10.3 Shelf Arrangement Setup and Underlying States

Shelf arrangement setup: The shelf arrangement setup is composed of a table
and two shelves. The table has four potential slots for task relevant objects. For
the shelves, each shelf slot can be occupied at most by one task relevant object.
The task object can however be placed either to the left or the right inside the
shelf itself. The task relevant objects are always present in the scene. An action
moves a relevant object from the table to the shelf or vice-versa while a swapping
motion (a similar pair) exchanges the position of two objects. A small amount of
positional noise for the objects is also introduced each time the scene is generated.
Five distractor objects, that are not relevant for the task, can be present in the
shelf slots. Their position inside the shelf slots is not fixed.

Underlying states: The rules for the shelf arrangement task result in a system
that has exactly 70 underlying distinct states and 320 legal transitions, which are
obtained by considering all possible combinations of object configurations in the 8
available slots. Figure E.10 shows examples of all 70 distinct underlying states for
the dataset with no distractors present.

10.4 Architectures and Hyperparameters

In this section, we describe the architectural details, as well as the hyperparameters
for all considered models. The input dimension for all models is a 256 x 256 x 3
image. To make the comparison between the models as fair as possible, each uses
the same training data and latent space dimension.

PCA: We used the popular scikit-learn [39] implementation of the principal com-
ponent analysis based on [40]. The number of components was set to 12 and the
model fit to the training dataset. The dimension reduction was then applied to the
holdout dataset for evaluation.

AE: The implementation of encoder and decoder for the Auto-encoder [28] relies on
the ResNet architecture in [41], with a depth of two per block for the box stacking
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and manipulation tasks and a larger ResNet architecture having six layers with
depth two for the shelf stacking task. We train each model for 500 epochs and a
batch size of 64.
B-VAE: The implementation of encoder and decoder of the -VAE [29] is realized
by adding the probabilistic components to the AE architecture. We train the models
for 500 epochs with a scheduling for beta from 0 to 1.5 and a batch size of 64.
PC-AE: The PC-AE uses the same architecture as the AE model.
PC-VAE: The PC-VAE uses the same architecture as the S-VAE model.
PC-Siamese:

The Siamese network [42] architecture is comprised of two identical encoder
networks. Each encoder has the following latent encoding architecture:

x1 = MaxPool(x,2 x 2)

x9 = Conv(z1,4 x 4, relu)

x3 = Conv(xe,4 x 4, relu)

x4 = MaxPool(xs,7 X 7)
z = FC (24,12, relu)

CE-Siamese: This model has the same architecture as the Siamese but uses the
normalized temperature-scaled cross entropy loss.
Hyperparameters: The latent space dimension was set to 12 for all 56 mod-
els. Concerning the hyperparameters in the loss functions, we employed the same
scheduling as in [23] for « and ~ for the losses employed in PC-AE and PC-VAE
and for 5 in (4), reaching a = 100, v = 2500 and 8 = 2. In order to set the
minimum distance d, in (E.1) for PC-AE and PC-VAE, we leveraged the approach
in [23] based on measuring the average distance of the action pairs in the models AE
and S-VAE, while we set it to 0.5 for PC-Siamese. The AE, 3-VAE, PC-AE and PC-
VAE where trained for 500 epochs while the PC-Sia. and CE-Sia were trained for
100 epochs. Concerning the HDBSCAN parameter, denoting the minimum number
of samples in each cluster, we set it to 5 for the datasets obtained in simulation
and to 2 for the real-world datasets. This is motivated by the fact that a smaller
amount of data is available for the real-world setting.

10.5 Additional Experimental Results for Box Manipulation

Here we mention some additional results for the box manipulation task.
Experimental Results: Table E.6 and Table E.7 show all the results for the box
manipulation task for all 7 mapping models, as well as for the raw observations, on
the top view (BM; - first row in the table), side (BMj - third row in the table)
and mixed view (BMg; - Table E.7) datasets as well as their augmented versions
(BMy, BM, BMg;) below them respectively. We will focus the discussion on the
results that were omitted in the discussion in section 8, i.e., we will focus on the
side view dataset.
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Figure E.11: Two-dimensional t-SNE plots of the latent representations from all
models for the box manipulation task. The rows shows the results of the top view
(BMy), the side view (BMj), and the mixed viewpoints dataset (BM;), as well
as their augmented versions in descending order.

Concerning the side view dataset, we observe that, as for BM; and BMg;, the
CE-Siamese achieves overall best planning and clustering performance, reaching
72.2% for % any and almost perfect homogeneity and completeness (h, = ¢, =
0.99) with 298 clusters. General lower performance is obtained by the other pure
contrastive-based model PC-Siamese, which reaches 34.2% for % any and creates
a higher number of clusters (|V| = 345) which are less homogeneous and complete
(he = 0.5, c. = 0.98). A further decrease on the planning performance is observed
with PC-VAE (10.0% for % any) which leads to creating a large number of clusters
(|V] = 548) with good homogeneity and completeness (h, = ¢, = 0.99). All the
other models (PCA, AE, 3-VAE, and PC-AE) are getting 0% planning performance.

Regarding the augmentation, we do not evaluate the case of the raw observations
or the models not using any contrastive component (PCA, AE, 8-VAE) since such
models do not exploit the random action pairs generated by the augmentation.
Similarly, we do not evaluate CE-Siamese as it does not use the action pairs in
the dataset. Concerning the other models, interestingly the augmentation propels
the PC-AE from having 0% for % any on the dataset BM, to having 44.9% for
the augmented version BM,. An improvement of ~ 25% is also recorded for the
PC-VAE and PC-Siamese, with the latter outperforming the former (31.5% for
PC-VAE, 55.6% for PC-Siamese for the score % any).
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Dataset BM;
Models V) he N 5. €| .. 75&;1;1[’15 S(;?r;:y
- 1016 0.92 | 0.92 | 0.79 | 583 0.78 | 0.0 0.0
PCA 496.0 0.75 | 0.78 | 0.52 | 452.0 | 0.52 | 0.0 0.0
AE 233.0 0.49 | 0.57 | 0.29 | 234.0 0.27 | 0.0 0.0

B-VAE 539.0 0.85 | 0.85 | 0.51 | 422.0 | 0.62 | 0.0 0.0

PC-AE 246.0 0.54 | 0.6 0.3 258.0 | 0.28 | 0.0 0.0

PC-VAE | 570.0 1.0 1.0 0.58 | 488.0 | 1.0 29.9 29.9
PC-Sia. | 389.0 0.99 | 1.0 0.52 | 458.0 | 0.97 | 47.37 | 57.3
CE-Sia. 150.0 1.0 1.0 0.67 | 325.0 | 1.0 98.3 98.3
Dataset BM,
PCA - - - - - - - -
AE - - - - - - - -
B-VAE | - = = = = = = =
PC-AE 218.0 0.99 | 1.0 0.71 | 375.0 | 0.98 | 72.12 | 82.5
PC-VAE | 395.0 1.0 1.0 0.56 | 461.0 | 1.0 89.7 89.7
PC-Sia. 133.0 1.0 1.0 0.9 314.0 | 1.0 97.7 98.2

CE-Sia. | - - - - - - - -
Dataset BM

- 1002 0.96 | 0.96 | 0.78 | 558 0.89 | 0.0 0.0

PCA 539.0 0.74 | 0.75 | 0.59 | 479.0 | 0.35 | 0.0 0.0

AE 532.0 0.77 | 0.78 | 0.57 | 459.0 | 0.41 | 0.0 0.0

B-VAE 531.0  0.79 | 0.8 0.59 | 456.0 | 0.45 | 0.0 0.0
PC-AE 550.0 0.79 | 0.8 0.59 | 456.0 | 0.47 | 0.0 0.0
PC-VAE | 548.0 0.99 | 0.99 | 0.57 | 460.0 | 0.98 | 10.0 10.0
PC-Sia. | 345.0 0.95 | 0.98 | 0.48 | 391.0 | 0.91 | 31.02 | 34.2
CE-Sia. | 298.0 0.99 | 0.99 | 0.41 | 407.0 | 0.94 | 71.57 | 72.2

Dataset BM

PCA - - -
AE - - - - - - = =
BVAE |- N N - N - - -
PC-AE | 420.0 098 | 0.99 | 0.53 | 456.0 | 0.95 | 40.89 | 44.9
PC-VAE | 519.0 1.0 | 1.0 | 0.57 | 4480 | 0.99 | 315 | 315
PCSia. | 304.0 0.7 | 0.99 | 0.5 | 394.0 | 0.92 | 46.6 | 55.6
CBESia. | - - - - - - - -

Table E.6: Evaluation results of the models for the box manipulation task. Datasets
BM, (first row), and BM, (third row)with respective augmented versions reported
below them. Best results in bold.

The quantitative analysis is also reflected in the t-SNE plots in Figure E.11. We
can observe that only CE-Siamese obtains a good separation for all datasets. More-
over, the random sampling data augmentation significantly improves the structure
of the latent spaces obtained by PC-AE, PC-VAE and PC-Siamese for the top and
side views, while lower improvement is recorded for the mixed view dataset.

10.6 Additional Experimental Results for Shelf Arrangement

Table E.8 reports the evaluation results with all the datasets in the shelf arrange-
ment task. The first and second rows reports the datasets that have no distractor
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Dataset BMg,

Models Paths scores
I he Ce fe €1 Ce % all T % any
- 710 0.83 | 0.83 | 0.5 496 0.58 | 0.0 0.0
PCA 400.0 | 0.59 | 0.62 | 0.46 | 453.0 | 0.25 | 0.0 0.0
AE 554.0 | 0.87 | 0.88 | 0.56 | 454.0 | 0.69 | 0.0 0.0

B-VAE 407.0 | 0.72 | 0.74 | 0.44 | 361.0 | 0.38 | 0.0 0.0
PC-AE 318.0 | 0.62 | 091 | 0.61 | 325.0 | 0.47 | 0.0 0.0
PC-VAE | 381.0 | 0.84 | 0.85 | 0.42 | 295.0 | 0.65 | 0.1 0.1
PC-Sia. | 289.0 | 0.96 | 0.96 | 0.4 312.0 | 0.92 | 26.34 275
CE-Sia. | 232.0 | 0.99 | 0.99 | 0.41 | 354.0 | 0.99 | 78.39 78.7

Dataset BM
PCA - - - - - - - -

AE - - - - - - - -
B-VAE | - = = = = = = [
PC-AE 383.0 | 0.96 | 0.98 | 0.53 | 433.0 | 0.88 | 40.77 489
PC-VAE | 335.0 | 0.91 | 0.92 | 0.42 | 274.0 | 0.84 | 0.7 0.7
PC-Sia. | 235.0 | 0.99 | 0.99 | 0.41 | 337.0 | 0.99 | 77.7 78.8
CE-Sia. | - - - - - - - -

Table E.7: Evaluation results of the models for the box manipulation task. Dataset
BMg; (first row) with respective augmented versions reported below. Best results
in bold.

O PCA B-VAE PC-AE PC-VAE PC-Sia. CE-Sia.
SAoa
0 &@gﬁ * % .

S A5d

SA| - - - -

m[)d - - - -

Figure E.12: Two-dimensional t-SNE plots of the latent representations from all
models for the shelf arrangement task. All the data augmentations are considered.

present, while the third and forth shows the performance for the dataset where
all five distractors are present (with probability 0.8). The first and third row are
all models for the non-augumented datasets (SApq and SAszq4). The second and
forth row block indicates the datasets augmented with randomly sampled dissimi-
lar pairs like described in section 3 (ﬂw and ﬂsd). Note that the CE-Siamese
is not shown for the augmentations that only alter the dissimilar pairs as they are
not used in this particular model.

Concerning the non-augmented datasets SAgq and SAsq, also the performance
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Dataset SApq
Models WV he c s €| c Paths scores

% all T % any

- 2 0.0 033 | 014 | 2 0.0 0.0 0.0

PCA 3 0.05 | 029 | 0.17 | 5 0.00 | 0.00 0.00
AE 2 0.00 | 038 | 0.17 | 2 0.00 | 0.00 0.00
B-VAE 13 | 036 | 0.56 | 0.07 | 11 0.18 | 0.00 0.00
PC-AE 5 0.28 | 1.00 | 0.93 | 4 0.75 | 0.00 0.00
PC-VAE | 5 0.28 | 1.00 | 0.78 | 4 0.75 | 0.00 0.00
PC-Sia. | 16 | 0.64 | 1.00 | 0.96 | 32 0.59 | 1.01 1.80

CE-Sia. 296 | 1.00 | 1.00 | 0.54 | 842 | 1.00 | 95.9 95.90
Dataset SApqg
PCA - - - - - - - -
AE - - - - - - - -
B-VAE = = = =
PC-AE 97 0.87 | 0.95 | 0.51 | 368 | 0.77 | 20.30  35.90
PC-VAE | 64 | 0.90 | 0.99 | 0.32 | 235 | 0.77 | 33.13  55.40
PC-Sia. 225 | 1.00 | 1.00 | 0.74 | 772 | 1.00 | 100.0 100.0
CE-Sia. - - - - - - - -
Dataset SAsq
- 1 0.0 0.36 | 0.06 | 0 0.0 0.0 0.0
PCA 5 0.09 | 0.30 | 0.18 0.22 | 0.00 0.00
AE 2 0.01 | 0.43 | 0.00 0.00 | 0.00 0.00

2

5

B-VAE 0.01 [ 052 | 0.08 0.00 | 0.00  0.00
PC-AE 0.28 | 1.00 | 0.9 040  0.40
PC-VAE | 5 0.28 [ 1.00 | 0.79 0.75 | 040  0.40
PC-Sia. | 16 | 0.64 | 1.00 | 0.98 | 32 | 0.69 | 242  4.10
CE-Sia. | 286 | 1.00 | 1.00 | 0.46 | 841 | 0.99 | 95.12 95.30

Dataset ﬂsd
PCA - - - - - - - -
AE - - - - - - - -
B-VAE - - -
PC-AE 18 0.49 | 098 | 0.01 | 34 0.44 | 0.24 0.40
PC-VAE | 16 0.64 | 1.00 | 0.52 | 32 0.69 | 2.42 4.10
PC-Sia. 30 | 0.78 | 1.00 | 0.61 | 87 0.74 | 6.66  13.10
CE-Sia. | - - - - - - -

|~ NN ©
()
5
ot

Table E.8: Evaluation results of the models for the shelf arrangement task. Datasets
SAoqg (first row) and SAsq (third row) with respective augmented versions below
them are considered. Best results in bold.

of models PCA, AE and 8-VAE are reported in addition to the ones in the sec-
tion 8 confirming that none of the non-augmented datasets (except for CE-Siamese)
achieve any meaningful performance. Regarding the augmented datasets, we can
observe they lead to much better structured latent spaces for all models in the
case of no distractors. Especially the PC-Siamese model achieves perfect clustering
score for the homogeneity and compactness, as well as perfect planning perfor-
mance of 100% for both % any and % all. However, the augmentation only helps
to a marginal extent for the case of five distractor objects present, where only the
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PC-Siamese model improves to 13.1% for % any.

The numbers are easily confirmed with visually inspecting the t-SNE plots in

Figure E.12. We can see that a good separation is only achieved throughout all
datasets from the CE-Siamese models. The random sampling data augmentation
in section 3 helps the models for the no distractor datasets.
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