Michael C. Welle

■ mwelle@kth.se | 🎓 people.kth.se/ mwelle/

Personal data

Date of birth: 10/12/1988

Sex: male

Nationality: German

Country of residence: Sweden

Passionate and team-oriented robotics/machine learning researcher Ph.D. looking to leverage academic research in the real world to create a better future.

Skills_

Programming level

Python, PyTorch, ROS advanced C++, MATLAB / SIMULINK, PLC - SCHNEIDER/SIEMENS intermediate C#, VISUAL BASIC, UNITY hasic

Language level

GERMAN native **ENGLISH** C2 **SWEDISH** A1

Code repositories

Project name: link Status

LATENT SPACE ROADEMAP V1: https://github.com/visual-action-planning/lsr-code Released Released LATENT SPACE ROADEMAP V2: https://github.com/visual-action-planning/lsr-v2 LOSS COMPARISON REPRESENTATION LEARNING: HTTPS://GITHUB.COM/STATE-REPRESENTATION/CODE Released CUSTOM FRANKA PANDA CONTROLLER: https://github.com/MWelle77/franka_ros Devel

Employment _

Royal Institute of Technology (KTH)

POSTDOCTORAL RESEARCHER - ROBOTICS, PERCEPTION AND LEARNING EECS

- · Representation Learning
- Deformable object manipulation
- Research validation on real robots

Royal Institute of Technology (KTH)

Ph.D. STUDENT - ROBOTICS, PERCEPTION AND LEARNING EECS

· Topic: Learning Structured Representations for Rigid and Deformable Object Manipulation

RESEARCH ENGINEER - SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION

• STRANDS project, indoor drone applications

Royal Institute of Technology (KTH)

Romaco Pharmatechnik GmbH

AUTOMATION ENGINEERING AND VISUALIZATION - ENGINEERING DEPARTMENT

• PCL programming, visualization with Zenon 6 & 7

Stockholm, Sweden

01/2022 - present

Stockholm, Sweden

01/2018 - 12/2021

Stockholm, Sweden 02/2017 - 05/2017

Karlsruhe, Germany

01/2015 - 08/2015

German Aerospace Center (DLR)

STUDENT - BACHELOR THESIS - INSTITUTE OF VEHICLE CONCEPTS

• analysis of multiphase windings, Visualization with Visual Basic

Stuttgart, Germany 03/2014 - 08/2014

Mercedes Benz Malaysia

INTERNSHIP - LAISON OFFICE

· Quality management

Kuntan, Malaysia 09/2012 - 02/2013

Progress-Werk Oberkirch AG

INDUSTRIAL ELECTRICIAN - WELDING AND ASSEMBLY LINE MAINTENANCE

· Troubleshooting of manufacturing machines, production and assembly of spare parts

Zusenhofen, Germany

02/2009 - 07/2010

09/2005 - 02/2009

Progress-Werk Oberkirch AG

APPRENTICESHIP MECHATRONICS

• Dual Apprenticeship process

Zusenhofen, Germany

Education

KTH | Royal Institute of Technology

Ph.D. IN COMPUTER SCIENCE

Thesis: Learning Structured Representations for Rigid and Deformable Object Manipulation

- Supervisor: Danica Kragic
- Co-supervisors: Anastasia Varava, Hang Yin

Stockholm, Sweden

01/2018 - 12/2021

KTH | Royal Institute of Technology

M.S. IN SYSTEMS, CONTROL AND ROBOTICS

- Thesis: View planning for objects modeling with drones
- Supervisor: Patric Jensfelt
- · Specialization: Robotics track

Stockholm, Sweden

08/2015 - 01/2018

HSKA | University of Applied Sciences Karlsruhe

B.ENG. IN MECHATRONICS

Karlsruhe, Germany

10/2010 - 09/2014

Visiting Internship

HKUST | Hong Kong University of Science and Technology

PG VISITING INTERNSHIP - MAE (FULL-TIME)

Hongkong 17/07/2017 - 29/09/2017

- Project: Baxter play's Tic-Tac-Toe demonstration
- Supervisors: Michael Wang, Hang Kaiyu

Organizing ____

Transferability in Robotics

ICRA 2023 WORKSHOP

London, England

02/06/2023

• https://transferabilityinrobotics.github.io/icra2023/

Third workshop on Representing and Manipulating Deformable Objects

ICRA 2023 WORKSHOP

London, England

29/05/2023

• https://deformable-workshop.github.io/icra2023/

Associate Editor Kyoto, Japan

IROS 2022 10/2022

• keywords: Visual Learning; Object Detection, Segmentation and Categorization; Visual Servoing

Second workshop on Representing and Manipulating Deformable Objects

ICRA 2022 WORKSHOP

 $\bullet \ \mathtt{https://deformable-workshop.github.io/icra2022/}$

Philadelphia, USA 23/05/2022

Representing and Manipulating Deformable Objects

ICRA 2021 WORKSHOP

Virtual/Xi'an, China 30/05/2021

• https://deformable-workshop.github.io/icra2021/

Supervision _____

Ph.D. students @ KTH Royal Institute of Technology	Stockholm, Sweden
Alberta Longhini; Co-supervisor - Identification and Modeling of Deformable Objects Properties	Spring 2022
Marco Moletta; Co-supervisor - Graph Representations for Deformable Object Manipulation	Spring 2022
Peiyang "Yonk" Shi; Co-supervisor - Representation Learning for Generative Models	Spring 2022

	0: 11 1 0 1
Master Thesis @ KTH Royal Institute of Technology	Stockholm, Sweden
Nils Ingelhag; Ongoing	Spring 2023
Mohammed Al-Jaff; Ongoing	Spring 2023
loannis lakovidis; Ongoing	Spring 2023
Erik Zetterström; Ongoing	Fall 2022
Tommy Wallin; Structural Comparison of Data Representations Obtained from Deep Learning Models	Fall 2021
David Nortman; Impact of Semantic Segmentation on OOD Detection Performance for VAEs and	Fall 2021
NORMALIZING FLOW MODELS	
Samuel Norling; Probabilistic Forecasting through Reformer Conditioned Normalizing Flows	Spring 2021
Simon Westberg; Investigating the Learning Behavior of Generative Adversarial Networks	Spring 2021
Joakim Dahl; Analysis of the effect of latent dimensions on disentanglement in Variational	Spring 2021
Autoencoders	Spring 2021
Alberta Longhini; Fabric Material Classification by Combining Force Sensing and Vision	Fall 2020
Nik Vaessen; Training Multi-Task Deep Neural Networks with Disjoint Datasets	Spring 2020
Georgios Deligiorgis; Context-Aware Graph Convolutional Network with Multi-Clusters Mini-Batch	Spring 2020
FOR LINK PREDICTION	
Ching-An Wu; Investigation of Different Observation and Action Spaces for Reinforcement Learning	Fall 2019
ON REACHING TASKS	FUII 2019

Teaching _

KTH Royal Institute of Technology	Stockholm, Sweden
Introduction to Robotics	Fall 2021
Introduction to Robotics	Fall 2020
Project Course in Data Science	Fall 2020
Introduction to Robotics	Fall 2019
Project Course in Data Science	Fall 2019
Introduction to Robotics	Fall 2018
ARTIFICIAL INTELLIGENCE	Fall 2018
Project Course in Data Science	Fall 2018

Fall 2017 ARTIFICIAL INTELLIGENCE ARTIFICIAL INTELLIGENCE Fall 2016

HSKA | University of Applied Sciences Karlsruhe

Karlsruhe, Germany **AUTOMATION COURSE** WS 2012

Journal Publications _

- 1. Martina Lippi*, Petra Poklukar*, Michael C Welle*, Anastasiia Varava, Hang Yin, Alessandro Marino, and Danica Kragic. Enabling visual action planning for object manipulation through latent space roadmap. IEEE Transactions on Robotics, 39(1):57-75, 2023
- 2. Oscar Gustavsson, Thomas Ziegler, Michael C Welle, Judith Bütepage, Anastasiia Varava, and Danica Kragic. Cloth manipulation based on category classification and landmark detection. International Journal of Advanced Robotic Systems, 19(4), 2022
- 3. Michael C Welle, Anastasiia Varava, Jeffrey Mahler, Ken Goldberg, Danica Kragic, and Florian T Pokorny. Partial caging: a clearance-based definition, datasets, and deep learning. Autonomous Robots, pages 1–18, 2021
- 4. Irene Garcia-Camacho*, Martina Lippi*, Michael C Welle, Hang Yin, Rika Antonova, Anastasiia Varava, Julia Borras, Carme Torras, Alessandro Marino, Guillem Alenya, et al. Benchmarking bimanual cloth manipulation. IEEE Robotics and Automation Letters, 5(2):1111–1118, 2020
- 5. Judith Bütepage, Silvia Cruciani, Mia Kokic, Michael C Welle, and Danica Kragic. From visual understanding to complex object manipulation. Annual Review of Control, Robotics, and Autonomous Systems, 2:161–179, 2019

Conference Publications

- 1. Alberta Longhini*, Marco Moletta*, Alfredo Reichlin, Michael C Welle, David Held, Zackory Erickson, and Danica Kragic. Edo-net: Learning elastic properties of deformable objects from graph dynamics. arXiv preprint arXiv:2209.08996 accepted to ICRA2023, 2023
- 2. Alberta Longhini, Marco Moletta, Alfredo Reichlin, Michael C Welle, Alexander Kravberg, Yufei Wang, David Held, Zackory Erickson, and Danica Kragic. Elastic context: Encoding elasticity for data-driven models of textiles. arXiv preprint arXiv:2209.05428 accepted to ICRA2023, 2023
- 3. Thomas J Tewes, Michael C Welle, Bernd T Hetjens, Kevin Saruni Tipatet, Svyatoslav Pavlov, Frank Platte, and Dirk P Bockmühl. Understanding raman spectral based classifications with convolutional neural networks using practical examples of fungal spores and carotenoidpigmented microorganisms. AI, 4(1):114–127, 2023
- 4. Martina Lippi*, Michael C Welle*, Petra Poklukar, Alessandro Marino, and Danica Kragic. Augment-connect-explore: a paradigm for visual action planning with data scarcity. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 754–761, 2022
- 5. Hang Yin, Michael C Welle, and Danica Kragic. Embedding koopman optimal control in robot policy learning. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 13392–13399. IEEE, 2022
- 6. Constantinos Chamzas*, Martina Lippi*, Michael C Welle*, Anastasia Varava, Lydia E Kavraki, and Danica Kragic. Comparing reconstruction-and contrastive-based models for visual task planning. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 12550–12557. IEEE, 2022

4

- 7. Alberta Longhini, **Michael C Welle**, Ioanna Mitsioni, and Danica Kragic. Textile taxonomy and classification using pulling and twisting. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021
- 8. Francesco Esposito, Christian Pek, Michael C Welle, and Danica Kragic. Learning task constraints in visual-action planning from demonstrations. In 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), pages 131–138. IEEE, 2021
- 9. Martina Lippi*, Petra Poklukar*, **Michael C Welle***, Anastasiia Varava, Hang Yin, Alessandro Marino, and Danica Kragic. Latent space roadmap for visual action planning of deformable and rigid object manipulation. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2020
- 10. Thomas Ziegler, Judith Butepage, **Michael C Welle**, Anastasiia Varava, Tonci Novkovic, and Danica Kragic. Fashion landmark detection and category classification for robotics. In 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pages 81–88. IEEE, 2020
- 11. Anastasiia Varava*, **Michael C Welle***, Jeffrey Mahler, Ken Goldberg, Danica Kragic, and Florian T Pokomy. Partial caging: A clearance-based definition and deep learning. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1533—1540. IEEE, 2019
- 12. **Michael C Welle**, Ludvig Ericson, Rares Ambrus, and Patrie Jensfelt. On the use of unmanned aerial vehicles for autonomous object modeling. In 2017 European Conference on Mobile Robots (ECMR), pages 1–6. IEEE, 2017

^{*} contributed equally, listed in alphabetical order.