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Abstract— Visual planning approaches have shown great suc-
cess for decision making tasks with no explicit model of the state
space. Learning a suitable representation and constructing a la-
tent space where planning can be performed allows non-experts
to setup and plan motions by just providing images. However,
learned latent spaces are usually not semantically-interpretable,
and thus it is difficult to integrate task constraints. We propose a
novel framework to determine whether plans satisfy constraints
given demonstrations of policies that satisfy or violate the
constraints. The demonstrations are realizations of Linear
Temporal Logic formulas which are employed to train Long
Short-Term Memory (LSTM) networks directly in the latent
space representation. We demonstrate that our architecture
enables designers to easily specify, compose and integrate task
constraints and achieves high performance in terms of accuracy.
Furthermore, this visual planning framework enables human
interaction, coping the environment changes that a human
worker may involve. We show the flexibility of the method
on a box pushing task in a simulated warehouse setting with
different task constraints.

I. INTRODUCTION

The recent advances in representation learning have en-
abled novel planning approaches, such as visual planning
[1], which require significantly less training effort. These ap-
proaches allow one to automatically create low dimensional
latent space representations that can be used for planning
without explicitly modelling the state space specifically for
the task. For instance, planning algorithms for visual plans
can learn the state representations directly from sets of
image pairs of the scene and the executed robot action
between the images of each pair instead of using a separate
perception module, see example in Fig. 1. Subsequently,
classical planning techniques, e.g., graph search, can be used
to compute plans from an initial image to a desired goal
image of the scene in the learned latent space.

Visual planning approaches with learned state representa-
tions have the advantage that non-experts can easily setup the
system and plan motions by just providing a goal image of
the scene, e.g., a desired box configuration in a box-pushing
task (see Fig. 1). However, besides goal configurations,
many tasks require additional constraints to be satisfied
for safety or desired task properties. For instance, certain
box configurations need to be avoided or specific temporal
orders to be fulfilled. The complexity further increases when
human workers are involved in the task, e.g., a human wants
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Fig. 1. Overview of visual-action planning. The framework uses images
of the scene and corresponding robot actions to create a lower dimensional
graph representation in the latent space. Each path in the graph represents
a possible path from an initial to a goal image. An action proposal neural
network (NN) assigns actions to each possible path to control the robot.

to periodically pickup boxes at a certain location in the
workspace of the robot. Yet, the integration of those con-
straints, for instance using temporal logic, usually requires
an explicit model of the system, which is not available in
visual planning. In addition, specifying constraints should
be as simple and intuitive as demonstrating desired system
behaviours through image sequences.

To enable designers to easily specify, compose and in-
tegrate task constraints, we propose a visual planning ar-
chitecture which learns to evaluate the satisfaction of the
constraints for a given action plan from demonstrations of
policies that satisfy or violate a set of properties, expressed as
Linear Temporal Logic (LTL) [2]. The outputs of the learned
classifiers are then composed according to the Boolean
operators of LTL to allow one to assess more sophisticated
user-defined specifications. To demonstrate the flexibility of
our approach, we consider the visual planning task illustrated
in Fig. 1, in which a robot is pushing boxes and a human can
demonstrate desired task properties through sets of images.
We can enable designers to specify constraints in the image
space while constraint evaluation is performed in a low
dimensional latent space representation of the system.

A. Related work

In order to make systems increasingly more autonomous,
it is essential that they can not only autonomously learn
from their own experiences, but furthermore achieve this
by requiring less and less prior knowledge for their setup.
Representation learning methods play an important role



in this context especially when the dimensionality of the
system and the complexity of the dynamics make standard
approaches intractable. Indeed in this perspective, it is crucial
to enable the systems to determine a policy to reach the goal
just according to the information extracted out of a stream
of raw data, e.g. raw images, because in this way the system
would autonomously extrapolate the essential information to
plan the sequence of actions to run.

Many recent works focused on using learning to find a
more suitable representation by constructing a latent space
where planning can be performed [3] [4]. An application
of representation learning to decision making and planning
is [5], which introduces a Latent Sampling-based Motion
Planning (L-SBMP) architecture that leverages a latent rep-
resentation with techniques from sampling-based motion
planning to return a sequence of actions both within visual
space and for high-dimensional, complex systems. Instead
an important work in this regard but in the field of control
is Embed to Control [6], where the authors build on insights
from the optimal control formulation to leverage a variational
autoencoder (VAE), that learns to generate image trajectories
from a latent space in which the dynamics is constrained to
be locally linear. The work in [1] also uses VAEs but with
augmented loss function to generate Visual Action Plans
making use of a Latent Space Roadmap that produces a
sequence of images as well as connecting actions given only
a start and goal image. However, since these approaches
do not operate in a semantically-interpretable latent space,
it is difficult to determine whether plans or sequences of
actions are satisfying a given set of specifications. For
instance, the original version of VAEs [7] solely optimizes
for data reconstruction fidelity and does not consider the
interpretability of the representation. A possible solution
is to train the VAE optimizing a function that combines
both accuracy and interpretability, but this implies a lower
accuracy because optimizing solely for reconstruction fidelity
is typically better at fitting the data than one optimized for
both data reconstruction fidelity and interpretability [8].

On the other hand, a completely different approach is
taken when a mathematical model of the system is available,
because in these cases it is possible to perform an extensive
analysis of the correctness of the system with respect to
the requirements by using formal verification techniques [9]
[10]. Formal verification describes the process of checking
whether a model of a system, e.g., a finite transition system,
satisfies given specifications, such as formulas of temporal
logics [11]. In this regard, LTL and Computation Tree Logic
(CTL) are the most commonly encountered temporal logics
in computer science [12]. There also exist logics, such as Sig-
nal Temporal Logic (STL) [13], and Metric Temporal Logic
(MTL) [14], in which the temporal operators have specific
time bounds. They have quantitative semantics, which allow
one to quantify how far a system execution is from satisfying
a given formula. Recent works, such as in [15], showed
that quantitative semantics can be used to formulate machine
learning and control problems as optimization problems with
costs induced by quantitative semantics.

Inspired by formal verification techniques, this paper in-
vestigates how learning from demonstration can be applied
in the context of planning with LTL. We propose an archi-
tecture that learns to distinguish between system executions
that satisfy the user-defined requirements and undesired
executions from provided demonstrations. The architecture
extends the visual action planning framework in [1] by
integrating binary classifiers to evaluate the satisfaction of
the constraints without sacrificing the benefits of data-driven
low-dimensional latent space representations.

B. Contributions and structure of the paper

To enable designers to easily specify task constraints in
visual planning frameworks, this work

1) learns task constraints from demonstrations using
LSTMs;

2) demonstrates the accuracy of the constraint evaluation
in the latent space representation;

3) uses the structure of linear temporal logic to compose
complex constraints; and

4) extends the visual-action planning framework in [1]
to allow jumps between different latent states so that
humans can interact with the system, e.g., by removing
boxes;

The remainder of the paper is organized as follows:
Sec. II provides necessary preliminaries. Subsequently,
Sec. III presents how to learn constraints and their integration
in the visual-action planning framework presented in [1]. In
Sec. IV, we perform a detailed analysis of our approach and
demonstrate its benefits on a box pushing task with human
interaction. We finish with conclusions in Sec. V.

II. PRELIMINARIES

In this section, we introduce the visual planning frame-
work in [1] that is used to demonstrate our approach and the
formalism of LTL.

A. Visual Action Planning

Given start and goal images, a visual action planning
framework generates a path in the image space, that is a
sequence of images representing intermediate states, and
computes actions to control the robot between them. Directly
operating in the image space I ⊂ Rw×Rh×R3, w, h ∈ N+,
where w and h are the width and height of the images
respectively, to solve planning problems is computationally
intractable due to the size of the space. To reduce the com-
plexity, the problem can be solved in a lower dimensional
latent space Z ⊂ Rd, d ∈ N+ instead, which is usually
much smaller than I, i.e., d � wh. This latent space Z
encodes a compact representation of the image space I.
To learn the latent space and plan in it, we consider the
visual-action framework in [1]. This framework consists of
two components, the visual foresight module (VFM) and the
action proposal network (APN).

The VFM consists of a trained variational autoencoder
with augmented loss function (VAE) and a latent space
roadmap (LSR). The latent space of the VAE corresponds
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Fig. 2. Example of image transition for a given action. The robot executes a
given action, which changes the scene from the initial image to the resulting
image.

to Z and is trained using a loss term that captures the
reconstruction error of the images and an additional action
term to form valid regions and consider noisy state repre-
sentations. An example of an image pair and corresponding
action is illustrated in Fig. 2. Valid regions in the latent
space are clusters of states z1, z2 ∈ Z that are at most at
ε ∈ R+ distance, i.e., |z1 − z2|1 < ε, where | · |1 is the L1-
norm and ε is a task-dependent parameter. Building these
valid regions allows one to consider the uncertainty induced
by imprecision in action execution and generating a valid
visual plan. The LSR is a graph-based structure that globally
captures the latent system dynamics. It builds on the idea that
each node in the roadmap is associated with a valid region,
and two nodes are connected by an edge if there exists an
action pair in the training dataset to transit from one region to
another. For planning, given start and goal image, the VFM
produces a visual plan pI = (I0, I1, . . . , IG), Ii ∈ I, as a
sequence of images. The sequence pI is a decoded latent plan
pZ = (z0, z1, ..., zN ), zi ∈ Z , obtained through graph search
in the LSR. The APN takes a pair (zi; zi+1) of consecutive
latent states from the latent plan Pz produced by the VFM
and proposes an action ui to achieve the desired transition.

The two components combined produce a visual action
plan that can be executed by any suitable framework. If open
loop execution is not sufficient for the task, a re-planning step
can be added after every action by substituting the start state
with the current state and generating a new visual plan with
corresponding action plan. More details can be found in [1].

B. Linear Temporal Logic

We use LTL and its structure to synthesize and com-
pose constraints with temporal properties. LTL is expressive
enough to capture a rich spectrum of properties, including
safety, liveness, and more complex combinations of Boolean
and temporal statements [11]. Since we operate on paths with
finite length, we consider the finite version of LTL, called
LTLf [16], [17]. For simplicity, we use the terms LTL and
LTLf synonymous.

LTL formulas are constructed from a set of observations
O (also called outputs), Boolean operators, and temporal
operators. The standard notation for the Boolean operators
denotes True by >, False by ⊥, the negation by ¬ and the
conjunction by ∧; while for the graphical notation of the

temporal operators we denote Next operator by © and Until
operator by U . Formally, the syntax of LTLf coincides with
LTL syntax and it is defined as follows:

Definition 1 (LTLf Syntax): A (propositional) Linear
Temporal Logic (LTLf ) formula ϕ over a given set of
observations O is recursively defined as

ϕ ::= > | o | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2 (1)
where o ∈ O is an observation and ϕ, ϕ1 and ϕ2 are

LTLf formulas, and© and U are the temporal operators next
and until, respectively. In addition, the temporal operators
Eventually ♦ and Always � are defined as follows:

♦ϕ := >Uϕ
�ϕ := ¬♦¬ϕ

(2)

The semantics of LTLf is interpreted over finite traces,
that is finite sequence of consecutive instants of time. Let
us denote a finite sequence as π over the alphabet 2O (set
of all the subsets of O) and the length of the trace π as
length(π). We denote the positions on the trace as π(i) with
0 ≤ i ≤ length(π)− 1, and the segment of π starting from
position i and terminating in position j as π(i, j).

Definition 2 (LTLf Semantics): The satisfaction of LTLf
formula ϕ over the finite trace π at position i ∈ N+ is
denoted as π, i |= ϕ and recursively defined as follows:
• π, i |= ϕ iff π(i) |= ϕ ,
• π, i |= ¬ϕ iff π, i 6|= ϕ,
• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2,
• π, i |=©ϕ iff i < lenght(π)− 1 and π, i+ 1 |= ϕ,
• π, i |= ϕ1Uϕ1 iff there exist j such that i ≤ j ≤
length(π) − 1, we have π, j |= ϕ2 and, for all k such
that i ≤ k < j, we have π, k |= ϕ1,

A formula ϕ is True in π, or in other words π is valid, if
π, 0 |= ϕ. The LTLf semantics are slightly different than the
classical LTL formulas. In particular, the safety formula �ϕ
means that always till the end of the trace ϕ holds, while
the liveness formula ♦ϕ that eventually before the end of
the trace ϕ holds.

III. CONSTRAINTS IN VISUAL PLANNING

We are interested in evaluating whether a given visual-
action plan (see Sec. II-A) adheres to a given set of desired
properties, e.g., certain undesired box configurations are
avoided. In this regard, we want to add constraints expressed
as LTL to the planning problem so that computed paths
adhere to the properties. In this context, the observations
o in LTL are Boolean variables that indicate whether the
sequence of images at position i ∈ N+ respects a particular
condition.

Problem 1 (Problem statement): Given a finite sequence
of observations π, an LTL formula ϕ and the set of all
sequences Lϕ = {ω ∈ 2O | ω |= ϕ} that comply with
ϕ, we are interested in evaluating if π belongs to the set Lϕ.

A. Learning constraints from demonstrations

Since we do not have an explicit model in visual planning,
we cannot evaluate observations analytically (see Prob. 1).



Fig. 3. Example demonstrations di for the property “no green box in the
center” with labels βi.

Instead, we propose to learn binary classifiers that evalu-
ate whether a given plan satisfies simple properties from
demonstrations. These demonstrations D are sequences of
images I and labels β, i.e., D := {(I0, . . . , In, β), n ∈
N+, β ∈ {>,⊥}}, that can be recorded by observing
humans performing the task. The human provides positive
and negative demonstrations that respect or violate a certain
property (indicated by the label β). Our approach enables
human workers to compose more complex constraints out of
simple properties, e.g., a certain box configuration is avoided
(see Sec. III-B). Examples of demonstrations are illustrated
in Fig. 3.

However, learning the classifiers in image space is compu-
tationally intractable due to the sheer size of images and the
length of demonstrations. For computational efficiency, we
exploit the fact that when we encode positive or negative
demonstrations in the latent space Z , they will still be
positive or negative examples, i.e., the label β remains
unchanged. This property allows to enable non-experts to
specify task constraints in image space while performing the
classification in the much smaller latent space.

To achieve high accuracy for path classification, we make
use of deep learning architectures as these are successful in
solving binary classification problems. The class of neural
networks which has proved to be well suited to sequential
data processing is the family of Recurrent Neural Networks
(RNNs) [18]. In general, the key concept in the design of
RNNs is the use of cycles, which allows information to
persist and to be passed from one step of the network to the
next one. This property is crucial because a specific piece
of information can occur at multiple positions within the
sequence. In contrast, fully connected feed-forward neural
networks are not designed to guarantee the persistence of
information along a sequence. Long Short-Term Memory
(LSTM) [19] is a particular recurrent neural network ar-
chitecture that has been designed to address the vanish-
ing and exploding gradient problems which occur when
training conventional RNNs with the gradient-based back-
propagation through time technique [20]. LSTMs have been
successfully applied to sequence prediction and sequence
labelling tasks and furthermore they have shown to perform
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Fig. 4. Learned LSTMs for properties ϕi can be combined with Boolean
operators to compose more complex constraints for planning.

better than traditional RNNs on learning context-free and
context-sensitive languages [19].

The design of LSTMs is based on internal mechanisms
called gates that regulate the flow of information to be kept
or discarded at each time step. Furthermore, LSTMs store
indefinite temporal contextual information by using short-
term memory variables (hidden state) and long-term memory
variables (cell state).

B. Composition of constraints

More sophisticated constraints are usually obtained by
composing simple observations in combination with the
Boolean operators of LTL. Instead of deploying a new
network for each possible combination, a more convenient
approach is to re-employ the networks that have been already
trained to assess the simple observations individually. There-
fore, the evaluation of the composed constraint is performed
by elaborating the evaluations of single LSTMs (see Sec. IV-
D).

Formally, by applying the Boolean operators in (1) to a
set of formulas ϕi, we can compose new constraints ϕnew.
These constraints are then implemented by converting the
formula to a tree structure, in which each leaf corresponds
to the evaluation of an observation. These observations can
be replaced by the corresponding LSTM. The constraint is
evaluated by providing the plan to each LSTM, which assess
the corresponding ϕi separately. Fig. 4 illustrates this proce-
dure for the formula ((ϕ1∨ϕ2)∧ϕ3) that is composed out of
three simpler observations ϕ1, ϕ2 and ϕ3. For instance, we
are able to specify an always constraint by negating a given
eventually constraint. In this way, we leverage the structure
of LTL to compose complex constraints while keeping the
effort for recording demonstrations low for human workers.

C. Visual planning with task constraints

Algorithm 1 summarizes the steps to compute visual-
action plans that fulfil a set of formulas ϕi. We first encode
the current image of the scene Is and the goal image Ig in
the latent space Z . Afterwards, we determine all possible
simple plans from zs to zg in the LSR. For each plan p, we
assess whether it fulfils all properties ϕi and select one of
the paths that are compliant to every ϕi. Using the APN, we
determine the robot actions for the chosen valid plan p?.

IV. EVALUATION

To demonstrate our approach, we choose a task similar to
the one in Fig. 1 that is inspired by warehouse tasks and sum-



Algorithm 1 Visual-Action Planning with Constraints

Require: Is, Ig , start and goal images of the scene, and max
sequence length M

1: Encode Is, Ig into the latent space: zs, zg
2: Detect to which nodes of the Roadmap zs, zg belong to
3: Generate all simple paths from source to goal {pZ}s→g
4: Pvalid ← ∅
5: for each pZ ∈ {pZ}s→g do
6: for each LTLf ϕi do
7: Assess whether pZ satisfies ϕi
8: if pZ valid then
9: Pvalid ← Pvalid ∪ {pZ}

10: end if
11: end for
12: end for
13: Select one of the valid latent plans p∗Z
14: for each (zi, zi+1) in p∗Z do
15: Propose an action ui to achieve the desired transition

from zi to zi+1

16: end for

marized in Sec. IV-A. Subsequently, we show how to learn
two temporal properties for the task from demonstrations and
that LSTMs perform the best compared to other classification
techniques in Sec. IV-B. In Sec. IV-C, we evaluate how the
size of the demonstration dataset influences the accuracy of
the classification. Finally, we demonstrate the composition of
complex constraints out of simpler observations in Sec. IV-
D. Our simulations are performed in the physics simulator
pybullet [21], and the source code is publicly available in
the git repository1.

A. Considered task and visual planning setup

Our task is similar to the one illustrated in Fig. 1 in which
a robot is pushing boxes in a warehouse setting. The task of
the robot is to push boxes to a desired goal position so that
a human worker can pick up the box. Moreover, the robot
needs to fulfil different temporal constraints during planning.
For the sake of simplicity, the workspace is modelled as a
3x3 grid of dimensions 0.45× 0.45(m) to fit three boxes of
size 0.08 × 0.08 × 0.09(m) and to consider the reachable
arm space of the simulated robot.

For visual planning, we make use of the framework
presented in [1] and described in Sec. II-A. To create the
training dataset, we let the robot push one box at a time
in a horizontally or vertically direction (only the cardinal
directions) towards cells that are not yet occupied. The
actions u = (p1, p2) are a pair of coordinates p1 and p2,
each of which is a tuple of row and column indices. The
recorded images and actions are used to train the VAE and
generate the LSR.

Since our task involves a human that pickups boxes, we
extend the visual-action planning framework to consider
arbitrary (but pre-defined) box configurations. In our task, we

1https://github.com/Francescoes/visual planning
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Fig. 5. Example of human interaction in visual planning. The human
worker removes the green box which causes a transition from one connected
component (representing 3 boxes configurations) to another component
(representing 2 boxes configurations).

consider that the grid may contain three or two boxes. The
main difficulty of considering multiple box configurations
occurs during the training of the VAE. Configurations with
three boxes that share similar positions to configurations with
two boxes may be incorrectly encoded close to each other
in the latent space, and consequently be incorporated in the
same cluster when building the LSR; an example is provided
in Fig. 5. Note that transitions from 2-boxes nodes to 3-
boxes nodes on the roadmap are forbidden, but the human
operator could change the configuration causing a jump in
the latent state space from one node component to another
one. To address this problem, we propose to add contrastive
pairs to the training dataset of the VAE. The pairs are
randomly selected from the dataset that contains both kind of
configurations. As a result, we create an LSR with multiple
connected components that correspond to the different box
configurations (see Fig. 5). Thus, when the human pickups
a box, we can transit the system automatically from one
component to another.

Our dataset consists of 5000 tuples of two images of
dimensions 256×256×3 and action u. Roughly 72% are 3-
boxes and 28% 2-boxes configurations. The position of each
box in the grid cell is generated by adding noise (uniformly
drawn from [−0.012.5,+0.0125](m)) to the center of the
cell along each axis. The dataset is augmented by adding
2000 contrastive pairs to address different box configurations.
The VAE is trained for 125 epochs on the training dataset
of 5500 randomly chosen tuples and tested on the remaining
data. Similarly, we train the APN for 150 epochs on the
latent training dataset of 3815 tuples, derived from the image
dataset pre-processing it with the encoder of the trained
VFM, and test it on a dataset of 1008 tuples. The LSR is
built with the parameter wε = 1.0 and contains 831 nodes
belonging to 6 connected components, composed by 605, 77,
73, 72, 2, 2 nodes respectively, and 1971 edges.

B. Learning temporal constraints from demonstrations

To demonstrate our approach of learning constraints from
demonstrations, we consider our warehouse task and two
example constraints that the robot needs to satisfy in this
setting. To allow the human worker to pickup boxes, we
want the robot to periodically push boxes to the lower row
of the grid. Moreover, boxes should not be close to each
other for multiple consecutive time steps so that the robot

https://github.com/Francescoes/visual_planning
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Fig. 6. Planning results when considering both constraints ϕrow and ϕadj. Moreover, the human worker is removing a box from the lower row and our
extension automatically switches to the corresponding new configuration of the system.

is able to push boxes without interfering with other boxes.
Both task constraints can be summarized as:

1) Always place a box in the lower row at least every
three time steps;

2) Always ensure that boxes are in adjacent cells for at
most three time steps.

Both requirements can be formulated in LTL as:

ϕrow ::=�(o1 ∨ (©o1 ∨ (©(©o1)))), (3)
ϕadj ::=�¬(o2 ∧ (©o2 ∧ (©(©o2)))), (4)

where the observations o1 and o2 denote that at least one box
is in the lower row and two boxes are adjacent, respectively.

We generate the datasets of demonstrations DP,ϕrow
and

DP,ϕadj
by synthesizing images with desired and undesired

box configurations. These images are encoded in the latent
space and then normalized by removing the mean and scaling
to unit variance. The synthesis is feasible, since we only need
to account for box positions and not for any dynamics of
the system. We consider 2000 tuples for DP,ϕrow

and 4000
tuples for DP,ϕadj

. Roughly the 33% of DP,ϕrow
are tuples

of 2-boxes configurations sequences, and the remaining 66%
are tuples of 3-boxes configurations sequences. For DP,ϕrow

for each start-goal nodes we selected a valid and a non-valid
path, so that 50% of paths are valid and 50% are not, instead,
for DP,ϕadj

the percentage of valid paths is higher because 2-
boxes paths always satisfy (4). Each dataset is always split in
training (70%), validation (20%) and testing (10%) datasets.

To evaluate the performance of LSTMs, we compare them
with linear SVM classifiers, non-linear SVM classifiers with
a Radial basis function kernel, and a Multi Layer Perceptron
(MLP). The LSTM model is composed in sequence by a
stacked LSTM layer, a Dropout layer, a Linear layer and
a Sigmoid output unit. The hidden state of the stacked
LSTM layer contains 12 features, and 4 recurrent layers,
so that 4 LSTMs together form the stacked LSTM, with
each LSTM taking in the outputs of the previous one. The
MLP is composed by a Flatten layer, an input Linear layer
with 512 nodes, four Linear layers, with 256, 128, 32, 4
nodes per layers respectively, followed by rectified linear unit

functions, and finally a Sigmoid output unit. The networks
are implemented using PyTorch [22].

Since plans may have different lengths, all the sequences
are 0-padded to length 8. The input to the MLP and the
SVMs are flattened sequences, while the inputs of the LSTM
layer are tuples of dimensions (b, `, d), with batch size b =
200, sequence length ` = 8, and sequence dimension d = 64
to fit the latent space Z .

We train the LSTM, MLP and SVMs classifiers in a
supervised fashion on each dataset. Tables I and II report
the classification accuracy a, the precision p, the recall r,
the specificity s, and the balanced F-score F for each model
and each property. The specificity and F-score are:

s =
tn

tn+ fp
F = 2

pr

p+ r
, (5)

where tn are true negatives and fp the false positives. In our
task, p = 1.0 means that fp = 0, i.e., every path labelled as
valid by the model is in fact valid, whereas a r = 1.0 means
that fn = 0, i.e., every valid path was labelled correctly, and
similarly for the specificity.

For both constraints, our results indicate that the LSTM
classifier achieves better performance than the other consid-
ered classifiers. This performance is most likely a result of
the information persistence in LSTMs, which leads to a better
generalization of what the network learns during training
along several time steps. We added the learned LSTMs to
our visual-planning framework according to Alg. 1, so that
it is possible to obtain various plans for random initial and
goal images that fulfil the two specifications. An example of
such a plan where a human is picking up a box is shown in
Fig. 6.

C. Requirements on the demonstration dataset

In this paragraph, we investigate how the LSTM clas-
sification performance changes when varying the size of
the dataset in order to obtain the sufficient number of
demonstrations to learn a constraint with a certain degree
of accuracy. For this analysis, we consider the adjacency
constraint (4). To this end, we trained the LSTM for 300
epochs on datasets of variable size randomly generated



TABLE I
CLASSIFICATION PERFORMANCE FOR ”BOX IN LOWER ROW”

CONSTRAINT (3).

Method Classification Metrics
p r s F a

lin-SVM 0.871 0.816 0.876 0.842 0.847
nonlin-SVM 0.827 0.796 0.830 0.811 0.814
MLP 0.811 0.793 0.814 0.800 0.804
LSTM 0.956 0.907 0.960 0.931 0.934

TABLE II
CLASSIFICATION PERFORMANCE FOR ”ADJACENCY” CONSTRAINT (4).

Method Classification Metrics
p r s F a

lin-SVM 0.573 0.623 0.480 0.596 0.555
nonlin-SVM 0.637 0.645 0.588 0.640 0.618
MLP 0.591 0.691 0.430 0.628 0.571
LSTM 0.946 0.934 0.938 0.940 0.936

from the DP,ϕadj
. Table III summarizes the classification

performance of the LSTM in our experiment. Halving the
size of dataset from 2800 to 1400 examples reduces the
accuracy by 0.094. In this case, training the LSTM with
1400 demonstrations will provide 84.2% accuracy.

Lastly, we investigate the effect of uneven demonstration
datasets, i.e., the distribution of positive and negative ex-
amples is uneven. Therefore, we generate two additional
datasets DP,ϕrow,asym and DP,ϕadj,asym for each constraint.
However, this time 75% of the demonstrations are positive
and 25% not. Table IV illustrates the classification perfor-
mance for two LSTMs trained on these two datasets with
an uneven distribution over the classes. The classification
accuracy for (3) and (4) with an uneven distribution over
the classes are 0.933 and 0.888 respectively. Even though
these values are comparable to the ones with even dataset,
the specificity for (4) is much smaller, i.e. 0.674. Since this
value indicates that the number of false positives is high,
we encourage users to focus on creating evenly distributed
demonstration datasets.

D. Composition of constraints

In our final experiment, we demonstrate the composition
of complex constraints based on the syntax of LTL and
learned simpler constraints. We show how the composition
is performed and analyze whether the performance decreases
compared to learning the complex constraint directly from
demonstrations. Therefore, we consider the following three
simple constraints:

1) Eventually place a box in the lower right corner;
2) Eventually place a box in the lower left corner;
3) Always ensure that the green box is not in the center

of the grid.
We formalize those constraints in LTL as:

ϕrc ::= ♦oR ϕlc ::= ♦oL ϕcen ::= �¬oc, (6)

TABLE III
CLASSIFICATION PERFORMANCE FOR (4) W.R.T. DATASET SIZE.

Size Classification Metrics
p r s F a

2800 0.946 0.934 0.938 0.940 0.936
2450 0.934 0.925 0.920 0.928 0.923
2100 0.905 0.874 0.899 0.889 0.886
1750 0.889 0.877 0.872 0.883 0.874
1400 0.876 0.831 0.857 0.852 0.842

TABLE IV
CLASSIFICATION PERFORMANCE FOR (3) AND (4) TRAINING ON UNEVEN

DATASETS

LTLf Classification Metrics
p r s F a

ϕrow 0.958 0.952 0.881 0.955 0.933
ϕadj 0.902 0.956 0.674 0.928 0.888

where oR signalizes that a box is in the lower right corner,
oL that a box is in the lower left corner, and oc that the green
box is in the center of the image.

Finally, we want the robot to place a box in either the
lower left or right corner while never placing the green box
in the center of the grid, which corresponds to the constraint:

(ϕrc ∨ ϕlc) ∧ ϕcen (7)

For each simple constraint in (6), we generate a training
dataset of 700 examples, and test it on a dataset of 200
data points. To directly learn the composed constraint (7),
we use the sizes 1400 and 400 for training and test datasets,
respectively. Table V summarizes the classification perfor-
mance for each simple constraint, the composed one, and
directly learning the complex constraint. The accuracy of the
composed constraint is comparable to directly learning the
complex constraint. Figure 7 shows an example plan obtained
for the complex constraint in (7) using the composition
approach of three LSTMs.

Table V also reports the classification accuracy for the
composition of (ϕrow ∧ ϕadj). The results show that the
approach based on the composition performs as well as the
approach which directly considers the composed constraint,
but the composition has several advantages. Simpler con-
straints can be created with fewer examples and the human
does not need to consider multiple constraints at the same
time for the demonstrations. Moreover, they allow one create
a library of building blocks to compose complex constraints
on-the-fly. For instance, by negating ϕcen, we can achieve
that the robot eventually places the green box in the center.

V. CONCLUSIONS

This work presents how to integrate task constraints in
visual action planning frameworks while allowing designers
to easily specify, compose and integrate task specifications.
We show that LSTMs are appropriate tools to assess the
satisfaction of the constraints for a given action plan with
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Fig. 7. Planning results for the composed constraint in (7).

TABLE V
ACCURACY FOR SIMPLE AND THE COMPOSED CONSTRAINTS.

LTLf Classification Accuracy

ϕrc 0.998
ϕlc 0.990
ϕcen 0.904
1-LSTM: (ϕrc ∨ ϕlc) ∧ ϕcen 0.896
3-LSTM: (ϕrc ∨ ϕlc) ∧ ϕcen 0.909
1-LSTM: ϕrow ∧ ϕadj 0.836
2-LSTM: ϕrow ∧ ϕadj 0.806

high accuracy directly in the latent space representation. We
conducted an analysis of the requirements of the demon-
stration dataset when varying the size and for unevenly
distributed data. Finally, we showed the benefits of our
approach in a box pushing task in an interactive warehouse
setting. We are able to obtain visual-action plans that satisfy
various learned as well as composed constraints, which are
created by applying the Boolean operators to the simpler
constraints.
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