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Abstract— Embedding an optimization process has been
explored for imposing efficient and flexible policy structures.
Existing work often build upon nonlinear optimization with
explicitly iteration steps, making policy inference prohibitively
expensive for online learning and real-time control. Our ap-
proach embeds a linear-quadratic-regulator (LQR) formulation
with a Koopman representation, thus exhibiting the tractability
from a closed-form solution and richness from a non-convex
neural network. We use a few auxiliary objectives and reparam-
eterization to enforce optimality conditions of the policy that can
be easily integrated to standard gradient-based learning. Our
approach is shown to be effective for learning policies rendering
an optimality structure and efficient reinforcement learning,
including simulated pendulum control, 2D and 3D walking, and
manipulation for both rigid and deformable objects. We also
demonstrate real world application in a robot pivoting task.

I. INTRODUCTION

Efficient policy learning relies on representing policies
with an informative structure. Important contributions have
been made by using specific dynamical systems [1] and inte-
grating robot controllers with expressive neural networks [2],
[3]. One direction of work has advocated parameterizing an
optimization problem instead of a procedural policy. The pol-
icy inference is implicit by solving the problem in the inner
loop and desired properties can hence be flexibly specified
in a declarative manner [4]. Early work used derivative-
free methods to learn optimization parameters [5] while
more recent approaches employ automatic differentiation and
functions with almost everywhere differentiability, learning
a differentiable optimization [6], [7].

Embedding an optimization process raises the question of
how fast one can perform inference for such policies. Ex-
isting works focused on differentiating optimality conditions
for efficient backward evaluation [8], [9]. However, forward
inference still largely relies on iterations, whose number can
be up to hundreds [8], and suffers from local optimality [10].
Convex programming exhibits improved performance with a
convergence in milliseconds on small or medium numerical
problems [9]. However, for a rich policy representation,
non-convex optimization involving neural network models
is still infeasible as benchmarked in [8], [11]. To this end,
challenges remain to embed a non-convex representation and
to enable real-time demanding application.

We propose to bridge the gap by integrating Koopman op-
erator to differentiable optimization policies. Koopman the-
ory allows representing nonlinear dynamics with an approxi-
mated linear form [12], enabling data-driven control for robot
fish and soft manipulators [13], [14]. This effectively turns
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Fig. 1. Embedding optimal control in policy inference: (a) Explicitly
expanding gradient steps of iterative optimization [7] or iteratively forming
convex optimization with dynamics Jacobian [8]; (b) LQR formulation with
a Koopman representation requiring only one backward sweeping.

an original non-convex optimization to an approximated
convex programming or even a linear-quadratic-regulator
(LQR) problem, thus significantly improves the efficiency
of policy evaluation. We show that it is feasible to embed
Koopman optimal control for efficient policy inference and
gradient-based learning for both optimization and Koopman
representation parameters. To ensure the validity of parame-
ters, we propose augmenting the learning task with auxiliary
objectives. Our analysis shows that the contributed form is
flexible for representing a range of neural policies with an
optimality structure. More importantly, it enables using basic
automatic differentiation and inference with significantly
reduced costs, whose effectiveness is manifested in a series
of reinforcement learning tasks, including pendulum control,
locomotion, object manipulation and real robot pivoting.

II. RELATED WORK

Our work is broadly related to topics of improving policy
learning efficiency with inductive biases, using Koopman
theory in synthesizing robot control and estimating Koop-
man operators with machine learning approaches particularly
learning with deep neural networks.



Learning with Structured Policy: A plethora of robot
learning research resorts to structured policies such as mo-
tion primitives [1] or optimal impedance trajectories [15].
Recent research showcases policies parameterized by state-
dependent variable impedance controllers in learning contact-
rich tasks [2], [3], with stability guarantees by searching in a
constrained parameter space [16] or exploiting special neural
network structures [17], [18].

Other research seeks to use an optimization structure. Pio-
neering work [5] proposes to learn parameters of a quadratic
cost function through derivative-free evolutionary strategies,
solving the inner loop planning as an optimal inference
problem. [19] uses Bayesian optimization to tune parameters
of kernels with an LQR structure. Recent machine learning
progress opens up ways for gradient evaluation with respect
to optimization parameters. This enables plugging policies
into gradient-based learning algorithms. Extensive work has
been done for learning policies from expert demonstrations,
by expanding the inner loop optimization [6], [7], using
differentiable LQR under robust constraints [20] or linear
switching dynamical systems [21]. [8] computes gradients
analytically backward from a fixed point. Obtaining the fixed
point from the forward process still relies on iteratively
building local convex problems and the gradients can be in-
accurate if the iteration is not long enough to reach the fixed
point. Another work, [10] further improves the backward
efficiency by constructing an auxiliary LQR, resorting to an
external solver for forward evaluation. More recent research
learns parameters of a convex optimization controller [9].
All of these works focus on numerical examples, assuming
known dynamics constraints [9] or their analytical form and a
trajectory-based policy [10], and face difficulties when using
neural networks to approximate dynamics [8]. Our work
embeds optimal control that is non-convex with the original
state. Notably, we leverage a Koopman representation to
analytically solving an convex problem like [9] but with
an approximated form, and is hence scalable to online
reinforcement learning with parameterized neural networks.

Koopman Control in Robotics: Koopman operator rep-
resents nonlinear dynamical system as linear transformation
in a Hilbert space [12]. Modern literature extends the the-
ory to controlled system [22] and explores its application
to MPC [23], [24]. These results highlight a data-driven
paradigm for controlling high-dimensional nonlinear dynam-
ical systems and have raised interests from the robotics
community. Prominent examples include motion control
of robotic fish [13] and soft continuum manipulator [14].
Koopman operators are commonly identified with a linearly
parameterized estimator, using a fixed set of observable
functions [13]. Authors in [25] investigate constraints on
Koopman operator and observable basis functions for a
stable prediction, showing an improved accuracy in quadrotor
control. In our work, these functions can be simultaneously
learned alongside policy parameters. The policy is also
flexible to be used in a model-free setting thanks to the
differentiability of the inner loop optimal control.

Learning Latent Dynamics and Koopman Operators:

Learning a latent representation is deemed as an effective
way of modeling dynamical data. Deep neural networks
enable to learn rich encoders and dynamical models for
data like image sequences [26]. Other works argue for
learning latent dynamics with an affine structure and local
linearity [27], [28], which are more amenable to model-based
control [27]. Recently, the significance of structured latent
dynamics is further demonstrated by explicitly penalizing
space curvature [29] or considering a Newtonian formal-
ism [30].

Koopman theory uses a latent representation that admits
linear dynamics, implying a flat space. Learning Koop-
man observables with neural networks has been explored
in [31], [32], [33]. In particular, [32] argues to use an
auxiliary network to determine Koopman eigen values so
as to account for continuous spectra. Other works employ
Koopman representation in the latent space of variational
dynamics [34] and image sequences with a compositional
structure [35]. All work reviewed above focus on prediction
tasks and supervised learning of Koopman representations.
In the presented paper we target policy learning for robotic
skills in which prediction may be an auxiliary task.

III. PRELIMINARIES

A. Koopman Operator

We consider nonlinear autonomous dynamical systems

xt+1 = f(xt) (1)

where x ∈ Rn and t denote system states and discrete time
index, respectively. Koopman operator theory suggests lifting
x to a function space where the evolution can be captured
by applying a linear operator K

K ◦ g(xt) = g ◦ f(xt) = g(xt+1) (2)

with g(·) denoting elements of the function space as g :
Rn → R, often known as observables. The Koopman
operator K is often infinite-dimensional. In practice, a finite
dimensional approximation adopts a vector-valued g : Rn →
Rk and the linear operator K hence becomes a matrix K ∈
Rk×k.

For controlled dynamical systems xt+1 = f(xt,ut),
one can recover the autonomous case in Equation (1) if
control u ∈ Rm is subject to a feedback law or its own
dynamics [22]. In the standard case of solely identifying
xt+1 = f(xt,ut), where predicting ut+1 is not necessary,
the Koopman operator can be defined as

Kg(xt,ut) = g(f(xt,ut),0) (3)

where g : Rn × Rm → Rk and ut+1 is constrained as a
zero vector. Equation (13) allows to estimate the operator K
by solving a linear equation when g is selected for a rich
representation. Recent works propose to use neural models
to parameterize observables [31], [32]. One common choice
is to make g linear with u and to decouple state and control

g(x,u) = φθ(x) + Mu (4)



Here, φ denotes the state-dependent part, which can be
neural networks with a parameter θ, and M ∈ Rk×m
parameterizes a linear transformation of control. Substitute
this to Equation (13) and note that M is a free parameter,
one can obtain

φθ(xt+1) = Aφθ(xt) + But (5)

with a reparameterization of A = K ∈ Rk×k and B =
KM ∈ Rk×m. The observable design as in Equation (14)
might be limited for neglecting the interaction between state
and control [22]. However, it yields a standard linear time-
invariant system with respect to φ and u, which facilitates
control analysis and synthesis.

B. Linear Quadratic Regulator

Linear Quadratic Regulator (LQR) derives optimal control
for a linear dynamical system under a quadratic instantaneous
cost function. Specifically, considering a finite horizon T and
non-zero regulation target xr, it can be formulated as solving

min
u0:T−1

T−1∑
t=0

[(xt − xr)TQ(xt − xr) + uTt Rut]

s. t. xt+1 = Axt + But

(6)

with Q ∈ Rn×n and R ∈ Rm×m denoting symmetrical
positive definite matrices. The regulation target xr can be
time-dependent for a tracking problem and we choose to
omit the terminal cost term. The solution takes a form of

ut = −Ktxt + kt (7)

The terms of feedback K and feedforward k are obtained by

Kt = (BTSt+1B + R)−1BTSt+1A

kt = (BTSt+1B + R)−1BT st+1

(8)

where St and st parameterize the optimal quadratic cost-to-
go function up to a constant

J ∗
t (x) = xTStx + 2xT st + c (9)

LQR admits a closed-form solution by following backward
Riccati recursions

St = ATSt+1(A−BKt) + Q

st = (A−BKt)
T st+1 + Qxr

(10)

with ST = Q and sT = Qxr. The computational complexity
scales with the length of horizon T . One can choose to
truncate the planning horizon and only adopt u0 at the first
step. This yields receding horizon model predictive control.

IV. APPROACH

We first give an intuitive idea about how optimization is
used as a differentiable policy and highlight the tractability
issue of existing methods. This is followed by a brief
introduction to Koopman control which lays foundations for
presenting the contributed method, ending with a discussion
regarding method properties and implementation.

A. An Intuitive Idea

We consider policies u = π(x) with x ∈ Rn and u ∈
Rm denoting state observations and control, respectively. The
idea of embedding optimization as a policy representation is
determining u implicitly as the solution to an optimal control
problem [5]

min
u0:T

T∑
t=0

c(xt,ut)

s. t. xt+1 = f(xt,ut)

(11)

where c(xt,ut) denotes a running cost and f(xt,ut) defines
a dynamics model with t as the discrete time index for a finite
horizon T +1. A forward inference of π(x) eventually takes
the first control u∗

0 and re-runs the optimization for a new
state query, working as receding horizon model predictive
control (MPC) [8]. The policy is constructed by the cost
and dynamics model whose parameters can be learned by a
evolutionary strategy [5] or differentiating the optimization
process [6], [8], [9].

Embedding optimization could provide useful policy struc-
ture apriori, for instance, in learning goal-directed behav-
iors [5], [7]. However, solving the inner loop optimization
can be expensive for evaluating π, especially when the
cost or the dynamics are represented by non-convex neural
networks [8], [7]. Specifically, as illustrated in Figure 1(a),
the policy needs to recursively expand gradient updates
for explicit optimization steps [7] or form local quadratic
programming [8], resulting in a complexity of O(NT ).
Moreover, N can be up to a few hundred for policy back-
warding with solutions of sufficient optimality [8], which is
also not guaranteed in general.

Our idea is to adopt a LQR formulation in the inner-
loop optimization, which admits a closed-form solution by
following one backward sweep of Riccati recursions. This
drastically reduces the complexity from O(NT ) to O(T )
and avoids local optima, while trade off the policy richness
compared to general nonlinear optimization. We propose
to use Koopman control as a complement. This essentially
aims at an exact solution of an approximated problem, in
contrast to seeking approximated solutions to the original
problem whose parameters are still subject to learning or
estimation [7], [8], [10].

B. Koopman Operators

Koopman operator theory suggests lifting x to a function
space where the evolution can be globally captured by a
linear operator K. For the instance of an autonomous system
xt+1 = f(xt), we have

(K ◦ g)(xt) = (g ◦ f)(xt) (12)

with every g : Rn → R, often known as observables, in
the function space that is invariant under K. The Koopman
operator K is applied through function composition ◦ and
the function space is often infinite-dimensional. In practice,
a finite dimensional truncation adopts a vector of observables



g : Rn → Rk and an identification of K as a matrix L ∈
Rk×k [36].

For controlled dynamical systems xt+1 = f(xt,ut), one
can recover the autonomous case if control u is subject to a
feedback law or its own dynamics [22]. In the standard case
of solely identifying xt+1 = f(xt,ut), predicting ut+1 is
not necessary and the Koopman operator can be defined as

Lg(xt,ut) = g(f(xt,ut),0) = g(xt+1,0) (13)

where g : Rn × Rm → Rk and ut+1 is constrained as a
zero vector. Equation (13) allows to estimate the operator L
by solving a linear equation when g is selected for a rich
representation. Recent works propose to use neural models
to parameterize observables [31], [32]. One common choice
is to decouple state and control [14]

g(x,u) = φθ(x) + Mu (14)

Here, φ denotes the state-dependent part, which can be
parameterized θ, and M ∈ Rk×m parameterizes a linear
transformation of control. Substitute this to Equation (13)
and note that M is a free parameter, one can obtain

φθ(xt+1) = Aφθ(xt) + But (15)

with a reparameterization of A = L ∈ Rk×k and B =
LM ∈ Rk×m. The observable design as in Equation (14)
might be limited for neglecting the interaction between state
and control [22]. However, it yields a standard linear time-
invariant system with respect to φ and u, which facilitates
control analysis and synthesis.

C. Policy with Embedded Koopman Optimal Control

We propose to use a quadratic running cost in the space
governed by Equation (15), yielding an LQR formulation
with respect to φ and u. The original problem in Equa-
tion (11) can now be casted as

min
u0:T−1

T−1∑
t=0

[(φθ(xt)− φθ(xr))TQ(φθ(xt)− φθ(xr)) + uTt Rut]

s. t. φθ(xt+1) = Aφθ(xt) + But
(16)

with Q ∈ Rn×n and R ∈ Rm×m denoting symmetrical
positive definite matrices. The regulation target xr can be
a time-dependent parameter if it is known apriori for a
tracking problem. Following the well-known LQR analysis,
the solution takes a form of

u∗
t = −Ktφθ(xt) + kt (17)

We follow MPC and use u∗
0 at the first step, e.g. π(x0) =

u∗
0 for a deterministic policy. Beside the neural network

parameter θ, the policy is also parameterized by the terms
of feedback K and feedforward k, which are obtained by

Kt = (BTSt+1B + R)−1BTSt+1A

kt = (BTSt+1B + R)−1BT st+1

(18)

with St and st parameterizing the cost-to-go function up
to a constant: J ∗

t (x) = φθ(x)
TStφθ(x) + 2φθ(x)

T st +

const. These parameters are in turn related to {Q,R,A,B}
through Riccati recursions

St = ATSt+1(A−BKt) + Q

st = (A−BKt)
T st+1 + Qxr

(19)

with ST = Q and sT = Qxr.
The form given by Equation (17) can be called Koop-

man policy which is nonlinear with x, see Figure 1(b).
It is differentiable with respect to the parameter group
Ω = {Q,R,A,B, θ,xr} and can hence be readily used
in gradient-based learning. Some parameters are subject to
constraints such as positive-definiteness and the dynamics
constraint in Equation (15). For the former, we can use
exponential transformation for diagonal Q and R or follow
the reparameterization in [37] for full matrices. For the latter,
we propose to augment auxiliaries to the training loss

L = Ltrain +λfitLfit +λreconsLrecons +λreg(‖A‖+‖B‖) (20)

where Ltrain is the training loss for example the negative
return of a reinforcement learning agent or a regression
error of behavior cloning. Given a batch of {xt,ut,xt+1},
Lfit(A,B, θ) = ‖φθ(xt+1)−Aφθ(xt)−But‖2 penalizes a
large fitting error of Equation (15). Lrecons is a reconstruction
loss on the Koopman representation similar to [32] and
λreg weighs the regularization of matrix norms as suggested
in [14].

D. Remarks on Implications and Implementation

Ensuring linear evolution in the Koopman invariant sub-
space may require a large k to include sufficient observables.
We find it still feasible to learn with k that is comparable
to or smaller than the state dimension n. This may be
partially explained by the usage of neural network and
nonlinear reconstructions, which are believed to allow richer
observables [33] and Koopman embeddings with a lower
dimension [24]. Using a smaller k also correlates to the idea
of learning low-dimensional latent dynamics for a compact
model [27], [7]. After all, a model that roughly captures
task dynamics could already be useful for efficient policy
learning, whose ultimate goal is not necessarily accurate
dynamics prediction.

The time horizon T controls how far the policy is allowed
to look ahead. As an alternative perspective, we can view
Equation (16) in an infinite horizon setting where T in Fig-
ure 1(b) becomes the number of iterations in approximately
solving the Discrete Algebraic Riccati Equation. One may
differentiate the equation to obtain adjoints of the parameters
while we rely on automatic differentiation here. In either
case, conditions need to be applied on dynamics matrices
to strictly enforce optimality and stability. These are so far
not accounted for but may be explicitly added as auxiliary
constraints on matrix ranks. Still, we find the approximation
and a small T tend to be good enough to yield reasonable
policy structure and learning success.

It is also worth to note the relation of a Koopman policy
to a “vanilla” neural network policy. Equation (17) is a
standard neural network model when constraints imposed by
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Fig. 2. Policy interpretability and inference efficiency for an inverted
pendulum example. (a) Ground truth of cost-to-go obtained from value-
iteration. (b) Cost-to-go from learned Koopman policy with k = 4 and
T = 5. (c) Time costs of forwarding a Koopman policy and a differentiable
MPC [8] with networks of similar sizes, 32 and 128 iteration steps. Note
the metric is wall time of a common logarithmic scale.

Equation (18) and (20) are neglected. Meanwhile, one can
also discard the training loss Ltrain, while determining control
from a given cost function and learned dynamics as model-
based policy optimization, similar to robotics practice [14].
To this end, our approach implies flexibility of training
policies on a spectrum, from model-free neural networks to
controllers derived from model-based optimization.

In the implementation, we choose to fix R to avoid an
ill-posed problem. An easy extension to Koopman policy is
to merge it with the output from another neural network
policy. The neural network policy is expected to complement
by learning a “residual” [38]. We call this variant Koopman
Residual Policy and find it superior in certain task settings.
The least square loss of Lfit can also be implemented with
pseudo inverse as in [35] and in such a case, A and B are
implicitly determined. We find this achieves similar perfor-
mance and hence stick to an explicit parameterization for
the flexibility of regularizing dynamics matrices as in [14].
It is also possible to adopt a multi-step prediction loss as
in [32] when longer data snippets are available e.g. in on-
policy reinforcement learning. We keep one-step prediction
to focus on the basic form of the idea and to minimize the
modification on policy learning algorithms.

V. EXPERIMENTAL RESULTS

We set to answer two questions: 1) Can we learn a Koop-
man policy that resembles optimality structure? 2) Can we

Fig. 3. Locomotion tasks: halfcheetah and ant; Object manipulation tasks:
Block insertion and farbic buttoning.

use a Koopman policy for efficiently learning and controlling
robotic tasks? To answer the first question, we report the in-
terpretablity of a policy learned in a behavior cloning setting.
For the second one, we compare the inference efficiency
to existing work, highlighting the tractability of Koopman
policy and its reinforcement learning results in a series of
Gym tasks [39]. Lastly, we show a hardware validation by
deploying the proposed policy in a robot pivoting task.

A. Policy Interpretability and Inference Efficiency

We consider an inverted pendulum task as in [8] for
the ease of visualization. The dataset contains 60 rollouts,
collected by running an expert policy obtained from value
iteration over discretized state and action spaces and a
discounted factor of 0.99. Each rollout collects 100 time
steps and the policy is tasked to regress the expert action,
setting Ltrain in Equation (20) as a mean-square error. It
can be seen from Figure 2(b) that the cost-to-go function
constructed by learned parameters resembles a similar layout
to the ground truth. Note that the target here is not accurately
recovering the underlying quadratic cost function, because
the actual form in Equation (17) is with a nonlinear feature
φ and subject to different problem setups such as a finite
horizon. What we would like to point out from Figure 2(b)
is that Koopman policy indeed reflects a structure that can
be interpreted by the LQR optimality. This may support
understanding and reusing the learned policy in a modular
manner.

The time costs for policy inference are illustrated in
Figure 2(c), with the official implementation of differentiable
MPC [8] as a comparison on the same workstation with an
Intel i9 CPU. We get a similar performance as [8] that it
takes seconds for differentiable MPC to infer the action to
take under neural network dynamics. In contrast, Koopman
policy has an overhead at the level of milliseconds and the
cost only increases moderately for larger embedding size
and planning horizon. This enables running the policy at
a rate of 50 to 100Hz which is essential for online policy
learning and real-time control. The performance of Koopman
policy in inference can further be optimized by precomputing
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Fig. 4. Average return of reinforcement learning for pendulum control, locomotion and object manipulation tasks, with 10 seeds and shader regions
indicating standard deviations.

the Riccati recursions in Figure 1(b), although this is not
exploited in this test. In light of the tractability, we will focus
on Koopman policies and basic neural network policies in
the next subsection for reinforcement learning results.

B. Reinforcement Learning for Robotic Tasks

We evaluate the effects of imposed Koopman structure
in the context of reinforcement learning. The considered
tasks are simulated as Gym environments on top of pybul-
let [40], ranging from inverted pendulum control, character
locomotion to object manipulation (Figure 3). The proposed
Koopman policy is applied to both on-policy and off-policy
learning including Proximal Policy Optimization (PPO) [41]
for pendulum control and object manipulation, and Soft Ac-
tor Critic (SAC) [42] for character locomotion, with additive
noises compatible to the corresponding algorithms. We use
implementation from the garage library [43], default algo-
rithm parameters and the same neural networks for vanilla
and Koopman policies, value functions and residual modules.
Koopman policies use k = 4 and T = 5 in all tests since we
don’t find larger values having major influence when using
pendulum as validation tasks. The total loss has λreg = 0.01
and all other coefficients are set to 1, except λfit = 0.01 and
λrecons = 0 in two object manipulation environments. The
tests have a budget of about 500K environment steps for PPO
tasks and 1M for SAC tasks. We give a brief introduction to
the object manipulation tasks since others are standard Gym
environments [39].

Block Insertion (Figure 3 bottom left): this resembles
a peg-in-hole task by learning to insert a rigid block over

a 2D plane [16]. The policy receives block position and
velocity and outputs force actuation. The initial position of
the block is randomized while the goal location is fixed with
a clearance of 0.5mm. The environment uses a dense reward,
measuring the distance to the goal location at each time step
and imposing a large weight for the terminal. We migrate
this environment to pybullet and the physics engine appears
to make the task harder than the original one in [16].

Fabric Buttoning (Figure 3 bottom right): this task is
one of the Dynamic Environments with Deformable Objects
(DEDO) [44] where the policy moves two anchors to match
fabric holes to buttons. Since the material is deformable,
the hole can only be indirectly manipulated and the whole
system is highly underactuated. At the end of each episode,
the anchors will release the fabric and incur a large negative
reward if the fabric drops, which is deemed as a failure.
We discard camera input and use anchor position as the
observation. Note that this is the only DEDO task that so
far reinforcement learning baselines will not fail [44].

From learning curves in Figure 4, it is clear that Koopman
policy and its variant perform at least comparable to a
neural network baseline. This is probably not surprising since
as discussed in Section IV-D, vanilla neural networks can
be seen as a special Koopman policy under certain con-
ditions. Asymptotically the performance converges in most
environments except Figure 4(e) which may benefit from
the goal-directed structure imposed by the LQR problem.
Although locomotion tasks favor limited-cycle behaviors,
Koopman policies work equally well for them and appear
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Fig. 5. Pivot task setup, and eight consecutive frames from the observational camera during the −40° pivot to zero task. To safeguard the hardware the
simulation sets an operational space of ≈ ±71° and on the robot a low-level safety controller is triggered when the arm gets close to these joint limits to
push the arm back.

to learn faster especially in more challenging environments,
e.g., 3D locomotion in Figure 4(d). In the deformable task
(Figure 4(f)), the performance boost, in particular from the
basic form without a residual, is not as significant as in
Figure 4(e). This may be due to the the partial observability
from the anchor position whose dynamics are insufficient for
fully determining the fabric state.

C. Real-world Pivoting Task

We deploy Koopman residual policy on physical hardware
to perform a pivoting, demonstrating thus applicability in a
highly dynamic task. An object is placed in Franka Emika
Panda’s gripper at a non zero angle: we selected [−40°,
−30°, −20°, −10°, 10°, 20°, 30°, 40°] for the validation.
The acceleration φ̈arm of the sixth rotational joint as well
as the gripper opening distance dfing are controlled to pivot
the object to a 0° orientation relative to the gripper. The task
is very similar to the pivoting task presented by [45]. We
employ the same action space but reduce the observation
space to the relative angle φtl, the current arm rotational
position φarm as well as the velocity φ̇arm. The system is
trained in simulation employing the same dynamic models
and randomization as in [45] with the notable difference
of changing the friction model such that the pole sticks
when the gripper finger distance goes below a minimum
threshold dmin = 0.0185. The model is trained for 20
epochs and then deployed in a zero-shot fashion onto the
real robotics system. Figure 5(a) shows the pivoting setup,
while Figure 5(b) shows eight consecutive frames from the
observational camera during the execution of the −40° pivot
to zero task. Successful execution videos of all eight starting
configuration can be found on the project website1.

VI. CONCLUSIONS

We contribute a policy form with embedded optimization
that is applicable for online learning and inference. The

1https://koopman-learning.github.io/web/

Koopman representation is shown as the key of enabling non-
convex nonlinearity with an efficient optimality structure.
Our validation finds the policy is versatile and effective
in learning a set of robotic tasks, ranging from simulated
pendulum control, locomotion to object manipulation and
deploying it for a pivoting task on a real robotic system..

Our method does have some limitations that motivate
our ongoing research. The current constraint enforcement
requires to trade off a few auxiliary objectives. We find it
generally works to use default weights from literature with
similar terms due to balance of optimizing the auxiliary terms
and the policy likelihood. The reconstruction term is also
redundant in many cases because only encoder is needed for
learning latent dynamics [29]. The method will benefit from
replacing auxiliary objectives with less restrictive terms or
a parameterization fulfilling these constraints by design. We
also observe exploded gradient issues that sometimes halt
entire learning process, especially when very large T and
m are used. This is caused by inverting poorly conditioned
matrices, an issue that appears fundamental for reliably
using automatic differentiation and many differentiable struc-
tures [46]. Lastly, extensions for including constraints also
encoded by the Koopman representation may facilitate more
optimization problems and application on real systems.
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