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Abstract Caging grasps limit the mobility of an ob-

ject to a bounded component of configuration space.

We introduce a notion of partial cage quality based

on maximal clearance of an escaping path. As comput-

ing this is a computationally demanding task even in

a two-dimensional scenario, we propose a deep learn-

ing approach. We design two convolutional neural net-

works and construct a pipeline for real-time planar par-

tial cage quality estimation directly from 2D images

of object models and planar caging tools. One neural

network, CageMaskNN, is used to identify caging tool

locations that can support partial cages, while a sec-

ond network that we call CageClearanceNN is trained

to predict the quality of those configurations. A partial

caging dataset of 3811 images of objects and more than

19 million caging tool configurations is used to train

and evaluate these networks on previously unseen ob-

jects and caging tool configurations. Experiments show

that evaluation of a given configuration on a GeForce

GTX 1080 GPU takes less than 6 ms. Furthermore, an

additional dataset focused on grasp-relevant configura-

tions is curated and consists of 772 objects with 3.7

million configurations. We also use this dataset for 2D

Cage acquisition on novel objects. We study how net-

work performance depends on the datasets, as well as

how to efficiently deal with unevenly distributed train-
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ing data. In further analysis, we show that the evalua-

tion pipeline can approximately identify connected re-

gions of successful caging tool placements and we eval-

uate the continuity of the cage quality score evaluation

along caging tool trajectories. Influence of disturbances

is investigated and quantitative results are provided.

1 Introduction

A rigid object is caged if it cannot escape arbitrarily far

from its initial position. From the topological point of

view, this can be reformulated as follows: an object is

caged if it is located in a bounded connected component

of its free space. This notion provides one of the rigorous

paradigms for reasoning about robotic grasping besides

form and force closure grasps [1], [2]. While form and

force-closure are concepts that can be analyzed in terms

of local geometry and forces, the analysis of caging con-

figurations requires knowledge about a whole connected

component of the free configuration space and is hence

a challenging problem that has been extensively studied

analytically. However, since global properties of config-

uration space may also be estimated more robustly than

subtle local geometric features used in classical force

closure analysis, caging may hold promise particularly

as a noise-tolerant approach to grasping and manipula-

tion.

In its topological formulation, caging is closely re-

lated to another global characteristic of configuration

spaces – path-connectedness, and, in particular, is a

special case of the path non-existence problem [3,4].

This is a challenging problem, as it requires reasoning

about the entire configuration space, which is currently

not possible to reconstruct or approximate [3,4].
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Fig. 1: Given an image of an object (depicted in black) and 3
or 4 caging tools (depicted in green), CageMaskNN determines
whether a configuration belongs to the “partial cage” subset.
If it does, CageClearanceNN, evaluates its quality according
to the clearance measure learned by the network. On the fig-
ure, the blue region corresponds to successful placements of
the fourth finger according to CageMaskNN, and their quality
predicted by CageClearanceNN.

Another interesting global characteristic of a con-

figuration space is the maximum clearance of a path

connecting two points. In path planning, paths with

higher clearance are usually preferred for safety reasons.

In contrast, in manipulation, if an object can escape

from the manipulator only through a narrow passage,

escaping is often less likely. In practical applications,

it might be enough to partially restrict the mobility of

the object such that it can only escape through narrow

passages instead of completely caging it. Such configu-

rations are furthermore less restrictive than full cages,

thus allowing more freedom in placing caging tools.

This reasoning leads to the notion of partial caging.

This generalization of classical caging was first intro-

duced by Makapunyo et al. [5], where the authors define

a partial caging configuration as a non-caging formation

of fingers that only allows rare escape motions. While

[6] and [7] define a similar notion as energy-bounded

caging, we propose a partial caging quality measure

based on the maximum clearance along any possible

escaping path. This value is directly related to the max-

imum width of narrow passages separating the object

from the rest of the free space. Assuming motion is ran-

dom, the quality of a partial cage depends on the width

of a “gate” through which the object can escape.

Our quality measure is different from the one pro-

posed in [5], where the authors introduced a measure

based on the complexity and length of paths constructed

by a sampling-based motion planner, thus generalizing

the binary notion of caging to a property parameterized

by cage quality.

One challenge with using sampling-based path plan-

ners for partial caging evaluation is that a single con-

figuration requires multiple runs of a motion planner

and – in the case of rapidly exploring random tree

(RRT) – potentially millions of tree expansion steps

each, due to the non-deterministic nature of these al-

gorithms. This increases the computation time of the

evaluation process which can be critical for real-time

applications, such as scenarios where cage quality needs

to be estimated and optimized iteratively to guide a

caging tool from a partial towards a final cage. We sig-

nificantly speed up the evaluation procedure for par-

tial caging configurations by designing a deep learning-

based pipeline that identifies partial caging configura-

tions and approximates the partial caging evaluation

function (we measured an evaluation time of less than

6 ms for a single given configuration on a GeForce

GTX 1080 GPU). For this purpose, we create a dataset

of 3811 two-dimensional object shapes and 19055000

caging tool configurations and use it to train and eval-

uate our pipeline.

Apart from evaluating given partial caging config-

urations, we also use the proposed quality measure to

choose potentially successful placements of 1 out of 3 or

4 caging tools, assuming the positions of the remaining

tools are fixed. In Fig. 1, we represent the output as a

heat map, where for every possible translational place-

ment of a caging tool along a grid the resulting partial

caging quality value is computed. Another application

of the pipeline is the evaluation and scoring of caging

configurations along a given reference trajectory.

Furthermore, we explore different shape similarity

measures for objects and evaluate them from the partial

caging perspective. We propose a way to generate par-

tial caging configurations for previously unseen objects

by finding similar objects from the training dataset and

applying partial caging configurations that have good

quality score for these objects. We compare three differ-

ent definitions of distance in the space of shapes: Haus-

dorff, Hamming, and the distance in the latent space

of a variational autoencoder (VAE) trained on a set of

known objects. Out experiments show that Hamming

distance is the best at capturing geometric features of

objects that are relevant for partial caging, while the

VAE-induced distance has the advantage of being com-

putationally efficient.

This paper is a revised and extended version of our

previously published conference submission [8]. The con-

tribution of the extension with respect to the conference

paper can be summarized as follows:

1. we define a grasping band for planar objects – the

area around the object that is suitable for placing

caging tools, created a new dataset1 consisting of

partial caging configurations located in the grasping

band;

2. we approximate our partial caging quality measure

with a deep neural network trained on this new

dataset;

1 https://people.kth.se/~mwelle/pc_datasets.html

https://people.kth.se/~mwelle/pc_datasets.html
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3. we perform ablation studies to evaluate our deep

network architecture;

4. we evaluate the adequacy of our partial caging qual-

ity measure by modeling the escaping process as a

random walk, and measuring the escape time;

5. we propose a cage acquisition method for novel ob-

jects based on known partial caging configurations

for similar objects; for this, we explore several dif-

ferent distance metrics;

6. we further evaluate the robustness of the cage ac-

quisition with respect to noise.

2 Related Work

One direction of caging research is devoted to point-

wise caging, where a set of points (typically two or

three) represents fingertips, and an object is usually

represented as a polygon or a polyhedron, an example

of a 2D cage can be seen in Fig. 2 on the left-hand side.

Rimon and Blake in their early work [9] proposed an

algorithm to compute a set of configurations for a two-

fingered hand to cage planar non-convex objects. Later,

Pipattanasomporn and Sudsang [10] proposed an algo-

rithm reporting all two-finger caging sets for a given

concave polygon. Vahedi and van der Stappen in [11]

described an algorithm that returns all caging place-

ments of a third finger when a polygonal object and

a placement of two other fingers are provided. Later,

Rodriguez et al. [2] considered caging as a prerequisite

for a form closure grasp by introducing a notion of a

pregrasping cage. Starting from a pregrasping cage, a

manipulator can move to a form closure grasp without

breaking the cage, hence guaranteeing that the object

cannot escape during this process.

One can derive sufficient caging conditions for caging

tools of more complex shapes by considering more com-

plex geometric and topological representations. For ex-

ample, an approach towards caging 3D objects with

‘holes’ was proposed by some of the authors in [12,

13,14]. Another shape feature was later proposed in

[15], where we presented a method to cage objects with

narrow parts as seen in Fig. 2 on the right-hand side.

Makita et al. [16,17] have proposed sufficient conditions

for caging objects corresponding to certain geometric

primitives.

Finally, research has studied the connectivity of the

free space of the object by explicitly approximating it.

For instance, Zhang et al. [18] use approximate cell de-

composition to check whether pairs of configurations

are disconnected in the free space. Another approach

was proposed by Wan and Fukui [19], who studied cell-

based approximations of the configuration space based

on sampling. McCarthy et al. [3] proposed to randomly

Fig. 2: Example of a 2D cage (left) and a 3D cage exploiting
a narrow part of the object.

sample the configuration space and reconstruct its ap-

proximation as a simplicial complex. Mahler et al. [6,7]

extend this approach by defining, verifying and generat-

ing energy-bounded cages – configurations where phys-

ical forces and obstacles complement each other in re-

stricting the mobility of the object. These methods work

with polygonal objects and caging tools of arbitrary

shape, and therefore are applicable to a much broader

set of scenarios. However, these approaches are compu-

tationally expensive, as discretizing and approximating

a three-dimensional configuration space is not an easy

task.

To enable a robot to quickly evaluate the quality of

a particular configuration and to decide how to place its

fingers, we design, train and evaluate a neural network

that approximates our caging evaluation function (see

[20] for an overview of data-driven grasping). This ap-

proach is inspired by recent success in using deep neural

networks in grasping applications, where a robot policy

to plan grasps is learned on images of target objects by

training on large datasets of images, grasps, and success

labels. Many experiments suggest that these methods

can generalize to a wide variety of objects with no prior

knowledge of the object’s exact shape, pose, mass prop-

erties, or frictional properties [21,22,23]. Labels may be

curated from human labelers [24,25,26], collected from

attempts on a physical robot [27,28], or generated from

analysis of models based on physics and geometry [29,

30,31,32]. We explore the latter approach, developing

a data-driven partial caging evaluation framework. Our

pipeline takes images of an object and caging tools as

input and outputs (i) whether a configuration is a par-

tial cage and (ii) for each partial caging configuration,

a real number corresponding to a predicted clearance,

which is then used to rank the partial caging configu-

ration.

Generative approaches to training dataset collection

for grasping typically fall into one of three categories:

methods based on probabilistic mechanical wrench space
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analysis [32], methods based on dynamic simulation [29,

31], and methods based on geometric heuristics [30].

Our work is related to methods based on grasp analy-

sis, but we derive a partial caging evaluation function

based on caging conditions rather than using mechani-

cal wrench space analysis.

3 Partial Caging and Clearance

3.1 Partial Caging

In this section, we discuss the notion of partial caging

defined in [8]. Let C be the configuration space of the

object2, Ccol ⊂ C be its subset containing configurations

in collision, and let Cfree = C − Ccol be the free space

of the object. Let us assume Ccol is bounded. Recall the

traditional definition of caging:

Definition 1 A configuration c ∈ Cfree is a cage if it

is located in a bounded connected component of Cfree.

In practical applications, it may be beneficial to

identify not just cages, but also configurations which

are in some sense ‘close’ to a cage, i.e., configurations

from which it is difficult but not necessarily impossible

to escape. Such partial caging can be formulated in a

number of ways: for example, one could assume that an

object is partially caged if its mobility is bounded by

physical forces, or it is almost fully surrounded by colli-

sion space but still can escape through narrow openings.

We introduce the maximal clearance of an escap-

ing path as a quality measure. Intuitively, we are inter-

ested in partial caging configurations where an object

can move within a connected component, but can only
escape from it through a narrow passage. The ‘width’

of this narrow passage then determines the quality of a

configuration.

Let us now provide the necessary definitions. Since,

by our assumption, the collision space of the object is

bounded, there exists a ball BR ⊂ C of a finite radius

containing it. Let us define the escape region Xesc ⊂ C
as the complement of this ball: Xesc = C −BR.

Definition 2 A collision-free path p : [0, 1] → Cfree
from a configuration c to Xesc is called an escaping

path. The set of all possible escaping paths is denoted

by EP(Cfree, c).

Let cl : EP(Cfree, c) → R+ be a cost function de-

fined as the minimum distance from the object along

the path p to the caging tools: cl(p) = minc∈p(dist(oc,g))

where oc is the object placed in the configuration c and

2 Note that in this paper we focus on the case where C ⊂
SE(2), but the definition of partial caging holds for arbitrary
configuration spaces

g denotes the caging tools. We define the caging evalu-

ation function as follows:

Qcl(c) =

{
minp∈EP(Cfree,c) cl(p), EP(Cfree, c) 6= ∅
0, EP(Cfree, c) = ∅.

3.2 The set Ccage

Observe that a low value of clearance measure on arbi-

trary configurations of Cfree does not guarantee that a

configuration is a sufficiently “good” partial cage. For

example, consider only one convex caging tool located

close to the object as in Fig. 3 (left). In this case, the

object can easily escape. However, the clearance of this

escaping path will be low, because the object is ini-

tially located very close to the caging tool. The same

clearance value can be achieved in a much better partial

caging configuration, see Fig. 3 (right). Here, the object

is almost completely surrounded by a caging tool, and it

can escape through a narrow gate. Clearly, the second

situation is much preferable from the caging point of

view. Therefore, we would like to be able to distinguish

between these two scenarios.

Fig. 3: On the left, an object (blue) can easily escape from the
caging tool (grey); on the right, the object is partially sur-
rounded by the caging tool and escaping is therefore harder.
Both escaping paths will have the same clearance ε.

Assume that caging tools are placed such that the

object can escape. We increase the size of the caging

tools by an offset, and eventually, for a sufficiently large

offset, the object collides with the enlarged caging tools;

let us assume that the size of the offset at this moment

is εcol > 0. We are interested in those configurations

for which there exists an intermediate size of the offset

0 < εclosed < εcol, such that the object is caged by the

enlarged caging tools, but is not in collision. This is

not always possible, as in certain situations the object

may never become caged before colliding with enlarged

caging tools. Fig. 4 illustrates this situation.

Let us formally describe this situation. Let Cεfree
be the free space of the object induced by ε−offset of
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Fig. 4: The object (hook) is shown in blue while the caging
tools are gray, the red symbolises the enlargement of the
caging tools. The RRT nodes and edges are depicted in pur-
ple. From left to right, three enlargements of the caging tools
are depicted. The object can always escape until its initial
configuration stops being collision-free.

caging tools. As we increase the size of the offset, we

get a nested family of spaces Cεcolfree ⊂ ... ⊂ Cεfree ⊂
... ⊂ C0free, where εcol is the smallest size of the offset

causing a collision between the object and the enlarged

caging tools. There are two possible scenarios: in the

first one, there is a value 0 < εclosed < εcol such that

when the offset size reaches it the object is caged by

the enlarged caging tools. This situation is favorable for

robotic manipulation settings, as in this case the object

has some freedom to move within a partial cage, but

cannot escape arbitrarily far as its mobility is limited

by a narrow gate (see Fig. 5)3.

Fig. 5: From left to right: the object (hook) can escape only in
the first case, and becomes completely caged when we enlarge
the caging tools before a collision with the object occurs.

We denote the set of all configurations falling into

this category as the caging subset Ccage. These configu-

rations are promising partial cage candidates, and our

primary interest is to identify these configurations. In

the second scenario, for any ε between 0 and εcol, the

object is not caged in the respective free space Cεfree, as

shown in Fig. 4.

We define the notion of partial caging as follows:

Definition 3 Any configuration c ∈ Ccage of the object

is called a partial cage of clearance Qcl(c).

Note that the case where EP(Ccage, c) = ∅ corre-

sponds to the case of a complete (i.e., classical) cage.

Thus, partial caging is a generalization of complete caging.

3 In Fig. 5 the enlarged caging tools (in red) cage the hook
by trapping the larger base.

Based on this theoretical framework, we propose a

partial caging evaluation process that consists of two

stages. First, we determine whether a given configura-

tion belongs to the caging subset Ccage. If it does, we

further evaluate its clearance with respect to our clear-

ance measureQcl, where, intuitively, configurations with

smaller clearance are considered more preferable for

grasping and manipulation under uncertainty.

4 Gate-Based Clearance Estimation Algorithm

Input: object O, caging tools G, εmax

Output: clearance of an escaping path εcl
εmin ← 0;
while Can-Escape(O, G, ε0) do

εcl ← (εmin + εmax)/2;
if Can-Escape(O, G, εcl) then

εmin ← εcl
end

else
εmax ← εcl

end

end
return εmin;

Algorithm 1: Gate-Based Clearance Estimation

In this section, we propose a possible approach to es-

timate Qcl(c) – the Gate-Based Clearance Estimation

Algorithm. Instead of finding a path with maximum

clearance directly, we gradually inflate the caging tools

by a distance offset until the object becomes completely

caged. For this, we first approximate the object and the

caging tools as union of discs, see Fig. 8. This makes

enlarging the caging tools an easy task – we simply

increase the radii of the discs in the caging tools’ ap-

proximation by a given value. The procedure described

in Alg. 1 is then used to estimate Qcl(c).

We perform bisection search to find the offset value

at which an object becomes completely caged. For this,

we consider offset values between 0 and the radii of the

workspace. We run RRT at every iteration of the bisec-

tion search in order to check whether a given value of

the offset makes the object caged. In the experiments,

we choose a threshold of 4 million iterations 4 and as-

sume that the object is fully caged if RRT does not

produce an escaping path at this offset value. Note that

this procedure, due to the approximation with RRT up

to a maximal number of iterations, does not guarantee

4 Our experimental evaluation for our test dataset sug-
gested that if after 4 million iterations RRT had not found an
escaping path, then the object was caged with overwhelming
likelihood. We thus considered RRT with this setting to pro-
vide a sufficiently good approximation for training the neural
network.
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that an object is fully caged; however, since no rigor-

ous bound on the number of iterations made by RRT

is known, we choose a threshold that performs well in

practice since errors due to this RRT-based approxima-

tion become insignificant for sufficiently large maximal

numbers of RRT sampling iterations. In Alg. 1, Can-

Escape(O,G, εcl) returns True if the object can escape

and is in a collision-free configuration.

5 Grasping favorable configuration in Ccage

Depending on the size of the object with respect to

the workspace, the bisection search performed in Alg. 1

can be computationally expensive. Uniformly sampling

caging tools placements from the entire workspace in

order to find configurations in Ccage is also rather inef-

ficient and the number of partial caging configurations

of high quality can be low.

Furthermore, not all partial caging configurations

defined by Def. 3 (c ∈ Ccage) are equally suitable for

certain applications like grasping or pushing under un-

certainty. Namely, we would like to place caging tools

such that they are not too close and not too far away

from the object.

To overcome these limitations, we define a region

around the object called partial caging grasping band

(Fig. 6 illustrates this concept):

Definition 4 Let O be an object and assume the caging

tools have a maximal width5 ctd. Let Omin and Omax

be objects where the composing disks are enlarged by

dismin = 1
2ctd · (1 + β) and dismax = dismin + 1

2ctd · γ
respectively.

We can then define the grasping band as follows:

GB = {x ∈ Cfree : (x ∈ Omin)⊕ (x ∈ Omax)},

Here, β and γ are parameters that capture the impre-

ciseness of the system, such as vision and control un-

certainties.

6 Learning Planar Qcl

As RRT is a non-deterministic algorithm, one would

need to perform multiple runs in order to estimate Qcl.

In real-time applications, we would like the robot to be

able to evaluate caging configurations within millisec-

onds. Thus, the main obstacle on the way towards using

the partial caging evaluation function defined above in

5 The caging tools are composed of disks with ctd as di-
ameter. As we only consider composed line configurations as
caging tools the width never exceeds ctd.

Fig. 6: An illustration of a grasping band for a duck and
hook object. The object O is in the center (gray) overlaid by
Omin (O enlarged by dismin, light green) overlaid by Omax

(O enlarged by dismax, light orange). The grasping band (GB)
is the disjunctive union between Omin and Omax.

real time is the computation time needed to evaluate a

single partial caging configuration.

Alg. 1 requires several minutes to evaluate a sin-

gle partial cage, while a neural network can potentially

estimate a configuration in less than a second.

To address this limitation of Alg. 1, we design and

train two convolutional neural networks. The first, called

CageMaskNN, acts as a binary classifier that identifies

configurations that belong to Ccage following Def 3. The

second, architecturally identical network, called Cage-

ClearanceNN, approximates the caging evaluation func-

tion Qcl to estimate the quality of configurations. The

network takes two images as input that correspond to

the object and the caging tools.The two networks are

separated to make training more efficient, as both can

be trained independently. Operating both networks se-

quentially results in pipeline visualized in Fig. 1: first,

we identify if a configuration is a partial cage, and if it

is, we evaluate its quality.

Our goal is to estimate Qcl given O ⊂ R2 – an ob-

ject in a fixed position, and G = {g1, g2, .., gn} – a set

of caging tools in a particular configuration. We assume

that caging tools are normally disconnected, while ob-

jects always have a single connected component. In our

current implementation, we consider n ∈ {3, 4}, and

multiple caging tool shapes.

While neural networks require a significant time to

train (often multiple hours), evaluation of a single con-

figuration is a simple forward pass through the network

and its complexity is therefore not relying on the input

size or data size but rather on the number of neurons in

the network. In this work, our goal is to show that we

can successfully train a neural network that can gen-

eralise to unseen input configurations and approximate

the algorithm 1 in milliseconds.
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6.1 Dataset Generation

We create a dataset of 3811 object models consisting

of two-dimensional slices of objects’ three-dimensional

mesh representations created for the Dex-Net 2.0 frame-

work [32]. We further approximate each model as a

union of one hundred discs, to strike a balance between

accuracy and computational speed. The approximation

error is a ratio that captures how well the approxima-

tion (Aapp) represents the original object (Aorg, and is

calculated as follows: ae =
Aorg−Aapp

Aorg
. Given the set

of objects, two partial caging datasets are generated.

The first dataset, called PC-general, consists of 3811

objects, 124435 partial caging configurations (belong-

ing to Ccage), and 18935565 configurations that do not

belong to Ccage.
One of the limitations of the PC-general dataset is

that it contains relatively few partial caging configura-

tions of high quality. To address this limitation, gen-

erate a second partial caging dataset called PC-band

where caging tools placements are only located inside

the grasping bands of objects, as this strategy increases

the chance that the configuration will be a partial cage

of low Qcl as well as the likelihood of a configuration

belonging to Ccage.
The PC-band dataset consists of 772 object with

3,785,591 configurations of caging tools, 127,733 of which

do belong to the partial caging subset Ccage. We set β

to the approximation error ae for each object and γ = 6

to define the grasping band.

All configurations are evaluated with Qcl (see algo-

rithm 1). The distribution of partial cages can be seen

in Fig. 7.

Fig. 7: Distribution of Qcl estimates for the PC-general (blue)
and the PC-band(orange) datasets.

Examples of configurations for both datasets can be

seen in Fig. 8. The disk approximation of the object is

shown in blue, while the original object is depicted in

red. PC-general contains configurations placed in the

entire workspace while PC-band is limited to configu-

ration sampled inside the grasping band.

Fig. 8: Left: original representations of a hook objects (red)
and in blue their approximation by a union of discs of various
sizes closely matching the polygonal shape (ae = 0.051); sec-
ond and third column: configurations that do not belong to
Ccage; last column: a partial caging configuration(c ∈ Ccage).
The top row is from PC-general, the bottom from PC-band.

6.2 Architecture of Convolutional Neural Networks

We propose a multi-resolution architecture that takes

the input image as 64x64x2, 32x32x2, and 16x16x2 ten-

sors. This architecture is inspired by inception blocks [33].

The idea is that the global geometric structure can be

best captured with different image sizes, such that the

three different branches can handle scale-sensitive fea-

tures. The network CageMaskNN determines whether a

certain configuration belongs to Ccage, while CageClear-

anceNN predicts the clearance Qcl value for a given

input configuration.

Fig. 9: As caging depends on global geometric properties of
objects, a CNN architecture with multi-resolution input was
designed to capture these features efficiently.

The architecture of the networks is shown in Fig. 9.

Both networks take an image of an object and caging
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tools on a uniform background position and orientation

belonging to the same coordinate frame constituting a

two-channel image (64x64x2) as input. CageMaskNN

performs binary classification of configurations by re-

turning 0 in case a configuration belongs to Ccage, and

1 otherwise. CageClearanceNN uses clearance Qcl val-

ues as labels and outputs a real value – the predicted

clearance of a partial cage. The networks are trained

using the Tensorflow [34] implementation of the Adam

algorithm [35]. The loss is defined as the mean-squared-

error (MSE) between the prediction and the true label.

The batch size was chosen to be 100 in order to compro-

mise between learning speed and gradient decent accu-

racy. The networks were trained on both of our datasets

– PC-general and PC-band.

7 Training and evaluation of the networks

In this section we describe how we train and evaluate

the two networks and perform an ablation study of the

architecture. In detail, for CageMaskNN, we investigate

to what extent the training data should consist of sam-

ples belonging to Ccage and evaluate the performance of

the best such composition against a simpler network ar-

chitecture. Following that, we investigate how the num-

ber of different objects as well as the choice of dataset

influences the performance of CageMaskNN.

For CageClearanceNN, we also perform an analysis

of the effect of the the number of objects in the training

data and to what extent the choice of dataset influences

the performance and compare it to a simpler architec-

ture. As a final investigation, we investigate the error

for specific Qcl intervals.

Note that the training data is composed of samples

where the ground truth of the configuration was ob-

tained using algorithm 1. A main goal of the presented

evaluation is hence to investigate how well the proposed

networks are able to generalise to examples that were

not included in the training data (unseen test data).

High such generalization performance, is a key indica-

tor for the potential application of the proposed fast

neural network based approach (execution in millisec-

onds) instead of the computationally expensive under-

lying algorithm 1 (execution in minutes) that was used

to generate the training data.

Single-res Architecture: In order to perform an ab-

lation of the previous discussed multi-resolution archi-

tecture we compare the performance so a architecture

that has only a single resolution as input. The Single-res

Arch. Takes only the 64x64x2 as input and is missing

the other heads completely. In this way we want to see if

our assumption that different sized inputs are beneficial

to the networks performance.

7.1 CageMaskNN - % of Ccage and Ablation

We generate 4 datasets containing 5%, 10%, 15%,

and 20% caging configurations in Ccage respectively from

PC-general. This is achieved by oversampling as well

as by performing rotational augmentation with 90, 180

and 270 degrees of the existing caging configurations.

The Single-res Arch. is trained with 10% caging config-

urations in Ccage for comparison.

The evaluation is performed on a test set consist-

ing of 50% caging examples from Ccage. In Fig. 10, we

show the F1-curve and Accuracy-curve. All five ver-

sions of the network where trained with 3048 objects

with 2000 configuration each, using a batch size of 100

and 250000 iterations. To avoid overfitting, a validation

set of 381 objects is evaluated after every 100th itera-

tion. The final scoring is done on a test set consisting

of 381 previously unseen objects. The mean squared er-

ror (MSE) on the unseen test set was 0.0758, 0.0634,

0.0973 and 0.072 for the 5%, 10%, 15% and 20% ver-

sion respectively, indicating that CageMaskNN is able

to generalize to novel objects and configurations from

our test set. The MSE for the single resolution network

was 0.155 showing the significant gain obtained by uti-

lizing the multi-resolution branches.

Fig. 10: F1-score and accuracy of the network depending on
different thresholds

We observe that the network that was trained on

the dataset where 10% of the configurations are par-

tial cages performs slightly better than the other ver-

sions. Note however that only the one that was trained

with 5% of partial cages performs significantly worse.

All versions of the multi-resolution architecture outper-

form the Single-res Arch, which justifies our architec-

ture design.

7.2 CageMaskNN - Number of Objects and Datasets

We investigate how the performance of the networks

depends on the size of the training data and how the

two training datasets, PC-general and PC-band, affect

the performance of the networks. Table 1 shows the
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area under ROC curve (AUC) andthe average precision

(AP) for CageMaskNN for training set composed of 1,

10, 100, and 1000 objects from the dataset PC-general,

as well as 1, 10, 100, and 617 objects from PC-band. We

observe that having more objects in the training set

results in better performance. We note that the net-

work trained on PC-general slightly outperforms the

one trained on PC-band.

Training set
pc-general pc-band

AUC AP AUC AP

1 object 0.92 0.88 0.88 0.83
10 objects 0.91 0.88 0.88 0.84
100 objects 0.97 0.92 0.92 0.89
1000 ‖ 617 objects 1.00 1.00 1.00 0.96

Table 1: The area under ROC curve (AUC) and the average
precision (AP) for different training set constitutions, evalu-
ated on the test set with 50 % of partial cage configurations.
In all training sets 10 % of configurations belong to Ccage.
We observe that PC-general has a slightly better performance
than PC-band.

Fig. 11 demonstrates how the performance of the

networks increases with the number of objects in the

training dataset by showing the F1-score as well as

the accuracy for both datasets. We observe that the

network, independently of the training dataset, demon-

strates acceptable performance even with a modest num-

bers of objects in the training dataset. One key factor

here is the validation set which decreases the generalisa-

tion error by choosing the best performance during the

entire training run, thus reducing the risk of overfitting.

Similarly to the previous results, PC-general slightly

outperforms PC-band.

7.3 CageClearanceNN - Number of Objects and

Ablation

The purpose of CageClearanceNN is to predict the

value of the clearance measureQcl given a partial caging

configuration. We trained CageClearanceNN on 1, 10,

100 , 1000 and 3048 objects from PC-general as well

as a single resolution variant with the same training

sets. Additionally, we trained another instance of Cage-

ClearanceNN with 1, 10, 100, and 617 objects from PC-

band, and the corresponding single-resolution architec-

ture version for each number of objects. The label is

scaled with a factor of 0.1, as we found that the net-

works performance improves for smaller training input

values. The left-hand side of Fig.12 shows a rapid de-

crease of MSE as we increase the number of training

data objects to 1000, and a slight performance increase

Fig. 11: F1-score and accuracy of the network trained with 1,
10, 100, and 1000 ‖ 617 objects,for PC-general (top row) and
PC-band (bottom row) respectively on a test set with 50 %
Ccage configuration .

between 1000 and 3048 training objects for the PC-

general dataset. We can also see that employing the

multi-resolution architecture only leads to significant

performance increase when going up to 1000 objects

and more. The right-hand side of Fig.12 presents the

analogous plot for the network trained on PC-band. We

observe the same rapid decrease of MSE as we include

more objects in the training set. Note that the different

number of parameter plays a role as well in the perfor-

mance difference. Since our current dataset is limited to

617 training examples of object shapes, we do not ob-

serve the benefits of the multi-resolution architecture.

Note that the difference in absolute MSE stems from

the different distributions of the two datasets (as can

be seen in Fig. 7). This indicates that further increases

in performance can be gained by having more training

objects. Increasing the performance for more than 3000

objects may however require a significant upscaling of

the training dataset.

Fig. 12: left: MSE of CageClearanceNN trained on PC-general

with different numbers of objects and a single-resolution ar-
chitecture; right: MSE of the single-resolution architecture
trained on PC-band with different numbers of objects.
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7.4 CageClearanceNN - Error for specific Qcl

We investigated the MSE for specific Qcl value in-

tervals. Fig. 13 shows the MSE on the test set with

respect to the Qcl values (as before, scaled by 0.1). Un-

surprisingly, we observe that the network, trained on

PC-general, that was trained only on one object, does

not generalise over the entire clearance/label spectrum.

As we increase the number of objects, the performance

of the network increases. The number of outliers with

large errors decreases significantly when the network

is trained on 1000 objects. On the right side, we can

see the MSE for the final CageClearanceNN network

trained on PC-general. We observe that low values of

Qcl are associated to higher error values. Analysing

this behavior on CageClearanceNN trained on PC-band

demonstrates a very similar behavior and is therefore

omitted.

Fig. 13: MSE for each test case sorted for labels. Left: shows
performance of 1, 10, 100, 1000 objects (top left, top right,
bottom left, bottom right). Right: shows MSE of entire test
set for the final CageClearanceNN. Note that the figure on the
right is zoomed in as errors are significantly smaller (see the
left y-axis of that figure).

8 Planar Caging Pipeline Evaluation

8.1 Last caging tool placement

In this experiment, we consider the scenario where n−1

out of n caging tools are already placed in fixed loca-

tions, and our framework is used to evaluate a set of

possible placements for the last tool to acquire a par-

tial cage. We represent possible placements as cells of a

two-dimensional grid and assume that the orientation of

the caging tool is fixed. Fig. 15 illustrates this approach.

We use the pipeline trained with PC-general as it covers

the entire workspace. In the example a, we can see that

placing the caging tool closer to the object results in

better partial caging configurations. This result is con-

sistent with our definition of the partial caging quality

measure. We note furthermore, that CageMaskNN ob-

tains an approximately correct region-mask of partial

caging configurations for this novel object. Example b

demonstrates the same object with elongated caging

tools. Observe that this results in a larger region for

possible placement of the additional tool. Example c de-

picts the same object but the fixed disc-shaped caging

tool has been removed and we are considering three in-

stead of four total caging tools. This decreases the num-

ber of possible successful placements for the additional

caging tool. We can see that our framework determines

the successful region correctly, but is more conservative

than the ground truth. In the example d, we consider

an object with two large concavities and three caging

tools. We observe that CageMaskNN identifies the re-

gion for Ccage correctly and preserves its connectivity.

Similarly to the previous experiments, we can also ob-

serve that the most promising placements (in blue) are

located closer to the object.

8.2 Evaluating Qcl along a trajectory

We now consider a use case of Qcl along a caging tool

trajectory during manipulation enabled by the fact that

the evaluation of a single caging configuration using

CageMaskNN and CageClearanceNN takes less than

6ms on a GeForce GTX 1080 GPU.

The results for two simulated sample trajectories

are depicted in Fig. 14. In the first row, we consider

a trajectory of two parallel caging tools, while in the

trajectory displayed in the bottom row, we consider the

movement of 4 caging tools: caging tool 1 moves from

the top left diagonally downwards and then straight up,

caging tool 2 enters from the bottom left and then exits

towards top, caging tool 3 enters from the top right and

then moves downwards, while caging tool 4 enters from

the bottom right and then moves downwards.

The identification of partial caging configurations

by CageMaskNN is rather stable as we move the caging

tool along the reference trajectories, but occurs at a

slight offset from the ground truth.The offset in Cage-

ClearanceNN is larger but consistent, which can be ex-

plained by the fact that similar objects seen during

training had a lower clearance as the novel hourglass

shaped object. In the second example, the clearance of

the partial cage decreases continuously as the caging

tools get closer to the object. Predicted clearance val-

ues from CageClearanceNN display little noise and low

absolute error relative to the ground truth. Note that a

value of −1 in the quality plots refers to configurations

identified as not being in Ccage by CageMaskNN.
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Fig. 14: Evaluation of the pipeline along two trajectories. The
trajectory (left, green) is evaluated with CageMaskNN (mid-
dle) and CageClearanceNN (right), which evaluates Qcl for
those configurations where CageMaskNN returns 0. The pre-
dictions by the networks are displayed in orange while ground
truth is shown in blue.

8.3 Experimental evaluation of Qcl

In this section, we experimentally evaluate our par-

tial caging quality measure Qcl by simulating random

shaking of the caging tools and measuring the needed

time for the object to escape. Intuitively, the escape

time should be inversely proportional to the estimated

Qcl; this would indicate that it is difficult to escape

the partial cage. A similar approach to partial caging

evaluation has been proposed in [5]. Where the escape

time was computed using probabilistic motion planning

methods like RRT, RRT*, PRM, SBL as well as a ran-

dom planner was measured.

8.3.1 Random partial caging trajectories

We apply a simple random walk Xn as a sequence of

independent random variables S1, S2, ..., Sn where each

S is is randomly chosen from the set

{(1, 0), (0, 1), (1, 1), (−1, 0), (0,−1), (−1,−1)} with equal

probability.

Xn = X0 + S1 + S2 + ...+ Sn),

where X0 is the start position of the caging tools. and

a stride factor α determines at what time the next step

of the random walk is performed.

In this experiment, unlike in the rest of the paper,

caging tools are moving along randomly generated tra-

jectories. We assume that the object escapes a partial

cage when it is located outside of the convex hull of the

caging tools. If the object does not escape within tmax

seconds, the simulation is stopped. The simulation is

performed with the software pymunk that is build on

the physic engine Chipmunk 2D [36]. We set the stride

factor α = 0.05s so that a random step S of the ran-

dom walk Xn is applied to the caging tool every 0.05

seconds. As pymunk also facilitates object interactions,

the caging tool can push the object around as well as

drag it with them. Figure 16 illustrates this process.

The experiment was performed on 5 different ob-

jects, depending on the object we used between 437-

1311 caging tool configurations. For each of them the

escape time was estimated as described above. As it

is not deterministic, we performed 100 trials for each

configuration and computed the mean value. The mean

escape time of 100 trials was normalized such that the

values range between 0 and 1. Furthermore, for each

configuration we computed Qcl and the Pearson corre-

lation coefficient6. Fig. 17 illustrates the results.

Our results show that the longer it takes for the

object to escape the partial cage, the higher the vari-

ance of the escape time is. This indicates that a par-

tial cage quality estimate based on the average escape

time would require a high number of trials, making the

method inefficient.

Furthermore, we demonstrate that our clearance-

based partial caging quality measure shows a trend with

the average escape time for strong partial cages, which

suggests the usefulness of the proposed measure.

8.4 Different metrics in the space of shapes for partial

caging

A natural extension of our partial caging evaluation

framework is partial cage acquisition: given a previously

unseen object, we would like to be able to quickly syn-

thesise partial cages of sufficient quality. In this section,

we make the first step in this direction, and propose the

following procedure: given a novel object, we find sim-

ilar objects from the training set of the PC-band, and

consider those partial caging configurations that worked

well for these similar objects.

The key question here is how to define a distance

function for the space of objects that would capture the

most relevant shape features for partial caging. In this

experiment, we investigate three different shape dis-

tance functions: Hausdorff distance, Hamming distance,

and Euclidean distance in the latent space of a varia-

tional autoencoder, trained on the set of objects used

in this work. Variational autoencoders (VAEs) are able

to encode high-dimensional input data into a lower-

dimensional latent space while training in an unsuper-

vised manner. In contrast to a standard encoder/decoder

setup, which returns a single point, a variational au-

toencoder returns a distribution over the latent space,

using the KL-cost term as regularisation.

6 The Pearson correlation coefficient measures the linear
correlation between the escape time from random shaking
and the defined clearance measure Qcl.
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Fig. 15: Here, we depict the results of four different experiments. The green region indicates configuration where the additional
caging tool completes the configuration in such a way that the resulting configuration is a partial cage. The small squares in
the ground truth figures depict the caging tools that are being placed (for simplicity the orientations are fixed). We plot the
output for each configuration directly and visualize the result as a heatmap diagram (blue for partial caging configurations,
white otherwise). The best placements according to CageClearanceNN are depicted in dark blue, and the worst ones in yellow.
The results are normalized between 0 and 1. Grey area corresponds to the placements that would result in a collision.

Fig. 16: Random trajectory for caging tools. Left: time
t = 0s(transparent) to t = 0.83s(not escaped), middle: t =
0.83s(transparent) to t = 1.67s (not escaped), right: time
t = 1.67s (transparent) to t = 2.47s (escaped). Note that
the caging tools do not necessarily run in a straight line but
rather follow the randomly generated trajectory with a new
step every 0.05s. As a simple physics simulator is used, the
caging tools can also induce movement of the object by col-
liding with it.

We evaluate different distance functions with re-

spect to the quality of the resulting partial cages. Given

a novel object, we calculate the distance to each known

object in the dataset according to the three distance

functions under consideration, and for each of them we

select five closest objects. When comparing the objects,

orientation is an important factor.We compare 360 ro-

tated versions of the novel object with the known ob-

jects from the dataset and pick the one closest following

the chosen metric.

8.4.1 VAE-based representation

For our experiment, we train a VAE based on the ResNet

architecture with skip connections with six blocks [37]

for the encoder and the decoder. The imput images have

resolution 256x256. We use a latent space with 128 di-

mensions, dropout of 0.2 and a fully connected layer of

1024 nodes. The VAE loss was defined as follows:

Lvae(x) = Ez∼q(z|x)[log p(x|z)] + β ·DKL(q(z|x)||p(z))

The first term achives reconstruction, while the second

term tries to disentegel the destinct features. z denotes

latent variable, p(z) the prior distribution,and q(z|x)

the approximate posterior distribution. Note that the

Bernoulli distribution was used for p(x|z), as the images

are of a binary nature. The batch size was set to 32.

As the sizes of the objects vary significantly, we invert

half of the images randomly when loading a batch. This

prevents the collapse to either pure black or pure white

images.

8.4.2 Hausdorff distance

The Hausdorff distance is a well known measure for the

distance between two sets of points in a metric space

(R2 for our case). As the objects are represented with

disks we use the set of x and y points to represent the

object. This is a simplification of the object as the ra-

dius of the circles is not considered. The general Haus-

dorff distance can be computed with [38]:

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}

8.4.3 Hamming Distance

The Hamming distance [39] is defined as the difference

of two binary data strings calculated using the XOR

operation. It captures the exact difference between the

two images we want to match, as it calculates how many
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Fig. 17: Correlation between escape time from random shaking and Qcl. Top row shows evaluated objects (disk, clench, cone,
balloon animal, and hook, on the bottom row the partial cages are sorted according to respective average escape time, and
plot the average escape time (in blue), its variance (in gray), and Qcl (in orange). Pearson correlation coefficient of the escape
time and Qcl (from left to right) are: −0.608, −0.462, −0.666, −0.566, −0.599

pixel are different. We pre-process the images by sub-

tracting the mean and reshaping the images to a 1D

string.

8.5 Performance

We compare the performance of the three different sim-

ilarity measures, as well as a random selection baseline,

on 500 novel object. The percentage of collision-free

caging tools placements, as well as the average clear-

ance score is shown in Table 2. We report the aver-

age percentage of collision-free caging tool placements

taken from the PC-band of partial cages for top 1 and

top 5 closest objects.

Furthermore, we evaluate the collision-free config-

urations using Alg. 1 to provide Qcl values as well

as check if the configuration still belongs to Ccage. In

the Table 2, the top 1 column under cage evaluation

shows the percentage of configurations that belong to
Ccage. To the right is the average Qcl for the most

promising cage from the closest object. The top 25 col-

umn shows the same results for the five most promising

cages for each of the five closest objects. Examples for

three novel objects and the closest retrieved objects are

shown in Fig. 18. In the left column, the closest ob-

jects with respect to the chosen metric are shown given

the novel query object. The right column shows the

acquired cages, transferred from the closest known ob-

jects. Note that a collision free configuration does not

necessarily have to belong to Ccage.
For the VAE-model, it takes approximately 5 mil-

liseconds to generate the latent representation, any sub-

sequent distance query can then be performed in 0.005

milliseconds. The Hausdorff distance requires 0.5 mil-

liseconds to compute, while the Hamming distance takes

1.7 milliseconds per distance calculation7.

7 The time was measured on a Intel(R) Core(TM) i7-
7700HQ CPU @ 2.80GHz.

collision-free
cage evaluation

top 1 top 25
top 1 top 5 ∈ Ccage Qcl ∈ Ccage Qcl

VAE 90.9% 86.6% 53.2% 5.05 48.4% 5.92
Hausdorff 75.5% 75.2% 33.6% 5.21 32.2% 5.83
Hamming 74.4% 73.9% 35.4% 3.87 34.3% 4.51
Random 61.6% 62.3% 27.0% 13.31 25.4% 14.12

Table 2: Average results for 500 novel objects cage acquisi-
tion using different distance metrics to find similar objects in
PC-band, and applied cages from retrieved objects to novel
objects.

Our experiments show that, while the VAE-induced

similarity measure performs best in terms of finding

collision-free caging tools placements, Hamming dis-

tance significantly outperforms it in terms of the qual-

ity of acquired partial cages. We did not observe a sig-

nificant difference between Hausdorff distance and the

VAE-induced distance. While Hamming distance ap-

pears to be better at capturing shape features that are

relevant for cage acquisition task, it is the least efficient

approach in terms of computation time. Furthermore,

in our opinion, VAE-induced distance may be improved

significantly if instead of using a general-purpose archi-

tecture we introduce task-specific geometric and topo-

logical priors.

9 Limitations and Challenges for Future Work

In this section, we discuss the main challenges of our

work and the possible ways to overcome them.

9.1 Data generation challenges

One of the main challenges in this project is related to

data generation: we need to densely sample the space of

the caging tools’ configurations, as well as the spaces of

shapes of objects and caging tools. This challenge is es-

pecially significant when using the PC-general dataset,
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Fig. 18: On the left-hand side, we consider 3 different query objects washer(a), pin(b) and hook(c), and for each distance
function visualize respective 5 closest objects from the training dataset; on the right-hand side, for each of the query object
(a)-c)) and each distance function, we visualize the acquired partial caging configurations.

as the space of possible caging tools configurations is

large.

While the experimental evaluation indicates that

the chosen network architecture is able to achieve low

MSE on previously unseen objects, in applications one

may want to train the network with either a larger dis-

tribution of objects, or a distribution of objects that

are similar to the objects that will be encountered in

practice.

In Fig.19, we illustrate how a lack of training data

of sufficiently similar shapes can lead to poor perfor-

mance of CageMaskNN and CageClearanceNN, for ex-

ample, when only 1, 10, 100, or 1000 objects are used for

training. Similarly, even when the networks are trained

on the full training dataset of 3048 objects, the sub-
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tle geometric details of the partial caging region cannot

be recovered for the novel test object, requiring more

training data and further refinement of the approach.

Fig. 19: Performance of CageMaskNN and CageClearanceNN
given different numbers of training objects and evaluated on a
single novel object. The top left (a1) displays the ground truth
mask and clearance values for a fourth missing disc-shaped
caging tool, a2: only 1 object is used for training, a3:10 objects
are used for training, b1: 100 objects, b2: 1000 objects, b3:
all 3048 objects are used for training. Note that the threshold
had to be adjusted to 0.6 for the single object (a2) and 0.61 for
the 10 object case (a3) to yield any discernible mask results
at all.

9.2 Robustness under noise

In the cage acquisition scenario, the VAE-induced and

Hamming distances work directly with images, and hence

can be susceptible to noise. To evaluate this effect, we

generate salt and pepper noise as well as Gaussian blur

and analyse the performance of the VAE-induced and

Hamming metrics under four different noise levels (0.005%,

0.01%, 0.05%, 0.1%) and four different kernel sizes (11x11,

21x21, 41x41, 61x61) 8. Fig. 20 shows the result of the

top 3 retrieved objects for the hook object. Left col-

umn shows the query objects with respective distur-

bance. The next three columns depict the closest ob-

jects retrieved according to the VAE-induced metric,

while the last three columns show the objects retrieved

with Hamming metric.

Table 3 reports the performance with respect to

finding collision-free configurations, configurations be-

longing to Ccage, and their average values of Qcl. The

results are averaged over 500 novel objects. We can see

that the VAE-induced metric is affected by strong salt

and pepper noise as the number of generated collision-

free and partial caging configurations decreases. Fur-

thermore, the resulting Qcl of the generated partial

cages increases, meaning it is easier to escape the cage.

8 Note that sigma is calculated using the standard
OpenCV [40] implementation (σ = 0.3 · ((ksize − 1) · 0.5 −
1) + 0.8).

According to the experiment, the Hamming distance-

based lookup is not significantly affected by salt and

pepper noise. One explanation here may be that this

kind of disturbance leads to a uniform increase of the

Hamming distance for all objects. The Gaussian blur

has a more negative effect on the Hamming distance

lookup then the VAE-based lookup, as can be seen in

the retrieved example objects in Fig. 20. Table 3 shows

small decrease in the percentage of collision-free and

partial caging configurations. Interestingly, the quality

of the partial cages does not decrease.

Fig. 20: Top three retrieval results for query images with dif-
ferent levels of disturbance for the VAE-induced and Ham-
ming metric. a results without disturbance, b show retrieval
for different level of salt and pepper noise, c retrieved objects
when Gaussian blur is applied to query object (hook).

Dist.
VAE Hamming

Cfree Ccage Qcl Cfree Ccage Qcl

no dist. 90.9 % 53.2 % 5.05 74.4 % 35.4 % 3.87
S&P 0.005 91.1 % 52.8 % 4.94 74.9 % 34.5 % 3.86
S&P 0.01 90.5 % 52.4 % 4.98 74.6 % 35.4 % 3.88
S&P 0.05 83.4 % 45.0 % 10.12 71.8 % 35.0 % 3.81
S&P 0.1 83.2 % 43.5 % 10.95 73.2 % 33.8 % 3.87
Gb 11x11 91.8 % 52.5 % 4.93 73.7 % 34.6 % 3.78
Gb 21x21 90.3 % 52.8 % 4.83 73.1 % 33.8 % 3.78
Gb 41x41 84.7 % 49.2 % 4.59 69.8 % 33.4 % 3.74
Gb 61x61 84.7 % 45.3 % 4.21 68.0 % 29.3 % 3.73

Table 3: Performance for VAE-induced and Hamming met-
rics given different level of salt and pepper noise as well as
Gaussian blur for different kernel sizes.
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9.3 Real World Example and Future Work

As the VAE-framework just takes an image in order

to propose suitable cages for a novel object, we show-

case a concluding application example in Fig. 21 where

a novel object (a hand drill) is chosen as input to the

VAE cage acquisition. The image is preprocessed by a

simple threshold function to convert it to a black and

white image, next the closest object from the dataset

are found by comparing the distances in the latent space

of the VAE and the three best partial caging configu-

rations are retrieved and applied to the novel object.

Fig. 21: Proposed partial cages using the VAE cage acquisi-
tion method. The novel object (hand drill) is feed into the
cage acquisition and the best three cages from the closest
object in the dataset are shown (in red).

Fig. 22: An example for
future partial caging in
3D. A complex object
needs to be safely trans-
ported without the need
to firmly grasp it.

In the future, we would

like to extend our approach

to 3-dimensional objects, As

illustrated in Fig. 22, par-

tial cages may be a promis-

ing approach for transport-

ing and manipulating 3D ob-

jects without the need for a

firm grasp, and fast learn-

ing based approximations to

analytic or planning based

methods may be a promis-

ing direction for such partial

3D cages. Furthermore, we

would also like to to investigate the possibility of lever-

agingother caging verification methods such as [4] for

our approach.
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