
Augment-Connect-Explore: a Paradigm for Visual Action
Planning with Data Scarcity

Martina Lippi*1, Michael C. Welle*2, Petra Poklukar2, Alessandro Marino3, Danica Kragic2

Abstract— Visual action planning particularly excels in ap-
plications where the state of the system cannot be computed
explicitly, such as manipulation of deformable objects, as it en-
ables planning directly from raw images. Even though the field
has been significantly accelerated by deep learning techniques, a
crucial requirement for their success is the availability of a large
amount of data. In this work, we propose the Augment-Connect-
Explore (ACE) paradigm to enable visual action planning
in cases of data scarcity. We build upon the Latent Space
Roadmap (LSR) framework which performs planning with a
graph built in a low dimensional latent space. In particular,
ACE is used to i) Augment the available training dataset by
autonomously creating new pairs of datapoints, ii) create new
unobserved Connections among representations of states in the
latent graph, and iii) Explore new regions of the latent space in a
targeted manner. We validate the proposed approach on both
simulated box stacking and real-world folding task showing
the applicability for rigid and deformable object manipulation
tasks, respectively.

I. INTRODUCTION

The performance of robotics tasks has been significantly
accelerated by integration of deep learning techniques [1],
[2], which have shown to be promising in visual action
planning [3]. Given a start observation of the system, the
goal of visual action planning is to produce i) an action plan
comprised of the actions required to reach a desired state,
and ii) a visual plan containing observations, i.e., images, of
intermediate states that will be traversed during the execution
of the planned actions. In this way, the planner can be
given raw image observations which is crucial in applications
where the state of the system cannot be easily described
analytically, for instance as in manipulation of deformable
objects. The supporting visual plan additionally improves the
interpretability of these methods [3], [4].

While it has been shown that visual dynamics used
for planning can be learned directly from images, several
approaches considered planning in low-dimensional latent
space (discussed in Sec. II). These methods reduce the
complexity of planning in the image space but generally
depend on vast amount of data to train reliable policies as
they require a large amount of long rollouts for successful
planning. In practice, this can hinder their applicability to
real robotic hardware.

Therefore, in this work, we propose a method for per-
forming visual action planning in case of data scarcity. We
build on our Latent Space Roadmap (LSR) framework [5],

*These authors contributed equally (listed in alphabetical order).
1Roma Tre University, Rome, Italy
2KTH Royal Institute of Technology Stockholm, Sweden
3University of Cassino and Southern Lazio, Cassino, Italy

Fig. 1: Overview of our ACE paradigm: (1) gaining new simi-
lar datapairs by Augmenting existing ones, (2) building unseen
Connections in the latent space, and (3) efficiently Exploring new
regions. Color represent the underlying states of the system (see
Sec. III for details).

[6] that first learns a low-dimensional latent space from
input images and then builds a graph, called LSR, that
is used to perform planning in this space. We tackle data
scarcity with the proposed Augment-Connect-Explore (ACE)
paradigm that is based on: i) Augment: creating new infor-
mative pairs of datapoints exploiting demonstrated actions
to improve the latent space structure. ii) Connect: increasing
the connectivity of the LSR by building new connections,
i.e. shortcuts, among nodes to improve the capability to
traverse the latent space. iii) Explore: proposing targeted
exploratory actions by leveraging latent representations as
well as collected actions to explore new states in an efficient
manner. Our contributions can be summarized as follows:

• We introduce the ACE paradigm to address data scarcity
in visual action planning by augmenting, connecting and
exploring.

• To realize ACE, we design a novel Suggestion Module
that proposes possible actions from a given state, which
is used in conjunction with a simple neural network that
predicts the next latent state given the current state and
desired action.

• We thoroughly analyse the individual and cumulative
effects of ACE components on a simulated box stacking
task and demonstrate improved performance of the
combined ACE framework on a real-world folding task
under data scarcity.

II. RELATED WORK

Several approaches learn the visual dynamics directly
from images and use it for planning. In [3] visual foresight
plans for deforming a rope into desired configurations are
generated with Context Conditional Causal InfoGANs. The

learned rope inverse dynamics is then considered to reach
the configurations in the generated plan. In [7] Long-Short
Term Memory blocks are used to compose a video prediction
model predicting the stochastic pixel flow from frame to
frame given the action. This model is then integrated in
a Model Predictive Control (MPC) framework to produce
visual plans and push objects of interest. Building on the
visual foresight frameworks, [8] proposes the VisuoSpatial
Foresight which integrates the depth map information with
the pure RGB data to learn the visual dynamic model of
fabrics in a simulated environment. An extension of this
approach is given in [9] where the main states of the
framework are improved.

To reduce the complexity of planning in the image space,
low-dimensional latent space have been explored in several
studies, e.g., [10]-[11]. A framework for global search in
latent space is presented in [10], where motion planning is
performed directly in this latent space using an RRT-based
algorithm with collision checking and latent space dynamics
modelled as neural networks. Contrastive learning is used
in [12] to derive a predictive model in the latent space that
is exploited to find rope and cloth flattening actions. Latent
space goal-conditioned predictors, formulated as hierarchical
models, are introduced [13] to limit the search space to
trajectories that lead to the goal configuration and thus to per-
form long-horizon visual planning. Latent planning has also
been successfully applied in Reniforcement Learning (RL)
settings, like for example in [14] for model-based offline RL
and in [15] for hierarchical RL. The combination of RL with
graph structures in the latent space is explored in [11], where
a node is created for each encoded observation. Building
on [11], temporal closeness of the consecutive observations
in the trajectories is also exploited in [4]. However, the above
methods generally require a large amount of long rollouts for
successful planning. Therefore, in this work, we tackle visual
action planning for scenarios with scarce training data.

III. PRELIMINARIES AND PROBLEM STATEMENT

In this section we provide preliminary notions about the
considered dataset and the visual action planning. Then, we
formalize the problem addressed in this work and present the
LSR framework, which we extend to tackle data scarcity.

A. Dataset structure

Let O be the space of all possible observations, i.e., im-
ages, of the system’s states. We consider a training dataset To
consisting of tuples (O1, O2, ρ), where O1 is an observation
of the start state, O2 an observation of the successor state,
and ρ a variable denoting the respective action between the
states. Here, an action is defined as a single transformation
that brings the system to a new state different from the
starting one. For example, in Fig. 2, an action corresponds
to moving a box. The variable ρ = (a, u) is composed of a
binary variable a ∈ {0, 1} indicating whether or not an action
occurred and a variable u containing the task-dependent
action-specific information (in case an action occurred, i.e.
a = 1). We say that no action was performed, i.e., a = 0, if

Fig. 2: Examples of similar and action pairs. The similar pairs show
the same underlying state, while the observations in the action pairs
show different underlying states.

observations O1 and O2 are different variations of the same
(unknown) underlying state of the system. In the bottom
row of Fig. 2, the observations exhibit lightning and slight
positional variations, but correspond to the same underlying
state of the system determined by the position of the boxes.
We refer to a tuple in the form (O1, O2, ρ = (1, u)) as an
action pair and (O1, O2, a = 0) as a similar pair (shown in
Fig. 2).

B. Visual Action Planning

Let U be the set of possible actions of the system. A
visual action plan is the combination of an action plan Pu

and a visual plan Po that lead the system from a given start
Os ∈ O to a goal observation Og ∈ O, i.e., such that Po =
{Os = O1, O2, ..., ON = Og} and Pu = {u1, u1, ..., uN−1},
where un ∈ U produces a transition between consecutive
observations On and On+1 for each n ∈ {0, ..., N − 1}.

To reduce the complexity of the problem, we build a low-
dimensional latent space Z encoding O that aims to capture
the underlying states of the system.

Definition 1: The latent mapping function ξ : O → Z
maps an observation On ∈ O into its latent representation
zn ∈ Z . The observation generator function ω : Z → O
retrieves a possible observation On ∈ O associated with a
latent representation zn ∈ Z .

Definition 2: The latent dynamic function
f : Z × U → Z transitions the system through the latent
space.

Given these functions, a way to perform visual action
planning is then to map the start and goal observation into
the latent space to obtain zs = ξ(Os), zg = ξ(Og), and
then perform planning directly in Z by obtaining a latent
plan Pz = {zs = z1, z2, ..., zN = zg}. Finally, a visual plan
Po can be derived by mapping latent encodings, obtained
when applying the latent dynamic function f on the action
plan Pu, with the observation generator ω. Note that in
practice the functions ξ, ω and f are unknown and need to be
approximated. The quality of these approximations depends
on the available amount of observations To of the system.

C. Problem Statement

When To is scarce, it might not contain all possible
latent states associated with the system as well as possible

transitions among them. In this work we are interested in
solving the following problem.

Problem 1: Given a scarce training dataset To as well as
a start Os ∈ O and a goal observation Og ∈ O, our objective
is to find the related visual action plan (Po, Pu).

To solve it, we exploit a simple insight that two latent
states are similar if the same set of actions can be applied
to both, and if these, in turn, also yield the same set of
consecutive states. We first define the set of actions that can
be applied to a given latent state z.

Definition 3: A suggestion function η : O → U provides
a subset η(Oi) = Ui ⊆ U of actions that can be applied from
an observation Oi ∈ O.

Given the suggestion function η and latent dynamic func-
tion f , we define similar states as follows.

Definition 4: The states zi, zj ∈ Z corresponding to the
observations Oi, Oj ∈ O are said to be similar if

• η(Oi) = η(Oj) = Ũ , and
• {f(zi, u)} = {f(zj , u)} for every u ∈ Ũ .

D. Latent Space Roadmap Framework

We addressed the problem of visual action planning for
scenarios of complete training datasets, i.e., those covering
all possible states and transitions among them, in our earlier
works [5], [6] by introducing the Latent Space Roadmap
(LSR) framework. The basic idea of this framework is to
perform planning in the low dimensional latent space Z by
i) structuring it to respect the underlying states of the system,
and ii) building a graph directly in this latent space to guide
the planning.

To address point i), we define the concept of covered
regions. We map the training dataset To described in Sec-
tion III-A into the latent space Z to obtain a set of covered
states Tz = {z1, ..., zM} ⊂ Z , i.e., Tz = ξ(To), for which
we make the following assumption as in [5], [6].

Assumption 1: Given a covered state z ∈ Tz , there exists
ε > 0 such that any other state z′ in the ε−neighborhood
Nε(z) of z can be considered as the same underlying state.

We define the union of ε-neighbourhoods of the covered
states z ∈ Tz as covered subspace

Zsys =
⋃

z∈Tz

Nε(z) ⊂ Z, (1)

which can be rewritten as the union of m path-connected
components [6] called covered regions and denoted by
{Zi

sys}mi=1. Note that in a well structured latent space, each
covered region encodes a possible underlying state of the
system. We define a set of transitions that connect covered
regions. A transition function f i,j

z : Zi
sys ×U → Zj

sys maps
a point zi ∈ Zi

sys to a point zj ∈ Zj
sys when applying an

action u ∈ U , with i, j ∈ {1, 2, ...,m} and i ̸= j. Given Zsys

and the transition functions f i,j , we then define the Latent
Space Roadmap:

Definition 5: A Latent Space Roadmap is a directed graph
LSR = (VLSR, ELSR) where each vertex vi ∈ VLSR ⊂
Zsys for i ∈ {1, ...,m} is a representative of the covered
region Zi

sys ⊂ Zsys, and an edge ei,j = (vi, vj) ∈ ELSR

Fig. 3: Overview of the proposed architecture to generate visual
action plans. The modules involved in each phase of the ACE
paradigm are highlighted with respective colored dots. The modules
only used offline are marked in grey while the ones also used online
are marked in green.

represents a transition function f i,j
z between the correspond-

ing covered regions Zi
sys and Zj

sys for i ̸= j.
Two main modules compose the LSR framework. First, a

Mapping Module (MM) implements the mapping function ξ
and observation generator ω defined in Def. 1 with a VAE
framework. These are learned using a contrastive loss term,
also called action term, which attracts states belonging to
similar pairs and repels states belonging to action pairs to a
minimum distance dm. Second, an LSR module implements
the LSR defined in Def. 5 by applying clustering in Z to
approximate the covered regions Zi

sys. Each obtained cluster
is associated with a node in the LSR and edges among them
are created using action pairs in the training dataset To. In
this process, average action specifics are also endowed in
the edges to retrieve the action plan Pu (see the Action
Averaging Baseline in [6]). More details can be found in [5],
[6].

IV. OVERVIEW OF THE APPROACH

In order to perform visual planning in case of data scarcity,
the proposed ACE paradigm aims to:

1) Augment the available dataset To, autonomously cre-
ating new similar pairs.

2) Create new unobserved connections in the latent space
Z , increasing the set of transition functions f ij

z and
number of respective edges in the LSR.

3) Explore new regions of Z in an efficient and guided
manner, increasing the covered subspace Zsys.

To realise the ACE paradigm we extend the LSR framework
with a Latent Prediction Model (LPM) and a Suggestion
Module (SM). An overview of the overall ACE architecture
including all the modules is shown in Fig. 3. We mark in
green the modules used at run time to produce the visual
action plan (bottom) from start Os and goal observations Og

(left), and in grey the ones only used offline.
The LPM module approximates the latent dynamics func-

tion in Def. 2 which, given a latent state zi and an action

u ∈ U , predicts a potential next state zi+1. Note that
LPM implicitly assumes a given MM. The SM module
approximates the suggestion function η in Def. 3 and, given
an observation Oi, suggests a set of potential actions Ui that
are possible to perform. The input image Oi can be either an
observation of the current state or an observation generated
by ω.

To realize point 1), we rely on Def. 4 and employ SM
and LPM to find novel similar pairs that are added to To to
obtain the augmented training dataset To. The latter is then
used to obtain a new mapping function approximation ξ̄ by
updating the MM, which leads to an enhanced structure of
the latent space Z .

Regarding point 2), we use SM and LPM along with
the covered subspace Zsys to identify previously unseen
transitions f ij

z that are possible to execute, called valid
transitions. These are added to the LSR in the form of new
edges referred to as shortcuts.

Finally, point 3) is realized in a similar fashion where SM
suggests the set of possible actions Ui from the current state
zi and LPM predicts potential next states out of which we
select the most promising one as the exploratory action, as
described in Sec. V-C. This enables exploring new regions
of the latent space Z in a guided manner.

The ACE paradigm improves the individual components
of the LSR framework which is then used to perform visual
action planning. Note that even though we focus on the LSR
framework, ACE is general and applicable to many other
contexts, e.g., the proposed targeted exploration approach can
be easily integrated into an RL setting.

A. Models for LPM and SM

We model LPM as a simple multilayer perceptron (MLP).
During augmentation and connection phases, we also lever-
age the covered subspace Zsys defined in (1): we consider a
state zj predicted by the LPM reliable only if it falls within
the covered subspace, i.e., zj ∈ Zsys. We refer to the LPM
including the covered subspace check as reliable LPM (LPM-
R) in the following.

The SM is built based on two core observations: i) several
valid actions can be applied to the same state, and ii) the
same action can be applied to different states. We model the
suggestion function η with a Siamese network trained with a
contrastive loss that encourages clustering of the states from
which the same subset of actions can be performed.

In detail, we build the training dataset for the SM,
denoted by T SM

o , by rearranging the observations in the
training tuples in To depending on the actions. A similar pair
(O1, O2, s = 1), where s is the similarity signal, is added
to T SM

o if the same action specifics u is applied from O1

and O2 in To, i.e., if there exist (O1,−, ρ = (1, u)) ∈ To and
(O2,−, ρ = (1, u)) ∈ To, where − denotes any other obser-
vation. On the other hand, a dissimilar pair (O1, O2, s =
0) is added to T SM

o when different action specifics
are applied from O1 and O2 in To, i.e., if there ex-
ist (O1,−, ρ = (1, u1)) ∈ To and (O2,−, ρ = (1, u2)) ∈ To
with u1 ̸= u2. Training the Siamese network with the dataset

Fig. 4: Example of the set of suggested actions U using the SM
for a box stacking (left) and T-shirt folding (right) task. The blue
rings mark pick locations, while the green circles place locations.

T SM
o results in a latent space Z ′ different from Z , i.e.,

Z ′ ∩ Z = ∅. The latent space Z ′ is then clustered and each
cluster C ⊂ Z ′ is labeled with the set U containing all the
actions that are executed starting from the points contained
in C.

At run time, a novel observation Oi is fed into the Siamese
network to obtain its latent representation z′i ∈ Z ′ and the
set of suggested actions Ui associated with the closest cluster
C as visualized in Fig. 4.

V. ACE PARADIGM

In this section we present in detail the individual compo-
nents of our ACE paradigm and then provide a summary of
the full framework.

A. Augment

The proposed augmentation procedure builds new similar
pairs based on Def. 4. In particular, if the same set of
actions applied from different observations O1 and O2 leads
to the same underlying states, we consider the two starting
observations as a similar pair. In doing so, we discover
similar pairs among states that are further apart in the latent
space Z . Note that this occurs in practice since the latent
mapping ξ is only an approximation. Therefore, to improve
the structure of Z , it is crucial to identify more similar pairs
in the dataset To such that ξ̄ is re-learned to map the same
underlying states close together.

Moreover, in our setting, no labels about the underlying
states contained in the training observations that could be
exploited for augmenting the dataset are provided. In con-
trast, we only have access to the information of whether two
observations are similar or there is an action between them.

Algorithm 1 summarizes the augmentation procedure.
Given the training dataset To and a search radius r deter-
mining the search area around covered states, we encode
all observations Oi ∈ To to obtain Tz ⊂ Z (line 1) and
initialize the augmented dataset T o (line 2). For each latent
state zi ∈ Tz , we check if a new similar pair can be identified.
We first obtain the set Ui of possible actions from zi using
the SM (line 4). Then, we define the set Li of covered latent
states which are within the search radius r (line 5), i.e.,
Li = {zj ∈ Tz | zj ∈ Nr(zi)}. This is followed by a descent
sorting with respect to the distance of each zj ∈ Li to zi
(line 6). Note that we limit the search in a radius only for
computational reasons. Since the latent space Z already has

Algorithm 1 Augmentation Algorithm
Require: Training dataset To, search radius r

1: Tz ← MM(To)
2: T o := To
3: for each zi ∈ Tz do
4: Ui ← SM(Oi)

5: Li ← search in radius(Tz, zi, r)
6: Li ← descent sort(Li)

7: found := False
8: for each zj ∈ Li and not found do
9: Oj ← get observation(To, j)

10: Uj ← SM(Oj)

11: if Ui ≡ Uj then
12: Zp

i ,Z
p
j ← LPM-R(zi,Ui),LPM-R(zj ,Ui)

13: Zn
i ,Zn

j ← nearest(Tz,Zp
i), nearest(Tz,Zp

j)

14: if Zn
i ≡ Zn

j then
15: T̄o := T o ∪ {(Oi, Oj , a = 0)}
16: found := True

return T̄o

a certain structure inferred from the non-augmented dataset
To during training of MM, we avoid checking states that are
too far away from the current and likely not similar to it.

At this point, we analyze the covered states zj ∈ Li.
Starting from the first zj , we take the corresponding ob-
servation Oj in the training dataset (line 9) and obtain the
set of potential actions Uj (line 10). If all the actions in
the sets Ui, Uj coincide, we consider the sets of respective
predicted states Zp

i ,Z
p
j (line 12) made by the LPM-R, where

the reliability condition discussed in Sec. IV-A is checked.
Lastly, the sets Zn

i ,Zn
j consisting of closest covered latent

states in Tz with respect to Zp
i ,Z

p
j , respectively, are found.

If Zn
i ,Zn

j coincide, a new similar pair (Oi, Oj , a = 0) is
added to the augmented dataset T o, otherwise the next state
zj ∈ Li is analyzed.

B. Connect

For graph-based planning methods it is essential to have a
good connectivity of nodes. Although more connections can
be built by collecting more data, a more efficient approach
involves building shortcuts, i.e., connections between nodes
that are not directly induced by the training set. In this work,
we infer them using the SM and LPM modules. Note that it is
important to add correct shortcuts as erroneous connections
can be very detrimental for the graph planning capabilities,
leading to unfeasible plans.

Algorithm 2 summarizes the proposed method for building
shortcuts. The basic idea is that if an action u suggested
by the SM in a certain state zi leads to a covered state
zj , then the respective transition can be considered as valid
and can be added to the LSR. In detail, given the LSR
and the neighborhood size ε, we iterate over the states in
the set of nodes VLSR of the LSR. For each state zi in
VLSR, we generate the respective observation Oi through
the observation generator ω of the MM (line 2) and obtain

Algorithm 2 Connection Algorithm

Require: LSR = (VLSR, ELSR), neighborhood size ε

1: for each zi ∈ VLSR do
2: Oi ← MM(zi)

3: Ui ← SM(Oi)

4: for each u ∈ Ui do
5: zn ← LPM(zi, u)

6: if ∥zj − zn∥1 < ε for zj ∈ VLSR, i ̸= j then
7: ELSR ← create edge (zi, zj , u)

return LSR

the set of potential actions Ui by the SM. For each u ∈ Ui,
LPM predicts the next state zn obtained from zi (line 5).
If the predicted next state zn falls in the ε-neighborhood of
any other state zj ∈ VLSR in the LSR with i ̸= j, an edge
between zi and zj is added in the edge set ELSR of the LSR
(line 7). We also endow the edge with the new predicted
action u for action planning purposes as discussed in III-D.

C. Explore

The challenges of finding suitable actions for exploration
of the latent space Z are twofold: i) finding valid actions
that can be performed in the current state, and ii) choosing
the action that is most beneficial to the system.

The SM model provides a solution to the first problem
as it outputs a set of valid actions Ui for an observation Oi

corresponding to the current state zi as described in Sec. IV-
A. For the second problem, we propose to undertake the
action that leads to the most unexplored area of the latent
space Z at each exploration step.

The approach is summarized in Algorithm 3. Given the
training dataset Tz and the current state observation Oi,
we first map both into Z with the mapping function ξ of
the MM (lines 1-2). Then, we retrieve the set of potential
actions Ui from the current state zi through the SM. We
initialize an empty auxiliary exploration list Le. For each
action u ∈ Ui, we predict the next state zn using the LPM
(line 6) and compute the distance di from zi to the nearest
covered state in Tz (line 7). The tuple given by the action u
and distance di is added to the exploration list Le. Once all
the actions in Ui have been analyzed, we return the action ue

(line 9) that leads to the furthest latent state as the exploratory
one. As described in the following, the observation Oi+1

obtained after executing ue is used to create a new action
pair (Oi, Oi+1, ρ = (1, ue)) that is added to To . The latent
space is explored by executing Algorithm 3 ne times.

D. LSR with ACE

In this section, we describe how the ACE components are
combined within the LSR framework, summarized in Algo-
rithm 4. Given the training dataset To, the hyperparameters
r and ε as well as the number of total exploration steps ne,
we first build the models employed in the ACE paradigm
(line 1). Secondly, we generate the augmented dataset To
following Algorithm 1 with the search radius r and use it to

Algorithm 3 Exploration Algorithm
Require: Training dataset To, current observation Oi

1: Tz ← MM(To)
2: zi ← MM(Oi)

3: Ui ← SM(Oi)

4: Le := {}
5: for each u ∈ Ui do
6: zn ← LPM(zi, u)

7: di ← nearest(Tz, zn)
8: Le ← add tuple(u, di)

9: ue ← get action to furthest state(Le)

return ue

update the MM, LPM, and SM models. Thirdly, we perform
the targeted exploration phase. For each exploration step i ∈
{1, ..., ne}, we get the current observation Oi, determine the
most promising exploration action ue using Algorithm 3 (line
6) and execute it (line 7) to reach the new observation Oi+1.
The observed tuple (Oi, Oi+1, (ρ = (1, ue))) is added to the
dataset To (line 8). After the completion of the exploration,
the LSR is built using the approach in [5] with neighborhood
threshold ε (line 9). Finally, we add the shortcuts as in
Algorithm 2 (line 10) and the final LSR is returned for
planning.

Algorithm 4 Integration Algorithm
Require: Training dataset To, search radius r, neighborhood

threshold ε, number of explorations ne

1: MM, LPM, SM ← build models(To)
2: T o ← augment dataset(To, r) [Alg. 1]
3: MM, LPM, SM ← update models(T o)

4: for each i ∈ {1, .., ne} do
5: Oi ← current observation
6: ue ← get exploration action(To, Oi) [Alg. 3]
7: Oi+1 ← perform action(ue)

8: To := To ∪ {(Oi, Oi+1, (ρ = (1, ue)))}
9: LSR← build LSR(To, ε) [5]

10: LSRace ← build shortcuts(LSR, ε) [Alg. 2]

return LSRace

VI. SIMULATION RESULTS

To validate the proposed approach, we consider a simu-
lated box stacking task, shown in Fig. 2 and referred to as
hard stacking task in [6]. This setting allows to determine
the true underlying state of each observation (exploited for
evaluation purposes only) and therefore to automatically
validate the effectiveness of each ACE component as well
as of the entire ACE framework.

The box stacking task is composed of a 3 × 3 grid
where four boxes can be stacked on top of each other. The
underlying state is defined by the geometrical arrangement of
the boxes, where each box is considered unique. The action
specifics u is represented by the pick and place coordinates.

In each observation, we induce different lighting conditions
as well as ≈ 17% random noise in the positioning of the
boxes in each cell. The following rules apply: i) only one
box can be moved at the time, ii) only one box can be placed
in a single grid cell, iii) boxes cannot float, and iv) a box
can only be picked if no other box is on top of it. Given the
3×3 grid and the above rules, the system exhibits exactly 288
possible underlying states, and |U| = 48 possible actions.

A. Evaluation Criteria and Implementation Details

To evaluate the effectiveness of the ACE paradigm in
scarce data settings, we randomly sub-sample 80%, 75%,
60%, 50%, 40%, and 30% of the original dataset T100
[6] consisting of 2500 pairs. We denote these sub-sampled
dataset as T80, T75, T60, T50, T40, and T30, respectively.
We compare the combined ACE-LSR with the ε-LSR in
[5] as well as with the ablated versions of each component
of ACE, namely A-LSR for the augmentation step, C-LSR
for connection step, and E-LSR for the exploration step.
We additionally implement: i) a baseline augmentation step,
referred to as Ab-LSR, which generates similar pairs using
the closest states in the latent space, and ii) a baseline
exploration step, referred to as Eb-LSR, which is a random
explorer that selects a random action from the set U of
the system actions and tries to apply it to the given state
observation. We omit the comparison of ACE-LSR to other
existing methods which can be found in [6].

We score all frameworks by the planning performance on
1000 novel start and goal states randomly selected from a
holdout dataset composed of 2500 observations. We report
the percentage of correct transitions, and the percentage of
cases where all plans are correct, and where at least one
of the suggested plan is correct, denoted by % trans., %
all, and % any, respectively. Furthermore, to evaluate the
augmentation component, we report the number of newly
identified similar pairs, # pairs, and the percentage of correct
pairs among them, % pairs, using the ground truth underlying
states, The connection component is similarly scored by mea-
suring the number of new edges built in the graph, # edges, as
well as the percentage of correct edges, % edges. Finally, the
exploration component is evaluated by performing ne = 500
exploration steps from random initial states and defining
the percentage of valid exploratory actions, % explore. For
each score, we report mean and variance obtained with three
different seeds for the MM model training.

The VAE modelling the MM is trained as in [6] with latent
dimension 16. A DBSCAN-based [16] clustering algorithm
is used for building the LSR. The hyperparameter ε is set
to ε = µ0 + wε · σ0 as in [5] where µ0 and σ0 are the
mean and standard deviation of the L1 distances ∥z1 − z2∥1
among similar latent pairs (z1, z2, a = 0), respectively, and
wε is a scaling parameter. We perform a grid search for
wε in the interval [−0.65,−0.05] with step size 0.1. The
LPM is a two-layer, 100 nodes MLP, while the Siamese
network for the SM is a shallow two convolutional layer
network with a latent space dimension 12 as in [17]. We
train the Siamese network for 100 epochs and perform

Fig. 5: Planning performance on the box stacking task in terms of
% any using ε-LSR [5] (orange) and ACE-LSR (blue) trained on
the subsampled datasets.

HDBSCAN [18] clustering in the latent space Z ′ of the
model. We set search radius r = µ0 in Algorithm 1 since
similar states should generally fall at a distance equal to
the mean of similar states in the training dataset. While
performing exploration, we additionally remove the action
obtained by reversing the last action from the set of possible
actions and apply a reset of the system state each time an
invalid action is undertaken.

B. Evaluation Results

Figure 5 shows the planning performance in terms of %
any score across the considered subsampled datasets when
the proposed ACE paradigm is used (blue) and not (orange).
Cross marks denote mean values, while the transparency
represents the variance. We can observe that ACE-LSR
boosts the planning performance compared to the ε-LSR [5]
for each subsampled dataset and is particularly essential
in case of very scarce datasets, e.g. T30-T50. For example,
average improvements equal to ≈ 45, 21, 33% are observed
for T30,T40,T50, reaching ≈ 51.5, 76.5, 82.6%, respectively.
Obviously, the improvement is much more significant with
scarce datasets, while the performance is almost saturated
with T100, reaching 93% and 94% with ε-LSR and ACE-
LSR, respectively.

Table I shows the results of the ablation study for the
components of the ACE paradigm compared with the ε-
LSR. We report the complete scoring described in Sec. VI-A
obtained using T50 which consists of half the data used in [5].
We observe that data scarcity leads to unsatisfactory planning
performance of the ε-LSR, reaching only average % any
score of 49.6% with % trans equal to 60.5%. No improve-
ment but rather a decrease of performance is recorded with
the baseline augmentation step, i.e., with Ab-LSR (row 2).
This builds 1654 new similar pairs among which ≈ 95% are
correct. However, these new pairs deteriorate the structure
of the latent space, resulting in % any equal to 33.1%
only with a decrease of ≈ 16%. This suggests that simply
adding new correct pairs do not necessarily induce improved
performance if they are not carefully selected. In contrast,
our augmentation algorithm A-LSR (row 3) produces only
15 new similar pairs on average that are 100% correct, thus
boosting the planning performance in terms of % any to
average 56.8%. Our connection algorithm in C-LSR (row 4).

Fig. 6: Start and five goal configurations of the T-shirt.

builds ≈ 479 new shortcuts that are ≈ 95% correct. These
yield to much higher planning scores, reaching average
87.7% and 63% for % trans. and % any, respectively.
Concerning the exploration phase, only 7.8% of the moves
(% explore score) attempted by the random explorer in Eb-
LSR (row 5) are correct. This results in ≈ 2.5 percentage
point enhancement of the planning performance in terms of
% any compared to ε-LSR. On the other hand, a substantial
improvement in planning performance is recorded when
employing our exploration algorithm E-LSR (row 6). More
specifically, ≈ 97.7% of the ne = 500 exploration moves are
found to be valid, resulting in average 80.7% and 65.7% for
% trans. and % any scores, respectively. This result suggests
the effectiveness of the proposed SM models for proposing
exploration actions, which are found almost always to be
correct. Examples of suggested actions by the SM for the
stacking task are reported in Fig. 4-left. Finally, the combined
ACE-LSR approach (row 7) significantly outperforms all of
the above mentioned frameworks, leading to an improvement
> 30% in terms of % trans.,% all,% any compared to the
ε-LSR and reaching a final % any performance of 82.6%.

VII. EXPERIMENTAL RESULTS

To further validate the effectiveness of the ACE paradigm,
we perform a real world T-Shirt folding task as in [5].
In this task, the goal is to generate and execute visual
action plans from a start configuration to five different goal
configurations, shown in Fig. 6.

Let F100 be the training dataset used in [5] containing a
total of 1150 pairs, and let F50 ⊂ F100 be a scarce dataset
consisting of 50% randomly subsampled pairs. We use the
same set of parameters and architectures as in Sec. VI-A
unless otherwise specified. Since the action specifics u is
composed of pixel position pick and place coordinates, the
action space is much larger as in the simulation task. In
order for the SM to be able to suggest meaningful actions, we
discretize the action space into bins and use the mean actions
of each bin. We choose a bin size of ≈ 15% of the image
space which results in 107 unique actions. Furthermore,
we group the observations only based on the similarity of
the pick action as this enables more flexible exploration.
Examples of suggested actions for the T-shirt folding task
are shown in Fig. 4-right. The SM, trained for 200 epochs, is
then used in the augmentation step obtaining 13 new similar
pairs (Algorithm 1). When applying the connection algorithm
using the SM and LPM-R we obtain 55 novel edges in
the graph. In order to obtain more novel connections, we
increase the LPM-R reliability check by a factor of 1.5 since
both the scarcity and diversity of the actions make a reliable
prediction more challenging. Lastly, we execute Algorithm 3

Framework # pairs % pairs # edges % edges % explore % trans. % all % any
ε-LSR [5] − − − − − 60.5± 4.4 49.1± 5.9 49.6± 5.7
Ab-LSR 1654 ± 9.0 95.18 − − − 58.8± 5.7 32.3± 19.2 33.1± 19.2
A-LSR 15± 11.0 100 − − − 64.0± 13.5 56.5± 12.1 56.8± 12.3
C-LSR − − 479.2 ± 52.1 95.1± 0.4 − 87.7± 0.6 57.1± 9.4 63.0± 7.9
Eb-LSR − − − − 7.8± 0.0 65.9± 0.2 51.4± 5.7 52.3± 5.3
E-LSR − − − − 97.7 ± 0.4 80.7± 2.0 62.2± 3.0 65.7± 3.1
ACE-LSR 15± 11.0 100 401.0± 15.3 96.6 ± 1.0 97.1± 1.6 93.1 ± 1.9 79.2 ± 4.2 82.6 ± 4.0

TABLE I: Evaluation results obtained on the box stacking task with T50 using ε-LSR as well as its combination with the baseline
augmentation and exploration methods, the individual components of ACE paradigm and all the ACE components. The symbol − denotes
that the respective score is not relevant to the framework. See Sec. VI-A for details. Best results in bold.

Framework fold 1 fold 2 fold 3 fold 4 fold 5
ε-LSR 0/5 5/5 0/5 5/5 1/5
ACE-LSR 4/5 5/5 3/5 4/5 4/5

TABLE II: System performance results on the T-shirt folding task
with F50 for ε-LSR and ACE-LSR on five different folds, each
repeated five times. Best results in bold.

for ne = 20 exploration steps. Note that exploration in the
folding task is much less constrained, and therefore some
explorations can lead to completely novel folding sequences
not observed in the collected training dataset To. Including
the newly obtained action pairs yields the final ACE-LSR
(built with wε = 1) that we compare with ε-LSR (wε = 1.4)
trained on F50 in Tab. I. We repeat each fold five times and
report the number of successful trials when the entire fold is
performed successfully. The execution videos as well as the
exploration can be seen on the project website1.

The ACE-LSR outperforms the ε-LSR in all folds except
for fold 4, and reaches a total system success rate over all
five folds of 80%, matching the performance reported in [5]
using only half the training data. We observe that the ε-
LSR does not have enough data to distinguish fold 1 from
fold 2 as it always performs fold 2 regardless of the fold
goal state. On the contrary, ACE-LSR is able to successfully
distinguish them and execute the correct fold most of the
times. Furthermore, the ε-LSR is not able to reliably execute
fold 5 as it is missing the final step to complete it, while
ACE-LSR is able to perform it in 4/5 cases.

VIII. CONCLUSIONS

In this work, we presented the ACE paradigm that ad-
dresses data scarcity problem for visual action planning.
We built upon the Latent Space Roadmap framework and
introduced i) a novel Suggestion Model (SM), that given
an observation, suggests possible actions in that state, and
ii) a Latent Prediction Model (LPM) that, given a latent
state and an action, predicts the next latent state. Combining
these modules, we Augmented the dataset to identify new
similar pairs for training, identified new valid edges in the
LSR to increase its Connectivity, and Explored the latent
space efficiently to reach potential undiscovered states. We
validated the ACE paradigm on a simulated box stacking task
and a real-world T-shirt folding task on several levels of data
scarcity. As future work, we aim to extend this paradigm to
different contexts, such as RL.

1https://visual-action-planning.github.io/ace/

REFERENCES

[1] A. I. Károly, P. Galambos, J. Kuti, and I. J. Rudas, “Deep learning
in robotics: Survey on model structures and training strategies,” IEEE
Trans. Syst. Man Cybern.: Syst., vol. 51, no. 1, pp. 266–279, 2021.

[2] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford, et al., “The limits and
potentials of deep learning for robotics,” Int. J. Robot. Res., vol. 37,
no. 4-5, pp. 405–420, 2018.

[3] A. Wang, T. Kurutach, P. Abbeel, and A. Tamar, “Learning robotic
manipulation through visual planning and acting,” in Robotics: Science
and Systems, 2019.

[4] K. Liu, T. Kurutach, C. Tung, P. Abbeel, and A. Tamar, “Hallucinative
topological memory for zero-shot visual planning,” in Int. Conf. Mach.
Learn., pp. 6259–6270, 2020.

[5] M. Lippi, P. Poklukar, M. C. Welle, A. Varava, H. Yin, A. Marino,
and D. Kragic, “Latent space roadmap for visual action planning of
deformable and rigid object manipulation,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2020.

[6] M. Lippi, P. Poklukar, M. C. Welle, A. Varava, H. Yin, A. Marino, and
D. Kragic, “Enabling visual action planning for object manipulation
through latent space roadmap,” arXiv preprint arXiv:2103.02554,
2021.

[7] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in IEEE Int. Conf. Robot. Autom., pp. 2786–2793, 2017.

[8] R. Hoque, D. Seita, A. Balakrishna, A. Ganapathi, A. Tanwani, N. Ja-
mali, K. Yamane, S. Iba, and K. Goldberg, “VisuoSpatial Foresight
for Multi-Step, Multi-Task Fabric Manipulation,” in Robotics: Science
and Systems, 2020.

[9] R. Hoque, D. Seita, A. Balakrishna, A. Ganapathi, A. K. Tanwani,
N. Jamali, K. Yamane, S. Iba, and K. Goldberg, “Visuospatial foresight
for physical sequential fabric manipulation,” Auton. Robots, pp. 1–25,
2021.

[10] B. Ichter and M. Pavone, “Robot Motion Planning in Learned Latent
Spaces,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2407–2414, 2019.

[11] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topolog-
ical memory for navigation,” in Int. Conf. Learn. Represent., 2018.

[12] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive
representations for deformable objects using contrastive estimation,”
Conf. Robot Learn., 2020.

[13] K. Pertsch, O. Rybkin, F. Ebert, C. Finn, D. Jayaraman, and S. Levine,
“Long-horizon visual planning with goal-conditioned hierarchical pre-
dictors,” in Adv. Neural Inf. Process. Syst., 2020.

[14] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn, “Offline reinforcement
learning from images with latent space models,” in Learning for
Dynamics and Control, pp. 1154–1168, PMLR, 2021.

[15] T. Haarnoja, K. Hartikainen, P. Abbeel, and S. Levine, “Latent space
policies for hierarchical reinforcement learning,” in Int. Conf. Mach.
Learn. (J. Dy and A. Krause, eds.), vol. 80, pp. 1851–1860, 2018.

[16] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.,” in Kdd, vol. 96, pp. 226–231, 1996.

[17] C. Chamzas, M. Lippi, M. C. Welle, A. Varava, L. E. Kavraki, and
D. Kragic, “Comparing reconstruction-and contrastive-based models
for visual task planning,” arXiv preprint arXiv:2109.06737, 2021.

[18] L. McInnes, J. Healy, and S. Astels, “HDBSCAN: Hierarchical density
based clustering,” J. Open Source Software, vol. 2, no. 11, p. 205,
2017.

https://visual-action-planning.github.io/ace/

	Introduction
	Related Work
	Preliminaries and Problem Statement
	Dataset structure
	Visual Action Planning
	Problem Statement
	Latent Space Roadmap Framework

	Overview of the approach
	Models for LPM and SM

	ACE Paradigm
	Augment
	Connect
	Explore
	LSR with ACE

	Simulation results
	Evaluation Criteria and Implementation Details
	Evaluation Results

	Experimental Results
	Conclusions
	References

