
DIT948, Lecture 6

DIT948 Programming H16
Lecture 6

Instructor: Musard Balliu, musard@chalmers.se

September 17, 2016

musard@chalmers.se

DIT948, Lecture 6

QUESTIONS?

DIT948, Lecture 6

Plan

I Last time

1. algorithm design and development

I Today’s Plan:

1. introduction object-oriented programming

2. classes and objects

DIT948, Lecture 6

Datatypes

The types we have seen so far are the eight primitive types,
String, and arrays. We can have arrays of any type, by postfixing
the type name with []. Thus, we can have arrays of String
(String[], arrays of arrays of String (String[][]), and so on.
But all the elements in the array must have the same type.

DIT948, Lecture 6

Problem 1: Let’s talk about football

Suppose we want to keep a list of football players and the numbers
of goals they’ve scored, for example:

Ibrahimovic 5
Berg 2
Toivonen 3

The names of the players are of type String and the numbers of
goals is of type int. Therefore, we cannot use an array of two
elements to represent one of the rows in this table, and then an
array of such rows to represent the table. The only possibility is to
use two arrays, one for the names column, the other for the
number of goals column.

DIT948, Lecture 6

Problem 1: Lists of related types

We end up with something like this:

String[] names = {"Ibrahimovic", "Berg", "Toivonen"};

int[] goals = {5, 2, 3};

The player with name names[i] has scored goals[i] goals.

DIT948, Lecture 6

Problem 1: Lists of related types

Now suppose we want to sort the players in alphabetical order. We
can use one of the Java methods to do the sorting:

Arrays.sort(names);

but now the names array is

[Berg, Ibrahimovic, Toivonen]

and it no longer corresponds to the goals array.

Moreover, since the names array was sorted “in place”, we have
lost the old order, and we can no longer restore the correspondence.

The same problem arises if we try to rank players according to the
goals they scored.

The code

code/Problem1.java

DIT948, Lecture 6

A first look at the class construct

With class, we can introduce new datatypes. The simplest form
of such a declaration is:

class Type {

type1 var1;

...

typeN varN;

}

The semantics of this declaration is: Type is a new type. Values of
this type collect together values of type type1, . . . , typeN. If x is
a value of Type, then x.var1 is a value of type type1, etc.

A variable of type Type is called an instance of the class
TypeName, or an object of type Type. Variables var1, . . . , varN
are called fields, or instance variables.

DIT948, Lecture 6

A first look at the class construct

Therefore, we can have declarations such as

TypeName x;

which introduces a new variable, x, of type TypeName. To initialize
x, use the keyword new:

x = new TypeName();

This will allocate space for the fields (and give them more or less
sensible initial values).

After that, the instance variables can be accessed with x.var1,
. . . .

DIT948, Lecture 6

A first look at the class construct

Returning to the players example, we can introduce a new type
which will contain both the name and the number of goals scored
by a player:

public class Player {

String name;

int goals;

}

The code

We can now introduce variables of type Player:

Player ibrahimovic;

ibrahimovic= new Player();

ibrahimovic.name = "Ibrahimovic";

ibrahimovic.goals = 5;

code/Player.java

DIT948, Lecture 6

Problem 2: global variables

We can now have a list of players, and we want to be able to add
new players to the list.

Since we haven’t discussed other data structures than the arrays,
we’ll have to keep our list in an array, which we have to initialize to
a sufficiently big size so we don’t run out of space when we add
new elements.

That means, however, that we’ll need to remember how many
elements of the array have been initialized, and which is the next
one to initialize.

We end up writing something like this.
The code

code/Problem2V1.java

DIT948, Lecture 6

Problem 2: global variables

This is very repetitive code, due to all the initializations. It is also
very error-prone: if we forget to increment nrPlayers, we’ll
overwrite the data in the list.

To get rid of the repetitive initializations is easy: we introduce a
method.

The code

This is an improvement, but only a very minor one. The problem is
that add always acts on the same array, players, and always
needs nrPlayers, but these are not in scope for it, and so we have
to pass it repeatedly.

code/Problem2V2.java

DIT948, Lecture 6

Problem 2: global variables

The solution is therefore to move the variables so that they are in
scope for add. We now have a better looking program:

The code

The function add has only the arguments it really needs, the
error-prone incrementing of nrPlayers appears in only one place,
and we have no superfluous duplication of code.

However. . .

This pleasant design is surprisingly brittle. Consider the following
extension of the program: we want to have a second list of players,
perhaps players of another team.

code/Problem2V3.java

DIT948, Lecture 6

Problem 2: global variables

We need another array to store the second list, and another
counter for the number of players added to this list. We also need
code to add players to this second list.

Now, whatever we do seems wrong: if the second array and
counter are not global, we have repetitive, error-prone code.

If we use the same add method, we need a conditional to tell us
which array to add to, and we get a lot of code duplication.

The code

If we introduce a new add method, it will be an almost exact copy
of the first:

The code

code/Problem2Ugh1.java
code/Problem2Ugh2.java

DIT948, Lecture 6

Object-oriented programming

The problem is that global variables, which allowed us to re-factor
our first design, are a double-edged sword. They are in scope for
the method add, where we need them to be, but they’re also in
scope for all other methods!

The solution, brought about by object-oriented programming, is to
use the data structuring mechanism we’ve needed for Player also
as a scope controlling mechanism. We’ll bundle together the list of
players and the counter (which we should have really done from
the start) and with the add method.

The PlayerList class
Using the PlayerList class

The essence of OOP is the combination of data structure
creation with scope control.

code/PlayerList.java
code/Problem2OO.java

DIT948, Lecture 6

A second look at classes

class Type {

type1 var1;

// ...

typeN varN;

mType1 method1(type1 arg1, ..., typeN1 argN1) {

statements;

}

// ...

mTypeM methodM(type1M arg1M, ..., typeNM argNM) {

statements;

}

}

DIT948, Lecture 6

A second look at classes

As before, the class declaration introduces a new type, which
collects values together, and values of this type must be allocated
using new before their fields can be initialized.

The class declaration also introduces M new methods, for which
these variables are in scope.

Like fields, the methods associated with an instance x of type
Type are called with x.method1(arg1, ..., argN), etc.

When a method references one of the field variables, say var1, the
value used is that of the field var1 in the instance with which the
method was called.

DIT948, Lecture 6

A first look at constructors

When we use new to initialize a new variable of some type, Java,
will allocate space for the fields and the methods and will initialize
them in some default way, which might not be what we want. For
example, integers are initialized to 0, but strings are not initialized
to the empty string, "", but rather to null, a sort of “no value”.
If you try to print an empty string, nothing is printed, but if you
try to print a null string, the program crashes.

We are given the possibility of controlling the allocation process
and deciding the initial values of the fields. This is done by
implementing constructors. These are methods with the same
name as the type being introduced by class, and with no return
type.

DIT948, Lecture 6

A first constructor

For example, we can implement a constructor for the class Player,
which takes as arguments the values of the two fields.

public class PlayerC {

String name;

int goals;

PlayerC(String name, int goals) {

this.name = name;

this.goals = goals;

}

}

Now we can allocate and initialize the fields at the same time with:

PlayerC ibrahimovic;

// ibrahimovic = new PlayerC(); error!

ibrahimovic = new PlayerC("Ibrahimovic", 5);

DIT948, Lecture 6

Default constructors vs. explicit constructors

Note that now we can no longer use the default constructor! Once
we have provided a constructor (or more), Java will no longer
initialize the variable in the default way. If we then want a
constructor with no arguments, we have to provide it explicitly.

DIT948, Lecture 6

The keyword this

In the constructor, we had in scope two variables called name and
two called goals. For each, we had the field and the constructor
argument. We wanted to initialize the instance variables to the
values of the constructor arguments, so we needed access to both.

When the constructor is called, as with every method, a new block
is created and new variables with the names of the arguments are
introduced. If these variables have the same name as those in a
larger enclosing block, then the latter will be shadowed and no
longer visible.

In our case, that means that name and goal in the body of the
constructor are the arguments, not the fields. This is why we need
the keyword this. It allows us to access the field variables (the
instance variables of “this” instance) when they would otherwise
be shadowed.

DIT948, Lecture 6

Exercises

Make sure you understand all examples from this lecture.

Read carefully the sections 9.1 - 9.7, 10.1 - 10.3, 10.5 - 10.6 and
10-10 of Linag’s book.

