DIT948, Lecture 11

DIT948 Programming H16
Lecture 11

Instructor: Musard Balliu, musard@chalmers.se

October 15, 2016


musard@chalmers.se

DIT948, Lecture 11

QUESTIONS?



DIT948, Lecture 11

Plan

» Last time

1. Robot APIs

2. Graphical User Interfaces
» Today's Plan:

1. Input/Output Streams

2. Network Programming



DIT948, Lecture 11

Streams

In Lecture 10 we have done quite a bit of input-output, in a
graphical way. The users were presented with a small number of
messages they could answer in a small number of ways (by clicking
one of a couple of buttons).

In many applications, this model is too limiting. For example,
sending e-mail is not done by choosing the words from drop-down
menus.

Additionally, not all input-output involves a human partner. In
fact, the fraction of all input-output with a human on at least one
end is, in terms of quantity, insignificant.

In these situations, we use streams



DIT948, Lecture 11

The example

To illustrate input-output, we shall use the following example: an
instance of RandomRobot which moves randomly and
communicates its moves to another program with a robot which
will execute those moves (a kind of imitation game).



DIT948, Lecture 11

Output

To that end, we'll create an I0Robot: a version of RandomRobot
which does input and output via streams.

We start with the simplest version: a robot which prints its actions

via standard output (usually the console).
Code


code/SysOutRobot.java

DIT948, Lecture 11

System.out.println

We have printed to the console using System.out.println.

Documentation of class System

out is a static member of class System. Its type is PrintStrean.

Documentation of class PrintStream


http://docs.oracle.com/javase/7/docs/api/java/lang/System.html
http://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html

DIT948, Lecture 11

An important exercise!

We have overloaded the randomMove method of RandomRobot.

Why not overload instead the turn methods and the move method
instead?

In other words, why doesn't the following work?
Alternative SysOutRobot


code/SysOutRobot1.java

DIT948, Lecture 11

Input

The counterpart to System.out for reading from the standard
input (usually the keyboard) System.in.

in is of type InputStream.
Documentation of class InputStream


http://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html

DIT948, Lecture 11

Scanner

Fortunately, there exists a class which saves us from manually
converting bytes to int, double, etc.
Documentation for class Scanner

Now we can have a SysInRobot which can read messages and
execute them, and we can run two programs at the same time,

communicating via System.out and System.in.
Code


http://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html
code/SysInRobot.java

DIT948, Lecture 11

Using SysInRobot

If we start up SysInRobot with
java SysInRobot

at the command line, then we can enter commands from the
keyboard and the robot will act accordingly.

However, we can pipe the output of SysOutRobot to the output of
SysInRobot and have the outputting robot “in the driver's seat”:

java SysOutRobot | java SysInRobot



DIT948, Lecture 11

Communicating via a file

Another possibility is to direct the output of SysOutRobot to a
file, and to have SysInRobot read that file:

java SysOutRobot > x
java SysInRobot < x

This reveals a problem with our treatement of input.



DIT948, Lecture 11

(Mis-)Using Scanner

The robots are out of sync. That is because we are using Scanner
in the wrong way. Scanner has several limitations:

> it doesn't do buffering
> it isn't thread-safe

> it gets easily confused, etc.



DIT948, Lecture 11

Using Scanner

The rules for using Scanner are:

1. Do not use Scanner to retrieve datal

2. Only use Scanner to parse (make sense of) data which has
already been retrieved, and which is not in danger of being
changed by other processes.

In other words, always separate data retrieval from parsing!



DIT948, Lecture 11

Using BufferedReader

The solution is to use BufferedReader to read the data, line by
line, from the input.

Documentation for BufferedReader

Once a line has been retrieved, we can use a Scanner to interpret
it (which in our case is very easy, since there is only a digit in the
whole line).

The code


http://docs.oracle.com/javase/7/docs/api/java/io/BufferedReader.html
code/BufSysInRobot.java

DIT948, Lecture 11

Using Files
We have used the operating system to write to files and read from
files by diverting the standard output and input of programs.
This is a very limited way of working with files. For instance, we
couldn't work with more than one file at a time (every process has
exactly one of standard output and input).
Java provides a type for working with files directly.

Documentation for File

The most important method here is the constructor
File(String pathname)


http://docs.oracle.com/javase/7/docs/api/java/io/File.html

DIT948, Lecture 11

Using Files

Once we have a file, we can use it to obtain a PrinterStream for
writing to it using print or println.

We can also use it to obtain a FileInputStream, which “is an”
InputStream.
Documentation for FileInputStream


http://docs.oracle.com/javase/7/docs/api/java/io/FileInputStream.html

DIT948, Lecture 11

Using Files

We abstract away from the specific PrintStream that OutRobot
is using; and similarly, from the specific InputStream from which
BufInRobot creates its instance of BufferedReader.

This will make it easier to reuse the robots, as we shall see in the
sequel.

OutRobot
BufInRobot


code/OutRobot.java
code/BufInRobot.java

DIT948, Lecture 11

Network programming

Another source of streams is the network. While an advanced
treatement of network programming requires a course for itself, the
basics are surprisingly simple.

Communication over the network is done via sockets.
Documentation for Socket


http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html

DIT948, Lecture 11

Using Sockets

There are two main ways for obtaining sockets:

1. from a ServerSocket

2. by connecting to an existing socket

You can see that for any socket-based communication, there must
be at least one instance of ServerSocket.
Documentation for ServerSocket


http://docs.oracle.com/javase/7/docs/api/java/net/ServerSocket.html

DIT948, Lecture 11

Input via sockets

Once we construct a ServerSocket, we can obtain a socket by
accepting connections.

The connection is bi-directional, so the sockets can be used for
both input and output. We shall use the server-side socket to
control the Buf InRobot.

Note that we do not need to create another robot, only to provide
the Buf InRobot with an input stream obtained from the socket.
Code for socket input.


code/SocketInput.java

DIT948, Lecture 11

Output via sockets

Similarly, once we have connected to a socket, we can obtain from
it an OutputStream, from which we construct a PrintStream
object for our OutRobot.

Again, the robot class remains unchanged: we can use it with any
kind of PrintStream.

Code for socket output.


code/SocketOutput.java

DIT948, Lecture 11

Homework

» As always, make sure you understand every line of code in this
lecture.



