
1

Inheritance and polymorphism

2

Are superclass’s Constructor
Inherited?

No. They are not inherited.

They are invoked explicitly or implicitly.

Explicitly using the super keyword.

A constructor is used to construct an instance of a class.
Unlike properties and methods, a superclass's
constructors are not inherited in the subclass. They can
only be invoked from the subclasses' constructors, using
the keyword super. If the keyword super is not explicitly
used, the superclass's default constructor is
automatically invoked.

3

Superclass’s Constructor Is Always Invoked

A constructor may invoke an overloaded constructor or its
superclass’s constructor. If none of them is invoked
explicitly, the compiler puts super() as the first statement
in the constructor. For example,

 public A(double d) {
 // some statements

}

is equivalent to

public A(double d) {
 super();
 // some statements

}

public A() {

}

is equivalent to

public A() {
 super();

}

4

Using the Keyword super

 To call a superclass constructor

 To call a superclass method

The keyword super refers to the superclass
of the class in which super appears. This
keyword can be used in two ways:

5

CAUTION

You must use the keyword super to call the
superclass constructor. Invoking a
superclass constructor’s name in a subclass
causes a syntax error. Java requires that the
statement that uses the keyword super
appear first in the constructor.

6

Constructor Chaining

public class Faculty extends Employee {
 public static void main(String[] args) {
 new Faculty();
 }

 public Faculty() {
 System.out.println("(4) Faculty's default constructor is invoked");
 }
}

class Employee extends Person {
 public Employee() {
 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's default constructor is invoked");
 }

 public Employee(String s) {
 System.out.println(s);
 }
}

class Person {
 public Person() {
 System.out.println("(1) Person's default constructor is invoked");
 }
}

Constructing an instance of a class invokes all the superclasses’ constructors
along the inheritance chain. This is known as constructor chaining.

7

Trace Execution
public class Faculty extends Employee {
 public static void main(String[] args) {
 new Faculty();
 }

 public Faculty() {
 System.out.println("(4) Faculty's default constructor is invoked");
 }
}

class Employee extends Person {
 public Employee() {
 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's default constructor is invoked");
 }

 public Employee(String s) {
 System.out.println(s);
 }
}

class Person {
 public Person() {
 System.out.println("(1) Person's default constructor is invoked");
 }
}

1. Start from the main
method

animation

8

Trace Execution
public class Faculty extends Employee {
 public static void main(String[] args) {
 new Faculty();
 }

 public Faculty() {
 System.out.println("(4) Faculty's default constructor is invoked");
 }
}

class Employee extends Person {
 public Employee() {
 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's default constructor is invoked");
 }

 public Employee(String s) {
 System.out.println(s);
 }
}

class Person {
 public Person() {
 System.out.println("(1) Person's default constructor is invoked");
 }
}

2. Invoke Faculty
constructor

animation

9

Trace Execution
public class Faculty extends Employee {
 public static void main(String[] args) {
 new Faculty();
 }

 public Faculty() {
 System.out.println("(4) Faculty's default constructor is invoked");
 }
}

class Employee extends Person {
 public Employee() {
 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's default constructor is invoked");
 }

 public Employee(String s) {
 System.out.println(s);
 }
}

class Person {
 public Person() {
 System.out.println("(1) Person's default constructor is invoked");
 }
}

3. Invoke Employee’s default
constructor

animation

10

Trace Execution
public class Faculty extends Employee {
 public static void main(String[] args) {
 new Faculty();
 }

 public Faculty() {
 System.out.println("(4) Faculty's default constructor is invoked");
 }
}

class Employee extends Person {
 public Employee() {
 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's default constructor is invoked");
 }

 public Employee(String s) {
 System.out.println(s);
 }
}

class Person {
 public Person() {
 System.out.println("(1) Person's default constructor is invoked");
 }
}

4. Invoke Employee(String)
constructor

animation

11

Trace Execution
public class Faculty extends Employee {
 public static void main(String[] args) {
 new Faculty();
 }

 public Faculty() {
 System.out.println("(4) Faculty's default constructor is invoked");
 }
}

class Employee extends Person {
 public Employee() {
 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's default constructor is invoked");
 }

 public Employee(String s) {
 System.out.println(s);
 }
}

class Person {
 public Person() {
 System.out.println("(1) Person's default constructor is invoked");
 }
}

5. Invoke Person() constructor

animation

12

Trace Execution
public class Faculty extends Employee {
 public static void main(String[] args) {
 new Faculty();
 }

 public Faculty() {
 System.out.println("(4) Faculty's default constructor is invoked");
 }
}

class Employee extends Person {
 public Employee() {
 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's default constructor is invoked");
 }

 public Employee(String s) {
 System.out.println(s);
 }
}

class Person {
 public Person() {
 System.out.println("(1) Person's default constructor is invoked");
 }
}

6. Execute println

animation

13

Trace Execution
public class Faculty extends Employee {
 public static void main(String[] args) {
 new Faculty();
 }

 public Faculty() {
 System.out.println("(4) Faculty's default constructor is invoked");
 }
}

class Employee extends Person {
 public Employee() {
 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's default constructor is invoked");
 }

 public Employee(String s) {
 System.out.println(s);
 }
}

class Person {
 public Person() {
 System.out.println("(1) Person's default constructor is invoked");
 }
}

7. Execute println

animation

14

Trace Execution
public class Faculty extends Employee {
 public static void main(String[] args) {
 new Faculty();
 }

 public Faculty() {
 System.out.println("(4) Faculty's default constructor is invoked");
 }
}

class Employee extends Person {
 public Employee() {
 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's default constructor is invoked");
 }

 public Employee(String s) {
 System.out.println(s);
 }
}

class Person {
 public Person() {
 System.out.println("(1) Person's default constructor is invoked");
 }
}

8. Execute println

animation

15

Trace Execution
public class Faculty extends Employee {
 public static void main(String[] args) {
 new Faculty();
 }

 public Faculty() {
 System.out.println("(4) Faculty's default constructor is invoked");
 }
}

class Employee extends Person {
 public Employee() {
 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's default constructor is invoked");
 }

 public Employee(String s) {
 System.out.println(s);
 }
}

class Person {
 public Person() {
 System.out.println("(1) Person's default constructor is invoked");
 }
}

9. Execute println

animation

16

Example on the Impact of a Superclass
without default Constructor

public class Apple extends Fruit {
}

class Fruit {
 public Fruit(String name) {
 System.out.println("Fruit's constructor is invoked");
 }
}

Find out the errors in the program:

17

Defining a Subclass

A subclass inherits from a superclass. You can also:

 Add new properties

 Add new methods

 Override the methods of the superclass

18

NOTE

An instance method can be overridden only
if it is accessible. Thus a private method
cannot be overridden, because it is not
accessible outside its own class. If a method
defined in a subclass is private in its
superclass, the two methods are completely
unrelated.

19

NOTE

Like an instance method, a static method
can be inherited. However, a static method
cannot be overridden. If a static method
defined in the superclass is redefined in a
subclass, the method defined in the
superclass is hidden.

20

Overriding vs. Overloading
 public class Test {
 public static void main(String[] args) {
 A a = new A();
 a.p(10);
 a.p(10.0);
 }
}

class B {
 public void p(double i) {
 System.out.println(i * 2);
 }
}

class A extends B {
 // This method overrides the method in B
 public void p(double i) {
 System.out.println(i);
 }
}

public class Test {
 public static void main(String[] args) {
 A a = new A();
 a.p(10);
 a.p(10.0);
 }
}

class B {
 public void p(double i) {
 System.out.println(i * 2);
 }
}

class A extends B {
 // This method overloads the method in B
 public void p(int i) {
 System.out.println(i);
 }
}

21

Polymorphism

Polymorphism means that a variable of a
supertype can refer to a subtype object.

A class defines a type. A type defined by a
subclass is called a subtype, and a type defined by
its superclass is called a supertype. Therefore, you
can say that Circle is a subtype of
GeometricObject and GeometricObject is a
supertype for Circle.

22

Polymorphism, Dynamic Binding and Generic Programming
public class PolymorphismDemo {
 public static void main(String[] args) {
 m(new GraduateStudent());
 m(new Student());
 m(new Person());
 m(new Object());
 }

 public static void m(Object x) {
 System.out.println(x.toString());
 }
}

class GraduateStudent extends Student {
}

class Student extends Person {
 public String toString() {
 return "Student";
 }
}

class Person extends Object {
 public String toString() {
 return "Person";
 }
}

Method m takes a parameter
of the Object type. You can
invoke it with any object.

An object of a subtype can be used wherever its
supertype value is required. This feature is
known as polymorphism.

When the method m(Object x) is executed, the
argument x’s toString method is invoked. x
may be an instance of GraduateStudent,
Student, Person, or Object. Classes
GraduateStudent, Student, Person, and Object
have their own implementation of the toString
method. Which implementation is used will be
determined dynamically by the Java Virtual
Machine at runtime. This capability is known
as dynamic binding.

23

Dynamic Binding
Dynamic binding works as follows: Suppose an object o is an
instance of classes C1, C2, ..., Cn-1, and Cn, where C1 is a subclass
of C2, C2 is a subclass of C3, ..., and Cn-1 is a subclass of Cn. That
is, Cn is the most general class, and C1 is the most specific class.
In Java, Cn is the Object class. If o invokes a method p, the JVM
searches the implementation for the method p in C1, C2, ..., Cn-1

and Cn, in this order, until it is found. Once an implementation is
found, the search stops and the first-found implementation is
invoked.

Cn Cn-1 C2 C1

Object
Since o is an instance of C1, o is also an

instance of C2, C3, …, Cn-1, and Cn

24

Method Matching vs. Binding
Matching a method signature and binding a method
implementation are two issues. The compiler finds a
matching method according to parameter type, number
of parameters, and order of the parameters at
compilation time. A method may be implemented in
several subclasses. The Java Virtual Machine
dynamically binds the implementation of the method at
runtime.

25

Generic Programming

public class PolymorphismDemo {
 public static void main(String[] args) {
 m(new GraduateStudent());
 m(new Student());
 m(new Person());
 m(new Object());
 }

 public static void m(Object x) {
 System.out.println(x.toString());
 }
}

class GraduateStudent extends Student {
}

class Student extends Person {
 public String toString() {
 return "Student";
 }
}

class Person extends Object {
 public String toString() {
 return "Person";
 }
}

Polymorphism allows methods to be used
generically for a wide range of object
arguments. This is known as generic
programming. If a method’s parameter
type is a superclass (e.g., Object), you may
pass an object to this method of any of the
parameter’s subclasses (e.g., Student or
String). When an object (e.g., a Student
object or a String object) is used in the
method, the particular implementation of
the method of the object that is invoked
(e.g., toString) is determined dynamically.

26

Casting Objects
You have already used the casting operator to convert variables of
one primitive type to another. Casting can also be used to convert an
object of one class type to another within an inheritance hierarchy. In
the preceding section, the statement

m(new Student());

assigns the object new Student() to a parameter of the Object type.
This statement is equivalent to:

Object o = new Student(); // Implicit casting

m(o);

The statement Object o = new Student(), known as
implicit casting, is legal because an instance of
Student is automatically an instance of Object.

27

Why Casting Is Necessary?
Suppose you want to assign the object reference o to a variable of the
Student type using the following statement:

Student b = o;

A compile error would occur. Why does the statement Object o = new
Student() work and the statement Student b = o doesn’t? This is
because a Student object is always an instance of Object, but an
Object is not necessarily an instance of Student. Even though you can
see that o is really a Student object, the compiler is not so clever to
know it. To tell the compiler that o is a Student object, use an explicit
casting. The syntax is similar to the one used for casting among
primitive data types. Enclose the target object type in parentheses and
place it before the object to be cast, as follows:

Student b = (Student)o; // Explicit casting

28

Casting from
Superclass to Subclass

Explicit casting must be used when casting an
object from a superclass to a subclass. This type
of casting may not always succeed.

Apple x = (Apple)fruit;

Orange x = (Orange)fruit;

29

The instanceof Operator

Use the instanceof operator to test whether an object is an
instance of a class:

Object myObject = new Circle();
... // Some lines of code
/** Perform casting if myObject is an instance of
Circle */

if (myObject instanceof Circle) {
 System.out.println("The circle diameter is " +
 ((Circle)myObject).getDiameter());
 ...
}

30

TIP

To help understand casting, you may also
consider the analogy of fruit, apple, and
orange with the Fruit class as the superclass
for Apple and Orange. An apple is a fruit, so
you can always safely assign an instance of
Apple to a variable for Fruit. However, a
fruit is not necessarily an apple, so you have
to use explicit casting to assign an instance of
Fruit to a variable of Apple.

31

The equals Method
The equals() method compares the
contents of two objects. The default implementation of the
equals method in the Object class is as follows:

public boolean equals(Object obj) {

 return this == obj;
}

For example, the
equals method is
overridden in
the Circle
class.

public boolean equals(Object o) {
 if (o instanceof Circle) {
 return radius == ((Circle)o).radius;
 }
 else
 return false;
}

32

NOTE
The == comparison operator is used for
comparing two primitive data type values or for
determining whether two objects have the same
references. The equals method is intended to
test whether two objects have the same
contents, provided that the method is modified
in the defining class of the objects. The ==
operator is stronger than the equals method, in
that the == operator checks whether the two
reference variables refer to the same object.

	Chapter 11 Inheritance and Polymorphism
	Are superclass’s Constructor Inherited?
	Superclass’s Constructor Is Always Invoked
	Using the Keyword super
	CAUTION
	Constructor Chaining
	Trace Execution
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Example on the Impact of a Superclass without no-arg Constructor
	Defining a Subclass
	NOTE
	Slide 19
	Overriding vs. Overloading
	Polymorphism
	Polymorphism, Dynamic Binding and Generic Programming
	Dynamic Binding
	Method Matching vs. Binding
	Generic Programming
	Casting Objects
	Why Casting Is Necessary?
	Casting from Superclass to Subclass
	The instanceof Operator
	TIP
	The equals Method
	Slide 32

