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ABSTRACT
Prototype-based languages like JavaScript are susceptible to proto-
type pollution vulnerabilities, enabling an attacker to inject ar-
bitrary properties into an object’s prototype. The attacker can
subsequently capitalize on the injected properties by executing
otherwise benign pieces of code, so-called gadgets, that perform
security-sensitive operations. The success of an attack largely de-
pends on the presence of gadgets, leading to high-profile exploits
such as privilege escalation and arbitrary code execution (ACE).

This paper proposes Dasty, the first semi-automated pipeline
to help developers identify gadgets in their applications’ software
supply chain. Dasty targets server-side Node.js applications and
relies on an enhancement of dynamic taint analysis which we im-
plement with the dynamic AST-level instrumentation. Moreover,
Dasty provides support for visualization of code flows with an
IDE, thus facilitating the subsequent manual analysis for building
proof-of-concept exploits. To illustrate the danger of gadgets, we
use Dasty in a study of the most dependent-upon NPM packages
to analyze the presence of gadgets leading to ACE. Dasty identifies
1,269 server-side packages, of which 631 have code flows that may
reach dangerous sinks. We manually prioritize and verify the candi-
date flows to build proof-of-concept exploits for 49 NPM packages,
including popular packages such as ejs, nodemailer and workerpool.
To investigate how Dasty integrates with existing tools to find end-
to-end exploits, we conduct an in-depth analysis of a popular data
visualization dashboard to find one high-severity CVE-2023-31415
leading to remote code execution.
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1 INTRODUCTION
JavaScript is arguably the most ubiquitous programming language
in modern applications, spanning client- and server-side web appli-
cations, as well as fully-fledged desktop and mobile applications.
While the dynamic and flexible nature of JavaScript makes it adapt-
able to a myriad of use cases, past research shows that this flexibility
comes at the expense of several security risks [16, 47, 52]. A par-
ticularly attractive target for attackers on the Web is the Node.js
ecosystem [10, 16, 26, 40, 43, 44, 50] including the server-side run-
time environment Node.js and the package management system
NPM, the largest software repository on Earth.

Prototype pollution is a vulnerability inherent in languages
that employ prototype-based inheritance, like JavaScript [8]. A
JavaScript object refers to its parent via the prototype and, unless
explicitly changed, every object shares the same root prototype by
default. Thus, any access to a non-existing property on the object
visits the object’s prototype chain, and ultimately the root proto-
type, to find the property. If an attacker can control the properties of
the root prototype, i.e., pollute it, they can influence the behavior of
almost any object at runtime with no need to access it directly. As a
result, the attacker can pollute the prototype at one execution point
and capitalize on the attack in a completely different execution
point, by triggering the execution of otherwise benign pieces of
code, so-called gadgets, that inadvertently read polluted properties
of an object from its prototype and use them in dangerous sinks,
e.g., eval, to execute arbitrary code.

End-to-end exploitation of prototype pollution requires two
stages: (1) polluting the prototype and (2) executing a gadget that
inadvertently reads the polluted property and uses it in a dangerous
sink. Existing works [3, 6, 8, 20, 23, 26, 27, 40, 50] primarily focus
on the first stage, while the existence of gadgets remains largely
unexplored. Notably, Shcherbakov et al. [40] propose static analysis
to detect gadgets in Node.js APIs and Kang et al. [20] study the
prevalence of prototype pollution in client-side web applications.
While static identification of gadgets struggles with a significant
amount of false positives [40], server-side gadgets provide a larger
attack surface than client-side gadgets due to the presence of sinks
that spawn new processes or interact with the file system.

Given the relevance of gadgets for the security of Web, we set
out to study the prevalence and impact of gadgets that cause arbi-
trary code execution (ACE) in the NPM ecosystem, as well as to
provide effective tool support to developers to detect gadgets in the
supply chain of their web applications. We argue that prototype
pollution gadgets should be treated similarly to memory corruption
vulnerabilities such as return-oriented programming (ROP) [38]
and jump-oriented programming (JOP) [9], due to their high impact.
In analogy, while the root cause of ROP/JOP is memory corruption

https://orcid.org/0000-0002-2621-5179
https://orcid.org/0009-0002-9111-2667
https://orcid.org/0000-0001-6005-5992
https://doi.org/10.1145/3589334.3645579
https://doi.org/10.1145/3589334.3645579


WWW ’24, May 13–17, 2024, Singapore, Singapore Mikhail Shcherbakov, Paul Moosbrugger, and Musard Balliu

bugs, the industry standard now is to mitigate ROP gadgets on
the compiler and runtime level [11]. In absence comprehensive
defenses against prototype pollution, our results call for developers
and researchers to pay attention to gadgets and their mitigations.

Our first contribution is a large-scale study of themost dependent-
uponNPMpackages to identify gadgets leading to ACE. Drawing on
the existing test suites of packages and supported test frameworks,
we automatically identify 1,269 server-side packages, of which 631
packages have code flows that may reach dangerous sinks. We
manually prioritize and verify the candidate flows to build proof-
of-concept ACE exploits for 49 NPM packages, including popular
packages such as ejs, nodemailer and workerpool.

Our second contribution is Dasty, an efficient semi-automated
pipeline able to identify exploitable gadgets in server-side Node.js
applications. We envision that developers can use Dasty within
a continuous integration pipeline, where the client or maintainer
of a package can generate, automatically or manually, tests for
the use case at hand. Dasty relies on an enhancement of dynamic
taint analysis for Node.js and uses the dynamic instrumentation
framework NodeProf [48] and the Truffle Instrumentation Frame-
work [49]. Given the name of an NPM package as input, Dasty
automatically installs the package and its dependencies, and uses
the associated test suite to drive the dynamic taint analysis. The
analysis automatically identifies, at runtime, any property accesses
from an object’s prototype, injects a taint mark, and records the
code flows that reach dangerous sinks, while implementing strate-
gies, e.g., forced branch execution [46], to improve effectiveness.
Moreover, Dasty provides support for visualization of code flows
with an IDE, thus facilitating the subsequent manual analysis for
building proof-of-concept exploits. Our dynamic AST-level instru-
mentation provides significantly better performance compared to
Jalangi-based instrumentation [37] and state-of-the-art tools such
as Augur [7] (Section 4).

To further showcase the danger of gadgets, we investigate how
Dasty can be combined with tools for detecting prototype pollution
to find end-to-end exploits. We use the Silent Spring project [40] in
combination with Dasty to conduct an in-depth analysis of Kibana,
a popular data visualization dashboard with more than 10 million
LoCs. The analysis identified one CVE-2023-31415 (acknowledged
of critical severity 9.9 and with a substantial bug bounty) leading
to remote code execution, which we responsibly reported to devel-
opers and helped them fix it. We released Dasty as an open-source
tool, and it is publicly available in a GitHub repository [30]. We
are currently reaching out to developers to report the exploitable
gadgets.

In summary, the paper makes the following contributions:
• We conduct the first systematic experiment to study the preva-
lence of server-side gadgets in the NPM ecosystem, finding ex-
ploitable ACEs in 49 packages. (Section 4).

• Drawing on a principled methodology (Section 3), we present
Dasty, an efficient semi-automated pipeline to find prototype
pollution gadgets.

• We show that Dasty in combination with state-of-the-art tools
for prototype pollution detection [40] is readily applicable to
real-world applications, finding one end-to-end exploit of high
severity in Kibana (Section 4).

2 BACKGROUND
End-to-end exploitation of prototype pollution requires two stages:
(1) polluting the prototype and (2) triggering the gadget. We il-
lustrate this workflow with the simple example of Listing 1. Con-
sider a server-side application that handles untrusted client-side
requests and stores them in variable req. Additionally, the applica-
tion contains code that reads a configuration file stored in variable
config and executes a high-privilege script stored in property
config.adminScript, if this property is defined. An attacker con-
trolling the value in adminScript can achieve ACE on the server.

Specifically, line 3 contains a property assignment that pollutes
the root prototype whenever an attacker controls the value of req
variable. If the attacker sets req.org to '__proto__', the code
reads the prototype of data variable, which is initialized with the
object created in line 1. This empty object has a shared root proto-
type. Since the attacker controls req, they can assign any value to
any property of root prototype. This one-liner example illustrates
a prototype pollution vulnerability.
1 const data = {};

2 /* Prototype pollution */

3 data[req.org][req.prj] = req.details;

4 /* Gadget */

5 const config = JSON.parse(configFile);

6 if (config.adminScript) {

7 exec(config.adminScript);

8 }

Listing 1: Example of prototype pollution and gadget

If a config file read on line 5 does not contain the property
adminScript, the attacker can add this property via the proto-
type pollution vulnerability and get ACE on line 7. The expression
config.adminScript looks up the property in the prototype, reads
the attacker-controlled value, and passes it to function exec. We
call the code in lines 6-8 a gadget. A main goal in this paper is to
identify gadgets automatically by analyzing the flows from sources
such as config.adminScript to sinks such as exec.
Threat model Our main threat model covers server-side NPM
packages executed on Node.js. We assume there exists prototype
pollution in the application that uses these packages, and aim to
find exploitable gadgets. Therefore, we assume an attacker is able
to trigger execution of a function of the package by interacting
with the application but does not control all its arguments. This
function should be called in expected use cases, hence we assume
that test suite of the package describes typical scenarios of how the
package can be used.

Our second threat model considers web applications, assuming
that they run in production configuration with default settings. We
consider any application’s public entry points, such as Web API, as
untrusted and under the attacker’s control, otherwise we do not
assume the existence of prototype pollution vulnerabilities.

3 METHODOLOGY AND DESIGN CHOICES
This section motivates and describes the design choices underpin-
ning Dasty, and presents our methodology following the high-level
overview in Figure 1. We refer to Appendix A for details on Dasty’s
implementation. The methodology starts with (1) an automatic
setup of the source code, its dependencies and test suites; (2) an
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Figure 1: High-level overview of Dasty’s workflow.

automatic taint-enhanced analysis of the package; and (3) a manual
verification of the results.

OverviewWe use the running example in Listings 2–4 to overview
each step and discuss key challenges. The package in Listings 2
contains an intricate gadget resulting in command injection. It pro-
vides a function run that runs a command based on user-provided
options in the form of an object. If no options are provided, the
execution falls back to a default executable (line 4). Moreover, de-
pending on the newProcess option (line 7), the command is either
spawned as a separate process (line 8) or not executed.

The package includes two tests executing the function with dif-
ferent options (Listing 3). To test the default execution, the test suite
includes a set of options in which options.bin is not specified.
This implies that by polluting the property options.bin, the prop-
erty read in line 4 of Listing 2 assigns any attacker-controlled value
to the variable bin. This value is then concatenated with a string
before passing it to the execSync function. To detect this gadget,
the analysis has to first identify undefined, i.e., potentially polluted,
property opts.bin. It then has to check if a polluted property can
reach any dangerous sink such as execSync. For this, the analysis
should track attacker-controlled value through all operations, e.g.,
assignments and concatenations. This leads to the first question:
How to construct an analysis that can detect potential gadgets auto-
matically? We answer this with an enhanced dynamic taint analysis
based on AST instrumentation. The analysis injects a taint mark
whenever a source, e.g., opts.bin, is accessed, and propagates it
through all operations. The phase of this analysis is unintrusive as
it injects the taint mark but not a value, and aims to not alter the
control flow of the execution.

Observe that the sink in line 8 in Listing 2 can only be reached
if the newProcess option is set. This requires that the package
contains a test that defines newProcess but not opts.bin as test
2 in our example. If a test suite does not contain such a test, the
unintrusive analysis will miss the flow. In addition, some flows may
rely on control flow changes that are independent of the test cases.
To find such gadgets, we need to answer the question of how to detect
gadgets that require triggering control flow changes. We address this
challenge by introducing an additional phase called forced branch
execution. As the name suggests, it forces the execution of selected
branches by changing the results of conditionals. In our example,
Dasty will change the conditional in line 7 to return true when
newProcess is undefined. This is achieved automatically because,
in addition to the flow, Dasty records all properties that can be
polluted, i.e., both bin and newProcess.

Every test-driven run of Dasty results in code flows from source
to sink, including the path on which the taint mark was propagated
through. In our example, Dasty reports the source in line 4, the
sink in line 8 of Listing 2, and the assignment and concatenation
together with their location.

3.1 Setup
To conduct a taint-enhanced dynamic analysis, Dasty needs to
download and install a package, as well as identify an entry point
script that can be executed. This script should execute as many pack-
age exported functions as possible to find gadgets. Since our threat
model does not assume that an attacker can control arguments of
the exported functions, we require that the script realistically rep-
resents the usage of the package. Thus, our next question we need
to answer is: How can a package be automatically and adequately
set up for the analysis?

Based on the NPM package name, Dasty automatically fetches
the source code from the package repository and installs the re-
quired dependencies. We use the source repository instead of the
bundled NPM package because the latter often does not contain the
test suites. For the example in Listings 2–4, Dasty installs index.js
and identifies the test suite in test/test.js. We remark that this
step is needed only for our large-scale evaluation, otherwise a de-
veloper can manually define and configure the test suite of choice.

3.2 Analysis
The core of our system is the taint-enhanced dynamic analysis
to identify potentially vulnerable flows, which is a complex and
time-consuming process at scale. Thus, we only want to analyze
packages and processes that can potentially yield vulnerable flows.
This raises the question of how to filter out packages and processes
effectively to avoid unnecessary analyses. We approach this challenge
with an execution strategy on the package and process levels.
Execution strategy The dynamic analysis of a package requires a
script for execution. Many packages include scripts implementing
the functionality as intended in the form of test suites. Tests avoid
the need for custom scripts while exercising realistic use cases of
package usage. On the downside, test suites often contain routines
that are not part of the packages themselves. This can include the
compilation or building of the package, the execution of task run-
ners, or the tests set up by test frameworks. Such processes do not
provide any valuable information for the analysis. Dasty only in-
struments relevant parts of the executions by running the tests with
a driver that intercepts all executed processes and executes them
according to an execution strategy. The strategy is implemented
with an allowlist and a denylist filtering of the programs and their
arguments. For example, Listing 4 contains a test script that exe-
cutes two commands, npm audit and node test/test.js; Dasty
analyzes only node test/test.js, ignoring the first one.
AST instrumentation The taint analysis is based on AST-level
instrumentation of the target program. For instrumentation, we
employ NodeProf [48] which in turn utilizes the Truffle Instru-
mentation Framework [49]. Truffle is a framework for building
(dynamic) languages by implementing an AST interpreter that can
be run efficiently on the GraalVM [34]. It provides an API that
allows developers to take advantage of the optimization features of
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1 const { execSync } = r e q u i r e ( 'child_process ' ) ;
2 function run ( op t i on s ) {
3 const op t s = op t i on s | | { } ;
4 const b in = op t s . b in | | './ default.exe' ;
5 const newProcess = op t s . newProcess ;
6 const cmd = b in + ' --flag' ;
7 i f ( newProcess )
8 execSync ( cmd ) ;
9 }
10 module . e x po r t s = { run } ;

Listing 2: Code with a gadget (index.js file)

1 const { run } = r e q u i r e ( '../ index.js' ) ;
2
3 run ( ) ; // test 1

4 run ( { newProcess : true } ) ; // test 2

Listing 3: Test suite (test/test.js file)

1 "name" : "gadget -example" ,
2 "scripts" : {
3 "test" : "npm audit && node test/test.js"

4 } ,
Listing 4: Configuration (package.json file fragment)

the Graal compiler. One language built with the Truffle framework
is Graal.js [4], a JavaScript implementation that provides full com-
patibility with the latest ECMAScript specification and supports
Node.js. Truffle also provides an instrumentation framework [15]
for its languages to create tools such as profilers. The instrumenta-
tion is achieved by attaching wrappers around the target nodes of
the AST. The wrapper nodes provide listeners for specific events,
such as receiving the result of child nodes or returning the result
itself. NodeProf implements these wrappers for Graal.js nodes to
create an API that allows for the creation of efficient Node.js profil-
ers directly in JavaScript via Jalangi compatible hooks.

Compared to conventional code-level instrumentation [37], the
AST instrumentation offers three major benefits: (1) it introduces
less performance overhead. Sun et al. [48] show that NodeProf is
up to three orders of magnitudes faster than the equivalent Jalangi
instrumentation. The analyzed program’s source code stays unmod-
ified, making the analysis more compact; (2) the instrumentation
supports all language features implemented in the host Truffle lan-
guage. Graal.js is compatible with ECMAScript 2022, hence modern
programs can be run directly without compiling them into scripts
compatible with older versions; (3) it allows for the instrumentation
of an application’s entire JavaScript code, including the application
and dependencies, as well as the built-in library code of Node.js.

Proxy-based tainting We base our taint tracking on wrapping
sources with a specialized taint proxy. This wrapper intercepts
operations performed on it and returns the wrapped value when ex-
pected by the program. Additionally, the proxy stores the expected
type of the value. If the type is unknown, the proxy tries to infer
it based on operations performed on it. The proxy also contains
source and sink information, such as the location and the property
name. Lastly, it includes the code flow of the tainted execution. Code
flow refers to the operations that the value was involved in. The
taint proxy replaces the original value in the program execution. By
injecting the taint mark directly, it is propagated through most oper-
ations by the runtime without requiring additional implementation.
Since we do not know the sources and their locations statically, the
analysis does source detection and taint injection simultaneously.
In Listing 2, the analysis intercepts the property read in line 4. It
checks if the property can potentially reference a polluted value.
If so, it injects a taint proxy containing the string 'default.exe'
as the underlying value. The concatenation in line 6 returns a new
taint proxywrapping the resulting string ('default.exe --flag'),

and containing the same source information and the new code-flow
entry reflecting the operation.

Sources and sinks To find flows that might lead to prototype
pollution gadgets, we specify the sources as any property read
that accesses a field of the prototype. We conservatively define
sinks as all Node.js API calls. As expected, the most interesting
vulnerabilities are triggered through API calls such as spawning a
process, sending requests or accessing the file system. Additionally,
we include internal JavaScript functions that convert strings into
executable code such as eval. We call these sinks standard. This
lenient definition of sinks inevitably leads to resulting flows that
are not exploitable. However, since defining more sinks does not
negatively impact performance, we decide to filter sinks after the
analysis to not miss any potentially vulnerable flows. During the
dynamic analysis, we also observe cases where some of the Node.js
APIs are replaced by mocks. These functions mimic the behavior
of real APIs in restricted ways, for example, checking the expected
values of arguments. Several test suites usemocks to avoid changing
the environment in tests, such as writing to a file or starting a new
process. Since mocks can ultimately be replaced by Node.js APIs,
we treat them as sinks. We identify these sinks by matching the
name of a function with an allowlist of Node.js APIs, e.g., spawn
or exec. Finally, we also support the list of universal gadgets by
Shcherbakov et al. [40] as additional sinks in our analysis. These
gadgets are present in the source code of Node.js, and any call to the
corresponding Node.js APIs, e.g., spawn, with specific arguments
allows us to trigger these gadgets. We call these special sinks as
they do not require the sources to reach their arguments.

In summary, we support three sink detection modes: (1) standard,
when a value from a source reaches any Node.js API; (2) name-
matched, when a value from a source reaches a function with an
allowlisted name; (3) special, when the analysis calls a Node.js API
pertaining to universal gadgets with specific arguments.

ExecutionWe propose dynamic taint analysis to identify potential
gadgets. The execution phase of the analysis includes (1) an unin-
trusive taint analysis for finding flows without changing the control
flow and (2) a forced branch execution for increased coverage.

The unintrusive taint analysis aims to execute test suites by not
altering the program’s control flow. Dasty injects a taint mark to
all prototype property reads in every run to potentially capture all
flows in one execution. Yet, injecting unexpected values into a pro-
gram can lead to control flow changes. This, in turn, often entails
exceptions and crashes, e.g., when passing invalid parameters to
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a function or failing specific checks. Depending on the test setup,
a crash can lead to the premature termination of the execution,
which can lead to missed flows. The analysis attempts to avoid this
in the initial run by executing the program as close to a regular
run as possible, despite injecting taint values. For that, the analysis
infers the value expected by the program and adopts the taint proxy
accordingly. When the execution encounters a control flow chang-
ing expression, the taint proxy can provide the expected value, and
the control flow stays unmodified. Generally, the expected value is
undefined, but this does not always hold. The example package
displays one such exception in line 4 of Listing 2. For such condi-
tional assignments, the result of the expression ('./default.exe')
represents the expected value when the property is not defined. To
handle these cases, the injection is delayed until the expression is
fully evaluated. In addition to default value extraction, the analysis
tries to infer the expected type and value based on operations, com-
parisons, and function calls. The unintrusive run records all sources
that lead to a sink, and the operations along the path, including all
conditionals that are affected by a tainted value.

While an unintrusive analysis can identify many flows, it cannot
identify vulnerabilities that require changing the control flow. Con-
sider the sink in line 8 of our example. It can only be reached when
the newProcess option is set. Hence, finding this flow depends on
the available test cases. Even if a test case is available, an exploit
may potentially require multiple injections. To detect such flows,
Dasty conducts additional runs that selectively alter the control
flow by force executing specific branches that were recorded in the
unintrusive run. Forced execution refers to changing the result of a
selected conditional to enforce the execution of specific branches.

While force execution improves coverage, every control flow
change can lead to potential exceptions and crashes. Thus, force
executing all conditionals at the same time can significantly de-
crease accuracy. Instead, we propose a strategy in which branches
are force-executed one property at a time. Suppose a control flow
change produces new branches. In this case, the next run will force
execute all branches for the old property and any property included
in the new branches simultaneously. The analysis moves on to
the next property if no new branches are encountered. While only
selected properties are force executed, all other sources are still
injected with a tainted value similarly to the unintrusive run. This
way, the analysis can capture flows that rely on altering the control
flow by one tainted value while, ultimately, another tainted value
flows into a sink. This is the case in our example package, in which
newProcess needs to be force executed for bin to reach the sink.

3.3 Verification
As the final step, we need to verify the candidate flows produced by
the automated analysis, answering the question of how to validate
potential vulnerabilities systematically. To streamline the process,
we systematically prioritize and filter flows more likely to lead
to the desired vulnerabilities. Our main prioritization criteria are
specific sinks. Since we are primarily interested in ACE and related
vulnerabilities, we focus on sinks that allow us to spawn processes
or execute injected payloads directly. To verify a potential flow, we
inspect the provided trace of the tainted values, visualizing Dasty’s
results within VSCode and manually creating a payload based on

it. The payload is then used to pollute the prototype accordingly in
a PoC to test the gadget.

4 EVALUATION
This section answers the following research questions.
• RQ1:What is the prevalence of ACE gadgets in the NPM ecosys-
tem and can Dasty identify exploitable gadgets effectively?

• RQ2: How does Dasty’s effectiveness and performance compare
with state-of-the-art gadget detection tools?

• RQ3:How canDasty be combinedwith state-of-the-art prototype
pollution detection tools to identify end-to-end exploits?

4.1 Dataset and setup
Dataset In line with our goal of a study to find gadgets that affect
a large number of applications, we use the most dependent-upon
metric on packages from the NPM ecosystem. Thismetric prioritizes
packages that are used as dependencies by most other applications.
We use the open source service Libraries.io [5], which provides an
API to collect these packages. Ultimately, we were able to collect a
list of 9,564 up-to-date packages, which we use as our dataset.
Setup We run our large-scale experiment on the AMD EPYC 7742
64-Core 2.25 GHz server with 512 GB RAM. To leverage parallel
execution, we split our dataset into batches of NPM packages and
run 2 to 5 instances of Dasty simultaneously on a Docker container
on Ubuntu 20.04.6 server. The Docker container manages a Mon-
goDB instance for collecting results. The total analysis timeout is 8
minutes for each process. Dasty does not require special hardware
for analyzing separate packages. In fact, we developed, tested, and
ran the performance evaluation on the Ubuntu 22.04.2 laptop AMD
Ryzen 7 5800H 8-Core 3.2 GHz with 16 GB RAM. The timeout for
the performance evaluation was set to 300 seconds. We use Graal.js
and Node.js v. 18.12.1 in our experiments.

4.2 RQ1: Identification of exploitable gadgets
We run Dasty pipeline to automatically set up and analyze 9,564
packages from the dataset. Following our methodology, the analy-
sis filters some packages out in a pre-analysis step, performs the
analysis, and collects the results for manual validation. We describe
the results of each step in detail.
Pre-analysis Dasty uses pre-filtering by package name before
downloading and installing a package. Because we are interested
only in server-side packages, we configure a list of keywords spe-
cific to client-side packages (for example, react, angular), test and
build frameworks, and their plugins (webpack, jest), and TypeScript
type definitions. This step filters out 3,138 packages of the dataset.
Dasty then automatically installs a package and its dependencies
using the NPM CLI, instruments code, and identifies and runs the
test suites. Whenever a package requires a specific environment
setup, does not have a test suite, or does not use npm test, Dasty
reports an error and terminates the analysis. This step filters out
3,446 additional packages. Moreover, Dasty identifies and excludes
1,124 packages which do not use Node.js APIs.

Here we focus on the scalability of the analysis and refrain from
full implementation of framework-specific enhancements. Our goal
is to highlight the prevalence of the problem across a significant



WWW ’24, May 13–17, 2024, Singapore, Singapore Mikhail Shcherbakov, Paul Moosbrugger, and Musard Balliu

number of packages. The number of successfully analyzed pack-
ages can be augmented by manual environment configurations and
support for specific test workflows of target packages.
Analysis Dasty runs the taint-enabled analysis on 1,856 installed
packages using their test suites. It detects candidate gadgets in 1,269
packages and reports 3,703 unique sinks. We group the reported
flows according to the type of sink, which determines the potential
impact of a gadget. As a result, the analysis identifies flows that
may lead to arbitrary code/command execution in 253 packages,
unauthorized file read/write in 191 packages, unauthorized network
operations in 150 packages, cryptographic failures in 37 packages,
and no security-relevant flows in 638 packages.

Sink Attack Sink Detection Mode TotalStandard Special Name
eval ACE 1/5 - - 5/16Function ACE 4/11 - -
exec ACI 0/1 2/25 0/31

37/219
execSync ACI 3/3 1/11

spawn ACI 9/16 10/91 2/5spawnSync ACI 0/3 8/25
fork ACI 1/1 1/7 -

require LFI 6/15 - - 7/18Module LFI 1/3 - -
Total: 25/58 22/159 2/36 49/253

Table 1: Summary of exploitable gadgets (x/y denotes x ex-
ploitable packages out of y packages reported by Dasty).

VerificationWe manually analyze candidate gadgets of the most
critical impact, namely arbitrary code/command execution. We
prioritize the packages with such sinks and summarize the results
in Table 1 (a detailed list of exploitable gadgets can be found in Table
3 in Appendix). Out of a total of 253 subject to manual verification,
67 packages are discovered by the forced branch execution. Each
package contains flows from 1 to 4 sinks for manual validation.
We first check if a candidate package fits our threat model. We
filter out 86 packages, including 55 CLI tools and 31 packages that
are used for testing or building apps. Subsequently, we analyze a
call stack to a sink and filter out the cases where the sink is called
directly from the tests or test frameworks. This criterion allows us
to exclude 77 cases. Finally, we are left with 90 packages subject
to vulnerabilities pertaining to Arbitrary Code Execution (ACE),
Arbitrary Command Injection (ACI), and Local File Inclusion (LFI).
ACE gadgets We identify 16 packages containing sinks such as
eval and Function constructors. A flow from a polluted property
read to an argument of these sinks indicates that an attacker can
control at least a part of the code which is dynamically evaluated.
We implement PoC code snippets demonstrating the attack in 5 out
of 16 cases (see repository [42] for examples). The PoC payload does
not require much effort if the attacker controls the whole JavaScript
expression or the package code does not validate a value from a
polluted property, which is the case in the package csv-write-stream.
The payloads for binary-parser and tingodb are more convoluted. In
binary-parser, the payload is inserted multiple times in the resulting
code as a part of the function name. Using strings and comments

literals allows us to hide JavaScript code between injection points
from evaluation, and construct the payload. The package tingodb
does not allow the dot character in the payload. We can bypass this
validation by encoding the payload in BASE64 and evaluating it by
eval(atob('<BASE64>')). These cases demonstrate the difficul-
ties of automatic exploit generation and the reason for recurring to
manual validation in our study.

ACI gadgets The functions of the child_process Node.js API
can cause arbitrary command injection if the attacker controls a
process name and either arguments or environment variables of
the spawned process. We prioritize child_process functions for
manual validation and identify a total of 24 packages. We also
detect 159 packages with special sinks, i.e., the attacker cannot con-
trol sink arguments but can execute functions subject to universal
gadgets [40]. Finally, the analysis identifies 36 cases with name-
matched sinks, i.e., flows to functions that contain exec and spawn
in their names. These functions can point to mock implementations
of child_process API in test cases.

For this category, we first attempt to pollute the detected prop-
erty and reach arguments of the sinks. Whenever this is sufficient to
execute an arbitrary command, we confirm a case, as in nodemailer.
Otherwise, we attempt to exploit universal gadget for this sink and
run a reverse shell that connects to the attacker’s computer or a
shell that opens a port and waits for connections. As s result, we
confirm 13 out of 58 standard sinks, 22 out of 159 special sinks, and
2 out of 36 name-matched sinks. We have a low rate of confirmed
cases for special sinks because 54 flows start the execution directly
from the tests. The name-matched cases, as expected, give us few
gadgets because in 28 cases sink does not execute any dangerous
operation.

LFI gadgets These attack corresponds to ACE via Local File Inclu-
sion, by evaluating the code of an included file via require function
or Module object. This attack usually requires the exploitation of
other vulnerabilities to upload a file on a target system. However,
we found a way to use the file corepack/dist/npm.js, shipped with
Node.js, that contains the universal gadget for spawn, thus helping
us to construct the full exploits. Dasty identifies 18 packages of
which we confirm 7 exploits. 3 of the exploits achieve a full chain
to ACE, and 4 require uploading a malicious file.

Summary Dasty successfully identifies 49 new exploitable gadgets
and reports the potentially exploitable flows of other attacks in
378 packages. We open source all the detected gadgets in a GitHub
repository [42]. The manual analysis took on average 11 minutes
per verified gadget.

4.3 RQ2: Effectiveness and performance
comparison

Firstly, we evaluate the performance of our analysis on packages of
different scopes. Secondly, we compare the performance of Dasty
with the state-of-the-art tool Augur [7]. Thirdly, we attempt to re-
produce the detected gadgets by Augur to compare the effectiveness
of both tools.

Performance of Dasty Table 2 lists the packages and their sizes.
Note that the size does not necessarily correspond to the runtime,
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Figure 2: Performance overhead on test-suite executions.

Package Description LoC Size Tests
small.js Small test file 5 0.1 KB 1

gm ImageMagick wrapper 5,154 121 KB 123
fs-extra File-system utility 8,570 59.5 KB 709
express Web-server framework 16,194 214 KB 1,262
Table 2: Packages used for the performance evaluation.

yet we provide it to give a sense of its scope. small.js is a syn-
thetic example of a gadget that reads a property, operates string
concatenation, and passes the value to exec.

We execute a test suite with the original Node.js V8 implementa-
tion to obtain the baseline for overhead evaluation. To examine the
performance of the instrumentation stack, we analyze each part
separately. First, we run the test suite with the Graal.js implementa-
tion. Next, we run the tests with instrumentation via the extended
NodeProf, instrumenting the same code expressions as we do in a
normal analysis run. Lastly, we conduct an unintrusive analysis of
the test suite. The results of the evaluation are shown in Figure 2.

On average, the execution on GraalVM is 9.8 times slower than
the V8 equivalent. The average overhead introduced through Node-
Prof’s instrumentation is 46.40%. The performance impact through
the analysis is on average 89.43%. It varies considerably based on
the size of the package and its test suite. The lowest overhead for
the smallest script small.js is 2.17%, while it expands to 278.67% for
the largest evaluated package express.
Performance: Dasty vs Augur Dasty is the first to allow for
dynamic taint analysis gadgets in Node.js. Therefore, a fair perfor-
mance comparison with other state-of-the-art tools is not easily
accomplished. However, in our initial tool investigation, we identi-
fied Augur [7] as a potential candidate for dynamic taint analysis
and extended it to support taint tracking of polluted properties.
Augur implements the approach proposed by Karim et al. [21] that
consists of two phases. An intermediate language (IL) represents
the taint flow that is created during the instrumentation phase. In
the analysis phase, the IL is executed on an abstract machine that
reports the taint flows. While Augur does not support the same
features as our analysis, such as recording of the code flow and
forced branch execution, its primary results are the same.

Figure 3 shows the execution time of the test suites of the eval-
uated packages on Augur and Dasty. Our evaluation shows that
Augur performs slower on all tests. On average, Augur was 784.57%
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Figure 3: Performance evaluation of Augur and Dasty.

slower than the equivalent analysis by Dasty. Note that the maxi-
mum execution time is limited to 300 seconds due to the timeout.
The timeout occurs at the instrumentation phase of the analysis.
Effectiveness: Dasty vs AugurWe also compare Augur and Dasty
to demonstrate the precision of the analysis. From the list of newly-
verified gadgets, we choose those that can be detected by our ex-
tended implementation of Augur. These gadgets have standard sinks
and at least one flow to the sink that does not require Forced Branch
Execution. Thereby, we select 21 packages and run the analysis. Au-
gur successfully detects the gadgets in 3 packages: forever-monitor,
gm and play-sound. The analysis of 3 packages was completed but
did not detect the correct flow. The test runners of 3 packages also
spawn processes with actual tests, and Augur does not analyze
them. The analysis is terminated by timeout for 8 packages and
crashes for 4 on the test framework setup.
Summary Dasty introduces 1.2 - 3.8x average performance over-
head compared to NodeProf which allows us to complete the exper-
iments successfully. Dasty is more effective and performant when
compared to the analysis implementation based on the state-of-the-
art tool Augur.

4.4 RQ3: End-to-end exploit generation
To demonstrate the usefulness of Dasty and exploitable gadgets,
we analyze the production-ready software Kibana for end-to-end
exploits. Since Dasty can only find gadgets, we use the Silent Spring
toolchain [41] to detect prototype pollution vulnerabilities and then
manually build an end-to-end exploit.

Kibana is an open source software for data visualization (10 mil-
lion LoCs including dependencies) and a component of the popular
Elastic Stack solution [2], including products that allow users to
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search, analyze and visualize data from various sources in real-time.
We choose Kibana due to the rich features for data transformation,
which usually increases the possibility to find exploitable prototype
pollution vulnerabilities. Kibana is also one of the popular Node.js
applications with an active Bug Bounty program, hence subject to
efforts of many security researchers to detect vulnerabilities. More-
over, Kibana uses 2,174 dependencies, thus increasing the chances
to find exploits pertaining to our new detected gadgets.

We clone Kibana version 8.7.0 and run Silent Spring toolchain [41]
based on CodeQL analyzer. We focused on the code of the applica-
tion itself for prototype pollution detection. Themanual verification
of 77 detected cases reveals that 33 cases are in client-side code, 28
cases are false positives, and 6 cases are potentially exploitable. We
succeeded to verify one case of exploitable prototype pollution via
the request DELETE of the URL /internal/uptime/service/enablement.

We explore all dependencies of Kibana and discover nodemailer
NPM package from the list of our verified gadgets. To trigger a
gadget, we configure a connector that sends an email by a custom
event via nodemailer package. Kibana provides Web API for all
configuration steps, and all endpoints require low user privileges,
thus enabling the attack. This gadget allows us to get Remote Code
Execution on Elastic Cloud. We refer to Appendix B for details on
the detection and exploitation of the vulnerability in Kibana.

The generation of the end-to-end exploit amounted to 35 hours
by 2 authors, with most time used for installation, reading docu-
mentation, running prototype pollution analysis, and preparing
API requests to trigger vulnerability on Elastic Cloud. We reported
this vulnerability to Elastic Bug Bounty Program. The security
team patched Kibana in less than 24 hours, issued CVE-2023-31415
with critical 9.9 CVSS severity, and rewarded us with a substantial
bounty. This case study shows that Dasty in combination with tools
for prototype pollution detection can identify real vulnerabilities,
while emphasizing the impact of our exploitable gadgets.

5 RELATEDWORK

Prototype pollution vulnerabilities Recent years have seen an
increased attention to prototype pollution vulnerabilities by both
researchers and practitioners [1, 6, 8, 18, 20, 23, 26, 27, 40, 51]. In the
seminal paper, Arteau [8] showcases feasibility of prototype pollu-
tion in a number of libraries and an end-to-end exploit in the Ghost
CMS platform. While practitioners’ forums have discussed the im-
pact of prototype pollution [1, 18, 51], the vast majority of research
contributions target the detection of prototype pollution [26, 27].
Li et al. [26] develop custom static taint analysis to find 61 zero-day
vulnerabilities leading to DOS attacks. Kim et al. [23] use their static
analysis tool DAPP to detect prototype pollution patterns. Dasty’s
contributions are complementary as they target the second stage
of exploitation, focusing on detection of gadgets that lead to ACE.

The work of Shcherbakov et al. [40] goes a step further and
implements static analysis to identify universal gadgets in Node.js
APIs. They illustrate the feasibility of the attack by semi-automated
static analysis of Node.js APIs. Dasty operates at the level of NPM
packages and uses their universal gadgets and others as sinks for
the dynamic analysis. Kang et al. [20] study prototype pollution
on the client-side to exploit a range of vulnerabilities by dynamic
analysis. Their approach adapts the tool of Melicher et al. [29]

which modifies the V8 engine. Yet, their tool is limited to reporting
flows as sources and sinks and does now record the complete flows.
Additionally, the tool builds on a deprecated V8 engine that does
not support all modern language features. Their focus on client-side
vulnerabilities does not provide direct Node.js compatibility.
Dynamic taint analysis for JavaScript Dynamic taint analysis
is a popular technique to detect JavaScript vulnerabilities. Karim
et al. [21] propose a platform-independent taint analysis based on
instrumentation. Their tool Ichnea is implemented atop the Jalangi
framework and is not publicly available. Aldrich et al. [7] provide
Augur, a clean-slate implementation of Ichnea. The key features of
platform-independence and minimal interference with the execu-
tion make Augur suitable for passive analyses like profiling, while
posing performance and development overhead with taint analysis.
We extended Augur with support for gadget detection, and our
experiment shows limitations in performance and effectiveness.
Sun et al. [48] compare NodeProf to Jalangi showing a performance
overhead of three orders of magnitude for the latter. Staicu et al.
[45] propose Taser, a tool for Node.js built atop NodeProf with
proxy wrappers. In contrast to Dasty, Taser does not inject taints
directly, but it simulates propagation through the instrumentation
steps, with trade-offs similar Ichnea [21], while lacking support
JavaScript features such as asynchronous functions. Cassel et al.
[12] implement NodeMedic to identify injection vulnerabilities in
Node.js packages. On the client side, Khodayari and Pellegrino [22]
use taint analysis to find DOM clobbering attacks. Their instrumen-
tation via the Iroh.js [28] framework injects payload strings into
the taint sources and monitors the reachability of dangerous sinks.
By contrast, Dasty uses unintrusive taint analysis enhanced with
force branch execution to avoid program crashes. Force branch
execution is inspired by Steffens and Stock [46] who use it to find
issues in postMessage handlers. TruffleTaint by Kreindl et al. [24]
uses Truffle to build language-agnostic analysis.

Prototype pollution shares similarities with other vulnerabilities
in web applications, e.g., object injection. Several works use static
taint analysis to detect code reuse vulnerabilities in Java [19, 32],
PHP [13, 14, 17], .NET [31, 39], and Android [35]. Xiao et al. [50]
study hidden property attacks which are related to prototype pol-
lution. Lekies et al. [25] and Roth et al. [36] study script gadgets,
showing how they can bypass existing XSS and CSP mitigations.

6 CONCLUSION
We have presented an efficient pipeline, Dasty, to detect exploitable
prototype pollution gadgets in Node.js applications by dynamic
taint analysis. We have used Dasty in the first large-scale exper-
iment to study the prevalence of server-side gadgets in the most
dependent-upon NPM packages, finding 49 exploitable ACEs. We
have shown how Dasty can be combined with tools for prototype
pollution to find end-to-end exploits in real-world application, in-
cluding a high-severity vulnerability in Kibana.
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Figure 4: Excerpt of an AST-level instrumentation flow.

A IMPLEMENTATION DETAILS
Based on the methodology in Section 3, we implement Dasty, an
efficient dynamic taint analysis for prototype pollution gadgets. In
this section, we describe implementation aspects of Dasty’s compo-
nents.

A.1 Pre-analysis and execution strategy
To filter out packages that are out of the scope of our threat model
we conduct a pre-analysis that evaluates if a package uses the
Node.js API. This is done by an instrumented run of the program
that records every API call done by the project. Since it is based
on the same approach as the main analysis, it also doubles as a
dry-run.

Dasty then applies an execution strategy that intercepts all
Node.js processes and instruments them according to pre-defined
criteria such as known test frameworks and specific patterns (e.g.,
node test/). Dasty accomplishes the redirect by via a custom
node script that attaches the driver and is prepended to PATH. Fur-
thermore, every non-instrumented run first executes a script that
overwrites process.execPath, which is commonly used to spawn
new processes.

A.2 Taint analysis
Dasty uses NodeProf [48] for taint tracking and extends it to sup-
port altering the results of any expression by utilizing the unwind
functionality of the Truffle framework. When a node is unwound its
wrapper can specify the result that is passed to the parent node. We
furthermore added some additional hooks relevant useful our taint
tracking as well as a taint checking API. Finally, we ported Node-
Prof to newer Node.js (v 18.12.1) and JavaScript (ES 2022) versions.
The modified NodeProf version is available with the submission.
Proxy objects Dasty implements the taint value as an object with
a value property containing the wrapped value. The wrapper is
implemented as a JavaScript Proxy object, allowing to intercept
operations performed on it. We leverage this to return new taint
proxies wrapping the expected value. That is, the proxy passes the
property access or application to the wrapped value and taints
the result. If the value is not defined, it falls back to a default
value. The proxy also supports type coercion by implementing
Symbol.toPrimitive and Symbol.iterator to return a suitable
value based on the expected type.
Type inference Since the analysis has no knowledge of the sources
before execution, it cannot determine what value is expected from
polluted property reads. Injecting a default value can lead to ex-
ceptions if it does not match the expected type. To prevent this,

the analysis implements a lightweight type inference based on a
number of heuristics: (1) the expected type and value are extracted
in conditional assignments. (2) We use the binary + to infer the
type based on its inputs. (3) We infer the type based on property
accesses that correspond to known functions (e.g. substring in-
dicates string). (4) When coerced, the taint proxy uses the hint
provided by JavaScript.

If no type can be inferred, the proxy defaults to string since
this corresponds most closely to a maliciously polluted property.
For every type, the taint proxy implements a default value that is
used in case only the type but not the value can be inferred.
SourcesWe specify sources as property accesses of objects with
Object.prototype in the prototype chain, which do not define the
property themselves. The analysis returns a taint proxy immediately
after a potential source is detected. Whenever the property access is
part of a conditional, e.g., || or ??, the injection is postponed to the
end of the evaluation of the expression. This way, the taint wrapper
contains the expected value when used in conditional assignments.
Taint propagation By injecting a source object directly into the
program, the runtime automatically handles most taint propagation.
In addition, the proxy takes care of all propagation operations
performed on it. However, some propagation needs to be handled
separately. Concretely, these are all operations where the taint is
unwrapped before use. To propagate through such operations, we
instrument the corresponding expression and return a taint proxy
if appropriate.

Figure 4 illustrates the instrumentation flow on the concate-
nation operation in our example program (line 6 of Listing 2).
Every time an AST child node is evaluated, the Truffle wrapper
node, depicted by the dotted line, emits onInput (2, 4). In the ex-
ample case, the concatenation wrapper node receives the evalu-
ated value of the bin variable (1) followed by the constant string
(3). Since bin points to a tainted value, it is received automati-
cally. When the concatenation node itself is evaluated (5), NodeProf
uses the data received to call the appropriate hook of the analysis
with the relevant data. For the concatenation, this corresponds to
onBinary('+', [left], [right], [result]) (6). The analysis
handles the inputs accordingly based on the data and the instru-
mented expression (7). In the example, this corresponds to creating
a new taint value wrapping the result of the concatenation. When
the wrapper node receives the new result (8), it replaces the original
result and propagates it further up the tree (9).

Additionally, our implementation supports propagation through
the logical operators || and && as well as comparisons (=== and ==
and their inverse). These are required to propagate taint proxies
to the conditional for forced branch execution. We instrument
the unary operations ! and typeof similarly. Lastly, the analysis
uses instrumentation to emulate taint propagation through specific
built-in functions and Node.js API calls. For instance, a call to
Array.prototype.join should return a tainted string if an array
element is tainted. We achieve this by specifying a list of functions
that mock the taint propagation, which are applied before the actual
function returns.
Sinks and unwrapping The analysis identifies Node.js API sinks
by the function scope provided by NodeProf. We found that some
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APIs are regularly mocked in tests. To still record flows to them, the
analysis determines these sinks additionally by name. The analysis
records a flow when a parameter passed to the sink is tainted.
Therefore, the parameters must be checked for every occurrence of
a sink. Since a tainted value can be nested in a non-tainted value -
e.g., an element in an array - the check has to be applied deeply. To
decrease the performance impact, we implement the check as part
of the NodeProf API using the Truffle’s language interoperability
features.

A challenge with injecting taint proxies is that avoiding control
flow changes can only be guaranteed for instrumented expressions.
Therefore, the analysis unwraps taint proxies before they reach
non-instrumented sections, such as the Node.js library, to avoid
unexpected exceptions and crashes. We accomplish this by replac-
ing the Node.js API call with a wrapper function during runtime.
The wrapper function checks the passed arguments for taints, un-
wraps them, and applies the original function call on the unwrapped
arguments.

When the execution reaches a special sink, the conditions re-
quired for triggering the gadget are evaluated. These requirements
refer to the pollutability of specific properties of the arguments, as
defined by Shcherbakov at al. [40].

A.3 Pipeline
For our large-scale experiment we implemented a pipeline that
takes a list of package names. It automatically downloads the pack-
ages, installs the dependencies and executes the different analysis
runs through the pipeline. All results are stored in a separate Mon-
goDB database for ease of access. Additionally, the pipeline allows
exporting the results in Static Analysis Results Interchange Format
(SARIF) [33], which we use to visualize the results in VSCode.

B END-TO-END EXPLOIT DETAILS
We analyze the source code of Kibana 8.7.0 and its dependencies.
Prototype pollution detectionWe run Silent Spring toolchain [41]
against Kibana source code. The first run terminates by timeout
because of the codebase includes all dependencies, and hence is
too large. To overcome this issue, we launch CodeQL for all sub-
folders in the repository separately. When the analysis fails, we
run it for nested subfolders to split the analyzed project in parts
that can be analyzed within reasonable time, with timeout set to
40 minutes. We use Silent Spring’s mode of General query with
Any Functions, which provides high recall. This mode does not
require application- or package-specific entry points and allows us
to perform the analysis for parts of the source code.

We focused on the code of the application itself and confirmed
one of 77 detected cases. Listing 5 shows a snippet of "DELETE
/internal/uptime/service/enablement" request handler, con-
taining prototype pollution on line 10. Triggering this entry point,
an attacker controls namespace and param, and it allows them to
pollute any property by setting namespace to '__proto__' value.

1 getSyntheticsParams ({ spaceId }) {

2 const finder = client.createFinder(spaceId);

3 const paramsBySpace = {};

4 for (const response of finder.find()) {

5 response.saved_objects.forEach ((param) => {

6 param.namespaces ?. forEach (( namespace) => {
7 if (! paramsBySpace[namespace ]) {

8 paramsBySpace[namespace] = {};

9 }

10 paramsBySpace[namespace ][param.attr.key] =

param.attr.value;

11 });

12 });

13 }

14 return paramsBySpace;

15 }

Listing 5: Prototype pollution in Kibana

Exploitation Listing 6 reports an excerpt of SendmailTransport
class that sends a mail by spawning a specific process. It contains
a gadget that can be triggered by polluting the path and args
properties. In lines 10-11, the members used in the spawn function
(line 18) are assigned. The attacker should additionally pollute the
property sendmail to instantiate the class SendmailTransport
even if the target application uses another default transport. Thus,
an attacker needs to pollute three properties as shown in Listing ??.
1 class SendmailTransport {

2 constructor(options) {

3 options = options || {};

4 this.options = options || {};

5 this.path = 'sendmail ';

6 if (options) {

7 if (typeof options === 'string ') {/*...*/}

8 else if (typeof options === 'object ') {

9 if (options.path) {

10 this.path = options.path;

11 this.args = options.args;

12 }

13 }

14 }

15 }

16
17 send(mail , done) {

18 sendmail = this._spawn(this.path , this.args);
19 }

20 }

Listing 6: Exploitable gadget in nodemailer

To trigger a gadget, the attacker should emulate the email send-
ing by Web API requests. A challenge to build the exploit is that the
Kibana server crashes in 100 - 300 milliseconds (ms) after triggering
the prototype pollution, thus preventing the execution of the gadget
in a subsequent request. We implement a BASH script that sends
many requests in parallel to trigger the gadget followed by single
request that triggers prototype pollution. Thereby, Kibana handles
at least one of the gadget-trigger requests precisely in the interval
100 - 300 ms. This race condition works stable and in practice allows
the attacker to get Remote Code Execution on Elastic Cloud in all
their attempts.
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Package Version LoC Sink Attack
Forced
Branch

Execution
Properties

asyncawait 3.0.0 38,271 spawnSync ACI shell; NODE_OPTIONS
better-queue 3.8.12 3,418 require LFI∗ store
binary-parser 2.2.1 3,804 Function ACE Ë alias

chrome-launcher 0.15.2 15,542 execSync ACI Ë shell; NODE_OPTIONS
coffee 5.5.0 3,208 fork ACI env

cross-port-killer 1.4.0 168 spawn ACI shell; env

cross-spawn 7.0.3 650 spawn ACI shell; env
spawnSync ACI shell; env

csv-write-stream 2.0.0 6,355 Function ACE separator
ejs 3.1.9 16,375 Function ACE Ë escapeFunction; client

dockerfile_lint 0.3.4 69,820 eval ACE arrays
download-git-repo 3.0.2 21,835 spawn ACI clone; GIT_SSH_COMMAND

dtrace-provider 0.8.5 1,048 require LFI∗ <any>
esformatter 0.11.3 103,863 require LFI plugins

exec 0.2.1 149 spawn ACI shell; env

external-editor 3.1.0 4,674 spawn ACI shell; env
spawnSync ACI shell; env

fibers 5.0.3 1,027 spawnSync ACI shell; NODE_OPTIONS
find-process 1.4.7 3,995 exec ACI∗ shell

fluent-ffmpeg 2.1.2 9,839 require LFI∗ presets
forever-monitor 3.0.3 24,805 spawn ACI command

gh-pages 5.0.0 16,417 spawn ACI shell; env
gift 0.10.2 11,827 spawn ACI shell; NODE_OPTIONS
gm 1.25.0 3,800 spawn ACI appPath

growl 1.10.5 298 spawn ACI Ë exec
hbsfy 2.8.1 57,481 require LFI p

jsdoc-api 8.0.0 117,470 spawn ACI NODE_OPTIONS
spawnSync ACI env

jsdoc-to-markdown 8.0.0 167,495 spawn ACI source; NODE_OPTIONS
spawnSync ACI source; env

liftoff 4.0.0 8,392 spawn ACI Ë env
mrm-core 7.1.14 55,246 spawnSync ACI shell; env

ngrok 5.0.0-beta.2 42,907 spawn ACI Ë shell; env
node-machine-id 1.1.12 170 exec ACI shell; NODE_OPTIONS

nodemailer 6.9.1 9,703 spawn ACI Ë sendmail; path; args
ping 0.4.4 672 spawn ACI shell; env

play-sound 1.1.5 103 execSync ACI players
spawn ACI Ë player; env

primus 8.0.7 18,629 require LFI transformer; parser
python-shell 5.0.0 444 spawn ACI pythonPath; env

require-from-string 2.0.2 848 Module LFI∗ prependPaths
requireg 0.2.2 3,477 spawnSync ACI shell; env

sonarqube-scanner 3.0.1 14,524 execSync ACI version
teen_process 2.0.4 38,503 spawn ACI Ë shell; env

the-script-jsdoc 2.0.4 156,801 spawn ACI shell; env
tingodb 0.6.1 44,294 Function ACE Ë _sub

window-size 1.1.1 469 execSync ACI shell; env
winreg 1.2.4 708 spawn ACI shell; NODE_OPTIONS

workerpool 6.4.0 2,276 fork ACI env
Table 3: Summary of the exploitable gadgets. The Forced Branch Execution column identifies that a gadget is detected by a
forced branch execution run. The Properties column contains the polluted property names for gadget exploitation. ∗ denotes
the gadgets that require the attacker’s control of a local file for arbitrary code execution.
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