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IoT platforms enable users to connect various smart devices and online services via reactive apps running on

the cloud. These apps, often developed by third-parties, perform simple computations on data triggered by

external information sources and actuate the results of computations on external information sinks. Recent

research shows that unintended or malicious interactions between the different (even benign) apps of a user

can cause severe security and safety risks. These works leverage program analysis techniques to build tools

for unveiling unexpected interference across apps for specific use cases. Despite these initial efforts, we are

still lacking a semantic framework for understanding interactions between IoT apps. The question of what

security policy cross-app interference embodies remains largely unexplored.

This paper proposes a semantic framework capturing the essence of cross-app interactions in IoT platforms.

The framework generalizes and connects syntactic enforcement mechanisms to bisimulation-based notions

of security, thus providing a baseline for formulating soundness criteria of these enforcement mechanisms.

Specifically, we present a calculus that models the behavioral semantics of a system of apps executing

concurrently, and use it to define desirable semantic policies targeting the security and safety of IoT apps.

To demonstrate the usefulness of our framework, we define and implement static analyses for enforcing

cross-app security and safety, and prove them sound with respect to our semantic conditions. We also leverage

real-world apps to validate the practical benefits of our tools based on the proposed enforcement mechanisms.

CCS Concepts: • Software and its engineering → Software safety; • Security and privacy → Formal
security models; Information flow control.
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1 INTRODUCTION
IoT platforms provide robust application support for automating the interaction and communication

between Internet-connected services and smart physical devices. This interaction is enabled by

simple reactive programs known as IoT apps (or applets) running on a cloud-based IoT platform, and

sensing and actuating data from services and devices on behalf of a user. These apps, often developed

by third-parties, are triggered by external information sources, as in “if the room temperature exceeds
a threshold”, to perform actions on external information sinks, as in “open the windows”. By exposing
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devices such as a thermostat and a smart window to the IoT platform via, e.g., REST APIs, IoT apps

can be used to implement desirable automations like “if the room temperature exceeds a threshold
then open the windows”.

Driven by the appeal of end-user programming, IoT platforms such as IFTTT [32] (If This Then

That), Zapier [53], and Microsoft Power Automate [39] support thousands of smart devices and

services with millions of users running billions of IoT apps. These platforms help users to build

powerful automations by connecting IoT devices (e.g., smart homes, security cameras, and voice

assistants) to online services (e.g., Google and Dropbox) and social networks (e.g., Instagram and

Twitter). For instance, the IFTTT platform allows to execute IoT applets that include triggers, actions,
and filter code. For the platform to run an applet, users need to provide their credentials to the

services associated with its triggers and actions. In the previous applet that opens the window when

the temperature exceeds a threshold, the user gives the applet access to the APIs for the temperature

device (e.g., a Nest Thermostat [42]) and the smart window (e.g., SmartThings [48]). Additionally,

applets may contain filter code for personalization, e.g., for setting the temperature threshold. If

present, the filter code is invoked after a trigger has been fired and before an action is dispatched.

Recently, researchers have shown that popular IoT platforms are susceptible to attacks that may

cause severe security and safety issues for the end-users and the physical devices [5]. Examples of

attacks include design flaws due to over privileged permission tokens [25], unexpected information

leaks by seemingly harmless apps [49], and sensitive information disclosure bymalicious apps [8, 16].

To protect the users against these attacks, defensive mechanism rely on fine-grained access control

and capabilities, decentralization [26] or static [9, 16] and dynamic [7, 8] information-flow analysis.

A more subtle vulnerability concerns the unintended or malicious interaction between different

apps running on behalf on the same user [18–20, 23, 49]. The distinctive feature of IoT apps to affect

a shared physical environment such as the room temperature, may enable unintended cross-app
interactions between IoT apps that are installed by a user. For instance, in addition to the above-

mentioned IoT app “if the room temperature exceeds a threshold then open the windows”, a user may

also install the app “if I leave my work location then turn on the thermostat at home”. While the user’s

intention is to use these two apps for separate purposes, the interaction between the latter and the

former may open the window while the user is not at home, thus clearing a way for burglary.

Recent research identifies numerous use cases of cross-app interactions that violate specific

policies, and suggests tracking dependencies across IoT apps to identify policy violations [18–

20, 23, 43, 49]. These mechanisms perform inter-application program analysis to track dependencies,

and (manual or automated) natural language processing to identify semantically-related language

constructs, e.g., the fact that temperature and thermostat refer to related semantic constructs, despite

their syntax being different.

While these approaches motivate the need for analyzing security and safety risks in cross-app

interactions, foundational questions related to the interaction between semantics of apps, security

policies, and soundness of enforcement mechanisms remain largely unexplored.

This leads us to the following research questions: (i) What is an appropriate formal model for

cross-app interaction vulnerabilities? (ii) Is there a generic policy framework for security and safety

that captures the essence of cross-app interactions? (iii) How do we model implicit interactions

stemming from IoT-specific features like the physical environment? (iv) Can we harden enforcement

mechanisms to prove soundness guarantees in our policy framework? (v) Can we build tool support

to help users validating the security and safety issues with cross-app interactions?

Contributions. To help answering these questions, we develop a process calculus for specifying

and reasoning about cross-app interactions, capturing the core features of apps in IoT platforms

like IFTTT. We then propose extensional conditions to capture the essence of security and safety
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requirements in a system of IoT apps executing concurrently. We demonstrate the usefulness of

these conditions by considering policies from real-world apps, and discuss how they can be relaxed

in order to accommodate more flexible user policies. Further, we show how standard enforcement

mechanisms can be adapted to check security and safety of a system of IoT apps, thus providing

strong guarantees against vulnerable cross-app interactions. We think that these conditions will

provide a semantic baseline for proving soundness of current and future enforcement mechanisms

in the domain of IoT apps.

Our key observation is that for a system of apps to reach an unsafe configuration, a cross-app

interaction should either lead to an inconsistent state that violates the intended specification for

some apps, or engage in an interaction where the action of one app triggers the execution of another

app. This is supported by the intuition, as well as existing real-world vulnerabilities [18–20, 23, 49],

that an end-user may consider a system of IoT apps as safe if the runtime behavior of an app in

isolation is bisimilar to running that app in parallel with other apps in the system. Drawing on

Focardi andMartinelli’sGeneralized NonDeducibility on Composition [28], we formalize this intuition

to provide a bisimulation-based characterization of safe cross-app interaction. Further, we provide a
simple syntactic condition and prove it sound for our notion of safe cross-app interaction. We also

tackle the challenge of implicit cross-app interactions and propose an extension of our semantic

condition. We demonstrate the feasibility of our approach by implementing our enforcement

mechanism in a tool prototype. We use our tool in an empirical study analyzing 20,000 unique

IFTTT apps with respect to safety of cross-app interactions.

Further, we focus on security policies of a system of IoT apps and propose a termination-insensitive
bisimulation-based security condition that accommodates these policies. As standard in information-

flow control [45], the condition assumes a security classification of global services and devices, and

it ensures that any interference between apps respects the security classification. We propose an

extension of the flow-sensitive security type system by Hunt and Sands [31] for our concurrent

IoT setting, and prove it sound for our security condition. The type system also implements a

declassification mechanism to allow controlled release of confidential information. Interestingly,

the nature of IoT apps allows for a unified treatment of the Where and What dimensions of

declassification [47]. We develop a prototype implementing the proposed type system, dealing

also with declassification. The prototype serves to demonstrate that our security type system can

handle real-world apps, previously translated in our calculus.

In summary, the paper provides the following contributions.

• We present a calculus for IoT apps to study security and safety in cross-app interactions. The

calculus models closely the behavioral semantics of apps in IoT platforms (Section 2).

• Inspired by policy requirements in real apps, we propose an extensional condition for safe

cross-app interactions, as well as a syntactic condition to enforce safe interactions (Section 3).

• We extend our framework to accommodate implicit app interactions in order to tackle the

challenge of semantic false negatives (Section 3.3).

• We propose a flow-sensitive security types system, enforcing flexible information-flow poli-

cies in a system of IoT apps running concurrently (Section 4).

• We implement and validate our enforcement mechanisms for real-world IoT apps (Section 5).

Full proofs of our results can be found in the Appendix.

2 A CALCULUS OF IOT APPS
In this section, we define our Calculus of IoT Apps, called CaITApp, to formally specify and reason

about systems of apps, i.e., sets of IoT apps running concurrently on an IoT platform, and accessing

Internet-connected services and devices on behalf of a user. The interface between the IoT apps
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and the external services and physical devices, e.g., Dropbox or home security camera, is defined

by APIs that enable communication between the platform and the user services and devices. As

common in IoT platforms like IFTTT, the platform itself maintains a global store with data from a

user’s services and devices, which gets updated whenever there is a change in the corresponding

services and devices. Each IoT app has its own local store, i.e., local view, which may get updated

whenever the execution of the app is triggered by a change in the global store.

We start the description of CaITApp with some preliminary notations. We use letters x, y, z ∈
Service to denote the IoT platform’s (global) view of a user’s services and devices. Abusing notation,

we call them just services in the following. Values, ranged over byv,w ∈ Value, are basic values such
as booleans, integers, strings, etc. We assume two special values: ⊥ and ∗. The former represents

an undefined value, while the latter is a placeholder that can be replaced with “any value”.

The syntax of our systems of apps is given by the grammar:

Sys ∋ S F S ∥ S I parallel composition

| id[DZP ] I app

Here, id[DZ P ] denotes an app with a unique identifier id ∈ I, using only the global services

declared in D, with the associated permissions (read and/or write), and running a process P.
The syntax for service declarations is the following:

Decl ∋ D F D;D I declaration list

| xR I read-only service

| xW I write-only service

In the following, we will write xRW
, as a shorthand for xR

; xW
.

The syntax of processes describing the code running in an IoT app is the following:

Proc ∋ P F listen(L) I listener
| x← e I set local store
| update(x) I set global store
| if b then {P} else {P} I conditional
| skip I termination

| X I process variable
| fixX •P I recursion
| P;P I sequential composition

We comment on a few interesting constructs. listen(L) denotes an app listening on a list of services

L whose changes may trigger the app to execute. This is a blocking construct as it progresses only

when at least one of the services listed in L changes. The formal definition of L is the following:

VarList ∋ L F L; L I services’ list
| x I service

The construct x ← e sets the local variable x (the local view of the global service with the same

name x) to the value obtained by the evaluation of an expression e. Expressions e consist of basic
values, readings of local variables y, denoted by y, and readings of global variables y, denoted by

read(y), using standard operators. Thus, in the assignment x← read(x) + y the local copy of the

service variable x is updated with the sum of the up-to-date value of the global service x (read from
the cloud) and the value of the local copy of the service y. The construct update(x) updates the
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value of the service x in the global store with its current value in the local store. fixX •P is the

standard construct to denote recursion.

An app is a process silently running in background until a trigger occurs. The trigger fires

the app’s payload consisting of a sequence of actions that may be dispatched after the execution

of some code. Technically speaking, the process running in an app is a recursive process of the

form fixX • listen(L); payload. Intuitively, an app keeps listening on a number of services: when at

least one these services changes, the app executes its payload. The payload performs a number

of activities, such as checking the state of some cloud service x via the read(x) expression, and
updating one or more cloud services via the update(x) construct.
Actually, the syntax proposed for modeling our apps is a bit too permissive for our intentions.

We could rule out ill-formed apps with a simple type system. However, for the sake of simplicity,

we prefer to provide the following definition.

Definition 1 (Well-Formedness). An app id[DZP ] iswell-formed if the following conditions hold:

• P is of the form fixX • listen(L);Q;

• x appears in listen(L) only if xR
occurs in D;

• the payload Q does not contain listeners;

• read(x) appears in Q only if xR
occurs in D;

• update(x) appears in Q only if xW
occurs in D.

A system of apps is well-formed only if its apps are well-formed.

Hereafter, we will always work with well-formed systems. We write update(x1, x2, . . . , xn ) for
the sequential update update(x1); update(x2); . . . ; update(xn ) of the global variables x1, x2, . . . , xn .
We also write if b then {P} for if b then {P} else {skip}.

Let us provide two simple examples describing how to model IoT apps in CaITApp.

Example 1. Consider the following two apps. The app Tw2Fb reposts on Facebook any messages

posted on Twitter. Similarly, the app Fb2Ld publishes a post on LinkedIn whenever there is a new

post on Facebook. We can use three logical services, tw for Twitter, fb for Facebook, and ld for
LinkedIn, to formalize the two apps in our language:

Tw2Fb[ twR
; fbWZ fixX • listen(tw); tw← read(tw); fb← tw; update(fb);X ]

Fb2Ld[ fbR
; ldWZ fixX • listen(fb); fb← read(fb); ld← fb; update(ld);X ]

Example 2. Consider the following two apps. When smoke is detected, the app SmokeAlarm
should fire the smoke alarm and turn on the lights. If a given heat threshold is reached, then the app

Sprinkswill open the water valve to activate fire sprinkles. For that we assume five logical services:

smoke, reporting the presence of smoke, heat, reporting the heat level, waterV, controlling the

water valve, alarm, controlling the smoke alarm, and lights, managing the lights. The two apps

are formalized in our language as follows:

SmokeAlarm[ smokeR
;alarmW

;lightsWZ fixX • listen(smoke);Pld3 ]
Sprinks[ heatR

; waterVWZ fixX • listen(heat);Pld4 ]

Pld3
def
= smoke← read(smoke);

if (smoke = yes) then {
alarm← On;
lights← On;

update(alarm, lights)

};X

Pld4
def
= heat← read(heat);

if (heat ≥ 45) then {

waterV← Open;

update(waterV)

};X
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Table 1. Labeled transition semantics for process configurations.

(StopListening)
L = x1; . . . ; xn ∃i ∈ [1,n] .G(xi ) , ϕ (xi )

⟨G,ϕ⟩ ▷ listen(L)
τ
−_ ⟨G,ϕ⟩ ▷ skip

(SetLocal)
JeK(G,ϕ) = v

⟨G,ϕ⟩ ▷ x← e
τ
−_ ⟨G,ϕ[x 7→ v]⟩ ▷ skip

(Update)
G(x) , ϕ (x) ϕ (x) = v

⟨G,ϕ⟩ ▷ update(x)
x!v
−−−_ ⟨G[x 7→ v],ϕ⟩ ▷ skip

(SkipUpdate)
G(x) = ϕ (x)

⟨G,ϕ⟩ ▷ update(x)
τ
−_ ⟨G,ϕ⟩ ▷ skip

(Fix)
−

⟨G,ϕ⟩ ▷ fixX •P
τ
−_ ⟨G,ϕ⟩ ▷ P

{
fixX •P/X

}

(IfTrue)
JbK(G,ϕ) = tt

⟨G,ϕ⟩ ▷ if b then {P1} else {P2}
τ
−_ ⟨G,ϕ⟩ ▷ P1

(SeqSkip)
−

⟨G,ϕ⟩ ▷ skip;P
τ
−_ ⟨G,ϕ⟩ ▷ P

(IfFalse)
JbK(G,ϕ) = ff

⟨G,ϕ⟩ ▷ if b then {P1} else {P2}
τ
−_ ⟨G,ϕ⟩ ▷ P2

(Seq)
⟨G,ϕ⟩ ▷ P1

λ
−_ ⟨G′,ϕ ′⟩ ▷ P′

1

⟨G,ϕ⟩ ▷ P1;P2
λ
−_ ⟨G′,ϕ ′⟩ ▷ P′

1
;P2

2.1 Labeled Transition Semantics
IoT apps are simple reactive programs interacting with physical devices and services. They can be

accessed only via APIs to cloud platform, which we call global store and denote byG ∈ S, where
S

def
= Service → Value ∪ {⊥} is the set of all total functions from services to values (sometimes, we

will use the following notation: S⊥
def
= {G ∈ S | ∀x ∈ dom(G) .G(x) , ⊥}). Every app id[DZ P ]

retains a local view of the cloud platform that must be consistent with the app’s declaration D,
meaning that the domain of the local store of app id consists of all and only those services declared

in D. Changes in the global store are shared with all apps of the system associated to the same

user/account; however, these modifications do not directly affect the apps’ local view of the store.

Indeed, a local store can be modified only explicitly by its related app payload.

Since our syntax distinguishes between processes and systems of apps, our labeled transition

semantics has two kinds of transitions: one for processes and one for systems.

In Table 1 we provide the transition rules for process configurations of the form

⟨G,ϕ⟩ ▷ P
λ
−_ ⟨G′,ϕ ′⟩ ▷ P′ ,

whereG ∈ S denotes the global store while ϕ ∈ S is the local store in which the process P is running.

The labels λ ∈ L range over non-observable τ -actions and observable modifications (writings) of

a global service x, written x!v , respectively. In the following, we will write C
λ
−_ C′ to denote a

transition between process configurations belonging to the set Pconf of system configurations.

We assume a standard evaluation semantics for expressions JeK ∈ S×S −→ Value∪{⊥}, inductively
defined on the structure of e. We omit the details of its definition. We write JxK(G,ϕ) def

= ϕ (x) for
the value of a local service in the local store, and Jread(x)K(G,ϕ) def

= G(x) for the value of a global
service in the global store. Observe that a service may be undefined in a given store.

We now discuss a few interesting rules in Table 1. The construct listen(L) is a blocking operator

waiting for changes in the cloud on (at least one of) the services contained in L. The semantics of the

listen(L) operator is formalized by means of the rule (StopListening) which is fired whenever one of
the changes mentioned before occur. The rule (SetLocal) updates the local store via an assignment

to (the local copy of) the service x. This assignment will affect the global service x only if followed

by an update(x). The rule (Update) modifies the value of the service x in the global store with the

value v recorded in the local store, yielding an observable action x!v . Whenever these two values
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Table 2. Labeled transition semantics for Systems.

(App)
L(id) = ϕ ⟨G,ϕ⟩ ▷ P

τ
−_ ⟨G,ϕ ′⟩ ▷ P′

⟨G,L⟩ ▷ id[DZP ]
τ
−→ ⟨G,L[id 7→ ϕ ′]⟩ ▷ id[DZP′ ]

(AppUpdate)
L(id) = ϕ ⟨G,ϕ⟩ ▷ P

x!v
−−−_ ⟨G′,ϕ⟩ ▷ P′

⟨G,L⟩ ▷ id[DZP ]
id:x!v
−−−−−→ ⟨G′,L⟩ ▷ id[DZP′ ]

(EnvChange)
−

⟨G,L⟩ ▷ S
x?v
−−−→ ⟨G[x 7→ v],L⟩ ▷ S

(ParLeft)
⟨G,L⟩ ▷ S1

α
−→ ⟨G′,L′⟩ ▷ S′

1
α ∈ {τ , id:x!v}

⟨G,L⟩ ▷ S1 ∥ S2
α
−→ ⟨G′,L′⟩ ▷ S′

1
∥ S2

(ParRight)
⟨G,L⟩ ▷ S2

α
−→ ⟨G′,L′⟩ ▷ S′

2
α ∈ {τ , id:x!v}

⟨G,L⟩ ▷ S1 ∥ S2
α
−→ ⟨G′,L′⟩ ▷ S1 ∥ S′

2

coincide, no observable changes occur in the cloud, and we use the rule (SkipUpdate) to yield a

τ -action modeling a non-observable computational step. The remaining rules are straightforward.

In Table 2 we provide the transition rules for system configurations of the form

⟨G,L⟩ ▷ S
α
−→ ⟨G′,L′⟩ ▷ S′ ,

whereG ∈ S denotes the global store, whereas L ∈ I −→ S is a mapping from an app identifier to

its local store. The labels α ∈ A range over: non-observable τ -actions, observable modifications

(writings) made by the applet id on a global service x, written id:x!v , and observable changes on a

global service x made by the external environment, written x?v , respectively. In the following, we

will write C
α
−→ C′ to denote a transition between system configurations belonging to the set Sconf

of system configurations.

We now comment on the transition rules in Table 2. The rules (App) and (AppUpdate) lift
actions from processes to apps (and hence systems of apps). Observe that in case of updates on

the cloud services, we are interested in annotating the label of the action with the name of the

app performing the write operation; this will be useful when defining safe cross-app interactions
(Definition 3). The rule (EnvChange)models changes in the cloudmade by the external environment

and affecting all apps. Thus, such action is not triggered by some app of the system, but it can be

fired nondeterministically at any moment. The rules (ParLeft) and (ParRight) are standard. Note
that, for convenience, action x?v is allowed only to complete systems as it does not propagate

through parallel composition (it is not admitted in rules (ParLeft) and (ParRight)).

3 SAFE CROSS-APP INTERACTIONS
In order to capture harmful interactions in systems of apps, we formalize a notion of safe cross-app
interaction based on a bisimulation-based behavioral semantics for our systems.

Intuitively, two apps may interact with each other by acting on common services in a way that

the state reached by those services is inconsistent (think of a thermostat or a valve when activated

by different apps designed with different specifications in mind). However, this is not the only way

to yield unsafe interactions between two apps: an app Amight interact with a second app B if the

execution of some actions in Amay affect services in the cloud whose changes may subsequently
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enable triggers in B. These triggers of B would not have been fired if A did not modify the state of

its services in the cloud.

3.1 Semantic Characterization of Safe Cross-app Interactions
In this section, we provide a semantic characterization of safe cross-app interaction based on the

notion of bisimulation. Intuitively, we would like to say that a system of apps S does not interact

with a system R if the runtime behavior of R when running in parallel with S does not differ from

its behavior when running in isolation. More formally, along the lines of Focardi and Martinelli’s

Generalized Non Deducibility on Composition (GNDC) [28], we would like to say that a system S
does not interact with a system R if

S ∥ R ≃S R
for some appropriate bisimilarity ≃S that hides those observable actions of S that modify the

services in the cloud (the global store). Notice that the bisimilarity ≃S should only suppress the

capability of the observer to detect writing actions on the cloud services executed by S; however,
these writings must be executed, so that indirect interactions via the cloud between the two systems

can be observed if they trigger a non-genuine behavior in R.
Basically, in the scenario above, if bisimilarity breaks then the system S does interact with the

correct execution of R in at least one of the following ways:

• The compound system S ∥ Rmight have non-genuine traces containing observables (originat-

ing from the R component) that cannot be reproduced by R in isolation; here the interaction

affects the integrity of the behavior of R.
• The system R might have execution traces containing observables that cannot be reproduced

by the compound system S ∥ R because they are prevented by S; this is a violation of the

availability of the system R.
In order to formalize these concepts, we define a slight generalization of the weak asynchronous

bisimulation [3] introduced for the asynchronous fragment of the π -calculus [29, 38]. For that

purpose, we adopt a standard notation for weak transitions: we write

τ
−→∗ for the reflexive and

transitive closure of

τ
−→, whereas

α̂
=⇒ denotes

τ
−→∗ if α = τ , and

τ
−→∗

α
−→

τ
−→∗ otherwise. Notice that in weak

asynchronous bisimulation input actions are made non-observable because in an asynchronous

setting the observer cannot directly observe them. Here, we intend to make non-observable (i.e., to

hide) modifications enabled by the interacting system in the cloud.

Consider a set H of hidden actions, H ⊆ A \ {τ }. Then, the following bisimulation compares two

system configurations by observing all possible actions except for those in H .

Definition 2 (Hiding Bisimulation). Given a set of actions H ⊆ A \ {τ }, the symmetric relation

R ⊆ Sconf × Sconf is a hiding bisimulation parametric on H if and only if, whenever C1 R C2 and

C1
α
−→ C′

1
we have the following:

• if α ∈ H then

– either C2
α̂
=⇒ C′

2
, for some C′

2
such that C′

1
R C′

2

– or C2
τ
−→∗ C′

2
, for some C′

2
such that C′

1
R C′

2

• if α < H then C2
α̂
=⇒ C′

2
, for some C′

2
such that C′

1
R C′

2
.

We say that two system configurations C1 and C2 are hiding bisimilar with respect to the set of

actionsH , written C1 ≈H C2, if C1 R C2 for some hiding bisimulation R parametric onH . Obviously,

for H = ∅ we get the standard notion of weak bisimulation.

In the following, given two system configurations ⟨G,L⟩ ▷ S and ⟨G,L⟩ ▷ R, we will write

⟨G,L⟩ ▷ S ≈H R as an abbreviation for ⟨G,L⟩ ▷ S ≈H ⟨G,L⟩ ▷ R.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Friendly Fire: Cross-App Interactions in IoT Platforms 1:9

Now, we can use our hiding bisimilarity to formalize a semantic-based notion of safe cross-app

interaction. Our intention is to hide only those actions that may cause an update on the cloud.

Thus, given an arbitrary system S
def
=
∏n

i=1 idi [Di ZPi ], we define the set of possible actions of S
that may modify the state of the cloud services:

upd(S)
def
=
⋃

1≤i≤n

{idi :x!v | x
W ∈ Di }

In the following, we write L⊥ for the function λid . λx .⊥ defining the initial local environments

of all apps for which no services are initialized.

Definition 3 (Safe Cross-app Interaction). Let S and R be two systems of apps in CaITApp. We say

that S is noninteracting with R if for anyG ∈ S we have: ⟨G,L⊥⟩ ▷ S ∥ R ≈HS R, for HS
def
= upd(S).

We say that the two systems S and R do not interact with each other if it additionally holds that: for

anyG ∈ S, ⟨G,L⊥⟩ ▷ S ∥ R ≈HR S, for HR
def
= upd(R).

Example 3. Consider the apps Tw2Fb and Fb2Ld introduced in Example 1. There is a potentially

unwanted interaction between the two apps since Tw2Fb may trigger Fb2Ld: a post on Twitter will

also be posted on Facebook by Tw2Fb, and the app Fb2Ld will post that message on LinkedIn. In

fact, according to Definition 3, Tw2Fb may interact with Fb2Ld as:

∃G ∈ S . ⟨G,L⊥⟩ ▷ Tw2Fb ∥ Fb2Ld 0H Fb2Ld

for H = {Tw2Fb:tw!v | v ∈ Value}. We can see that, in the compound system on the left, the app

Fb2Ld may perform a writing on LinkedIn which cannot occur if the app is running in isolation.

Example 4. Consider the apps SmokeAlarm and Sprinks introduced in Example 2. Following

Definition 3, the two apps do not interact with each other since, for anyG ∈ S, we have:

• ⟨G,L⊥⟩ ▷SmokeAlarm ∥ Sprinks ≈H1
SmokeAlarm, whereH1 = {Sprinks:waterValve!v | v ∈ Value};

• ⟨G,L⊥⟩ ▷ SmokeAlarm ∥ Sprinks ≈H2
Sprinks, H2 = {SmokeAlarm:alarm!v, SmokeAlarm:lights!v}

and v ∈ Value.

In the example above the two apps do not interact with each other simply because they work on

different services. However, according to Definition 3, two apps may be noninteracting even if they

write on the same services, provided that no causalities exist among the two writings.

Example 5. Consider an app SimPres that turn on the lights for 10 minutes every half an hour to

simulates the presence of the user at home during the night. Consider a second app eSaver turning
off lights during the day to save energy whenever there is no motion for at least 5 minutes.

SimPres[ userR
; timeHR

; timeMR
; lightsWZ fixX • listen(user; time);Pld5 ]

eSaver[ noneR
;timeHR

;lightsRWZ fixX • listen(none;lights);Pld6 ]

Pld5
def
= user← read(user);

if (0 < read(timeH) < 7 ∧ user = away) then {

if (read(timeM) = 30) then {

lights← On10minsOff; update(lights)

}

};X

Pld6
def
= none← read(none);

if (8 < read(timeH) < 18) then {

if (none ≥ 5 ∧ lights = On) then {

lights← Off; update(lights)

}

};X

Notice that there is no interaction between these two apps, although they write on the same

global service lights. Actually, those writings occur in different periods of the day and can never

interact. Thus, according to Definition 3, for anyG ∈ S we have the following:
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• ⟨G,L⊥⟩ ▷ SimPres ∥ eSaver ≈H1
eSaver, with H1 = {SimPres:lights!v | v ∈ Value};

• ⟨G,L⊥⟩ ▷ SimPres ∥ eSaver ≈H2
SimPres, with H2 = {eSaver:lights!v | v ∈ Value}.

3.2 A Simple Proof Technique for Safe Cross-app Interactions
Although the notion of safe cross-app interaction in Definition 3 is very intuitive, it is actually

quite hard to verify due to the universal quantification over all possible global stores.

In this section, we provide syntactic conditions, easy to verify, that allow us to enforce the semantic

condition of safe cross-app interaction. In order to do that, we have to formally specify: (i) what

are the potential actions that an app may perform; (ii) what are the services whose changes may

trigger an app.

In our calculus CaITApp, the actions potentially performed by an app id[DZP ] are given by

the services declared in write modality.

Definition 4 (Actions). Given an app id[D Z P ], we define act(id)
def
= {x ∈ Service | xW ∈ D}.

More generally, in a system of apps S
def
=
∏n

i=1 idi [Di ZPi ] we define act(S)
def
=
⋃

1≤i≤n act(idi ).

Similarly, the triggers of an app id[DZP ] are given by the services on which the app currently

listens or makes a read from the global store, namely the services declared in read modality.

Definition 5 (Triggers). Given an app id[DZ P ], we define trg(id)
def
= {x ∈ Service | xR ∈ D}.

More generally, in a system of apps S
def
=
∏n

i=1 idi [Di ZPi ] we define trg(S)
def
=
⋃

1≤i≤n trg(idi ).

Now, everything is in place to provide a syntactic condition for safe cross-app interaction, where

a system S is said not to interact with a system R when the execution of S does not trigger any app

of R. Formally,

Definition 6 (Syntax-based Safe Cross-app Interaction). The system S is said to be syntactically
noninteracting with the system R, written S ↛ R, when act(S) ∩ trg(R) = ∅. More generally, we

say that the two systems S and R are syntactically noninteracting with respect to each other, written
S ↮ R, when, in addition, it also holds that trg(S) ∩ act(R) = ∅.

Now, if we consider the apps in Examples 1, 2 and 5, it is easy to verify that:

• Fb2Ld ↛ Tw2Fb holds;
• Tw2Fb ↛ Fb2Ld does not hold because act(Tw2Fb) ∩ trg(Fb2Ld) = {facebook} , ∅;
• SmokeAlarm ↮ Sprinks holds.

Thus, Definition 6 provides an easy-to-verify syntactic condition to check our semantic-based

notion of safe-cross interaction formalized in Definition 3.

Theorem 1 (Soundness). Let S and R be two systems of apps in CaITApp. Let HS
def
= upd(S) and

HR
def
= upd(R). Then:
• S ↛ R implies ∀G ∈ S . ⟨G,L⊥⟩ ▷ S ∥ R ≈HS R;
• S ↮ R implies
– ∀G ∈ S . ⟨G,L⊥⟩ ▷ S ∥ R ≈HS R
– ∀G ∈ S . ⟨G,L⊥⟩ ▷ S ∥ R ≈HR S.

The details of the proof can be found in the appendix.

As we can see, Definition 6 provides us with a sufficient but not necessary condition to derive

soundness for cross-app interactions, as shown, for instance, by the two apps SimPres and eSaver
in Example 5. While existing techniques, e.g., model checking [41], can be used to improve the

permissiveness of the analysis, our goal is to illustrate how our semantic condition enables formal

proofs of soundness of these techniques.
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3.3 Implicit Safe-cross App Interactions
We now study the challenge posed by implicit cross-app interactions that arises whenever two
(physical) services, e.g., temperature and thermostat, are semantically related, though they differ

syntactically. In such cases, our semantic-based definition of safe cross-app interaction may consider

an interaction as safe, while this is not the case in practice. We propose an extension of our language

semantics, as well as both our semantic and syntactic conditions to reason about such cases.

Actually, the semantic-based condition given in Definition 3 works quite well when dealing with

logical services like Facebook or Twitter as in Example 1. However, when stepping to physical

services, i.e., services affecting the physical environment, such as the temperature of a room, we

may end up accepting as safe a system of apps in the presence of implicit interactions. Consider the
example below.

Example 6. Let Win be an app managing the smart window of a room, depending on the tempera-

ture detected: when the temperature is above 22 degrees then the window must be opened.

Win[ tempR
; winWZ fixX • listen(temp);Pld7 ]

where, Pld7
def
= temp← read(temp); if (temp > 22) then {win← Open; update(win)};X.

Now, suppose there is a second app Therm, managing the thermostat of the room, such that when

the temperature is below 17 degrees the thermostat is set to increase the temperature by 3 degrees.

Therm[ tempR
; thermWZ fixX • listen(temp);Pld8 ]

where, Pld8
def
= temp← read(temp); if (temp < 17) then {therm← +3; update(therm)};X.

When running these two apps in parallel, we may have an implicit interaction, as the app Therm
may indirectly trigger the app Win. This is because, we know, out of band, that the temperature of

the room should somehow change according to the changes made on the thermostat of that room.

However, since this out-of-band information is not considered by our formalization, according to

Definition 3 we would have a kind of semantic false negative as the app Therm is not directly inter-

acting with the app Win. Formally, for H = upd(Therm) = {Therm:therm!v | v ∈ Value}, we have:
⟨G,L⊥⟩ ▷ Win ∥ Therm ≈H Win, for anyG ∈ S.
Note that causal dependence between services, such as those asserting that thermostat changes

may affect the temperature, are not part of the specification of an app (or of a system of apps).

This information comes from the physics of the real system managed via apps. Thus, by no means

we can capture this kind of implicit interactions unless we provide extra information about causal

dependence.

However, we can assume that, when designing our system of apps we actually get, out of band,

a set of causal dependencies to improve the precision of our analysis ruling out a number of

semantic false negatives. For the sake of simplicity, we define a dependency policy as a binary

relation ∆ ⊆ Service × Service such that (x, y) ∈ ∆ when the service y may be affected by changes

occurring at the service x. Clearly, dependencies can be composed, hence we will consider the

reflexive and transitive closure of ∆ in order to capture all possible dependencies associated to a

service. We write clo(∆, x) to denote the reflexive and transitive closure of the dependency policy

∆ with respect to the service x. More generally, given a set of services X ⊆ Service we define

clo(∆,X )
def
=
⋃

x∈X clo(∆, x).
Here, it is important to notice that when we act on the thermostat of the room we actually do not

know exactly how the temperature will change (again, this depends on the physics, e.g., on the wall

isolation of the heated room). Thus, the dependency policy ∆ records only abstract information

relating pairs of services. More precisely, if (x, y) ∈ ∆ we may assume that each time the service

x changes on the cloud then the service y can be somehow affected. We represent this abstract
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information by means of nondeterministic updates assigning to y the special value ∗, meaning “any

value”. Ideally, the special value ∗ satisfies any boolean expression containing it. For instance, ∗ ≤ n
is true for any n.

Now, using this extra out-of-band information ∆ on the causal dependence between services, we

can easily define a labeled transitions semantics

α
−→∆, parametric on the set ∆:

• C1
α
−→∆ C1 if C1

α
−→ C1 is derived by an application of any rule of Table 1 different from

(Update);
• rule (Update) is replaced by the following transition rule:

G(x) , ϕ (x) ϕ (x) = v clo(∆, x) = {y1, . . . , yn }

⟨G,ϕ⟩ ▷ update(x)
x!v
−−−→∆ ⟨G[x 7→ v, y1 7→ ∗, . . . , yn 7→ ∗],ϕ⟩ ▷ skip

Now, we can refine Definition 3 making it parametric on a dependency policy ∆. Basically, we

use our hiding bisimilarity defined on top of the parametric LTS

α
−→∆, denoted with

∆
≈H . In this

manner, we can rely on the dependency policy ∆ to capture semantic false negatives due to implicit

interactions: any change on a service x affects any service in the set clo(∆, x) via nondeterministic

assignments that will always trigger apps listening at these services.

Definition 7 (Safe Cross-app Interaction under Dependencies). Let ∆ be a dependency policy. Let

S and R be two systems of apps in CaITApp. We say that S is noninteracting with R under ∆ when

for anyG ∈ S we have ⟨G,L⊥⟩ ▷ S ∥ R
∆
≈HS R, where HS

def
= upd(S). We say that the two systems S

and R do not interact with each other under ∆ if in addition to the requirement above we have that

for anyG ∈ S it holds ⟨G,L⊥⟩ ▷ S ∥ R
∆
≈HR S, where HR

def
= upd(R).

Now, in order to provide a consistent reformulation of Theorem 1 to capture semantics-based

noninteraction parametric on a dependency policy ∆, we have to reformulate Definition 6 to take

into account the presence of the dependency policy.

Definition 8 (Syntax-based Safe Cross-app Interaction under Dependencies). Let ∆ be a depen-

dency policy. The system S is said to be syntactically noninteracting under ∆ with the system R,
written S ∆↛ R, when clo(∆, act(S)) ∩ trg(R) = ∅. More generally, we say that the two systems S
and R are syntactically noninteracting with respect to each other under ∆, written S ∆↮ R, when, in
addition, it holds that trg(S) ∩ clo(∆, act(R)) = ∅.

Now, if we consider the apps in Example 6 with ∆ = {(therm, temp)} we have:

• Win
∆↛ Therm holds;

• Therm
∆↛ Win does not hold because trg(Win) = {temp}, clo(∆, act(Therm)) = {therm, temp}

and hence clo(∆, act(Therm)) ∩ trg(Win) , ∅.

Finally, we can reformulate Theorem 1 to prove that Definition 8 provides a sufficient condition

to capture semantic-based noninteraction under a given dependency policy ∆.

Theorem 2 (Soundness under Dependencies). Let ∆ be a dependency policy. Let S and R be two
systems of apps in CaITApp. Let HS

def
= upd(S) and HR

def
= upd(R). Then:

• S ∆↛ R implies ∀G ∈ S . ⟨G,L⊥⟩ ▷ S ∥ R
∆
≈HS R;

• S ∆↮ R implies

– ∀G ∈ S . ⟨G,L⊥⟩ ▷ S ∥ R
∆
≈HS R

– ∀G ∈ S . ⟨G,L⊥⟩ ▷ S ∥ R
∆
≈HR S.
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The details of the proof can be found in the appendix.

Thanks to Theorem 2, for ∆ = {(therm, temp)}, we can now correctly capture the semantic-based

interaction between the apps of Example 6 as there isG ∈ S such that: ⟨G,L⊥⟩ ▷ Win ∥ Therm 0H
Win, for H = upd(Therm) = {Therm:therm!v | v ∈ Value}.

4 SECURING CROSS-APP INTERACTIONS
It is not hard to imagine that services accessed via an IoT platform may have different security

clearances. For instance, a service to access a smart security camera should definitely not leak any

information to a second service that is used to share pictures among friends.

In this section, we assume a security policy Σ ∈ Service −→ SL, which associates a security level
σ ∈ SL, taken from some complete lattice ⟨SL,≼,⊔,⊓,⊤,⊥⟩, with each service used by our system

of apps. As expected, the lattice consists of a set of security levels SL, an ordering relation ≼, the

join ⊔ and meet ⊓ operators, as well as a top security level ⊤ and a bottom security level ⊥.

For simplicity, in the examples the security levels will be high (H), or confidential, and low (L), or
public, although the theory is developed for a generic complete lattice of security levels.

The goal is to achieve classical noninterference results stating that a system of apps is interference-

free if its low-level services are not affected by changes occurring at its high-level services. Thus,

information can securely flow from a service x to a service y whenever Σ(x) ≼ Σ(y).
As usual, a security policy Σ induces an equivalence relation between stores. Given two global

storesG,G′ ∈ S, we say that they are σ -equivalent, writtenG ≡Σ,σ G
′
, if they agree on the values

associated to all services with security level lower than, or equal to, σ .

Definition 9 (σ -equivalent global stores). Let Σ ∈ Service −→ SL be a security policy. LetG,G′ ∈ S
be two stores, and σ ∈ SL be a security level. We say that G and G′ are σ -equivalent, written
G ≡Σ,σ G

′
, whenever Σ(x) ≼ σ entailsG(x) =G′(x), for any x ∈ Service.

Now, we can formalize a bisimulation-based notion of noninterference parametric on some secu-

rity level σ ∈ SL. Intuitively, the runtime behavior at security level σ (or lower) of an interference-

free system does not change when executed in two different σ -equivalent storesG andG′, though

it may differ on services with security clearance higher than σ . Actually, in our notion of non-

interference we consider σ -equivalent stores in S⊥
def
= {G ∈ S | ∀x ∈ dom(G) .G(x) , ⊥}, as the

mere initialization of an high-level service might activate a listener in an applet, thus leaking

information about the occurrence/presence of a high event. We ignore presence leaks in order to

increase permissiveness of our enforcement mechanism.

Our general notion of hiding bisimilarity can be used to hide (but not to suppress) actions

involving changes affecting high-level services. In the following, with an abuse of notation, we

extend Σ to assign security levels to process actions λ and system actions α , according to the cloud

services involved. Thus, we define Σ(x!v ) = Σ(id:x!v ) = Σ(x?v ) = Σ(x).
However, in order to capture a semantic notion of noninterference that is not sensitive to

information leaks due to program termination
1
, we propose a modification of our hiding bisimilarity

inspired by the termination-insensitive i-bisimulation proposed by Demange and Sands [21]. For

this purpose, given a set of non-observable actions H , we will write C1 ⇑H if and only if C1 ∈ D
def
=

{C : (∃α ∈ A.C
α
−→ C′) ∧ (C

α
−→ C′ entails α ∈ H ∧ C′ ∈ D)}, that is C1 belongs to the set of

divergent configurations that can always and only perform either τ -actions or high-level actions.
Furthermore, we refine our LTS semantics as follows. We denote with→H the relation involving

any possible τ or high-level action, i.e.,→H
def
=
⋃{ α
→

��� α ∈ H
}
and with⇒H its transitive closure,

1
Termination leaks have well-known information-theoretic bounds [4], and they are usually ignored in order to increase

permissiveness for static analyses that do not consider for program termination.
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i.e.,⇒H
def
= →∗H . Finally,

α
⇒H

def
= ⇒H

α
−→⇒H means that we can perform an arbitrary, possibly empty,

sequence of τ - or high-level actions, but at least one α action must be present. In this manner, our

notion of weak transition⇒H treats high-level actions as non-observable τ -actions.

Definition 10 (Termination-Insensitive Hiding Bisimulation). Given a set of non-observable actions
actions H ⊆ A ∪ {τ }, a symmetric relation R ⊆ Sconf × Sconf is a termination-insensitive hiding
bisimulation parametric onH if and only if, whenever C1 R C2 and C1

α
−→ C′

1
we have the following:

• if α ∈ H then C2 ⇒H C
′
2
, for some C′

2
such that C′

1
R C′

2

• if α < H then

– either C2
α
⇒H C

′
2
, for some C′

2
such that C′

1
R C′

2

– or C2 ⇑H .

We say that two system configurations C1 and C2 are termination-insensitive hiding bisimilar with
respect to the set of non-observable actions H , written C1 ≈

ti

H C2, if C1 R C2 for some termination-

insensitive hiding bisimulation R parametric on H .

In the first clause, as high-level actions are non-observable, different high-level actions can be

matched with each other. In the second clause, we deal with low-level actions in a manner similar

to what is done by Demange and Sands in their termination-insensitive i-bisimulation [21].

Definition 11 (σ -level noninterference). Let Σ ∈ Service −→ SL be a security policy, and σ ∈ SL
be a security level. Let S be a system of apps and Ĥ = {α ∈ A | Σ(α ) $ σ } the set of actions with
clearance greater than σ . We say that S is σ -level interference-free whenever:

∀G,G′ ∈ S⊥ .G ≡Σ,σ G
′ ⇒ ⟨G,L⊥⟩ ▷ S ≈ti

H ⟨G
′,L⊥⟩ ▷ S, for H = Ĥ ∪ {τ } .

Example 7. Consider the classic two-points lattice {L,H}, used for the system of apps S
def
= Tw2Fb ∥

Fb2Ld of Example 1 such that: Σ(tw) = Σ(fb) = H and Σ(ld) = L. Obviously, the compound

system is exposed to a security interference, as confidential information posted on tw will flow

into the public service ld. In fact, it is not hard to find two L-equivalent global storesG andG′

such that ⟨G,L⊥⟩ ▷ S 0ti

H ⟨G
′,L⊥⟩ ▷ S. This would not be the case if it was Σ(ld) = H. In that case,

the bisimilarity would hold for any pair of L-equivalent stores.

Again, Definition 11 has a universal quantification on two global environments and then it

requires the verification of a nontrivial bisimilarity. So, its verification is hard to achieve.

In order to provide a syntactic sufficient condition for security noninterference we resort to a

type system, parametric in the security policy Σ, and inspired by the flow-sensitive security type
system of Hunt and Sands [31], adapted to our setting. In Table 3 we provide the typing rules.

Intuitively, a judgment of the form pc ⊢ S says that the system S does not contain information

flows from services at a security level σ ∈ SL that is higher or different from the pc (i.e., σ $ pc) to
services at security level σ ′ ∈ SL lower or equal to the pc (i.e., σ ′ ≼ pc). Here, pc denotes the usual
“program counter” level and serves to eliminate implicit information flows. We write ⊢ S to denote

pc ⊢ S when pc is the least security level, i.e., the bottom element of the lattice SL.
Since the syntax of our calculus is in two levels we also have a different kind of judgments for

processes running inside an app: pc ⊢ Γ
{
P
}
Γ′. Here, similarly to Hunt and Sands [31], Γ keeps

track of the security levels of local variables which hold before the execution of P, whereas Γ′

provides us with the security levels of local variables after the execution of P. Again, pc denotes the
“program counter” level and the derivation rules ensure that only services with security types not

lower than pc may be changed by P. Note that we use Γ also to bind process variables to program

counters: in this manner, we ensure that in recursive processes of the form fixX •P the security

level of recursive calls in P coincides with the security level of the recursive process itself.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Friendly Fire: Cross-App Interactions in IoT Platforms 1:15

Table 3. Security type system.

Typing rules for expressions

(Const)
−

Γ ⊢ v : ⊥
(Var)

Γ(x) = σ

Γ ⊢ x : σ
(Read)

Σ(x) = σ

Γ ⊢ read(x) : σ
(Expr)

Γ ⊢ e1 : σ1 Γ ⊢ e2 : σ2

Γ ⊢ e1 op e2 : σ1 ⊔ σ2

Typing rules for processes and subtyping

(Skip)
−

pc ⊢ Γ
{
skip

}
Γ

(Assign)
Γ ⊢ e : σ

pc ⊢ Γ
{
x← e

}
Γ[x 7→ σ ⊔ pc]

(Fix)
Γ′ = Γ[X 7→ pc] pc ⊢ Γ′

{
P
}
Γ′

pc ⊢ Γ
{
fixX •P

}
Γ

(Update)
pc ⊔ Γ(x) ≼ Σ(x)

pc ⊢ Γ
{
update(x)

}
Γ

(Pvar)
Γ(X) = pc

pc ⊢ Γ
{
X
}
Γ

(Listen)
−

pc ⊢ Γ
{
listen(L)

}
Γ

(IfElse)
Γ1 ⊢ b : σ pc ⊔ σ ⊢ Γ1

{
P1

}
Γ2 pc ⊔ σ ⊢ Γ1

{
P2

}
Γ2

pc ⊢ Γ1
{
if b then {P1} else {P2}

}
Γ2

(Seq)
pc ⊢ Γ1

{
P1

}
Γ2 pc ⊢ Γ2

{
P2

}
Γ3

pc ⊢ Γ1
{
P1;P2

}
Γ3

(Sub.Proc)
pc ′ ⊢ Γ′

1

{
P
}
Γ′
2

pc ≼ pc ′ Γ1 ≼ Γ′
1

Γ′
2
≼ Γ2

pc ⊢ Γ1
{
P
}
Γ2

Typing rules for systems

(App)
pc ⊢ Γ1

{
P
}
Γ2

pc ⊢ id[DZP ]
(Par)

pc ⊢ S1 pc ⊢ S2

pc ⊢ S1 ∥ S2

Here, we wish to remark that, unlike batch-job noninterference models [51], a security informa-

tion flow occurs in our setting only if a low-level service x is subject to an information flow and

then x is “published” within the same app on the cloud via an update construct. In fact, the update

operator is the only “exit gate” for potential (explicit or implicit) information flows created within

an app. This requires some care in the definition of the typing rule (Update). Basically, we impose

that the update of a global service x is allowed only if x is associated to an “original” security level

(given by Σ) not lower than the current security level of the corresponding local variable x (given

by Γ) and the security level of the program counter (given by pc), i.e., pc ⊔ Γ(x) ≼ Σ(x). On the

other hand, we consider harmless those information flows that remain confined within an app

because no update publishes their effects; this situations will not be ruled out by our type system.

Finally, notice the difference between the two typing rules (Var) and (Read) as they serve for typing
accesses to local views of services and global services, respectively.

Example 8. Consider a malicious app listening on a confidential location service loc and updating

a public log service log. For simplicity, we assume that a location is represented as a positive integer.

The app implements the following payload Pld:2

2
We recall that we write the code “if b then {P}” as an abbreviation for “if b then {P} else {skip}”.
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1. loc← read(loc); log← 0;

2. fixX • if (loc > 0) then {

log← log + 1; loc← loc − 1;

X};

3. update(log);

The payload copies the confidential value from variable loc to variable log via an implicit

flow and it exfiltrates the value via an update operation update(log) on the public service log. We

leverage the typing rules in Table 3 to show that the app is correctly rejected by the type system.

(1) The security policy for services is Σ(loc) = H and Σ(log) = L and the initial policy for vari-

ables is set to the lowest security level, i.e., Γ(loc) = Γ(log) = Γ(X) = L, since these variables
contain no confidential information initially. Moreover, we assume the attacker can observe

data at security level L, hence pc = L. We now show that L ⊢ Γ
{
Pld

}
Γ′ cannot typecheck, for

any Γ′. We can use rule (Seq) to typecheck the statements in lines (1.–3.) separately.

(2) For the first two assignment statements in line 1., an application of rule (Assign) and rules

(Const) and (Read) yields a typing environment Γ1 such that Γ1 (loc) = H and Γ1 (log) = L,
while pc = L. Next, we typecheck the statements between lines 2. and 3. using the typing

environment Γ1 and pc = L.
(3) Rule (Fix) requires typechecking the conditional statement under its scope in a security

environment Γ2 such that Γ2 (X) = pc , hence Γ2 = Γ1 since pc = L. We then use rule (IfElse)
to typecheck the conditional statement with pc = H since Γ2 (loc > 0) = H. The typing rule
(Assign) will yield Γ3 (loc) = H and Γ3 (log) = H. Finally, the type checking will fail when

applying rule (Pvar) since Γ3 (X) = L and pc = H.
(4) Alternatively, we can apply rule (Sub.Proc) prior to applying rule (Fix) in step (3) and raise

the program counter level pc = H. Then rule (Fix) requires typechecking the conditional

statement in a security environment Γ2 such that Γ2 (X) = H. At this point, we can apply

the same rules as in the previous case and obtain a security environment Γ3 such that

Γ3 (loc) = Γ3 (log) = Γ3 (X) = H and pc = H.
(5) Finally, the application of rule (Update) on the statement in line 3. will fail independently

of the level of pc , since Γ3 (log) = H and Σ(log) = L, and pc ⊔ H = H $ L, thus correctly
rejecting the program.

Now, everything is in place to show that the security type system in Table 3 is sound with respect

to the security condition formalized in Definition 10. The proof can be found in the appendix.

Theorem 3 (Soundness of security types). Let Σ ∈ Service −→ SL be a security policy, S be a system
of apps, and H = {α ∈ A | Σ(α ) $ σ } ∪ {τ } be the set of all possible non-observable system actions at
the attacker’s security clearance σ ∈ SL. LetGa ,Gb ∈ S⊥ be two arbitrary stores such thatGa ≡σ Gb .
If σ ⊢ S then ⟨Ga ,L⊥⟩ ▷ S ≈ti

H ⟨Gb ,L⊥⟩ ▷ S.

As we will see in the Section 5, our security type system does not face any permissiveness issues

(i.e., false positives) for the apps considered in our benchmarks. Nevertheless, as expected, the type

system is not complete, as we can see from the following example.

Example 9. Consider an app with payload

Lserv← 0; if (Hserv = 5) then {Lserv← 0} else {skip}; update(Lserv)

where Hserv is considered confidential, i.e., it has type H, and Lserv is considered public, i.e., it

has type L. Clearly, this app is noninterferent, since the value of Lserv does not depend on Hserv
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(it is always 0 when we perform the update). However, our type system flags this app as insecure,

since the type of Lserv is H when reaching the update. This is because of the assignment to Lserv
inside a conditional guard of type H. Since the initial type of Lserv is L, the type system cannot

apply the typing rule for the update, hence the app is rejected.

In conclusion, we expect our analysis to scale well and produce a minimal false-positive rate for

user-automation IoT platforms like IFTTT. In these platforms, the code consist of simple snippets

matching the syntax of CaITApp closely [8]. For other IoT platforms like SmartThings, the code can

be more complex (in fact, SmartThings apps are implemented in Groovy), hence our analysis would

face classical challenges for type-based approaches due to complex language features, e.g., aliasing.

4.1 Declassification
In many real-world applications, noninterference is a too strong policy: sometimes, controlled

release of sensitive information is deliberately allowed. A classic example is a password checking

program which compares the actual password with a guessed password to authenticate a user.

This program contains a sensitive information flow from the actual password to the output on a

public channel, in order to inform a (potentially untrusted) user whether or not the authentication

succeeds. The program is usually accepted as secure, since leaking the entire password in this

manner is computationally hard. In this setting, this information can be declassified, i.e., it can be

safely disclosed although it is not part of the flow relation ≼.

Following the approach of delimited release [46], we extend our language with a declassification

primitive to support controlled release of sensitive information for IoT services. The new policy

targets the what dimension of declassification [47]. This is more suitable for our setting since

declassification applies to information from initial state of global services. Formally, we introduce

a construct declassify(e,σ ) into expressions’ syntax. Intuitively, declassify(e, L) means that the

expression e, potentially containing sensitive data H, can be declassified to the (lower) security

level L. Note that this construct is used only in the security type system. The evaluation semantics

of declassify(e,σ ) is equal to the evaluation semantics of e, namely, Jdeclassify(e,σ )K(G,ϕ) =
JeK(G,ϕ). Furthermore, we assume that declassification constructs cannot be nested, namely, in

declassify(e,σ ) the expression e cannot contain other instances of the declassification construct.

As we allow information release only at the entry-points of the apps, declassification can only

involve variables of global services. This means that service instances under declassification must

be bonded by a read construct. For example, declassify(read(x), L) + y is a legal expression, while

declassify(x, L) + y is not. We assume that expressions in the scope of a declassify construct are

legal, which can be enforced easily with simple syntactic checks.

In order to define noninterference up to declassification, we need a notion of global-store

equivalence which accounts for the declassified expressions. Intuitively, we need to consider not

only stores with equivalent public services but also stores with equivalent declassified expressions.

The evaluation semantics JeK for expressions is parametric on the global and local stores but

we do not need the local information of services in order to define the (global) stores equivalence.

Hence, we use a new semantics for expressions LeM ignoring the local value of services, namely it

assigns to local variables the undefined value. Formally, the semantic function LeM ∈ S −→ Value is
defined as LeMG def

= JeK(G, λx .⊥).

Definition 12 (σ -equivalent stores up to declassification). Let Σ ∈ Service −→ SL be a security policy.
LetG,G′ ∈ S be two σ -equivalent stores for some security level σ ∈ SL. Assume n declassification

points, d
def
= declassify(e1,σ1), . . . , declassify(en ,σn ), for expressions ei and security levels σi , with

1 ≤ i ≤ n. We say thatG andG′ are σ -equivalent up to declassification d, writtenG ≡dΣ,σ G
′
, only if

σi ≼ σ entails Lei MG = Lei MG′, for any 1 ≤ i ≤ n.
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Now, we are ready to define noninterference up to declassification by reformulating Definition 11

using the declassified version of the global stores equivalence.

Definition 13 (σ -level noninterference up to declassification). Let S be a system of apps and

H
def
= {α ∈ A | Σ(α ) $ σ } be the set of actions with clearance greater than a fixed σ ∈ SL. Suppose

that S contains within it n declassification points d
def
= declassify(e1,σ1), . . . , declassify(en ,σn ). We

say that S is σ -level interference-free up to declassification d whenever:

∀G,G′ ∈ S⊥ .G ≡
d
Σ,σ G

′ ⇒ ⟨G,L⊥⟩ ▷ S ≈ti

H ⟨G
′,L⊥⟩ ▷ S .

We remark that Definition 11 implies Definition 13 and for systems without the declassify
primitives the two definitions coincide.

In order to check noninterference with declassification we extend our security type system. In

particular, we add a typing rule for the declassification construct. In the following rule, LocVars(e)
returns the local occurrences of the services in the expression e, namely all services’ occurrences

which are not under the scope of a read construct. For instance, LocVars(x + read(y)) returns the
singleton {x}.

(Declassify)
LocVars(e) = ∅

Γ ⊢D declassify(e,σ ) : σ
This rule basically says that the type system will reject any attempt to declassify a local service,

which is forbidden by our initial assumptions. Observe that our typing rule for declassification is

not subject to laundering attacks [46], since variables representing global services are read-only.
In fact, this invariant in combination with the premise of the rule ensures that no variable in the

scope of a declassify construct is ever modified in the program.

The other typing rules for expressions, processes and systems remain unchanged. We use the

symbol ⊢D in place of ⊢ when we refer to the extended security type system with declassification.

We illustrate the new rule with an example. Consider a public service x, a confidential service y,
and a predicate par capturing the parity of a given value. The assignment x← par(read(y)) is not
safe, since we have a forbidden information flow between y and x. Indeed our type system types

the expression par(read(y)) as H and it will stop if we try to update x after the assignment. Instead,

in the assignment x← declassify(par(read(y)), L) we are able to deduce that there is no forbidden

flow between y and x, since declassify(par(read(y)), L) is typed as L.

Example 10. Consider the two following apps PicToDb and DbLogger. The first automatically

saves on Dropbox every picture taken by the camera of the user’s smartphone. The second logs

every event happening to the user’s Dropbox account. They are formalized in CaITApp as follows:

PicToDb[ cameraR
;dropboxWZ fixX • listen(camera);Pld9 ]

DbLogger[ dropboxR
;timeR

;dbLogWZ fixX • listen(dropbox);Pld10 ]

Pld9
def
= camera← read(camera);

dropbox← camera;

update(dropbox);

X

Pld10
def
= dbLog← read(dbLog) + read(time) +

nameOf (read(dropbox));

update(dbLog);

dropbox← read(dropbox);

X

Suppose that the services camera and dropbox are confidential, while the services dbLog and time
are public. Clearly, we have a forbidden information flow between camera and dbLog. Indeed, the
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system PicToDb ∥ DbLogger is not noninterferent. Even if we do not want to reveal publicly our

pictures, it could be reasonable to disclose just their names. In this case, we can declassify the

expression nameOf (read(dropbox)) as follows:

Pld10′
def
= dbLog← read(dbLog) + read(time) + declassify(nameOf (read(dropbox)), L);

update(dbLog); dropbox← read(dropbox);X

The system PicToDb ∥ DbLogger is now typable with our (extended) security type system and,

indeed, it is considered secure.

The following theorem extends the soundness results to systems of apps that support declassifi-

cation policies. The proof can be found in the appendix.

Theorem 4 (Soundness of security types with declassification). Let Σ ∈ Service −→ SL be a security
policy, Let H = {α ∈ A | Σ(α ) $ σ } ∪ {τ } be the set of all possible non-observable system actions
at the attacker’s security clearance σ ∈ SL. Let S be a system of apps containing n declassification
points d def

= declassify(e1,σ1), . . . , declassify(en ,σn ), Let Ga ,Gb ∈ S⊥ be two arbitrary stores such
thatGa ≡dΣ,σ Gb . If σ ⊢D S then ⟨Ga ,L⊥⟩ ▷ S ≈ti

H ⟨Gb ,L⊥⟩ ▷ S.

5 IMPLEMENTATION AND VALIDATION
This section presents the implementation and validation of our enforcement mechanisms for safety

and security of cross-app interactions. We first implement a tool prototype to detect cross-app

interactions for a set of user-installed apps and visualize potential violations, using the syntactic

conditions given in Definition 6. We use the tool in a large-scale empirical study to analyze about

280,000 IFTTT applets for unsafe cross-app interactions.

We also implement our security type system (Table 3), together with its extension to declassifica-

tion, in another tool prototype written in Java. We then validate the prototype on a set of real-world

IoT apps, taken from the benchmark dataset of Bastys et al. [8] and translated to our language

CaITApp. As expected, the prototype does not signal false negatives for our test cases (indeed the pro-
totype is based on a sound core, as proven in Theorems 3 and 4). Actually, we did not encounter false

positives either, although the type system is not complete, as explained in Section 4. Incompleteness

can be exploited only with specially crafted code, which is unlikely in real-world apps. Our tools

and the experiments are publicly available at https://bitbucket.org/yuske/friendlyfiretools.

5.1 Safety
We provide a tool to analyze a set of IFTTT apps to detect potential cross-app interactions. The

tool is developed in C# and .NET Core - a cross-platform version of .NET [24]. The goal of our

analysis is to detect whenever an action of one app enables a trigger of another app. The main

challenge in detecting such interactions consists in matching the actions and triggers in a way that

captures semantic interactions between the two. Indeed, a purely syntactic match of triggers and

actions would miss many possible interactions.

To achieve this, we manually analyzed the set of all triggers and actions (1,426 triggers and 891

actions), and assigned a unique label to an action-trigger pair whenever the action could enable the

trigger. Specifically, we reviewed the descriptions of actions and triggers, as well as the information

about their corresponding services. For example, the action “Post a tweet with image” of the service

“Twitter” may enable several triggers of the same service, e.g., “New tweet by you”, “New tweet by

you with hashtag”, “New tweet from search”, “New tweet by anyone in area”, etc. An interaction

may also arise between action and triggers that belong to different services. For example, the action
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Table 4. Cross-app interactions in the top 10 most popular apps.

Service:Trigger→ Service:Action Users Interactions

Instagram: Any new photo by you→ 553,734 544

Twitter: Post a tweet with image

Weather Underground: Today’s weather report→ 485,545 0

Notifications: Send a notification from the IFTTT app

RSS Feed: New feed item→ 344,597 564

Email: Send me an email

Weather Underground: Tomorrow’s forecast calls for→ 319,419 0

Notifications: Send a notification from the IFTTT app

iOS Contacts: Any new contact→ 312,266 0

Google Drive: Add row to spreadsheet

RSS Feed: New feed item matches→ 285,607 564

Email: Send me an email

Android SMS: New SMS received matches search→ 259,684 702

Android Device: Set ringtone volume

Location: You enter an area→ 242,929 0

Notifications: Send a notification from the IFTTT app

Location: You enter an area→ 221,826 0

Android Device::Turn on WiFi

Amazon Alexa: Say a specific phrase→ 220,757 112

Phone Call (US only): Call my phone

“Send me an email” of the service “Email” may enable triggers on receiving emails in the “Gmail”

and “Office 365 Mail” services. In our analysis we linked 357 actions to triggers on the same service

and 8 actions to triggers on different services. Observe that such interactions cannot be detected

by purely syntactic comparison of an action’s name with a trigger’s name. On the other hand,

our analysis is conservative since a cross-app interaction may ultimately depend on the settings

of an app for a particular user, e.g., the tracked hashtags for the trigger “New tweet by you with

hashtag”. As a result we create a knowledge base of action-trigger pairs that may lead to cross-app

interactions.

We used this knowledge base to analyze the number of cross-app interactions in a real-world

dataset of about 280,000 IFTTT apps. The dataset contains 19,305 unique apps, namely apps making

use of only one trigger-action pair, which we used to analyze potential cross-app interactions. The

algorithm is quite simple: Given a set of apps, it visits each app in the set and matches its action

with the triggers of the remaining apps leveraging the knowledge base of action-trigger pairs. If

there is a match, the algorithm detects an interaction between the two apps.

We first investigated the number of possible interactions between apps, which resulted in

1,815,707 cross-app interactions. We then ranked the apps according to their popularity (number of

installs), and computed the interactions for the top 10 most popular apps, as reported in Table 4. For

instance, the most popular app that posts a tweet whenever a user adds a new photo on Instagram

(553,734 installs) may interact with 544 apps from our dataset of 19,305 unique apps. These are all

the apps with triggers matching the action “Post a tweet with image” and all the apps with actions

matching the trigger “Any new photo by you”.

While these results show that the dataset contains a large number of interactions, it is unlikely

that a single user installs all these apps. In a more realistic setting, an average IFTTT user installs

only a small number of apps. In order to understand possible interactions for a single user, we

extracted samples of apps and analyzed them separately. Prior work by Surbatovich et al. [49]

suggests that in 2015 an IFTTT user would run in average about 20 apps per day. The actual number

would vary by user and may have increased since the time of this study. Therefore, we follow

the sampling strategy suggested by Surbatovich et al. [49] and sample subsets of 20, 30, and 40

apps consisting of the n most-frequently adopted apps, and m apps selected randomly from the

remaining apps. In our experiments, each subset contains 10 apps selected randomly and 10, 20 and
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Table 5. Analysis of cross-app interactions.

Mean Median Standard deviation

Top 10 Random 10 1.7 1 1.8

Top 20 Random 10 3.1 2 2.9

Top 30 Random 10 8.7 8 4.2

Fig. 1. Visualization of cross-app interactions.

Flickr::Upload public photo from URL

Instagram::Any new photo by you

Flickr::New public photo tagged

Flickr::Add file from URL

Flickr::New public photos

Facebook::Create a link post

Instagram::New photo by you 
with specific hashtag

Facebook::New link post by you

30 most-frequently adopted apps respectively. We analyzed the number of interactions for each

sample and repeated the experiment 500 times for each sampling strategy.

We summarize our results in Table 5. We observe that a user account with the top 10 popular

apps and 10 other apps may contain 1.7 cross-app interaction in average. The average number

of cross-app interactions increases to 3.1 and 8.7 in user accounts with 20 and 30 popular apps,

respectively. These results show that there is a risk for cross-app interactions in real-world apps.

We also provide a tool to visualize a graph of interactions between apps. The tool can help users

to analyze cross-app interactions by specifying a set of apps installed in their IFTTT accounts.

Figure 1 depicts an example of a graph generated by our tool, where the red rectangles denote

triggers, blue dotted rectangles denote actions. A red arrow represents the trigger and the action of

a user’s app, while the blue dotted arrow shows the action-trigger pair that may cause a possible

interaction.

5.2 Security
We have developed a prototype implementing the rules of the security type system in Table 3. The

prototype is written in Java and uses an ANTLR [44] grammar to parse CaITApp programs. It takes

as input a set of apps and a list of security labels for each service appearing in the apps, and outputs

“non-interfering whenever the security typing is successful, i.e., there are no harmful information

flows in the set of apps. Otherwise, if the security typing fails, the prototype outputs “interference

as well as the list of potentially harmful information flows. Thanks to the compositionality of the

type system, the security analysis is performed on each app singularly and then extended to the set

of apps (see the rule (Par) in Table 3).

Consider the two apps PicToDb and DbLogger introduced in the Example 10. They use the confi-

dential services camera and dropbox and the public services time and dblog. The first app PicToDB
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Table 6. Information flow analysis.

App name Secure Typable Public Sink

popular3rdParty1A ✗ ✗ twitterContent

popular3rdParty1B ✗ ✗ twitterContent

popular3rdParty2A ✗ ✗ googleSpreadSheet

popular3rdParty2B ✗ ✗ googleSpreadSheet

popular3rdParty3A ✓ ✓ –

popular3rdParty3B ✗ ✗ dropboxFile

popular3rdParty4A ✗ ✗ iosAlbumPhoto

popular3rdParty4B ✗ ✗ iosAlbumPhoto

popular3rdParty5A ✗ ✗ googleCalendarEv

popular3rdParty5B ✗ ✗ googleCalendarEv

popular3rdParty6A ✓ ✓ –

popular3rdParty6B ✓ ✓ –

popular3rdParty7A ✗ ✗ googleSpreadSheet

popular3rdParty7B ✗ ✗ googleSpreadSheet

popular3rdParty8A ✗ ✗ facebookPost

popular3rdParty8B ✗ ✗ facebookPost

popular3rdParty9A ✗ ✗ googleSpreadSheet

popular3rdParty9B ✗ ✗ googleSpreadSheet

popular3rdParty10A ✗ ✗ twitter

popular3rdParty10B ✗ ✗ twitter

popular3rdParty11A ✓ ✓ –

popular3rdParty11B ✓ ✓ –

popular3rdParty12A ✗ ✗ email

popular3rdParty12B ✗ ✗ email

popular3rdParty13A ✗ ✗ emailBody

App Secure Typable Public Sink

popular3rdParty13B ✗ ✗ emailBody

forumExample1A ✗ ✗ IFTTTnotifMsg

forumExample1B ✗ ✗ IFTTTnotifMsg

forumExample2A ✗ ✗ richNotificationUrl

forumExample2B ✗ ✗ richNotificationUrl

forumExample4A ✗ ✗ postBlogger

forumExample4B ✗ ✗ postBlogger

forumExample5A ✗ ✗ email

forumExample5B ✗ ✗ email

forumExample6A ✓ ✓ –

forumExample6B ✗ ✗ email

forumExample7A ✓ ✓ –

forumExample7B ✓ ✓ –

Area ✗ ✗ emailA

DbLogger ✗ ✗ dblog

aSaver ✗ ✗ lights

Forward ✗ ✗ emailB

Leak ✓ ✓ –

PicToDb ✓ ✓ –

SimPres ✗ ✗ lights

SmokeAlarm ✗ ✗ alarm

Sprinks ✓ ✓ –

Therm ✓ ✓ –

Welcome ✓ ✓ –

Win ✓ ✓ –

is secure, while the second app DbLogger is not, since it does not satisfy L-level noninterference
(Definition 11). Our prototype is able to type the first app, while it fails for the second one. In

particular, the tool signals an insecure attempt to update the service dblog of the app DbLogger.
This reflects the fact that the app contains a flow from a confidential service (dropbox in this case)

to the public service dblog, and the latter is committed to the cloud.

To validate the prototype, we have adapted and analyzed 38 samples taken from the benchmarks

of Bastys et al. [8] and 12 samples taken from the apps presented in this paper, for a total of 50

samples. The former benchmarks contain a selection of popular real-world IFTTT apps as well as

apps from online forums. We extended this dataset by inferring code from the apps’ descriptions,

and then translated it into CaITApp. We have manually checked the information flows and then

compared the results with the outputs given by our tool. The comparison is reported in Table 6.

The tool does not report false positives, accepting all secure apps. We believe that for reasonable
IFTTT apps, our type system will not exhibit false positives. As we have seen in Section 4, the type

system is not complete, but a false positive requires specifically crafted code, that is unlikely to be

present in real-world apps.

Declassification. We have also extended the prototype to support declassification via the construct

declassify(e,σ ) of Section 4.1. Consider again the example app DbLogger, which is insecure with

respect to Definition 11 and, consequently, rejected by our prototype without declassification.

However, the app is leaking only the name of the user’s photo which might be acceptable by the

user. We have modified the app in a way that the existing information flow is now allowed, as shown

in Example 10. Specifically, we have declassified the expression nameOf (read(dropbox)) via the
annotation declassify(nameOf (read(dropbox)), L). Now the app satisfies L-level noninterference
up to declassification (Definition 13) and it is promptly accepted as secure by our prototype.

To validate the extended prototype, we considered the same 50 samples, but we declassified

some services concerning time and location. For example, in IFTTT a malicious app can use

timing information at the granularity of millisecond to leak sensitive information [7], hence timing

information is considered confidential. On the other hand, coarser-grained time readings, e.g., at

the granularity of second or hour, are too imprecise to leak sensitive information and can be safely
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Table 7. Information flow analysis with declassification.

App name Secure Typable Public Sink

popular3rdParty1A ✗ ✗ twitterContent

popular3rdParty1B ✗ ✗ twitterContent

popular3rdParty2A ✗ ✗ googleSpreadSheet

popular3rdParty2B ✗ ✗ googleSpreadSheet

popular3rdParty3A ✓ ✓ –

popular3rdParty3B ✗ ✗ dropboxFile

popular3rdParty4A ✗ ✗ iosAlbumPhoto

popular3rdParty4B ✗ ✗ iosAlbumPhoto

popular3rdParty5A ✓ ✓ –

popular3rdParty5B ✗ ✗ googleCalendarEv

popular3rdParty6A ✓ ✓ –

popular3rdParty6B ✓ ✓ –

popular3rdParty7A ✗ ✗ googleSpreadSheet

popular3rdParty7B ✗ ✗ googleSpreadSheet

popular3rdParty8A ✗ ✗ facebookPost

popular3rdParty8B ✗ ✗ facebookPost

popular3rdParty9A ✗ ✗ googleSpreadSheet

popular3rdParty9B ✗ ✗ googleSpreadSheet

popular3rdParty10A ✓ ✓ –

popular3rdParty10B ✓ ✓ –

popular3rdParty11A ✓ ✓ –

popular3rdParty11B ✓ ✓ –

popular3rdParty12A ✗ ✗ email

popular3rdParty12B ✗ ✗ email

popular3rdParty13A ✗ ✗ emailBody

App Secure Typable Public Sink

popular3rdParty13B ✗ ✗ emailBody

forumExample1A ✓ ✓ –

forumExample1B ✗ ✗ IFTTTnotifMsg

forumExample2A ✗ ✗ richNotificationUrl

forumExample2B ✗ ✗ richNotificationUrl

forumExample4A ✗ ✗ postBlogger

forumExample4B ✗ ✗ postBlogger

forumExample5A ✗ ✗ email

forumExample5B ✗ ✗ email

forumExample6A ✓ ✓ –

forumExample6B ✗ ✗ email

forumExample7A ✓ ✓ –

forumExample7B ✓ ✓ –

Area ✓ ✓ –

DbLogger ✓ ✓ –

aSaver ✓ ✓ –

Forward ✗ ✗ emailB

Leak ✓ ✓ –

PicToDb ✓ ✓ –

SimPres ✓ ✓ –

SmokeAlarm ✗ ✗ alarm

Sprinks ✓ ✓ –

Therm ✓ ✓ –

Welcome ✓ ✓ –

Win ✓ ✓ –

declassified. Similarly, location is usually considered a confidential resource, however, approximate

locations can sometimes be disclosed. For instance, in the app Area the exact coordinates (latitude

and longitude) are confidential, but the fact that the position belongs to a given geographic area

can be made public. Similarly, the app eSaver uses timing information at the granularity of hour,

which can be safely declassified as public.

Again, we have manually checked the information flows of the apps and then compared the

results with the output of our prototype with declassification. The comparison is summarized in

Table 7. As we can see, more apps (8 apps, gray-highlighted in Table 7) are now considered secure.

As for the case without declassification, the prototype does not signal any false negative, reflecting

the fact that the type system is sound (Theorem 4).

6 RELATEDWORK
Security and safety risks in the IoT domain have been the subject of a large array of research studies.

We refer to recent surveys for an overview of the area [2, 5, 17]. Here, we compare our contributions

with closely related works on security and safety analysis of IoT apps, information-flow control,

and formal models for IoT.

Comparison with the conference version. The present work is a revised extension of the conference

paper [6]. Here, we generalized the definition of termination-insensitive hiding bisimulation and

fixed the soundness proof accordingly. Basically, in the previous definition high-level actions can be

matched by the same action or by τ -actions. In the new definition, instead, high-level actions can be

matched by arbitrary high-level actions or τ -actions. This makes our definition of noninterference

more permissive, as shown by the following example:

if high = 0 then {update(high
1
)} else {update(high

2
)}; update(low)

where high, high
1
, high

2
are confidential services and low is a public service; this app is non-

interferent, since there are no flows from confidential to public services, however, it does not

fulfill the definition of noninterference given in [6]. Instead, it correctly fulfills the definition of

noninterference of this paper (Definition 11), with the revised bisimulation of Definition 10.
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We then extended our information-flow control mechanism in order to deal with declassification,

namely intentional leaks of sensitive information. Indeed, in many real-world applications, nonin-

terference is a too strong policy and some information can be safely disclosed even if it is not part

of the flow relation, i.e., it can be declassified. We followed the approach of delimited release [46],

introducing a declassification primitive in our language: the release of confidential information is

only allowed via declassification points. We defined σ -level noninterference up to declassification,

extended the security type system, and proved soundness up to declassification.

Finally, we added a new section concerning the implementation and validation of our enforcement

mechanisms. First, we implemented a prototype and analyzed a benchmark dataset of 20,000 IFTTT

apps, in order to capture cross-app interactions, using the syntactic conditions given in Definition 6.

Then, we implemented and validated our security type system, including declassification, on a set

of real-world IoT apps, translated in our language CaITApp.

Securing IoT apps. Recent research points out the security and safety risks arising in the context

of IoT apps. Surbatovich et al. [49] study a dataset of 20K IFTTT apps and provide an empirical

evaluation of potential secrecy and integrity violations, including violations due to cross-app

interactions. Celik et al. [18, 19] propose static and dynamic enforcement mechanisms for unveiling

cross-app interference vulnerabilities. Ding et al. [23] propose a framework that combines device

physical channel analysis and static analysis to generate all potential interaction chains among

applications in an IoT environment. They leverage natural language processing to identify services

that have similar semantics, and propose a risk-based approach to classify the actual risks of

the discovered interaction chains. Chi et al. [20] propose a systematic categorization of threats

arising from unintentional or malicious interactions of apps in IoT platforms. To detect cross-app

interference, they use symbolic execution techniques to analyze the apps’ implementation. Nguyen

et al. [41] design IoTSan, a system that uses model checking to reveal cross-app interaction flows.

Similarly, SafeChain by Hsu et al. [30] leverage model checking techniques to identify cross-app

vulnerabilities in IFTTT trigger-action rules. The above-mentioned works provide an excellent

motivation for our foundational contributions: Our framework can be used to validate soundness and

permissiveness of these verification techniques. Moreover, our empirical analysis of IFTTT applets

shows that flow-sensitive security types can help tracking vulnerabilities with no false positives.

Another line of work focuses on enforcement mechanisms for checking security and safety of

single IoT apps. Fernandes et al. [25] present FlowFence, an approach building secure IoT apps

via information-flow tracking and controlled declassification. Celik et al. [16] leverage static taint

tracking to identify sensitive data leaks in IoT apps. Bastys et al. [7–9] identify new attack vectors

in IFTTT applets and show that 30% of applets from their dataset can be subject to such attacks. As

a countermeasure, they investigate static and dynamic information-flow tracking via security types.

Fernandes et al. [26] propose the use of decentralization and fine-grained authentication tokens to

limit privileges and prevent unauthorized actions. In contrast, our work targets security and safety

issues in cross-app interactions, and it focuses on the formal underpinnings of these approaches.

Information-flow control. Several works propose information-flow control for enforcing confi-

dentiality and integrity policies in emerging domains like IoT. We refer to a survey by Focardi and

Gorrieri [27] for an overview on information-flow properties in process algebra. Our semantic

condition of safe cross-app interaction draws inspiration from Focardi and Martinelli’s notion of

Generalized Non Deducibility on Composition (GNDC) [28]. Tuma et al. [50] propose a practical and

principled approach to uncover insecure information the level of the design model, which help im-

proving the precision of our safety analysis of cross-app interaction. Volpano and Smith [51] study a

flow-insensitive type system for imperative languages. Because in our language the communication

between services is handled via explicit update statements, a flow-insensitive type system would
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be too restrictive and reject more secure programs. Hunt and Sands [31] propose a flow-sensitive

type system for an imperative language. Our work extends their type system to ensure security

for a system of apps running concurrently. Similarly to our definition of termination-insensitive

hiding bisimulation, Demange and Sands [21] propose a weakening of low bisimulation conditions

to ignore leaks arising from program termination. In contrast, the execution of our app’s payload

affects the global store via a well-defined interface, i.e., listeners and update statements, which

makes our systems of apps more amenable for enforcing security and safety properties.

There are a few approaches that carry out information-flow analysis on models for cyber-physical

systems. Akella et al. [1] proposed an approach to perform information flow analysis, including both

trace-based analysis and automated analysis through process algebra specifications. This approach

has been used to verify process algebra models of a gas pipeline system and a smart electric power

grid system. Wang [52] propose Petri-net models to verify nondeducibility security properties of a
natural gas pipeline system. More recently, Bohrer and Platzer [15] introduce dHL, a hybrid logic for

verifying cyber-physical hybrid-dynamic information flows, communicating information through

both discrete computation and physical dynamics, ensuring security in presence of attackers that

observe continuously-changing values in continuous time.

Formalizations of IoT semantics. IoT semantics has been subject to several works aiming at

capturing subtle IoT-specific notions like time and device state. Newcomb et al. [40] propose IOTA,

a calculus for the domain of home automation. Based on the core formalism of IOTA, the authors

develop an analysis for detecting whenever an event can trigger two conflicting actions, and an

analysis for determining the root cause of (non)occurrence of an event. Lanese et al. [35] propose a

calculus of mobile IoT devices interacting with the physical environment by means of sensors and

actuators. The calculus does not allow any representation of the physical environment, while it is

equipped with an end-user bisimilarity in which end-users may: (i) provide values to sensors, (ii)

check actuators, and (iii) observe the mobility of smart devices. Lanotte and Merro [36] extend and

generalize the work of [35] in a timed setting by providing a bisimulation-based semantic theory

that is suitable for compositional reasoning. Lanotte et al. [37] adapt a discrete-time generalization

of Desharnais et al.’s weak bisimulation metric [22] to estimate the impact of attacks targeting

sensor devices of IoT systems. Bodei et al. [13] propose an untimed process calculus, IoT-LYSA,

supporting a control flow analysis that safely approximates the abstract behavior of IoT systems.

Essentially, they track how data spread from sensors to the logic of the network, and how physical

data are manipulated. In [12], the same authors extend their work to infer quantitative measures to
establish the cost of possibly security countermeasures, in terms of time and energy.

Process calculi have been used to model the semantics and express security conditions in different

contexts including operating systems like Linux [34] and Android [33], andweb browsers [10, 11, 14].

In the same vein, our calculus CaITApp is targeted to capture the execution model of IoT app

platforms consisting of concurrent execution of simple apps that trigger the execution of code upon

receiving events on source services and ultimately dispatch actions on action services. In contrast,

CaITApp is simpler and it captures the execution semantics of IoT apps explicitly.

7 CONCLUSIONS
IoT platforms empower users by connecting a wide array of otherwise unconnected services and

devices. These platforms routinely execute IoT apps that have access to sensitive information of

their users. Because different apps of a user may affect a common physical or logical environment,

their interaction (even for benign apps) can cause severe security and safety risks for that user.

Motivated by this setting, we proposed a generic foundational framework for securing cross-app

interactions. We presented an extensional condition that captures the essence of safe cross-app
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interactions, as well as implicit interactions. Moreover, we studied an extensional condition for

confidentiality and integrity properties of a system of apps, and proposed a flow-sensitive security

type system to enforce such condition. We implemented our approach and demonstrated its

feasibility on dataset of real-world apps.

Our analysis indicates that flow-sensitive security type systems with support for declassification

policies are a good fit for enforcing IoT apps’ security. While these results are encouraging, we

remark that our conclusions are limited to the dataset under consideration. Unfortunately filter

code in IFTTT is not publicly available, hence we considered a best-effort approach by analyzing

code from public forums and previous works [8]. On the other hand, the filter code is mainly used

for simple customizations of trigger-action rules, hence we expect the security type system to have

very low false positives. While prior works have successfully applied techniques such as runtime

monitoring [8, 19] and model checking [18, 20, 30, 41], static analysis via security type systems, at

least from the perspective of IoT platform owners, can be preferable to validate IoT apps before

publishing them to the store.

Declassification is also a challenging problem in information flow control, especially from a

usability perspective. Because our declassification policies are global and refer only to the services,

laundering attacks are excluded by design and IoT platform owners and end user can focus on

defining and interpreting declassification polices in relation to their IoT services. For our dataset,

the filter code requires at most one declassification, hence leaks via combination of multiple

declassifications do not appear. An interesting direction for future work is to consider inference of

declassification policies from filter code and their representation in a user-friendly manner. Ideally,

such analysis should be implemented by the IoT platform owners and presented to end users prior

to installing an IoT app.

Finally, we remark that our analysis relies on security classifications of sources and sinks from

trigger-action services. As pointed out by existing works [5, 49], these classifications may depend

on the context as well as user preferences, e.g., the security settings of a specific service like the

audience of a social network feed. These works are complementary to our approach and advances

in this direction can improve the accuracy of our results.
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A PROOFS
Proof of Theorem 1. We prove the first part of the theorem (for the second part, just swap S

with R). Assume S ↛ R, i.e., act(S) ∩ trg(R) = ∅ , then we have to prove that for any global store

G ∈ S we have: ⟨G,L⊥⟩ ▷ S ∥ R ≈HS R, with HS = upd(S). The proof is by contradiction.

Suppose S and R be two syntactically noninteracting systems such that ⟨G,L⊥⟩ ▷ S ∥ R 0HS R, for
some global storeG ∈ S. This means that it does not exist a hiding bisimulation R parametric onHS
that contains the pair of configurations (Ca ,Cb ), with Ca

def
= ⟨G,L⊥⟩ ▷ S ∥ R and Cb

def
= ⟨G,L⊥⟩ ▷ R.

More precisely, by definition of bisimulation relation, whenever we try to build up a hiding

bisimulation R parametric on HS and containing the pair (Ca ,Cb ), the bisimulation game stops in

a pair of configurations (C′a ,C
′
b ), with C

′
a (resp., C′b ) derivative of Ca (resp., Cb ), because: (i) either

C′a can perform an action α that cannot be (weakly) mimicked by C′b (the vice versa is similar), or

(ii) action mimicking is always possible but it leads us to configuration pairs of the form (C′′a ,C
′′
b )

which do not belong to R. Actually, since a bisimulation proof is a constructive procedure, we can

always assume that the sought relation R is large enough so that case (ii) never applies.

Let C′a
def
= ⟨G′a ,L

′
a⟩ ▷ S

′
a ∥ R

′
a and C′b

def
= ⟨G′b ,L

′
b ⟩ ▷ R

′
b , with S′a derivative of S, R′a derivative of

R (we recall that our apps cannot directly interact), and R′b derivative of R. We proceed by case

analysis on the action α that would distinguish the two configurations C′a and C′b .

– α = τ . We notice that τ -actions cannot distinguish the two systems as we adopted a weak

notion of bisimulation.

– α = x?v . This action can be only derived by an application of rule (EnvChange) in Table 2.

However, as already pointed out, this action denotes a modification of the cloud made by the

external observer. Thus, this action does not depend on the actual configuration and can always be

performed by both configurations.

– α = id:x!v . We have two sub-cases.

• id is an applet of the system S. In this case, α ∈ HS, and by definition of hiding bisimulation

this action can always be mimicked by an arbitrary number (possibly 0) of τ -actions.
• id is an applet of the system R. In this case, α < HS. As α is the distinguishing action, it

follows that the app id reaches different states in the two configurations C′a and C′b leading

to two possible situations: (i) the writing on x is possible in C′a but not in C′b (or vice versa);

(ii) the writing on x is possible in both configurations but with different values. Since both

systems S ∥ R and R start in the same global store (the local store is not initialized in both

cases), the system R could exhibit different behaviors in the two configurations if and only if

it would be affected by S. In particular, this means that in the execution trace leading from Ca
to C′a , (a derivative of) the system S should have modified (i.e., written): (a) either a service

that R′a listens on, or (b) a service that R′a reads from the global store. Recall that there is

no direct information passing between apps, so the only way for apps to interact is via the

global store on the cloud. However, the syntactic condition S ↛ R, i.e., act(S) ∩ trg(R) = ∅, is
trivially preserved by all derivatives of S and R. This ensures that neither case applies.

As it does not exist a distinguishing action α , it follows that the original configurations Ca and Cb
must be hiding bisimilar, i.e., ⟨G,L⊥⟩ ▷ S ∥ R ≈HS R, with HS = upd(S).

□

Proof of Theorem 2. Let us focus on the first part of the theorem (for the second part, just swap

S with R). Assume S ∆↛ R for some dependency policy ∆, i.e., clo(∆, act(S)) ∩ trg(R) = ∅, then we
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have to prove that for any global storeG ∈ Swe have: ⟨G,L⊥⟩ ▷ S ∥ R
∆
≈HS R, withHS = upd(S). The

proof proceeds by contradiction and goes exactly along the same lines of that of Theorem 1. Indeed,

the setting of the bisimulation is exactly the same but the syntactic condition S ∆↛ R (Definition 8)

entails the condition S ↛ R (Definition 6) used to prove Theorem 1. □

Lemma 1 (Substitution lemma). Let Q be an arbitrary process and X be a process variable that may
occur free in Q . If σ ⊢ Γ1

{
Q
}
Γ2, for some security clearance σ and some type environments Γ1 and Γ2

of the form Γ1 = Γ′
1
[X 7→ σ ] and Γ2 = Γ′

2
[X 7→ σ ], then σ ⊢ Γ′

1

{
Q

{
fixX •Q/X

} }
Γ′
2
.

Proof. Let P = fixX •Q . The proof is by rule induction on the derivation of σ ⊢ Γ1
{
Q
}
Γ2, for

some security clearance σ , and some type environments Γ1 and Γ2 of the form Γ1 = Γ′
1
[X 7→ σ ] and

Γ2 = Γ′
2
[X 7→ σ ], respectively, for some Γ′

1
and Γ′

2
.

• Suppose that σ ⊢ Γ1
{
Q
}
Γ2 was derived by an application of the typing rule (Pvar). There are

two cases.

– Q = X. By definition of rule (Pvar), we have Γ1 = Γ2. As Q = X, the process substitution
returns: Q

{
P/X

}
= X

{
P/X

}
= P. We recall that P = fixX •Q . As Γ1 = Γ2, by an application

of the typing rule (Fix) it follows that σ ⊢ Γ′
1

{
P
}
Γ′
2
.

– Q = Y , X. This case is straightforward as the process substitution does not apply to Q .

• Suppose that σ ⊢ Γ1
{
Q
}
Γ2 was derived by an application of the typing rule (Fix). As a

consequence, we have: (i) Q = fixY •Q1, for some Q1 and Y (up to α-conversion we

can always assume Y , X), (ii) Γ1 = Γ2, and (iii) σ ⊢ Γ̂1
{
Q1

}
Γ̂2, for Γ̂1 = Γ1[Y 7→ σ ]

and Γ̂2 = Γ2[Y 7→ σ ] (obviously, Γ̂1 = Γ̂2). Now, the process substitution on Q returns:

Q
{
P/X

}
= (fixY •Q1)

{
P/X

}
= fixY • (Q1

{
P/X

}
). By inductive hypothesis we derive: σ ⊢

Γ′′
1

{
Q1

{
P/X

} }
Γ′′
2
, for Γ̂1 = Γ′′

1
[X 7→ σ ] and Γ̂2 = Γ′′

2
[X 7→ σ ] (obviously, Γ′′

1
= Γ′′

2
). As Γ′′

1
= Γ′′

2
,

by an application of the typing rule (Fix) it follows that σ ⊢ Γ′′′
1

{
fixY • (Q1

{
P/X

}
)
}
Γ′′′
2
, for

Γ′′
1
= Γ′′′

1
[Y 7→ σ ] and Γ′′

2
= Γ′′′

2
[Y 7→ σ ] (obviously, Γ′′′

1
= Γ′′′

2
). Thus, for i ∈ {1, 2} we

have: Γ̂i = Γi [Y 7→ σ ] = Γ′i [X 7→ σ ,Y 7→ σ ] and Γ̂i = Γ′′i [X 7→ σ ] = Γ′′′i [Y 7→ σ ,X 7→ σ ].

This entails Γ′
1
= Γ′′′

1
and Γ′

2
= Γ′′′

2
. As a consequence, from (i) Q = fixY •Q1, (ii) Q

{
P/X

}
=

fixY • (Q1

{
P/X

}
), and (iii) σ ⊢ Γ′′′

1

{
fixY • (Q1

{
P/X

}
)
}
Γ′′′
2
, it follows that σ ⊢ Γ′

1

{
Q

{
P/X

} }
Γ′
2
.

• Suppose that σ ⊢ Γ1
{
Q
}
Γ2 was derived by an application of the typing rule (Seq). This

derivation is possible only under the hypotheses that: (i) Q = Q1;Q2, (ii) σ ⊢ Γ1
{
Q1

}
Γ12, for

some Γ12, of the form Γ12 = Γ′
12
[X 7→ σ ] for some Γ′

12
, and (iii) σ ⊢ Γ12

{
Q2

}
Γ2. Now, the process

substitution returns: Q
{
P/X

}
= (Q1;Q2)

{
P/X

}
= Q1

{
P/X

}
;Q2

{
P/X

}
. By inductive hypothesis,

σ ⊢ Γ′
1

{
Q1

{
P/X

} }
Γ′
12

and σ ⊢ Γ′
12

{
Q2

{
P/X

} }
Γ′
2
. Thus, by an application of the typing rule

(Seq) it follows that σ ⊢ Γ′
1

{
Q1

{
P/X

}
;Q2

{
P/X

} }
Γ′
2
. Hence, σ ⊢ Γ′

1

{
Q

{
P/X

} }
Γ′
2
.

• Suppose that σ ⊢ Γ1
{
Q
}
Γ2 was derived by an application of the typing rule (IfElse). This

derivation is possible only under the hypotheses that: (i) Q = if b then {Q1} else {Q2}, for

some b, Q1 and Q2, (ii) Γ1 ⊢ b : σ ′, for some σ ′, (iii) σ ⊔ σ ′ ⊢ Γ1
{
Q1

}
Γ2, and (iv) σ ⊔ σ ′ ⊢

Γ1
{
Q2

}
Γ2. The process substitution onQ returns:Q

{
P/X

}
= (if b then {Q1} else {Q2})

{
P/X

}
=

if b then {Q1

{
P/X

}
} else {Q2

{
P/X

}
}. By inductive hypothesis we derive:σ⊔σ ′ ⊢ Γ′

1

{
Q1

{
P/X

} }
Γ′
2

and σ ⊔ σ ′ ⊢ Γ′
1

{
Q2

{
P/X

} }
Γ′
2
. Furthermore, from Γ1 ⊢ b : σ ′ it follows Γ′

1
⊢ b : σ ′. Thus, we

derive σ ⊢ Γ′
1

{
if b then {Q1

{
P/X

}
} else {Q2

{
P/X

}
}
}
Γ′
2
by an application of the typing rule

(IfElse). Hence, σ ⊢ Γ′
1

{
Q

{
P/X

} }
Γ′
2
.
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• Suppose that σ ⊢ Γ1
{
Q
}
Γ2 was derived by an application of one typing rule among (Skip),

(Update), and (Listen). These cases are easy as the substitution does not affect the process Q .

• Suppose that σ ⊢ Γ1
{
Q
}
Γ2 was derived by an application of the subtyping rule (Sub.Proc).

This derivation is possible only under the hypotheses that there are σ̂ , Γ̂1 and Γ̂2 such that:

(i) σ̂ ⊢ Γ̂1
{
Q
}
Γ̂2, (ii) σ ≼ σ̂ , (iii) Γ1 ≼ Γ̂1, and (iv) Γ̂2 ≼ Γ2. By inductive hypothesis, we

derive σ̂ ⊢ Γ′′
1

{
Q

{
P/X

} }
Γ′′
2
, for Γ̂1 = Γ′′

1
[X 7→ σ̂ ] and Γ̂2 = Γ′′

2
[X 7→ σ̂ ]. As Γ1 = Γ′

1
[X 7→ σ ]

and Γ2 = Γ′
2
[X 7→ σ ], it follows that Γ′

1
≼ Γ′′

1
and Γ′′

2
≼ Γ′

2
. Thus, by an application of the

subtyping rule (Sub.Proc) it follows that σ ⊢ Γ′
1

{
Q

{
P/X

} }
Γ′
2
, as required.

□

Lemma 2 (Subject reduction for process configurations). Let Σ ∈ Service −→ SL be a security policy,
P be a process, and σ ∈ SL be a security level. If σ ⊢ Γ1

{
P
}
Γ2 and ⟨G,ϕ⟩ ▷ P

λ
−_ ⟨G′,ϕ ′⟩ ▷ P′ then there

is Γ′
1
such that σ ⊢ Γ′

1

{
P′
}
Γ2.

Proof. The proof is by rule induction on the transitions rules defining the semantics of processes

(Table 1). In the table, all transition rules are axioms (base cases of the induction) except for the rule

(Seq) which represents the only inductive case. Let us proceed by case analysis on which semantic

rules has been used to derive ⟨G,ϕ⟩ ▷ P
λ
−_ ⟨G′,ϕ ′⟩ ▷ P′.

• Rule (SetLocal). In this case, we have: P = x← e and P′ = skip. As σ ⊢ Γ1
{
P
}
Γ2, by definition

of the typing rule (Assign), it follows that Γ1 ⊢ e : δ , for some δ , and Γ2 = Γ1[x 7→ δ ⊔ σ ].

Thus, we can set Γ′
1
= Γ2 to derive σ ⊢ Γ′

1

{
skip

}
Γ2 by an application of the typing rule (Skip).

• Rule (StopListening). In this case, we have P = listen(L) and P′ = skip. As σ ⊢ Γ1
{
P
}
Γ2, by

definition of the typing rule (Listen), it follows that Γ1 = Γ2. Thus, setting Γ′
1
= Γ1, we can

derive σ ⊢ Γ′
1

{
skip

}
Γ2 by an application of the typing rule (Skip).

• Rule (Update). In this case, we have P = update(x), for some service x, and P′ = skip. As
σ ⊢ Γ1

{
P
}
Γ2, by definition of the typing rule (Update), it follows that Γ1 = Γ2. Thus, setting

Γ′
1
= Γ1 = Γ2, we can derive σ ⊢ Γ′

1

{
skip

}
Γ2 by an application of the typing rule (Skip).

• Rule (SkipUpdate). In this case, we have P = update(x) and P′ = skip. As σ ⊢ Γ1
{
P
}
Γ2, by

definition of the typing rule (Update), it follows that Γ1 = Γ2. Thus, setting Γ′
1
= Γ2, we can

derive σ ⊢ Γ′
1

{
skip

}
Γ2 by an application of the typing rule (Skip).

• Rule (IfTrue). In this case, we have P = if b then {P1} else {P2} and P′ = P1. Asσ ⊢ Γ1
{
P
}
Γ2, by

definition of the typing rule (IfElse) we have that Γ1 ⊢ b : δ , for some δ , and σ ⊔δ ⊢ Γ1
{
P1
}
Γ2.

Thus, setting Γ′
1
= Γ1, since σ ≼ σ ⊔ δ , by an application of the sub-typing rule (Sub.Proc),

we derive σ ⊢ Γ′
1

{
P1
}
Γ2.

• Rule (IfFalse). Similar to the previous case.

• Rule (Seq). In this case, P = P1;P2, for some P1 and P2, P′ = P′
1
;P2, for some P′

1
such

that ⟨G,ϕ⟩ ▷ P1
λ
−_ ⟨G′,ϕ ′⟩ ▷ P′

1
. As σ ⊢ Γ1

{
P
}
Γ2, by definition of the typing rule (Seq) there

is a type environment Γ3 such that σ ⊢ Γ1
{
P1
}
Γ3 and σ ⊢ Γ3

{
P2
}
Γ2. Since σ ⊢ Γ1

{
P1
}
Γ3

and the depth of the derivation tree for ⟨G,ϕ⟩ ▷ P1
λ
−_ ⟨G′,ϕ ′⟩ ▷ P′

1
is smaller than that of

the derivation tree for ⟨G,ϕ⟩ ▷ P
λ
−_ ⟨G′,ϕ ′⟩ ▷ P′, by inductive hypothesis, we derive that

σ ⊢ Γ′
1

{
P′
1

}
Γ3, for some Γ′

1
. Finally, since σ ⊢ Γ3

{
P2
}
Γ2, by an application of the typing rule

(Seq) it follows that σ ⊢ Γ′
1

{
P′
1
;P2

}
Γ2.

• Rule (SeqSkip). In this case, we have P = skip;Q , for some process Q , and P′ = Q . As

σ ⊢ Γ1
{
P
}
Γ2, by definition of the typing rule (Seq) (and (Skip)) we have that σ ⊢ Γ1

{
skip

}
Γ1

and σ ⊢ Γ1
{
Q
}
Γ2. Thus, setting Γ′

1
= Γ1, we derive σ ⊢ Γ

′
1

{
Q
}
Γ2.
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• Rule (Fix). In this case, we have P = fixX •Q , for some process Q , and P′ = Q
{
fixX •Q/X

}
.

Thus, the typing σ ⊢ Γ1
{
P
}
Γ2 was derived by an application of the typing rule (Fix) of Table 3,

under the hypotheses that: (i) Γ1 = Γ2, and (ii) σ ⊢ Γ̂1
{
Q
}
Γ̂1, for Γ̂1 = Γ1[X 7→ σ ] and

Γ̂2 = Γ2[X 7→ σ ]. By an application of Lemma 1, we derive that σ ⊢ Γ′
1

{
Q

{
fixX •Q/X

} }
Γ2, for

Γ′
1
= Γ1.

□

In order to prove Theorem 3, we first prove the soundness of the security type system for single-

app systems (Proposition 1) and then, relying on the fact that our bisimilarity ≈ti

H is preserved by

parallel composition (Lemma 8), we generalize the result to systems of apps.

First of all, we need to define a σ -equivalence relation on process configurations which, as we

will show, is preserved by well-typed processes. In Definition 9 we already defined σ -equivalence
among global stores,G1 ≡Σ,σ G2. Similarly, we define σ -equivalence ϕ1 ≡Γ,σ ϕ2 on local stores ϕ1

and ϕ2, with respect to a local typing environment Γ and attacker level σ , such that for all local

variables x, it holds that ϕ1 (x) = ϕ2 (x) whenever Γ(x) ≼ σ .
In the following, for simplicity, we write σH

to denote the level of a program counter pc whenever
pc $ σ . When convenient, we avoid specifying the typing environments and simply assume that

such environments exist.

Definition 14 (Process-level σ -equivalence). Let Σ ∈ Service −→ SL be a security policy and σ ∈ SL
a security clearance. The σ -equivalence relation ≡σ between well-typed processes is defined as:

(1) P ≡σ P for all well-formed processes P ;

(2) if σH ⊢ Γ1
{
P1
}
Γ2 and σ

H ⊢ Γ′
1

{
P2
}
Γ2, then P1 ≡σ P2;

(3) if σH ⊢ Γ1
{
P1
}
Γ2 and σ

H ⊢ Γ′
1

{
P2
}
Γ2, then P1; P ≡σ P2; P for all well-formed processes P ;

(4) if σH ⊢ Γ1
{
P1
}
Γ2 then P1; P ≡σ P and P ≡σ P1; P , for all well-formed processes P .

We say that two process configurations C1 = ⟨G1,ϕ1⟩ ▷ P1 and C2 = ⟨G2,ϕ2⟩ ▷ P2 are σ -equivalent,
written C1 ≡σ C2, only if: (i) P1 ≡σ P2, P1 and P2 well-typed, i.e., µ ⊢ Γ1

{
P1
}
Γ2, µ ⊢ Γ

′
1

{
P2
}
Γ2, for

µ ∈ {σ ,σH} and some Γ1, Γ2, Γ
′
1
, and (ii)G1 ≡Σ,σ G2, and (iii) ϕ1 ≡Γ1⊔Γ′

1
,σ ϕ2, where Γ1 ⊔ Γ′

1
denote

the pointwise join of the two security environments Γ1 and Γ′
1
used to type P1 and P2, respectively.

We use the invariant on process configurations to prove soundness of the security type system

for single apps. We first state and prove a few helper lemmas.

Lemma 3 (Simple security). Let Σ ∈ Service −→ SL be a security policy and σ ∈ SL a security
clearance. If Γ ⊢ e : ρ, ρ ≼ σ ,G1 ≡Σ,σ G2, and ϕ1 ≡Γ,σ ϕ2, then JeK(G1,ϕ1) = JeK(G2,ϕ2).

Proof. By structural induction on e , typing rules for expressions, and σ -equivalence for stores.
□

Now, in Lemma 4 we show that configurations containing processes that are typed in a high

context σH
preserve σ -equivalence with respect to the initial configuration and do not produce

any update events at security levels below σ . Intuitively, the lemma holds because the type system

prevents implicit flows, i.e., updates to attacker-visible services in a high context.

As shown in Table 1, (the code of) an app can only produce actions λ ∈ L. In the following

lemmas (precisely, Lemmas 4, 5 and 6) we assume a set H
def
= {λ ∈ L | Σ(λ) $ σ } ∪ {τ } of non-

observable actions at the attacker’s security level σ . We also lift the definition of transition for

process configurations (Table 1) from actions to traces of actions t = λ1 · · · λn , writing
t
−_ as an

abbreviation for

λ1
−−_ . . .

λn
−−_; we also write t ∈ H whenever, for all λi , for 1 ≤ i ≤ n, we have λi ∈ H .
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Lemma 4 (High-steps invariant). If σH ⊢ Γ1
{
P1
}
Γ2 then for all G1,ϕ1 ∈ S, if ⟨G1,ϕ1⟩ ▷ P1

λ
−_

⟨G2,ϕ2⟩ ▷ P2, then there is Γ′
1
such that σH ⊢ Γ′

1

{
P2
}
Γ2, λ ∈ H , and ⟨G1,ϕ1⟩ ▷ P1 ≡σ ⟨G2,ϕ2⟩ ▷ P2.

Proof. By rule induction on how the transition ⟨G1,ϕ1⟩ ▷P1
λ
−_ ⟨G2,ϕ2⟩ ▷P2 was derived. Subject

reduction (Lemma 2) ensures that there exists Γ′
1
such that σH ⊢ Γ′

1

{
P2
}
Γ2. Therefore, we have to

show that an execution step in a high context σH
preserves the invariant ⟨G1,ϕ1⟩▷P1 ≡σ ⟨G2,ϕ2⟩▷P2,

namely P1 ≡σ P2, G1 ≡Σ,σ G2, ϕ1 ≡Γ1⊔Γ′
1
,σ ϕ2, and λ ∈ H . By Definition 14, σH ⊢ Γ1

{
P1
}
Γ2 and

σH ⊢ Γ′
1

{
P2
}
Γ2, we have that P1 ≡σ P2 since the program counter is σH

. Hence, we only need to

show that σ -equivalence on global and local stores is preserved and that λ ∈ H . We show the

interesting cases for the rules in Table 1 that may change either the global store or the local store.

• Rule (SetLocal), P1 = x ← e. The rule sets ϕ2 = ϕ1[x 7→ JeK(G,ϕ)] and λ = τ ∈ H , while

G1 = G2. We show that ϕ2 ≡Γ1⊔Γ′
1
,σ ϕ1[x 7→ JeK(G,ϕ)]. As σH ⊢ Γ1

{
P1
}
Γ2, by definition of

the typing rule (Assign), it follows that Γ1 ⊢ e : δ , for some δ , and Γ′
1
= Γ1[x 7→ δ ⊔ σH

] =

Γ1[x 7→ σH
]. Hence, since Γ′

1
(x) = σH

and Γ1 ⊔ Γ′
1
= Γ′

1
, we have ϕ1 ≡Γ′

1
,σ ϕ2.

• Rule (Update), P1 = update(x). The rule setsG2 = G1[x 7→ ϕ1 (x )] and produces an action

λ = x!v , while ϕ1 = ϕ2. As σ
H ⊢ Γ1

{
P
}
Γ2, by definition of the typing rule (Update), it follows

that σH ⊔ Γ1 (x) ≼ Σ(x), implying that σH ≼ Σ(x), hence λ ∈ H . Moreover, Lemma 2 (subject

reduction), in the case of an update construct, ensures that Γ′
1
= Γ1, hence ϕ1 ≡Γ′

1
,σ ϕ2. Finally,

G1 ≡Σ,σ G2 since H ≼ Σ(x) and σ ≼ H , hence updates to high-level services may differ.

• Rule (Seq), with P1 = Pa ; Pb and P2 = P′a ; Pb , for some P′a such that ⟨G1,ϕ1⟩ ▷ Pa
λ
−_ ⟨G2,ϕ2⟩ ▷ P′a .

AsσH ⊢ Γ1
{
P1
}
Γ2, by definition of the typing rule (Seq) there exists Γ3 such thatσ

H ⊢ Γ1
{
Pa

}
Γ3

and σH ⊢ Γ3
{
Pb

}
Γ2. Since σ

H ⊢ Γ1
{
Pa

}
Γ3 and ⟨G1,ϕ1⟩ ▷ Pa

λ
−_ ⟨G2,ϕ2⟩ ▷ P′a , by induction hy-

pothesis, there exists Γ′
1
such that σH ⊢ Γ′

1

{
P′a

}
Γ3, λ ∈ H ,G1 ≡Σ,σ G2, and ϕ1 ≡Γ1⊔Γ′

1
,σ ϕ2. By

Definition 14, it follows that P1 ≡σ P2, Finally, by two different applications of the typing

rule (Seq) we derive: (i) σH ⊢ Γ1
{
Pa ; Pb

}
Γ2, and (ii) σH ⊢ Γ′

1

{
P′a ; Pb

}
Γ2. As a consequence, by

Definition 14 it follows that ⟨G1,ϕ1⟩ ▷ P1 ≡σ ⟨G2,ϕ2⟩ ▷ P2, as required.

□

Corollary 5 (High-traces invariant). If σH ⊢ Γ1
{
P1
}
Γ2 and ⟨G1,ϕ1⟩ ▷ P1

t
−_ ⟨G2,ϕ2⟩ ▷ skip,

for some trace t , then t ∈ H and ⟨G1,ϕ1⟩ ▷ P1 ≡σ ⟨G2,ϕ2⟩ ▷ skip.

Proof. By induction on the length of the trace t , and then by Lemma 4. □

We now show that σ -equivalent process configurations that may differ only on global and local

stores but not on the process code, mimic each others’ actions, while preserving σ -equivalence.

Lemma 5 (Low-steps invariant). For any P1,G1,G2,ϕ1,ϕ2,C
′
1
, if σ ⊢ Γ1

{
P1
}
Γ2, ⟨G1,ϕ1⟩ ▷ P1 ≡σ

⟨G2,ϕ2⟩ ▷ P1 and ⟨G1,ϕ1⟩ ▷ P1
λ1
−−_ ⟨G′

1
,ϕ ′

1
⟩ ▷ P′

1
= C′

1
, then there exists C′

2
= ⟨G′

2
,ϕ ′

2
⟩ ▷ P′

2
such that

⟨G2,ϕ2⟩ ▷ P1
λ2
−−_ C′

2
, C′

1
≡σ C

′
2
, P′

1
= P′

2
, and, if λ1 < H then λ1 = λ2.

Proof. By rule induction on how the transition ⟨G1,ϕ1⟩ ▷ P1
λ
−_ ⟨G′

1
,ϕ ′

1
⟩ ▷ P′

1
was derived. Since

σ ⊢ Γ1
{
P1
}
Γ2, by Lemma 2 (subject reduction) we have σ ⊢ Γ′

1

{
P′
1

}
Γ2. By assumptionG1 ≡Σ,σ G2

and ϕ1 ≡Γ1,σ ϕ2. We show the most interesting cases, i.e., the rules that may change either the

global store or the local store.

• Rule (SetLocal), P1 = x← e: By definition ⟨G1,ϕ1⟩ ▷ (x← e)
τ
−_ ⟨G1,ϕ1[x 7→ JeK(G1,ϕ1)]⟩ ▷

skip and ⟨G2,ϕ2⟩ ▷ (x ← e)
τ
−_ ⟨G2,ϕ2[x 7→ JeK(G2,ϕ2)]⟩ ▷ skip. Hence, P′1 = P′

2
= skip and

σ ⊢ Γ′
1

{
skip

}
Γ2 ≡σ σ ⊢ Γ′

1

{
skip

}
Γ2 and λ1 = λ2 = τ ∈ H . Moreover,G′

1
≡Σ,σ G

′
2
because the
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rule does not change the global stores (G1 =G
′
1
andG2 =G

′
2
) and the security environment

Σ is fixed. It remains to show that ϕ ′
1
≡Γ′

1
,σ ϕ ′

2
. By definition of the typing rule (Assign), it

follows that Γ1 ⊢ e : ρ, for some ρ, and Γ′
1
= Γ1[x 7→ ρ ⊔ σ ]. We distinguish two cases: (1)

ρ ≼ σ and (2) ρ $ σ .
(1) ρ ≼ σ : From Lemma 3 it follows that JeK(G1,ϕ1) = JeK(G2,ϕ2), which implies that

JxK(G′
1
,ϕ ′

1
) = JxK(G′

2
,ϕ ′

2
), hence ϕ ′

1
≡Γ′

1
,σ ϕ ′

2
.

(2) Case (2): If ρ $ σ , then Γ′
1
(x) $ σ , hence ϕ ′

1
≡Γ′

1
,σ ϕ ′

2
.

• Rule (Update), P1 = update(x): By definition ⟨G1,ϕ1⟩▷update(x)
x!v1

−−−_ ⟨G[x 7→ v1],ϕ1⟩▷skip

and ⟨G2,ϕ2⟩ ▷ update(x)
x!v2

−−−_ ⟨G[x 7→ v2],ϕ2⟩ ▷ skip. By Lemma 2 (subject reduction) and

the typing rule (Update), we have Γ1 = Γ2 = Γ′
1
and σ ⊢ Γ′

1

{
skip

}
Γ2 ≡σ σ ⊢ Γ′

1

{
skip

}
Γ2.

Moreover, ϕ ′
1
≡Γ′

1
,σ ϕ ′

2
because the rule does not change the local stores (ϕ1 = ϕ ′

1
and ϕ2 = ϕ ′

2
)

and Γ1 = Γ′
1
. It remains to show that G′

1
≡Σ,σ C

′
2
and x!v1 = x!v2 whenever x!v1 < H . By

definition of the typing rule (Update), it holds that σ ⊔ Γ1 (x) ≼ Σ(x). We distinguish two

cases: (1) Γ1 (x) ≼ σ = Σ(x); (2) Γ1 (x) $ σ and Γ1 (x) ≼ Σ(x).
(1) Γ1 (x) ≼ σ = Σ(x): In this case x!v1, x!v2 < H . It follows that JxK(G1, λx .⊥) = JxK(G2, λx .⊥)

sinceG1 ≡Σ,σ G2, which implies thatv1 = v2. Moreover,G′
1
≡Σ,σ G

′
2
sinceG′

1
(x) =G′

2
(x) =

v1 andG1 ≡Σ,σ G2 by assumption.

(2) Γ1 (x) $ σ and Γ1 (x) ≼ Σ(x): The former implies that x!v1, x!v2 ∈ H and the latter ensures

thatG′
1
≡Σ,σ G

′
2
.

• Rule (Seq), with P1 = Pa ; Pb and P′1 = P′a ; Pb , for some P′a s.t. ⟨G1,ϕ1⟩ ▷ Pa
λ1
−−_ ⟨G′

1
,ϕ ′

1
⟩ ▷ P′a = C

′
a .

As σ ⊢ Γ1
{
Pa ;Pb

}
Γ2, by definition of the typing rule (Seq) there exists Γ3 such that σ ⊢

Γ1
{
Pa

}
Γ3 and σ ⊢ Γ3

{
Pb

}
Γ2. Since σ ⊢ Γ1

{
Pa

}
Γ3 and ⟨G1,ϕ1⟩ ▷ Pa

λ1
−−_ ⟨G′

1
,ϕ ′

1
⟩ ▷ P′a , by

Lemma 2 (subject reduction) there exists Γ′
1
such that σ ⊢ Γ′

1

{
P′a

}
Γ3. Then, by induc-

tion hypothesis we have that ⟨G2,ϕ2⟩ ▷ Pa
λ2
−−_ ⟨G′

2
,ϕ ′

2
⟩ ▷ P′′a = C

′′
a such that C′a ≡σ C

′′
a ,

P′a = P′′a , and λ1 = λ2 , whenever λ1 < H . In particular, since P ′a = P ′′a and by subject

reduction we can derive σ ⊢ Γ′
1

{
P′′a

}
Γ3, it follows that: (i) P′a ≡σ P′′a , (ii) G

′
1
≡Σ,σ G

′
2
,

and (iii) ϕ ′
1
≡Γ′

1
,σ ϕ ′

2
. By two different applications of the typing rule (Seq) we derive: (i)

σ ⊢ Γ′
1

{
P′′a ;Pb

}
Γ2, and (ii) σ ⊢ Γ′

1

{
P′′a ;Pb

}
Γ2. Finally, since P′a = P′′a then by Definition 14, it

follows that P′a ;Pb ≡σ P′′a ;Pb .

□

We now prove our crucial lemma saying that two σ -equivalent process configurations can mimic

each others’ actions, according to our notion of termination-insensitive hiding bisimulation.

Lemma 6 (Bisimulation step). Let H def
= {λ ∈ L | Σ(λ) $ σ } ∪ {τ } for some security cleareance σ ∈

SL. Let C1 and C2 be process configurations such that C1 ≡σ C2. If there is C′1 such that C1
λ
−→ C′

1
, then

there exists a process configuration C′
2
such that

(1) C2 ⇒H C
′
2
and C′

1
≡σ C

′
2
, whenever λ ∈ H , or

(2) either (a) C2
λ
⇒H C

′
2
and C′

1
≡σ C

′
2
or (b) C2 ⇑H , whenever λ < H .

Proof. Let C1 = ⟨G1,ϕ1⟩▷P1, C2 = ⟨G2,ϕ2⟩▷P2, and C′1 = ⟨G
′
1
,ϕ ′

1
⟩▷P′

1
. Since C1 ≡σ C2 it follows

that P1 ≡σ P2 (see Definition 14). We proceed by case analysis on why P1 ≡σ P2. In each of the

possible four cases, we will show that there is a process configuration C′
2
= ⟨G′

2
,ϕ ′

2
⟩ ▷ P′

2
, satisfying

conditions (1) and (2) of the lemma.

• Case P1 = P2. By Lemma 5, there exists C′
2
such that C2

λ
−→ C′

2
and C′

1
≡σ C

′
2
. If λ ∈ H then

C2 →H C
′
2
, and condition (1) holds, otherwise if λ < H then condition (2a) holds.
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• Case σH ⊢ Γ1
{
P1
}
Γ2 and σH ⊢ Γ′

1

{
P2
}
Γ2. By Lemma 4, we have that C1 ≡σ C

′
1
and λ ∈ H .

Then, from the assumption C1 ≡σ C2, and transitivity of ≡σ , it follows that C
′
1
≡σ C2. Thus,

there is C′
2
= C2 such that C2 ⇒H C

′
2
and condition (1) holds.

• Case P1 = P3;P, P2 = P4;P, σH ⊢ Γ1
{
P3
}
Γ2, and σ

H ⊢ Γ′′
1

{
P4
}
Γ2. We consider the shape of P3.

If P3 = skip, then C1
τ
−_ C′

1
= ⟨G1,ϕ1⟩ ▷ P by an application of rule (SkipSeq), with τ ∈ H .

But then C′
1
= ⟨G1,ϕ1⟩ ▷ P is σ -equivalent to C2 = ⟨G2,ϕ2⟩ ▷ (P4;P) because P ≡σ P4;P

(Definition 14), and the global and local stores are equivalent by assumption. Hence, condition

(1) holds for C′
2
= C2 and C2 ⇒H C

′
2
.

Otherwise, if P3 , skip, then C1
λ
−_ C′

1
= ⟨G′

1
,ϕ ′

1
⟩ ▷ (P′

3
;P) follows because ⟨G1,ϕ1⟩ ▷ P3

λ
−_

⟨G′
1
,ϕ ′

1
⟩ ▷ P′

3
, by an application of the rule (Seq). By Lemma 4, ⟨G1,ϕ1⟩ ▷ P3 ≡σ ⟨G′1,ϕ

′
1
⟩ ▷ P′

3

and there exists Γ′
1
such that σH ⊢ Γ′

1

{
P′
3

}
Γ2. The latter property and Definition 14 imply

that P′
3
;P ≡σ P4;P. Moreover, the assumption C1 ≡σ C2, i.e., ⟨G1,ϕ1⟩ ▷ (P3;P) ≡σ ⟨G2,ϕ2⟩ ▷

(P4;P), and the transitivity of σ -equivalence over the global and local stores imply that

C′
1
= ⟨G′

1
,ϕ ′

1
⟩ ▷ (P′

3
;P) ≡σ ⟨G2,ϕ2⟩ ▷ (P4; P) = C2. As a result, condition (1) holds for C′

2
= C2

and C2 ⇒H C
′
2
.

• Case P1 = P3;P2 and σH ⊢ Γ1
{
P3
}
Γ2. As in the previous case, we consider the shape of P3.

If P3 = skip, then C1 = ⟨G1,ϕ1⟩ ▷ (skip; P2)
τ
→ ⟨G1,ϕ1⟩ ▷ P2 = C′1 by an application of the rule

(SkipSeq), with τ ∈ H . But then C′
1
is σ -equivalent to C2 by Definition 14 and the assumption

that the global and local stores are equivalent. Hence, condition (1) holds for C′
2
= C2 and

C2 ⇒H C
′
2
.

Otherwise, if P3 , skip, then C1
λ
−_ C′

1
= ⟨G′

1
,ϕ ′

1
⟩ ▷ (P′

3
;P2) follows because ⟨G1,ϕ1⟩ ▷ P3

λ
→

⟨G′
1
,ϕ ′

1
⟩ ▷ P′

3
, by an application of rule (Seq). By Lemma 4, ⟨G1,ϕ1⟩ ▷ P3 ≡σ ⟨G′1,ϕ

′
1
⟩ ▷ P′

3
,

λ ∈ H , and there exists Γ′ such that H ⊢ Γ′
1

{
P′
3

}
Γ2. The latter property and Definition 14

imply that P′
3
;P2 ≡σ P4;P2. Moreover, the assumption C1 ≡σ C2, i.e., ⟨G1,ϕ1⟩ ▷ (P3;P2) ≡σ

⟨G2,ϕ2⟩ ▷ P2 and the transitivity of σ -equivalence over the global and local stores imply that

⟨G′
1
,ϕ ′

1
⟩ ▷ (P′

3
;P2) ≡σ ⟨G2,ϕ2⟩ ▷ P2, i.e., C′1 ≡σ C2. As a result, condition (1) holds for C′

2
= C2

and C2 ⇒H C
′
2
.

• Case P2 = P3;P1 and σH ⊢ Γ1
{
P3
}
Γ2. We distinguish two cases. First, if there exists a con-

figuration C′′
2
= ⟨G′′

2
,ϕ ′′

2
⟩ ▷ P1 such that ⟨G2,ϕ2⟩ ▷ P3;P1

t
−_ ⟨G′′

2
,ϕ ′′

2
⟩ ▷ P1 for some trace

t , then by Corollary 5 and definition of rule (SeqSkip), it holds that t ∈ H , and hence

⟨G2,ϕ2⟩ ▷ P3;P1 ⇒H ⟨G
′′
2
,ϕ ′′

2
⟩ ▷ P1. Moreover, by Corollary 5 we also have thatG2 ≡Σ,σ G

′′
2

and ϕ2 ≡Γ2,σ ϕ ′′
2
. By the assumption C1 ≡σ C2, Definition 14, and transitivity of σ -equivalence

on global and local stores, it follows that ⟨G1,ϕ1⟩ ▷ P1 ≡σ ⟨G′′2 ,ϕ
′′
2
⟩ ▷ P1. By Lemma 5, there

exists ⟨G′′
2
,ϕ ′′

2
⟩ ▷ P1

λ
−→ ⟨G′

2
,ϕ ′

2
⟩ ▷ P′

1
such that ⟨G′

1
,ϕ ′

1
⟩ ▷ P′

1
≡σ ⟨G

′
2
,ϕ ′

2
⟩ ▷ P′

1
. If λ ∈ H then

condition (1) holds, otherwise if λ < H then condition (2a) holds.

Otherwise, if there exists no such configuration C′′
2
then C2 ⇑H , then condition (2b) is satisfied.

□

Now we are ready to prove a special case of Theorem 3 for a system that contains only one app.

Proposition 1 (Soundness of security types for single-app systems). Let Σ be a security pol-
icy, id[D Z P ] a well-formed app, and H

def
= {α ∈ A | Σ(α ) $ σ } ∪ {τ } the set of all possible non-

observable system actions with respect to a security cleareance σ ∈ SL. Let Ga ,Gb ∈ S⊥ be two
arbitrary global stores such thatGa ≡Σ,σ Gb and La ,Lb ∈ I −→ S be two arbitrary local stores such
that La (id) ≡Γ1,σ Lb (id) for some Γ1. If σ ⊢ Γ1

{
P
}
Γ2, for some Γ2, then ⟨Ga ,La⟩ ▷ id[D Z P ] ≈ti

H

⟨Gb ,Lb ⟩ ▷ id[DZP ].
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Proof. Let Ca
def
= ⟨Ga ,La⟩▷id[DZP ] and Cb

def
= ⟨Gb ,Lb ⟩▷id[DZP ]. Let R be a binary relation

over configurations, defined as follows:

R
def
=

{(
C1,C2

)
: Ci

def
= ⟨Gi ,Li ⟩ ▷ id[DZPi ] ∧ σ ⊢ Γi

1

{
Pi
}
Γi
2
, i ∈ {1, 2} ∧ C1 ≡σ C2

}
.

By definition, (Ca ,Cb ) ∈ R. We will prove that R is a termination-insensitive hiding bisimulation

parametric on H . Let (C1,C2) ∈ R and C1
α
−→ C′

1
, for some action α , and some configuration

C′
1
= ⟨G′

1
,L′

1
⟩ ▷ id[DZP′

1
]. By Lemma 2 (subject reduction for processes), from σ ⊢ Γ1

1

{
P1
}
Γ1
2
it

follows that σ ⊢ Γ′
1

{
P′
1

}
Γ1
2
, for some Γ′

1
. The proof proceeds by case analysis on the action α to

show that there is a configuration C′
2
such that C2

α
⇒H C

′
2
, with (C′

1
,C′

2
) ∈ R.

• Let α ∈ H , α , x?v . Then, C1
α
−→ C′

1
= ⟨G′

1
,L′

1
⟩ ▷ id[DZP′

1
] follows because ⟨G1,ϕ1⟩ ▷ P1

λ
−_

⟨G′
1
,ϕ ′

1
⟩ ▷ P′

1
, with L1 (id) = ϕ1 and L

′
1
(id) = ϕ ′

1
, by an application of either rule (App) or

rule (AppUpdate) of Table 2. In particular, in the first case, λ = τ , whereas, in the second case

λ = x!v , for α = id:x!v . Let L2 (id) = ϕ2. Since C1 ≡σ C2, by an application of Lemma 6 there

is a weak transition ⟨G2,ϕ2⟩ ▷ P2 ⇒H ⟨G
′
2
,ϕ ′

2
⟩ ▷ P′

2
such that ⟨G′

1
,ϕ ′

1
⟩ ▷ P′

1
≡σ ⟨G

′
2
,ϕ ′

2
⟩ ▷ P′

2
.

As σ ⊢ Γ2
1

{
P2
}
Γ2
2
, for some Γ2

1
and Γ2

2
, by several applications of Lemma 2 we know that

σ ⊢ Γ
{
P′
2

}
Γ′, for some Γ and Γ′. Thus, by several applications of the transition rules (App) and

(AppUpdate) mentioned before there is C′
2
= ⟨G′

2
,L′

2
⟩ ▷ id[DZP′

2
], with L′

2
(id) = ϕ ′

2
, such

that C2 ⇒H C
′
2
. As ⟨G′

1
,ϕ ′

1
⟩ ▷ P′

1
≡σ ⟨G

′
2
,ϕ ′

2
⟩ ▷ P′

2
, it follows that C′

1
≡σ C

′
2
. As a consequence,

(C′
1
,C′

2
) ∈ R, as required.

• Let α < H , α , x?v . Then, C1
α
−→ C′

1
= ⟨G′

1
,L′

1
⟩ ▷ id[DZP′

1
] follows because ⟨G1,ϕ1⟩ ▷ P1

λ
−_

⟨G′
1
,ϕ ′

1
⟩ ▷ P′

1
, with L1 (id) = ϕ1 and L

′
1
(id) = ϕ ′

1
, by an application of either rule (App) or

rule (AppUpdate) of Table 2. In particular, in the first case, λ = τ , whereas, in the second

case λ = x!v , for α = id:x!v . Let L2 (id) = ϕ2. Since C1 ≡σ C2, by Lemma 6 there are two

possibilities:

– either there is a weak transition ⟨G2,ϕ2⟩ ▷ P2 ⇒H ⟨G
′
2
,ϕ ′

2
⟩ ▷ P′

2
such that ⟨G′

1
,ϕ ′

1
⟩ ▷ P′

1
≡σ

⟨G′
2
,ϕ ′

2
⟩ ▷ P′

2
, and we proceed as in the previous case;

– or (⟨G2,ϕ2⟩ ▷ P2) ⇑H , which entails C2 ⇑H , and we are done.

• Let α = x?v . The transition C1
α
−→ C′

1
can be only derived by an application of the rule

(EnvChange) in Table 2, where C′
1
= ⟨G1[x 7→ v],L1⟩ ▷ id[D Z P1 ]. As already pointed

out, this action denotes a modification of the cloud made by the external observer with no

requirements. Thus, C2
x?v
−−−→ C′

2
, with C′

2
= ⟨G2[x 7→ v],L2⟩ ▷ id[DZP2 ], where C′1 ≡σ C

′
2

easily follows from C1 ≡σ C2. As a consequence, if α ∈ H then C2 →H C
′
2
, otherwise, if α < H

then C2
x?v
=⇒H C

′
2
. As the action x?v only affects the global stores of C1 and C2 in a consistent

manner, leaving both local stores and systems unchanged, it follows that (C′
1
,C′

2
) ∈ R.

□

Once we have proved the soundness of our security type system restricted to a single app we

can rely on the compositionality of our termination-insensitive hiding bisimilarity, ≈ti

H , to lift the

result to systems of apps. Before that we need an easy technical result on weakening of local stores.

Lemma 7 (Store weakening). Let Σ be a security policy, id1[D1 Z P1 ] and id2[D2 Z P2 ] be two
well-formed apps, and H = {α ∈ A | Σ(α ) $ σ } ∪ {τ } the set of all possible non-observable actions
with respect to a security cleareance σ ∈ SL. Let G1,G2 ∈ S⊥ be two arbitrary global stores. Let
Li ∈ {idi} −→ S, for i ∈ {1, 2}, be two arbitrary local stores and L ∈ IS −→ S be an arbitrary local
store defined for a set of app identifiers different from id1 and id2. Then, ⟨G1,L1⟩ ▷ id1[D1ZP1 ] ≈ti

H

⟨G2,L2⟩ ▷ id2[D2ZP2 ] if and only if ⟨G1,L1 ⊎ L⟩ ▷ id1[D1ZP1 ] ≈ti

H ⟨G2,L2 ⊎ L⟩ ▷ id2[D2ZP2 ].
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Proof. The proof is straightforward as, by definition, the two apps do not have interaction of

any kind with the local store L. □

Lemma 8 (≈ti

H under parallel composition). Let Σ be a security policy, id1[D1ZP1 ] and id2[D2Z
P2 ] be two well-formed apps, and H = {α ∈ A | Σ(α ) $ σ } ∪ {τ }. Let S be a system of apps that
contains neither id1 nor id2 andG1,G2 ∈ S⊥ be two arbitrary global stores. Let Li ∈ {idi} −→ S, for
i ∈ {1, 2}, be two arbitrary local stores. Let L ∈ IS −→ S be an arbitrary local store defined for all app
identifiers in S. If ⟨G1,L1⟩ ▷ id1[D1ZP1 ] ≈ti

H ⟨G2,L2⟩ ▷ id2[D2ZP2 ] then ⟨G1,L1 ⊎L⟩ ▷ (id1[D1Z
P1 ] ∥ S) ≈ti

H ⟨G2,L2 ⊎ L⟩ ▷ (id2[D2ZP2 ] ∥ S).

Proof. By relying on Lemma 7, we prove that the relation

R
def
=

{(
⟨Ga ,La ⊎L⟩ ▷ (ida[Da ZPa ] ∥ R) , ⟨Gb ,Lb ⊎L⟩ ▷ (idb[Db ZPb ] ∥ R)

)
: Cap ≈

ti

H Cbp , R arbitrary

}

is a termination-insensitive hiding bisimulation for Cap
def
= ⟨Ga ,La ⊎ L⟩ ▷ ida[Da Z Pa ], Cbp

def
=

⟨Gb ,Lb ⊎ L⟩ ▷ idb[Db ZPb ], for apps ida and idb not in R, for a local store L defined for any app

identifier in R. The proof relies on the fact that apps within the same system interact only via the

global store.

Let (Ca ,Cb ) ∈ R such that Ca
α
−_ C′a , for some configuration C′a . There are three possibilities.

• The action α has been triggered by the app ida[Da ZPa ], i.e., α , x?v , and propagated to

the whole system via the semantic rule (ParRight). In that case we rely on Cap ≈
ti

H Cbp and

the semantic rule (ParRight) to close up the bisimulation game without any involvement of

the system R and the local store L, independently of whether α ∈ H or α < H .

• The action α has been triggered by the system R, i.e., α , x?v , and propagated to the whole

system via the semantic rule (ParLeft). This means Ca = ⟨Ga ,La ⊎ L⟩ ▷ (ida[Da Z Pa ] ∥
R)

α
−_ ⟨G′a ,La ⊎ L′⟩ ▷ (ida[Da ZPa ] ∥ R′) = C′a . We recall that Cap ≈

ti

H Cbp . Now, there are

three possibilities.

– α = id : x!v and α ∈ H . In this case, the transition Ca
α
−_ C′a was triggered by the

application of the rule (Update) in Table 1, with G′a = Ga[x 7→ v] and L′ = L. By
an application of rule (EnvChange) we have Cap

x?v
−−−→ C′ap = ⟨G

′
a ,La ⊎ L⟩ ▷ ida[Da ZPa ].

Notice that since α ∈ H it follows that x ∈ H and x?v ∈ H . As Cap ≈
ti

H Cbp and x?v ∈ H ,

there is C′bp = ⟨G
′
b ,L

′
b ⊎ L⟩ ▷ idb[Db Z P′b ] such that Cbp ⇒H C

′
bp and C′ap ≈

ti

H C
′
bp .

For Cb = ⟨Gb ,Lb ⊎ L⟩ ▷ (idb[Db Z Pb ] ∥ R), let Gb (x) = w , for some value w . Let

Cb −→H ⟨Gb [x 7→ v],Lb ⊎L⟩ ▷ (idb[Db ZPb ] ∥ R′) by an application of the rules (Update)
and (ParRight) (we recall that α ∈ H ). Then, ⟨Gb [x 7→ v],Lb ⊎ L⟩ ▷ (idb[Db Z Pb ] ∥
R′) −→H ⟨Gb ,Lb ⊎ L⟩ ▷ (idb[Db Z Pb ] ∥ R′) by an application of the rule (EnvChange)
with action x?w (note that x ∈ H entails x?w ∈ H ). Finally, from Cbp ⇒H C

′
bp and several

applications of the rule (ParLeft) it follows that ⟨Gb ,Lb ⊎ L⟩ ▷ (idb[Db ZPb ] ∥ R′) ⇒H

⟨G′b ,L
′
b ⊎ L⟩ ▷ (idb[Db Z P′b ] ∥ R′) = C′b . Summarizing, we have Cb ⇒H C

′
b , with

(C′a ,C
′
b ) ∈ R because C′ap ≈

ti

H C
′
bp .

– α = id : x!v and α < H . Also in this case, the transition Ca
α
−_ C′a was triggered by the

application of the rule (Update) in Table 1, withG′a =Ga[x 7→ v] and L′ = L. By an appli-

cation of rule (EnvChange) we have Cap
x?v
−−−→ C′ap = ⟨G

′
a ,La ⊎ L⟩ ▷ ida[Da ZPa ]. Notice

that since α < H it follows that x < H and x?v < H . As Cap ≈
ti

H Cbp and x?v < H , there is

C′bp = ⟨G
′
b ,L

′
b⊎L⟩▷idb[Db ZP′b ] such that Cbp

x?v
=⇒H C

′
bp and C

′
ap ≈

ti

H C
′
bp . More precisely,

Cbp ⇒H ⟨G
1

b ,L
1

b ⊎ L⟩ ▷ idb[Db ZP1b ]
x?v
−−−→ ⟨G1

b [x 7→ v],L1b ⊎ L⟩ ▷ idb[Db ZP1b ]⇒H C
′
bp .

As a consequence, Cb ⇒H ⟨G
1

b ,L
1

b ⊎ L⟩ ▷ (idb[Db Z P1b ] ∥ R), by several applications

of the rule (ParLeft). Then, ⟨G1

b ,L
1

b ⊎ L⟩ ▷ (idb[Db Z P1b ] ∥ R)
α
−→ ⟨G1

b [x 7→ v],L1b ⊎
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L⟩ ▷ (idb[Db Z P1b ] ∥ R′) by an application of rules (Update) and (ParRight). Finally,

⟨G1

b [x 7→ v],L1b ⊎L⟩▷ (idb[Db ZP1b ] ∥ R
′) ⇒H ⟨G

′
b ,L

′
b ⊎L⟩▷ (idb[Db ZP′b ] ∥ R

′) = C′b by
several applications of rule (ParLeft). Summarizing, we have Cb

α
⇒H C

′
b , with (C′a ,C

′
b ) ∈ R

because C′ap ≈
ti

H C
′
bp .

– α = τ . In this case, the transition Ca
τ
−_ C′a = ⟨G

′
a ,La ⊎ L

′⟩ ▷ (ida[Da Z Pa ] ∥ R′)
was derived by an application of the rule (ParRight) of Table 2, withG′a = Ga , because

⟨Ga ,La ⊎ L⟩ ▷ R
τ
−→ ⟨Ga ,La ⊎ L

′⟩ ▷ R′ was fired by an application of one of the rules

of Table 1. For convenience, we call this rule r. Now, we want to show that there isG′b
such that ⟨Gb ,Lb ⊎ L⟩ ▷ R ⇒H ⟨G

′
b ,Lb ⊎ L

′⟩ ▷ R′ where the rule r was used to move

to R′. By inspection on Table 1, the premises of any possible rule r used in the transi-

tion ⟨Ga ,La ⊎ L⟩ ▷ R
τ
−→ ⟨Ga ,La ⊎ L

′⟩ ▷ R′ require only comparisons/evaluations involving

both the global storeGa and the local storeL (as the action is triggered by R). AsGa ≡Σ,σ Gb ,
the two stores may only differ on high-level services. Thus, we can always fire high-level

(and hence non-observable) actions of the form xi?vi to align the global storeGb toGa on all

high-level services x1 . . . xk . In practice, ⟨Gb ,Lb ⊎L⟩▷R
x1?v1

−−−−→ . . .
xk ?vk
−−−−−→ ⟨Ga ,Lb ⊎L⟩▷R

τ
−→

⟨Ga ,Lb ⊎ L
′⟩ ▷ R′

x1?w1

−−−−→ . . .
xk ?wk
−−−−−→ ⟨Gb ,Lb ⊎ L

′⟩ ▷ R′, where the τ -action is due to an

application of exactly the same rule r, mentioned before; the remaining k actions xi?wi
serve to recover the initial global store Gb . As a consequence, by k applications of the

rule (EnvChange), one application of the rule (ParRight), and again k applications of

the rule (EnvChange), we have Cb ⇒H C
′
b = ⟨Gb ,Lb ⊎ L

′⟩ ▷ (idb[Db Z Pb ] ∥ R′). Let

C′ap
def
= ⟨Ga ,La⊎L

′⟩▷ida[Da ZPa ] and C′bp
def
= ⟨Gb ,Lb⊎L

′⟩▷idb[Db ZPb ]. As Cap ≈ti

H Cbp ,

by an application of Lemma 7 it follows that C′ap ≈
ti

H C
′
bp . Summarizing, we have Cb ⇒H C

′
b ,

with (C′a ,C
′
b ) ∈ R because C′ap ≈

ti

H C
′
bp .

• The action α is of the form x?v . In this case, the transition Ca
α
−_ C′a = ⟨G

′
a ,L

′
a ⊎ L

′⟩ ▷
(ida[Da Z Pa ] ∥ R) was triggered by an application of the rule (EnvChange), withG′a =

Ga[x 7→ v] and L′ = L. By a different application of rule (EnvChange) we have Cap
x?v
−−−→

C′ap = ⟨G
′
a ,La ⊎ L⟩ ▷ ida[Da ZPa ]. Now, there are two possibilities:

– α ∈ H . As Cap ≈
ti

H Cbp , there is C
′
bp = ⟨G

′
b ,L

′
b ⊎ L⟩ ▷ idb[Db ZP′b ] such that Cbp ⇒H C

′
bp

and C′ap ≈
ti

H C
′
bp . As a consequence, by several applications of the rule (ParLeft) it follows

that Cb ⇒H ⟨G
′
b ,L

′
b ⊎ L⟩ ▷ (idb[Db Z Pb ] ∥ R) = C′b , with (C′a ,C

′
b ) ∈ R because

C′ap ≈
ti

H C
′
bp .

– α < H . As Cap ≈
ti

H Cbp , there is C
′
bp = ⟨G

′
b ,L

′
b ⊎L⟩ ▷ idb[Db ZP′b ] such that Cbp

x?v
=⇒H C

′
bp

and C′ap ≈
ti

H C
′
bp . More precisely, Cbp ⇒H ⟨G

1

b ,L
1

b ⊎ L⟩ ▷ idb[Db Z P1b ]
x?v
−−−→ ⟨G1

b [x 7→

v],L1b ⊎ L⟩ ▷ idb[Db ZP1b ]⇒H C
′
bp . As a consequence, Cb ⇒H ⟨G

1

b ,L
1

b ⊎ L⟩ ▷ (idb[Db Z

P1b ] ∥ R), by several applications of the rule (ParLeft). Then, ⟨G
1

b ,L
1

b ⊎L⟩▷ (idb[Db ZP1b ] ∥

R)
x?v
−−−→ ⟨G1

b [x 7→ v],L1b ⊎ L⟩ ▷ (idb[Db ZP1b ] ∥ R) by an application of rule (EnvChange).

Finally, ⟨G1

b [x 7→ v],L1b ⊎ L⟩ ▷ (idb[Db Z P1b ] ∥ R) ⇒H ⟨G
′
b ,L

′
b ⊎ L⟩ ▷ (idb[Db Z P′b ] ∥

R) = C′b by several applications of rule (ParLeft). Summarizing, we have Cb
α
⇒H C

′
b , with

(C′a ,C
′
b ) ∈ R because C′ap ≈

ti

H C
′
bp .

□
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Proof of Theorem 3. Without loss of generality we can assume S
def
=
∏n

j=1 idj[Dj Z Pj ].

By n different applications of Proposition 1, we derive C
j
a ≈

ti

H C
j
b , for any j ∈ {1, . . . ,n}, for

C
j
a = ⟨Ga ,L⊥⟩ ▷ idj[Dj ZPj ] and C

j
b = ⟨Gb ,L⊥⟩ ▷ idj[Dj ZPj ]. Then, by several applications of

Lemma 8 and the transitivity of ≈ti

H it follows that ⟨Ga ,L⊥⟩ ▷ S ≈ti

H ⟨Gb ,L⊥⟩ ▷ S, as required. □

Proof of Theorem 4. The proof follows the same line of thought as the proof of Theorem 3.

Specifically, we need to replace σ -equivalence over global stores with the relation ≡dΣ,σ to accom-

modate declassification policies. Notice that the typing rule for declassification (Declassify) ensures

that the declassification operator applies only to global services and downgrades the security

level of an expression e (defined over global services) to a lower security level. As a result, we

can extend Lemma 3 to show that if Γ ⊢D declassify(e, ρ) : ρ with ρ ≼ σ andG1 ≡
d
Σ,σ G2, then

JeK(G1, λx .⊥) = JeK(G2, λx .⊥). This result allows to lift Lemma 3 to expressions that may contain

declassification operators. We can apply this result in Lemma 5 for the case of rule (SetLocal) to

prove that ≡dΣ,σ is preserved by single-step transitions. This allows us to lift the proofs of the other

lemmas and ultimately prove Theorem 4 along the same lines of the proof of Theorem 3.

□
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