
Code-Reuse Attacks in Managed Programming
Languages and Runtimes

MIKHAIL SHCHERBAKOV

Doctoral Thesis
Stockholm, Sweden, 2024

TRITA-EECS-AVL-2024:75
ISBN 978-91-8106-067-6

KTH Royal Institute of Technology
School of Electrical Engineering and Computer Science

Division of Theoretical Computer Science
SE-10044 Stockholm

Sweden

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av Teknologie doktorexamen i datalogi fre-
dagen den 1 november 2024 klockan 9.00 i Sal E2, 1337, Osquars backe 2, Kungliga
Tekniska Högskolan, Stockholm.

© Mikhail Shcherbakov, 2024

Tryck: Universitetsservice US AB

To my Mom and Dad.
Love you!

i

Abstract

The ubiquity of digital systems in modern society highlights the critical im-
portance of software security. As applications grow in complexity, the threats
targeting them have also become more sophisticated. Managed programming
languages such as C# and JavaScript, widely used in modern software devel-
opment, support memory safety properties to avoid common vulnerabilities
like buffer overflows. However, while these languages guard against many
traditional memory corruption issues, they are not impervious to all forms of
attack. Code-reuse attacks represent a significant threat within this context,
as they exploit the program’s logic, allowing attackers to repurpose existing
code within the system to achieve malicious objectives.

Code-reuse attacks present a unique challenge in managed languages be-
cause they manipulate legitimate code fragments, making detection and pre-
vention particularly difficult. As these threats continue to evolve, it is increas-
ingly vital to systematically understand and mitigate code-reuse attacks in
memory-safe languages. This thesis addresses this challenge by investigating
the vulnerabilities inherent in managed languages and their runtimes.

The thesis presents a new taxonomy for code-reuse attacks in managed
languages and runtimes. This taxonomy systematically categorizes code-reuse
attacks, identifying the key components and their combinations that lead to
successful exploits. By offering a structured framework for understanding the
key ingredients of code-reuse attacks, this work advances the field of software
security. The thesis designs and implements scalable (static and dynamic)
program analysis techniques for detecting two classes of code-reuse attacks:
object injection vulnerabilities in C# and prototype pollution vulnerabilities
in JavaScript. It focuses on the root causes of these attacks and provides
systematic approaches for addressing them.

This work introduces four tools designed to identify and exploit code-reuse
attacks in real-world applications: SerialDetector, Silent Spring, Dasty, and
GHunter. We developed them to perform static and dynamic analyses, suc-
cessfully identifying critical vulnerabilities in popular applications, libraries,
and runtimes. We report the results of large-scale evaluations, demonstrating
the effectiveness of these tools and our approaches in detecting and exploiting
vulnerabilities that could lead to significant security breaches. The results
of this work highlight the importance of ongoing research and development
in the field of cybersecurity, particularly as threats continue to evolve and
become more sophisticated.

Keywords: web security, code-reuse attacks, taxonomy, static taint analysis,
dynamic taint analysis, object injection vulnerabilities, prototype pollution

ii

Sammanfattning

De digitala systemens ständiga närvaro i det moderna samhället lyfter fram
den kritiska betydelsen av mjukvarusäkerhet. I takt med att applikationer blir
alltmer komplexa har även hoten mot dem blivit mer sofistikerad. Hanterade
programmeringsspråk som C# och JavaScript, vilka används flitigt inom mo-
dern mjukvaruutveckling, stödjer minnessäkerhetsegenskaper för att undvika
vanliga sårbarheter som buffer overflow. Trots att dessa språk skyddar mot
många traditionella minneskorruptionsproblem är de inte immuna mot alla
typer av attacker. Kodåteranvändningsattacker utgör ett betydande hot i det-
ta sammanhang eftersom de utnyttjar programlogiken och låter en angripare
återanvända befintlig kod inom systemet för att uppnå sina mål.

Kodåteranvändningsattacker utgör en unik utmaning i hanterade språk
eftersom de manipulerar legitima kodfragment vilket gör dem särskilt svåra
att upptäcka och förhindra. I takt med att dessa hot fortsätter att utvecklas
blir det allt viktigare att systematiskt förstå och hindra kodåteranvändning-
sattacker i minnessäkra språk. Denna avhandling tar sig an denna utmaning
genom att undersöka de sårbarheter som är associerade med hanterade språk
och dess exekveringsmiljöer.

I avhandlingen presenteras en ny taxonomi för kodåteranvändningsattac-
ker i hanterade språk och dess exekveringsmiljöer. Denna taxonomi kategori-
serar systematiskt kodåteranvändningsattacker och identifierar de nyckelkom-
ponenter och deras kombinationer som leder till framgångsrika exploateringar.
Genom att erbjuda ett strukturerat ramverk för att förstå de grundläggande
elementen i kodåteranvändningsattacker bidrar detta arbete till utveckling-
en av mjukvarusäkerhet. Avhandlingen utformar och implementerar skalbara
(statiska och dynamiska) programanalystekniker för att upptäcka två klasser
av kodåteranvändningsattacker: objektinjektionssårbarheter i C# och proto-
type pollution-sårbarheter i JavaScript. Fokus ligger på de grundläggande or-
sakerna till dessa attacker och erbjuder systematiska metoder för att hantera
dem.

Detta arbete introducerar fyra verktyg som är utformade för att iden-
tifiera och utnyttja kodåteranvändningsattacker i verkliga applikationer: Se-
rialDetector, Silent Spring, Dasty och GHunter. Vi utvecklade dem för att
utföra både statisk och dynamisk analys, och med dem, identifierat kritiska
sårbarheter i populära applikationer, bibliotek och exekveringsmiljöer. Vi re-
dovisar resultaten av storskaliga utvärderingar som visar verktygens och våra
metoders effektivitet i att upptäcka och utnyttja sårbarheter som kan leda
till betydande säkerhetsintrång. Resultaten av detta arbete belyser vikten av
kontinuerlig forskning och utveckling inom cybersäkerhetsområdet, särskilt i
takt med att hoten fortsätter att utvecklas och bli mer sofistikerade.

List of Papers

A. SerialDetector: Principled and Practical Exploration of Object In-
jection Vulnerabilities for the Web
Mikhail Shcherbakov and Musard Balliu
Proceedings of the 28th Network and Distributed System Security Symposium,
NDSS 2021
https://dx.doi.org/10.14722/ndss.2021.24550

B. Silent Spring: Prototype Pollution Leads to Remote Code Execution
in Node.js
Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu
Proceedings of the 32nd USENIX Security Symposium, USENIX Security 2023
https://dl.acm.org/doi/10.5555/3620237.3620546

C. Unveiling the Invisible: Detection and Evaluation of Prototype Pol-
lution Gadgets with Dynamic Taint Analysis
Mikhail Shcherbakov, Paul Moosbrugger, and Musard Balliu
Proceedings of the ACM Web Conference 2024, WWW ’24
https://doi.org/10.1145/3589334.3645579

D. GHunter: Universal Prototype Pollution Gadgets in JavaScript Run-
times
Eric Cornelissen, Mikhail Shcherbakov, and Musard Balliu
Proceedings of the 33rd USENIX Security Symposium, USENIX Security 2024

Other contributions by the author not included in the thesis.

Friendly Fire: Cross-app Interactions in IoT Platforms
Musard Balliu, Massimo Merro, Michele Pasqua, and Mikhail Shcherbakov
ACM Transactions on Privacy and Security (TOPS), Volume 24, Issue 3, 2021
https://doi.org/10.1145/3444963

iii

https://dx.doi.org/10.14722/ndss.2021.24550
https://dl.acm.org/doi/10.5555/3620237.3620546
https://doi.org/10.1145/3589334.3645579
https://doi.org/10.1145/3444963

Acknowledgement

The past few years have been filled with both inspiring and challenging events
in my life and in the world. Each of us can look back and reflect on our major
achievements during these years. The result of my six years of work is now in
your hands. I would like to express my heartfelt gratitude to everyone who was
by my side during this time—this work carries a piece of your support.

I would like to begin by expressing my deepest gratitude to my main advisor,
Musard Balliu. Thank you for giving me the opportunity to join the Language-
Based Security group at KTH, for providing sufficient freedom in choosing re-
search topics, and for your patience. Your constant support, motivation, and
professional advices have been invaluable. I am also grateful for the friendship,
BBQs, and the amazing people you introduced me to. Thank you, Musard!

To my other advisor, Mads Dam, I am deeply grateful for the warm welcome
at KTH, the insightful discussions, the valuable feedback, your support and care.

I am fortunate to have collaborated and co-authored with inspiring researchers
such as Musard Balliu, Eric Cornelissen, Massimo Merro, Paul Moosbrugger,
Michele Pasqua, and Cristian-Alexandru Staicu. Working with you has been a
great source of inspiration. I am thankful for the valuable discussions we had.

My thanks also go to all members of the TCS department at KTH, both past
and present. It has been a privilege to share an environment with such intelligent
and open-minded people. Special thanks to all professors of the TCS department,
members of the LangSec, STEP, and CHAINS groups, and my officemates An-
dreas, Xin, Sijing, and Eric. I am also grateful to many colleagues, particularly
those with whom I spent a little more time: Romy, Sakib, Paul, and of course,
Andreas, Amir, and Anoud. I deeply appreciate the helpful feedback I received
on the early drafts of this thesis from Amir M. Ahmadian, Musard Balliu, David
Broman, Eric Cornelissen, and Henrik Karlsson. Your help was invaluable.

I would like to express my gratitude to Professor David Broman for taking
the role of advance reviewer for this work. Professor Yinzhi Cao for accepting
the role of opponent in my defense. Professors Anders Møller, Emma Söderberg,
and Dr. Ben Stock, thank you for being part of the grading committee and for
your efforts in evaluating this work.

My deepest gratitude goes to my first teachers and mentors in Computer Sci-
ence and Cybersecurity. I was fortunate that my school in Kurganovka village,

v

vi ACKNOWLEDGEMENT

where I spent my childhood, had a computer lab even back in the ’90s. It was
equipped with diskless "Corvette" computers with a 2.5 MHz CPU and 64 Kb
RAM. When the computers booted up, they opened a BASIC interpreter by de-
fault. I used this opportunity to write my first program, though I was confused
by receiving a "SYNTAX ERROR" message instead of the expected result. I
was even more fortunate that my school had a teacher, Andrey Stanislavovich
Mukoseev, who became my first mentor in Computer Science. Under his guid-
ance, I moved from fixing those mysterious SYNTAX ERRORs to learning the
fundamentals of algorithms and programming in Pascal. The graph algorithms
you taught me in school are now used in this thesis. Thank you for inspiring me
to pursue Computer Science, which changed my life.

In university, I was lucky to meet a talented teacher and programmer, Dmitry
Ivanovich Proshin. Thank you for showing us how programming applies to real
life and for teaching us the most modern technologies of that time. I am es-
pecially grateful for believing in me and recommending me for the position of
a C++ developer in a company that developed SCADA systems. Those were
exciting times, as I rapidly learned new things, sometimes under unusual circum-
stances—like troubleshooting a hard-to-reproduce bug while sitting in a helmet
with a laptop connected to a running power station turbine. That was when I
began to think seriously about the importance of safety and security in computer
engineering, realizing how much I still had to learn.

My real journey into Cybersecurity began when I met Vladimir Kochetkov.
Together, we developed a static analyzer for .NET code from scratch. Vladimir,
you became my primary mentor in Cybersecurity and a good friend. Thank you
for teaching me to think systematically about Application Security beyond just
"injecting quotes everywhere," and for your meticulous attention to terminology.
Thanks to your experience, your efforts, and the time you invested in me, I am
where I am now, publishing this thesis.

Special thanks go to my friends, both local and scattered across the world.
I am grateful for our meetings whenever we had the chance, and for the long
conversations and Zoom calls during the pandemic.

To my beloved wife, Iuliia, and our wonderful children, Anna and Pavel. My
dear, thank you for your encouragement and unwavering belief in me. Your love
has been my greatest source of motivation and strength. Anna, thank you for
teaching me how to explain complex things simply, and for your contribution in
choosing colors for all elements in this thesis. Pavel, thank you for your energy,
curiosity, and the way you have helped me improve my time management skills.

Last but certainly not least, my deepest gratitude goes to my Mom and Dad.
I will now switch to my native language to express my thanks. Папа, спасибо
за всё, чему ты меня научил, за то, что показал ценность справедливости и
верности своим принципам, за твою мудрость и заботу. Мама, спасибо, что
научила искать компромиссы, за тёплые разговоры на кухне, твою безуслов-
ную любовь и нежность. Думаю, ты бы гордилась мной сейчас. Без вашей
поддержки я бы не смог пройти этот путь. Спасибо за вашу веру в меня!

Acronyms

List of commonly used acronyms:

ACE Arbitrary Code Execution.
CFI Control-Flow Integrity.
CIL Common Intermediate Language.
CRA Code-Reuse Attack.
CPU Central Processing Unit.
CVE Common Vulnerabilities and Exposures.
DDoS Distributed Denial-of-Service.
DoS Denial-of-Service.
JIT Just-in-Time.
LPE Local Privilege Escalation.
OIV Object Injection Vulnerabilities.
OOP Object-Oriented Programming.
OS Operating System.
PP Prototype Pollution.
PoC Proof-of-Concept.
RC Race Condition.
RCE Remote Code Execution.
ROP Return-Oriented Programming.
SSTI Server-Side Template Injection.
XSS Cross-Site Scripting.

vii

Contents

List of Papers iii

Acknowledgement v

Acronyms vii

Contents 1

I Thesis 5

1 Introduction 7
1.1 Research Questions . 9
1.2 Research Methodology . 10
1.3 Contributions . 12
1.4 Outline . 13

2 Background 15
2.1 Memory Safety . 15
2.2 Managed Languages and Runtimes 18
2.3 Program Analysis . 23

3 Code-Reuse Attacks Taxonomy 27
3.1 Code-Reuse Attacks in Memory Unsafe Languages 31
3.2 Code-Reuse Attacks in Managed Runtimes 33
3.3 Code Injection Attacks . 39

Exploit Primitives . 39
Related Work . 47
Contributions . 48

3.4 Call-Flow Hijacking Attacks . 49
Exploit Primitives . 49
Related Work . 53
Contributions . 54

1

2 CONTENTS

3.5 Data-only Attacks . 55
Exploit Primitives . 56
Related Work . 62
Contributions . 64

3.6 Attack Chains . 65

4 Summary of Publications 77
4.1 SerialDetector: Principled and Practical Exploration of Object In-

jection Vulnerabilities for the Web 77
Takeaways . 78
Statement of Contribution . 79

4.2 Silent Spring: Prototype Pollution Leads to Remote Code Execution
in Node.js . 79
Takeaways . 80
Statement of Contribution . 80

4.3 Unveiling the Invisible: Detection and Evaluation of Prototype Pol-
lution Gadgets with Dynamic Taint Analysis 81
Takeaways . 82
Statement of Contribution . 82

4.4 GHunter: Universal Prototype Pollution Gadgets in JavaScript Run-
times . 83
Takeaways . 84
Statement of Contribution . 84

5 Conclusions and Future Work 85

II Included Papers 89

A SerialDetector: Principled and Practical Exploration of Object
Injection Vulnerabilities for the Web 91
A.1 Introduction . 92
A.2 Technical Background . 94

Application-level OIVs . 95
Infrastructure-level OIVs . 96

A.3 Overview of the Approach . 98
Root cause of Object Injection Vulnerabilities 98
SerialDetector . 100

A.4 Taint-Based Static Analysis . 102
CIL language and notation . 103
Intra-procedural dataflow analysis 103
Modular inter-procedural analysis . 108

A.5 Implementation . 112
Anatomy of SerialDetector . 112

CONTENTS 3

Challenges and Limitations . 114
A.6 Evaluation . 116
A.7 In-depth Analysis of Azure DevOps Server 119

Microsoft Azure DevOps . 119
Threat models . 120
SerialDetector in action . 122

A.8 Related works . 125
A.9 Conclusion . 127
A.10 Appendix . 127

B Silent Spring: Prototype Pollution Leads to Remote Code Exe-
cution in Node.js 129
B.1 Introduction . 130
B.2 Context and Technical Background 132

Prototype-based OIV . 133
Threat Model . 134

B.3 Overview . 135
B.4 Methodology . 137

Prototype Pollution Detection . 138
Gadget Detection . 140
Exploit Generation . 141

B.5 Implementation . 142
B.6 Evaluation . 143

Evaluation of Prototype Pollution 143
Gadget Detection . 145
End-to-End Exploitation . 150

B.7 Related Work . 154
B.8 Conclusion . 156
B.9 Appendix . 156

Object Injection Vulnerabilities . 156
Non-trivial Gadget Sources . 157
NPM RCE II . 158
Advanced Prototype Pollution Pattern 159
Evaluation Results . 160

B.10 Artifact Appendix . 164

C Unveiling the Invisible: Detection and Evaluation of Prototype
Pollution Gadgets with Dynamic Taint Analysis 171
C.1 Introduction . 172
C.2 Background . 174
C.3 Methodology and Design Choices . 175

Setup . 177
Analysis . 177
Verification . 181

4 CONTENTS

C.4 Evaluation . 181
Dataset and setup . 181
RQ1: Identification of exploitable gadgets 182
RQ2: Effectiveness and performance comparison 184
RQ3: End-to-end exploit generation 187

C.5 Related Work . 188
C.6 Conclusion . 189
C.7 Appendix . 189

Implementation Details . 189
End-to-end Exploit Details . 192

D GHunter: Universal Prototype Pollution Gadgets in JavaScript
Runtimes 197
D.1 Introduction . 198
D.2 Technical Background . 200

Prototype Pollution and Gadgets . 200
JavaScript Runtimes: Node.js and Deno 201
Threat Model . 202

D.3 Overview . 203
D.4 System Design and Implementation 205

Source Properties . 206
Source-to-Sink Flows . 207
Unexpected Termination . 208
Manual Validation . 209
Limitations . 210

D.5 Evaluation . 211
Universal Gadgets in Node.js and Deno 211
GHunter vs Silent Spring . 214
Performance Overhead and Transparency 216

D.6 Defense Best Practices . 216
Gadget Mitigations . 217
Prototype Pollution Mitigations . 218
Case Studies . 220

D.7 Related Work . 225
D.8 Conclusion . 226
D.9 Appendix . 227
D.10 Artifact Appendix . 230

References 237

Part I

Thesis

5

Chapter 1

Introduction

As technology continues to evolve, its influence extends across various domains,
from personal communication to global and national security. The growing re-
liance on digital systems has simultaneously escalated the threat posed by cy-
berattacks, which are becoming increasingly sophisticated and targeted. Such
attacks can disrupt essential services, steal sensitive information, and even com-
promise national security. One of the most significant and recent attacks that
the U.S. government has encountered was the SolarWinds attack, a cyberattack
that sent shockwaves through the global cybersecurity community by revealing
the vulnerability of even the most secure critical systems.

The SolarWinds hack [4, 48, 198], also known as Solorigate, was a large-scale
cyber espionage operation that affected thousands of organizations worldwide.
SolarWinds is a well-known information technology company that develops soft-
ware for large businesses such as Microsoft and provides software services for
U.S. government institutions and agencies, including the Pentagon, Homeland
Security, and the National Nuclear Security administration. In this incident,
attackers managed to compromise the update mechanism of SolarWinds Orion
software, which is widely used by thousands of organizations. The attackers in-
serted malicious code into a routine software update for Orion, which was then
distributed to SolarWinds customers. Because the update appeared legitimate,
it was installed by many organizations, effectively planting a backdoor into their
networks. Once inside, the attackers had the ability to spy on internal communi-
cations, exfiltrate sensitive data, and potentially carry out further attacks. The
true scale of this attack became apparent only months after it began, highlighting
the challenges of detecting and responding to such sophisticated threats. As a
result, thousands and perhaps even millions of people suffered severely from the
consequences of the attack.

One of the key aspects of the SolarWinds hack that made it so dangerous
was the execution of a Remote Code Execution (RCE) attack via the injected
backdoor. RCE is a type of security flaw that allows attackers to execute ar-

7

8 CHAPTER 1. INTRODUCTION

bitrary code on a target system, potentially giving them complete control over
that system. In the case of SolarWinds, the RCE attack enabled the attackers
to move laterally within networks and maintain a long-term presence on compro-
mised systems. The ability to execute code remotely means that attackers can
manipulate the target system in various ways, from stealing data to launching
further attacks from within a trusted environment.

An attacker can remotely execute code not only through backdoors but also
by exploiting memory corruption bugs [210], which often lead to RCE attacks.
Let us examine how these attacks typically occur in applications written in low-
level programming languages like C or C++. These languages are powerful tools
for software development because they offer direct access to system resources,
allowing for fine-grained control over memory and hardware. However, this power
comes with significant risks: developers must manage memory manually, which
can lead to programming errors such as buffer overflows [46]. Buffer overflows
occur when a program writes more data to a block of memory than was allocated,
potentially overwriting other data, including the next executed instructions. If an
attacker can manipulate the data being written to cause a buffer overflow, they
can overwrite critical parts of the program’s memory, such as return addresses
or function pointers, redirecting the program’s execution to malicious code they
have inserted. This process allows the attacker to hijack the application and
execute their code.

The severity of RCE attacks has led to significant efforts within both the re-
search community and industry to mitigate the exploitation of memory manage-
ment issues. Techniques such as stack canaries [53] and Data Execution Preven-
tion (DEP) [138] have been developed to protect against common memory-based
attacks. However, as defenses have evolved, so too have the tactics of attackers.
A particularly notable method that has emerged is known as code-reuse attacks
(CRAs) [18, 173]. Unlike traditional exploitation of memory corruption bugs,
which involve injecting new malicious code, CRAs manipulate the existing code
within an application to achieve their goals.

The industry has also seen a shift towards using memory-safe languages like
C#, Java, JavaScript, and PHP. These languages are designed to eliminate mem-
ory management bugs that often lead to vulnerabilities like buffer overflows. For
example, in C#, memory is managed automatically by its .NET runtime, which
prevents developers from accidentally overwriting memory buffers. This built-in
safety makes these languages a safer choice for developing modern applications.
However, while memory-safe languages protect against traditional memory cor-
ruption vulnerabilities, they are not immune to all types of attacks. Specifically,
CRAs can still occur in these environments, as they exploit the program’s logic
rather than its memory management.

An example of a vulnerability exploited via a code-reuse attack is prototype
pollution (PP) in JavaScript [7], where attackers can manipulate an applica-
tion’s prototype chain to inject or modify properties. This can lead to various
types of exploitation, including RCE, by altering the behavior of existing objects

1.1. RESEARCH QUESTIONS 9

and methods within the application. Early demonstrations of RCE exploita-
tion via PP vulnerabilities were conducted by Arteau [7], Bentkowski [15], and
Brasetvik [20,21].

Another example of a code-reuse attack in C# is the exploitation of object
injection vulnerabilities (OIVs) in the deserialization process [65], where attackers
can manipulate serialized data to execute unintended code during the deserializa-
tion process. Serialization is the process of converting an object into a format that
can be easily stored or transmitted, while deserialization is the reverse process of
converting the serialized data back into an object. If the deserialization process
is not properly secured, attackers can craft malicious serialized data that, when
deserialized, can execute arbitrary code. This type of vulnerability, while not
related to memory corruption, still allows attackers to achieve RCE by exploiting
the logic of the application and runtime.

This brings us back to the SolarWinds incident. SolarWinds, being imple-
mented in C#, was found to contain several vulnerabilities, including those re-
lated to insecure deserialization [199]. While we do not have confirmed informa-
tion about the exploitation of these specific vulnerabilities in the wild, researchers
from the Trend Micro Zero Day Initiative demonstrated how a chain of such vul-
nerabilities may lead to unauthenticated RCE attacks with an impact equivalent
to that of the injected backdoor [222–225]. Additionally, one of the vulnerabilities
in this chain, CVE-2020-10148, has been linked to the SolarWinds attack [33],
though the exact exploitation details remain unclear. This vulnerability chain
underscores the potential for CRAs in memory-safe languages and highlights the
importance of addressing these risks in all types of applications, libraries, and
runtimes.

The SolarWinds attack is a prime example of how attackers can exploit mul-
tiple vulnerabilities across a complex software ecosystem to achieve their goals.
Code-reuse attacks in memory-managed languages and runtimes, in particular,
pose a unique challenge because they leverage existing code within the system,
making them difficult to detect and prevent. This increasing complexity necessi-
tates a systematic approach to studying, identifying, and classifying these attacks.
To effectively counter these evolving threats, it is crucial to develop robust static
and dynamic analysis tools that can identify CRAs within the vast codebases of
modern applications and prevent their exploitation.

1.1 Research Questions

The objective of this doctoral thesis is to address challenges posed by code-reuse
attacks by developing methodologies and tools for identifying and mitigating
CRAs in large-scale production applications written in memory-managed lan-
guages such as C# and JavaScript and their runtimes. Given the security-critical
impact of CRAs in memory-safe languages, this research aims to bridge the gap
between current security practices and the emerging threats posed by these so-

10 CHAPTER 1. INTRODUCTION

phisticated attacks. By focusing on both static and dynamic analysis techniques,
this work seeks to provide solutions for securing complex systems. This leads to
the following research questions:

• (RQ1) How to develop methodologies that use static and dynamic program analy-
sis to systematically and effectively capture the root causes of CRAs in memory-
managed languages and their runtimes? This would allow us to identify key
ingredients of these vulnerabilities and develop the methods to mitigate them.

• (RQ2) How to implement scalable analysis algorithms to analyze real-world ap-
plications, libraries, and runtimes? This would allow us to automatically detect
vulnerabilities and their components on a large scale.

• (RQ3) How to perform a large-scale evaluation to estimate the prevalence of
these vulnerabilities in the wild? This would allow us to assess the practicality
of these attacks and provide motivation for researchers and programmers to focus
on mitigating the most critical aspects of these threats.

• (RQ4) What classes of code-reuse attacks can be distinguished in managed pro-
gramming languages and runtimes? This would allow us to systematize existing
knowledge about code-reuse attacks, identify new primitives, and explore novel
combinations of these attack methods.

1.2 Research Methodology

We address the research questions raised in this thesis using the following gen-
eral methodology. We conduct the root cause analysis of vulnerability classes by
studying related works and known vulnerabilities to uncover the key components
of the studied attacks. We then develop principled approaches and automated
tools to identify and exploit the considered vulnerabilities based on these root
causes. Finally, we evaluate and validate the developed approaches and tools
against known vulnerabilities and high-profile applications. We first collect rep-
resentative datasets of the vulnerabilities under study, run our tools against these
datasets, and compare the precision and recall metrics of the detected cases with
those of state-of-the-art tools. We then use our tools to identify unknown vulner-
abilities in real-world applications. In the following, we briefly outline each step
of our methodology, including analysis, development, evaluation, and validation.
Analysis We first identify the root cause of a vulnerability class, such as object in-
jection vulnerabilities in C# and prototype pollution vulnerabilities in JavaScript.
We review scientific literature, conference write-ups, and blog posts that describe
known vulnerabilities and vulnerability classes in general. We emphasize similari-
ties across different vulnerabilities of the same class and identify the key language
and framework features that lead to vulnerable code patterns. Based on these
code patterns, we define the root cause of a vulnerability class that can be used
to develop algorithms for detecting such vulnerabilities. We aim to describe the
root cause in a language- and framework-agnostic manner to ensure that our
approaches can be applied to various memory-managed languages and runtimes.

1.2. RESEARCH METHODOLOGY 11

Development We then design principled approaches and implement analysis
tools to identify and exploit the studied vulnerabilities. The identified root causes
of the vulnerabilities allow us to develop principled automated techniques for their
detection. For each construct in the analyzed languages, we define (abstract)
semantics that model the behavior of the analyzed program with the desired level
of precision. We over-approximate the semantics to balance recall and precision
metrics while ensuring the analysis can scale to large codebases. Our key goal
is to develop techniques that are both effective and scalable. We design static
and dynamic analysis algorithms, as well as hybrid approaches, depending on the
targeted recall and precision metrics. The results produced by our tools should
be manually verifiable and useful for analyzing real-world applications.

Evaluation and validation For the validation of our approaches and developed
tools, we design benchmarks comprising vulnerable code fragments, libraries, and
applications. We collect datasets of known vulnerabilities under study to serve
as the ground truth for validation. We measure True Positive, False Positive,
and False Negative metrics of our analysis in respect of our ground truth. This
process allows us to assess and improve the effectiveness of our analysis, as well
as compare with state-of-the-art tools, pushing the boundary to create a more
robust approach. Prioritizing the ability to find actual vulnerabilities over provid-
ing formal proof of soundness and completeness, we evaluate the capability of our
tools to identify unknown vulnerabilities in real-world applications. We perform
large-scale evaluations on thousands of popular libraries to detect exploitable code
patterns, as well as on applications, frameworks, and runtimes with millions of
lines of code to demonstrate the feasibility and effectiveness of our approaches
and tools. This large-scale evaluation allows us to answer questions about the
prevalence of detected exploitable code patterns in the wild. In our evaluations,
we carefully define threat models to represent realistic attack scenarios, ensuring
that our findings have practical relevance and contribute to enhancing security in
real-world applications. A key criterion for our evaluation is the discovery of pre-
viously unknown real vulnerabilities or their components that may be exploitable
within the considered threat model.

CRA Method Tool Evaluation Publication

OIV Static
analysis SerialDetector [190]

.NET Framework,
applications,

libraries
Paper A

PP Static
analysis Silent Spring [193] Applications,

NPM packages Paper B

PP
gadgets

Dynamic and
static analysis Silent Spring [193] Node.js Paper B

PP
gadgets

Dynamic
analysis Dasty [145] NPM packages Paper C

PP
gadgets

Dynamic
analysis GHunter [41] Node.js,

Deno Paper D

Table 1.1: Overview of publications.

12 CHAPTER 1. INTRODUCTION

1.3 Contributions

Table 1.1 summarizes our contributions to RQ1, RQ2, and RQ3 in light of the
methodology. We now briefly elaborate on these contributions and refer to Part
II of the thesis for details.

For RQ1, we propose the first systematic approach for detecting and exploiting
OIVs in .NET applications, encompassing both the framework and libraries, as
discussed in Paper A. This approach introduces a framework-agnostic static anal-
ysis method that does not rely on prior knowledge of known vulnerable methods
within the framework. For prototype pollution, our focus is on detecting vulner-
abilities and identifying reusable code fragments that allow us to exploit these
vulnerabilities (known as gadgets). We design a multi-stage framework utilizing
multi-label static taint analysis to detect prototype pollution in Node.js libraries
and applications, along with a hybrid approach to identify gadgets within the
Node.js runtime, detailed in Paper B. Additionally, we design dynamic analy-
sis methods for detecting prototype pollution gadgets in JavaScript libraries and
runtimes like Node.js and Deno, as discussed in Papers C and D.

To address RQ2, we implement our static analysis approaches in open-source
PoC tools, specifically SerialDetector (Paper A) for detecting OIVs, and Silent
Spring (Paper B) for detecting PPs. We also develop dynamic analysis tools
for detecting PP gadgets, which are available as Silent Spring (Paper B), Dasty
(Paper C), and GHunter (Paper D).

For RQ3, we evaluate our PoC tools to identify OIV patterns in the .NET
Framework and libraries, and we successfully detect and exploit highly critical
vulnerabilities leading to RCE in the Microsoft Azure DevOps application, as
detailed in Paper A. Additionally, we evaluate our Silent Spring toolchain against
100 vulnerable libraries and the Node.js runtime, demonstrating high detection
metrics (up to 97% recall) and identifying 11 new gadgets and 8 RCE vulnerabil-
ities, as presented in Paper B. The large-scale evaluation of Dasty on about 10K
NPM packages revealed 49 gadgets leading to RCEs and presented in Paper C.
Another large-scale evaluation of GHunter on popular runtimes such as Node.js
and Deno identified 123 gadgets, along with new RCE vulnerabilities, as shown
in Paper D.

In response to RQ4, we explore code-reuse attacks in managed languages
and runtimes, leading to the development of a new taxonomy of these attacks,
presented in Chapter 3. This study identifies new combinations of code-reuse
primitives and presents our contributions through the lens of the taxonomy.

Ethical considerations and sustainability play an important role in our re-
search. We have responsibly disclosed 20 newly detected vulnerabilities in high-
profile web applications and 183 gadgets across widely used libraries and runtimes
to their respective vendors and maintainers. All identified vulnerabilities and the
most critical gadgets have been addressed and patched. Thereby, our research
contributes to the security of the Web and ensures a safer experience for all users.
Our work emphasizes the importance of responsible research practices and under-

1.4. OUTLINE 13

scores the need for ethical considerations in vulnerability detection and disclosure.
We aim to encourage the broader community to adopt these practices and to con-
tinue developing defensive measures against potential attacks, ensuring that our
advancements in research contribute positively to the sustainability and security
of digital ecosystems.

1.4 Outline

This thesis consists of two parts. The first part contains the required background,
the new taxonomy of code-reuse attacks in managed languages and runtimes, and
a summary of the author’s papers and contributions. The second part presents
the conducted work in the form of four papers.

The remainder of the first part of the thesis is organized as follows. Chapter 2
introduces topics important for understanding the area of work, such as memory
safety properties, an overview of managed languages such as C# and JavaScript
and their runtimes, and static and dynamic program analysis. Chapter 3 presents
the new code-reuse attacks taxonomy in detail, covering CRAs and their combina-
tions, and discusses the thesis contributions in light of this taxonomy. Chapter 4
provides an overview of the content of each included paper and states the indi-
vidual contributions of the author of this thesis. Chapter 5 concludes the covered
topics in the thesis and discusses future directions.

Chapter 2

Background

In this chapter, we cover the background information and related work relevant
to the rest of the doctoral thesis. We begin by introducing the memory safety
properties of applications and comparing how these properties are ensured in
low-level languages like C and C++ versus higher-level languages like C# and
JavaScript. We highlight the language design and runtime features in C# and
JavaScript that are related to memory safety. Following this, we discuss the
state-of-the-art approaches in the areas of static and dynamic program analysis,
with a focus on techniques related to the scalable analysis of C# and JavaScript
programs.

2.1 Memory Safety

A distinguishing feature of programming languages is their ability to guarantee
memory safety properties by design. These properties allow us to classify lan-
guages into two categories: memory-safe and memory-unsafe languages. In many
languages, the runtime environments, such as .NET Common Language Runtime
(CLR), implement various features that ensure memory safety during program
execution. Therefore, both the language design and the runtime features should
be considered together in the context of memory safety.

Memory safety is a property of a program that guarantees objects can only be
accessed with the corresponding capabilities [102]. At an abstract level, a pointer
to an object can be thought of as a capability (or permission) that allows access
to a specific memory object or memory region [9,149].

When a memory object is created, it is given specific capabilities. These
capabilities should remain valid as long as the memory object exists. If code
assigns a pointer to another, it transfers these capabilities to the new pointer. The
pointers can only access the object within its defined boundaries and structure,
as long as the object has not been deallocated. Deallocation, whether through
an explicit memory release, the removal of local variables as part of a function’s

15

16 CHAPTER 2. BACKGROUND

stack frame, or garbage collection, destroys the object in memory and invalidates
all related capabilities.

Pointer capabilities cover three areas: size (or bounds), validity, and type.
The bounds define the spatial limits of the memory object. Spatial memory
safety ensures that pointer operations are restricted to data within the memory
object’s boundaries. A memory object is only valid while it is allocated. Thus,
the temporal safety ensures that a pointer can only be used as long as the memory
object remains allocated. Lastly, type safety ensures that a pointer accesses the
memory object in a way that aligns with the object’s type, consistent with type
inheritance rules.

Memory safety can be enforced at different layers, both at compile-time and
run-time. The type system of languages such as Rust enforces strict mem-
ory safety rules during compilation. The runtimes of languages like C# and
JavaScript prevent memory safety violations during program execution, where
just-in-time (JIT) compilation produces CPU-executable machine code, and a
garbage collector enforces memory deallocation. These languages and runtimes
are referred to as memory-managed. In the doctoral thesis, we discuss mem-
ory safety and related security properties of memory-managed programming lan-
guages and runtimes.

Spatial memory safety A program is spatially safe if it guarantees the integrity
of memory object bounds. This means that a pointer can only dereference data
within the bounds of the assigned object and cannot access data outside that
object. In low-level languages like C and C++, if a program allocates a buffer and
allows writing past its end, it contains a spatial-safety bug. Modern C and C++
runtimes, compilers, and operating systems (OSs) mitigate such bugs through
mechanisms like Data Execution Prevention (DEP), which separates memory
into writable or executable regions [138], and stack canaries, which make it more
difficult to overwrite a return address stored on the stack [53]. When the runtime
detects the dereferencing of an out-of-bounds pointer, it typically terminates the
process.

Higher-level languages like C# and JavaScript do not support pointer arith-
metic or assigment of raw values to pointers, preventing the creation of pointers
that refer to locations outside of the allocated object bounds. However, some
programs in languages like C# may include unsafe code fragments where a pro-
grammer uses raw pointers with arithmetic operations and manually deallocates
memory blocks. These language features are used either for performance opti-
mization or to interact with low-level libraries written in unsafe languages [126].
If a program contains unsafe code blocks, the runtimes can no longer guaran-
tee memory safety for the entire program. This doctoral thesis assumes fully
memory-safe programs, excluding such unsafe features.

Memory-managed runtimes are often based on a virtual machine. They im-
plement the interface of an abstract computer, typically one that is stack-based
or register-based. To interpret an input program, the runtime first compiles it

2.1. MEMORY SAFETY 17

into opcodes that specify virtual machine operations and metadata that describes
all types in the program and their members. For example, metadata may contain
the size of buffers, allowing the runtime to prevent out-of-bound operations. The
runtimes also implement JIT compilation to improve performance [11]. With
JIT compilation, the runtime compiles parts of a program on demand into na-
tive machine code that is executed directly on the hardware. JIT compilation
includes safety checks in the generated machine code to guarantee memory safety
properties at runtime.

Temporal memory safety A program is temporally safe if it guarantees the
integrity of memory object lifetimes. This means that a pointer can only reference
live objects whose memory has not been deallocated manually or automatically.
In low-level languages like C and C++, if the underlying memory object is no
longer valid, such as when objects have been freed, dereferencing a stale pointer
results in undefined behavior.

In memory-managed languages like C# and JavaScript, all allocation and
deallocation are performed automatically via garbage collectors. Garbage col-
lectors present an alternative to manual memory management, which requires
a programmer to explicitly notify an allocator when regions of memory are no
longer in use. In a memory-managed system, the programmer explicitly requests
the runtime to allocate memory, and the runtime provides a memory object while
registering it with the garbage collector. The garbage collector automatically de-
termines when regions of memory are no longer in use and reclaims them.

Garbage collection (GC) is an essential component of modern memory man-
agement systems, but it inherently introduces performance trade-offs. GC designs
typically involve additional processing to manage memory automatically, which
can increase both runtime overhead and memory usage compared to manual man-
agement techniques. A significant concern in many GC implementations is the
occurrence of "stop-the-world" phases, where the application is paused to allow
the GC to reclaim memory, impacting the application’s responsiveness. Various
GC algorithms have been developed, each with its own approach to balancing the
trade-offs between performance and memory management [17].

Despite the potential performance issues introduced by garbage collectors,
they guarantee the temporal memory safety property for the entire program,
helping to avoid memory bugs such as use-after-free [139]. By automatically man-
aging memory, garbage collectors simplify memory management for programmers,
leading to clearer, more maintainable code.

Type safety A program is type-safe if it guarantees the integrity of memory
object types. This means that a memory object referenced as one type cannot
simultaneously be referenced as a memory object of an incompatible type.

Casting operations allow an object to be interpreted under a different type.
Casting is permitted along the inheritance chain. Upward casts, also known as
upcasts, move the type closer to that of the root object, making the type more
generic, while downward casts, or downcasts, specialize the object to a subtype.

18 CHAPTER 2. BACKGROUND

For example, consider an inheritance chain starting with the base object
Vehicle, followed by the more specific Car, and finally, the specialized type
SportsCar. If we have a reference of type Car, an upcast would convert the Car
reference into a Vehicle reference, allowing it to be treated as a more general
type. Conversely, a downcast would convert the Car reference into a SportsCar
reference, allowing it to be treated as a more specific type. The type hierarchy
is determined by the programmer according to the rules and semantics of the
programming language being used.

In low-level languages like C or C++, type safety is not explicitly enforced,
and a memory object can be reinterpreted in arbitrary ways. C++ provides a
wide range of type cast operations. Static casts are checked only at compile time
to ensure that the two types are compatible, but they lack runtime guarantees,
meaning objects of the wrong type may be used at runtime. Dynamic casts
perform a runtime check, but this is only possible for polymorphic classes with
virtual functions. Due to the low-level nature of C++, a programmer may write
to the raw memory object and change the underlying object directly. Ideally,
a program can be statically proven to be type-safe, but this is not possible in
C++, where an incorrect cast leads to undefined behavior as specified in the
C++ standard (7.6.1.8/11 in ISO/IEC 14882:2020 [85]).

Higher-level statically typed languages like C# have strict type systems that
guarantee type safety at compile time for all objects instantiated explicitly in
the source code. A programmer is not allowed to compile code that casts an
object to an incompatible type [125, 127]. However, C#, as well as dynamically
typed languages like JavaScript, check information about objects’ types at run-
time to enforce type safety for objects created by types specified dynamically.
C# compiler adds type information in the metadata of compiled code. During
JIT compilation, this information allows the runtime to add security checks to
the machine code, ensuring type safety for all object instances at runtime.

Additionally, the availability of metadata at runtime allows managed lan-
guages to provide reflection, which enables examination of the structure of types,
creation of instances of types, and invocation of methods on types, all based on
the description of a type. As we will see, this feature has important security
implications, hence we discuss it in detail in Section 2.2.

2.2 Managed Languages and Runtimes

In the July 2024 TIOBE Index of the Top 10 most popular programming lan-
guages, only three—C, C++, and Fortran—are memory-unsafe and rely on man-
ual memory management. All other modern languages in the top rankings ensure
memory and type safety, providing a managed runtime environment for program
execution.

This doctoral thesis focuses on two languages: C# and JavaScript. Both
languages have memory-managed runtimes based on garbage collection that au-

2.2. MANAGED LANGUAGES AND RUNTIMES 19

tomatically allocate and free memory for objects. The garbage collection garan-
tees temporal memory safety in these languages. Semantics and type system of
these languages [61, 127] do not allow writes in memory outside of boundaries of
referenced objects thus guaranteeing spatial memory safety. Compile-time and
injected run-time type checks guarantee type safety. Both C# and JavaScript sup-
port object-oriented programming (OOP) paradigms. Hovewer, C# implements
class-based inheritance [23] by using types explicitly defined in source code. On
the contrary, JavaScript implements prototype-based inheritance [114] by using
other objects which define inherited properties and methods. Listings 2.1a–2.1c
present code snippets defining class hierarchies in C# and JavaScript.

In this section, we discuss in detail inheritance and other language design and
runtime features of C# and JavaScript. This will help us understand the concepts
and examples in Chapter 3.

C# language and .NET runtime C# is a general-purpose high-level program-
ming language that originally developed by Microsoft as part of .NET platform.
It supports static strong typing, imperative, object-oriented and other paradigms.

A fundamental feature of C# is its class-based inheritance model, which sup-
ports the creation of complex and reusable code structures. It allows programmers
to create a new class based on an existing class, thereby reusing code and reducing
redundancy. The new class, known as the derived class, inherits the properties,
methods, and events of the existing class, referred to as the base class. This in-
heritance hierarchy forms a tree-like structure where each node (class) can extend
another, enabling the creation of complex, interrelated objects. C# supports sin-
gle inheritance, meaning a class can inherit from only one base class. However,
C# compensates for this limitation by supporting interfaces, which allow a class
to implement multiple sets of behaviors. This approach simplifies the creation of
extensible and maintainable software.

In Listing 2.1a, we demonstrate an example of the reuse, extend, and mod-
ify behavior in C# classes, comparing it with JavaScript inheritance. We define
a base class Vehicle with its members explicitly, including a field Model in
line 2. C# supports access modifiers, such as public, private, protected,
and internal, which control the visibility of class members. These modifiers
allow programmers to hide the internal implementation details from the outside
world, following the OOP design principle of encapsulation. Encapsulation in-
volves bundling related data and the methods that operate on the data into a
single unit. The Vehicle class also implements a virtual method Go that can
be overridden in a derived class by providing a new implementation. It achieves
another key OOP principle, polymorphism, where the exact method to be called
is determined at runtime based on the actual type of the object. The object’s
type metadata contains a pointer to the specific instance of the virtual method,
meaning the object’s type controls the virtual method pointers. In lines 14-27,
the code defines a derived class Car that extends Vehicle by adding a new field
LicensePlate and replacing the implementation of the Go method. The con-

20 CHAPTER 2. BACKGROUND

1 class Vehicle {
2 public string Model;
3
4 public Vehicle(string m) {
5 Model = m;
6 }
7
8 public virtual void Go() {
9 /* ... */

10 }
11 }
12
13
14 class Car : Vehicle {
15 public string
16 LicensePlate;
17
18
19 public Car(string m,
20 string plt) : base(m) {
21 LicensePlate = plt;
22 }
23
24 public override void Go(){
25 /* ... */
26 }
27 }

(a) C#.

class Vehicle {

constructor(model) {
this.model = model

}

go() {
/* ... */

}
}

class Car extends Vehicle {

constructor(model, plt) {
super(model);
this.licensePlate = plt

}

go() {
/* ... */

}
}

(b) JavaScript ES6.

function Vehicle(model) {
this.model = model;

}

Vehicle.prototype.go =
function () {
/* ... */

}

Car.prototype =
Object.create(
Vehicle.prototype)

Car.prototype.constructor=Car

function Car(model, plt) {
Vehicle.call(this, model)
this.licensePlate = plt

}

Car.prototype.go =
function () {
/* ... */

}

(c) JavaScript ES5.

Figure 2.1: Comparison of inheritance models in C# and JavaScript.

structor of Car makes an implicit call to the base class constructor in line 20 and
then initializes its own field LicensePlate in line 21.

C# introduces several features that enhance the language’s expressiveness,
such as properties, events, and delegates. Properties provide a way to expose class
fields with the custom setters and getters. They are essentially methods that are
executed when a value is assigned to or read from the property. Events in C#
allow a class to notify other classes that a change has occurred. They are based on
the delegate model, which allows methods to be passed as parameters or assigned
to variables. Delegates are a type-safe mechanism for defining and handling
method pointers. They are used to pass methods as arguments, providing support
for callback methods and event handling. Delegates are strongly typed, ensuring
that only methods with a specific signature can be assigned to a delegate.

The C# language is integrated with the .NET platform, which consists of two
major components: the Common Language Runtime and the .NET Framework
Class Library (FCL). The CLR is the virtual machine responsible for running
programs written in the Common Intermediate Language (CIL) and perform-
ing JIT compilation to convert CIL code into machine instructions. CIL is an
object-oriented, stack-based instruction set defined within the Common Language
Infrastructure (CLI) specification [62]. A compiler for higher-level languages like
C# or F# generates CIL code that can be executed in the CLI runtime. The

2.2. MANAGED LANGUAGES AND RUNTIMES 21

FCL provides a library of reusable types that developers can call from their ap-
plications. It includes a wide range of classes and methods for user interfaces,
data access, web application development, network and OS communications, and
other features.

Originally, Microsoft developed the .NET platform for running on Windows
only, and named it the .NET Framework. However, with the advent of .NET Core,
they introduced a cross-platform, open-source version of the .NET platform. The
newer versions, now referred to simply as .NET, unify the capabilities of .NET
Framework and .NET Core, offering a single platform that supports a wide range
of applications, including web, desktop, cloud, and mobile apps.

A powerful feature of the .NET runtime is reflection, which allows applica-
tions to inspect and interact with their own metadata and structure at runtime.
Through reflection, a program can dynamically discover the types, methods, prop-
erties, and fields of objects, enabling features like dynamic method invocation and
object creation. This capability is particularly useful for building flexible and ex-
tensible frameworks, such as serialization to different formats like XML, JSON,
dependency injection containers, and ORMs (Object-Relational Mappers), where
the ability to analyze and manipulate code structures at runtime is essential.

JavaScript language and runtime JavaScript is a high-level programming
language widely used for web development. It is known for its dynamic typing,
prototype-based inheritance, and support for both object-oriented and functional
programming paradigms. Originally designed for client-side scripting, JavaScript
has since evolved to support server-side development as well.

JavaScript uses a prototype-based inheritance model, which differs from class-
based inheritance. In JavaScript, objects can inherit properties and methods
directly from other objects through a mechanism known as the prototype chain.
Every JavaScript object has a reference to a prototype, which is another object
from which it inherits properties and methods. When a property or method is
accessed on an object, the JavaScript engine first looks for it on the object itself.
If it is not found, the engine looks up the prototype chain until the property is
found or the chain ends. Although JavaScript is fundamentally prototype-based,
the ECMAScript 6 (ES6) standard [61] introduces classes as syntactical sugar for
programmers familiar with class-based languages.

We present examples of defining type hierarchies for JavaScript ES6 in List-
ing 2.1b and JavaScript ES5, without classes, in Listing 2.1c. The ES5 example
represents the desugared version of the class-based syntax. In lines 1-11, we define
a base class Vehicle and create a new property model dynamically in its con-
structor. The go function is represented as a property that refers to the address of
the function’s implementation. In lines 14-27, we define a derived class Car that
extends Vehicle. At runtime, JavaScript first creates a constructor function from
lines 19-22 and assigns a new object for its prototype, with Vehicle.prototype
in the prototype chain, as shown in lines 14-17. Object.create returns this
new prototype’s object using an existing object from the argument as the pro-

22 CHAPTER 2. BACKGROUND

totype of the newly created object. To achieve polymorphism at runtime, the
code defines a new function and assigns it to the go property of Car’s pro-
totype in lines 24-27. When the code executes the Car constructor, such as
c = new Car("DeLorean", "PNZ58"), the runtime creates a new object with a
prototype chain from Car.prototype. For c.go() call, the runtime first looks up
the go property in the Car prototype and invokes the overridden function using
the found function pointer. Notice that JavaScript allows function invocations
via the built-in call function. Programmers typically use this syntax when they
need to pass the this reference explicitly, as shown in line 20.

JavaScript provides a wide range of built-in functions that are available glob-
ally, for example, for array and string modification. Additionally, JavaScript
includes features for dynamically executing code, such as the new Function con-
structor and the eval function. The new Function constructor allows us to
create a new function object from a string of code. The created function can
be called later, just like any other JavaScript function. The key advantage of
new Function is that it enables the creation of functions at runtime, which can
be useful in dynamic scenarios where the function logic needs to be constructed
on the fly. The eval function executes a string of JavaScript code passed as an
argument. It can take any valid JavaScript code as a string and execute it within
the current scope.

JavaScript engines are responsible for executing JavaScript code. They are
embedded within web browsers and server environments to interpret and run
JavaScript code. V8, developed by Google, is one of the most widely-used
JavaScript engines. It powers the Chromium browser and server-side runtimes like
Node.js [66] and Deno [83]. V8 supports both the interpretation and compilation
of JavaScript code into native machine code. Other popular JavaScript engines
include SpiderMonkey, used in Mozilla Firefox; JavaScriptCore, used in the Apple
Safari browser; and Chakra, developed by Microsoft for the Edge browser.

JavaScript has evolved beyond its original use in the browser to become a
powerful tool for server-side development. In server-side environments, JavaScript
can handle HTTP requests, interact with databases, perform file operations, and
manage server-side logic. This enables developers to use a single language for
both client and server development, simplifying the development process. The
most popular server-side JavaScript runtimes include Node.js [66], Deno [83],
and Bun [37]. Node.js, built on Google’s V8 engine, is the most widely-used
runtime and is designed for building scalable applications. Deno, developed in
Rust and also based on the V8 engine, offers TypeScript support out of the box
and enhanced security features, such as explicit permissions for file, network, and
environment access. Bun is a newer runtime based on the JavaScriptCore engine
that emphasizes speed and developer experience, integrating a fast JavaScript
and TypeScript runtime with built-in tools like a bundler and package manager.
In this doctoral thesis, we study security issues targeting the Node.js and Deno
runtimes.

2.3. PROGRAM ANALYSIS 23

2.3 Program Analysis

Program analysis is a fundamental area in computer science that focuses on un-
derstanding and improving the behavior of software programs. It involves the
systematic examination of code, either before or during execution, to identify
potential issues, optimize performance, and ensure correctness. By analyzing the
structure and control- or data-flows of a program, programmers can gain insights
into how the software behaves under various conditions, which is crucial for iden-
tifying bugs, security vulnerabilities, and performance bottlenecks [144,152].

Program analysis is particularly useful in large-scale evaluation, where manual
inspection of code is impractical due to the size and complexity of the analyzed
codebases. Automated program analysis tools can systematically analyze vast
codebases, making it possible to answer research questions about the prevalence
of specific code patterns in the real-world applications and detect new kinds of
bugs and vulnerabilities. Additionally, as software increasingly becomes a target
for malicious attacks, program analysis plays a pivotal role in security analysis,
helping to identify and mitigate vulnerabilities before they can be exploited.

Program analysis can be broadly categorized into two main types: static anal-
ysis and dynamic analysis. Static analysis involves examining the program code
without executing it. This type of analysis is performed on the source code, byte-
code, or binary code to identify potential errors, vulnerabilities, and optimization
opportunities. Because it does not require the program to run, static analysis can
be applied early in the development process, making it a valuable tool for early
bug detection and code quality assurance.

In contrast, dynamic analysis examines the program as it executes. This
approach provides insights into how the software behaves in a real runtime en-
vironment, capturing information about memory usage, performance, and the
interactions between different components of the software. Dynamic analysis
complements static analysis by providing a more accurate reflection of how the
program behaves in real-world scenarios.

Several key metrics are essential for measuring the effectiveness of a program
analysis technique: True Positive (TP), False Positive (FP), True Negative (TN),
False Negative (FN), recall, and precision. True Positives refer to the ability of an
analysis to accurately detect a real issue. False Positives occur when an analysis
reports an issue that is not. True Negatives represent the ability of an analysis to
correctly identify that no issue exists, while False Negatives are instances where
the analysis fails to detect an existing issue. Recall is the metric that indicates
the analysis’s ability to find all relevant issues, calculated as the ratio of TPs to
the sum of TPs and FNs. High recall means that the program analysis misses
few real issues. Precision measures the accuracy of the analysis in identifying
only true issues, calculated as the ratio of TPs to the sum of TPs and FPs. High
precision indicates that the analysis produces fewer FPs.

Static analysis commonly suffers from lower precision compared to dynamic
analysis due to over-approximation. This tendency to over-report can lead to

24 CHAPTER 2. BACKGROUND

1 function addToGarage(garage, model, plt) {
2 const car = new Car(model, plt)
3 garage.push(car)
4 }
5
6 function findCar(cars, model) {
7 for (const car of cars) {
8 if (car.model === model) {
9 let carProperties = []

10 for (const key in car) {
11 carProperties.push(
12 ‘${key}: ${car[key]}‘)
13 }
14
15 return carProperties.join(", ")
16 }
17 }
18 }

const garage = []
function addTimeMachineHandler(req, res) {
addCarToGarage(garage,
"DeLorean",
req.body.licensePlate)

}

function findCarHandler(req, res) {
const carModel = req.body.model
const car = findCar(garage, carModel)
res.send(‘
<html>
<body>
<p>Car Found: ${car}</p>

</body>
</html>

‘)
}

Figure 2.2: Illustration of taint tracking in JavaScript.

an excessive number of FPs, making it challenging for developers to identify real
issues. Dynamic analysis tends to have higher precision because it observes actual
runtime behavior, reducing the likelihood of FPs. However, dynamic analysis may
suffer from lower recall, if not all execution paths are tested, potentially missing
some issues that only occur under specific conditions. Balancing these metrics is
crucial for the practical effectiveness of any analysis technique.

A popular technique used in program analysis for security is taint tracking.
Taint tracking is a data-flow analysis and it can be implemented using both static
and dynamic analysis methods. Taint tracking tracks how data from sensitive
sources propagates through a program to sensitive sinks. For example, it can be
used to identify whether untrusted data (known as tainted data) affects sensitive
code patterns (known as sinks). We refer to the work of Schoepe et al. [181] for
an overview of taint analysis in security domains.

Figure 2.2 presents JavaScript code listings to illustrate taint tracking in prac-
tice. We assume that functions with the Handler postfix in their names handle
web requests with user-controlled parameters. The addTimeMachineHandler
function takes attacker-controlled input req.body.licensePlate and stores a
car with the provided license plate in an array garage. The findCarHandler
function then allows finding a car by the requested model from req.body.model
and includes it in the output HTML response without any sanitization. If an at-
tacker controls the license plate, this code may lead to cross-site scripting (XSS)
attacks because they can inject a malicious script into the HTML and execute it
in the victim’s browser.

Taint tracking can be used to analyze the flow of untrusted input data in a
program. It marks the value of req.body.licensePlate as tainted in line 5
and then tracks how this data is used. This requires interprocedural analysis,
propagating the tainted data through the plt parameter of the addToGarage

2.3. PROGRAM ANALYSIS 25

function, the constructor of Car in Listing 2.1c, and finally storing it in an array
in line 3. Another handler, findCarHandler, passes the array to the findCar
function in line 10, which enumerates all elements of the array in line 7, retrieves
the tainted value, propagates the tainted mark to the array carProperties in
line 11, and returns a string with the tainted mark. When the returned tainted
string is injected into the HTML output in line 14, taint tracking should signal
that a tainted value has reached a security-sensitive sink, leading to XSS. We
discuss how static and dynamic analysis can be used to implement taint tracking.

Static analysis Taint tracking can be implemented via static analysis using a
range of techniques. These techniques include data flow analysis, control flow
analysis, abstract interpretation, and more. Data flow analysis focuses on under-
standing how data moves through a program. It analyzes the flow of data from
one part of the program to another, helping to identify dependencies and data
usages. The seminal work by Reps et al. [171] introduces a method for perform-
ing precise interprocedural data flow analysis using graph reachability techniques.
This approach allows for a more accurate understanding of how data flows across
different procedures and functions. Control flow analysis is concerned with the
order in which instructions or statements in a program are executed. It constructs
a control flow graph (CFG) that represents the possible execution paths within
the program.

Abstract interpretation is a theoretical framework used to reason about the
behavior of programs in a way that balances precision and performance. It in-
volves approximating the possible values of a program during its execution. We
refer to the works of Cousot and Cousot [43–45] for an introduction to abstract
interpretation, its frameworks, and an in-depth discussion of various approaches
and their applications.

Static taint tracking faces significant challenges. A key issue of static taint
tracking is over-approximation, where the analysis may falsely flag safe data flows
as dangerous, leading to a high number of false positives. Moreover, static analysis
should model the semantics of all language constructs, built-in functions, and
used frameworks. For example, in Figure 2.2, an analyzer should emulate the
semantics of array and string functions, for-of and for-in loops, and template
string literals to correctly propagate the taint value without losing it, which is not
trivial to implement in practice. Additionally, the scalability of static analysis
is a concern, especially for large codebases, as the complexity of analyzing all
possible execution paths can be computationally expensive. There is also a trade-
off between precision and performance: making the analysis more precise typically
requires more computational resources, which can slow down the analysis process.

Dynamic analysis Dynamic taint tracking monitors the flow of data through a
program while it is running. By marking specific inputs as tainted, the analysis
can track how these inputs propagate through the program, ensuring that they are
not used improperly in security-sensitive sinks. There are two primary approaches
for implementing dynamic taint tracking: code instrumentation and modification

26 CHAPTER 2. BACKGROUND

of the runtime environment. Code instrumentation involves directly modifying
the program’s source code or binary by inserting additional instructions that
monitor and track the flow of tainted data during execution. This approach
allows for fine-grained control and customization of the taint tracking process,
enabling the tracking of specific variables, functions, or operations as needed.
However, it can introduce significant overhead, potentially altering the program’s
behavior due to the added instructions.

Modification of the runtime environment involves altering the runtime or vir-
tual machine on which the program executes. While this approach can reduce the
overhead introduced by instrumentation and ensure that all code paths, includ-
ing those in third-party libraries and the internal code of the runtime itself, are
tracked, it requires in-depth knowledge and control over the runtime environment.

Dynamic taint tracking has its challenges. The primary issue is performance
overhead: the analysis adds extra computations during runtime, which can slow
down the program. Additionally, dynamic analysis is limited by coverage, as it
only analyzes the paths that are executed while the program is running. This lim-
itation means that certain code paths, especially rare or exceptional ones, may not
be analyzed, potentially leaving vulnerabilities undetected. In our example in Fig-
ure 2.2, an analyzer should first trigger the execution of addTimeMachineHandler
to store the tainted data in the shared state and only then execute another han-
dler findCarHandler to invoke the security-sensitive function with the tainted
data. Moreover, the analyzer should know that the req.body.model parameter
should be equal to DeLorean to load the tainted data in line 10 and reach the
sensitive sink in line 14. We refer the work of Schwartz et al. [182] for in-depth
discussion of dynamic taint analysis.

Dynamic analysis provides an accurate reflection of a program’s behavior in
a real environment, making it capable of detecting issues that depend on envi-
ronment data. This induces a lower number of false positives compared to static
analysis. However, its drawbacks include the performance overhead introduced
during execution and the fact that it is limited to the paths and scenarios that are
explicitly tested during runtime, potentially missing issues that arise in untested
code paths.

In summary, both static and dynamic analysis techniques are essential tools in
the field of program analysis, each offering unique strengths and facing particular
challenges. Taint tracking, as a method within these approaches, plays a crucial
role in security analysis. In this thesis, we develop both static and dynamic taint
analysis for C# and JavaScript and their runtime environments.

Chapter 3

Code-Reuse Attacks Taxonomy

This chapter proposes a general taxonomy for code-reuse attacks in safe and
managed memory runtimes. Taking the form of an attack tree, it covers 3 attack
subclasses, mapped to 15 different language and runtime features, and illustrated
by 20 newly detected high-severity vulnerabilities in popular applications. Beyond
capturing the essence of code-reuse attacks, we also use this taxonomy to describe
the contributions of the thesis.

Attack tree Attack trees [112,179,180] are systematic and intuitive representa-
tions of the different ways in which a system can be attacked. The root node of
the tree is the attacker’s top-level goal, refined by subgoals in the nested nodes
to the leaves representing specific steps of the attack. A refinement can be con-
junctive or disjunctive. The attack tree uses conjunction to aggregate multiple
steps in achieving a parent goal, and disjunction to choose one of several ways
to achieve the same goal. Such a structure maps one instance to exactly one
class, as taxonomies require. The graphical, structured tree notation can help for
practical security researchers and tool builders attempting to model and detect
different classes of attacks in specific programming languages.

Attacker model The development of the taxonomy is based on the following
assumptions and the attacker model shown in Figure 3.1. We consider web and
standalone applications and their users in our attacker model. The web applica-
tions have server-side code executing on the servers and client-side code evaluated
in users’ browsers. We assume the web application operates under an Operating
System (OS) high-privilege account and accesses internal services, databases, and
local confidential data that are unavailable to the application’s users.

Any user of the applications can play the role of the attacker. For web ap-
plications, the model represents unauthenticated users, and users with high-level
and low-level privileges. These are the administrators and common users, re-
spectively. We distinguish these actors based on the different impacts that the
modeled attack can have on the system, and correspondingly, the different sever-
ity of the disclosed vulnerabilities. The web application’s users interact either

27

28 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

 Web app

Client-side

OS High-privilege account

Database

 User

Internal service

 User features

 Admin features

Server-side

 User features

 Admin features

External
service/ data

 Admin

 Local

Shared
local files

Confidential
data

 Standalone app

XSS

LPE

 Unauth

 External

Unauth RCE

High-priv RCE

Unauth RCE

Low-priv RCE

OS Low-privilege account

Low-priv RCE

E

Unauth RCE

A

C

B
C

D

E

A

A

A

Figure 3.1: Attacker model for web and standalone applications.

with the client side of the application via their own browsers or directly with the
server side by sending web requests to the application’s endpoints.

For standalone applications, a user resides locally on the same machine and,
as a result, they already have the privileges of the OS account. We assume that
this is a low-privilege account in the OS. The local user can also interact with
the available files that can be shared with any application running on the same
machine, including the web application.

The other actors in our model are the users of external services, such as
public data storages (for example, git repositories and npm registries). These are
unauthenticated users for the considered web and standalone applications. The
attacker compromises the data in these external services, and the application can

29

be affected by loading and handling the compromised data from the services.
We consider an attack successful when an actor elevates their own privileges

either by executing code with higher privileges or by affecting resources that
require higher privileges. To visualize the attacks in our model in Figure 3.1,
we use red dotted lines to depict the flow of attacks from the actors through
the borders of different levels of privileges. These attack scenarios include the
following cases:

• (A) An unauthenticated application user gains privileges of any OS account,
namely by executing arbitrary code. This is an unauthenticated Remote Code
Execution (RCE) attack.

• (B) A low-privileged user of the web application gains privileges of a high-
privileged user of the same web application. This attack can be performed via
Cross-Site Scripting (XSS) in the high-privileged victim’s browser.

• (C) A low-privileged user of the application gains privileges of any OS account.
This is an authenticated (low-privileged) RCE attack.

• (D) A high-privileged user of the application gains privileges of any OS account.
This is an authenticated (high-privileged) RCE attack.

• (E) A low-privileged local user gains privileges of an OS high-level account. This
is a Local Privilege Escalation (LPE) attack.

We restrict all possible attacks to a subclass of code-reuse attacks, where
direct code injection is prevented. Thus, the attacker’s top-level goal is to find
a way to perform a malicious action with higher privileges in the system using
existing code fragments of the application. An attacker can exfiltrate confidential
data from internal services or databases, exploit the affected infrastructure for
malicious computations (e.g., crypto-mining [165]), or use it as a bot for further
DDoS attacks or spam mailing. The taxonomy developed based on this attack
model addresses the question of how the attacker triggers the code-reuse attack,
not what the malicious code does.

Methodology The methodology adopted to design the taxonomy comprises five
steps.

First, we review scientific literature that covers aspects of exploitation and
detection of code-reuse attacks. We focus on memory-managed runtimes and
memory-safe languages such as C# .NET, Java, JavaScript, and PHP. While
many authors [7,29–32,34,47,50–52,59,70,75,87,95,98,103,105,106,150,151,163,
174, 176, 177, 187, 202] study code-reuse attacks for these languages, there is still
a need for a systematized, language-agnostic approach to highlight the common
traits and code patterns of this class of attack. The state-of-the-art research
in memory-unsafe languages, such as C and C++, studies code-reuse attacks
in-depth and proposes classifications and frameworks to categorize and mitigate
these attacks. Chapter 1 of the book "The Continuing Arms Race: Code-Reuse
Attacks and Defenses" [102] presents an adversary’s toolkit that demonstrates
how memory corruption bugs lead to different subclasses of code-reuse attacks
in memory-unsafe languages. Inspired by this classification, we develop a new

30 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

taxonomy of code-reuse attacks for memory-safe languages.

Second, we analyze known vulnerabilities that lead to code-reuse attacks in
memory-safe languages. In addition to scientific literature, to cover as many real-
world attacks and vulnerabilities as possible, we also examine conference write-
ups [64,65,73,91,147] and blog posts [6,74,81,100,154,168,178,184,211,213]. As a
result, we collected 22 vulnerabilities in C#, 104 in Java, and 5 in JavaScript. We
also study code patterns of 192 prototype pollution vulnerabilities in the bench-
mark SecBench.js [16], which collects vulnerable versions of third-party libraries.
Although the benchmark does not contain full chains of exploits, it allows us to
extract and summarize weaknesses in the code of real packages. For PHP, Java
and .NET frameworks, we study the deserialization payload generators [5,67,146],
which collect payloads (143 for PHP, 34 for Java and 31 for .NET) that exploit
arbitrary code execution in insecure deserialization of objects.

Third, we generalize vulnerable code patterns to identify key ingredients that
trigger code-reuse attacks. We abstract from specific programming languages or
runtimes, perform threat modeling, match with our attack model, and create a
taxonomy that takes the form of an attack tree. Then we refine the attack goal
in the taxonomy to identify language features required for performing the attack.
The final version of our initial attack tree is presented in Section 3.2.

Fourth, we develop examples of the required language features and their usage,
which satisfy the attack subgoals. This process allows us to generalize code
patterns of known vulnerabilities and to design new primitives for code-reuse
attacks. We chose C# and JavaScript languages for our studies. These are two
memory-safe languages with managed runtimes that implement different design
principles. C# implements a class-based style of object-oriented programming
(OOP) in which inheritance occurs via defining classes of objects, and it has a rich
reflection API that allows full control of the type system, objects, and methods
at runtime. JavaScript implements a prototype-based style of OOP in which
inheritance is performed by reusing existing objects that serve as prototypes,
implementing base methods and properties of the objects. These features lead
to different attack variations, as we will demonstrate in Sections 3.3, 3.4, and
3.5. Through our rigorous analysis and structured taxonomy, we identified 7 new
code-reuse primitives and their chains in JavaScript.

Finally, to validate the proposed taxonomy, we analyzed popular applications
and detected new vulnerabilities based on the code patterns identified in the
taxonomy. We developed static and dynamic analysis tools: SerialDetector [190],
Silent Spring [193], GHunter [41], and Dasty [145], to identify vulnerabilities
and primitives for exploiting these vulnerabilities. We then validated the results
manually and implemented exploits against the applications. This process allowed
us to perform 20 new attacks of arbitrary code execution with high and critical
severity. All cases were disclosed to the vendors and have been fixed.

3.1. CODE-REUSE ATTACKS IN MEMORY UNSAFE LANGUAGES 31

3.1 Code-Reuse Attacks in Memory Unsafe Languages

Low-level languages like C or C++ were designed more than 30 years ago with a
primary focus on performance. The ability to implement low-level optimizations
is achieved through manual memory management and the lack of memory safety
guarantees from the compiler and runtime. However, this shifts the responsibility
to developers to include checks in the source code to prevent any form of memory
safety issues when working with pointers. Examples of such safety issues are
arbitrary memory corruption or buffer overflows, use-after-free conditions, and
type confusion by casting objects to an incorrect type.

Payer proposes an adversary’s toolkit [102] that systematizes all known mem-
ory corruption issues and shows which exploitation techniques could be used by
an adversary (i.e., an attacker) to gain certain privileges on a system. As a first
step, an attacker needs to modify the process state by leveraging the memory
corruption bug. Depending on the exploited bug, the author distinguishes the
cases where an adversary modifies (i) the code of a program, (ii) code pointers,
or (iii) data pointers and data itself. The next step is the execution of code
affected by the memory corruption. We summarize the proposed toolkit in Fig-
ure 3.2 to present three ways of memory corruption exploitation that lead to (i)
code injection, (ii) control-flow hijacking, and (iii) data-only attacks.

Code injection allows an attacker to control what code is executed. For ex-
ample, if the attacker overwrites the code of an existing function, then any call
to that function will lead to the execution of attacker-controlled code. Therefore,
a successful exploit requires two actions: exploiting a memory corruption bug to
inject their own code into the program and reusing a function call to transfer

Memory corruption

Modify data or
a data pointerInject code Modify

a code pointer

Execute
the injected code

Jump by the
modified pointer

Non-control-data
execution

Control-flow
bending execution

Code injection
attack

Control-flow
hijacking attack

Data-only
attack

Figure 3.2: Memory corruption attacks.

32 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

execution to the injected code.
Control-flow hijacking requires modifying a code pointer and accordingly mov-

ing the execution to this code pointer. It allows an attacker to execute arbitrary
code within the program. A simple example of this attack is replacing a return
address on the stack via a buffer overflow issue for a buffer allocated on the stack.
When the current function returns control to the caller, the ret instruction on
x86 pops the return address from the stack and then continues execution at that
address. Technically, this is a reuse of the existing ret instruction in the pro-
gram to trigger the execution of the desired code. Note that this attack can be
combined with code injection when the attacker uses the same buffer overflow
to inject code and overwrite the return address to move the execution to the
injected code. When code injection is not possible due to runtime mitigations,
the attacker can use the return-oriented programming (ROP) technique to induce
arbitrary behavior in a program without injecting any code [173]. ROP combines
short instruction sequences already present in a program’s executable code, each
of which ends in the ret instruction to transfer execution to another fragment.
ROP chains are organized into units that perform well-defined tasks when in-
voked, known as gadgets. Once an attacker has assembled a Turing-complete
collection of gadgets, they can synthesize any malicious behavior.

Data-only subclass combines the attacks which exclusively modify data and
pointers to data, excluding all code pointers. Thereby, the attacker can not
control the control-flow directly or jump the execution to an arbitrary function.
Data-only attacks pose a significant threat in binary code by allowing attack-
ers to alter the behavior of systems without hijacking the control flow. These
attacks exploit the program’s data, modifying it within the boundaries of the
valid control-flow graph, thereby evading traditional control-flow integrity (CFI)
defenses [24]. Through memory corruption, adversaries can influence the appli-
cation’s control flow, such as redirecting execution to an unintended branch by
altering the condition tested in an if-else statement. This leads to unintended
execution paths, causing the program to behave in ways not foreseen by the
developer.

After modifying data, an attacker reuses the execution of existing code that
can be influenced by the modified data. This may involve non-control-data execu-
tion, where the attacker compromises sensitive data such as a string that is passed
to a system call spawning a new process defined by this string parameter. Such an
attack leads to arbitrary command execution with process privileges. The differ-
ence from a classic command injection attack, where an attacker directly controls
the input data propagated to the system call, is the presence of a memory cor-
ruption bug as the first step of the attack. Therefore, the attacker first changes
the program state, which does not normally contain any attacker-controlled input
data, as intended by the programmer.

Another scenario is control-flow bending execution, where the compromised
program state bends the control flow along valid edges in the control-flow graph
across multiple basic blocks. In this case, a target for the propagation of attacker-

3.2. CODE-REUSE ATTACKS IN MANAGED RUNTIMES 33

controlled data is a control-flow construct, such as an if-then-else branch or a
loop. In the short C example in Listing 3.1, the function performs high-privileged
actions when the isAdmin flag is true. However, the memory error in line 4 allows
an attacker to overwrite the flag if pData points to the same memory location,
due to a memory corruption bug triggered before the execution of line 4. Thus,
a control-flow bending attack could force the if-then basic block to execute even
if the initial value of isAdmin is false.

1 void vulnerable(int *pData, int userData, bool isAdmin) {
2 // do something
3 // memory corruption bug!
4 *pData = userData;
5 if (isAdmin) {
6 // perform high-privileged operations
7 }
8 }

Listing 3.1: Example of control-flow bending execution in C.

We omit the discussion of mitigations for each class of attacks in memory-
unsafe languages like C and C++ and instead focus on safe languages and memory-
managed runtimes, which is the main topic of this thesis.

Memory safety prevents the root cause of all these attacks—memory corrup-
tion—making the exact same exploitation impossible. This raises an interesting
research question: what language features can lead to the same classes of attacks
if memory safety is guaranteed by language design? To address this, we define
code injection, call-flow hijacking, and data-only attacks as subgoals and flip our
diagram in Figure 3.2 to study code-reuse attacks from goals to language features
that allow an adversary to achieve these subgoals. This new model expresses
an attack tree where the root goal is a code-reuse attack. We will overview this
model in the following sections.

3.2 Code-Reuse Attacks in Managed Runtimes

The main theme of this thesis is an investigation into how code-reuse attacks can
be achieved in memory-safe languages and what features of these languages and
their managed runtimes allow an attacker to perform such attacks. We develop a
new taxonomy, presenting the results of our study in Figure 3.3. The taxonomy
is structured as an attack tree with the root goal being a code-reuse attack. We
define an attack as a code-reuse attack if it exploits instances of one or several
weaknesses by using existing code fragments, known as gadgets. A weakness
refers to a specific, identifiable flaw or deficiency in an application’s code that
may potentially compromise the system’s security. These two components of the
attack—the weakness and the gadget—are referred to as exploit primitives.

In Listing 3.2, we show the simplest example of a possible code-reuse attack
in JavaScript. We assume that a web server executes a getRequestHandler

34 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

A
0:

 C
od

e-
re

us
e

at
ta

ck

W
1.

1:
 C

od
e

in
je

ct
io

n
G

1.
2:

 In
je

ct
ed

 c
od

e
ev

al
ua

tio
n

A
1:

 C
od

e
in

je
ct

io
n

A
2:

 C
al

l-f
lo

w
hi

ja
ck

in
g

A
3:

 D
at

a-
on

ly

L1
.1

.1
: R

un
tim

e
fu

nc
tio

n
cr

ea
tio

n L1
.2

.1
: E

xp
lic

it
ca

ll L1
.2

.2
: I

m
pl

ic
it

ca
ll

W
2.

1:
 F

un
ct

io
n

po
in

te
r m

od
ifi

ca
tio

n
G

2.
2:

 In
vo

ca
tio

n
of

m
od

ifi
ed

 p
oi

nt
er

L2
.2

.1
: D

ire
ct

 c
al

l

L2
.2

.2
: I

nd
ire

ct
 c

al
l

L2
.1

.1
: I

nj
ec

tio
n

of
ex

is
tin

g
fu

nc
tio

n

L2
.1

.2
: C

re
at

io
n

of
 o

bj
ec

t v
ia

co
nt

ro
lle

d
ty

pe

W
3.

1:
 S

ha
re

d
st

at
e

m
od

ifi
ca

tio
n

G
3.

2:
 N

on
-c

on
tro

l-
da

ta
 e

xe
cu

tio
n

G
3.

3:
 C

on
tro

l-f
lo

w

be
nd

in
g

ex
ec

ut
io

n

L3
.2

.1
: E

va
lu

at
io

n
of

 d
at

a
as

 c
od

e

L3
.2

.2
: D

at
a

tra
ns

fe
r t

o
AP

I
L3

.1
.1

: M
od

ifi
ca

tio
n

of
 p

ro
to

ty
pe

L3
.1

.3
: M

od
ifi

ca
tio

n
of

 s
ta

tic
 p

ro
pe

rty

L3
.1

.2
: M

od
ifi

ca
tio

n
of

 o
bj

ec
t i

n
pr

ot
ot

yp
e

C
#:

 c

om
m

an
d.

Ex
ec

ut
e(

);

 m
et

ho
d

 .I

nv
ok

e(
ne

w
 o

bj
ec

t[]
{a

rg
});

JS
:

 o
bj

.to
JS

O
N

()
 v

ar
 fo

o
=

ob
j.t

oJ
SO

N
 f

oo
.c

al
l(o

bj
)

 f
oo

.a
pp

ly
(o

bj
)

L3
.3

.1
: B

ra
nc

he
s

L3
.3

.3
: E

xc
ep

tio
ns

L3
.3

.2
: L

oo
ps

A
tta

ck
s

Ex
pl

oi
t p

rim
iti

ve
s

C
#:

 F

in
al

iz
er

s
an

d
m

et
ho

ds
 o

f
th

e
in

te
rfa

ce
s:

 I
En

um
er

ab
le

,
 I

Se
ria

liz
ab

le

JS
:

 J
SO

N
.s

tri
ng

ify
(o

bj
)

 v
ar

 s
tr

=
`T

EX
T:

 $
{o

bj
}`

 v
ar

 s
tr

=
ob

j +
 "T

EX
T"

C
#:

 A

ct
iv

at
or

.C
re

at
eI

ns
ta

nc
e(

 T

yp
e.

G
et

Ty
pe

(i 1
)

)
;

JS
: o

bj
[i 1

][i
2]

=
an

y
ob

j[i
3][

i 4][
i 5]

=
an

y
w

he
re

 i 1
==

 "_
_p

ro
to

__
",

i 3
==

 "c
on

st
ru

ct
or

",
i 4

==
 "p

ro
to

ty
pe

" JS
: o

bj
[i 1

][i
2]

=
an

y

w
he

re
 i 1

 is
 th

e
ex

is
te

d
ob

je
ct

in
 p

ro
to

ty
pe

 o
f `

ob
j`,

 e
.g

.,
"to

S
tri

ng
"

JS
:

 e
va

l(o
bj

.c
od

e)

La
ng

ua
ge

 a
nd

ru

nt
im

e
fe

at
ur

es

C
od

e
pa

tte
rn

s

C
#:

C
om

pi
le

As
se

m
bl

yF
ro

m
So

ur
ce

(

 o
pt

io
ns

, i
1)

;

C
Sh

ar
pC

om
pi

la
tio

n.
C

re
at

e(
 "

D
yn

am
ic

As
se

m
bl

y"
,

 n
ew

 []
 {

i 2
 }

); JS
:

 v
ar

 o
bj

 =
 {

 to

JS
O

N
: n

ew
 F

un
ct

io
n(

i 1
),

 to

St
rin

g:
 f.

co
ns

tru
ct

or
(i 2

)
 }

C
#:

 m

et
ho

dI
nf

o

 .I
nv

ok
e(

ne
w

 o
bj

ec
t[]

{a
rg

});

 p
ro

pe
rty

In
fo

.S
et

Va
lu

e(
ar

g)
;

JS
:

 o
bj

.fo
o(

)

w
he

re
 `f

oo
` i

s
im

pl
em

en
te

d
in

 `o
bj

` i
ts

el
f

C
#:

 o

bj
1.

m
yD

el
eg

at
e

=

 o
bj

2.
ex

is
tin

gM
et

ho
d;

JS
:

 o
bj

1[
i 1]

=
ob

j2
[i 2]

w
he

re
 `o

bj
2[

i 2]
` p

oi
nt

s
to

 a
m

et
ho

d

C
#:

 o

bj
.v

irt
M

et
ho

d(
)

w
he

re
 `v

irt
M

et
ho

d`
 is

 a
 v

irt
ua

l
m

et
ho

d

JS
:

 o
bj

.fo
o(

)

w
he

re
 `f

oo
` i

s
im

pl
em

en
te

d
in

 o
ne

 o
f `

ob
j`

pr
ot

ot
yp

es

C
#:

 C

on
te

xt
.C

m
d=

 i 1;

 f
ie

ld
In

fo
.S

et
Va

lu
e(

nu
ll,

 i 2
);

C
#:

 P

ro
ce

ss
.S

ta
rt(

C
on

te
xt

.C
m

d)
;

JS
:

 c
on

st
 {

ex
ec

 }
=

 re

qu
ire

('c
hi

ld
_p

ro
ce

ss
')

 e
xe

c(
ob

j.c
m

d)

C
#:

 i

f (
C

on
te

xt
.N

ex
tT

oc
ke

n)
 {

 //

 p
er

fo
rm

 a
ny

 u
ne

xp
ec

te
d

 //

 o
pe

ra
tio

ns
 } JS

:
 i

f (
ob

j.n
ex

tT
oc

ke
n)

 {

 //
 p

er
fo

rm
 a

ny
 u

ne
xp

ec
te

d

 //
 o

pe
ra

tio
ns

 }

C
#:

 i

f (
C

on
te

xt
.Is

Ad
m

in
) {

 //

 p
er

fo
rm

 h
ig

h-
pr

iv
ile

ge
d

 //

 o
pe

ra
tio

ns
 } JS

:
 i

f (
ob

j.a
dm

in
) {

 //

 p
er

fo
rm

 h
ig

h-
pr

iv
ile

ge
d

 //

 o
pe

ra
tio

ns
 }

C
#:

 tr

y
{

 /

/ c
od

e
th

at
 m

ay
 th

ro
w

 /
/ a

n
ex

ce
pt

io
n

 } c
at

ch
 (E

xc
ep

tio
n

ex
ce

pt
io

n)

w

he
n

(C
on

te
xt

.S
ta

te
 =

=
1)

{

 /
/ h

an
dl

e
th

e
ex

ce
pt

io
n

 /

/ f
or

 th
e

sp
ec

ifi
c

st
at

e
 }

Figure 3.3: Taxonomy of the code-reuse attacks in managed programming
languages and runtimes.

3.2. CODE-REUSE ATTACKS IN MANAGED RUNTIMES 35

function to handle GET requests. The queryParams argument contains the user-
provided parameters. Line 2 creates a new function with source code that a user
sends in the request and stores the function in a variable. This illustrates the
Code Injection weakness, where the application constructs a code segment using
externally-provided input from a user or an upstream component [142]. However,
only Line 3 executes the created function by calling the value of the variable
userFunction, allowing an attacker to send arbitrary code as a user and have it
evaluated on the web server with the application’s privileges. This line represents
a gadget. Exploiting the code injection is not possible if the application does
not have the userFunction() call in the existing code. Therefore, we have two
exploit primitives in this small code fragment, both of which are required for a
successful attack on the web application. The real gadgets can be more complex,
as we will see later, and generally require studying and developing specific tools
for discovering such code fragments.

1 function getRequestHandler(queryParams) {
2 const userFunction = new Function(queryParams.code)
3 userFunction()
4 }

Listing 3.2: Example of a code-reuse attack in JavaScript.

Listing 3.3 presents a simple command injection attack, which is not included
in our taxonomy of code-reuse attacks. We use this example to clearly demon-
strate the differences between injection and code-reuse attacks. The GET request
handler takes parameters from the user’s request and executes a new process.
Line 3 starts a new process with a user-controlled process name and arguments
via the command parameter of the GET request. This is an instance of the OS
Command Injection weakness, where the application constructs an OS command
using externally-influenced input from a user or an upstream component [141].
This exec call is the only required exploit primitive for a successful attack. Thus,
we do not classify it as a code-reuse attack.

1 const { exec } = require("child_process")
2 function getRequestHandler(queryParams) {
3 exec(queryParams.command)
4 }

Listing 3.3: Example of an OS command injection attack in JavaScript.

The attackers’ high-level goal is to conduct a code-reuse attack when sim-
pler attacks, such as direct code or command injections, are not possible. They
can target any kind of application: client-side or server-side web applications,
command line interfaces, or desktop applications. Figure 3.3 presents the en-
tire taxonomy that refines the high-level goal to specific code patterns that allow
achieving the goal. We summarize the first-level subgoals below and consider the
required language features with examples to perform the attacks in the following
sections.

36 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

Code injection If a language allows programmers to generate code for functions
or methods at runtime, and a program calls the runtime-created function, then
an attacker can achieve the code injection subgoal. Managed languages usually
do not provide features that allow an attacker to corrupt existing code, unlike
unsafe languages. However, reflection or the language itself can provide APIs
for creating new functions and methods. Since a method is a special case of a
function, namely a function with the first argument pointing to the object to
which the method is applied, we will use the term function to describe methods
as well.

Call-flow hijacking In contrast to unsafe languages where attackers can over-
write arbitrary code pointers through memory bugs, managed languages ensure
that code pointers can not be corrupted. However, an attacker can still overwrite
a function pointer or create an object of an arbitrary type. In the first case, the
overwritten function pointer will then point to a function chosen by the attacker.
In the second case, if the attacker controls an object type, they dictate which
method will be called through a virtual call for that object. Despite numerous
restrictions and type safety constraints, which typically limit them to existing
functions with the same signature, attackers can still hijack the call-flow to in-
voke methods unexpected by the programmer. If an attacker reaches a call to a
dangerous method, such as spawning a process with the attacker-controlled name
and arguments, call-flow hijacking can result in arbitrary code execution.

Data-only When an attacker can modify only data, such as variable or object
property values, it can still lead to significant security impacts on the system.
A simple scenario involves an attacker modifying data that reaches a dangerous
function, similar to any injection attack. While this situation does not fall under
the category of code-reuse attacks due to its single-ingredient nature, more com-
plex data manipulations can exhibit all the characteristics of a code-reuse attack.
If an attacker modifies the shared state of a program, such as changing the values
of static properties, and the altered properties are later used in code that is not
designed to handle these changes, a more advanced attack can occur. In this sce-
nario, the attacker manipulates the program’s state in ways the programmer did
not anticipate. This unexpected state can then impact the behavior of unrelated
functions, potentially leading to a code-reuse attack.

Real-world impact Based on our designed taxonomy and the identified vulner-
able code patterns in C# and JavaScript, we have developed tools to detect the
described weaknesses and gadgets. These tools allow us to examine the preva-
lence of such patterns in application code, their packages, and runtimes. We have
also assessed the taxonomy’s effectiveness in detecting vulnerabilities in real-world
applications by using the tools and conducting manual analysis to identify and ex-
ploit vulnerabilities in high-profile applications. Our studies have resulted in the
discovery of 20 new vulnerabilities, with severities ranging from High to Critical,
which we have reported to the vendors.

Table 3.1 lists all detected vulnerabilities and the language features they ex-

3.2. CODE-REUSE ATTACKS IN MANAGED RUNTIMES 37

Report CVSS Application Attack Features Publication
CVE-2019-0866 Critical 9.6

Azure DevOps
2019

XSS +
RCE L2.1.2

L2.2.1 L2.2.2

Paper A:
Serial

Detector [191]
CVE-2019-0872 Critical 9.0
CVE-2019-1306 Critical 9.8 RCE
V-2021-0001 High 8.9

npm-cli 8.1.0 RCE L3.1.1
L3.2.2

Paper B:
Silent

Spring [194]

V-2021-0002 High 8.9

CVE-2022-24760 Critical 10 Parse Server
4.10.6

RCE +
RC

L3.1.1
L3.3.1

CVE-2022-39396 Critical 9.8
Parse Server

5.3.1

L3.1.1 L3.3.1
L1.1.1 L1.2.2CVE-2022-41878 Critical 9.1

CVE-2022-41879 Critical 9.1

V-2022-0001 Critical 10 L3.1.1
L3.2.2

CVE-2023-23917 High 8.6 Rocket.Chat
5.1.5

RCE +
RC

L3.1.1 L3.3.1
L1.1.1 L1.2.2

CVE-2023-31414 High 8.2 Elastic Kibana
8.7.0

RCE +
RC

L3.1.1
L3.2.2

Paper D:
GHunter [42]

CVE-2023-31415 Critical 9.9 L3.1.1
L3.2.2 L3.3.1

Paper C:
Dasty [196]

CVE-2023-38155 High 7.0 Azure DevOps
2022 LPE L2.1.2

L2.2.1 L2.2.2

Doctoral
Thesis

V-2024-0001 Critical 9.9
Elastic Kibana

8.14.1
RCE +

RC

L3.1.1 L3.1.2
L3.2.2 L3.3.1

CVE-2024-37287 Critical 9.1 L3.1.1
L3.2.2 L3.3.1V-2024-0002 High 7.2

CVE-2024-37288 Critical 9.9
Elastic Kibana

8.15.0 RCE L1.1.1
L1.2.2CVE-2024-37285 Critical 9.1

V-2024-0003 Critical 9.1

Table 3.1: Disclosed vulnerabilities leading to code-reuse attacks.

ploit. The first developed tool, SerialDetector [191], analyzes .NET compiled
assemblies for W2.1: Function pointer modification weaknesses and the gadgets
that allow G2.2: Invocation of modified pointer for exploiting call-flow hijack-
ing attacks. We identified 3 vulnerabilities that lead to RCE in Microsoft Azure
DevOps 2019 and validated the gadgets in the .NET Framework and popular
third-party deserializers.

While working on data-only attacks, we developed Silent Spring [194],
GHunter [42], and Dasty [196]. These tools detect prototype pollution vulnerabil-
ities and their gadgets in the code of Node.js [66], Deno [83] runtimes, and NPM
packages. The detected weaknesses and gadgets allowed us to exploit and report
10 vulnerabilities in popular open-source products, including npm-cli [156], Parse
Server [164], Rocket.Chat [172], and Elastic Kibana [27].

As a result of the taxonomy, we have also on discovered new exploit primi-
tives. We have re-examined Elastic Kibana through the lens of our taxonomy to
detect and exploit 3 vulnerabilities leading to code injection attacks. Our deeper
understanding of the vulnerable code patterns enabled us to exploit the addi-

38 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

 Web app

Client-side

OS High-privilege account

Database

 User

Internal service

 User features

 Admin features

Server-side

 User features

 Admin features

External
service/ data

 Admin

 Local

Shared
local files

Confidential
data

 Standalone app

XSS

 CVE-2023-38155

 Unauth

 External

 V-2021-0001
 V-2021-0002

 CVE-2022-41878
 CVE-2022-41879
 CVE-2023-23917
 CVE-2023-31414
 CVE-2024-37285
 CVE-2024-37287
 V-2024-0002
 V-2024-0003

 CVE-2022-24760
 CVE-2022-39396
 V-2022-0001

 CVE-2023-31415
 CVE-2024-37288
 V-2024-0001

OS Low-privilege account

 CVE-2019-0866
 CVE-2019-0872

A

C

E

A

A

A

D

B
C

 CVE-2019-1306

E

Figure 3.4: Disclosed vulnerabilities aline with the attacker model.

tional prototype pollution vulnerabilities that seemed unexploitable during our
initial analysis of Kibana source code. Sections 3.3, 3.4, and 3.5 provide detailed
descriptions of the vulnerabilities and exploit chains, demonstrating the practical
application of our methodology, tools, and taxonomy.

Attacker model We match all detected vulnerabilities with the described at-
tacker model in Figure 3.4 to illustrate their impact and simplify the understand-
ing of the exploitation details. The model highlights six of the most critical
unauthenticated RCEs in Microsoft Azure DevOps, Parse Server, and npm-cli.
Three of these can be exploited by a user of Parse Server without any privileges
by crafting a payload and sending it in a request to the application. The other
three vulnerabilities are exploited via access to an external service that provides

3.3. CODE INJECTION ATTACKS 39

malicious data to Microsoft Azure DevOps and the npm-cli package manager.
A user with low privileges could exploit three detected RCEs in Elastic Kibana

and two RCEs in Microsoft Azure DevOps by chaining them with XSSs. Addi-
tionally, one vulnerability is an LPE in Microsoft Azure DevOps that could be
exploited by a user with low privileges on the same machine. Finally, eight vulner-
abilities in Elastic Kibana, Rocket.Chat, and Parse Server could be triggered by
administrators of these web applications, primarily targeting the infrastructure
where the applications are deployed.

3.3 Code Injection Attacks

As described in the taxonomy in Figure 3.3, an attacker can achieve arbitrary code
execution via A1 code injection. The language should have two features: dynamic
code generation and execution of the generated code. The first ingredient of the
attack, dynamic code generation, can be implemented by creating new functions
with code controlled by the user. In this case, the program has a code injection
weakness when it allows user input to contain code syntax and pass the input
to an API that creates a function without proper validation. Thus, the dynamic
code generation feature leads to a code injection weakness in the program.

The second ingredient, execution of the generated code, is a fundamental
feature in any language. The language should allow calling the injected function.
Languages generally do not distinguish between dynamically generated functions
and those explicitly defined in the source code by a programmer. Therefore, any
function call permits an attacker to execute the injected code.

Exploit Primitives

The taxonomy refines two exploit primitives for code injection attacks: the weak-
ness W1.1, which allows an attacker to inject code into the program, and the
gadget G1.2, which evaluate the injected code.

JavaScript language and runtime features for W1.1 weakness A call
to the Function constructor with improper validation of either the function
body or the arguments list exhibits the W1.1 weakness. Listing 3.4 shows the
weakness code pattern L1.1.1 through the instantiation of new functions using
new Function() on lines 1, 4, 5, and 6. These lines represent the assignments
of dynamically-created functions to the variable foo and the properties of the
object obj. Additionally, the code creates a new function via a constructor call
as a method without the new operator, as shown in line 10.

Another API executing JavaScript code dynamically is the vm module, which
enables compiling and running code within V8 Virtual Machine contexts. Line
13 represents the vm.compileFunction call, which also creates a new function
with the provided code at runtime.

40 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

The shown code does not validate the values of arg and body. Therefore,
if an attacker controls these values, they can inject arbitrary code into the new
functions. For body, the runtime evaluates any valid JavaScript code when the
function is invoked. For arg, JavaScript allows the use of an expression as a de-
fault value for function arguments. The runtime evaluates the argument’s default
value when the function invocation does not pass a value for that argument.

1 var foo = new Function(arg, body)
2
3 var obj = {
4 toJSON: new Function(arg, body),
5 valueOf: new Function(arg, body),
6 toString: new Function(arg, body)
7 }
8
9 var func = function () { }

10 var foo = func.constructor(arg, body)
11
12 var vm = require("vm")
13 var foo = vm.compileFunction(body)

Listing 3.4: JavaScript code patterns of the code injection attack.

JavaScript language and runtime features for G1.2 gadget The injected
code evaluation of the G1.2 gadget can be represented as explicit or implicit
function invocation. The explicit invocations in JavaScript are either a direct
call of a function by its name, as shown in line 1 of Listing 3.5, or calls via
Function.prototype.call and Function.prototype.apply [113] in the fol-
lowing two lines. The call and apply methods of function instances call the
function with a given this value and arguments.

1 foo()
2 foo.call(null, 1)
3 foo.apply(null, [1])
4
5 JSON.stringify(obj) // toJSON called
6 var val = 42 + obj // valueOf or toString called
7 var str = ‘TEXT: ${obj}‘ // toString called
8 var any = {}
9 any[obj] // toString called

10
11 any.__defineGetter__("aaa", foo)
12 any.aaa
13 any.__defineSetter__("bbb", foo)
14 any.bbb = 1

Listing 3.5: JavaScript code patterns of the code injection attack.

When the application code does not explicitly call the generated function, but
an attacker controls the method name of the injected function, they can abuse im-
plicit function calls. These implicit function invocations can be hidden within the
internal code implementation. An example of this is the JSON.stringify [116]

3.3. CODE INJECTION ATTACKS 41

static method, which converts a JavaScript value to a JSON string. If any
property of the converting object, or the object itself, has a toJSON method,
JSON.stringify calls toJSON to use the return value instead of the default string
representation. Another example is implicit type coercion, which automatically
converts values from one data type to another, such as strings to numbers [123].
In line 6, the code implicitly calls either obj.valueOf or obj.toString to con-
vert the object type to a primitive type. When using template literals, as shown
in line 7, JavaScript implicitly converts objects to strings, subsequently invoking
obj.toString.

Another case of an implicit toString call is computed property names [118],
shown in line 9 of Listing 3.5. When code have an object in square brackets [],
that object will be converted to a string and used as a property name. Thus,
the JavaScript runtime calls the toString method to get a property name if the
object defines this method.

Code can define getter and setter functions for accessing property values using
the Object.defineProperty call [120] or the legacy methods __defineGetter__
and __defineSetter__, as illustrated in lines 11 and 13. These APIs bind an
object property to a function, which is invoked whenever the property is accessed,
as demonstrated in lines 12 and 14.

Other implicit function invocations are not as useful for attackers because
they require specific syntax to define the function that triggers the injected code.
This syntax could pertain directly to the injected function or to another function
in a call chain leading to the injected function. Methods with names defined
as Symbol values [122], such as Symbol.iterator and Symbol.toPrimitive,
cannot be implicitly converted to a Symbol at runtime. Consequently, these
method names must be explicitly defined in the source code by a program-
mer. Additionally, property getters and setters can be defined using the get
and set keywords in the original source code, for example, with the syntax
{ get prop() { /*...*/ } }.

Our study of code-reuse attacks via code injection reveals that they typically
exploit the explicit use of the new Function() constructor call [16]. Through
comprehensive studies of code patterns susceptible to code-reuse attacks, we
present several sophisticated examples that achieve arbitrary code execution with-
out using the new Function() syntax. Listing 3.6 shows a simple function
pipeline that takes two arguments: a string value that the function transforms
using the methods of the value object, and a list of methods for transformation
passed as the second argument, which consists of steps in an array. Line 2 enu-
merates the steps in the array, and line 3 calls a method of the value object by
the passed function name (func property) and arguments (args) in the step. The
following code demonstrates the usage of the pipeline function. The expression
is a parsed JSON object with two steps, which concatenates the initial value with
"def" and transforms the result to upper case, returning "ABCDEF" as the result.

In Listing 3.6, we assume that an attacker controls the data in the input
variable. Although the example source code does not have a new Function

42 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

1 function pipeline(value, expression) {
2 for (const step of expression)
3 value = value[step.func](...step.args)
4
5 return value
6 }
7
8 const input = ‘[
9 { "func": "concat", "args": ["def"] },

10 { "func": "toUpperCase", "args": [] }
11]‘
12
13 pipeline("abc", JSON.parse(input)) // returns "ABCDEF"

Listing 3.6: JavaScript code injection attack example I.

call, the pipeline function is vulnerable and leads to a code injection attack.
As the first step, the attacker obtains a function object as the result of the
call Object.prototype.__lookupGetter__ with __proto__ as an argument.
The __lookupGetter__ call returns a getter for the __proto__ property of any
object, including strings. This step stores the received function in value. As
the second step, they call the constructor function with injected code as an
argument, which stores the created function in value. Finally, they invoke the
call method of the created function to evaluate the injected code.

The following JSON code snippet represents the full payload of this attack:

[
{ "func": "__lookupGetter__", "args": ["__proto__"] },
{ "func": "constructor", "args": ["console.log(’Injection!’)"] },
{ "func": "call", "args": [] }

]

The source code in Listing 3.6 represents both the W1.1 weakness and the
G1.2 gadget in line 3. This code allows an attacker to execute arbitrary methods
on the return value of the previous method call. While this assumption seems
strong for code in real applications, a programmer must ensure that value, which
is overwritten by the return value at every step, does not have any dangerous
functions and will not acquire them in the future. We now relax this assumption
and demonstrate another possible implementation of the pipeline that executes a
sequence of only allowed methods.

Listing 3.7 demonstrates an implementation of a pipeline function (lines 15-
23) that evaluates functions from the actions object based on the expression
in its argument. The code groups the actions by namespaces, which are nested
objects that contain programmer-defined functions only. For instance, the date
namespace consists of functions for working with dates. Line 6 defines a function
that returns the current date. Lines 7-11 define a function that returns the day
name of the passed date argument. For our demonstration, it does not matter

3.3. CODE INJECTION ATTACKS 43

1 const actions = {
2 text: {
3 concat: (a, b) => a + b
4 },
5 date: {
6 now: () => new Date(),
7 dayName: (date) => {
8 const days = ["Sunday", "Monday", "Tuesday", "Wednesday",
9 "Thursday", "Friday", "Saturday"];

10 return days[date.getDay()];
11 }
12 }
13 }
14
15 function pipeline(node) {
16 if (typeof node !== "object")
17 return node
18
19 const { action, args = [] } = node
20 const [namespace, func] = action.split(".")
21 const evaluatedArgs = args.map(pipeline)
22 return actions[namespace][func](...evaluatedArgs)
23 }
24
25 const input = ‘{
26 "action": "text.concat",
27 "args": [
28 "Today: ",
29 {
30 "action": "date.dayName",
31 "args": [{"action": "date.now"}]
32 }
33]
34 }‘
35
36 pipeline(JSON.parse(input))

Listing 3.7: JavaScript code injection attack example II.

which functions are implemented in the actions object.
The pipeline function returns the input argument as is, if the argument has a

primitive type, such as a string (line 17). Otherwise, it recursively calls pipeline
for all arguments in line 21. Then it reads the required function from the actions
object and invokes this function with the already evaluated arguments in line 22.
The following lines show a simple expression in JSON format that concatenates
"Today: " with the current day name. For instance, if we run this code on
Sunday, we get the result string "Today: Sunday".

We assume that an attacker controls the value of the input variable. Let
us detail line 22, which represents the code pattern of the W1.1 weakness,
func.constructor(arg, body). An attacker should provide the name of any

44 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

built-in Object function as namespace and constructor as action. By control-
ling args, they can create a function with arbitrary code. However, the code
in Listing 3.7 does not evaluate the created function directly. Thus, we need to
provide a gadget that triggers the function with the attacker-controlled code to
exploit this weakness.

An attacker can use the payload from the following JSON code snippet to
make an implicit call:

1 {
2 "action": "text.pwn",
3 "args": [{
4 "action": "text.__defineGetter__",
5 "args": [
6 "pwn", {
7 "action": "toString.constructor",
8 "args": ["console.log(’Injected!’); return () => {};"]
9 }

10]
11 }]
12 }

The JSON object in lines 7-8 allows an attacker to create a new function
and passes it as the second argument of the __defineGetter__ object’s method.
The method creates a new property pwn with the attacker-created getter. Then,
reading the pwn property, as described in line 2, triggers the injected function via
the implicit call of the getter. Thus, the pipeline function in Listing 3.7 is also
vulnerable to code injection attacks without an explicit call to new Function()
in the original source code.
C# language and .NET runtime features for W1.1 weakness The .NET
API offers methods to generate executable code at runtime. It supports input
code written in C# and other .NET languages, such as Visual Basic and F#. The
dynamically generated code is not limited to a single function; users can pass code
that includes classes with various methods and properties. We demonstrate two
examples of such an API, one for a Windows-only version of .NET, known as
.NET Framework, and another for the cross-platform .NET Core.

In the first lines of Listing 3.8, we define the ICommand interface, which is
used in the subsequent examples. This interface represents the Command de-
sign pattern [69] and includes the Execute method defined in line 2. The dy-
namically generated code implements this interface, causing any virtual call to
ICommand.Execute to trigger the dynamically-defined function.

Listing 3.8 demonstrates dynamic code generation using CodeDomProvider in
the .NET Framework. The BuildDynamicCommand function generates an imple-
mentation of the ICommand interface and returns it. The function embeds code
from the passed argument into the ICommand.Execute method, shown in line
9. The assemblyCode variable (lines 6-10) contains the complete source code
for the new dynamically generated assembly. This source code is then compiled
into an assembly in line 19. Using the Reflection API, the code instantiates

3.3. CODE INJECTION ATTACKS 45

1 public interface ICommand {
2 void Execute();
3 }
4
5 public ICommand BuildDynamicCommmand(string code) {
6 string assemblyCode = @"
7 using System;
8 public class DynamicCommand : ICommand {
9 public void Execute() {" + code + @"}

10 }";
11
12 var options = new CompilerParameters {
13 GenerateExecutable = false,
14 GenerateInMemory = true
15 };
16
17 options.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().Location);
18 var provider = CodeDomProvider.CreateProvider("CSharp");
19 var results = provider.CompileAssemblyFromSource(options, assemblyCode);
20 var assembly = results.CompiledAssembly;
21 var dynamicCommandType = assembly.GetType("DynamicCommand");
22 return (ICommand) Activator.CreateInstance(dynamicCommandType);
23 }

Listing 3.8: C# code pattern of the code injection attack in .NET Framework.

the dynamically generated class, returning it as an ICommand implementation
in line 22. Consequently, if an attacker can control the code argument of the
BuildDynamicCommand function, they can inject any code into the dynamic as-
sembly. Any call to the Execute method of the returned object invokes the
injected code.

Listing 3.9 demonstrates an API in .NET Core leading to code injection.
This example also defines the BuildDynamicCommmand function, which returns a
dynamically generated implementation of the ICommand interface. In line 5, the
function concatenates the C# source code with a template that implements the
Command pattern. The final source code in the assemblyCode variable is parsed
into an abstract syntax tree representation in line 8 and compiled into a dynamic
assembly in line 13. To use this generated assembly in the application, the code
in line 22 loads the assembly via the Reflection API. Lines 23-24 demonstrate
obtaining the generated class, creating an instance of this class, and returning it
as the result of the function. An attacker should control the code argument of the
BuildDynamicCommmand function and trigger the ICommand.Execute execution
of the returned value to exploit the code injection attack and achieve arbitrary
code execution.

C# language and .NET runtime features for G1.2 gadget Since the in-
jected code is not constrained to one method, as demonstrated in our examples,
an attacker can insert code and declare any methods which an application ex-

46 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

1 public ICommand BuildDynamicCommmand(string code) {
2 string assemblyCode = @"
3 using System;
4 public class DynamicCommand : ICommand {
5 public void Execute() {" + code + @"}
6 }";
7
8 var syntaxTree = CSharpSyntaxTree.ParseText(assemblyCode);
9 var references = AppDomain.CurrentDomain.GetAssemblies()

10 .Where(assembly => !assembly.IsDynamic)
11 .Select(assembly => MetadataReference.CreateFromFile(assembly.Location));
12
13 CSharpCompilation compilation = CSharpCompilation.Create(
14 "DynamicAssembly",
15 new[] { syntaxTree },
16 references,
17 new CSharpCompilationOptions(OutputKind.DynamicallyLinkedLibrary)
18);
19
20 using (var ms = new MemoryStream()) {
21 var result = compilation.Emit(ms);
22 var assembly = Assembly.Load(ms.ToArray());
23 var dynamicCommandType = assembly.GetType("DynamicCommand");
24 return (ICommand) Activator.CreateInstance(dynamicCommandType);
25 }
26 }

Listing 3.9: C# code pattern of the code injection attack in .NET Core.

ecutes either explicitly or implicitly. We categorize these explicit and implicit
function invocations as the G1.2 gadget in our taxonomy.

In C#, an explicit invocation is a method call by its name, which can be either
a non-virtual or a virtual call, such as the invocation of the Execute method from
our examples. The application performs a virtual call via the ICommand interface
and evaluates the injected code. Additionally, method calls can be expressed
through the reflection API, such as Invoke [135], which invokes the method or
constructor represented by the current instance using specified parameters.

Implicit invocations occur through the internal mechanisms of the .NET run-
time. For instance, the garbage collector performs final clean-up of resources
managed by a class when an instance of the class is being collected, executing
a class finalizer [130] in the process. An attacker can define a finalizer named
~DynamicCommand(), which the garbage collector guarantees to call for any in-
stance of the DynamicCommand class. Similar to JavaScript, C# supports setter
and getter methods for properties. If an attacker injects code into these meth-
ods or defines custom properties, any assignment or property value read triggers
the setter and getter methods respectively. The .NET platform also defines sev-
eral interfaces whose methods are called implicitly by the internal code of its
API implementation. For example, the IEnumerable interface exposes an enu-

3.3. CODE INJECTION ATTACKS 47

merator [133]. If an object implements IEnumerable, then a foreach loop and
Language Integrated Query (LINQ) [131] call the enumerator’s methods when
iterating through the elements of the collection represented by the object. An-
other example is the ISerializable interface, which allows an object to control
its own serialization and deserialization through the built-in serialization process.
For objects implementing this interface, the built-in binary or XML serializers call
the GetObjectData method during serialization to populate the supplied output
data with all necessary information to represent the object [136].

Related Work

The previous works [31, 32, 70, 106, 150, 151, 202] that study code injections pri-
marily focus on the injection points, referred to as weaknesses in our taxonomy,
while largely ignoring the necessary gadgets, required to evaluate the injected
code. Most works consider code and command injection attacks as a single
class of attacks with different injection points, i.e. sinks. Sinks such as eval
in JavaScript evaluate the injected code directly, whereas new Function creates
functions without immediate execution. This simplification makes sense when the
created function can be evaluated easily through subsequent call instructions in
the code. Dahse et al. [51] investigate second-order vulnerabilities, which occur
when an attack payload is initially stored by the application on the web server
and later used in a security-critical operation. They introduce an automated
static code analysis approach to detect second-order vulnerabilities and related
multistep exploits in web applications. While their approach is evaluated on SQL
injections, XSS, path traversal, and arbitrary file writing vulnerabilities, it can
also be extended to code injections.

The detection of code injection attacks has been extensively studied in the con-
text of the security of JavaScript web applications [31, 32, 70, 106, 150, 151, 202].
Staicu et al. [202] propose using intra-procedural data flow static analysis to infer
runtime policies for injection sinks. Nielsen et al. [150] present feedback-driven
abstract interpretation as a method for identifying injection vulnerabilities in
Node.js applications. In a more recent study, Nielsen et al. [151] illustrate the use
of modular call graphs to minimize false positives in software composition analy-
sis. Li et al. [105, 106] introduce flow- and context-sensitive static analysis using
object dependency graphs to uncover prototype pollution, path traversal, and
various injection vulnerabilities, including code injections. Gauthier et al. [70]
perform dynamic analysis of Node.js modules and applications through gray-box
taint analysis, detecting data flows from untrusted sources to security-sensitive
sinks, thereby modeling injection vulnerabilities. Cassel et al. [31,32] apply scal-
able dynamic taint analysis with algorithmically optimized propagation policies
to conduct large-scale evaluations of NPM packages.

Beyond studying the root causes of code injection vulnerabilities, some re-
search addresses the practical aspects of exploiting these vulnerabilities in specific
libraries, such as serializers and web template engines. The blog posts [81, 213]

48 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

describe the exploitation of known insecure deserialization issues in JavaScript
packages, which allow an attacker to create and evaluate a function from seri-
alized data. Another class of vulnerabilities is Server-Side Template Injection
(SSTI), which occurs when an attacker can inject malicious code into a template
rendered to HTML on the server. The blog posts [6, 74, 91, 100, 168] present
details of SSTIs in popular Node.js template engines such as Handlebars, Jade,
JsRender, Nunjucks, and PugJs.

For the .NET platform, previous work has studied injection vulnerabilities
as a general domain and proposed methodologies and tools for their detection,
which can be extended to code injection attacks. Fu et al. [68] propose the
design of a symbolic execution framework for .NET bytecode of ASP.NET web
applications to identify SQL injection vulnerabilities. Doupé et al. [59] implement
a semantics-preserving static refactoring analysis to separate code and data in
.NET binaries with the goal of protecting legacy applications from server-side
XSS attacks. Although dynamically generated code is not broadly used in .NET
applications, features such as server-side template engines require runtime code
generation and can be exploited for code injection attacks. Blog posts [154, 178,
184,211] discuss SSTI attacks and their prevention in ASP.NET Razor and custom
web template engines.

Contributions

In this doctoral thesis, we analyze the source code of the popular web application,
Elastic Kibana [27]. Kibana is source-available software designed for data visu-
alization. This project has a large code base written in TypeScript, comprising
more than 10 million lines of code (LoCs), including its dependencies. It operates
using Node.js to run a web server and provides a dashboard UI as well as a Web
API for users. We chose Kibana due to its rich features for data transformation,
which typically increase the possibility of discovering weaknesses and gadgets that
may enable code-reuse attacks.

In Silent Spring [194], we focus on improving CodeQL [84] to enhance the
efficiency of JavaScript and TypeScript static analysis. The improved version of
CodeQL achieves high recall and precision metrics in detecting prototype pollu-
tion vulnerabilities, which we discuss in Chapter 4. We adopted the improved
version of CodeQL to develop new queries for detecting specific code injection
patterns in the source code of Kibana and its dependencies.

Kibana uses the js-yaml serializer [153] to parse YAML documents and con-
vert them into JavaScript objects. We identified a code pattern in this serial-
izer related to L1.1.1, where JavaScript functions are created at runtime with
their bodies defined in a parsed YAML document. The default configuration of
js-yaml supports the deserialization of functions, posing security risks when the
library is used with untrusted data. The maintainers of js-yaml are aware of
these risks and have implemented two functions for YAML deserialization: load,

3.4. CALL-FLOW HIJACKING ATTACKS 49

which allows the deserialization of JavaScript-specific types, including functions,
and safeLoad, which supports only standard YAML tags and types.

We detected three vulnerabilities leading to code injection attacks against
Kibana. The first, CVE-2024-37288, allows a user with low privileges to inject
strings from the request’s parameters into a YAML document and deserialize
it using the unsafe load function. Kibana then includes the deserialized ob-
ject in the HTTP response by converting it to a JSON string representation
using JSON.stringify. This process triggers the W1.1 weakness, returning a
JavaScript object with the injected toJSON function. This function is then eval-
uated by triggering the G1.2 gadget through an implicit call, leading to an RCE
attack.

CVE-2024-37285 and V-2024-0003 require administrator privileges to upload a
malicious YAML document. An attacker triggers YAML deserialization by a load
function call through sending an HTTP request. The request handler invokes the
toJSON function of the deserialized object, as seen in the CVE-2024-37288 case,
leading to RCE. Although these vulnerabilities require high privileges, resulting
in a lower severity rating with a CVSS score of 9.1, they could still be exploited
by an attacker to gain access to the Elastic Cloud infrastructure.

We reported the vulnerabilities to the vendor according to the responsible
disclosure policy. Elastic has fixed them and released the patches in Kibana
version 8.15.1 [26].

3.4 Call-Flow Hijacking Attacks

An attacker can achieve the execution of a dangerous function if they control
function pointers in the program. Although safe languages and runtimes do not
allow directly assigning arbitrary values to function pointers, they do permit the
use of existing functions as pointers. Thus, the attack requires two ingredients:
first, the modification of a function pointer to an attacker-controlled value, and
second, the invocation of a function through the modified pointer. As with the
code injection attack, the second ingredient is straightforward because any lan-
guage supports the function calls. However, modifying function pointers is not
trivial in safe languages and managed runtimes.

Exploit Primitives

The taxonomy refines two exploit primitives for call-flow hijacking attacks: the
weakness W2.1, which involves modifying a function pointer to an attacker-
controlled value, and the gadget G2.2, which performs a function call using the
modified pointer.

JavaScript language and runtime features for W2.1 weakness JavaScript
is an object-based language with first-class functions [115], meaning functions
are treated as first-class citizens. This implies that functions can be assigned to

50 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

variables and properties of any object. Consider the expression objA[input1] =
objB[input2], where an attacker controls the values of input1 and input2.
This allows the attacker to replace or add any function to objA from objB.
Through this syntax, JavaScript enables the injection of function pointers into
any object properties when an attacker controls the property name. This feature
exemplifies the L2.1.1 language feature contributing to the W2.1 weakness in
our taxonomy.

JavaScript language and runtime features for G2.2 gadget Any invoca-
tion of the injected function hijacks the call flow, enabling the attacker to execute
an unexpected function from the programmer’s perspective. Thus, a call to the
modified function pointer represents the G2.2 gadget in our taxonomy. We dis-
tinguish between direct and indirect calls. Direct calls invoke the function by
name from the object itself, while indirect calls look up the function pointer
through a chain of prototypes, invoking the first matched function from one of
the prototypes.

Listing 3.10 provides an example of a call-flow hijacking attack in JavaScript,
illustrating the significant impact such attacks can have. We consider a web ap-
plication with three request handlers: signUp defined on line 8, resetSettings
on line 22, and adminMaintenanceTask on line 31. Any user, including a ma-
licious one, can send requests to this application. The first handler, signUp,
allows any user to register a user account with low guest privileges and links
the created user to their session by the identifier. The hasRole function takes
a role as an argument and returns true only if the requested role matches the
current user’s role, specifically "guest". This function can be used throughout
the code to verify that the current user has sufficient privileges for the requested
action, as demonstrated in line 34. The second handler, resetSettings, enables
a user to reset their settings to default values. The default settings are specified
in lines 1-5 and are not controlled by the attacker. The resetSettings imple-
mentation processes a list of pairs, each consisting of a property name from the
user object and a corresponding property name from the default settings. It
then assigns the default setting’s value to the user, as shown in lines 26-27. The
third handler, adminMaintenanceTask, permits a user to execute any bash script
specified in the request, but only if the user has an admin role. Consequently,
a user created via signUp, which has guest privileges, will be denied access to
adminMaintenanceTask, ensuring that guest users do not perform administra-
tive tasks.

Since an attacker is allowed to control the parameters of any request, they
can first create a guest account for themselves. Then, the attacker initiates re-
setting their own settings and provides {"hasRole": "toString"} as the body
of the request. This allows them to replace the hasRole function of the user
object with the built-in toString function through the assignment in line 27.
To complete the attack and achieve arbitrary command execution, they send a
request to trigger adminMaintenanceTask with the desired bash script. The

3.4. CALL-FLOW HIJACKING ATTACKS 51

1 const defaultSettings = {
2 // any application settings here, for example:
3 theme: "light",
4 language: "en"
5 }
6
7 const users = {}
8 function signUp(req, res) {
9 const user = {

10 ...req.body,
11 hasRole(role) {
12 if (role === "guest") return true // only "guest" role is allowed
13 return false
14 }
15 }
16
17 const userId = Date.now().toString()
18 users[userId] = user
19 res.session.userId = userId
20 }
21
22 function resetSettings(req, res) {
23 const userId = req.session.userId
24 const user = users[userId]
25 if (user) {
26 for (const [key, value] of Object.entries(req.body))
27 user[key] = defaultSettings[value]
28 }
29 }
30
31 function adminMaintenanceTask(req, res) {
32 const userId = req.session.userId
33 const user = users[userId]
34 if (user?.hasRole("admin")) {
35 exec(req.body.bashScript) // perform high-privileged operations
36 }
37 }

Listing 3.10: JavaScript call-flow hijacking attack.

handler checks the user’s permissions via a hasRole call in line 34, which actu-
ally invokes the toString function. Consequently, the replaced function returns
"[object Object]", which is interpreted as true in the if-statement, allowing
the attacker to execute any script via line 35 without admin permissions.

Line 27 of Listing 3.10 illustrates the W2.1 weakness, highlighting the L2.1.1
language feature that allows the injection of an existing function. Line 34 demon-
strates the G2.2 gadget, specifically the L2.2.1 direct function call via the func-
tion name. The subsequent line of code performs a high-privileged action, which
is the final component of the hijacked call flow. A pertinent question arises:
how can malicious code execution be achieved without explicitly calling the high-

52 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

privileged action in the application code? We address this question in Section 3.6
and demonstrate a chain of call-flow hijacking and code injection attacks.

C# language and .NET runtime features C# is a class-based language that
implements object-oriented programming concepts, where inheritance is achieved
by defining classes of objects. A class provides the structure and methods for an
object, serving as a blueprint for all objects of a specific type. Consequently, any
method defined in a class cannot be replaced at runtime in an object. However,
C# supports specific types called delegates [128], which point to methods with
particular parameter lists and return types. When a programmer instantiates a
delegate, they can associate its instance with any method that has a compatible
signature and then invoke the method through the delegate instance. If an at-
tacker can change the value of a delegate at runtime to an unexpected method,
this delegate assignment corresponds to the L2.1.1 injection of an existing func-
tion feature in C#, leading to the W2.1 weakness in our taxonomy. One practical
example of this weakness is deserialization of a delegate object, which may result
in call-flow hijacking if an attacker controls the serialized data. The delegate
properties in the deserialized object may point to any existing methods in the
application, restricted only by the declared signature.

Inheritance in C# enables the creation of new classes that reuse, extend,
and modify the behavior defined in other classes. The class whose members are
inherited is called the base class, while the class that inherits those members is
called the derived class. The derived class can override virtual methods from
the base class. Thus, the type information encapsulates references to the actual
implementation of the virtual methods. Even if an attacker cannot control the
method pointer directly, they can control it via the type of the object.

Listing 3.11 demonstrates a simple example of an attack based on creation of
an object of an attacker-controlled type. Lines 1-14 define two implementations
of the ICommand interface. The first implementation performs a database backup,
which is a secure action. The second, OSCommand, spawns a new process with a
name and arguments from the passed parameters. If an attacker controls the
parameters, executing this command can lead to arbitrary command execution
in the system. Notice that both commands can be unrelated and implemented
in different parts of an application because the Command design pattern [69] is
very common. Lines 16-24 implement the CommandAction handler for HTTP
POST requests in a web application. The handler creates a command object of
the type specified by name dynamically using the Activator.CreateInstance
method from the .NET reflection API. The handler then invokes the virtual
Execute method, passing the arguments from the web request. To perform a
database backup, a user should provide Backup as the name in the web request
for CommandAction. The main benefit of the Command design pattern is that a
programmer can define new commands without changing the implementation of
the CommandAction method.

However, an attacker can compromise the system by passing the name of a

3.4. CALL-FLOW HIJACKING ATTACKS 53

1 public class Backup : ICommand {
2 public virtual void Execute(string parameters) {
3 DB.Backup(parameters);
4 }
5 }
6
7 public class OSCommand : ICommand {
8 public virtual void Execute(string parameters) {
9 var firstSpace = parameters.IndexOf(’ ’);

10 var command = parameters.Substring(0, firstSpace);
11 var args = parameters.Substring(firstSpace + 1);
12 Process.Start(command, args);
13 }
14 }
15
16 public class AppController : Controller {
17 [HttpPost]
18 public ActionResult CommandAction(string name, string args) {
19 var t = Type.GetType(name);
20 var c = (ICommand) Activator.CreateInstance(t);
21 c.Execute(args);
22 return RedirectToAction("Index");
23 }
24 }

Listing 3.11: C# call-flow hijacking attack via creating an object of attacker-
controlled type.

class that implements ICommand interface and performs any high-privilege action.
In our example, this could be OSCommand with parameters that allow the attacker
to spawn arbitrary processes in the system. The flexibility of this application
design pattern introduces security risks. Line 20, which allows creating an object
of an attacker-controlled type at runtime, corresponds to the L2.1.2 language
feature, leading to the W2.1 weakness of modifying a method pointer to an
unexpected method. Line 21 involves L2.2.2, an indirect call of this method via
a virtual method call, representing the G2.2 gadget. This class of attacks in C#
and other languages stems from Object Injection Vulnerabilities (OIV), where
an attacker controls the type of injected objects, typically occurring during the
deserialization process of untrusted data [161].

Related Work

The exploits studied in previous research [5,67,146] demonstrate the use of com-
plex gadget chains to achieve arbitrary code execution in real applications. Dahse
et al. [50,52] implement a static taint analysis to systematically detect gadgets in
PHP applications. This static analysis targets PHP source code and well-known
triggers, referred to as magic methods in their context. Shahriar et al. [187] pro-

54 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

pose a lightweight approach using latent semantic indexing to identify keywords
likely responsible for OIVs and apply it systematically to PHP applications, un-
covering new vulnerabilities. Hawkins et al. [75] introduce ZenIDS, a system de-
signed to dynamically learn the trusted execution paths of PHP applications to
report execution anomalies as potential intrusions. Koutroumpouchos et al. [98]
develop ObjectMap, a toolchain for detecting and testing OIVs in Java and PHP
applications.

Cristalli et al. [47] propose a dynamic approach to identify trusted execution
paths during a training phase with benign inputs. This approach leverages the
identified paths to detect insecure deserialization through a lightweight sandbox
in Java applications. Dietrich et al. [57] investigate deserialization vulnerabili-
ties by exploring the topology of object graphs constructed from Java classes.
Their study reveals that these vulnerabilities can lead to Denial of Service (DOS)
attacks that exhaust stack memory, heap memory, and CPU time during dese-
rialization. Cao et al. [29] propose a hybrid solution for efficiently discovering
Java deserialization vulnerabilities. Their approach combines lightweight static
taint analysis with directed greybox fuzzing to enhance the detection process.
Sayar et al. [177] conduct an in-depth analysis of existing gadgets and vulnerabil-
ities in Java applications. Their findings indicate that 37.5% of the gadgets are
unpatched and not all known vulnerabilities are fully addressed.

Insecure deserialization ranks 8th in the OWASP Top 10 for both 2017 and
2021 [162], highlighting a broad consensus on the critical security risks facing
web applications. This ranking underscores the significant attention this issue
has received from the practitioner’s community. Esser [64] demonstrates how
Return-Oriented Programming (ROP) principles can be applied entirely at the
PHP level, by reusing parts of an already running PHP application to achieve
arbitrary code execution through the deserialization API. Forshaw [65], along
with Muñoz and Mirosh [147], provide excellent conference talks and reports on
deserialization attacks and mitigations targeting .NET and Java libraries. Ad-
ditionally, Haken [73] introduces Gadget Inspector, a tool designed to discover
gadget chains that exploit deserialization vulnerabilities in Java applications.

Contributions

To validate the code patterns and language features leading to call-flow attacks,
we focus on the analysis of the .NET runtime, libraries, and applications. The
analysis has two primary goals: (i) the detection of code patterns that involve
the creation of an object with an attacker-controlled type and subsequent method
invocations on these objects and (ii) a security analysis of applications based on
the detected code patterns.

We designed and implemented this analysis in SerialDetector [191]. First, we
designed a systematic approach to detect object injection vulnerabilities (OIVs)
in a framework-agnostic manner. The root causes of OIVs include (i) public
entry points, (ii) sensitive sinks, and (iii) attack triggers. We define an OIV

3.5. DATA-ONLY ATTACKS 55

pattern as a public entry point that triggers the execution of a sensitive sink to
create an object that controls the execution of an attack trigger. The sensitive
sinks are code snippets that use L2.1.2 to create objects via attacker-controlled
types, corresponding to the W2.1 Function pointer modification weakness in our
taxonomy. The attack triggers are either direct calls via reflection or indirect
virtual calls that invoke an attacker-controlled method, corresponding to L2.2.1
and L2.2.2 language features and the G2.2 gadget, respectively. Our focus is
on detecting OIV patterns that allow for triggering a gadget, without necessarily
discovering the full gadget chain in our analysis. Therefore, the analysis detects
only the first attacker-controlled method call, indicating a potentially exploitable
OIV pattern if the full gadget chain exists in the runtime or application code. This
approach allows us to implement a static analysis without any prior knowledge
of the known vulnerable methods of the target framework. We have developed
and evaluated an open-source static analysis tool based on this approach; further
details on our implementation and evaluation are provided in Chapter 4.

The developed tool, SerialDetector, also allowed us to identify four new vul-
nerabilities in the Microsoft Azure DevOps web application. We considered a
threat model that includes RCEs for users with different levels of privileges, as
well as LPE attacks. We chose Microsoft Azure DevOps as the main target for our
investigations, primarily due to its complexity and the diversity of threat models
it presents. The first detected vulnerabilities, CVE-2019-0866, CVE-2019-0872,
and CVE-2019-1306, lead to RCE and have critical severity. Further analysis of
the new version of Microsoft Azure DevOps 2022 uncovered a new vulnerability,
CVE-2023-38155, leading to LPE according to our threat model. All vulnerabil-
ities were responsibly reported to Microsoft and fixed by the vendor.

3.5 Data-only Attacks

Like other code-reuse attacks, the data-only attack has two key ingredients: first,
the modification of the shared state of the program, and second, the execution
of security-related function that is affected by the modified shared state. Intu-
itively, the attack can be thought of as a deferred injection attack, where an
attacker alters the program’s state via one application feature and later, in an-
other unrelated piece of code, the application uses the value from the altered state
to inject into a function with security impact. The first ingredient requires, from
a language or framework, the presence of a shared state and the ability to modify
it at runtime. An example of such a language design feature is static properties.
The program may expect an invariant where certain properties are initialized only
from trusted configuration files and remain unchanged during execution. If some
code in the program, such as deserialization code, allows an attacker to modify
any static properties, it could violate this invariant. Unrelated code from the
deserialization process can then pass the values from the static properties to a
function that spawns a new process, allowing an attacker to execute an arbitrary

56 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

command. The second ingredient requires either the presence of security-related
function calls or control-flow constructs, such as branches, that can be affected
by the values from the modified shared state.

Exploit Primitives

The taxonomy refines three exploit primitives for data-only attacks: the weakness
W3.1, which allows an attacker to modify shared state, and the gadgets G3.2
Non-control-data and G3.3 Control-flow bending execution. G3.2 Non-control-
data execution takes the modified data from the program state and passes it
to a function, thereby violating the security properties of the application. G3.3
Control-flow bending execution takes the modified data from the program state
and uses this data in comparisons or control-flow decisions via statements such as
branches and loops. As a result, an attacker reaches an unexpected state of the
program by bending the control flow along valid edges in the control-flow graph.
JavaScript language and runtime features for W3.1 weakness The ex-
ploitation of data-only attacks requires identifying W3.1 weaknesses related to
(i) the shared state of a program and (ii) expressions that modify the shared
state at runtime.

JavaScript implements inheritance of properties and methods through proto-
type chains [114], as discussed in Section 2.2. For example, an empty JavaScript
object has the built-in property __proto__, which refers to another object, the
prototype, containing properties and functions such as toString. When invoking
toString on an object, the runtime first looks for the method in the object itself,
and if it is not found, the runtime recursively searches for the toString definition
in other objects up in the prototype chain.

Additionally, a prototype, like any other object, can be dynamically modi-
fied. For instance, the expression obj.__proto__.x = 42 assigns the value 42
to a new property x in the prototype of obj. As a result, when the application’s
code reads the x property from any unrelated object that shares the same pro-
totype and does not have x in the object itself, it retrieves the value 42 from the
prototype.

Another JavaScript feature that facilitates data-only attacks is computed prop-
erty names [118]. This feature allows a programmer to use an expression within
square brackets [], which is computed and used as the property name. Thus, if
an attacker controls the value of a computed property name, they can read or set
an arbitrary object’s property. The combination of these two language features
allows us to consider prototypes as the modifiable shared state, and their modifi-
cations correspond to a prototype pollution vulnerability and the L3.1.1 item in
our taxonomy.

Listing 3.12 demonstrates how the combination of these two language features
in a code snippet can lead to the modification of an object’s prototype at runtime.
We assume that an attacker controls the values of all variables with the prefix
input.

3.5. DATA-ONLY ATTACKS 57

1 var obj1 = {}
2 var p = obj1[input1] // p may point to the object’s prototype
3 p[inputPropName] = inputPropVal // prototype pollution
4
5 var obj2 = {};
6 var p = obj2[input1] // p may point to the object’s prototype
7 Object.assign(p, { [inputPropName]: inputPropVal }) // prototype pollution
8
9 var obj3 = {}

10 var c = obj3[input1] // c may point to the object’s constructor
11 var p = c[input2] // p may point to the object’s prototype
12 p[inputPropName] = inputPropVal // prototype pollution
13
14 var arr = []
15 var p = arr[input1] // p may point to the array’s prototype
16 p.push(inputPropVal) // prototype pollution

Listing 3.12: JavaScript data-only attack known as prototype pollution.

In the first line, the code creates a new empty object that has the object’s
prototype available via the built-in property __proto__. Line 2 stores a value
from the attacker-controlled property name into the p variable. The attacker
can pass __proto__ via input1 and obtain a reference to Object.prototype.
Since the attacker controls inputPropName and inputPropVal, they can write
arbitrary values to properties of the prototype. In this example, the modifiable
shared state is Object.prototype, which is the root element of the prototype
chain for almost all objects. This code pattern represents a prototype pollution
vulnerability, where an attacker modifies a prototype in the system.

Instead of explicit property assignment, the code pattern may change the
prototype object via an Object.assign [119] call, as shown in line 7. As in the
previous code pattern, we store the object’s prototype in the variable p. Then,
Object.assign takes the prototype as the first argument and copies all enumer-
able own properties from a source object passed as the second argument. Since
an attacker controls the property names and values in the source object, they can
add arbitrary properties to Object.prototype, achieving another variation of a
prototype pollution vulnerability.

Another access path to an object’s prototype is constructor.prototype,
which can be used instead of the __proto__ property. An attacker would need
to find another pattern in the application’s code that allows exploiting prototype
pollution via this access path. Lines 9-12 in Listing 3.12 illustrate this code
pattern. From the obj3 object, the attacker can retrieve a reference to the object’s
constructor, as shown in Line 10, where input1 equals the string constructor.
The attacker then retrieves a reference to the object’s prototype, as shown in
Line 11, where input2 equals the string prototype. Line 12 demonstrates the
final step of the prototype pollution vulnerability, where the attacker assigns an
arbitrary value to a property in the prototype with the attacker-controlled name.

The previous three examples demonstrate pollution of Object.prototype.
However, if obj1 and obj2 are arrays, an attacker can pollute Array.prototype,

58 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

affecting all arrays in the application. The same applies to obj3 in the third code
snippet. The attacker can also pollute Object.prototype if both input1 and
input2 equal the string __proto__. This allows the attacker to access the root
object in the array’s prototype chain and modify its properties.

We now describe a new prototype pollution pattern that has not been iden-
tified in previous works. The code in lines 14-16 of Listing 3.12 assumes that
arr is a two-dimensional array, meaning each element is also an array. Line 16
changes array elements by adding new elements to them. If an attacker controls
input1 in line 15, they can access Array.prototype instead of an array ele-
ment when input1 equals the string __proto__. In this case, the push function
call in line 16 adds an element to the array’s prototype. Consequently, reading
the first element of any empty array arr[0] returns the attacker-controlled value
inputPropVal instead of undefined. This code pattern works for any prototype
that has functions that modify the prototype itself.

One of the most common fixes for prototype pollution vulnerabilities is prop-
erty name validation. Listing 3.13 illustrates a function that is safeguarded
against prototype pollution in lines 4-8. The code checks a value from the re-
quest’s parameter in line 5 and performs the property assignment only if req.org
does not equal __proto__. This prevents exploitation of prototype pollution in
line 6 because an attacker cannot obtain a reference to the prototype. However,
this code pattern is vulnerable to another kind of attack.

According to the taxonomy, if a language design includes any shared state
and an application allows an attacker to modify this state, a data-only attack
becomes possible. Instead of modifying the prototype, an attacker can modify
any existing object in the prototype. Since almost all objects share the same
prototype, the attacker’s modifications affect all such objects in unrelated features
of the program. We refer to this weakness as object pollution.

1 const users = {}
2 const storage = {}
3
4 function update(req) {
5 if (req.org != "__proto__") {
6 storage[req.org][req.prj] = req.details
7 }
8 }
9

10 function adminAction(req) {
11 const userProfile = users[req.name]
12 if (userProfile.password === req.password) {
13 if (userProfile.admin) {
14 // perform high-privileged operations
15 }
16 }
17 }

Listing 3.13: JavaScript data-only attack via object pollution.

3.5. DATA-ONLY ATTACKS 59

Listing 3.13 represents an example of object pollution. The code defines two
objects, users and storage, in the first two lines. users collects all registered
users in the application. We omit unnecessary handlers, such as user sign-up, due
to unimportant details for illustrating the attack. storage represents project
data hierarchically, with organizations at the top level, each having nested ob-
jects for projects with project details as values. The update function handles
requests to modify projects in storage. The function first validates the org
parameter from the request, and if it is not the built-in property __proto__, it
modifies a project of the organization defined via org. Thus, an attacker con-
trols all parameters of the request—the organization and project names as well
as the assigned project details—but cannot modify the object’s prototype due to
the validation. The adminAction function reads the user’s profile based on the
user’s name passed into the request in line 11. It then authenticates the user by
comparing the password from the profile and the request, as shown in line 12.
If both passwords match, it checks the admin flag in the user’s profile to deter-
mine if the user is authorized to perform high-privileged operations. We assume
that the attacker does not have administrator privileges but can send requests to
trigger the update and adminAction handlers.

First, the attacker sends an update request with { org: "toString", prj:
"password", details: "123" } parameters. This allows modification of the
toString function object by adding a new property password with the attacker-
controlled value. Next, the attacker sends another update request with { org:
"toString", prj: "admin", details: "1" } parameters, which adds admin
to the same toString object. Finally, the attacker triggers the adminAction
handler with the request parameters name: "toString" and password: "123".
The runtime looks up a user with the name toString in the users object in line
12. Since such a user has not been registered, it returns the toString func-
tion object from Object.prototype. The attacker polluted this object with
password and admin properties in the previous requests. This allows the at-
tacker to successfully authorize the user during password checking in line 12 and
perform high-privileged operations. Thus, object pollution involves modifications
of objects in prototypes, which the taxonomy expresses via the L3.1.2 feature.

The object pollution weakness can also be exploited in combination with lim-
ited prototype pollution. If an attacker does not control the value of a polluted
property, such as the req.details value in Listing 3.12, the code allows adding
an arbitrary property to the prototype but does not allow filling it with the re-
quired data for a gadget. In this case, an attacker could first trigger prototype
pollution to add a property with the required name to the prototype, and then
trigger object pollution to add the properties with the required names and values
into the already created prototype’s property. This attack chain of exploit primi-
tives allows the construction of a more powerful payload and increases the list of
possible gadgets for exploitation.

60 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

JavaScript language and runtime features for G3.2 and G3.3 gadgets
Besides the language features associated with the W3.1 weakness, we should de-
fine the features for gadgets to fully describe data-only attacks. We distinguish
the features for G3.2 Non-control-data execution, where attacker-controlled data
from the shared state reaches any security-sensitive API, and G3.3 Control-flow
bending execution, where attacker-controlled data reaches any control-flow state-
ments such as branches and loops.

Listing 3.14 illustrates the language and runtime features used as gadgets.
We assume that obj has a prototype that an attacker can pollute and does not
define its own properties that could overwrite the attacker-controlled properties
from the prototype.

Lines 1-4 express G3.2 Non-control-data execution. The eval function evalu-
ates the attacker-controlled data as code by reading the code property from the
polluted prototype, corresponding to the L3.2.1 language feature in the taxon-
omy. The exec function is an external API implemented in runtimes such as
Node.js [66] and Deno [83], which has security implications on the system when
an attacker controls its arguments. Specifically, it runs a new process that allows
an attacker to execute arbitrary commands. Passing the attacker-controlled data
from a shared state, such as a prototype, to an external API corresponds to the
L3.2.2 runtime feature.

Lines 6-12 express G3.3 Control-flow bending execution. The if-statement in
line 6 reads the admin property and chooses the path in a control-flow graph
based on its value. Since an attacker can affect the executable control flow via
the polluted prototype, we classify it as L3.3.1 Branches. The while-loop in line
10 also makes a decision about the next executable statement based on data that
can be read from the shared state. This corresponds to L3.3.2 Loops in our
taxonomy. For example, a parser may contain such a code pattern, allowing an
attacker to force the execution of unexpected operations by adding the nextToken
property into the prototype.

1 eval(obj.code)
2
3 const { exec } = require(’child_process’)
4 exec(obj.command)
5
6 if (obj.admin) {
7 // perform high-privileged operations
8 }
9

10 while (obj.nextToken) {
11 // perform any unexpected operations
12 }

Listing 3.14: Data-only attack gadgets in JavaScript.

C# language and .NET runtime features In class-based languages like C#,
types define the methods and fields of objects. The types are immutable once
compiled, meaning their structure cannot be changed at runtime. However, the

3.5. DATA-ONLY ATTACKS 61

C# type system includes static fields that represent a shared state, which is
accessible to any part of the program. The values of arbitrary static fields can be
changed at runtime via the reflection API.

1 class Context
2 {
3 public static string EncryptionKey = "defaultKey";
4 public static bool IsEncryptionEnabled = true;
5
6 public int SessionId; // the class may contain other user-specific fields
7 }
8
9 object Deserialize(string typeName, Dictionary<string, object> fieldValues)

10 {
11 Type type = Type.GetType(typeName);
12 object instance = Activator.CreateInstance(type);
13 foreach (var fieldValuePair in fieldValues)
14 {
15 FieldInfo fieldInfo = type.GetField(fieldValuePair.Key);
16 fieldInfo.SetValue(instance, fieldValuePair.Value);
17 }
18
19 return instance;
20 }

Listing 3.15: Data-only attack in C#.

Listing 3.15 demonstrates a weakness for data-only attacks in C#. Lines
1-7 define the Context class with static and instance fields. The static fields
represent system configuration settings such as an encryption key and a flag in-
dicating whether encryption is enabled. The application’s features that perform
encryption obtain the key via Context.EncryptionKey. The Context class also
contains user-specific fields like a session ID. An object of Context can be instan-
tiated via the Deserialize function defined in lines 9-20. The function creates
a new instance of a provided type name in line 12 and sets values for all provided
fields in line 16, for example by passing { "SessionId", 42 } for the session
ID. This code illustrates a simple deserialization process using the .NET reflection
API. We assume that an attacker controls the arguments of Deserialize.

If an attacker passes the string Context as the typeName parameter to the
Deserialize function, they can create a new object of this type. The code in
lines 15-16 allows the attacker to not only set values for instance fields of the
object but also for static fields using the same reflection API calls [129,137]. By
using the pair { "EncryptionKey", "attackerKey" } for the fieldValues
parameter, the attacker changes the encryption key, affecting data encryption in
unrelated parts of the application, leading to a violation of the system’s integrity.

The language and runtime features, such as the reflection API, allowing the
modification of arbitrary static fields or properties in an application, correspond
to the L3.1.3 item in our taxonomy. To exploit this weakness, we need to define
and identify gadgets for data-only attacks. The taxonomy separates data-only at-

62 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

tack gadgets into G3.2 Non-control-data execution and G3.3 Control-flow bending
execution.

1 Process.Start(Context.Command);
2
3 if (Context.IsEncryptionEnabled) {
4 // perform encryption only when the flag is true
5 }
6
7 while (Context.NextToken != null) {
8 // perform any unexpected operations
9 }

10
11 try
12 {
13 // code that may throw an exception
14 }
15 catch (Exception exception) when (Context.State == 1)
16 {
17 // handle the exception for the specific program’s state
18 }

Listing 3.16: Data-only attack gadgets in C#.

Listing 3.16 presents code snippets that demonstrate C# language and .NET
runtime features required for the gadgets. For G3.2, attacker-controlled data
should reach the external API call that affects the system environment. Reading
the static property Command and passing its value to Process.Start, which
runs a new process [134], demonstrates this impact and can lead to arbitrary
command execution. The taxonomy classifies such external API calls as L3.2.2
runtime features.

As in JavaScript, any statements that change control flow depending on a
value from the shared state are classified as G3.3. Line 3 shows an if-statement
that tests the value of the static property Context.IsEncryptionEnabled. This
corresponds to L3.3.1 Branches, similar to a switch statement depending on a
value from the shared state. Line 7 presents a loop statement where the condi-
tion depends on the static property Context.NextToken (L3.3.2). Lines 11-18
present a code snippet of a catch clause with the when keyword, which can be
used to specify a condition that must be true to execute the handler. When an
expression in the condition depends on the shared state, the catch clause can
serve as a gadget driven by L3.3.3 Exceptions.

Related Work

Attacks exploiting the shared state are well-known across various programming
languages. Programmers are generally aware of the potential security risks associ-
ated with the deserialization of untrusted data [140], particularly when it involves
static fields. Since static fields are not part of an object’s state, most popular
libraries and frameworks do not support their deserialization [132, 158, 167]. Al-

3.5. DATA-ONLY ATTACKS 63

though the insecure deserialization of untrusted data is well studied [29,50,52,57,
98, 177, 187], issues related to static fields can still arise, as evidenced by the re-
cent fix of a Java deserialization vulnerability in GWT-RPC in August 2024 [72].
GWT, a development toolkit for building browser-based applications, had a vul-
nerable version that allowed overriding the value of any field declared in a class,
including static fields.

In Python, Alqatanani [92] introduced a new class of data-only attacks, known
as Class Pollution. Although Python is a class-based programming language, it
allows modification of the shared state via special object attributes. For example,
the built-in functions getattr and setattr [169] can access and modify the base
class for an object through the __class__.__base__ access path. Similar to
prototype pollution vulnerabilities, this affects all classes that inherit from the
modified base class.

In JavaScript, the security community became aware of prototype pollution
vulnerabilities in 2018, highlighted in a white paper by Arteau [7]. This study
uses dynamic analysis to demonstrate the feasibility of these vulnerabilities in
various Node.js libraries, including an end-to-end exploit in the Ghost CMS plat-
form. Recently, both academia and industry practitioners have paid increasing
attention to prototype pollution vulnerabilities [7,19,77,87,95,105,106,109,221].
While discussions among practitioners have explored the impact of prototype pol-
lution [19, 77, 221], most research contributions have focused on detecting these
vulnerabilities [87,95,105,106,109]. Heyes [77] describes how prototype pollution
can be exploited in Node.js to uncover vulnerabilities beyond DoS in black-box
scenarios. The PP-finder tool [221] offers a semi-automated approach to report
all undefined properties encountered during execution, coupled with manual in-
spections of packages to identify vulnerabilities. Li et al. [105,106] propose object
dependence graphs to statically identify injection vulnerabilities, including pro-
totype pollution, in Node.js libraries. The recent work by Li et al. [109] focuses
specifically on finding gadget chains where one gadget unlocks the use of another
gadget, performing application analysis using concolic execution. Kim et al. [95]
develop DAPP, a static analysis tool that detects prototype injection sinks in
Node.js libraries using pattern analysis.

On the client side, Kang et al. [87] study prototype pollution, leveraging dy-
namic analysis to exploit a range of vulnerabilities. Their approach adapts the
tool created by Melicher et al. [124], which modifies the V8 engine for dynamic
taint tracking. Steffens [206] presents a concolic execution engine to identify
prototype pollution gadgets and study the prevalence of these gadgets in client-
side code of web applications, allowing attackers to gain code execution or forge
requests using client-side CSRF vulnerabilities. Lekies et al. [103] and Roth et
al. [174] study the implications of script gadgets, legitimate application JavaScript
fragments, in bypassing CSP and existing XSS mitigations, showing the preva-
lence of script gadgets in productive code. Khodayari and Pellegrino [94] use
taint analysis to find DOM clobbering attacks, a type of data-only attack where
an attacker injects a piece of non-script HTML markup into a webpage and trans-

64 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

forms it into executable code by exploiting the unforeseen interactions between
JavaScript code and the runtime environment.

Contributions

We focus on JavaScript code analysis to validate the code patterns and language
features leading to call-flow hijacking attacks. The analysis in our tools is divided
into two distinct phases: (i) detecting code patterns of L3.1.1 Modification of
prototype, leading to prototype pollution, and (ii) detecting code patterns of G3.2
and G3.3 gadgets, which allow for the exploitation of prototype pollution. We
develop both static and dynamic analysis approaches to automate the detection
of vulnerabilities and their associated gadgets.

In the Silent Spring toolchain [194], we design and develop multi-label static
taint analysis to identify code patterns, as shown in lines 1-12 of Listing 3.12.
These code patterns represent W3.1 weaknesses that exploit the language fea-
ture L3.1.1, allowing modifications of objects’ prototypes. The evaluation of
our tool demonstrates effective and scalable analysis of real-world applications
and libraries with low-to-moderate precision loss while achieving high recall (up
to 97%). We also implement a hybrid approach to detect gadgets, combining
dynamic analysis with a lightweight static pre-analysis step. This approach iden-
tifies G3.2 gadgets that use attacker-controlled data as an argument for either the
L3.2.1 eval function or L3.2.2 Node.js internal calls. The tool allows us to find
11 new gadgets in Node.js core APIs. Since the gadgets can affect any Node.js
application that uses these APIs, we refer to them as universal gadgets. The
detected gadgets enable the exploitation of eight RCEs via prototype pollution
vulnerabilities identified by our static analysis in open-source applications such as
NPM CLI, Parse Server, and Rocket.Chat. The paper earned third prize at the
CSAW Applied Research Competition [49]. Further details of our contributions
are provided in Chapter 4.

We responsibly reported the detected vulnerabilities and gadgets to the main-
tainers of the affected applications and the Node.js team. We also presented our
research at BlackHat Asia 2023 [188] to showcase the technical details of the gad-
gets, vulnerabilities, and their exploitation, and at DEF CON 31 [192] to share
our unexpected findings on universal gadgets with the security community.

The discovery of universal gadgets motivates us to conduct a systematic anal-
ysis of V8-based runtimes, namely Node.js [66] and Deno [83]. We design, im-
plement, and evaluate the GHunter pipeline [42], which supports lightweight dy-
namic taint analysis to automatically identify gadget candidates that we validate
manually to create proof-of-concept exploits. We modify the V8 JavaScript en-
gine to embed our taint analysis directly into the runtime code. We again focus
on detecting G3.2 gadgets. This pipeline allows us to detect 123 new gadgets
in the targeted runtimes. We also systematize existing mitigations for prototype
pollution and gadgets in the form of development guidelines. More details are
presented in Chapter 4.

3.6. ATTACK CHAINS 65

Our next target for prototype pollution gadget detection is popular third-party
libraries within the NPM ecosystem [155]. We design a semi-automated dynamic
taint analysis based on AST-level code instrumentation, which we implemented
in the Dasty pipeline [196] to help developers identify gadgets in applications and
their dependencies. Our approach supports G3.2 and partially G3.3 gadgets,
where the affected control flow leads to triggering G3.2 with attacker-controlled
arguments. The large-scale evaluation shows the feasibility and effectiveness of
our approach, allowing us to identify RCE gadgets in 49 NPM packages. We
present details of our approach and contribution to it in Chapter 4.

While working on GHunter and Dasty, we detected two new prototype pol-
lution vulnerabilities in Elastic Kibana, CVE-2023-31414 and CVE-2023-31415,
and demonstrated their exploitation via newly disclosed gadgets in Node.js and
the NPM package nodemailer. Paper C and Paper D describe the details of
these vulnerabilities and gadgets. We also presented the exploitation techniques
and technical details at DEF CON 32 [189].

We recently detected and reported three new critical vulnerabilities in Elastic
Kibana that have not been published before: V-2024-0001, CVE-2024-37287, and
V-2024-0002, leading to call-flow hijacking attacks via prototype pollution. The
weakness in V-2024-0001 allows modification of an object’s prototype via L3.1.1,
adding a property with the value of an empty object {}, making it impossible to
use known gadgets such as nodemailer. To exploit this prototype pollution, we
chained the original weakness with another one, L3.1.2, allowing modification of
already existing objects within the prototype. We found the use of the popular
lodash.merge package, which is safe against prototype pollution exploitation but
can pollute nested objects in the prototypes. This allowed us to, firstly, pollute
the prototype with an attacker-controlled property name but an empty object as
the value and, secondly, pollute this injected object with the attacker-controlled
properties to reconstruct a payload for the G3.2 gadget in nodemailer. All
vulnerabilities and gadgets were responsibly disclosed to the vendors.

3.6 Attack Chains

In real-world scenarios, security researchers often combine different exploit prim-
itives to bypass mitigations or demonstrate the highest impact of an attack. We
have also employed combinations of attacks in our case studies of the disclosed
vulnerabilities. For instance, in CVE-2019-0866 and CVE-2019-0872 against Mi-
crosoft Azure DevOps, we chained an A2 call-flow hijacking attack, which re-
quires high privileges to achieve RCE, with XSS attacks that can be exploited
by an attacker with minimal privileges in the system. In these cases, an attacker
needs to have a restricted user account in Azure DevOps to exploit an XSS vul-
nerability and store a payload that executes in the victim’s browser. When a
victim with administrative privileges opens a malicious page containing the in-
jected payload, they inadvertently trigger an insecure deserialization process of

66 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

attacker-controlled data, leading to RCE.
Another example is the chaining of prototype pollution vulnerabilities with

race conditions, which allows for the triggering of a gadget within a certain time-
out after the weakness is triggered. These chains demonstrate the feasibility of
exploiting eleven A3 data-only attacks against Parse Server, Rocket.Chat, and
Elastic Kibana, as shown in Table 3.1. Prototype pollution vulnerabilities often
lead to application crashes sometime after exploitation. This occurs because the
application’s code does not expect new properties in the prototype, resulting in
unhandled exceptions before the gadget is triggered. The race conditions allow
an attacker to execute the gadget exactly within the time window between trig-
gering the weakness and the application’s crash. Thus, the application executes
the attacker-controlled code before crashing, leading to RCE even though the
application crashes afterward.

Some of the disclosed vulnerabilities combine different weaknesses to success-
fully carry out attacks. Three vulnerabilities in Parse Server (CVE-2022-39396,
CVE-2022-41878, and CVE-2022-41879) and one in Rocket.Chat (CVE-2023-
23917) first exploit L3.1.1 to pollute an object’s prototype, enabling an insecure
option in the MongoDB BSON parser [36], which allows the deserialization of
JavaScript functions from the database. They then exploit L1.1.1 by injecting
JavaScript code from the database into the created functions during the BSON
deserialization process. The L1.2.2 gadget finally invokes these functions. In
all these cases, we utilize the implicit toJSON call from JSON.stringify. This
demonstrates the practical combination of A3 data-only and A1 code injection
attacks.

In the V-2024-0001 vulnerability of Elastic Kibana, we combine two different
weaknesses in an A3 data-only attack chain. First, a L3.1.1 code fragment
pollutes the array’s prototype with an empty object {}. While the attacker does
not control the value of the polluted property, which should contain a payload
for RCE, they then exploits L3.1.2 weaknesses to further pollute the already
injected object in the prototype. This vulnerable code fragment does not allow the
pollution of the prototypes themselves but does permit pollution of any existing
objects within the prototypes, enabling the attacker to place a payload in the
required object’s properties. This chain allows an attacker to use the L3.2.2
external API call, which spawns a new process with the name and arguments
from the polluted object, ultimately achieving RCE.

Additionally, the taxonomy helps us identify new feasible code-reuse attack
chains, which we present in this section. We introduce new exploit primitives,
payloads, and code snippets that demonstrate code-reuse attack chains not previ-
ously published. These code snippets illustrate realistic features in web applica-
tions that can potentially be found in the wild. They provide a starting point for
future research on analyzing similar scenarios through static or dynamic analysis
and testing real-world applications against these vulnerable code patterns. In our
view, applications and libraries that perform complex data transformations, such
as data parsers or deserializers, appear to be promising targets for identifying and

3.6. ATTACK CHAINS 67

exploiting the following patterns.

<Call-flow hijacking, Code injection> attack chain The first code-reuse
attack chain combines a call-flow hijacking attack with code injection. Listing 3.17
presents a vulnerable web application written in JavaScript that can be exploited
through this attack chain. The example extends the ideas from Listing 3.10 in
Section 3.4. The application includes a defaultSettings object used to reset

1 const defaultSettings = {
2 // any application settings here, for example:
3 web: { /* ... */ },
4 mobile: { /* ... */ }
5 }
6
7 var users = {}
8 function signUp(req, res) {
9 const user = {

10 ...req.body,
11 createLogger(prefix) {
12 const name = this.name
13 return function (message) {
14 console.log(‘${prefix} USER [${name}]: ${message}‘)
15 }
16 }
17 }
18
19 const userId = Date.now().toString()
20 users[userId] = user
21 res.session.userId = userId
22 }
23
24 function resetSettings(req, res) {
25 const userId = req.session.userId
26 const user = users[userId]
27 if (user) {
28 for (const preference of req.body) {
29 const { featureKey, configCategory, configKey } = preference
30 user[featureKey] = defaultSettings[configCategory][configKey]
31 }
32 }
33 }
34
35 function someUserRequest(req, res) {
36 const userId = req.session.userId
37 const user = users[userId]
38 const log = user.createLogger(‘ID [${req.body.id}]‘)
39 log("Start request handling...")
40 // do something
41 }

Listing 3.17: <Call-flow hijacking, Code injection> attack chain.

68 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

user settings to predefined values. The default settings are grouped by categories
such as web and mobile.

The signUp function, defined in lines 8-17, registers a new user in the appli-
cation. The created user object includes a createLogger function that returns
a logger function with a specified prefix. This is a typical implementation of the
currying design pattern in JavaScript [88], which transforms a function that takes
multiple arguments into a sequence of functions, each taking a single argument.
In this example, log(prefix, message) translates to log(prefix)(message),
allowing the storage of log(prefix) in a separate variable for reuse, as shown
in line 38.

The resetSettings function, defined in lines 24-33, allows a user to re-
set their preferred settings to the default values. For each parameter, the user
provides a featureKey in the user object, along with a configCategory and
configKey pair to locate the default value in the defaultSettings object. The
someUserRequest function, defined in lines 35-41, creates a log function with
the given prefix, writes a log message, and then performs other actions that are
omitted for brevity. We assume that a user can send a request and trigger the
execution of any function in this example. If a user triggers signUp with the
body {name: "Yuske"} to register a user and then triggers someUserRequest
with {id: "42"}, the output will display the log message ID [42] USER [Yuske]:
Start request handling.... Notice that this code does not include any security-
sensitive functions, which could be potential targets of an attack. Everything in
the example appears generally safe.

An attacker, however, can exploit the resetSettings function with the fol-
lowing request body after creating a user account:

[
{
"featureKey": "createLogger",
"configCategory": "toString",
"configKey": "constructor"

}
]

This request replaces the createLogger function in the user’s object with
the constructor of a JavaScript function [113]. When someUserRequest is subse-
quently triggered, the first createLogger call on line 38 creates a new function,
and the invocation of this function on line 39 leads to its execution.

It is important to note that the attacker does not fully control the body
of the created function. In this scenario, createLogger actually invokes the
Function.constructor on line 38, where the argument matches the body pa-
rameter of the function constructor. Therefore, the argument must represent valid
attacker-controlled JavaScript code but will have the prefix ID [<placeholder>],
where the attacker only controls the <placeholder>. This complex concatena-
tion resulting in invalid JavaScript was chosen to illustrate a more practical case.

3.6. ATTACK CHAINS 69

This case demonstrates a convoluted code injection attack which is possible
because of the flexibility and dynamic nature of JavaScript. If an attacker pro-
vides a JavaScript expression as the placeholder, this code will be interpreted
as accessing a property of the ID object using a computed name [118]. As a
result, the runtime first evaluates the attacker-controlled expression to obtain
the property name. However, since ID is undefined, an exception will be thrown
during function evaluation. JavaScript’s feature of allowing function definitions
after their usage in code enables crafting a complete payload for the body of
someUserRequest:
{ id: "(() => console.log(’Injection!’))()];function ID(){};[" }

Listing 3.17 illustrates the attack chain combining call-flow hijacking and code
injection. According to the taxonomy, line 30 represents L2.1.1, a language fea-
ture of an existing function injection, corresponding to the W2.1 Function pointer
modification weakness. Line 38 represents both L2.2.1, a direct call, correspond-
ing to the G2.2 gadget that invocates a function via the modified pointer, and
L1.1.1, creating a new function at runtime, which corresponds to the W1.1 Code
injection weakness. Line 39 contains L1.2.1, an explicit call of the G1.2 Injected
code evaluation gadget, which ultimately leads to arbitrary code execution.
<Call-flow hijacking, Data-only> attack chain To demonstrate the second
code-reuse attack chain, we modify the previous example. Listing 3.18 presents
the updated version where the signUp and someUserRequest functions have
been altered. In signUp, we replace the createLogger function with a request
function in the user’s object. The new function simulates sending a request, tak-
ing request parameters and returning a response object. Such a function might
use some property values from the user object itself and utilize them to make
a request to an internal service, like a database. However, the implementation
details of this function are not important for our example and are therefore omit-
ted. In someUserRequest, the function invokes a user’s request in line 36 and
processes the response by replacing a field with a user-provided value in line 37.
This allows a user to combine data from a service like a database with provided
data in their response.

After creating a user account, an attacker can trigger resetSettings with
the following request body:
[
{
"featureKey": "request",
"configCategory": "constructor",
"configKey": "getPrototypeOf"

}
]

70 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

1 const defaultSettings = {
2 // any application settings here, for example:
3 web: { /* ... */ },
4 mobile: { /* ... */ }
5 }
6
7 var users = {}
8 function signUp(req, res) {
9 const user = {

10 ...req.body,
11 request(params) {
12 // send a request to something and return the response
13 return { /* ... */ }
14 }
15 }
16
17 const userId = Date.now().toString()
18 users[userId] = user
19 res.session.userId = userId
20 }
21
22 function resetSettings(req, res) {
23 const userId = req.session.userId
24 const user = users[userId]
25 if (user) {
26 for (const preference of req.body) {
27 const { featureKey, configCategory, configKey } = preference
28 user[featureKey] = defaultSettings[configCategory][configKey]
29 }
30 }
31 }
32
33 function someUserRequest(req, res) {
34 const userId = req.session.userId
35 const user = users[userId]
36 const response = user.request({ /* ... */ })
37 response[req.body.replaceKey] = req.body.replaceVal
38 // do something
39 }

Listing 3.18: <Call-flow hijacking, Data-only> attack chain.

This replaces the user’s function request with the built-in object’s function
getPrototypeOf [121]. Next, the attacker triggers someUserRequest with the
following request body:
{
replaceKey: "command",
replaceVal: "bash -i >& /dev/tcp/104.198.181.93/8080 0>&1",

}

In line 36, the request call actually invokes getPrototypeOf, which takes
an object as its first argument. This function call returns the object’s prototype,

3.6. ATTACK CHAINS 71

and then the property assignment in line 37 pollutes the prototype by adding
the command property with the attacker-controlled value. The remaining com-
ponent of this attack chain is a prototype pollution gadget that looks up the
attacker-controlled property in the prototype. This gadget could be located in
any unrelated part of the program. For example, if the attacker manages to trig-
ger an exec call from Listing 3.14 using the provided request body, they could
gain a shell on the application’s server, allowing them to execute arbitrary com-
mands. Even if the application does not have its own prototype pollution gadget
that can be triggered, the attacker might exploit a gadget from NPM packages
or the Node.js/Deno runtime itself if the application uses exploitable APIs. We
collected such server-side gadgets in a GitHub repository [101] while working on
our prototype pollution studies [42,194,196].

In Listing 3.18, line 28 illustrates L2.1.1, the injection of an existing built-in
function corresponding to W2.1 of the call-flow hijacking attack. Line 37 is a
L2.2.1 direct call of the G2.2 gadget, completing the call-flow hijacking attack.
Both lines 36 and 37 represent components of L3.1.1 item of the W3.1 weakness
that modify the object’s prototype in the data-only attack.

<Data-only, Call-flow hijacking, Code injection> attack chain I In the
attack chain <Call-flow hijacking, Code injection> we assumed that a currying
function was present within an object that an attacker could modify, such as the
user object. We now remove this assumption and consider the primitives that
allow an attacker to achieve arbitrary code execution when the exploit primitives
of call-flow hijacking and code injection are not explicitly related.

Listing 3.19 shows the code for this example. We moved the currying function
createLogger out of the user’s object and defined it separately in line 7. The
someUserRequest function now uses the apply call in line 49 to invoke the
currying function, passing the response object as this and an array of arguments
as the second parameter. The attacker does not control the value of res, which
is an object with application-predefined properties. However, they do control the
value in the second parameter, such as req.body.id.

We introduce new exploit primitives in resetSettings that allow modify-
ing the shared state. The nested setValue function, defined in line 34, sets
a value to obj according to the passed access property path. For example,
setValue({},["a","b"],"c") transforms the first argument to {a:{b:"c"}}.
This function does not validate the access path and is vulnerable to prototype
pollution. This new exploit primitive allows an attacker to start an attack chain
from a data-only attack and replace the apply function in the function’s prototype
with any built-in JavaScript function. Thus, a request triggering resetSettings
with a body containing:

{
"featurePath": "toString.__proto__.apply",
"configPath": "toString.constructor"

}

72 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

1 const defaultSettings = {
2 // any application settings here, for example:
3 web: { /* ... */ },
4 mobile: { /* ... */ }
5 }
6
7 function createLogger(prefix) {
8 return function (message) {
9 console.log(‘[${prefix}]: ${message}‘)

10 }
11 }
12
13 var users = {}
14 function signUp(req, res) {
15 const user = {
16 ...req.body,
17 }
18 const userId = Date.now().toString()
19 users[userId] = user
20 res.session.userId = userId
21 }
22
23 function resetSettings(req, res) {
24 function getValue(obj, path) {
25 for (const key of path) {
26 if (!obj[key])
27 obj[key] = {}
28
29 obj = obj[key]
30 }
31 return obj
32 }
33
34 function setValue(obj, path, value) {
35 const lastKey = path.pop()
36 const parentObj = getValue(obj, path)
37 parentObj[lastKey] = value
38 }
39
40 const user = users[req.session.userId]
41 for (const preference of req.body) {
42 const { featurePath, configPath } = preference
43 const value = getValue(defaultSettings, configPath.split("."))
44 setValue(user, featurePath.split("."), value)
45 }
46 }
47
48 function someUserRequest(req, res) {
49 const log = createLogger.apply(res, [req.body.id])
50 log("Start request handling...")
51 // do something
52 }

Listing 3.19: <Data-only, Call-flow hijacking, Code injection> attack chain I.

3.6. ATTACK CHAINS 73

enables an attacker to invoke the function’s constructor instead of any apply
call in the application. However, this alone is insufficient for a successful attack.
In line 49, the application performs an apply call and passes an object as the
first argument, as expected. The function’s constructor converts all arguments to
string values and expects a new function’s argument name as the first parameter
and the function’s body as the second. The res object is passed as the first
parameter and is converted to a string via the toString call. The default imple-
mentation of toString returns [object Object], which is an invalid argument
name for a JavaScript function. As a result, the replaced apply call in line 49
throws the exception SyntaxError: Unexpected identifier ’Object’.

To bypass this limitation, an attacker needs to replace the default toString
representation for all objects. The final version of the payload corresponds to:

[
{
"featurePath": "toString.__proto__.apply",
"configPath": "toString.constructor"

},
{
"featurePath": "__proto__.toString",
"configPath": "toString.name.constructor"

}
]

This payload also replaces Object.toString with the String type construc-
tor. The string constructor returns an empty string, allowing the attacker to
successfully call the function’s constructor in line 49, which generates a new func-
tion without arguments and with attacker-controlled code in its body. Line 50
then invokes the generated function, leading to arbitrary code execution in the
application.

Thus, we now have exploit primitives for all kinds of attacks in the taxonomy.
The code in getValue and setValue represents a prototype pollution, corre-
sponding to L3.1.1 of the W3.1 weakness, facilitating a data-only attack. The
calls to these functions in lines 43 and 44 trigger L2.1.1 language features of the
W2.1 weakness to call-flow hijacking. Line 49 contains gadgets for both attacks:
L2.2.1, a direct call of the G2.2 modified function pointer, and L3.2.2 of the
G3.2 data-only attack gadget, which reads the modified pointer from the shared
state. Line 49 also triggers L1.1.1, creating a function of the W1.1 weakness
in the code injection attack. Finally, line 50 represents the G1.2 gadget of this
attack through the L1.2.1 explicit call of the created function.

<Data-only, Call-flow hijacking, Code injection> attack chain II The
previous attack chains demonstrate the powerful combination of exploit primi-
tives that may be present in the wild. However, the existence of currying func-
tions like createLogger raises the question: Is it possible to exploit a similar
attack if an application does not define any function that returns another func-
tion? This implies that the chain should consist only of built-in functions in its

74 CHAPTER 3. CODE-REUSE ATTACKS TAXONOMY

1 function someUserRequest(req, res) {
2 const customReduce = Array.prototype.reduce.bind(req.body.messages,
3 (acc, val) => { return acc + val + ’ ’ })
4 console.log(customReduce("Prefix: "))
5 console.log(customReduce("Another prefix: "))
6 // do something
7 }

Listing 3.20: <Data-only, Call-flow hijacking, Code injection> attack chain II.

exploit primitives. Let us remove createLogger from our example and rewrite
someUserRequest as shown in Listing 3.20.

The new implementation uses the bind function [113] in line 2 to create
a new function based on the built-in reduce function that, when called, uses
the req.body.messages array as this and a callback passed as the second ar-
gument. This is also a variation of the currying design pattern using built-in
JavaScript features. In our example, the generated customReduce function re-
turns a string that takes the first argument as a prefix and concatenates all ele-
ments of req.body.messages. For [1,2] array, line 4 outputs "Prefix: 1 2"
to the console, while line 5 outputs "Another prefix: 1 2".

An attacker can exploit this code via a <Data-only, Call-flow hijacking,
Code injection> attack chain similar to the previous case. They first trigger
resetSettings with the following request body, which replaces bind with the
function’s constructor:
[
{
"featurePath": "toString.__proto__.bind",
"configPath": "toString.constructor"

}
]

The attacker then triggers the execution of someUserRequest by passing the
following payload in the messages parameter of the request’s body:
[
"arg1,
arg2 = (Function.prototype.bind = function(ref, ...boundArgs) { const fn =

this; return function (...args) { return fn.apply(ref, [...boundArgs,
...args]); }}),

arg3 = (() => {console.log(’Injection!’)})()"
]

The payload is complex and requires additional discussion. It defines a list
of arguments for the created function. In line 4 of Listing 3.20, the code passes
Prefix: to the first argument, arg1. For the other arguments, we define default
values whose expressions will be executed at the time the function is called in
line 4. The default value of arg2 fixes the replaced bind function by reassigning
the original implementation to the function’s prototype. Otherwise, the runtime

3.6. ATTACK CHAINS 75

throws an exception when trying to invoke bind in internal code. The default
value of arg3 represents an example of malicious code that the attacker wants to
execute during the attack. In the payload, this code simply outputs Injection!
to the console as an example. Thus, this attack chain also leads to arbitrary code
execution for the considered example.

While the examples demonstrate the feasibility of attack chains in JavaScript-
driven applications, we leave the investigation of their prevalence in the wild as
future work.

Chapter 4

Summary of Publications

This thesis comprises four papers that have been published in peer-reviewed con-
ferences: the Network and Distributed System Security Symposium (NDSS), the
USENIX Security Symposium, and the ACM Web Conference (formerly known
as WWW). Additionally, the author has contributed to another paper titled
"Friendly Fire: Cross-app Interactions in IoT Platforms," which has been pub-
lished in the peer-reviewed journal ACM Transactions on Privacy and Security
(TOPS). This paper is not included in the thesis, as it focuses on IoT security,
which diverges from the main topic of the thesis. The formatting of the included
papers has been standardized to match the overall style of the thesis, but their
content remains unchanged from the original publications. A unified bibliography,
combining references from the thesis and the included publications, has been ap-
pended at the end of this document. The subsequent sections provide summaries
of each paper and detail the individual contributions of the thesis author.

4.1 SerialDetector: Principled and Practical Exploration of
Object Injection Vulnerabilities for the Web

This paper presents the first systematic approach for detecting and exploiting
object injection vulnerabilities (OIVs) in .NET applications, including the .NET
Framework and the libraries that these applications build on. In web applications,
a typical OIV is triggered during the deserialization of attacker-controlled data.
Deserialization is the process of converting input data, such as XML or JSON
documents, into objects. Deserializers may execute methods of the deserialized
objects, like constructors or property setters, which can lead to the execution of
a code chain (gadget) that performs malicious actions.

We delve into the implementation of the .NET Framework to identify the root
causes of OIVs. We classify methods that create new objects dynamically based
on the object’s type as sensitive sinks. Sensitive sinks are either native (external)
methods or dynamically generated methods that take type information as an

77

78 CHAPTER 4. SUMMARY OF PUBLICATIONS

input parameter and return a new object of that type. We also define attack
triggers, which are the initial methods in a gadget chain leading to malicious
behavior. Given that an attacker can manipulate the type of the created object,
they can influence which specific implementation of an attack trigger is invoked.
Thus, attack triggers can be either virtual methods that execute a method based
on the object’s type or native methods that take the attacker-controlled method
name as a parameter, allowing the attacker to execute any method on the object.
In light of this analysis, we designed a framework-agnostic approach to detect
OIVs, defining three key ingredients: (i) public entry points; (ii) sensitive sinks;
and (iii) attack triggers.

We implemented this approach in SerialDetector [190], a static analysis tool
designed to detect and exploit object injection vulnerabilities in .NET applica-
tions and libraries. The tool features a fully automated detection phase, which
performs call graph analysis, entry point detection, and taint-based dataflow anal-
ysis to identify OIV code patterns. SerialDetector implements a scalable abstract
interpretation of Common Intermediate Language (CIL) instructions in the .NET
runtime, enabling the analysis of the .NET Framework without requiring access
to its source code or any specific knowledge about the semantics of individual
methods, thus operating in a framework-agnostic manner. The second phase of
the analysis is a semi-automated exploitation phase. This phase serves several
purposes: (i) matching the generated patterns with publicly available gadgets to
evaluate the effectiveness of our detection algorithms; (ii) generating malicious
payloads based on the information of detected and validated gadgets; and (iii)
performing call graph analysis of applications to detect and exploit OIVs.

We evaluated the feasibility of our approach on 15 vulnerable .NET deserializ-
ers. SerialDetector confirmed exploitable patterns in 10 deserializers and reported
warnings for 5 deserializers due to the lack of support for method calls via func-
tion pointers, such as delegates. To validate its effectiveness in practical scenarios,
we applied SerialDetector to production software. We selected Microsoft Azure
DevOps as the primary target for our investigations. SerialDetector enabled us to
detect and exploit three critical security vulnerabilities leading to RCEs: CVE-
2019-0866, CVE-2019-0872, and CVE-2019-1306.

Takeaways

Our key observation is that the root cause of OIVs lies in the untrusted infor-
mation flow from an applications’ entry points to sensitive sinks, which create
objects of arbitrary types to invoke attack triggers that initiate the execution of
a gadget. Drawing on this insight, we developed the open-source SerialDetector
tool. We conducted a thorough evaluation of OIV patterns in .NET-based de-
serialization libraries, demonstrating that SerialDetector can identify vulnerable
patterns with minimal burden on security analysis. These patterns were then
used in a broad security analysis of vulnerable applications, including Microsoft

4.1. SILENT SPRING 79

Azure DevOps, showcasing SerialDetector in action to identify and exploit highly
critical vulnerabilities leading to RCEs.

Statement of Contribution

This paper was published in the 28th Network and Distributed System Security
Symposium (NDSS 2021) and was co-authored with Musard Balliu. The idea
of studying object injection vulnerabilities in a framework-agnostic manner was
proposed by the thesis author and further developed in collaboration with the
co-author. The thesis author developed the tool prototype and conducted its
evaluation. Using the developed methodology and tool, the thesis author suc-
cessfully detected and exploited new vulnerabilities in Microsoft Azure DevOps.
Both authors contributed to the writing of the paper.

4.2 Silent Spring: Prototype Pollution Leads to Remote
Code Execution in Node.js

In this paper, we study prototype pollution vulnerabilities holistically, from the
detection of prototype pollution to the identification of gadgets that lead to RCE
attacks. We investigate the key ingredients of prototype pollution and demon-
strate the similarities between exploiting prototype pollution and object injection
vulnerabilities. Like the exploitation of OIVs, code-reuse attacks via prototype
pollution require two stages: (i) polluting the prototype via an injection sink and
(ii) executing the gadget, which consists of existing program code fragments that
propagate a value from the polluted property to an attack sink that performs a
security-sensitive action. We focus on the analysis of the Node.js runtime. We re-
fer to gadgets as universal gadgets when they occur in the source code of Node.js.
Because these gadgets appear in code that runs within the Node.js runtime, they
are available for exploitation in any Node.js application.

We present a semi-automated analysis framework for detecting and exploit-
ing prototype-based vulnerabilities. The framework is divided into three major
steps: (i) automated prototype pollution detection, (ii) automated gadget detec-
tion, and (iii) manual exploit generation for end-to-end attacks. The prototype
pollution detection step performs a multi-label taint-based static analysis to cap-
ture the temporal relationship between (attacker-controlled) property accesses in
an object. This analysis allows the potential prototype object read to be con-
nected with the assignment of a value to this tracked prototype, thus detecting
the prototype pollution vulnerability (its injection sink). The gadget detection
step implements a hybrid solution, including dynamic and static analysis of the
Node.js source code, to identify an attack sink affected by the value of a polluted
property. The last step of the approach is the end-to-end exploit generation. This
manual step requires an investigation of the target application’s workflow to val-

80 CHAPTER 4. SUMMARY OF PUBLICATIONS

idate the exploitability of the detected prototype pollution and gadget, achieving
code execution on the system.

We developed a toolchain based on CodeQL [84] to detect prototype pollution
vulnerabilities and their associated gadgets. We also enhanced the support for
JavaScript in CodeQL to achieve better recall metrics in our analysis. The pro-
totype pollution detection is based on the designed multi-label taint tracking and
performs the analysis in two ways: (i) from the package’s exported functions or
(ii) from any function in the analyzed codebase. The second approach allows us
to analyze the code of applications without prior knowledge of the application’s
entry points available to an attacker. The gadget detection includes dynamic
analysis, which collects the names of undefined properties that can be polluted,
and static analysis based on CodeQL, which collects attack sinks for given prop-
erty names. Thus, the analysis provides enough information for implementing
PoC exploits for the detected universal gadgets, demonstrating which properties
should be polluted and which APIs should be triggered to achieve a malicious
action.

We first evaluated the effectiveness of our toolchain in detecting injection
sinks. We compiled an open-source benchmark of 100 vulnerable Node.js pack-
ages and achieved high recall (82-97%) with low-to-moderate precision (31-50%).
Following this, we evaluated the prototype pollution detection on 15 popular
Node.js applications and uncovered eight previously unknown exploitable RCEs.
The gadget detection analysis allowed us to identify 11 new universal gadgets
leading to RCE, which we also leveraged to exploit the discovered vulnerabilities.

Takeaways

We presented the first principled study on the impact of prototype pollution
vulnerabilities in Node.js. We propose a semi-automated approach for detecting
end-to-end exploits and have open-sourced the toolchain [193], facilitating scalable
analysis of real-world Node.js applications and the Node.js runtime. Our findings
reveal that universal gadgets introduce a new threat to the Node.js ecosystem:
hijacking the control flow of a program to (ab)use unused code available in the
application’s dependencies and in the runtime itself.

Statement of Contribution

This paper was originally published in the 32nd USENIX Security Symposium
(USENIX Security 2023) and was co-authored with Musard Balliu and Cristian-
Alexandru Staicu. The thesis author contributed to the design and implemen-
tation of the prototype pollution vulnerability detection toolchain, based on the
CodeQL static analysis framework. The author also conducted the evaluation of
the static analysis toolchain against the benchmark of vulnerable NPM packages.
The process of analyzing Node.js and discovering universal gadgets was a collab-
orative effort. The thesis author investigated a portion of the Node.js APIs and

4.2. UNVEILING THE INVISIBLE 81

implemented several PoC gadget exploits leading to RCEs. Additionally, the the-
sis author studied open-source Node.js applications, detecting and exploiting new
prototype pollution vulnerabilities that resulted in eight RCE attacks in applica-
tions such as npm-cli, Parse Server, and Rocket.Chat. All authors contributed to
the writing of the paper.

4.3 Unveiling the Invisible: Detection and Evaluation of
Prototype Pollution Gadgets with Dynamic Taint
Analysis

This paper addresses the challenges associated with exploiting prototype pol-
lution vulnerabilities and examines the impact of application dependencies on
this threat. End-to-end exploitation of prototype pollution requires two stages:
(i) polluting the prototype and (ii) executing a gadget that inadvertently reads
the polluted property and uses it in a security-sensitive action. Both components
of the attack can be located in the application code as well as in the application
dependencies. While the security community generally agrees that prototype pol-
lution is a root cause of such attacks and should be fixed, the threat posed by
gadgets is not sufficiently understood. This paper sets out to study the prevalence
and impact of gadgets in the NPM ecosystem that cause arbitrary code execution
(ACE).

We present a methodology for large-scale analysis of packages in the NPM
ecosystem. The methodology includes (i) an automatic setup of the source code,
its dependencies, and test suites; (ii) an automatic taint-enhanced analysis of
the package; and (iii) a manual verification of the results. First, the automated
pipeline downloads and installs a package, identifies a test runner script, and
executes as many package-exported functions as possible to find gadgets. These
functions should be called in expected use cases, which is why we assume that
the test suite of the package describes typical scenarios of how the package can be
used. Second, we perform an automatic analysis that yields high-precision results,
making large-scale experiments feasible. Dynamic taint analysis is chosen to meet
this requirement. As the final step, we verify the candidate gadgets produced by
the automated analysis. Since we are primarily interested in ACE and related
vulnerabilities, we filter gadget candidates based on Node.js API (sink) reached
by a polluted value. We then manually implement small PoC exploits for the
filtered gadgets.

Drawing on this principled methodology, we developed Dasty, an efficient
dynamic taint analysis tool for detecting prototype pollution gadgets. Dasty
targets server-side Node.js applications and relies on an enhancement of dynamic
taint analysis which we implement with the dynamic AST-level instrumentation.
We modified the dynamic instrumentation framework NodeProf [209] and built
our analysis on top of it. At runtime, the analysis automatically identifies any
property accesses from an object’s prototype, injects a taint mark, and records

82 CHAPTER 4. SUMMARY OF PUBLICATIONS

the code flows that reach dangerous sinks, while implementing strategies such as
forced branch execution [207] to improve effectiveness.

Moreover, Dasty provides support for visualizing code flows within an IDE,
facilitating the subsequent manual analysis for building PoC exploits. We evalu-
ated Dasty’s effectiveness and performance compared with state-of-the-art gadget
detection tools. Dasty introduces 1.2 to 3.8 times average performance overhead
compared to the original NodeProf, which allowed us to complete the experiments
successfully. Dasty is more effective and performant compared to the analysis im-
plementation based on the state-of-the-art tool Augur [3].

To illustrate the danger of gadgets, we used Dasty to study about 10K of NPM
packages and analyze the presence of gadgets leading to ACE. Dasty identified
ACE gadgets in 49 NPM packages. To investigate how Dasty integrates with
existing tools to find end-to-end exploits, we conducted an in-depth analysis of
Elastic Kibana using Dasty in combination with the Silent Spring toolchain [193]
for prototype pollution detection. We identified and confirmed the exploitation
of a high-severity vulnerability, CVE-2023-31415, leading to RCE.

Takeaways

We developed a methodology and a tool, Dasty, allowing us to perform large-scale
analysis of NPM packages against prototype pollution gadgets leading to ACE.
We conducted the first systematic experiment to study the prevalence of server-
side gadgets in the NPM ecosystem, discovering exploitable ACEs in 49 packages.
Additionally, we detected a prototype pollution vulnerability in a high-profile web
application and successfully exploited it via one of the confirmed gadgets. We
responsibly reported the vulnerability and gadgets to the vendors and the pack-
ages’ maintainers. We have also open-sourced Dasty, the semi-automated pipeline
designed to help developers identify gadgets in their applications’ software supply
chain.

Statement of Contribution

This paper was published in the ACM Web Conference 2024 (WWW ’24) and
was co-authored with Paul Moosbrugger and Musard Balliu. The thesis author
contributed to the design of the methodology and the Dasty pipeline. Most of the
gadget candidates were verified, and the PoC exploits were implemented by the
thesis author. The author also performed the experiments combining Dasty with
the Silent Spring toolchain to analyze and exploit the high-profile application
Elastic Kibana. As a result of this experiment, the thesis author detected and
reported a high-severity vulnerability leading to RCE. The writing of the paper
was a joint effort by all authors.

4.4. GHUNTER 83

4.4 GHunter: Universal Prototype Pollution Gadgets in
JavaScript Runtimes

We study prototype pollution gadgets in JavaScript runtime environments—code
fragments that read polluted properties and pass their values to APIs, allowing
an attacker to perform malicious actions. Gadgets embedded in runtime code
are particularly dangerous because they are shared across all applications, signif-
icantly increasing the attack surface. This work is inspired by the Silent Spring
paper [194], which uses static taint analysis for Node.js APIs to identify proto-
type pollution gadgets, known as universal gadgets, that lead to ACE. We propose
that dynamic analysis is more effective for identifying universal gadgets due to
several reasons: (a) the sources of analysis involve accesses to properties from
the prototype, which are difficult to identify statically; (b) the highly dynamic
nature of JavaScript presents significant challenges for static analysis, leading to
low precision and recall, along with high manual effort; and (c) realistic gadgets
are best captured through common API usage scenarios, which are effectively
represented by comprehensive runtime test suites.

We designed an analysis pipeline that operates in the following steps: (i) auto-
mated identification of candidate properties for prototype pollution by detecting
undefined property accesses; (ii) simulation of pollution of candidate proper-
ties and automated detection of the reachability of security-sensitive functions
(sinks) and unexpected terminations, reporting gadget candidates; (iii) manual
verification of the gadget candidates and generation of PoC exploits for confirmed
gadgets. We assume that the runtime’s own test suite contains a representative
sample of API use cases, thus our approach utilizes these test suites as represen-
tative examples of normal API usage.

We designed and implemented GHunter, a pipeline for systematically de-
tecting gadgets in V8-based JavaScript runtimes, including Node.js and Deno.
GHunter supports a lightweight dynamic taint analysis to automatically identify
gadget candidates, which we validate manually to derive PoC exploits. We imple-
mented GHunter by modifying the V8 engine and the targeted runtimes, along
with features that facilitate manual validation. The modified V8 engine collects
all attempts to access undefined properties during execution. The pipeline then
simulates pollution of the collected properties by assigning a taint value instead of
undefined and re-runs the tests. The modified target runtimes, Node.js and Deno,
report source-to-sink flows to external APIs when the tainted value is passed as an
argument. For all test runs, the pipeline also collects information on unexpected
terminations due to a polluted property, indicating potential DoS attacks.

We used GHunter in a systematic study of gadgets in Node.js and Deno run-
times. We identified a total of 56 new gadgets in Node.js and 67 gadgets in Deno,
pertaining to vulnerabilities such as arbitrary code execution (19), privilege es-
calation (31), path traversal (13). We have responsibly disclosed our findings to
the Node.js and Deno development teams. Both acknowledged our report but

84 CHAPTER 4. SUMMARY OF PUBLICATIONS

neither considers them within their current threat model. Node.js suggested a
public discussion with their developer community on the dangers of gadgets.

To demonstrate the impact of these gadgets, we analyzed Elastic Kibana for
end-to-end exploits. We initially utilized the Silent Spring toolchain [193] to de-
tect prototype pollution vulnerabilities and then exploited one of the detected
vulnerabilities using a new gadget in the require function. The vulnerability
was fixed and received CVE-2023-31414 with a critical severity rating. We also
compared the effectiveness of GHunter and Silent Spring in finding universal
gadgets. This evaluation showed that GHunter is more precise, resulting in less
manual work required and higher accuracy. We attribute this primarily to the
fully dynamic approach used by GHunter, which ensures every gadget candidate
reaches a sink and provides support for dynamic language features. We evaluated
the performance overhead incurred by GHunter. For Node.js, the time required
to evaluate the full test suite increased by 111.72%. For Deno, running all tests
increased runtime by 14.63% in total. The main reason for the decreased perfor-
mance and higher failure rate is the code responsible for checking tainted values in
internal sinks. However, these experiments demonstrate that GHunter evaluates
the full test suites in a reasonable time and can be effectively used for analyzing
Node.js and Deno runtimes.

Takeaways

We designed a semi-automated analysis pipeline to discover exploitable universal
gadgets in Node.js and Deno by dynamic taint analysis. Our pipeline, imple-
mented in the GHunter tool, allowed us to systematically study universal gad-
gets, identifying 123 exploitable gadgets. We open-sourced GHunter and publicly
disclosed the detected gadgets to raise awareness of their exploitation risks. Ad-
ditionally, we identified and reported a new prototype pollution vulnerability in
Elastic Kibana, demonstrating its exploitation using the disclosed gadgets. In
light of these results, we systematized existing mitigations for prototype pollu-
tion and gadgets in the form of development guidelines.

Statement of Contribution

This paper was published in the 33rd USENIX Security Symposium (USENIX
Security 2024) and was co-authored with Eric Cornelissen and Musard Balliu. All
authors contributed to the methodology and the presented pipeline. The thesis
author developed a prototype of the dynamic taint analysis in the V8 engine and
Node.js runtime, and conducted the Node.js experiments. The thesis author also
implemented PoC exploits for Node.js gadgets, and detected and exploited the
vulnerability in Elastic Kibana. The guidelines for mitigating prototype pollution
and gadgets were a collaborative effort, with the thesis author evaluating the fixes
of known prototype pollution vulnerabilities and their gadgets through the lens
of the guidelines, and describing these case studies in the paper.

Chapter 5

Conclusions and Future Work

This doctoral thesis sets out to explore the attacks and vulnerabilities inherent
in managed languages and runtimes, specifically focusing on C# and JavaScript.
The primary objective was to develop methodologies and tools for identifying
and mitigating code-reuse attacks (CRAs) in large-scale production applications.
Throughout the thesis, we addressed the following research questions: (RQ1) how
to develop methodologies that use static and dynamic program analysis to sys-
tematically and effectively capture the root causes of CRAs in memory-managed
languages and their runtimes; (RQ2) how to implement analysis algorithms in a
scalable manner to analyze real-world applications, libraries, and runtimes; (RQ3)
how to perform a large-scale evaluation to estimate the prevalence of these vulner-
abilities in the wild; (RQ4) what classes of code-reuse attacks can be distinguished
in managed programming languages and runtimes.

We developed a systematic approach for detecting and exploiting object in-
jection vulnerabilities (OIVs) in .NET applications. This approach allowed us
to identify critical security flaws without relying on prior knowledge of vulnera-
ble methods within a framework. Additionally, we introduced methodologies for
detecting and mitigating prototype pollution (PP) vulnerabilities in JavaScript,
identifying key ingredients of these vulnerabilities and proposing developer guide-
lines to defend against the exploitation of PPs. These contributions addressed
RQ1.

The thesis also presented a suite of static and dynamic analysis tools, in-
cluding SerialDetector (Paper A), Silent Spring (Paper B), Dasty (Paper C), and
GHunter (Paper D), which were successfully applied to identify and exploit critical
vulnerabilities in real-world applications. We presented the developed program
analysis algorithms and discussed the challenges and details of their implemen-
tations, addressing RQ2. We covered RQ3 by conducting large-scale evaluations
of the tools, analyzing popular managed runtimes, thousands of libraries, and
high-profile applications.

Moreover, we developed a new taxonomy of code-reuse attacks in managed

85

86 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

languages and runtimes, as detailed in Chapter 3, uncovering new attack primi-
tives and their combinations to address RQ4.

This thesis contributes to the state of the art in both practical and scientific
terms. The practical impact of this work is evident through the successful applica-
tion of the developed tools in real-world scenarios. We discovered and responsibly
disclosed critical vulnerabilities in high-profile applications, contributing to the
overall security of widely used software systems. Scientifically, this work has
advanced the understanding of code-reuse attacks in memory-safe languages, ex-
tending existing techniques in static and dynamic taint analysis. The taxonomy
of CRAs developed in this thesis provides a structured framework for identify-
ing these attacks, showing connections between safe and unsafe languages, and
offering a valuable resource for both researchers and practitioners.

Throughout the research, we encountered several challenges, particularly in
the development of static and dynamic analysis tools. One of the main techni-
cal challenges was achieving scalability while maintaining precision in the analy-
sis. Analyzing large codebases posed significant computational demands, and the
trade-offs between precision and scalability were a constant consideration.

Future research may focus on enhancing the limitations of the developed tools.
SerialDetector, for instance, ignores some CIL instructions, which prevents track-
ing values of function pointers such as delegates. We also discussed the challenge
of effectively resolving virtual method calls in large codebases, which may be
improved further. The detection of complex gadget chains remains an area for
further improvement. We have already attempted to support such chains in Dasty
by developing forced branch execution, yet our tools have limitations in detecting
full complex gadget chains.

The scope of our analysis and taxonomy was limited to C# and JavaScript,
leaving room for expansion into other languages and runtime environments. An-
other promising direction involves investigating new code-reuse attack vectors
that may emerge as programming languages and frameworks evolve. By staying
ahead of these developments, we can design methodologies to detect and mitigate
future threats effectively.

The broader application of the developed taxonomy also presents exciting
opportunities. It raises an interesting question about the prevalence of the newly
reported attack chains in real-world applications. This topic requires additional
large-scale analysis of applications and libraries and potentially may bring new
classes of vulnerabilities. Applying this taxonomy to other domains, such as
mobile applications, may yield valuable insights and guide the development of
new security measures and best practices.

Reflecting on this research journey, it has been both challenging and reward-
ing. The complexity of analyzing and securing large-scale software systems re-
quired non-trivial approaches. The lessons learned throughout this process have
not only advanced the field but also provided valuable insights which will hope-
fully motivate future research studies.

87

In conclusion, this thesis has made contributions to the understanding and
mitigation of code-reuse attacks in managed languages and runtimes. The method-
ologies, tools, and taxonomy developed in the thesis provide a robust foundation
for securing modern software systems against increasingly sophisticated cyber
threats. As technology continues to evolve, the need for effective security mea-
sures will only grow, and this work represents a step forward in ensuring that our
digital infrastructure remains solid in the face of these challenges.

Part II

Included Papers

89

A

Paper A

SerialDetector: Principled and
Practical Exploration of Object
Injection Vulnerabilities for the Web

Mikhail Shcherbakov and Musard Balliu
Proceedings of the 28th Network and Distributed System Security Symposium,

NDSS 2021

91

92 PAPER A. SERIALDETECTOR

Abstract

The last decade has seen a proliferation of code-reuse attacks in the con-
text of web applications. These attacks stem from Object Injection Vul-
nerabilities (OIV) enabling attacker-controlled data to abuse legitimate code
fragments within a web application’s codebase to execute a code chain (gad-
get) that performs malicious computations, like remote code execution, on
attacker’s behalf. OIVs occur when untrusted data is used to instantiate an
object of attacker-controlled type with attacker-chosen properties, thus trig-
gering the execution of code available but not necessarily used by the appli-
cation. In the web application domain, OIVs may arise during the process of
deserialization of client-side data, e.g., HTTP requests, when reconstructing
the object graph that is subsequently processed by the backend applications
on the server side.

This paper presents the first systematic approach for detecting and ex-
ploiting OIVs in .NET applications including the framework and libraries.
Our key insight is: The root cause of OIVs is the untrusted information flow
from an application’s public entry points (e.g., HTTP request handlers) to
sensitive methods that create objects of arbitrary types (e.g., reflection APIs)
to invoke methods (e.g., native/virtual methods) that trigger the execution
of a gadget. Drawing on this insight, we develop and implement SerialDe-
tector, a taint-based dataflow analysis that discovers OIV patterns in .NET
assemblies automatically. We then use these patterns to match publicly avail-
able gadgets and to automatically validate the feasibility of OIV attacks. We
demonstrate the effectiveness of our approach by an in-depth evaluation of a
complex production software such as the Azure DevOps Server. We describe
the key threat models and report on several remote code execution vulnerabil-
ities found by SerialDetector, including three CVEs on Azure DevOps Server.
We also perform an in-breadth security analysis of recent publicly available
CVEs. Our results show that SerialDetector can detect OIVs effectively and
efficiently. We release our tool publicly to support open science and encourage
researchers and practitioners explore the topic further.

A.1 Introduction

The last decade has seen a proliferation of code-reuse attacks in the context of
web applications [35, 52, 64, 65, 79, 103, 148]. The impact of these attacks can be
devastating. The recent attack that hit the credit reporting agency Equifax ex-
posed the personal information (credit card numbers, Social Security numbers)
of 143 million US consumers. As a result, the law firms filed 23 class-action
lawsuits, which would make it the largest suit in US history. The breach rooted
in insecure deserialization in the Apache Struts framework within a Java web
application, which led to remote code execution (RCE) on Equifax web servers.
The attack exploited the XML serialization of complex data objects into textual
strings to introduce malicious XML payloads into Struts servers during the dese-

A.1. INTRODUCTION 93

rialization process [96]. These attacks motivate the need for studying code-reuse
vulnerabilities systematically.

Object Injection Vulnerabilities In web applications, Object Injection
Vulnerabilities (OIV) occur when an attacker can arbitrarily modify the prop-
erties of an object to abuse the data and control flow of the application. For
example, OIVs may arise during the deserialization of data from the client side,
e.g., HTTP requests, when reconstructing the object graph that is subsequently
processed by the backend applications on the server side. Similarly to classical
exploits such as return-oriented programming (ROP) and jump-oriented program-
ming (JOP), which target memory corruption vulnerabilities [18, 173, 210], OIVs
enable attacker-controlled data to trigger the execution of legitimate code frag-
ments (gadgets) to perform malicious computations on attacker’s behalf. The
following requirements are needed to exploit an OIV [147]: (i) the attacker con-
trols the type of the object to be instantiated, e.g., upon deserialization; (ii) the
reconstructed object calls methods in the application’s scope; (iii) there exists a
big enough gadget space to find types that the attacker can chain to get an RCE.
Existing works show that OIVs are present in mainstream programming languages
and platforms like Java [79,148], JavaScript [103], PHP [64], .NET [65,147], and
Android [166].

Challenges Despite the high impact of OIV, efforts on tackling their root
cause have been unsatisfactory. A witness is the fact that a decade after the dis-
covery of these vulnerabilities a comprehensive understanding of languages fea-
tures at the heart of OIVs has yet to emerge. One result is the ongoing arms race
between researchers discovering new attacks and gadgets and vendors providing
patches in an ad-hoc manner. To date, the best efforts in discovering and exploit-
ing OIVs have been put forward by the practitioners’ community [64,65,73,147].
Except for a few recent works [52, 75, 80, 103, 143], the problem remains largely
unexplored in the academic community. Most existing works address OIVs within
the general context of injection vulnerabilities, thus lacking targeted techniques
for detection and exploitation in web applications [13,35,200,214].

A principled investigation of OIVs in real-world applications requires analyz-
ing not only the applications, but also the underlying framework and libraries
that these applications build on. In fact, most of the known attacks stem from
weaknesses in frameworks and libraries. This is challenging task since production
scale frameworks, e.g., the .NET Framework, are complex entities with large code-
bases, intricate language features, and lack of source code. Existing approaches
rely on static source code analysis of applications and ignore frameworks and
libraries. Moreover, they focus on a whitelist of magic methods [52,64], i.e., vul-
nerable APIs at the application level, thus missing attacks that may be present
in unknown methods using the same features at the framework level. Another
key challenge is the lack of automation and open source tools to investigate the
feasibility of potential attacks. While state-of-the-art countermeasures against
OIVs rely on blacklisting/whitelisting techniques [12, 47, 75, 80, 98, 143, 183, 187],
it is essential to develop tools that check feasibility of attacks in a principled and

94 PAPER A. SERIALDETECTOR

practical manner.
Contributions This work presents the first systematic approach for detecting

and exploiting OIVs in .NET applications, including the .NET Framework and
third-party libraries. Our key observation is that the root cause of OIVs is the
untrusted information flow from an applications’ entry points to sensitive sinks
that create objects of arbitrary types to invoke attack triggers that initiate the
execution of a gadget. Drawing on this insight, we develop and implement Seri-
alDetector [190], a tool for detecting OIV patterns automatically and exploiting
these patterns based on publicly-available gadgets in a semi-automated fashion.
Following the line of work on static analysis at bytecode level [8,14,59,71,214,215],
SerialDetector implements an efficient and scalable inter-procedural taint-based
static analysis targeting .NET’s Common Intermediate Language. At the heart of
our approach lies a field-sensitive and type-sensitive data flow analysis [197, 214]
that we leverage to analyze the relevant object-oriented features and detect vul-
nerable patterns. We evaluate the feasibility of our approach on 15 deserializers
reporting on the efficiency and effectiveness of SerialDetector in generating OIV
patterns. We conduct an in-depth security analysis of production software such
as the Azure DevOps Server and find three RCE vulnerabilities. To further eval-
uate SerialDetector, we perform an in-breadth security analysis of recent .NET
CVEs from public databases and report on the effort to analyze and reproduce
these exploits. In summary, the paper offers the following contributions:

• We identify the root cause of Object Injection Vulnerabilities and present a princi-
pled and practical approach to detect such vulnerabilities in a framework-agnostic
manner.

• We present the first systematic approach for detecting and exploiting OIVs in
.NET applications including the framework and libraries.

• We develop SerialDetector [190], a practical open source tool implementing a
scalable taint-based dataflow analysis to discover OIV patterns, as well as lever-
aging publicly available gadgets to exploit OIVs in real-world software.

• We perform an thorough evaluation of OIV patterns in .NET-based deserial-
ization libraries showing that SerialDetector can find vulnerable patterns with
low burden on a security analysis. We use these patterns in an in-breadth se-
curity analysis of vulnerable applications to show that SerialDetector can help
uncovering OIVs effectively and efficiently.

• We carry out an in-depth security analysis of Azure DevOps Server illuminating
the different threat models. Drawing on these threat models, we show SerialDe-
tector in action to identify and exploit highly-critical vulnerabilities leading to
remote code execution on the server.

A.2 Technical Background

This section provides background information and illuminates the core security
issues with OIVs in .NET applications. We identify the key ingredients in the life-

A.2. TECHNICAL BACKGROUND 95

cycle of an OIV, distinguishing between application-level OIVs (Section A.2) and
infrastructure-level OIVs (Section A.2). Appendix A.10 provides a brief overview
of the .NET Framework.

Application-level OIVs

Applications can be vulnerable to OIVs whenever untrusted data instantiates
an object of arbitrary type and subsequently influences a chain of method calls
resulting in the execution of a dangerous operation. For an attack to be success-
ful, the following ingredients are required: (1) a public entry point allowing the
attacker to inject untrusted data; (2) a sensitive method creating an object of
attacker-controlled type; (3) a gadget consisting of a chain of method calls that
ultimately execute a dangerous operation; (4) a malicious payload triggering the
execution of steps (1)-(3).

Consider a C# implementation of the classical Command design pattern [69]
for a smart home controller (Listing A.1). The controller implements the method
CommandAction as an entry point handling HTTP POST requests. Following the
design pattern, a developer creates an object of type name dynamically using the
method Activator.CreateInstance of the .NET Framework. Subsequently,
the code calls the virtual method Execute to execute the command specified
in the input parameter args, e.g., a Backup command that runs a database
backup. The main benefit of this design pattern is that a developer can define new
commands without changing the implementation of the method CommandAction.
This can be achieved by simply adding a new class that implements the interface
ICommand.

1 public class SmartHomeController : Controller {
2 [HttpPost]
3 public ActionResult CommandAction(string name, string args) {
4 var t = Type.GetType(name);
5 var c = (ICommand) Activator.CreateInstance(t);
6 c.Execute(args);
7 return RedirectToAction("Index");
8 }}
9 public class Backup : ICommand {

10 public virtual void Execute(string parameters) {
11 DB.Backup(parameters);
12 }}

Listing A.1: Implementation of Command pattern.

Unfortunately, such flexible design comes with security issues. Consider the
class OSCommand implementing the same interface ICommand to run a process
based on the data from parameters (Listing A.2). The method Execute splits
the input parameters to extract the actual OS command and its arguments before
the call to Process.Start.

A developer might not even be aware of the existence of OSCommand in the
modules loaded by the application. An attacker can use the class type OSCommand

96 PAPER A. SERIALDETECTOR

1 public class OSCommand : ICommand {
2 public virtual void Execute(string parameters) {
3 var firstSpace = parameters.IndexOf(’ ’);
4 var command = parameters.Substring(0, firstSpace);
5 var args = parameters.Substring(firstSpace + 1);
6 Process.Start(command, args);
7 }}

Listing A.2: Implementation of OSCommand.

as a parameter to the POST request to create an OSCommand object and execute
malicious commands in the target OS. For example, a payload in a POST request
body with two parameters, name = OSCommand and args = del /q * results in
remote code execution, deleting all files in the current directory.

Observe that the above-mentioned OIV fits our template: The application ex-
poses a public entry point (CommandAction) to call a sensitive method creating an
object of attacker-controlled type (Activator.CreateInstance). Subsequently,
it uses the object to trigger the execution of a gadget (method Execute of class
OSCommand) via a malicious payload. To detect such attacks, a comprehensive
analysis should consider all implementations of the method Execute in classes
implementing the ICommand interface.

Infrastructure-level OIVs

OIVs can be present at the level of the infrastructure that supports applications
running on the server side. For .NET technologies, the infrastructure includes
the .NET Framework and libraries (see Appendix A.10). A prime example of
OIVs at the infrastructure layer is insecure deserialization. Deserialization is the
process of recreating the original state of an object from a stream of bytes that
was produced during a reverse process called serialization. In the web domain,
serialization can be used to convert an object from the client side to a stream of
bytes that can be transmitted over the network and used to recreate the same
object on the server side. To achieve this, the deserializer may instantiate objects
based on metadata from the serialized stream. Thus, an attacker can create an
object of an arbitrary type by manipulating the metadata in the serialized stream,
which may cause the deserializer to execute dangerous methods of the object.

We illustrate OIVs in insecure deserialization with a running example which
we will discuss further in Section A.3. We consider the YamlDotNet library
that implements serialization and deserialization of data in the YAML format.
Listing A.3 shows the simplified code fragment used by YamlDotNet to deserialize
data obtained via the parameter yaml. The method Deserialize is a public
entry point that may receive data from untrusted sources like HTTP request
parameters, cookies, or files uploaded to a web application. The method parses
the input and calls the method DeserializeObject with the root YAML node

A.2. TECHNICAL BACKGROUND 97

as input. A type cast ensures that the created object has the expected type T.
However, the type cast is executed only after the creation of the object graph,
hence the system will still create objects based on the information from YAML
data with no restriction on the type.

1 public T Deserialize<T>(string yaml) {
2 var rootNode = GetRootNode(yaml);
3 return (T) DeserializeObject(rootNode);
4 }
5 private object DeserializeObject(YamlNode node) {
6 var type = GetTypeFrom(node);
7 var result = Activator.CreateInstance(type);
8 foreach (var nestedNode in GetNestedNodes(node)) {
9 var value = DeserializeObject(nestedNode);

10 var property = GetPropertyOf(nestedNode);
11 property.SetValue(result, value);
12 }
13 return result;
14 }

Listing A.3: Implementation of YAML deserializer.

The method DeserializeObject creates an object of the type specified
by the YAML node and sets its fields’ properties recursively. It uses a .NET
Reflection API to create object by a type defined at runtime (via
Activator.CreateInstance) and executes a setter method for each property
(via PropertyInfo.SetValue). An attacker can find gadgets in the target sys-
tem, i.e., the .NET Framework and third-party libraries, that allow executing
malicious actions in their property setter. For example, the class ObjectDat-
aProvider can be used as gadget for the YamlDotNet deserializer and any other
deserializer that allows the execution of property setters for arbitrary classes.

1 public class ObjectDataProvider {
2 public object ObjectInstance {
3 set {
4 this._objectInstance = value;
5 this.Refresh();
6 }}
7 public void Refresh() {
8 /*...*/
9 obj = this._objectType.InvokeMember(

10 this.MethodName, /*...*/,
11 this._objectInstance, this._methodParameters);
12 }}

Listing A.4: Implementation of class ObjectDataProvider.

Listing A.4 shows a snippet of the class ObjectDataProvider. The property
setter of the object ObjectInstance calls the method Refresh which in turn
invokes the method specified in MethodName using the .NET Reflection API.
Hence, the attacker controls the properties ObjectDataProvider.MethodName
and ObjectDataProvider.ObjectInstance enabling the execution of arbitrary
methods.

98 PAPER A. SERIALDETECTOR

To run arbitrary commands during YAML deserialization process, e.g. a cal-
culator, an attacker leverage the class ObjectDataProvider to create a pay-
load as in Listing A.5. Specifically, the deserializer will execute the property
setter ObjectDataProvider.ObjectInstance and invoke the method
Process::Start to run calc.exe.

1 !<!System.Windows.Data.ObjectDataProvider> {
2 MethodName: Start,
3 ObjectInstance:
4 !<!System.Diagnostics.Process> {
5 StartInfo:
6 !<!System.Diagnostics.ProcessStartInfo> {
7 FileName: cmd,
8 Arguments: ’/C calc.exe’
9 }}}

Listing A.5: YAML payload of ObjectDataProvider.

The YamlDotNet’s OIV follows our template: The library exposes a pub-
lic entry point (Deserialize) to call a sensitive method creating an object of
attacker-controlled type (Activator.CreateInstance). Subsequently, it uses
the object to trigger the execution of a gadget (the property setter of class
ObjectDataProvider) via a malicious payload. To detect such vulnerabilities, a
comprehensive analysis should consider all implementations of the property set-
ter methods like SetValue in the codebase of the .NET Framework and libraries.
Observe that the analysis should target .NET assemblies to account for OIVs in
the framework and libraries.

A.3 Overview of the Approach

This section discusses the key insights of our approach (Section A.3) and pro-
vides a high-level overview of the architecture and workflow of SerialDetector
(Section A.3).

Root cause of Object Injection Vulnerabilities

We now take a closer look at the vulnerability of YamlDotNet library in Sec-
tion A.2. Listing A.3 shows that the vulnerability occurs because of an insecure
chain of method calls during the deserialization of attacker-controlled data. The
chain starts from a call to the public method Deserialize<T>(yaml) which uses
the untrusted input in variable yaml to create an object of arbitrary type via the
method Activator.CreateInstance and subsequently use it to call the method
SetValue. The latter executes the code of a property setter of the created object
using a property name.

The vast majority of related works leverage publicly available knowledge
about signatures of vulnerable methods, like Activator.CreateInstance and
SetValue, to identify such (magic) methods in a target codebase [52,65,147,148].

A.3. OVERVIEW OF THE APPROACH 99

System.ReflectionSystem

YamlDotNet

Deserializer.Deserialize()

Activator.CreateInstance() PropertyInfo.SetValue()

RuntimeTypeHandle.Allocate() RuntimeMethodInfo.UnsafeInvokeInternal()

RuntimeMethodHandle.InvokeMethod()

Deserializer.DeserializeObject()

Figure A.1: OIV pattern for YamlDotNet Deserializer: public entry point (green),
sensitive sink (red), and attack trigger (blue).

These works rely on the knowledge of vulnerable method signatures to either build
or reuse malicious gadgets. We argue that such syntax-based approaches are not
ideal as modern applications may hide unknown methods that achieve the same
malicious effect. This leads us to the first research question: (i) What is an ap-
propriate criteria for identifying OIVs? To help answering this question, we dive
deeper into the analysis of the two vulnerable methods of our example.

Activator.CreateInstance method performs a sequence of method calls
which results in executing the native method RuntimeTypeHandle.Allocate.
This method takes as input a parameter type and uses it to define the type of the
returned object. We call such methods sensitive sinks. In general, sensitive sinks
are either native (external) methods or run-time generated methods that return
an object of the type specified in their input parameter. The .NET Framework
contains in total 123 sensitive sinks. A similar analysis of the method SetValue
shows that the subsequent sequence of method calls results in executing the native
method RuntimeMethodHandle.InvokeMethod(obj,..., sig), which invokes
the method sig of object obj. Hence, an attacker controlling the type of the
object obj and the name of the method sig can execute arbitrary code as in
our example. We call such methods attack triggers since they determine the
first method of a gadget chain that leads to malicious behavior. In fact, an
attack trigger puts the system into a state that does not meet the specification
as intended by the developer. Other potential candidates for attack triggers are
virtual method calls, e.g., the method Execute in Listing A.1, which enable
attackers to execute concrete implementations of these methods at their choice.

In light of this analysis, we identify the root cause of an OIV based on three
ingredients: (a) public entry points; (b) sensitive sinks; and (c) attack triggers. We
use these ingredients to compute OIV patterns in large codebases. We define an
OIV pattern as a public entry point that triggers the execution of a sensitive sink

100 PAPER A. SERIALDETECTOR

to create an object that controls the execution of an attack trigger. Figure A.1
depicts the OIV pattern for our running example in Section A.2. Motivated by
our notion of OIV pattern, we address three additional key questions: (ii) Can we
provide practical tool support to detect OIV patterns in large-scale applications
including frameworks and third-party libraries? (iii) How do we validate the
usefulness of the generated patterns? (iv) Are there real-world applications to
give evidence for the feasibility of the approach?

SerialDetector

Overview of SerialDetector We have developed a static analysis tool, dubbed
SerialDetector [190], to detect and exploit Object Injection Vulnerabilities in
.NET applications and libraries. Figure A.2 describes the architecture and work-
flow of SerialDetector. At high level, the tool operates in two phases: A fully-
automated detection phase and a semi-automated exploitation phase. In the
detection phase, SerialDetector takes as input a list of .NET assemblies and a list
of sensitive sinks, and performs a systematic analysis to generate OIV patterns
automatically. The exploitation phase matches the generated patterns with a
publicly available list of gadgets. When a gadget matches a pattern, we describe
the gadget in a knowledge base to generate malicious payloads for different for-
mats. The entry points of the matched pattern allow us to describe templates
in the knowledge base. Populating the knowledge base is a manual operation;
the payload and template generation is performed automatically based on the
described rules. For a target application, SerialDetector performs a lightweight
call graph analysis to identify control flow paths that make use of the vulnerable
templates described in the knowledge base. Subsequently, it uses the automati-
cally generated payloads to validate their exploitability for the target application
during the exploit generation step. The exploit generation may require mod-
ifying the payload and other application inputs, or a combination of multiple
vulnerabilities into one exploit. This is a manual step requiring knowledge of the
application’s threat model and analysis of the data validation code, e.g., dynamic
analysis or application debugging. SerialDetector does not automate this process,
but provides aids such as automated validation of modified payload on a vulnera-
ble template and automated generation of the call graph. We explain both phases
in detail in Section A.5. In Section A.7, we use the vulnerabilities found in the
Azure DevOps Server to showcase the exploit generation and validation process.

Static analysis SerialDetector targets the Common Intermediate Language
(CIL) instead of working with the source code such as C#. This choice is mo-
tivated by several reasons: First, we aim at analyzing the code of the .NET
Framework to identify sensitive methods which are not available at the source
level. Second, this approach allows us to implement a framework-agnostic analy-
sis without any knowledge about the known vulnerable methods of the framework.
Third, we aim at performing an in-depth security evaluation of our approach on
production software such as Microsoft Azure DevOps for which the source code is

A.3. OVERVIEW OF THE APPROACH 101

Exploitation Phase

Knowledge Base

Detection Phase

Call Graph
Analysis

Entry Point
Detection

Data Flow
Analysis

Matching
Populating
Knowledge

Base

Payload/
Template

Generation

Call Graph
Analysis

Exploit
Generation

Template
Validation

Sensitive Sinks
.NET Assemblies

Patterns

Gadgets

Application

Vulnerabilities

Figure A.2: Architecture and workflow of SerialDetector: automated steps (green)
and manual steps (blue).

not available. Fourth, CIL has fewer language constructs that must be supported
by the analyzer as compared to the high-level languages. By focusing on CIL,
we do not lose any significant data that is relevant to our code analysis. In fact,
CIL is a type-safe language with complete type information in the metadata. On
the other hand, CIL inherits well-known challenges for the analysis of stack-based
object-oriented intermediate languages, e.g., the emulation of the evaluation stack
and the reconstruction of control flow.

We develop and implement a principled and practical field-sensitive taint-
based dataflow analysis targeting the CIL language. In Section A.4 we present
the details of the analysis for a core of CIL instructions. At the heart of this
analysis lies a modular inter-procedural abstract interpretation based on method
summaries, pointer aliasing, and efficient on-the-fly reconstruction of the control
flow graph. We present the algorithms underpinning our analysis in a princi-
pled manner and discuss various challenges and solutions related to low-level lan-
guage features. The analysis implements type-sensitivity, a lightweight form of
context-sensitivity, and a type-hierarchy graph analysis for reconstruction of the
call graph. We find that these features provide a middle ground to implementing
scalable yet precise algorithms for detecting OIV patterns. Similar analysis have
been implemented in the context of web applications [200, 214] and mobile ap-
plications [8, 71]. While these analysis leverage intermediate languages featuring
control flow and call graph reconstruction (e.g., FlowDroid builds on the SOOT
framework [215]), SerialDetector implements these features on the fly.

Roadmap of results In Section A.5, we discuss our implementation of Se-
rialDetector including challenges and limitations. Following Figure A.2, the de-

102 PAPER A. SERIALDETECTOR

tection phase performs a call graphs analysis for a set of input assemblies, e.g.,
the .NET Framework and third-party libraries, to identify public entry points
that may reach sensitive sinks. Then, it uses such information to carry out the
dataflow analysis to identify attack triggers, thus generating a list of OIV pat-
terns. However, the usefulness of the generated patterns depends on the existence
of matching gadgets that result in exploits. While gadget generation is orthogonal
to pattern generation, we evaluate SerialDetector by analyzing .NET deserializa-
tion libraries with publicly available gadgets [146]. Because an attack trigger is
the first method in a gadget, it is sufficient that an attack trigger from our gen-
erated patterns matches the first method of a gadget. Subsequently, we validate
the feasibility of these attacks using our payload generator. In Section A.6, we
discuss the details of our evaluation showing that SerialDetector finds patterns
associated with vulnerable deserializers.

While these results show that SerialDetector is useful in detecting OIV pat-
terns in the .NET Framework and its deserialization libraries, as well as in gen-
erating and validating exploits for known gadgets, it is unclear whether these
vulnerabilities appear in production software. In fact, an application build on
top of the .NET Framework and libraries might still use a vulnerable deserializer
in a secure manner, e.g., by performing validation of the untrusted input. To val-
idate this claim, we use SerialDetector to carry out a comprehensive in-breadth
security analysis of vulnerable .NET applications (Section A.6) and an in-depth
security analysis of the Azure DevOps Server (Section A.7). We report on the
number of false positive and false negatives of our analysis, and on the number
of manual changes of exploit candidates to generate a successful payload.

In Section A.7 we use SerialDetector’s call graph analysis to identify control
flow paths from public APIs of the Azure DevOps Server to vulnerable entry
points in the .NET Framework. By exploring different threat models in the
application, SerialDetector found three critical security vulnerabilities leading to
Remote Code Execution in Azure DevOps Server. In line with the best practices
of coordinated disclosure, we reported the vulnerabilities to the affected vendors.
Microsoft recognized the severity of our findings and assigned CVEs to all three
exploits. We also received three bug bounties acknowledging our contributions to
Microsoft’s security.

A.4 Taint-Based Static Analysis

This section presents a taint-based static analysis underpinning the detection
phase of SerialDetector. The analysis targets CIL, an object-oriented stack-based
binary instruction set, and it features a modular inter-procedural field-sensitive
dataflow analysis that we leverage to detect OIV patterns for large code. We
provide an overview of the core language features (Section A.4), and discuss
challenges and solutions for implementing a precise, yet scalable, intra-procedural
(Section A.4) and inter-procedural analysis (Section A.4).

A.4. TAINT-BASED STATIC ANALYSIS 103

CIL language and notation

CIL is a stack-based language running on the CLR virtual machine (see Ap-
pendix A.10). We focus on a subset of instructions to describe the core ideas of
our analysis.

Inst ::= ldvar x | ldfld f | stvar x | stfld f | newobj T |
br i | brtrue i | call i | ret

We assume a set of variables x, y, args, · · · ∈ Var containing root variables,
i.e., formal parameters of methods, and local variables; a set of object fields
f, g, · · · ∈ Fld ; a set of values v, l, · · · ∈ Val consisting of object locations l, l1, · · · ∈
Loc ⊆ V al and other values, e.g., booleans true and false; a set of class types
C, T ∈ Types. We write f [x 7→ v] for substitution of value v for parameter x in
function f and f(x) for the value of x in f . We use f(x)↓ to represent that the
partial function f is defined in x, and f(x)↑ otherwise. We write (b ? e1 : e2) to
denote a conditional expression returning e1 if the condition b is true, e2 otherwise.

The memory model contains an environment E : Var 7→ Val mapping vari-
ables to values, a heap h : Loc × Fld 7→ Val mapping object locations and fields
to values, an (operand) stack s and a call stack cs. The environment and heap
mappings are partial functions, hence we write ⊥ for the undefined value. A
program P ∈ Prog consists of a list of instructions Inst∗ indexed by a program
counter index pc, i ∈ PC. We tacitly assume there is set of class definitions in-
cluding a set of fields and a set of methods, and a distinguished method to start
the execution. Each method definition includes a method identifier with formal
parameters and the list of instructions. We write sig ∈ Sig for the signature of a
method which consists of the method’s name and its formal parameters.

The execution model consists of configurations cfg ∈ Conf of shape cfg =
(pc, cs, E, h, s) containing the program counter pc ∈ PC , environment E ∈ Env ,
heap h ∈ Heap, call stack cs = (pc, E, s)∗ with cs ∈ (PC × Env × Val∗)∗, and
stack s ∈ Val∗. We write ϵ to denote an empty stack and t :: v to denote a
stack with top element v and tail t. The semantics of CIL programs is defined by
the transition relation →∈ Conf × Conf over configurations, using the rules in
Figure A.12. As expected, the reflexive and transitive closure →∗ of → induces
a set of program executions. Notice that the program P is fixed, hence the
instruction to be executed next is identified by the program counter pc. The
semantics of CIL is standard and we report it in Figure A.12 in Appendix.

Intra-procedural dataflow analysis

We now present our intra-procedural dataflow analysis based on abstract interpre-
tation of CIL instructions. Motivated by the root cause of OIVs, our abstraction
overapproximates operations over primitive types and focuses on tracking the
propagation of object locations from sensitive sinks to attack triggers. Our sym-
bolic analysis combines aliases’ computation with taint tracking [181,182] using a

104 PAPER A. SERIALDETECTOR

store-based abstraction of the heap [89]. We present the key features of the analy-
sis implemented in SerialDetector via examples and principled rules underpinning
our algorithms.

Our abstract interpretation of CIL instructions leverages a symbolic domain
of values for object locations and other primitive values. Abusing notation, we
assume a set of symbolic values Val = Loc ∪ Sv containing symbolic locations
l ∈ Loc and other symbolic values sv ∈ Sv . The latter is used as a placeholder
to abstract away operations over primitive datatypes. We use symbolic configu-
rations of shape ⟨pc, E, h, s, ϕ, ψ⟩ where the first four components correspond to
symbolic versions of the concrete counterparts, while ϕ and ψ overapproximate
symbolic stacks and control flow.

Challenges and solutions at high level Symbolic analysis for stack-based
languages like CIL requires tackling several challenges related to: (a) abstract
representation of the heap; (b) unstructured control flow and symbolic represen-
tation of the stack; (c) sound approximation of control flow, e.g, loops.

We address these challenges using a store-based abstraction of the heap and
an efficient on-the-fly computation of merge points for conditionals and loops via
forward symbolic analysis. Our analysis is flow-insensitive, hence the abstract
heap graph and information about aliases holds at any program point within a
method. While some code may be traversed twice to account for jump instruc-
tions, we ensure that the code is only analyzed once. Moreover, we ensure the
consistency of the symbolic stack by recording the stack state for every branch
instruction and combining the stacks at merge points, while updating the pointers
in the heap and environment.

Abstracting the heap We represent the heap as a directed graph where
nodes denote abstract locations in the memory and edges describe points-to re-
lations between symbolic locations. Edges contain labels corresponding to the
fields and variables connecting the two locations. Here, the graph is computed
from the symbolic environment and the symbolic heap.

Figure A.3 depicts the abstract semantics of the heap. For simplicity, we as-
sume that the environment E and the heap h are initialized to fresh symbolic
values sv ∈ Sv , hence E(x) and h(l, f) are always defined. Rules S-LdVar, S-
LdFld, and S-NewObj (not shown) are similar to the corresponding rules in
Figure A.12 but operate on symbolic values and ignore the call stack cs. Rules S-
StVar and S-StFld rely on an update function to implement the flow-insensitive
and field-sensitive abstract semantics. This function takes as input two locations
(as well as the current environment, heap, stack, and ϕ nodes) and merges the
subgraphs rooted at those locations. The algorithm visits the subgraphs in lock-
step in a breadth-first search (BFS) fashion and joins every location (node) with
the same field/variable label. This is achieved by creating a fresh location and
updating references to the new location. If the two merged locations have fields/-
variables with the same name, it recursively applies the update function. Observe
that the update modifies the state of the symbolic computation and may affect
different components of the configuration. This approach is flow-insensitive as it

A.4. TAINT-BASED STATIC ANALYSIS 105

S-StVar
P(pc) = stvar x (E′, h′, s′, ϕ′) = update(sv,E(x), E, h, s, ϕ)

⟨pc, E, h, s :: sv, ϕ, ψ⟩ → ⟨pc+ 1, E′, h′, s′, ϕ′, ψ⟩

S-StFld
P(pc) = stfld f (E′, h′, s′, ϕ′) = update(h(l, f), sv, E, h, s, ϕ)

⟨pc, E, h, s :: sv :: l, ϕ, ψ⟩ → ⟨pc+ 1, E′, h′, s′, ϕ′, ψ⟩

Figure A.3: Abstract interpretation of heap.

la lb

lc ld

arg

next

obj obj

(a) Before merging.

lab

lcd

arg

next

obj

(b) After merging.

Figure A.4: Graph representation of symbolic heap.

updates symbolic configurations with new symbolic values, instead of overwriting
the old values of the variables/fields.

1: arg.obj = new ClassB();
2: arg.next = new ClassA(); 4a: ldvar arg //S-LdVar
3: arg.next.obj = new ClassB(); 4b: ldfld next //S-LdFld
4: arg = arg.next; 4c: stvar arg //S-StVar

Listing A.6: Merging heap locations.

The code snippet in Listing A.6 illustrates our symbolic analysis of the heap.
Our abstract interpretation yields the heap graph in Figure A.4a after analyzing
the (CIL representation of) instructions (1-3) in Listing A.6. We now illustrate
our analysis for instruction (4) and its CIL representation (4a-4c). We first load
the symbolic locations in variable arg and field next onto the symbolic stack by
applying rules S-LdVar and S-LdFld, respectively. This results in loading the
location lb in Figure A.4a. Next, we apply rule S-StVar for instruction (4c).
The rule considers the subgraphs rooted at location lb (the top element of the
stack) and at the location la (since E(arg) = la) and applies the update function.
Since both edges originating from the locations la and lb are labeled with the field
obj (which contain the locations lc and ld), the algorithm merges these locations
to a fresh location lcd and updates the graph as shown in Figure A.4b.

106 PAPER A. SERIALDETECTOR

Abstracting the control flow The main challenge to analyzing control
flow instructions is the lack of structure and the preservation of symbolic stack’s
consistency across different branches. We implement an analyses that does not
require reconstructing of the CFG explicitly. Specifically, we analyze instructions
"sequentially" following the program order imposed by the program counter pc
and ensure consistency of the symbolic stack and the heap on-the-fly. To achieve
this, we extend our symbolic configurations with two additional data structures: a
function ϕ : PC 7→ ℘(Stack) mapping program counter indexes to sets of stacks to
record the symbolic stacks at the merge points of control flow branches, and a set
of program counter indexes ψ ⊆ ℘(PC) to record backward jumps associated with
loops. The former is similar to the standard ϕ-node is high-level languages and
we use it to merge the stacks corresponding to different branches in the CFG. We
assume that all stacks at a merge point have the equal size, which is ensured by the
high-level language compiler (e.g., the C# compiler) that translates source code
to CIL code. The set ψ ensures that loops are not analyzed repeatedly. Since our
analysis is flow- and path-insensitive, it suffices to analyze each basic block only
once. Figure A.5 illustrates our algorithm for control flow instructions. We use a
function mergeStacks : ℘(Stack)×Heap × Env ×Φ 7→ Stack ×Heap × Env ×Φ
to merge all stacks and update the new symbolic configuration. Specifically,
mergeStacks merges symbolic locations pointwise, and updates the pointers to
the merged locations in the other components.

We describe the few interesting rules in Figure A.5 via examples. Consider
the CIL representation of the C# ternary operator in Listing A.7, which assigns
the location in var1 or var2 to arg.obj depending on the truth value of flag.
The analysis should compute that field arg.obj points to the merged location of
variables var1 and var2. Observe that such case is not handled by the update
function in Figure A.3. Our analysis merges the locations in var1 and var2
on the stack using rule S-StUpd. This rule has higher precedence over any
other rule. Initially, ϕ(pc) = ∅ for all program points. For every forward jump,
as in rules S-BrFwd and S-BrTrueFwd, we store the current stack for the
target instruction. For instance, the instruction at index (5), i.e., br 7, stores the
symbolic stack containing the locations in arg and var2 for ϕ(7). When analyzing
the instruction stfld obj at index (7), the analyzer first applies rule S-StUpd to
merge the stack stored in ϕ(7) and the current stack, which contains the locations
in arg and var1. Then, rule S-StFld ensures that the field arg.obj contains the
merged location.
// arg.obj = flag ? var1 : var2;
1: ldvar arg // S-LdVar
2: ldvar flag // S-LdVar
3: brtrue 6 // S-BrTrueFwd
4: ldvar var2 // S-Ldvar
5: br 7 // S-BrFwd
6: ldvar var1 // S-StUpd and S-LdVar
7: stfld obj // S-StUpd and S-StFld

Listing A.7: Ternary operator in CIL.

A.4. TAINT-BASED STATIC ANALYSIS 107

S-StUpd
ϕ(pc)↓ (E′, h′, s′, ϕ′) = mergeStacks(ϕ(pc) ∪ {s}, E, h, ϕ)

⟨pc, E, h, s, ϕ, ψ⟩ → ⟨pc, E′, h′, s′, ϕ′[pc 7→ ⊥], ψ⟩

S-StSkip
s = ⊥

⟨pc, E, h, s, ϕ, ψ⟩ → ⟨pc+ 1, E, h, s, ϕ, ψ⟩

S-BrFwd
P(pc) = br i i > pc ϕ′ = ϕ[i 7→ ϕ(i) ∪ {s}]

⟨pc, E, h, s, ϕ, ψ⟩ → ⟨pc+ 1, E, h,⊥, ϕ′, ψ⟩

S-BrTrueFwd
P(pc) = brtrue i i > pc ϕ′ = ϕ[i 7→ ϕ(i) ∪ {s}]

⟨pc, E, h, s :: sv, ϕ, ψ⟩ → ⟨pc+ 1, E, h, s, ϕ′, ψ⟩

S-BrBwd
P(pc) = br i i < pc

ϕ′ = (pc ∈ ψ ? ϕ : ϕ[pc 7→ s]) (pc′, s′, ψ′) = (pc ∈ ψ ? (pc+ 1,⊥, ψ) : (i, s, ψ ∪ {pc}))
⟨pc, E, h, s, ϕ, ψ⟩ → ⟨pc′, E, h, s′, ϕ, ψ′⟩

S-BrTrueBwd
P(pc) = brtrue i i < pc

ϕ′ = (pc ∈ ψ ? ϕ : ϕ[pc 7→ s]) (pc′, ψ′) = (pc ∈ ψ ? (pc+ 1, ψ) : (i, ψ ∪ {pc}))
⟨pc, E, h, s :: sv, ϕ, ψ⟩ → ⟨pc′, E, h, s, ϕ, ψ′⟩

Figure A.5: Abstract interpretation of control flow.

While the previous rules ensure the consistency of the stack, we should also
cater for potential loops resulting from backward jump instructions. Thanks to
our flow-insensitive analysis, it suffices to analyze the "loop body" only once.
Specifically, we use a set ψ to keep track of the control flow instructions that
trigger a backward jump and ensure that the instructions at the jump target is
analyzed only once (see S-BrBwd and S-BrTrueBwd). In particular, whenever
an unconditional jump has already been analyzed, i.e. pc ∈ ψ, we set the stack
to ⊥ (undefined) and move on to executing the next instruction. An undefined
stack will simply skip the analyzes of the current instruction as in rule S-StSkip
unless there was another jump to that instruction with a defined stack (in which
case rule S-StUpd applies)1.

We illustrate our analysis of backward jumps with the example in Listing A.8.
The example models the CIL representation of the C# pattern:
while(flag) { /*loop body*/ }

1We assume that ϕ(pc) ∪ ⊥ = ϕ(pc)

108 PAPER A. SERIALDETECTOR

The analyzer examines the instruction br 15 at index (1) via rule S-BrFwd,
recording the current stack for the instruction at index (15) in ϕ and updating
the stack to undefined. This is because at this point we do not know if the next
instruction at index (2) will be reached from another configuration. Therefore,
we simply skip the following instructions (rule S-StSkip) until we reach a merge
point, i.e., an instruction where ϕ(pc) is defined. In our example, the merge point
is the instruction at index (15). The analyzer merges the stack in ϕ(15) with the
undefined stack using rule S-StUpd, and uses the new stack, while updating the
ϕ node. Subsequently, the analyzer loads the variable flag onto the stack and
examines the instruction brtrue 2 at index (16) via rule S-BrTrueBwd. Since
16 ̸∈ ψ, this results in transferring control to the instruction at index (2) and
analyzing the loop body. If the analyzer reaches the instruction brtrue 2 again,
it finds that the instruction has already been analyzed, i.e., 16 ∈ ψ, and continues
with the next instruction.

1: br 15 // S-BrFwd
2:

//loop body
15: // S-StUpd

// while (flag)
ldvar flag // S-LdVar

16: brtrue 2 // 2 x S-BrTrueBwd

Listing A.8: While loops in CIL.

Aliasing and taint tracking Recall that the goal of our analyses is tracking
information flows from sensitive sinks to attack triggers. To achieve this, we enrich
the location nodes in our abstract heap graph with a taint mark whenever the
return value of a sensitive sink is analyzed. Thanks to our store-based abstract
heap model, the heap graph already accounts for aliases to a given node. In
fact, aliases can be computed by looking at the labels of incoming edges to a
given location node. Therefore, we can compute the taint mark of a reference by
reading the taint mark of the node it points to.

Figure A.6 provides an example of aliasing and taint tracking. The call to
the sensitive sink at line (1) pushes the return value onto the stack, marks the
corresponding node as tainted and adds an edge labeled with b.foo to the tainted
node. Similarly, the instruction at line (2) creates an alias of b.bar to the tainted
node, which yields the heap graph in Figure A.6b. Finally, the analysis of the
virtual call at line (3) reveals that the caller b.bar is tainted, hence an attacker
controlling its type determines which concrete implementation of V irtualCall()
is executed. Therefore, we consider such method as a potential attack trigger.

Modular inter-procedural analysis

We now present the inter-procedural symbolic analysis underpinning our compu-
tation of OIV patterns. The analysis relies on a preliminary stage that recon-
structs the Call Graph containing the entry points that may reach sensitive sinks.

A.4. TAINT-BASED STATIC ANALYSIS 109

1: b.foo = SSink(arg);
2: b.bar = b.foo;
3: b.bar.VirtualCall();

(a) Code.

la lb T

arg b

foo

bar

(b) Heap.

Figure A.6: Aliasing and taint tracking.

Subsequently, it performs a modular analysis of the call graph, based on method
summaries, to determine OIV patterns.

Call graph analysis We first analyze the target set of CIL assemblies to
identify method signatures associated with call and callvirt instructions, and
store them as keys in a hash table with the caller methods as values. The hash
table represents a call graph, which we can reconstruct via backward analysis.
A path from a sensitive sink to an entry point can be computed in O(n) time,
where n is the call stack’s depth. We also compute the type-hierarchy graph to
determine all implementations of virtual method calls. We assume that a virtual
call of a base method can transfer control to any implementation of that method
and store such information in the call graph. The analyzer uses this information
during the backward reconstruction of the call graph from a sensitive sink to entry
points, as well as during the abstract interpretation of callvirt instructions.

Inter-procedural analysis with method summaries We perform a mod-
ular dataflow analysis for every entry point identified in the preliminary stage.
Whenever our algorithm reaches a new method, it triggers the intra-procedural
analysis (described in Section A.4) to analyze the method independently of the
caller’s context, i.e., both the heap h and the environment E are empty. As a
result, it produces a compact representation of the heap graph called summary.
The summary is then stored into a caching structure K, and it is reused for every
subsequent call to the same method.

We use the following notation to describe the abstract interpretation of method
calls: A state σ ∈ State is a tuple (E, h, s, ϕ, ψ) representing the calling context
in a symbolic configuration and it is stored whenever we start the analysis of
a new method. The symbolic call stack cs ∈ (State × PC)∗ is a stack of pairs
(σ, pc) containing the state of the caller and program counter index of the caller
in state σ. A partial mapping K : Sig 7→ Sum caches method summaries for each
method signature. A method summary sum ∈ Sum is defined by the tuple (E, h)
consisting of the environment and the heap.

Figure A.7 presents the algorithm for our summary-based inter-procedural
analysis of a call graph. We handle the following cases: (a) calls to methods
with summaries already present in the cache K (rule S-CallK); (b) calls to
external/native method with no implementation available (rule S-CallExt); (c)
calls to (non-recursive) methods with no summaries in the cache K (rule S-Call)

110 PAPER A. SERIALDETECTOR

S-CallK
P(pc) = call pc0 K(sigpc0)↓ σ′ = apply(K(sigpc0), σ)

⟨pc, cs, σ,K⟩ → ⟨pc+ 1, cs, σ′,K⟩

S-Call
P(pc) = call pc0 K(sigpc0)↑

⟨pc, cs, σ,K⟩ → ⟨pc0, cs :: (σ, pc),⊥,K⟩

S-CallExt
P(pc) = call pc0 P (pc0)↑ l ∈ Loc fresh

⟨pc, cs, ⟨_,_, s,_⟩_,K⟩ → ⟨pc+ 1, cs, ⟨_,_, s :: l,_,_⟩,K⟩

S-End
sum = cmptSum(σ) σ′′ = apply(sum, σ′) P (pc)↑
⟨pc, cs :: (σ′, pc′), σ,K⟩ → ⟨pc′ + 1, cs, σ′′,K[sig 7→ sum]⟩

Figure A.7: Abstract interpretation of call graph.

; and (d) updates of the cache K upon termination of the analysis of a method
(rule S-End).

Rule S-CallK applies the cached summary of the method with signature
sigpc0 (at index pc0) to the current symbolic state σ of the caller, using a function
apply : Sum × State 7→ State. In a nutshell, apply takes the root variables Var
of the summary consisting of the formal parameter arg and a predefined variable
rv ∈ Var storing the return value of the method. Then, it pops off the top
value from the stack in σ and merges it with arg using the function update
described in Section A.4. The merging process may affect other components
of σ that contain references to merged locations, resulting in an updated state
σ′. Rule S-CallExt handles external/native method calls by pushing a fresh
symbolic location onto the stack whenever a method lacks implementation, i.e.,
P (pc0)↑. Rule S-Call triggers the intra-procedural analysis of a new method
by transferring control to its code at index pc0 and storing the context of the
caller in the symbolic stack cs. The caller’s context contains the caller’s state
and program counter index pc. Observe that the analysis of the callee method is
performed in a context independent manner, i.e, σ′ = ⊥. Rule S-Call matches
rule S-End to compute the summary upon termination of the method’s intra-
procedural analysis (denoted by P (pc)↑). Subsequently, it applies the summary
to the caller’s context σ′ and caches it in K, and continues the analysis with the
caller’s next instruction at index pc′ + 1.

Example: Method calls We illustrate the abstract interpretation of non-
recursive calls in Listing A.8. The analysis starts from the method EPoint and
calls SSink which is an external method, hence P (pc0)↑. Rule S-CallExt allo-
cates a fresh location and pushes it onto the stack to emulate the return value.

A.4. TAINT-BASED STATIC ANALYSIS 111

Because the method signature is defined as sensitive sink, we mark the fresh
variable as tainted. Subsequently, the assignment stores the tainted value to the
location in b.foo.

1 void EPoint(ClassA arg) {
2 var b = new ClassB();
3 b.foo = SSink(arg);
4 CreateAlias(b);
5 Foo(b.bar);
6 }
7 void CreateAlias(ClassB arg){
8 arg.bar = arg.foo;
9 }

10 void Foo(ClassB arg) {
11 ExternalMethod(arg);
12 }

(a) Code.

lb T

b

foo
bar

(b) Heap.

Figure A.8: Method calls.

Next, we call the method CreateAlias which triggers an intra-procedural
analysis of its body via rule S-Call after storing the current σ and pc to the
call stack. The analysis applies rule S-StFld to create an alias between arg.bar
and arg.foo. Finally, rule S-End builds a summary from the current symbolic
state and stores it in the cache. The summary generation algorithm traverses
the heap graph h starting from root variables V ar in E and stores visited nodes
and references to the summary. This is the only information that may affect the
context of the caller. Subsequently, the algorithm applies the summary to the
caller’s state to create a new state that accounts for the effects of the method
call, and proceeds with executing the next instruction of the method EPoint.
Figure A.8b depicts the effects of the summary applications, which add the edge
labeled with bar to the heap graph, thus causing the two fields to point to the
tainted node.

Finally, we analyze method Foo via rule S-Call. Foo contains an external
method call (as analyzed by rule S-CallExt) with argument arg as parameter.
Since external methods can be used as attack trigger, we store information about
the ExternalMethod in the node of the arg location. The rule S-End builds
and stores the summary, and applies it to the EPoint context when reaching the
end of the method. Hence, we merge two locations (b.bar which is passed to Foo,
and arg from the summary), and detect the call to an attack trigger with a taint
mark. Finally, we store the chain from EPoint to SSink and ExternalMethod
as an OIV pattern.

112 PAPER A. SERIALDETECTOR

A.5 Implementation

This section provides implementation details and limitations of SerialDetector.
Figure A.2 overviews the architecture.

Anatomy of SerialDetector

SerialDetector [190] is written in C# and runs on the .NET platform using the
dnlib library [58] for parsing assemblies.

Pattern detection The distinguishing feature of SerialDetector is that it
implements the framework-agnostic paradigm and does not use any heuristics
based on method or class names to detect OIV patterns. The input consists of
a set of .NET assemblies and rules for sensitive sinks and attack triggers. The
sensitive sinks are initially described as a native method that return an object
of type System.Object. Thereby, we assume that an attacker can manipulate
either the parameter of the sensitive sink or the runtime state to get an object
of arbitrary type. SerialDetector analyzes only CIL code in .NET assemblies
and does not support binary code as in native methods. Therefore, we take a
conservative approach that every native method returns an object of any derived
type as the return type. We then mark the return object of the sensitive sink as
tainted. The attack trigger is described as either a native (external) method that
takes a tainted object as parameter or a virtual method with the first argument
marked as tainted.

The pipeline of the detection phase consists of four steps: (1) SerialDetector
builds an index of method call’s graph for the whole .NET assembly dataset; (2) It
filters all native method signatures using the criteria defining the sensitive sinks.
This step yields the signatures of sensitive sinks, which we use to build the slices
of the call graph in the backward direction, from the sensitive sinks to entry
point methods; (3) SerialDetector performs a summary-based inter-procedural
dataflow analysis as described in Section A.4; (4) It outputs a sequence of patterns
containing calls to attack triggers for each sensitive sink as well as traces from
entry points to sensitive sinks. We collect these patterns in a knowledge base and
use them as input to the exploitation phase.

Exploit generation and validation Drawing on the knowledge base from
the previous stage, we manually identify usages of vulnerable patterns in frame-
works and libraries. To this end, we leverage the YSoSerial.Net project [146] to
create templates that can be used to exploit vulnerabilities in a target application.
We do this by declaring a signature of each public vulnerable method directly in
C# code using DSL-like API. Listing A.9 shows the template for the vulnerable
YamlDotNet library from Section A.2.

We designed a DSL as custom LINQ expressions. LINQ is a uniform program-
ming model for managing data in C#. Each method in the DSL call sequence
refines the template model. For example, we start with the Template static
class and call the method AssemblyVersionOlderThan to specify a vulnerable

A.5. IMPLEMENTATION 113

1 var deserializer = new Deserializer();
2 Template.AssemblyVersionOlderThan(5, 0)
3 .CreateBySignature(it =>
4 deserializer.Deserialize(
5 it.IsPayloadFrom("payload.yaml").Cast<IParser>(),
6 typeof(object)));

Listing A.9: Object Injection Template.

version of the library. The next method call CreateBySignature creates a tem-
plate for the method Deserialize of the YamlDotNet serializer and defines as
the first parameter the untrusted input with a payload from payload.yaml. The
DSL facilitates the description of payloads and it allows to apply one payload
to many templates. The key feature of the DSL is usage the expression tree
as parameter to the method CreateBySignature. The expression tree repre-
sents code in an abstract syntax tree (AST), where each node is an expression.
The method can extract a signature of the calling method from the expression
tree, e.g., deserializer.Deserialize, to detect any usage in a target appli-
cation. Moreover, it can also compile and run the expression tree code to test
the payload. A main advantage of template generation with our DSL is that it
facilitates modification and testing of different payloads, which is essential during
exploitation, when SerialDetector sends a signal upon successful execution of a
malicious action. SerialDetector comprises following steps for exploit generation
and validation:

• (1) Matching (Manual): To validate the results of the detection phase, we match
the generated patterns with actual sensitive sinks and attack triggers of an ex-
ploit with a known gadget. We generate a payload for the known gadgets and
reproduce the exploit of each target serializer. We attach a debugger to our
reproduced case and set breakpoints to the detected sensitive sink and attack
trigger calls. If the breakpoints are triggered and the attack trigger performs
a call chain to the malicious action of our payload, then we conclude that the
pattern is exploitable.

• (2) Populating Knowledge Base (Manual): We use the results of the matching
to populate a knowledge base. We describe the code of a gadget to create and
transform to various formats to generate the payload. We also describe signatures
of vulnerable entry points from the matched patterns in templates as well as
additional restrictions, e.g., the version of a vulnerable library.

• (3) Payload and Template generation (Automated). SerialDetector automati-
cally generates payloads and templates based on described knowledge base rules.

• (4) Call Graph Analysis (Automated). We use the templates as input for Call
Graph Analysis to detect potentially vulnerable templates in a target application.
SerialDetector generates the Call Graph from the application entry points to the
vulnerable calls described in the templates.

114 PAPER A. SERIALDETECTOR

• (5) Template validation (Automated). SerialDetector automatically generates
and run tests for templates. It validates that a given payload can exploit an
entry point in the templates. It also validates Call Graph Analysis step using
template description as a source for compiling the .NET assembly with vulnerable
code and it runs the analysis against this sample. All information required for
testing is extracted from the knowledge base.

• (6) Exploit Generation (Manual). SerialDetector relies on the human-in-the-loop
model for exploit generation. It provides an automatically generated call graph
targeting a vulnerable template and an input payload that exploits the template.
A security analyst explores the entry points of the call graph subject to attacker-
controlled data, and exploits them using the original payload. The analyst may
need to combine OIVs with other vulnerabilities (e.g., XSS - see Section A.7) to
execute a malicious payload for a target entry point. If an exploit fails, the analyst
investigates the root cause using other tools (e.g., a debugger) and modifies the
payload according to application-specific requirements.

Challenges and Limitations

Virtual method calls Static analysis for large code is very challenging. We
find that modularity and flow insensitivity are essential for analyzing millions of
LOC. One of the challenges we faced was the analysis of virtual method calls.
When performing a call graph analysis, we assume that a virtual method call
may transfer control to a method of any instantiated type that implements this
virtual method. For a modular data flow analysis, this means that we must
analyze all implementations of the method and apply all generated summaries.
To reuse merged summaries of all virtual method implementations, we introduce
fake methods that include concrete calls of all implementations of a certain virtual
method. We cache the summary of such method for future use.

We implement a lightweight form of context-sensitive analysis. The analyzer
collects types of all created objects in a global context and then resolves the
virtual method calls only for the implementations of the collected types. Because
we use the modular approach we need to track summaries that have virtual calls.
When a new type is instantiated, we invalidate the summaries that have the
virtual calls that may be resolved to methods of the new type.

Some virtual methods of .NET Framework have hundreds of implementations.
Thereby, the analysis of all implementations is a very expensive operation that
often does not give us benefits. We implement several optimizations for virtual
calls. Whenever possible, the analyzer infers the type of virtual calls in the intra-
procedural analysis. Thereby, we can reduce the number of implementations for
data flow analysis. Otherwise, we limit a count of implementations of virtual
methods calls for data flow analysis and track all cases where the analyzer skips
the implementations. We then perform a manual analysis of such cases and pick
the ones of interest for the next run of the analysis.

A.5. IMPLEMENTATION 115

Recursion Another challenge is the modular analysis of recursion calls. The
analysis must ignore caching summaries of intermediate methods in a chain of
recursive methods. The reason for this is that the summaries of intermediate
methods do not contain full data-flow information until we complete the analysis
of the first recursive method. However, a program may have many calls of the
same intermediate method, hence we must reanalyze such method, although we
get the same incomplete summary. We use temporary caches for the summaries
of intermediate recursive methods to analyze such methods only once within a
recursion call. We then invalidate the temporary cache when the analysis of the
first recursive method is completed.

Static fields The CLI specification allows types to declare locations that are
associated with those types. Such locations correspond to static fields of the
type, hence any method has access to the static fields and can change their value.
While our abstract semantics does not address static field, SerialDetector does.
We enrich the summaries with an additional root variable storing the names of
types with static fields. Thus, we can access any location of the static field by
using such variable and the full access path. Then, we merge such root variable
as we do with other arguments of the method when applying a summary to the
calling method’s context.

Arrays The CLI specification defines a special type for arrays, providing di-
rect support in CIL (newarr, stelem, ldelem, and ldelema). Array instructions
may perform integer arithmetics when accessing an array element by taking its
array index from the evaluation stack. We do not support integer arithmetics for
primitive types in the current version of the analyzer. Thereby, we overapproxi-
mate the array semantics by assuming that all elements of an array point to the
single abstract location containing all possible values.

Unsupported instructions The CLI specification supports method pointers
and delegates [62]. A method pointer is a type for variables that store the address
of the entry point to a method. A method can be called by using a method pointer
with the calli instruction. Delegates are the object-oriented equivalent of function
pointers. Unlike function pointers, delegates are object-oriented, type-safe, and
secure. Each delegate type provides a method named Invoke with appropriate
parameters, and each instance of a delegate forwards calls to its Invoke method
to one or more static or instance methods on particular objects. SerialDetector
does not track values for the delegates and the method pointers, however it issues
a warning whenever such features are used.

Both CLI and the .NET Framework support reflection. Reflection provides
the ability to examine the structure of types, create instances of types, and invoke
methods on types, all based on a description of the type. The current version of
the analyzer does not reconstruct the call graph based on information of method
invocations via the reflection.

116 PAPER A. SERIALDETECTOR

Version Time
(sec)

Memory
(Mb) Patterns Priority

Patterns Methods Summaries Method
Calls

Applied
Summaries Instructions

BinaryFormatter .NET
4.8.04084 1.5 7,208 6 6 5,263 6,342 31,600 29,094 214,784

DataContractJsonSerializer .NET
4.8.04084 122.2 16,042 73 - 14,091 16,230 112,322 102,079 576,896

DataContractSerializer .NET
4.8.04084 51.9 13,942 73 - 13,631 15,748 109,179 99,294 562,410

FastJSON 2.3.2 3.3 7,495 24 15 6,564 7,701 41,615 37,740 273,806

FsPickler 4.6 1.5 7,216 7 - 3,552 4,302 22,927 20,362 152,343

JavaScriptSerializer .NET
4.8.04084 44.9 13,234 121 9 18,616 19,727 130,426 120,007 665,524

LosFormatter .NET
4.8.04084 86.3 15,278 9 9 18,941 21,631 146,864 135,843 773,037

NetDataContractSerializer .NET
4.8.04084 158.2 17,578 72 - 14,021 15,613 104,941 96,216 545,699

Newtonsoft.Json 12.0.3 7.6 7,776 13 10 12,560 14,373 90,385 84,208 496,888

ObjectStateFormatter .NET
4.8.04084 2.5 7,213 9 9 6,287 8,407 47,756 43,495 314,952

SharpSerializer 3.0.1 47.9 13,180 69 2 12,819 14,340 94,317 87,830 500,922

SoapFormatter .NET
4.8.04084 8.0 7,743 12 12 11,552 12,786 79,603 73,698 444,448

XamlReader .NET
4.8.04084 10.4 7,754 133 23 14,627 17,209 109,160 101,921 594,230

XmlSerializer .NET
4.8.04084 158.2 16,766 82 - 14,511 16,022 114,808 106,728 583,887

YamlDotNet 4.3.1 6.0 7,754 44 2 7,253 8,441 54,581 51,080 300,192

Table A.1: Evaluation results for the insecure serializers.

A.6 Evaluation

This section presents our experiments to validate the efficiency and effectiveness
of SerialDetector. We leverage known vulnerabilities in the .NET Framework and
third-party libraries as ground truth for checking the soundness and permissive-
ness of the detection phase, as well as for evaluating the scalability of analysis on
a large codebase. To evaluate the exploitation phase, we perform an in-breadth
study of deserialization vulnerabilities on real-world applications over the past
two years, and report of the effort to exploit these vulnerabilities with SerialDe-
tector. We perform the experiments on an Intel Core i7-8850H CPU 2.60GHz,
16 GB of memory, running Windows OS and .NET Framework 4.8.04084. The
analysis results and data are available in SerialDetector’s repository [190].

First, SerialDetector indexes all code of the .NET Framework and detects
the list of sensitive sinks. The .NET Framework consists of 269 managed as-
semblies with 466,218 methods and 50,399 types. SerialDetector completes this
step in 12.4 seconds and detects 123 different sensitive sinks. Not all sensitive
sinks create new objects dynamically based on input data, hence we filter out
such sensitive sinks after manual analyisis. For example, the external method
Interlocked.CompareExchange is considered as sensitive sink, however it only
implements atomic operations like comparing two objects, hence we exclude it
from our list.

Detection phase. To evaluate true positives, false positives, and false negatives
of the detection phase, we run SerialDetector against known OIVs in .NET Frame-

A.6. EVALUATION 117

Software Version Serializer
Entry Points

w/ Threat Model
(False Positives UB)

Entry Points
w/o Threat Model

(False Positives UB)

Assemblies/
Instructions

Payload
Changes

CVE-2020-14030 Ozeki SMS Gateway 4.17.6 BinaryFormatter 31 220 84/
1,866,312 0

CVE-2020-10915
CVE-2020-10914 VEEAM One Agent 10.0.0.750 BinaryFormatter 29 29 10/

199,185 1

CVE-2019-18935 Telerik UI
for ASP.NET AJAX 2019.2.514 JavaScriptSerializer - - - -

CVE-2019-10068 Kentico 12.0.0 SoapFormatter 1 1 191/
5,647,128 0

CVE-2019-19470 TinyWall 2.1.8 BinaryFormatter 4 30 4/
39,927 0

CVE-2019-0604 Microsoft SharePoint
Server 2019

16.0.
10337.12109 XmlSerializer 6,283∗

9 49,007 55/
8,329,428 2

CVE-2019-1306 Azure DevOps
Server 2019

17.143.
28621.4 BinaryFormatter 14 20 326/

10,742,006 2

CVE-2019-0866
CVE-2019-0872

Azure DevOps
Server 2019 RC2 YamlDotNet 3 13 370/

9,863,890 1

Table A.2: Evaluation results for the real-world applications. ∗ indicates Mi-
crosoft.SharePoint.dll. indicates Microsoft.SharePoint.Portal.dll.

work and third-party libraries using insecure serializers from the YSoSerial.Net
project [146]. We use the deserialization methods of insecure serializers as entry
points for our data flow analysis. The analyzer generates OIV patterns for each
deserializer. We then match the attack triggers with gadgets from YSoSerial.Net
as an indicator of effectiveness. SerialDetector confirmed exploitable patterns
for 10 deserializers. It also reported warning for 5 deserializers DataContractJ-
sonSerializer, DataContractSerializer, FsPickler, NetDataContractSerializer, and
XmlSerializer since it lacks support for delegates calls. If a code snippet uses a del-
egate to create a type, we lose information about that type, hence SerialDetector
cannot resolve virtual calls of that type.

Table A.1 presents the results of our experiments. We report the Version of
the library or the framework containing that library, and the number of different
Methods analyzed for each entry point. The analyzer generates a summary for
each method. We need re-analyze some methods, for example, recursive methods
or methods with virtual calls that must be re-analyzed after creating an instance
of the type with a concrete implementation. Therefore, the number of summaries
is always greater than the analyzed methods.

The column Patterns shows the number of unique OIV patterns for each
serializer, while Priority Patterns shows patterns that contain the methods of
known gadgets. The pattern consists of the attack triggers that are called on a
unique tainted object. It is unclear whether or not the rest of attack triggers is
exploitable, since this requires detection of new gadgets, which we do not address
in this work. Therefore, the number of (priority) patterns minus one corresponds
to the number of (gadget specific) false positives.

Exploitation phase. We carry out an in-breadth analysis of .NET applications
vulnerable to OIVs using the following methodology: (1) We collected vulnera-
bilities from the National Vulnerability Database using the keyword ".NET" and
category "CWE-502 Deserialization of Untrusted Data" as of January 1st, 2019.
As a result, we obtained 55 matched records; (2) We inspected the vulnerabilities
manually and found that 11 vulnerabilities were actually detected in .NET appli-

118 PAPER A. SERIALDETECTOR

cations, of which only 5 vulnerable applications were available for download; (3)
We analyzed these applications with SerialDetector as reported in the first part of
Table A.2; (4) Since not all vulnerabilities of insecure deserialization are marked
as CWE-502, we searched the Internet for additional OIVs and added them in
our experiments, including the new vulnerabilities that we found in Azure De-
vOps Server. In total, we run SerialDetector against 7 different applications with
10 OIVs. SerialDetector detected vulnerable calls of insecure deserializers and re-
lated entry points in all applications except for the Telerik UI product, which uses
the Reflection API to call an insecure configuration of JavaScriptSerializer. The
current version of SerialDetector does not support reflection for reconstructing
the call graph and ignores such calls.

Table A.2 contains information about the number of assemblies and analyzed
instructions to illustrate the size of applications. The column "Entry Points w/o
Threat Model" provides information about the count of all detected entry points
that reach insecure serializer calls. However, not all assembly entry points are
available for attackers to execute. Some are never called by an application, while
others require privileges that are inaccessible to the attacker. The exploitable
entry points depend on the threat model which is specific to an application. We
describe the possible threat models for a web application in Section A.7. To
provide an assessment in line with the actual operation mode of SerialDetector,
we leverage the (known) vulnerable entry points and compute the number of
detected entry points for a specific threat model. Thus, an attacker first identifies
the parts of the target system (assemblies) that are reachable for a threat model
and then runs a detailed analysis. The column "Entry Points w/ Threat Model"
reports the results of SerialDetector. The total number of entry points estimates
the upper bound (it also includes true positives) on the number of false positives
of our analysis.

CVE-2019-0604 in SharePoint Server has two exploitable entry points in differ-
ent assemblies [219]. SerialDetector finds that both entry points and many others
reach XmlSerializer::Deserialize call. An outlier is Microsoft.SharePoint.dll
with 6,283 detected entry points. The main cause of such high complexity
is the tight coupling of code in SharePoint Server and its main assembly Mi-
crosoft.SharePoint.dll, as well as our over-approximation of virtual calls. For
each vulnerable entry point, we followed the approach described in Section A.5
to generate and validate the exploits. In our experiments, we changed the pay-
load as reported in Table A.2. We further clarify the practical details of threat
models and exploit changes in Section A.7.

Performance The analysis is quite fast for such a large project as the .NET
Framework. The average time of the analysis for a single serializer is 47.4 sec.
This shows the advantages of our modular inter-procedural analysis. We also
experimented with a whole-program dataflow analysis algorithm which did not
terminate within a limit of hours. Our flow-insensitive approach reduces the
size of the heap graph. This enables SerialDetector to apply summaries and
merge locations faster, thus improving the overall analysis time. Another factor

A.7. IN-DEPTH ANALYSIS OF AZURE DEVOPS SERVER 119

improving scalability is the usage of the lightweight context-sensitive analysis.
Earlier versions of SerialDetector performed the analysis of virtual calls in a
conservative way, analyzing all implementations of a virtual method and applying
the summaries at call site. This approach generated correct patterns for very few
serializers (e.g., BinaryFormatter), but it did not terminate for many others. The
implementation of the type-sensitive analysis improved performance for all tested
serializers.

False Positives We also find attack triggers that are never called for a tainted
object. The root cause for these false positives is flow-insensitivity of the data
flow analysis. The flow-insensitive approach allows us to control the heap size at
the expense of the precision of analysis. On the other hand, our results show that
the number of patterns that should be reviewed manually by a security analyst
is not overwhelming.

A.7 In-depth Analysis of Azure DevOps Server

We evaluate SerialDetector on production software to validate its usefulness in
practical scenarios. We choose Azure DevOps Server as the main target for
our investigations mainly due to its complexity and diversity of threat models.
Section A.7 provides a brief summary of Azure DevOps and Section A.7 provides
a thorough overview of the threat models that we explored. Section A.7 describes
process of using SerialDetector to discover unknown vulnerabilities.

Microsoft Azure DevOps

The Azure DevOps Server (ADS) is a Microsoft product that provides version
control, reporting, requirements management, project management, automated
builds, lab management, testing, and release management capabilities. These
features require integration with various data formats and serializers, thus mak-
ing it an excellent target for finding OIVs. ADS hosts multiple projects across
different organizations. Projects are grouped into isolated collections and the
system provides functionalities to set up a project and its collections, as well as
to manage users in a flexible manner. Thereby, a vulnerability that exposes high
privileges in one project may lead to information disclosure of another project.
ADS stores confidential information that is intellectual property (e.g., the source
code of products), hence a disclosure has high impact.

ADS consists of many services exchanging information with each other, for
example, the main web app, crawler and indexer services. Such system design
implies complex threat models in which even internal data can be untrusted.
The server has many entry points such as request handlers, documented REST
APIs, plugin APIs, and internal and undocumented API. After analyzing differ-
ent threat models, we use SerialDetector to automatically determine attacker-
controlled entry points leading to OIVs. We then scrutinize these entry points to
find RCE exploits using automated and manual analysis.

120 PAPER A. SERIALDETECTOR

OS Account

 User Web App

OIV
Database

Internal
Service

 2a

 2b

 2c

Local
Files

DMZ Network Internal Network

 1

Figure A.9: First threat model.

Threat models

We first consider the simple threat model of a web application running under
an OS account. ADS uses the NETWORK SERVICE account in Windows by
default. The code executing in the web application process has restrictions ac-
cording to the OS account permissions. The web application usually has access to
different services into the internal network, e.g., indexing or caching services that
handle the application data. The application may also have access to a database
with OS account permissions or specific credentials. Thereby, any code that ex-
ecutes into the web application process may have access to the database. Users
communicate only with the web application in the demilitarized zone (DMZ) and
do not have access to the internal network.

Figure A.9 illustrates the expected information flows between services and
users via black arrows. Any user can act as an attacker and send payloads to
the web application. If the application has an entry point that receives user data
and subsequently uses code that is subject to OIVs, we can access any resources
available to the OS account. This is depicted by OS Account trust boundaries in
Figure A.9. The attacker may send a payload to a vulnerable application directly
(arrow 1) and get access to local files (arrow 2c), services into the internal network
(arrows 2a, 2b) or any data from the web application memory. Example A.1
illustrates this scenario.

Our second threat model addresses the question: Can an OIV be exploited
if it processes data from internal services or files only? The answer depends on
other components of the system. Figure A.10 presents the threat model for such
cases. An attacker may already be inside DMZ network and execute code with
very restricted privileges. For example, the attacker’s process may have access
only to the shared files originating from the web application. If these files are
processed by code subject to OIVs, the attacker can transfer the payload through
files (arrow 1a), escalate privileges to the web application account (arrow 2a), and
ultimately gain access to all resources inside the OS Account area in Figure A.10.

Another scenario includes remote attacks through chains of vulnerabilities in

A.7. IN-DEPTH ANALYSIS OF AZURE DEVOPS SERVER 121

OS Account

Web App

Agent
Service

OS Restricted
Account

 2b

 3b

Shared
Files

V

 1a

 2a
 1b

OIV

 User

Database

Internal
Service

DMZ Network Internal Network

Shared
Files

Figure A.10: Second threat model.

other services. A service that receives untrusted user data may have vulnerabili-
ties such as Server-Side Request Forgery (SSRF) enabling an attacker to deceive
the server-side application to make requests to an arbitrary server, including in-
ternal servers. A service may also have insufficient data validation and allow to
store a payload to an internal service that subsequently makes this data available
to code vulnerable to OIVs. For example, an attacker may abuse a data valida-
tion vulnerability in the Agent service (arrow 1b) and send the payload to the
Internal Service (arrow 2b). The Internal Service may index the data and send
the payload to an application with OIVs (arrow 3b). As a result, the attacker
will gain access to all resources inside the OS Account area.

Our third threat model (Figure A.11) targets scenarios where only a user with
administrator privileges can get access to code subject to OIVs. ADS exposes web
applications with a rich user management subsystem enabling the owner to create
isolated projects with their own administrator accounts. We depict this setting
via the trust boundaries Admin Project A and Admin Project B. This is a typical
scenario in cloud-based web applications where a user can register a separate
project and become the administrator of that project. A single application process
often serves several isolated projects. In this case, an attacker can register an
administrator account for their own project and exploit an OIV directly (arrow
1a) to gain access to all resources of OS Account including the database and the
data of any other projects (arrow 2a).

If the attacker has access only to a subset of features, e.g., a user with minimal
privileges, they can exploit a chain of a client-side and object injection vulner-
abilities to carry out the attack. For example, the attacker can exploit an XSS
vulnerability to run malicious JavaScript code into the administrator’s browser
and use it to relay the malicious payload to OIV code that is available only to

122 PAPER A. SERIALDETECTOR

 Web App

OS Account

 Database

Admin Project B

Admin Project A

User
Features

User
Features

User
Features

Admin
Features

 2b

 1b

Organization A
Data

User
Data

 User A
XSS

 3b 4b

User
Data

Admin
Features

Organization B
Data

 Admin B

User
Data

 User B

OIV 1a

2a

 Admin A

DMZ Network

OIV

Figure A.11: Third threat model.

the administrator (path 1b, 2b, 3b, 4b).

SerialDetector in action

We used SerialDetector to analyze the Azure DevOps Server against OIVs. We
described templates of OIV in insecure serializers and run the exploitation phase
of SerialDetector to determine which insecure serializers ADS uses. The tool ana-
lyzed the codebase of the application and built the Call Graph from entry points
to the given insecure methods. The analyzer handled 422 assemblies that contain
630,251 methods and 11,258,350 instructions. This analysis was completed in
174 sec. Thereby, we detected an usage of 7 serializers in the codebase of ADS:
BinaryFormatter, DataContractSerializer, JavaScriptSerializer, Newtonsoft.Json,
XamlReader, XmlSerializer, YamlDotNet. We have checked method calls of
DataContractSerializer, JavaScriptSerializer, Newtonsoft.Json, XamlReader and
XmlSerializer, and concluded that it is being used in the safe mode for untrusted
data.

RCE via BinaryFormatter The BinaryFormatter matched the patterns
generated by SerialDetector, hence we could instantiate objects for a malicious
gadget and execute a payload. However, the BinaryFormatter handles data from
local storage which an attacker cannot control directly. Following the threat
model in Figure A.10, SerialDetector found that one of the methods that call

A.7. IN-DEPTH ANALYSIS OF AZURE DEVOPS SERVER 123

BinaryFormatter is located in the code of the Search Engine. The Search Engine
computes indexes of text data like source files and Wiki pages to enable quick
search of information. This service is a part of Web App in the threat model and
is not accessible from outside. The indexes represent binary formatted data man-
aged by the Storage Service. The Storage Service allows to get indexes from other
components of the system and makes them available to the Search Engine. This
corresponds to Internal Service in the threat model. A separate service Crawler
tracks changes in the Git repository, parses the changed text files according to
their format, and sends the resulting data to the Storage Service. The data in
the Git repository is untrusted because users with minimal privileges usually have
access to some repositories. This user-controlled data corresponds to User node
in Figure A.10. Hence, the security of the system relies on proper validation of
the data from Git to the Crawler Service.

We analyzed the validation algorithms of the Crawler Service and identified
the control flow path from the method that pulls updated Wiki pages from Git,
parses the Markdown format of Wiki pages, and stores the parsed data in indexes.
To exploit this path, we generated a payload with SerialDetector, stored the
payload to the Wiki page, and waited for the Crawler to transfer the payload to
indexes and for the Search Engine to deserialize the data using BinaryFormatter.
However, the exploitation failed, hence we attached a debugger to the Agent
Service to identify the instructions that changed the payload.

The Crawler first validates that the Wiki page is a text document. It uploads
the file as a byte array and verifies that the content uses Unicode encoding by
checking the first bytes. The payload for BinaryFormatter always starts with
the byte 0x00 and the next 4 bytes contain an integer value of the ID of the
root serialized object. The Crawler accepts the one sequence of the first bytes
of the header that starts with 0x00 as Unicode format, and it is 0x0000FEFF.
Thereby, we changed the root ID of the payload to get the header to correspond to
Unicode format, tested a new payload for BinaryFormatter using SerialDetector,
and managed to bypass this validation.

We run the exploit using the new payload and failed again. Following our
human-in-the-loop approach, we started a new manual iteration of the “investi-
gating, fixing and testing” loop. The debugger revealed that the Crawler Service
parses the Wiki page as Markdown document and stores the parsed data to the
index. Because we use the binary data instead of a valid Markdown document,
the parser rejected storing the document to the indexes. However, when the
parser throws an exception, the Crawler Service stores the content of Wiki page
to the index as is. This allows us to transfer the payload to the BinaryFormatter
via the indexes. We found a bug in Markdown parser which throws an exception
for certain incorrect strings. We then added the string to the original payload,
created and tested the second version of the payload with SerialDetector, and
run the exploit on ADS successfully. The attack propagates the payload from
the attacker-controlled Git repository to the input of the BinaryFormatter using
Crawler and Storage services, as depicted by the path 1b, 2b, 3b in Figure A.10.

124 PAPER A. SERIALDETECTOR

We have reported the vulnerability to Microsoft following the coordinated
disclosure principles. Microsoft assigned CVE-2019-1306 and released a patch
to address the vulnerability. The fix uses a look-ahead approach [63] to control
class loading, depending on the type name. The .NET Framework provides the
class SerializationBinder that allows to use the look-ahead approach by con-
figuring BinaryFormatter with a custom implementation of the binder. Thereby,
a developer can create only safe types during deserialization and avoid instanti-
ating unsafe types. The fixed version filters out the types via a whitelist which
prevents the OIV exploitation.

RCE via YamlDotNet ADS uses the YAML format for describing pipelines
to automatically build and test the code of projects. The YAML pipeline configu-
ration file may be stored in the source code repository of a project. ADS uploads
the configuration file from the repository, deserializes it, and queues a build task
to the Build Agent. The agent performs building and testing of the code from
the repository following the YAML configuration file. For security reasons, the
documentation recommends to run the agent in an isolated environment. Thus,
code execution vulnerabilities during the build and test process are not directly
exploitable in a typical configuration. However, the Web Application of ADS
performs deserialization of the YAML file before running the agent. This boosts
the impact of code execution in the Web Application to affect the entire system.
For instance, an attacker can escalate to privileges of the OS Account running
the Web Application.

We used SerialDetector to build the call graph of method calls that reach the
YamlDotNet deserialization methods. By examining the entry points of the call
graph, we found that the public Web API allows to run a build process using the
YAML configuration file. We generated a payload using SerialDetector and ran
the build process with our payload as the build configuration. Upon failure of
our first attempt, we started the application debugging to identify a conditional
statement causing the failure. The build configuration handler required small
changes in the payload to pass it to the serializer. We just added the string ---
as the first and the last payload lines.

However, YAML-based pipelines were a new experimental feature at the mo-
ment and they were disabled by default. The feature can be enabled by the
administrator locally on the machine. We also found an undocumented Web API
to enable the feature remotely, but such request requires administrator privileges
in ADS. This scenario corresponds to the threat model in Figure A.11. One ADS
instance supports few project collections with different user roles. However, the
administrator of one collection may not have access to another collection. If the
user with administrator privileges exploits the OIV and triggers an RCE, this
user can get access to the resources and data of all collections. The path 1a, 2a
shows this attack.

We demonstrated higher impact of the YamlDotNet OIV by looking for XSS
vulnerabilities. We found two XSSs using static and manual analysis. The first
one can be exploited when the victim opens a PDF file from the source code

A.8. RELATED WORKS 125

repository using the ADS web interface. We use a weakness of Internet Explorer
to execute scripts embedded into PDF files (now this is also fixed). Thereby, an
attacker needs to prepare a malicious PDF file, upload it to the repository, and
craft the link to the PDF file using the viewer of ADS. When the administrator
opens this link in Internet Explorer, the embedded script sends requests with
administrator privileges to ADS triggering the deserialization of the malicious
YAML file. Thus, the attacker executes an RCE attack on the target ADS with
minimal privileges (i.e., only access to the source code repository).

The second XSS targets a victim that opens a page with the test description.
ADS uses the Test hub feature for tracking the manual testing of applications. It
provides three main types of test management artifacts: test plans, test suites,
and test cases. The test case description field had insufficient validation and san-
itization of the input text. The attacker may inject JavaScript in the description
field and get a stored XSS on the Test Case page. When the administrator opens
this page, the JavaScript code is executed in the administrator’s browser allowing
for requests to Web API with administrator privileges. We exploited the vulner-
ability similarly to the RCE on the server. The path 1b, 2b, 3b, 4b illustrates the
attack.

We reported these vulnerabilities to Microsoft following the coordinated dis-
closure principles. Microsoft assigned CVE-2019-0866 and CVE-2019-0872 for
each vulnerable attack chain and fixed it. The XSS vulnerabilities were fixed by
adding additional validation to the web page and by requiring users to download
the PDF document instead of opening it in the browser. To prevent the OIV
exploitation, Microsoft implemented their own lightweight YAML serializer using
a parser from the YamlDotNet. This serializer does not allow to instantiate an
object based on the type of information from the file. It deserializes only a small
predefined subset of types which prevents the composition of a malicious gadget.

A.8 Related works

This section discusses related works targeting object injection vulnerabilities and
injection vulnerabilities.

Object Injection Vulnerabilities The closest related research is the work
of Dahse et al. [50,52], which implements static analysis to systematically detect
gadgets in common PHP applications. Like us, they implement static taint analy-
sis to detect exploitable vulnerabilities. The key difference is that SerialDetector’s
analysis operates at the assembly level to discover new OIV patterns, while Dahse
et al. target PHP source code via well-known attack triggers (called magic meth-
ods in their setting). On the other hand, SerialDetector relies on known gadgets.
An interesting avenue for future work is to explore the complementary techniques
by Dahse et al. to implement gadget generation in SerialDetector.

Shahriar and Haddad [187] propose a lightweight approach based on latent
semantic indexing to identify keywords that are likely responsible for OIVs and

126 PAPER A. SERIALDETECTOR

apply it systematically to PHP applications to find new vulnerabilities. Rasheed
et al. [170] study DoS vulnerabilities in YAML libraries across different pro-
gramming languages and discover several new vulnerabilities. Recently, Lekies et
al. [103] showed that code-reuse attacks are feasible in the client-side web appli-
cations by proposing a new attack vector that breaks all existing XSS mitigations
via script gadgets. Cristalli et al. [47] propose a dynamic approach to identify
trusted execution paths during a training phase with benign inputs, and lever-
ages this information to detect insecure deserialization via a lightweight sandbox.
Hawkins and Demsky [75] present ZenIDS, a system to dynamically learn the
trusted execution paths of an application during an online training period and
report execution anomalies as potential intrusions. Dietrich et al. [57] investigate
deserialization vulnerabilities to exploit the topology of object graphs constructed
from Java classes in a way that leads deserialization to DOS attacks exhausting
stack memory, heap memory, and CPU time. SerialDetector focuses on generat-
ing OIV patterns targeting low level features of the framework and libraries. Our
results are complementary and can help improve the precision of these techniques.
Moreover, to our best knowledge, none of the existing static analysis has been
applied to complex production software such as Azure DevOps Server.

Our work draws inspiration on exploitation techniques developed by the prac-
titioners’ community [64,65,73,147]. We leverage these results for the exploitation
phase to match our patterns with existing gadgets [146]. We refer to Muñoz and
Mirosh [147] for an excellent report on deserialization attacks in .NET and Java
libraries. Seacord [183] provides a thorough discussion on OIV defenses via type
whitelisting. Our results are complementary to gadget generation techniques and
can help these works uncovering unknown gadgets.

Tool support Koutroumpouchos et al. [98] develop ObjectMap, a toolchain
for detecting and testing OIVs in Java and PHP applications. While targeting
different languages, ObjectMap shares similar goals as SerialDetector’s payload
and exploit generation modules. Gadget Inspector [73] is a tool for discovering
gadget chains that can be used to exploit deserialization vulnerabilities in Java
applications. SerialKiller [148] is a Java deserialization library implementing look-
ahead deserialization [63] to secure applications from untrusted input. It inspects
Java classes during naming resolution and allows a combination of blacklisting
and whitelisting.

Injection Vulnerabilities Code reuse vulnerabilities have been studied in
breadth in the context of injection vulnerabilities in web applications [13, 35, 51,
79,103,104,124,200,201,214,214]. For the .NET domain, Fu et al. [68] propose the
design of a symbolic execution framework for .NET bytecode to identify SQL in-
jection vulnerabilities. Doupé et al. [59] implement a semantics-preserving static
refactoring analysis to separate code and data in .NET binaries with the goal of
protecting legacy applications from server-side XSS attacks. Our work is exclu-
sively focused on OIVs and yields results that target such vulnerability in depth.
Except for significant engineering challenges with .NET assemblies (including the
framework and libraries), our taint-based data flow analysis follows the existing

A.9. CONCLUSION 127

line of work targeting web and mobile application vulnerabilities at the bytecode
level broadly [8, 14,71,124,200,214].

A.9 Conclusion

We have pushed the research boundary on key challenges for OIVs in the modern
web. Based on these challenges, we have identified the root cause of OIV and
proposed patterns based on the triplet: entry points, sensitive sinks, and attack
triggers. We have presented SerialDetector, the first principled and practical tool
implementing a systematic exploration of OIVs via taint-based static analysis.
We have used SerialDetector to test 15 serialization libraries as well as several
vulnerable applications. We have performed an in-depth security analysis of the
Azure DevOps Server which led SerialDetector discover RCE vulnerabilities with
three assigned CVEs.

Acknowledgment

We thank the anonymous reviewers for useful feedback. The work was partly
funded by the Swedish Research Council (VR) under the project JointForce and
by the Swedish Foundation for Strategic Research (SSF) under the project Trust-
Full.

A.10 Appendix

A Primer on .NET Technologies

The .NET Framework is a managed execution environment for Windows provid-
ing a variety of services to its running applications. The framework consists of
two major components: The Common Language Runtime (CLR), which is the
virtual machine that handles running apps, and the .NET Framework Class Li-
brary (FCL), which provides a library of reusable code that developers can call
from their applications. The FCL implements a collection of reusable types for
user interfaces (e.g., XAML serializer), data access, web application development
(e.g., JSON serializer), network communications (e.g., SOAP serializer) and other
features. The .NET Framework implements the Common Language Infrastruc-
ture (CLI) specification, an ISO and Ecma standard that describes executable
code and a runtime environment. Compilers for C# and F# generate code in the
Common Intermediate Language (CIL) that can be executed in the CLI runtime.
CIL is an object-oriented binary instruction set within the CLI specification. For
our purposes, CIL provides a unified language for analyzing code from the .NET
Framework and its applications in absence of source code.

The .NET Framework allows to dynamically instantiate arbitrary objects
based on user-provided types and data. This is typically achieved via reflec-

128 PAPER A. SERIALDETECTOR

tion which allows to examine the structure of types, create instances of types,
and invoke methods on types, all based on the description of a type. Alterna-
tively, the .NET Framework can instantiate an object at runtime via dynamic
code generation by getting a pointer to a method and generating the CIL code of
that method at runtime.

C-LdVar
P(pc) = ldvar x v = E(x)

⟨pc, cs, E, h, s⟩ → ⟨pc + 1, cs, E, h, s :: v⟩

C-LdFld
P(pc) = ldfld f v = h(l, f)

⟨pc, cs, E, h, s :: l⟩ → ⟨pc + 1, cs, E, h, s :: v⟩

C-Br
P(pc) = br i

⟨pc, cs, E, h, s⟩ → ⟨i, cs, E, h, s⟩

C-StVar
P(pc) = stvar x E

′
= E[x 7→ v]

⟨pc, cs, E, h, s :: v⟩ → ⟨pc + 1, cs, E
′
, h, s⟩

C-StFld
P(pc) = stfld f h

′
= h[h(l, f) 7→ v]

⟨pc, cs, E, h, s :: v :: l⟩ → ⟨pc + 1, cs, E, h
′
, s⟩

C-NewObj
P(pc) = newobj T l ∈ Loc fresh h

′
= h[(l, f) 7→ ⊥]

⟨pc, cs, E, h, s :: l⟩ → ⟨pc + 1, cs, E, h
′
, s⟩

C-Ret
P(pc) = ret st = (pc

′
, E

′
, s

′
) pc

′′
= pc

′
+ 1

⟨pc, cs :: st, E, h, s :: v⟩ → ⟨pc′′, cs, E′
, h, s

′
:: v⟩

C-BrTrue
P(pc) = brtrue i pc

′
= (v ? i : pc + 1)

⟨pc, cs, E, h, s :: v⟩ → ⟨pc′, cs, E, h, s⟩

C-Call
P(pc) = call i st = (pc, E, s) E

′
= E[arg 7→ v]

⟨pc, cs, E, h, s :: v⟩ → ⟨i, cs :: st, E
′
, h, ϵ⟩

Figure A.12: Operational semantics of CIL.

BPaper B

Silent Spring: Prototype Pollution
Leads to Remote Code Execution in
Node.js

Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu
Proceedings of the 32nd USENIX Security Symposium,

USENIX Security 2023

129

130 PAPER B. SILENT SPRING

Abstract

Prototype pollution is a dangerous vulnerability affecting prototype-based
languages like JavaScript and the Node.js platform. It refers to the ability
of an attacker to inject properties into an object’s root prototype at runtime
and subsequently trigger the execution of legitimate code gadgets that access
these properties on the object’s prototype, leading to attacks such as Denial
of Service (DoS), privilege escalation, and Remote Code Execution (RCE).
While there is anecdotal evidence that prototype pollution leads to RCE,
current research does not tackle the challenge of gadget detection, thus only
showing feasibility of DoS attacks, mainly against Node.js libraries.

In this paper, we set out to study the problem in a holistic way, from
the detection of prototype pollution to detection of gadgets, with the ambi-
tious goal of finding end-to-end exploits beyond DoS, in full-fledged Node.js
applications. We build the first multi-staged framework that uses multi-label
static taint analysis to identify prototype pollution in Node.js libraries and
applications, as well as a hybrid approach to detect universal gadgets, no-
tably, by analyzing the Node.js source code. We implement our framework
on top of GitHub’s static analysis framework CodeQL to find 11 universal
gadgets in core Node.js APIs, leading to code execution. Furthermore, we
use our methodology in a study of 15 popular Node.js applications to identify
prototype pollutions and gadgets. We manually exploit eight RCE vulnera-
bilities in three high-profile applications such as NPM CLI, Parse Server, and
Rocket.Chat. Our results provide alarming evidence that prototype pollution
in combination with powerful universal gadgets lead to RCE in Node.js.

B.1 Introduction

In recent years we have seen a growing interest in running JavaScript outside
of the browser. A prime example is Node.js, a popular server-side runtime that
enables the creation of full-stack web applications. Its package management sys-
tem, NPM, is the world’s largest software repository with millions of packages.
Researchers have studied this ecosystem extensively to discover several security
risks [22,60,105,201–204,220], showing that these risks are further exacerbated by
the interconnected nature of the ecosystem [226]. While most prior work focuses
on libraries, the problem of automatically detecting vulnerabilities in Node.js
applications is still open.

Prototype pollution is a JavaScript-driven vulnerability that manifests itself
powerfully in the Node.js ecosystem. The vulnerability is rooted in the permissive
nature of the language, which allows the mutation of an important built-in object
in the global scope – Object.prototype – called the root prototype. JavaScript’s
prototype-based inheritance enables accessing this important object through the
prototype chain. Thus, attackers can instruct vulnerable code to mutate the root
prototype by providing well-crafted property names to be accessed at runtime.
As a consequence, every object that inherits from the root prototype, i.e., the

B.1. INTRODUCTION 131

vast majority of objects in the runtime, inherits the mutation on the root proto-
type, e.g, an attacker-controlled property. This vulnerability was first introduced
by Arteau [7], showing that it is a widespread problem in Node.js libraries. Re-
cently, Li et al. [105, 106] explore static analysis to detect prototype pollution
vulnerabilities using object property graphs.

The few prior works [87, 95, 105, 106, 220] on prototype pollution consider a
successful attack any mutation of the root prototype. An immediate consequence
of such mutations is Denial of Service (DoS) due to the overwriting of important
built-in APIs, e.g., toString. By contrast, our work studies the implications
of prototype pollution beyond DoS. In particular, we propose a semi-automated
approach for detecting Remote Code Execution (RCE) vulnerabilities pertaining
to prototype pollution. While there is anecdotal evidence about the possibility
of such attacks [7, 15], we are the first to propose a principled and systematic
approach to detect them. Our key focus is on gadget identification and end-to-
end exploitation which no prior work has addressed thoroughly.

Moreover, we note the important similarities between object injection vulner-
abilities (OIVs) [52, 191] and RCEs based on prototype pollution. These attacks
work in two stages: (1) there is an untrusted flow from an application’s untrusted
entry points to an injection sink, e.g., the property of an object; (2) there is a
gadget that further propagates the attacker-controlled data from the injection
sink to a security-relevant attack sink. In analogy, the attacker loads the gun in
stage one (by placing the payload into the injection sink), while letting someone
else (a gadget) pull the trigger in stage two and carry out the attack (through
an attack sink). We propose calling the class of OIVs pertaining to prototype
pollution, prototype-based object injection vulnerabilities (POIV).

In statically-typed languages, OIVs are enabled by insecure deserialization,
which allows instantiating objects of an unexpected type, thus triggering oth-
erwise unused methods. Similarly, in a duck-typed language like JavaScript, if
an attacker mutates the root prototype, they change the dynamic type of multi-
ple objects in the runtime. This in turn activates otherwise unused code paths
that correspond to the new type, e.g., object foo having a property bar defined.
Thus, code reuse is done at a finer granularity and in a less localized manner
in dynamically typed languages. We also note that attackers can mutate several
properties at once, hence chaining gadgets in the fashion of property-oriented
programming [52].

Our technical contribution is a multi-staged framework that uses multi-label
static analysis for detecting prototype pollution, and a hybrid solution, i.e., com-
bining dynamic and static analysis, for detecting gadgets. We observe that code
patterns that lead to prototype pollution, i.e., injection sinks, are rather rare in
real-world code. Thus, different from prior work, we propose tuning the static
analysis for improved recall, rather than precision. Additionally, to emphasize
the feasibility of the attack, we detect universal gadgets in Node.js’ source code,
which can be exploited in a wide-range of applications as they come packaged
with the Node.js runtime.

132 PAPER B. SILENT SPRING

Drawing on security advisories [107], we aggregate a set of 100 vulnerable
packages, which we use to design and validate our pollution detection analysis. In
comparison with the state-of-the-art tool ODGen [106], we empirically show that
one can significantly increase recall and scalability, while only paying a modest
decrease in precision.

We then design and evaluate our novel gadget detection analysis against four
widely-used APIs for handling code or command execution in Node.js. We find a
total of 11 gadgets that can be triggered during typical execution of these APIs.
While some gadgets enable code injection directly, others allow attackers to load
arbitrary files from the disk into the runtime, by confusing the module resolution
mechanism. We also conduct a quantitative study on packages to estimate the
prevalence of these gadgets in the Node.js ecosystem. We believe that we are the
first to show evidence that control flow can be hijacked in this way in Node.js,
further emphasizing the dangers of shipping unused code with applications [97].

Finally, we analyze 15 popular Node.js applications, reporting on the effort
to finding RCE with our methodology. We identify eight exploitable RCE vul-
nerabilities in highly-popular applications such as NPM CLI, Parse Server and
Rocket.Chat. We have responsibly disclosed these critical vulnerabilities to de-
velopers and they are now fixed, acknowledging our contributions with a high-
severity advisory (e.g., CVE-2022-24760) and bug bounties.

Contrary to established recommendations, this work embraces false positives.
We show that a motivated attacker can sieve through the manageable amount
of false positives to find critical zero-day exploits against well-tested, mature
applications. We believe that vulnerability detection tools tuned for offensive
security can afford this luxury due to the high return on investment provided by
a single true positive.

In summary, the paper offers the following contributions:

• We are the first to study the impact of prototype pollution vulnerabilities in
full-fledged Node.js applications, beyond denial-of-service attacks.

• We present a principled approach for detecting RCE vulnerabilities that are
enabled by prototype pollution.

• We show that our pipeline is directly applicable to real-world code: we find 11
universal gadgets in Node.js’ source code and eight RCEs in popular applications.

• We provide initial evidence that unused code shipped with the application, e.g.,
third-party dependencies, can be leveraged as part of code reuse attacks in
Node.js.

B.2 Context and Technical Background

This section provides background information and discusses the targeted threat
model. We refer to Appendix B.9 to discuss POIVs in the general context of
code-reuse vulnerabilities.

B.2. CONTEXT AND TECHNICAL BACKGROUND 133

Prototype-based OIV

Prototypes are a key feature to implement inheritance of JavaScript properties
and methods to form a prototype chain. When creating an empty object, e.g.,
const obj = {}, it already contains many built-in properties and functions, for
instance, the toString function. When invoking toString on an object, the
runtime engine will first check if the function is explicitly defined for the given
object. If not, it will recursively look for its definition on the object’s prototype
chain. Unfortunately, most objects share the same root prototype. For example,
all objects created via the literal {} or the new Object() constructor share the
same prototype unless it is explicitly overridden. The following code snippet
illustrates the problem:
const o1 = {};
const o2 = new Object();
o1.__proto__.x = 42;
console.log(o2.x);

Although objects o1 and o2 are unrelated, their prototype properties __proto__
point to the same object. In fact, if we add the new property x to the prototype
of object o1 it will also affect object o2, resulting in a print of value 42 to the
console. Therefore, if we modify the root prototype shared by different objects,
all these objects will reflect the modification.

We now explain the two stages needed to carry out a prototype-based attack
that leads to code execution.
Stage 1: Polluting the prototype Listing B.1 shows a contrived example
to illustrate key ingredients defining an injection sink in a POIV. We assume
that the attacker controls all three arguments of function entryPoint. The first
ingredient is an object that inherits a prototype that the attacker wants to pollute,
as shown by the object in line 2, which inherits Object.prototype.

1 function entryPoint(arg1, arg2, arg3) {
2 const obj = {};
3 const p = obj[arg1];
4 p[arg2] = arg3;
5 return p;
6 }

Listing B.1: Prototype pollution example.

The second ingredient is the attacker-controlled access to the prototype prop-
erty, as shown in line 3 via the bracket notation. The attacker can pass __proto__
to arg1 to store Object.prototype in variable p. The last two ingredients
require creating a target property in the prototype and assigning an attacker-
controlled value. In fact, line 4 assigns an attacker-controlled value to a property
of Object.prototype. Since the attacker controls arg2 and arg3, they can write
any value to any property. The JavaScript engine will create a new property, if
such property does not exist. In general cases, the attacker cannot fully control
all the ingredients, e.g., the property in arg2 or the value in arg3.

134 PAPER B. SILENT SPRING

An immediate effect of this vulnerable pattern is the attacker’s ability to
perform a DoS attack, e.g, by executing the function

entryPoint("__proto__", "toString", 1);

to alter the state to an unexpected integer value Object.prototype.toString=1
thus, forcing an application that calls toString() to crash.
Stage 2: Executing the gadget This stage requires identifying gadgets that
contain insecure flows from injection sinks to attack sinks that perform security-
sensitive actions.

1 const { execSync } = require("child_process");
2 function gadget(args, options) {
3 const cmd = options.cmd || "cmd.exe /k";
4 return execSync(‘${cmd} ${args}‘);
5 }
6 const args = ...;
7 gadget(args, {});

Listing B.2: Gadget example.

Consider the benign example in Listing B.2, where a list of arguments args
and a command object options is passed to a function gadget with the intention
to execute command options with arguments args. The intended use of function
gadget is to either execute the command that is specified via the property cmd
of the options object or execute the default command cmd.exe. However, since
the developer passed an empty object to function gadget (line 7), the program
is expected to execute the default command, because options.cmd is undefined
(line 3).

Consider now an execution of the program in Listing B.1 such that

entryPoint("__proto__", "cmd", "calc.exe&");

The attacker manipulates the cmd property of the root prototype, causing the
undefined property options.cmd to fall back to the value in the prototype chain.
Hence, the attacker can control the command passed to execSync, which leads
to code execution, launching a calculator via calc.exe&.

Threat Model

Our threat model targets an attacker that controls the untrusted entry points of a
Node.js application with the goal of exploiting prototype-based OIVs to perform
arbitrary code execution on the application. These untrusted entry points are
application-specific, however, candidates include HTTP connections, untrusted
database reads, and the like. We also consider a weaker threat model targeting
only universal gadgets that occur in the source code of Node.js. Because these
gadgets appear in code that executes with the Node.js runtime, they are available
for exploitation in any Node.js application. For this threat model, we assume that
the attacker controls the injection sinks pertaining to the execution of a gadget.

B.3. OVERVIEW 135

1 function diffApply(obj , diff) {
2 var lastProp = diff.path.pop();
3 var thisProp;
4 while ((thisProp = diff.path.shift()) != null) {
5 if (!(thisProp in obj)) {
6 obj[thisProp] = {};
7 }
8 obj = obj[thisProp];
9 }

10 if (diff.op === REPLACE || diff.op === ADD) {
11 obj[lastProp] = diff.value;
12 }
13 }

1

Figure B.1: Injection sink in NPM CLI.

B.3 Overview

This section provides an overview of our multi-staged analysis framework, illumi-
nating on the key challenges in detecting and exploiting prototype-based object
injection vulnerabilities. We use our newly-detected vulnerability in NPM CLI
to illustrate the complexity and challenges of such an endeavor. NPM CLI [156]
is the command line client that allows developers to install and publish packages
in NPM registries. It comes bundled with the Node.js runtime and consists of
713,648 lines of code.

Detecting prototype pollution Figure B.1 shows the simplified code frag-
ment of the function diffApply from NPM CLI’s codebase, which is subject to
prototype pollution.

The function takes the array path from the attacker-controlled parameter
diff and calls the built-in function shift() that returns the first element of
the array. The data flow then goes through the loop storing a property value to
the variable obj (red line). Because the attacker indirectly controls the property
name thisProp in line 8, the property read allows them to access the object’s
root prototype by setting thisProp to __proto__. Subsequently, the attacker
can assign any value to any property of the root prototype as illustrated by
the assignment in line 11. As a result, the attacker has full control of the in-
jection sink denoted by the blue dotted lines. For instance, the function call
diffApply({},{path:[’__proto__’,’env’], value:’payload’, op:ADD})
injects into Object.prototype the environment property env with payload.

This code fragment illustrates the challenges that a static analysis should
overcome. First, in contrast to standard taint analysis, injection sinks cannot be
identified syntactically as they require specialized data flow analysis that record
accesses to object properties, as illustrated by the blue dotted line. The analy-
sis should identify attacker-controlled inputs that allow to control the prototype
object, followed by uses of this prototype object as a receiver in a property assign-
ment [105]. Second, the analysis should handle language constructs such as loops

136 PAPER B. SILENT SPRING

1 const {ArrayPrototypePush} = primordials;
2 const {Process} = internalBinding(’process_wrap’);
3 function spawn(file , args , opts) {
4 opts = normalizeSpawnArgs(file , args , opts);
5 this._handle = new Process();
6 this._handle.spawn(opts);
7 }
8
9 function normalizeSpawnArgs(file , args , opts) {

10 let envKeys = [], envPairs = [];
11 const env = opts.env || process.env;
12 /* ... */
13 for (const key in env)
14 ArrayPrototypePush(envKeys , key);
15
16 for (const key of envKeys) {
17 const v = env[key];
18 ArrayPrototypePush(envPairs , ‘${key}=${v}‘);
19 }
20
21 return { /* ... ,*/ envPairs /*, ... */ };
22 }

1

Figure B.2: Universal gadget in Node.js standard library.

and model the JavaScript built-in functions, e.g., shift() to correctly propagate
data flows. Third, given the size of the targeted codebases, the analysis should be
scalable, seeking the sweet spot between precision and recall. While prior work
achieves high precision, it reports low recall, thus increasing the possibility to
miss flaws in real applications [105, 106]. These requirements lead us to our first
research question: How to design and implement a scalable static analysis that
effectively identifies prototype pollution in real-world libraries and applications?
To answer this question we develop a multi-label static taint analysis, which we
discuss in Section B.4 and evaluate in Section B.6.
Detecting code gadgets Recall that our threat model requires identifying code
gadgets that read the attacker payloads from the injection sink and pass it into
an attack sink. Figure B.2 shows a universal gadget we identified, stemming from
the popular spawn function of the Node.js standard library. This function first
calls normalizeSpawnArgs and reads the value of property opts.env in line 11.
This optional parameter contains key-value pairs of the environment variables of a
new process. If a developer passes an object without property env, the JavaScript
runtime will look up the property in the prototype chain. Alternatively, attacker
can inject the environment variable directly using the for..in loop in line 13 to
subsequently read it either from the opts.env or process.env object in line 11.

The reader may at this point wonder about our second research question:
How to identify universal properties reads such as env? In fact, a prerequisite
for gadget detection is to identify property reads that delegate the lookup of the
property to the prototype chain, while filtering out cases where the property is
defined in the object itself. This is a complicated task for a static analysis, hence

B.4. METHODOLOGY 137

we use dynamic analysis instead. We discuss the details in Section B.4 and refer
the reader to Appendix B.9 for a, perhaps surprising, list of universal property
reads on the root prototype.

Further, the gadget contains intricate data flows from the property read in
line 11 to the attack sink in line 6 as denoted by the red arrows. Specifically, the
for..in loop enumerates the property names of the read object and passes them
to an array through the ArrayPrototypePush call. This is an internal function
that implements the semantics of Array.prototype.push and subsequently enu-
merates the envKeys array, storing key-value pairs by the template literal (line
18) and returning a new object with the property envPairs. Therefore, an
analysis should model the semantics of internal functions, template literals, the
for..in and for..of statements to propagate the attacked-controlled values
properly. Moreover, function spawn (line 3) passes the modified object opts to
method spawn of the internal wrapper Process (line 6) that is implemented in
the C++ component of Node.js. This method corresponds to the actual attack
sink. Specifically, if an attacker uses {GIT_SSH_COMMAND: ’calc&’} as payload
for function diffApply, they can simply wait for an invocation of the attack sink
spawn from the git command. The latter uses the specified command from the
environment variable GIT_SSH_COMMAND when connecting to a remote system.
This leads us to our third research question: How to identify the attack sinks
and data flows from universal property reads to these attack sinks in Node.js?
Gadget detection is a new challenge with no prior research, except for some evi-
dence provided by the practitioners’ community [7,15]. To address this question,
we develop a taint-based static analysis that tracks flows from property reads to
attack sinks, which we discuss in Section B.4 and evaluate in Section B.6.

Putting it all together The presence of prototype pollution and gadgets is not
sufficient to carry out an end-to-end RCE attack. The attacker needs to identify
application-specific untrusted entry points that enable the payload to reach the
injection sinks, and to subsequently propagate this payload to an attack sink via
the gadget. This step requires us to combine data flow analysis with the call flow
analysis, starting at untrusted entry points, while driving the payload to reach
an attack sink. This leads to our final research question: How to identify public
entry points and payloads to demonstrate the feasibility of RCE attacks? We use
a combination of manual and automated analysis to drive the exploit towards
success, as detailed in Section B.4 and evaluated in Section B.6.

B.4 Methodology

We present a semi-automated analysis framework for detecting and exploiting
prototype-based vulnerabilities. The framework is divided into three major steps:
(i) automated prototype pollution detection; (ii) automated gadget detection;
and (iii) manual exploit generation for end-to-end attacks. Figure B.3 illustrates
the sequence of steps and their dependencies.

138 PAPER B. SILENT SPRING

Pollution Detection

Injection Sink
Detection

Gadget Detection

Entry Point
Detection

Dynamic
Analysis

Gadget
Payload

Generation

Package Code
Patterns

Attack Sink
Detection

Property
Names

Exploit
Generation

Application Code

Node.js Instance

Node.js Code

Pollution
Payload

Generation

Figure B.3: High-level workflow: automated steps (green) and manual steps (blue).

The prototype pollution detection step takes as input the code of an appli-
cation or NPM package and performs a multi-label taint-based static analysis.
Subsequently, the analysis reconstructs the call graph of the application to find
entry points that reach the prototype pollution, thus facilitating the task of iden-
tifying attacked-controlled entry points. The gadget detection step implements a
hybrid solution. A dynamic analysis first detects which properties can be actually
polluted by executing Node.js APIs of interest in a testing environment that logs
property accesses, ultimately returning a list of accessed property names. These
property names, together with the source code of Node.js, are used as input to
our second static analysis to identify (universal) gadgets in Node.js. Each gadget
includes an entry point that reaches a targeted property read and an attack sink
that is called with values read from the target property. The last step of the ap-
proach is the end-to-end exploit generation. This is a manual step that requires
an investigation of the target application’s workflow to validate the exploitability
of the detected prototype pollution and gadget to achieve code execution on the
system.

Prototype Pollution Detection

Multi-label taint analysis The detection of prototype pollution requires spe-
cialized data flow analysis that identifies injection sinks boiling down to the pat-
tern obj[prototype][property] = value. We find these patterns by means
of a flow- and context-sensitive multi-label taint analysis. Specifically, we use two
labels input and proto to capture the temporal relationship between (attacker-
controlled) property accesses in an object. We use label input to mark parameters
that are directly controlled by the attacker and label proto to record that the at-
tacker already controls the prototype of the labeled object.

The analysis works as follows: initially, it marks the parameters of the ana-
lyzed function with the input label. Then, it performs (standard) taint analysis
propagating this label according to the JavaScript semantics until it reaches a
property read with a tainted value in the property name, e.g., obj[prototype]
with prototype having label input. This indicates that the attacker may con-

B.4. METHODOLOGY 139

trol the property name and get access to the root prototype. At this point, the
label of the resulting property read, e.g., obj[prototype], is changed to the
label proto to record that the attacker can now control the prototype. Subse-
quently, the analysis continues the taint propagation until it reaches a property
assignment, e.g., obj[prototype][property] = value, where the object of the
property assignment, i.e., obj[prototype], is marked with the proto label, thus
identifying the injection sink. We note that this a general characterization of
injection sinks, where the attacker does not necessarily control the accessed prop-
erty (property) and the assigned value (value), so long as they control the root
prototype (prototoype). Because this setting is more difficult to exploit, our
analysis supports a priority mode to identify attacker-controlled property names
and values in a property assignment. Specifically, it performs two additional op-
erations to check that the property read (property) and the value (value) are
marked with label input, indicating that they may be controlled by the attacker.
As expected, these priority injection sinks are an easier target for exploitation in
practice.

Figure B.1 illustrates the multi-label taint analysis for the prototype pollution
vulnerability in NPM CLI. We consider the function diffApply as target function
and mark the parameters with label input. The red arrows depict the propagation
of label input. The parameter diff is an object and the taint analysis passes the
tainted label to all its properties. The method shift is a built-in method that
returns the first element of the array. The static analysis models JavaScript
standard built-in objects, and thereby, propagates the input label to thisProp
in line 4. The next node of the data flow is the property read in line 8, hence the
analysis changes its label to proto. The blue dotted lines then visualize the proto
label propagation. The tainted value reaches the property assignment, and the
algorithm reports this expression as the injection sink. This is also a priority sink
because the parameters lastProp and diff.value in line 11 have label input.

Methodology We define the (attacker-controlled) target functions in two ways:
(i) a package’s exported functions (dubbed Exported Functions) or (ii) any func-
tion of the analyzed codebase (dubbed Any Functions). We use the first option
for the package analysis only, assuming that the attacker controls any exported
function and class of a package. The second option allows us to analyze real-world
applications with no knowledge of the application’s entry points, which usually
depend on the specific threat model. We find this option useful in practice to
overcome inherent limitations of static analysis for JavaScript, which does not al-
ways support the correct label propagation, e.g., due to callbacks or dynamically-
generated code. In this case, the analysis allows us to detect injection sinks by
propagating the input label from the nearest function on the call graph. Yet, the
semantic modeling of built-ins is key to increasing the true positive rate.

Ideally, a taint analysis should provide precise and complete models of
JavaScript constructs. CodeQL features many person-hour contributions into
the modeling of built-in functions. Nonetheless, we observe that in practice these
models are still insufficient. Our approach relies on the ground truth provided

140 PAPER B. SILENT SPRING

by known vulnerabilities to improve the tool in modeling features that pertain to
these vulnerabilities, thus reducing the number of false negatives. Concretely, we
review the CodeQL standard library to identify and fix language features, e.g.,
Arrays and reflection calls (see Section B.5) that affect the taint semantics for the
considered packages. We applied this process iteratively to achieve high recall.

Entry point detection We propose a lightweight analysis to detect application-
level entry points that may trigger the injection sinks. This helps with applica-
tions that receive tainted data from external storage to find the external action
that triggers the data acquisition from the storage. The static analysis first re-
constructs a call graph where the functions with no callers are represented by
nodes with outgoing edges only. The algorithm considers such nodes as potential
application entry points and reports the code paths to the injection sink.

Summary This step provides information about the pollution patterns and
application’s entry points for future manual validation and exploit generation.
We contribute five analysis variants: one analysis for entry point detection; two
priority analyses (for each type of target function) that report injection sinks
with all tainted ingredients; and two general analyses (for each type of target
function) that report injection sinks with a tainted receiver only.

Gadget Detection

Dynamic analysis We first parse the Node.js’ source code and syntactically
extract all directly-accessed properties. The dynamic analysis defines a custom
handler with a property getter in Object.prototype for each extracted prop-
erty name. We systematically analyze the Node.js API documentation to identify
functions that potentially run processes or evaluate arbitrary code in the run-
time. We then invoke these APIs to log their attempt of property reads from
Object.prototype, which result in reading uninitialized properties and getting
the value undefined. This means that the values of these properties can be
tampered via prototype pollution. The dynamic analysis passes the collected
property names to the next step.

Static analysis The analysis takes the Node.js’ source code and the property
names as input. The algorithm first performs the call flow analysis of Node.js
API functions, including information about aliases, ultimately allowing us to re-
construct a precise call graph of the analyzed functions. We then use the call flow
analysis to identify paths from any exported function to polluted property reads
(identified by the dynamic analysis) and subsequently combine it with context-
sensitive taint tracking to identify paths from these property reads to attack sinks,
represented as tainted arguments to internal function calls. Specifically, the anal-
ysis propagates the taints on return values only for functions that are reached by
the Node.js API on the analyzed call flow. Additionally, the analysis identifies
affected exported functions that were not analyzed dynamically. For instance,
the analysis of function spawn reports a possible pollution of property env. The

B.4. METHODOLOGY 141

static analysis shows the attack sinks that are affected by env include additional
Node.js API functions such as spawnSync, exec and fork.

The taint analysis considers internal functions, i.e., functions for which the
analyzer cannot resolve the function body, as candidate attack sinks. We con-
servatively cover all functions with no implementation in the codebase. The
taint analysis also uses multi-labels. For property assignments, the algorithm
propagates the taint label polluted of the property and applies the new label
receiver to the receiver recursively. For instance, if value in the assignment
obj.prop = value has label polluted, then the analysis applies the receiver la-
bel to obj and the polluted label to its property prop. This is needed because we
cannot enumerate all properties of an object when this object is used as param-
eter to an attack sink. Finally, the static analysis reports internal functions with
no arguments and either polluted or receiver labels as attack sinks.

Figure B.2 shows the analysis in action for property env. The blue dotted
arrows illustrate the call flow analysis from the exported function spawn to the
first function call. The normalizeSpawnArgs contains the property read env
which is the starting node of the taint analysis (red arrows). Initially, the taint
analysis propagates the label polluted through the data flows. When the tainted
value reaches the object creation statement in line 21, the analysis keeps the taint
label for the property envPairs and assigns the label receiver to the created
object. This object is further propagated to the caller function and passed to the
internal function _handler.spawn in line 6, thus reporting _handler.spawn as
a candidate sink.

Exploit Generation

Our approach relies on the human-in-the-loop model for exploit generation. For
gadget exploits, the information about attack sinks allows us to evaluate the
impact of a polluted property and filter out non-malicious sinks. The call flow
and taint analysis help to explore the code slice that reaches the attack sink. We
use this information to generate a payload and test it on the detected Node.js
APIs. We validate the detected sinks and report new gadgets for Node.js in
Section B.6.

A security analyst first analyzes the prototype pollution patterns to filter out
false positives and non-executable cases in the regular application workflow, e.g.,
patterns in testing code and development tools. For suspicious cases, the analyst
uses the automatically-detected entry points to generate the first version of a pay-
load and validates it on the application. If an exploit fails, the analyst investigates
the cause using other tools (e.g., a debugger) and modifies the payload.

If the validation of the prototype pollution succeeds, then the next step
is to search for gadget triggers. We extend the universal gadget entry points
(e.g., spawn) with functions that evaluate JavaScript code represented as strings
(eval(), new Function(), new vm.Script) and provide a call graph analysis

142 PAPER B. SILENT SPRING

for these calls. The analyst may use the call graph analysis to detect calls to
these functions as well as the application’s entry points that reach these calls.

If the analyst detects a gadget trigger, they need to validate that it is executed
after the injection sink and then generate a payload that pollutes the required
properties. If code evaluation function is detected, the analyst investigates the
preconditions for invoking it with attacker-controlled data. The input data can be
read from the polluted property, or the function’s execution may be dependent on
specific conditionals that use the polluted property. These steps lead to arbitrary
code execution inside the Node.js instance. We estimate the effort of using such
exploitation model in a study in Section B.6.

B.5 Implementation

CodeQL [84] is a production-scale analysis engine to perform semantics-based
search on a target codebase, essentially by treating code as data. The analysis first
extracts a full hierarchical representation of code (e.g., the AST) into a relational
database. It then runs analysis queries against the database to compute result
tuples, for instance, pairs of source locations and error messages for bug finding.
CodeQL queries are written in a declarative, object-oriented logic programming
language called QL, which uses Datalog as underlying semantic model [10]. It
also provides a standard library of queries that implement control-flow and data-
flow analyses, as well as support for mainstream languages including JavaScript.
The JavaScript model and the analyses are part of the open-source QL standard
library, making them amenable to extensions.

A key feature that we use in our analyses are path queries that describe the
data flow between a source and a sink in the codebase. They support expandable
taint tracking with the possibility of using multiple flow labels. This is essential
to implement our analysis algorithms described in Section B.4. Specifically, we
develop the custom path queries for pollution and gadget detection. We extend
the taint tracking configuration to combine the call-flow and data-flow analyses,
thus propagating tainted values through call flows in a context-sensitive way. This
feature is essential for some of our analyses, e.g., to analyze entry points that
receive tainted data from a database and not propagate the taint labels through
code that is reachable from other entry points. We also model the array built-in
functions reduce, filter and more, to correctly propagate tainted values via
callback functions passed as arguments. This allows us to detect vulnerabilities
that use reduce in the injection sink. We also resolve new functions created by
bind call to propagate taints from the provided values of the bind arguments
to the bound function parameters. Other changes include support for parameter
passing via apply() and call() function calls, as well as the rest parameter
syntax and the arguments object. We refer to Appendix B.9 for an example. We
also improve the detection of exported functions of Node.js packages. Our analysis
queries for pollution and gadget detection follow the methodology described in

B.6. EVALUATION 143

Section B.6 and are publicly available as complementary material [193].

B.6 Evaluation

This section presents our experiments to validate the usefulness of our approach
to detect and exploit POIVs. We perform the experiments on an Intel Core i7-
8850H CPU 2.60GHz, 16 GB of memory. The tool, the analysis results and data
are available in the GitHub repository [193].

Evaluation of Prototype Pollution

This section evaluates the effectiveness of our tool to detect injection sinks, re-
porting on precision and recall. While recent approaches already target this
problem [95,105,106] for Node.js libraries, our key contribution is scalability with
low-to-moderate precision loss, while achieving high recall. In contrast to prior
work on libraries, we find that injection sinks are rare in real-world applications,
motivating the need for high recall to identify exploitable vulnerabilities.

Benchmark We compile an open-source dataset of 100 vulnerable Node.js pack-
ages, collected from the Snyk database [107]. By studying the proof-of-concept
exploit provided in the vulnerability report, we manually identify code locations
(file name and line number) of injection sinks pertaining to the assignment of
an attacker-controlled value to the polluted property. We observe that some
packages contain multiple exploitable injection sinks, which we also add to our
benchmark. This new dataset serves as ground truth to evaluate the detection
capabilities of static analyses. For comparison, we also consider the dataset of 19
packages provided by the state-of-the-art work ODGen [106].

Setup We use our benchmark to calculate the rate of true positives (TP), false
positives (FP), and false negatives (FN) in an effort to identify the sweet spot
between the precision and recall of the analysis. The precision metric describes
how well the tool identifies exploitable injection sinks, while recall represents the
fraction of real vulnerabilities reported by a tool. Following the methodology in
Section B.4, we run our tool in four different modes with the goal of identifying
the most effective approach for detecting injection sinks in real-world applica-
tions. Our benchmark shows that attackers can have different levels of control
over the injection sinks. While in general it can be sufficient to control the in-
jection of the root prototype only, we notice that most exploits target injection
sinks with attackers controlling both the name and value of a polluted property.
Therefore, our tool distinguishes between the two cases, respectively, denoted
as General queries and Priority queries. Moreover, since our analysis considers
transitive dependencies, we distinguish between target functions considering Ex-
ported Functions and Any Functions, with the goal of identifying the best mode
to analyze applications.

144 PAPER B. SILENT SPRING

We also compare our results with three analysis queries which CodeQL re-
cently made available publicly. We consider these CodeQL queries as baseline
queries and run them on our benchmarks. Moreover, we conduct a direct com-
parison with ODGen [106] on the dataset of 119 libraries.

Results We report the evaluation results in Table B.3 in Appendix and here dis-
cuss only the precision and recall metrics in comparison with CodeQL’s baseline
queries and ODGen.

CodeQL provides three queries to detect prototype pollution, one of which
yields no results, hence we discard it. The remaining two queries detect vulner-
abilities in 57 packages, with 47% and 67% precision and 42% and 21% recall,
respectively. While our analysis queries have been developed independently, our
main goal is to achieve high recall with good precision. A fair comparison with the
CodeQL baseline corresponds to our General queries with Exported Functions,
which yields 35% precision and 88% recall. The improved recall is due to better
support for exported functions, array built-in functions, and complete semantic
modeling of reflective invocations through apply(), call() and build() func-
tions. These results confirm the challenge of statically analyzing data flows in
JavaScript without precise models of the language semantics and built-in func-
tions.

Our second experiment is an evaluation of General queries with Any Functions
as entry points. The analysis achieves 31% precision and 97% recall, producing 5
false negatives. This false negatives are in packages such as Templ8 and total_js
with injection sinks into code that is generated dynamically via new Function(),
which CodeQL does not support. The high recall shows that injection sinks
appear in a few adjacent functions, which reduces the risk of losing the taint marks
because of missing models of built-in functions. However, precision deteriorates
because some detected patterns are not actually reachable from the library API
with attacker-controlled arguments. We also notice the precision loss is much
less than one would expect from an analysis with the strong assumption that
any function’s arguments are attacker-controlled. We believe this is due to the
shape of injection sinks requiring patterns that are not very common in real-world
code (see Section B.4). While 31% precision in aggregate results is not ideal, our
analysis produces less than 10 false positives for 90% of the benchmarks.

Our third experiment is the evaluation of Priority queries with Any Functions
as entry points. In this setting, the attacker controls the name and value of the
polluted property, thus it can leverage any existing gadget. The analysis achieves
40% precision and 93% recall. The additional restrictions on arguments increase
the precision metric and keep high recall. Because the analysis starts from any
function and does not require specifying the entry points, we can easily apply it
to real-word application analysis. We identify this analysis query as the sweet
spot between precision and recall, and use it to detect vulnerabilities in real
applications (Section B.6).

Our final experiment is a direct comparison with ODGen [106]. ODGen’s

B.6. EVALUATION 145

analysis corresponds to our General queries with Exported Functions. ODGen
is tailored towards high precision, while the authors recognize the need for high
recall. In fact, our experiment shows that ODGen achieves 100% precision and
50% recall on the dataset of 19 libraries, while our analysis achieves 95% precision
and 95% recall (see Table B.4). Nonetheless, ODGen detects vulnerabilities in
17 out of the 19 libraries, but fails to detect some variants of these vulnerabilities.
We further evaluate ODGen on our dataset of 100 packages to find that it achieves
87% precision and 33% recall.

Gadget Detection

We evaluate the feasibility of our universal gadget detection analysis and discuss
the most important gadgets. We run our analysis on Node.js version 16.13.1 and
exploit each gadget both on Linux and on Windows operating systems.

Dynamic Analysis

We download the source code of Node.js and parse it to extract all directly-
accessed properties. We obtain a total of 18,741 property names for the analyzed
codebase [40]. For each name, we install a getter on Object.prototoype to
detect any potential access to that property by Node.js’ internals.

Subsequently, we exercise the APIs under test with typical inputs from the
Node.js documentation, e.g., execute the ls command with spawn [39], and log
any potential accesses observed by the getter. In total, we analyze three APIs, i.e.,
child_process.spawnSync, require, and vm.runInNewContext, and obtain
10, 11, and 16 candidate properties, respectively. The usage of these properties
is further analyzed in the Node.js’ codebase, using static analysis.

We note that the inputs used for driving the dynamic analysis are by no means
exhaustive. We probably cover only a small part of the target APIs in our tests,
potentially missing property accesses that only happen when the API is invoked
with certain arguments. Nonetheless, for such cases, the resulting gadgets would
be of limited use, as they would require the target application to pass those exact
arguments to trigger the gadget. Instead of being comprehensive in our test
case, we focus on the typical usages of the target APIs, which we believe yields
easy-to-trigger gadgets.

Given the low number of properties detected in this step, one could directly
fuzz these properties and build proof-of-concept exploits. However, we further
trace their usage inside the Node.js codebase to understand if they are exploitable.

Static Analysis

As discussed in Section B.4, our approach takes the JavaScript source code of
Node.js and the property names from the dynamic analysis phase as input, and
reports a call chain to reach a property read and a data flow from the property

146 PAPER B. SILENT SPRING

read to an internal function invocation. We only analyze the JavaScript code
from the folder lib of the repository [40]. The analyzed codebase contains 70,493
lines of code (LOC).

In total, we identify 778 exported functions that reach the property reads
(sources), and 342 in which values read from these properties flow into internal
functions (sinks). In Appendix B.5 we present the detailed results, consisting of
exact number of sources and sinks extracted for each universal property. We
note that while inspecting all these code locations rigorously requires a significant
amount of manual effort, we opt for pragmatic exploration: we first analyze the
sink and decide if the invoked API, usually a native binding to the C/C++ code,
is a relevant injection sink. If so, we continue with inspecting the sources to see
which JavaScript APIs we can use to reach a particular code location.

Let us consider the case of shell, a universal property identified by our
dynamic analysis. The static analysis identifies 8 sources, meaning that the reads
of shell are reached from eight Node.js exported functions, mostly from the file
lib/child_process.js. By propagating taints from all detected property reads, we
identify 11 function invocations in which the tainted value leaves the JavaScript
world. One of them is located in the file lib/internal/child_process.js and is a
call to the native spawnSync in the C++ bindings. By studying the bindings
and the way they are invoked, we conclude that the shell universal property is
a candidate for developing a gadget.

We thus proceed to further study the operations performed on the value stored
in the universal property inside the Node.js codebase. CodeQL provides great
support in this step, allowing us to jump at the relevant code locations where
this value is read and then manipulated. We already know from the dynamic
analysis step that the Node.js core performs a read from this universal property
when the function spawnSync is invoked, but by running a call graph reachability
analysis we identify four other APIs that reach one of the sources.

We build a simple test case to first pollute the shell property with the value
touch and then invoke one of the affected JavaScript API, i.e., spawnSync. By
observing the side-effect of this test case, i.e., the file creation in the current
directory, we conclude that if an attacker can pollute shell, the API under test
uses its value as command, instead of the argument passed by developers. We
next discuss this gadget and others.

Universal Gadgets

We open source all the detected gadgets for Node.js in a GitHub repository [101].
Table B.1 overviews the gadgets for the target Node.js version. Some of the
gadgets are OS-specific, while most of them run on both considered OSs. We em-
phasize the diverse set of universal properties involved, showing that gadgets are
not isolated buggy cases, but they are common place. These gadgets correspond
to a handful of target APIs inside the Node.js core, but that a motivated attacker
can probably find many more inside the codebase of a target application. Finally,

B.6. EVALUATION 147

ID Universal properties Trigger Impact OS
G1 shell, env Call command injection API Execute an arbitrary command L+W
G2 shell, env Call command injection API Execute an arbitrary command L
G3 shell, input Call command injection API Execute an arbitrary command W
G4 main Import a package without a declared "main" Import an arbitrary file from the disk∗ L+W
G5 main Require a package without a declared "main" Require an arbitrary file from the disk∗ L+W
G6 exports, 1 Require a file using a relative path Require an arbitrary file from the disk∗ L+W
G7 ’=C:’ Resolve a file path Resolve the path to a different file W
G8 contextExtensions Require a file using a relative path Overwrite global variables of the file L+W
G9 contextExtensions Compile function in a new context Overwrite function’s global variables L+W
G10 shell, env, main Require a package without a declared "main" Execute an arbitrary command L+W
G11 shell, env, exports, 1 Require a file using a relative path Execute an arbitrary command L+W

Table B.1: A summary of the identified Node.js universal gadgets. For each gadget,
we show the properties that the attacker must pollute beforehand, the action that
triggers the gadget, and the produced effect. The last column shows the operating
system on which the gadget works: Linux (L), Windows (W), or both (L+W).
∗ denotes gadgets for which we have a Windows variant that achieves arbitrary
command execution using the SMB protocol.

as we discuss below, some gadgets allow arbitrary code execution with a relatively
strong precondition, while others allow hijacking the control flow with a weaker
precondition. More importantly, an attacker can combine two such gadgets to
get the best of both worlds.

We now discuss some of our most important gadgets and their assumptions to
be fulfilled. Let us consider an application that invokes the execSync API with
a string literal:
const { execSync } = require(’child_process’);
console.log(execSync(’echo "hi"’).toString());

This benign looking code prints the string hi in the console. Staicu et al. [202]
report that such API calls are prevalent in the NPM ecosystem, but they con-
sider safe all call sites with constants as arguments, like the one above. That
is because they assume an attacker cannot manipulate the command’s value as
it is set to a fixed value by developers. We find that this assumption does not
hold in the presence of prototype pollutions. If attackers can pollute arbitrary
properties in the runtime, they can hijack both the command to be executed and
its environment variables. Consider the polluted properties:
Object.prototype.shell = "node";
Object.prototype.env = {};
Object.prototype.env.NODE_OPTIONS = "--inspect-brk=0.0.0.0:1337";

They trick the benign code above into spawning a new Node.js process with the
debug port open, acting as a reverse shell. This is because the polluted property
shell overwrites the command given by developers and env.NODE_OPTIONS is
set as environment variable of the current process and subsequently copied to all
children processes.

The presented gadget affects all the APIs for command execution in Node.js:
spawn, spawnSync, exec, execSync, execFileSync. A precondition for this
attack is that the target command execution call site should not explicitly set an

148 PAPER B. SILENT SPRING

options argument, e.g., for an execSync call, there should be no second argument
passed. The existence of this gadget implies that every Node.js application that
is vulnerable to prototype pollution and uses a command execution API after a
pollution is vulnerable to remote code execution.

Now consider an application that does not directly use such APIs in user-
facing code. An attacker can still leverage code that is present on the machine
to trigger a command execution API. We found three gadgets that exploit the
require and import methods. Consider the following example:
Object.prototype.main = "./../../pwned.js"
// trigger call
require(’my-package’)

A precondition for this gadget is that my-package does not have a main
property defined in its package.json. If the main property of the root prototype
is polluted, at require time, the value of this property is used for retrieving the
code to be executed, instead of the legitimate code of the module. The attacker
can thus indicate an arbitrary file on the disk to be loaded in the engine. In
particular, they can specify a file that contains calls to command execution APIs.
For example, the popular growl package [78] contains a file called test.js that
invokes the package with different test values. Considering that growl uses spawn
internally, the attacker can successfully trigger such APIs call by setting the main
property to point to the growl’s test file. Moreover, we identified a file shipped
with the NPM command line tool that can be used for the same nefarious purpose:
npm/scripts/changelog.js.

To the best of our knowledge, the gadget above is the first evidence ever
reported that shows that hijacking control flow through code reuse attacks is
possible in Node.js. This motivates the need for debloating techniques like Minin-
ode [97].

In addition to the already alarming findings, an attacker can combine the two
gadgets discussed above to obtain a powerful universal gadget:
// pollutions for the first gadget
Object.prototype.main = "/path/to/npm/scripts/changelog.js";
// pollutions for the second gadget
Object.prototype.shell = "node";
Object.prototype.env = {};
Object.prototype.env.NODE_OPTIONS = "--inspect-brk=0.0.0.0:1337";
// trigger call
require("bytes");

When the bytes package is loaded, the first gadget instructs the engine to
load the changelog.js file. This file in turn invokes execSync, which triggers
the second gadget, starting a Node.js process with a debugging session.

Finally, let us present another gadget that lets attackers load arbitrary files
into the engine. By polluting the root prototype’s properties 1 and exports, an
attacker can execute an arbitrary file from the disk when a relative path is loaded:

B.6. EVALUATION 149

let rootProto = Object.prototype;
rootProto["exports"] = {".":"./changelog.js"};
rootProto["1"] = "/path/to/npm/scripts/";
// trigger call
require("./target.js");

While performing relative path resolution, the require method checks if the
target path points to an ES6 module. During this process, the polluted prop-
erty 1 is inadvertently read when applying a destructuring operator (see Ap-
pendix B.9 for a discussion of complex pollution sources) in the file /internal/-
modules/cjs/loader.js:

const { 1: name, 2: expansion = "" } = StringPrototypeMatch(...) || [];

Thus, the attacker-controlled value is assigned as the target module’s name.
Thereafter, the require method wrongly concludes that the relative path ./tar-
get.js resolves to the attacker-controlled location /path/to/npm/scripts/ and that
the path corresponds to an ES6 module. The exports property is used to con-
fuse the require method further by providing the entry point for this non-
existing module. Although at the attacker-controlled target location, there is
no package.json file present, the require method still concludes that this is a
valid module path. We note that this gadget is not portable to legacy Node.js
versions, e.g., version 14.15.0. Thus, an important precondition for exploitation
is that the target system must use a recent Node.js version.

We emphasize once again how dangerous the identified gadgets are. Many
fairly-large applications would probably meet the preconditions for an RCE, once
a prototype pollution is in place: (i) require a file using a relative path or a
package with no main entry, and/or (ii) have a dependency that uses a command
execution API when loaded.

To further study the impact of our gadgets, we estimate the prevalence of their
triggers in an experiment with the 10,000 most dependent-upon NPM packages.
We measure that 1,958 have no main entry in their package.json (G4, G5, G10),
4,420 use relatives paths inside require statements (G6, G8, G11), and 355 directly
use the command injection API (G1, G2, G3). This indicates that many of our
gadgets could be deployed against clients of these packages, once a pollution is in
place. However, this is an upper bound on the actual prevalence of the gadgets
because: (i) the attacker may have a hard time invoking the trigger’s code through
the public interface of the package, e.g., the code using the command injection
API, (ii) some gadgets may not work out of the box because of side-effects in
the target package, i.e., polluting the property 1 may have many unintended
side-effects that can prevent the gadget from working, (iii) an attacker may find
it difficult to deploy a pollution before the gadget, e.g., for the require gadgets,
very often, the pollution needs to happen in the application’s initialization phase.
Nonetheless, considering the power of these gadgets and their widely-available
triggers, prototype pollution should be considered a critical security vulnerability
in the current Node.js landscape.

150 PAPER B. SILENT SPRING

Application’s Repository Stars Lines of code Total Exploitable Suspicious Testing Code Client-Side Code False Positives
Cases Time Cases Time Cases Time Cases Time Cases Time Cases Time

typicode/json-server 57,257 2,374 0 - - - - -
expressjs/express 54,883 14,450 0 - - - - -

meteor/meteor 42,673 202,213 26 255 0 5 210 4 10 8 5 9 30
strapi/strapi 40,724 168,998 3 5 0 0 0 0 3 5

TryGhost/Ghost 38,944 125,696 4 55 0 1 50 0 2 3 1 2
hexojs/hexo 33,666 21,073 1 40 0 1 40 0 0 0

sahat/hackathon-starter 32,431 2,326 0 - - - - -
koajs/koa 31,910 4,596 0 - - - - -

RocketChat/Rocket.Chat 31,059 242,949 5 1555 1 1500 3 50 0 1 5 0
balderdashy/sails 22,085 24,445 0 - - - - -
emberjs/ember.js 22,034 113,749 6 60 0 2 40 1 10 0 3 10

fastify/fastify 21,043 37,049 0 - - - - -
parse-community/parse-server 19,045 107,909 7 3225 5 3220 0 0 0 2 5

docsifyjs/docsify 18,946 7,603 0 - - - - -
npm/cli 5,371 713,648 15 603 2 360 6 230 1 3 0 6 10

Table B.2: Evaluation results for the applications’ analysis. Cases shows the num-
ber of detected cases of a certain category; Time shows the time in minutes to
manually classify and validate these cases.

End-to-End Exploitation

We evaluate our approach on popular Node.js applications from GitHub to vali-
date its usefulness in a practical setting.
Setup We use the GitHub API to search for JavaScript repositories and order
them by the number of stars. We then select for further analysis the top 14 web
applications running on Node.js, as well as NPM CLI, the JavaScript package
manager, because it is installed on every machine with Node.js as default. NPM
CLI is also the largest analyzed application in our dataset. We clone the GitHub
repository of each application locally and perform the analysis against it.
Methodology Following the workflow described in Section B.4, we first run our
Priority query with Any Functions as entry points against a target application.
The query reports the potential injection sinks and a list of the functions that
pass tainted data to these sinks. The list contains functions that are actual en-
try points of the application and functions that take data from the environment
(e.g., a database) and pass it to the injection sink. For the latter, we perform
a call flow analysis to detect the application entry points. Second, we manually
classify all reported cases as either false positives or locally exploitable. Based on
the project structure, we also filter out cases in testing and client-side code. We
discard these cases because the code does not execute on the server and cannot
lead to RCE. Third, we study the application’s threat model to detect conditions
for exploiting the remaining (locally exploitable) cases. This is a manual process
that requires studying the documentation and code of the application. We match
the entry points pertaining to the threat model with the detected entry points
leading to the injection sinks. Fourth, we verify the matched entry points dynam-
ically by deploying the application locally and generating a payload to pollute the
toString property. Whenever the payload fails, we rely on the debugger by ex-
amining code transformations and validations along the path, and modifying the
payload accordingly. Finally, once the pollution is confirmed, we search for the
gadgets that may lead to RCE, as described in Section B.6. If the gadget can
be triggered after the execution of the injection sink, we change the payload to

B.6. EVALUATION 151

pollute gadget-specific properties.

Results Table B.2 presents the analysis results for 15 widely-used Node.js appli-
cations. Total provides the number of detected prototype pollutions in the appli-
cation’s codebase and the total time for their manual analysis. The analysis finds
cases in 8 applications, which we investigate and classify manually. False Pos-
itives contains the false positives due to over-approximate analysis; Client-Side
and Testing Code show the cases that do not execute on a server-side directly.

We mark the remaining cases (column Suspicious) for further investigation.
Suspicious cases are locally exploitable patterns, i.e., they can be exploited if an
attacker controls all function parameters. We verified the suspicious cases to find
eight prototype pollutions (in NPM CLI, Parse Server and Rocket.Chat) that are
exploitable according to the threat model of these applications. We also found
the gadgets that lead to RCE as explained below. As a sanity check, we run the
original CodeQL baseline queries for NPM CLI and Parse Server applications,
however, they do not detect exploitable prototype pollutions.

To estimate the manual effort, we track the time to verify the reported cases
by one of the authors. A false positive takes an average of 2.6 minutes because
the analysis affects a small code fragment. Similarly, non server-side code and
testing code take on average 3.8 minutes and 1.2 minutes, respectively. The
analysis of suspicious cases takes more time and depends on the quality of the
documentation and application’s code. The time in Suspicious column includes
the study of the threat model and the matching of detected entry points. The
Exploitable column includes the time to set up an application, debugging and
verification of prototype pollution, search for gadgets, and combination of all
attack ingredients. For example, most time for the Parse Server exploit was
spend to find a race condition that triggers the injection and attack sinks in the
correct order. For NPM CLI, a time-consuming task was to find a way to store
the payload to NPM Registry via a malicious package and subsequently parse it
during the package installation. The analysis and exploitation of Rocket.Chat
required an LDAP server setup that provides a payload to the injection sink,
and the configuration of a custom synchronization with the LDAP server. This
process is not fully described in the official documentation and required a lot of
manual testing of various options.

We now describe the RCE exploits for two applications and refer to the ex-
tended material for full details [193].

Parse Server RCEs

Parse Server is an open source Backend-as-a-Service (BaaS) framework that pro-
vides REST APIs to object and file storage, user authentication, push notifica-
tions, dashboard, and uses MongoDB or PostgreSQL as database. The Parse
Server has pioneered BaaS systems in 2011 and has brought the serverless, low-
touch deployment model to web and mobile backends.

152 PAPER B. SILENT SPRING

Threat model The Parse Server can be deployed as a self-hosted solution. In
this scenario, an attacker can send any requests to the server, but cannot modify
any settings on the server. Therefore, we expect that an application must be
secure in the default configuration. In the second scenario, we consider the Parse
Server as a part of cloud infrastructure, e.g., Back4App [82]. The attacker can
create their own account and become the administrator of that account. This
allows the attacker to change some settings, for example, the webhook triggers.
This scenario puts any available configuration at risk for attacks including the
default configuration.

Detecting sinks Our static analysis framework detects 7 unique injection sinks.
We marked 5 cases as suspicious by manual validation. One of the suspicious
cases is located in the sanitizer of database records as shown in Listing B.3.

1 function expandResultOnKeyPath(obj, key, res) {
2 if (key.indexOf(’.’) < 0) {
3 obj[key] = res[key];
4 return obj;
5 }
6 const path = key.split(’.’);
7 const firstKey = path[0];
8 const nextPath = path.slice(1).join(’.’);
9 obj[firstKey] = expandResultOnKeyPath(

10 obj[firstKey] || {},
11 nextPath, res[firstKey]);
12 return obj;
13 }

Listing B.3: Injection sink in Parse Server.

This function can be abused to pollute Object.prototype. If the attacker
controls the input data and passes the value "obj.__proto__.evalFunctions"
to the parameter key and the object {obj:{__proto__:{evalFunctions: 1}}}
to result, then sanitization sets the new property evalFunctions to Object’s
prototype.

Following our methodology, we perform a call flow analysis to detect entry
points for the injection sink. A handler of the GET request triggers data reading
from the database and then executes the vulnerable sanitizing code. Other de-
tected injection sinks may be triggered via a PUT request by a payload delivered
from a third-party webhook application.

In order to detect potential RCE gadgets, we search in Parse Server codebase
for universal gadgets and functions that evaluate the code at runtime, e.g., eval.
The analysis reports a gadget using the require function, where an attacker
can directly control its argument through a polluted property. The analysis also
reports an attack sink in the official MongoDB BSON parser [36] that deserializes
objects from a database, and can evaluate JavaScript code stored in this object.
However, the code evaluation is possible only if we set the configuration parameter
evalFunctions, see Listing B.4. This option is not defined by default, but the

B.6. EVALUATION 153

attacker can pollute the prototype and bypass the if-statement condition in line
5.

1 const evalFunctions =
2 options[’evalFunctions’] == null
3 ? false
4 : options[’evalFunctions’];
5 if (evalFunctions)
6 eval(functionString);

Listing B.4: Attack sink in Parse Server.

Exploitation The attacker should first pollute the prototype via the injection
sink and then trigger the attack sink in a second request. A challenge to ex-
ploit prototype pollution is that the polluted property may break the application
workflow. In this setting, the web request handler throws an exception whenever
Object.prototype is polluted. Thereby, the attacker cannot successfully han-
dle the requests in the required order. However, we could bypass it using a race
condition in the application workflow.

Four of the RCE exploits for Parse Server use the same gadget and attack
sink in Listing B.4 as follows: First, the attacker sends requests to store payloads
in the database. Second, it sends the GET request to trigger the attack sink but
delays its execution in the database until the next request. Third, the exploit
sends the PUT request to trigger the injection sinks. Because the first request
takes longer, a payload triggers the injection sink while another payload reaches
the attack sink and executes arbitrary code. The fifth exploit adapts the require
gadget discussed in Section B.6.

NPM CLI RCEs

NPM CLI [156] is the command line client that allows developers to install and
publish packages to NPM registries. During a package installation, NPM CLI puts
modules in place so that Node.js can load them, manages dependency conflicts,
and may run the pre- and post-install scripts from the package.
Threat model The public NPM registry can be untrusted, e.g., by storing ma-
licious packages. Since it is a shell tool that is run on a developer’s machine,
RCE attacks have the highest impact. NPM CLI has the option --ignore-scripts
to disable running scripts specified in package.json files. Therefore, the threat
model considers the arbitrary script execution that breaks out of the --ignore-
scripts flag as unintended RCEs. We have the following constraint: the injection
and attack sinks should be available during the execution of the command that
installs a malicious package.
Detecting sinks The static analysis reports 15 unique injection sinks. We
marked 8 cases as suspicious. Due to the restricted threat model, we then focus
on matching the detected cases to the threat model. When NPM CLI installs the
package, it parses the configuration file npm-shrinkwrap.json from the package

154 PAPER B. SILENT SPRING

regardless of the option --ignore-scripts. NPM CLI then invokes diff-apply
and copyPath functions from the parse-conflict-json package to parse the
configuration file. Two of the suspicious cases are located in these functions. Sec-
tion B.3 describes the injection sink in diff-apply and the attack sink for the
RCE exploitation. Appendix B.9 shows the injection sink and the payload for
the function copyPath. We verified manually that the exploitation in both cases
leads to RCE.
Exploitation The NPM CLI invokes the spawn function to run the git com-
mands for git-located package dependencies. This happens after parsing the con-
figuration files, and therefore, after the injection sink execution. The git supports
the command execution via the environment variable GIT_SSH_COMMAND. If this
environment variable is set, git uses the specified command, instead of ssh, to con-
nect to a remote system. Thereby, the attacker can craft the package configuration
file to initiate the call diffApply({}, {path:[’__proto__’,’env’], value:
{GIT_SSH_COMMAND: ’calc &’}, op: ADD}) and wait for the spawn invoca-
tion of the git command. This payload triggers arbitrary code execution, here
launching a calculator.

B.7 Related Work

This section discusses closely related work targeting object injection vulnerabil-
ities in general and prototype pollution in particular. We also discuss related
security analyses for the Node.js ecosystem and client-side JavaScript security.
Prototype pollution vulnerabilities The security community became aware
of prototype pollution vulnerabilities in 2018 in a white paper of Arteau [7]
which uses dynamic analysis to showcase feasibility in a number of Node.js li-
braries as well as an end-to-end exploit in the Ghost CMS platform. The risks
and the impact of prototype pollutions has been mainly discussed in security
practitioner forums [19], with the exception of a handful of recent research pa-
pers [87, 95, 105, 106, 220]. Notably, the work of Li et al. [105, 106] proposes
object dependence graphs to statically find injection vulnerabilities in Node.js li-
braries, including prototype pollution. Object dependent graphs allow identifying
prototype injection sinks similar to our multi-taint analysis, though with higher
precision due to the analysis of branch conditions. By contrast, our approach
trades precision for scalability to analyze fully-fledged applications and libraries.
In addition, our key focus is on universal gadget identification and end-to-end
exploitation which no prior work has addressed systematically so far. Kim et
al. [95] develop DAPP, a static analysis tool to detect prototype injection sinks
in Node.js libraries by means of pattern analysis. DAPP’s lightweight analysis
results in low precision and recall, while focusing only on libraries. The recent
work by Kang et al. [87] explores prototype pollution on the client-side to exploit
a range of vulnerabilities (XSS, cookie and URL manipulation) by using dynamic
taint tracking. Compared with static analysis, dynamic analysis may miss some

B.7. RELATED WORK 155

gadgets because of code coverage limitations, yet it can be helpful to validate the
reachability of our injection and attack sinks, which we currently do manually.
Xiao et al. [220] study hidden property attacks in Node.js applications, a type of
vulnerability which is related to prototype pollution.
Object injection vulnerabilities We classify POIVs in the general context of
object injection vulnerabilities (OIVs). Prior work studies OIVs targeting inse-
cure deserialization by mean of static analysis in a variety of languages including
Java [79, 148], PHP [51, 52, 64], .NET [147,191], and Android [166]. The work of
Dahse et al. [50,52] develops static analysis to systematically detect OIV gadgets
in PHP applications. Shcherbakov and Balliu [191] propose a static analysis for
detecting object injection patterns for .NET application, including the framework
and libraries, and implement a tool called SerialDetector. Arguably, our work
faces similar challenges with scaling the static analysis to real-world languages,
though in the more intricate context of JavaScript.
Node.js ecosystem security There is an increasing interest in studying the
security of Node.js, both in academia and in industry. Most prior work has
concentrated on so-called software supply chain security, i.e., studying security
problems that are prevalent in libraries: injections [70,106,202], hidden property
abuse [220], prototype pollution [105, 106], malicious packages [60, 226], running
untrusted code [2, 216, 217], ReDoS [54, 55, 108, 201], code debloating [97]. There
is also initial evidence that these problems in libraries affect websites in produc-
tion [105, 201]. We are the first to show the existence of universal gadgets in
Node.js and to study the impact of prototype pollution, beyond denial-of-service
attacks.
Static analysis for Node.js Madsen et al. [110] propose augmenting call graphs
with information about event propagation to find bugs in Node.js programs.
Staicu et al. [202] advocate using intra-procedural data flow analysis to infer run-
time policies for injection sinks. Nielsen et al. [150] introduce feedback-driven ab-
stract interpretation for detecting injection vulnerabilities in Node.js code. More
recently, Nielsen et al. [151] show how modular call graphs can be used to reduce
false positives alerts in software composition analysis. Li et al. [105, 106] pro-
pose using object dependency graphs for finding prototype pollution, injection,
and path traversal vulnerabilities. We are the first to propose using static taint
analysis for detecting universal gadgets.
Client-side JavaScript security Lekies et al. [104] study XSS vulnerabilities
on the web using fine-grained dynamic taint analysis. Hedin et al. [76] present
JSFlow, a more sophisticated information flow analysis for detecting integrity and
confidentiality problems in web applications. Recently, Lekies et al. [103] discuss
how script gadgets can be used to bypass existing cross-site scripting mitigation.
Roth et al. [174] further study the effect of script gadgets on content security
policies. Steffens and Stock [207] present PMForce, a lightweight dynamic analysis
augmented with forced execution for studying post message handlers. Khodayari
and Pellegrino [93] propose JAW, a hybrid analysis tool based on code property

156 PAPER B. SILENT SPRING

graph, showing its usefulness by studying client-side CSRF vulnerabilities. None
of the work above studies the relation between prototype pollution and injection
vulnerabilities.

B.8 Conclusion

We presented the first principled study on the impact of prototype pollution
vulnerabilities in Node.js. We propose a semi-automated approach for detecting
end-to-end exploits, consisting of three phases: (i) static analysis for detecting
pollutions, (ii) hybrid analysis for detecting gadgets, and (iii) static analysis with
human-in-the-loop for developing end-to-end exploits. We apply our approach to
large codebases to find eight exploitable RCE vulnerabilities directly enabled by
prototype pollution, and eleven universal gadgets [101] that are shipped with the
Node.js runtime. Finally, we show that universal gadgets introduce a new threat
in the Node.js ecosystem: hijacking the control flow of a program to (ab)use
unused code available in the application’s dependencies.

Acknowledgments Thanks are due to anonymous reviewers for the helpful
feedback on this work. This work was partially supported by the Swedish Foun-
dation for Strategic Research (SSF) under projects CHAINS and Trustfull, Digital
Futures, Google, and Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

B.9 Appendix

Object Injection Vulnerabilities

Object Injection Vulnerabilities (OIVs) are an increasingly popular type of code-
reuse vulnerability in the context of web applications. They occur when an at-
tacker can modify the properties of an object to abuse the data and control flow
of the application. OIVs enable attacker-controlled data to trigger the execution
of legitimate code fragments (called gadgets) to perform malicious computations
on the attacker’s behalf. For example, OIVs may arise during the deserialization
of untrusted data from the client side, e.g., via HTTP requests, when reconstruct-
ing the object graph that is subsequently processed by the backend applications
on the server side. The following ingredients are needed to exploit an OIV: (i)
the attacker controls properties of an object to be instantiated, e.g., upon dese-
rialization; (ii) the instantiated property affects execution of code gadgets in the
application’s scope; (iii) there exists a big enough gadget space to find danger-
ous code fragments that the attacker can chain to carry out, e.g., remote code
execution. The attack works in two stages: (1) there is an untrusted flow from
an application’s untrusted entry points to an injection sink, e.g., the property of
an object; (2) there is a gadget that further propagates the attacker-controlled

B.9. APPENDIX 157

data from the injection sink to a security-relevant attack sink. In analogy, the
attacker loads the gun in stage one (by placing the payload into the injection
sink), while letting someone else (a gadget) to pull the trigger in stage two and
carry out the attack (through an attack sink). More generally, OIVs resemble
second-order vulnerabilities, where an attacker first injects a value through an in-
jection sink and subsequently leverages a read of that value to execute otherwise
benign code paths (gadgets) that lead to the execution of an attack sink, possi-
bly with attacker-controlled data from the injection sink. Existing work shows
that OIVs are present in mainstream programming languages like Java [79, 148],
JavaScript [103], PHP [51,52,64], .NET [65,147,191], and Android [166].

Non-trivial Gadget Sources

In this section, we compile a list of code patterns that imply a surprising read on
the root prototype. Some of these patterns pose a great challenge for automatic
static analysis of pollution gadgets. This list is not meant-to-be exhaustive, but
instead to illustrate how difficult it is to write a comprehensive static analysis
policy that can detect all property reads that lead to the root prototype.

We assume the attacker pollutes a property x of the root prototype and each
of the pattern below reads this property. We remind the reader that after a
successful pollution of the root prototype, every attempt to access a non-existent
property x on every object (including arrays) will lead to accessing the polluted
property. Moreover, x is also available as a global variable to all programs, unless
it is shadowed by other variables with the same name. Below, we discuss more
subtle cases in which the property access is performed intrinsically by the language
runtime.

To our surprise, important sources of user input, such as command line argu-
ments and environmental variables can be influenced through a prototype pollu-
tion. If developers try to access a non-existent environmental variable x:

process.env.x

they would in fact read the attacker-controlled value x. Similarly, a direct read
of a command line argument may lead to accessing attacker-controlled values:

process.argv[x]

Similarly, the module system in Node.js contains such careless property ac-
cesses. For example, every read on the built-in exports object can lead to reading
polluted properties:

module.exports.x

Maybe more surprising, accessing property names on imported modules may
also lead to polluted values:

const mod = require("fs");
mod.x;

158 PAPER B. SILENT SPRING

This is especially problematic in the context of fast-evolving code, e.g., on
NPM, where developers often check that a given method or property is available
on an imported module.

Destructuring operators exhibit a surprising behavior, as well. Even when the
operator is presented with a default value:

let {x = 12} = {};

the polluted value is assigned to x, instead of the default one.
For-in loops provide a convenient way o iterate through the keys of an ob-

ject. Perhaps surprisingly for many readers, this code constructs considers all the
inherited properties, hence, all the polluted property names as well:

for (a in arr) {
// a will contain "x" in one iteration

}

Finally, with statements have the potential to introduce additional confusion:

let x = 12;
with({}) {

// shadow the x above
console.log(x);

}

Here, the polluted property is hiding a legitimate local variable, giving at-
tackers enormous capabilities. For a long time now, this code construct was
discouraged due to its complex semantics, thus, we believe such patterns are
rather rare.

While we do not think that the above examples are bugs in Node.js, V8, or
the ECMAScript standard, they are the enablers for powerful gadgets, like the
universal ones described in this work. Thus, we advise language creators to avoid
whenever possible such unprotected property reads, to reduce the prevalence of
universal gadgets.

NPM RCE II

Injection sink NPM CLI executes copyPath functions from the parse-conflict-
json package to parse the configuration file. We demonstrate the source code of
copyPath to present the second vulnerability in NPM CLI:

1 const isObj = obj => obj && typeof obj === ’object’
2
3 const copyPath = (to, from, path, i) => {
4 const p = path[i]
5 if (isObj(to[p]) && isObj(from[p]) &&
6 Array.isArray(to[p]) === Array.isArray(from[p]))
7 return copyPath(to[p], from[p], path, i + 1)
8 to[p] = from[p]
9 }

B.9. APPENDIX 159

Exploitation The NPM CLI invokes the spawn function to run the git com-
mands for git-located package dependencies. This happens after parsing the con-
figuration files, and therefore, after the injection sink execution. The git supports
the command execution via the environment variable GIT_SSH_COMMAND. If this
environment variable is set, git uses the specified command to connect to a remote
system. Thereby, the attacker can craft the configuration file as in the following
example to trigger the injection sink and pollute the prototype. This payload
triggers arbitrary code execution, here launching a calculator.

1 { "obj": {
2 <<<<<<<
3 "__proto__": {"env": {"GIT_SSH_COMMAND": "calc &"} }
4 |||||||
5 "__proto__": {"env": {"GIT_SSH_COMMAND": ""} }
6 =======
7 >>>>>>>
8 }}

Advanced Prototype Pollution Pattern

In this section, we present an example of prototype pollution in the 101 package
from our benchmark to showcase the need for supporting JavaScript built-in
functions and semantic models. The baseline CodeQL queries do not detect any
vulnerability in this package, but our queries do because of extended support
for JavaScript semantics in CodeQL standard library. Specifically, the support
for built-in functions Array.prototype.reduce() and Object.keys() allows
to detect such cases by the static analysis.

1 function reduceObject (target, source) {
2 return Object.keys(source).reduce(function (obj, key) {
3 if (isObject(obj[key]) && isObject(source[key])) {
4 reduceObject(obj[key], source[key]);
5 return obj;
6 }
7 obj[key] = obj[key] !== undefined ? obj[key] : source[key];
8 return obj;
9 }, target);

10 }

For a successful exploit, the parameter target should refer to an object
with Object.prototype and the value of source should be controlled by an at-
tacker. An example of successful exploit is the function call reduceObject({},
JSON.parse(’{"__proto__":{"polluted":"yes"}}’)).

To handle this code fragment properly, the static analysis should first prop-
agate the tainted value from source to the call Object.keys(). The analy-
sis should keep the taint mark for returned value of this function call following
the modeled semantics. Moreover, the static analysis then reflect the seman-
tics of Array.prototype.reduce() with good precision. The function takes the
tainted array as a receiver and passes an element of the array to the parameter

160 PAPER B. SILENT SPRING

key of the callback. The if-statement checks that both parameters have an object
in the property key and it recursively calls the function reduceObject.

In the next function call, source still should be tainted because the parameter
now refers to the property of the tainted object. In our example, the parameter
target refers to Object.prototype where the first key has the value __proto__
and should be marked by the corresponding label. The static analysis propagates
the tainted value of source to the if-statement again in the same way. It also
propagates the tainted label from target to obj according to the semantics of
Array.prototype.reduce() (now from the second argument to the first param-
eter of the callback).

Let us now consider another branch of the if-statement. The assignment
expression in line 7 stores a value to a property of obj where the name of the
property and possible value source[key] are tainted and therefore controlled by
the attacker. Thus, the analyzer should report the assignment expression as an
injection sink of the prototype pollution pattern.

Evaluation Results

In Table B.3, we present the results of the evaluation of ODGen, the original
CodeQL queries (Baseline queries) and our custom queries (Priority queries and
General queries) against our benchmark of 100 vulnerable NPM packages.

Package@Version LoC
Baseline queries Priority queries General queries ODGenPrototype

Polluting
Assignment

Prototype
Polluting
Function

Exported
Functions

Any
Functions

Exported
Functions

Any
Functions

TP FP TP FP TP FP TP FP TP FP TP FP TP FP
101@1.6.3 2,366 0/2 0 0/2 0 2/2 0 2/2 0 2/2 2 2/2 2 0/2 0

arr-flatten-unflatten@1.1.4 104 0/2 0 0/2 0 1/1 0 1/1 0 2/2 0 2/2 0 0/2 0
asciitable.js@1.0.2 173 0/1 0 1/1 1 1/1 0 1/1 1 1/1 0 1/1 1 1/1 0
assign-deep@1.0.0 56 0/1 0 1/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0

bmoor@0.8.11 3,718 4/6 2 1/6 0 4/4 0 4/4 0 6/6 0 6/6 0 3/6 0
bodymen@1.0.0 17,993 1/1 3 0/1 0 1/1 2 1/1 6 1/1 8 1/1 10 0/1 0
changeset@0.1.0 1,427 3/3 1 0/3 0 1/1 0 1/1 0 3/3 0 3/3 0 0/3 0

class-transformer@0.1.1 735 0/2 0 0/2 0 2/2 0 2/2 0 2/2 0 2/2 0 0/2 0
confucious@0.0.12 7,046 7/7 1 0/7 0 4/4 3 4/4 5 7/7 4 7/7 4 1/7 1

connie@0.1.0 13,433 0/3 0 1/3 1 1/1 0 1/1 1 3/3 0 3/3 4 0/3 0
controlled-merge@1.0.0 171 0/3 0 2/3 0 2/2 1 2/2 1 3/3 1 3/3 1 3/3 0

copy-props@2.0.4 348 1/1 1 0/1 0 0/1 0 0/1 0 0/1 0 1/1 1 0/1 0
deap@1.0.0 698 0/2 0 2/2 0 0/2 0 2/2 1 0/2 0 2/2 1 1/2 2

deep-defaults@1.0.5 17,475 0/1 3 1/1 0 1/1 2 1/1 4 1/1 8 1/1 8 0/1 1
deep-override@1.0.0 73 0/1 0 0/1 0 1/1 2 1/1 5 1/1 9 1/1 9 0/1 0

deep-set@1.0.0 41 0/1 0 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0
deephas@1.0.5 351 0/1 0 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0
deeply@3.0.0 238 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0

deepref@1.1.1 136 0/1 0 0/1 0 0/1 0 1/1 0 0/1 0 1/1 0 0/1 0
deeps@1.4.5 231 1/1 1 1/1 0 1/1 0 1/1 0 1/1 2 1/1 2 1/1 0

defaults-deep@0.2.4 89 0/1 0 0/1 0 0/1 0 1/1 0 1/1 0 1/1 0 0/1 0
dot-object@2.1.2 5,500 2/4 5 0/4 0 4/4 2 4/4 6 4/4 10 4/4 20 0/4 0

dot-prop@2.0.0 34 1/1 1 1/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0
dot-notes@3.2.0 223 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0

dotty@0.0.1 475 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0
dset@1.0.0 18 1/1 1 1/1 1 1/1 1 1/1 1 1/1 1 1/1 1 1/1 0

expand-hash@1.0.1 36 0/1 0 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0
extend@3.0.1 63 0/1 0 1/1 0 1/1 1 1/1 1 1/1 1 1/1 1 1/1 0

field@1.0.1 76 4/4 0 0/4 0 2/2 0 2/2 0 4/4 0 4/4 0 1/4 0
@firebase/util@0.3.2 4,725 0/4 0 4/4 0 4/4 0 4/4 0 4/4 0 4/4 0 0/4 0

flattenizer@0.0.5 436 0/1 0 0/1 0 1/1 0 1/1 1 1/1 1 1/1 3 0/1 0
gammautils@0.0.81 6,919 1/1 3 0/1 1 1/1 1 1/1 1 1/1 4 1/1 4 1/1 0

B.9. APPENDIX 161

gedi@1.6.3 7,160 1/1 6 0/1 2 1/1 2 1/1 3 1/1 7 1/1 8 0/1 0
getobject@0.1.0 126 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0

hoek@5.0.0 764 0/1 0 0/1 2 1/1 3 1/1 4 1/1 5 1/1 5 0/1 0
immer@8.0.0 5,136 0/5 0 0/5 0 0/5 1 5/5 2 0/5 1 5/5 2 0/5 0

ini-parser@0.0.2 32 1/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0
js-data@3.0.8 14,056 0/1 3 1/1 5 1/1 11 1/1 14 1/1 17 1/1 38 0/1 0

js-extend@0.0.1 53 0/1 0 1/1 0 0/1 0 1/1 0 0/1 0 1/1 0 1/1 0
js_ini@1.2.0 537 0/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0

json-ptr@1.1.0 1,630 1/1 3 0/1 0 1/1 5 1/1 5 1/1 5 1/1 5 0/1 0
json8-merge-patch@1.0.1 635 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0

just-extend@3.0.0 36 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0 1/1 0
keyd@1.3.4 265 0/1 0 0/1 0 0/1 0 1/1 1 0/1 0 1/1 1 1/1 0

keyget@2.2.0 389 1/4 0 0/4 0 2/2 2 2/2 2 4/4 1 4/4 1 2/4 0
libnested@1.5.0 210 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0

linux-cmdline@1.0.0 42 0/1 0 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0
locutus@2.0.11 14,994 1/1 1 0/1 0 1/1 2 1/1 2 1/1 3 1/1 4 0/1 0
lodash@4.17.11 17,302 1/1 3 0/1 0 1/1 1 1/1 3 1/1 7 1/1 7 1/1 0

madlib-object-utils@0.1.6 81 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0
merge@2.1.0 103 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0

merge-deep@3.0.0 483 0/3 0 0/3 0 0/2 0 0/2 1 3/3 0 3/3 0 2/3 0
merge-recursive@0.0.3 58 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0

mixin-deep@2.0.0 29 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0
mout@2.0.0-alpha.1 9,337 0/2 2 0/2 0 2/2 0 2/2 0 2/2 1 2/2 1 0/2 0

mpath@0.4.1 1,839 1/1 2 0/1 0 1/1 2 1/1 2 1/1 2 1/1 2 1/1 2
nconf_toml@0.0.1 4,743 0/1 0 0/1 0 1/1 0 1/1 1 1/1 2 1/1 2 0/1 0

nested-property@0.0.5 97 0/1 0 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0
nestie@1.0.0 66 0/1 0 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0

nis-utils@0.6.10 35,669 2/2 0 1/2 1 1/1 9 1/1 15 2/2 18 2/2 18 2/2 0
node.extend@2.0.0 958 0/1 0 1/1 0 1/1 1 1/1 1 1/1 1 1/1 1 1/1 0

node-forge@0.9.0 17,978 1/1 5 0/1 0 1/1 2 1/1 4 1/1 7 1/1 7 1/1 0
nodee-utils@1.2.2 22,385 2/2 0 1/2 0 1/1 5 1/1 12 2/2 11 2/2 15 2/2 0

object-collider@1.0.3 143 0/2 0 0/2 0 2/2 1 2/2 1 2/2 1 2/2 1 0/2 0
object-path-set@1.0.0 185 2/2 0 0/2 0 1/1 1 1/1 1 2/2 0 2/2 0 2/2 0

objnest@5.0.0 971 0/1 0 0/1 0 1/1 0 1/1 0 1/1 3 1/1 3 0/1 0
objtools@3.0.0 20,693 0/5 5 2/5 0 4/5 14 5/5 16 4/5 24 5/5 24 0/5 0

patchmerge@1.0.0 138 0/1 0 1/1 0 1/1 2 1/1 2 1/1 6 1/1 6 0/1 0
paypal-adaptive@0.4.1 203 0/1 0 1/1 1 1/1 1 1/1 2 1/1 2 1/1 2 0/1 0

phpjs@1.3.2 48,116 1/1 4 0/1 0 1/1 3 1/1 7 1/1 8 1/1 18 0/1 0
predefine@0.1.2 488 0/1 0 0/1 0 1/1 1 1/1 1 1/1 1 1/1 1 0/1 0

promisehelpers@0.0.5 132 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 1/1 0
properties-reader@2.0.0 1,293 0/1 0 0/1 0 1/1 2 1/1 2 1/1 7 1/1 7 0/1 0

property-expr@2.0.2 196 1/1 0 0/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0
prototyped.js@2.0.0 7,911 0/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0

putil-merge@3.0.0 68 0/2 0 0/2 0 2/2 0 2/2 0 2/2 2 2/2 2 0/2 0
querymen@2.1.3 18,205 1/1 3 0/1 0 1/1 2 1/1 6 1/1 8 1/1 10 0/1 1

safe-flat@2.0.0 298 0/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0
safe-object2@1.0.3 104 0/1 0 0/1 0 1/1 0 1/1 1 1/1 0 1/1 1 0/1 0

safe-obj@1.0.0 242 0/1 0 0/1 0 1/1 1 1/1 1 1/1 2 1/1 2 0/1 0
safetydance@2.0.1 570 0/1 0 0/1 0 0/1 0 1/1 0 0/1 0 1/1 1 1/1 0

set-deep-prop@1.0.0 11 1/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0
set-getter@0.1.0 179 0/1 0 0/1 0 0/1 0 0/1 0 1/1 1 1/1 1 0/1 0

set-in@2.0.0 172 1/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0
set-object-value@0.0.5 113 0/2 0 0/2 0 2/2 4 2/2 4 2/2 6 2/2 6 1/2 0

set-or-get@1.2.10 115 1/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0
set-value@3.0.0 123 2/2 1 1/2 0 1/1 0 1/1 0 2/2 1 2/2 1 2/2 0

shvl@2.0.1 18 0/1 0 0/1 0 1/1 0 1/1 3 1/1 1 1/1 4 0/1 0
smart-extend@1.7.3 8,949 0/1 0 1/1 1 1/1 2 1/1 3 1/1 2 1/1 3 0/1 0

@strikeentco/set@1.0.0 27 1/1 1 0/1 0 1/1 0 1/1 0 1/1 1 1/1 1 0/1 0
supermixer@1.0.3 9,843 0/1 2 0/1 0 0/1 5 0/1 9 0/1 8 0/1 12 0/1 0

Templ8@0.7.0 785 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0 0/1 0
tiny-conf@1.1.0 255 4/4 0 0/4 0 2/2 0 2/2 1 4/4 0 4/4 1 1/4 0

total.js@3.4.6 40,699 0/1 3 0/1 1 0/1 1 0/1 2 0/1 4 0/1 7 0/1 0
undefsafe@2.0.2 544 0/1 0 0/1 0 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0
upmerge@0.1.7 124 0/4 0 3/4 0 3/3 1 3/3 1 4/4 0 4/4 0 2/4 0

utils-extend@1.0.8 239 0/1 0 1/1 0 1/1 0 1/1 0 1/1 2 1/1 2 0/1 0
worksmith@1.0.0 91,294 0/1 4 0/1 0 0/1 7 1/1 13 0/1 19 1/1 33 0/1 1

y18n@3.2.1 129 3/3 0 0/3 0 1/1 0 1/1 1 3/3 0 3/3 0 2/3 0
yargs-parser@6.0.0 677 6/6 2 0/6 0 2/2 4 2/2 5 6/6 3 6/6 3 0/6 0

Total: 42.1 46.6 21.3 67.3 82.2 49.6 93.3 40.1 88.4 35.3 97 30.9 32.9 87.1

Table B.3: Evaluation results of our benchmark analysis. The TP columns contain
the number of detected cases / the total number of true positives for the package.
The FP columns contain the number of false positive cases for the package. The
Total row summarizes the data and presents the recall metric (in %) in the TP
columns and the precision (in %) for the FP columns.

162 PAPER B. SILENT SPRING

In Table B.4, we present the results of the evaluation of ODGen tool and our
custom queries (Priority queries and General queries) against ODGen dataset of
19 vulnerable NPM packages.

Package@Version LoC
Priority queries General queries ODGenExported

Functions
Any

Functions
Exported
Functions

Any
Functions

TP FP TP FP TP FP TP FP TP FP
asciitable.js@1.0.2 170 1/1 0 1/1 1 1/1 0 1/1 1 1/1 0

bayrell-nodejs@0.8.0 94 1/1 0 1/1 0 2/2 0 2/2 0 1/2 0
blindfold@1.0.1 51 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0

class-transformer@0.2.3 4,590 2/2 0 2/2 12 2/2 1 2/2 13 2/2 0
debt@0.0.4 5,685 2/2 0 2/2 0 2/2 0 2/2 1 1/2 0

dnspod-client@0.1.3 214 2/2 0 2/2 1 3/3 0 3/3 0 2/3 0
draft@0.2.3 707 3/3 0 3/3 4 4/4 1 4/4 6 1/4 0

extend2@1.0.0 46 2/2 0 2/2 0 2/2 0 2/2 0 1/2 0
fetch-wrap@0.1.2 951 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0

field@1.0.1 66 2/2 0 2/2 0 4/4 0 4/4 0 1/4 0
fun-map@3.3.1 177 1/1 0 1/1 0 2/2 0 2/2 0 1/2 0

grunt-util-property@0.0.2 36 0/1 0 1/1 0 0/2 0 2/2 0 0/2 0
jquery-deparam@0.5.3 143 1/1 0 1/1 0 1/1 0 1/1 0 0/1 0
lodash._baseset@4.3.0 86 1/1 0 1/1 0 1/1 0 1/1 0 1/1 0

magico@1.1.1 383 1/1 0 1/1 0 2/2 0 2/2 0 1/2 0
node-file-cache@1.0.2 3,279 2/2 0 2/2 1 3/3 0 3/3 0 1/3 0
object-helpers@0.0.4 148 1/1 0 1/1 0 2/2 0 2/2 0 1/2 0
parse-mockdb@0.4.0 2,313 1/1 0 1/1 2 1/1 0 1/1 4 1/1 0

propper@1.0.3 130 1/1 0 1/1 0 2/2 0 2/2 0 1/2 0
Total: 96.3 100 100 56.3 94.7 94.7 100 60.3 50 100

Table B.4: Evaluation results of the ODGen dataset analysis. The TP columns
contain the number of detected cases / the total number of true positives for the
package. The FP columns contain the number of false positive cases for the package.
The Total row summarizes the data and presents the recall metric (in %) in the
TP columns and the precision (in %) for in the FP columns.

B.9. APPENDIX 163

In Table B.5, we show the results of applying our CodeQL queries to the list
of 37 universal properties inferred using dynamic analysis, in the previous phase
of the gadget detection process.

Universal property Number of sources Number of sinks
cwd 8 2

detached 0 0
uid 3 2
gid 3 2

shell 8 11
argv0 9 16

windowsHide 1 2
windowsVerbatimArguments 0 0

env 136 52
NODE_V8_COVERAGE 9 3

timeout 21 6
killSignal 8 2

input 5 2
output 4 2
errmap 23 1

main 5 6
1 127 95
2 28 14

encoding 49 20
signal 117 12

href 13 20
errno 21 2
error 8 8

loaded 0 0
NODE_V8_COVERAGE 9 3

cachedData 15 4
nullable 0 0

name 93 29
origin 5 8

codeGeneration 4 1
microtaskMode 0 0

filename 18 9
cachedData 15 4

contextName 3 1
contextOrigin 3 1

contextCodeGeneration 0 0
contextExtensions 7 2

Total: 778 342

Table B.5: Complete results of our static analysis experiments for universal gadget
detection. Sources and sinks represent unique code locations at which the universal
property is read, or is passed into a native function, respectively.

164 PAPER B. SILENT SPRING

B.10 Artifact Appendix

Abstract

This artifact implements static code analysis for detecting prototype pollution
vulnerabilities and gadgets in server-side JavaScript libraries and applications,
including the Node.js source code. The analysis builds on GitHub’s CodeQL
framework to identify prototype pollution sinks and gadgets. We evaluate pre-
cision and recall metrics for prototype pollution detection in comparison with
existing CodeQL analysis as well as the tool ODGen. Further, we evaluate the
capabilities of our tool, in combination with dynamic analysis, to detect gadgets
in a range of popular applications, including the Node.js source code. Finally,
we evaluate the prevalence of detected gadgets on a dataset of popular libraries.
All of the artifact evaluation results refer to Section 6 of the paper and the Ap-
pendix. The artifact evaluation aims for the three badges: available, functional,
and reproducible.

Description & Requirements

Here we describe hardware and software requirements to run the artifact, as well
as an overview of the benchmarks.

Security, privacy, and ethical concerns

There are no risks for the reviewers relating to security and privacy of their
machines. The artifact has been used to detect 8 remote code execution vul-
nerabilities in production-ready applications and these vulnerabilities have been
responsibly disclosed to the vendors. We do not provide any details on exploits
that are yet to be fixed by the developers. Moreover, exploit generation is a
manual process, hence it is not part of this artifact evaluation.

How to access

The artifact is accessible on GitHub at address https://github.com/KTH-LangSec
/silent-spring/tree/2c7cfab. The reproducibility of the results is supported by two
modes: (1) a prepackaged docker container and (2) detailed instructions on how
to set up the environment on own machine.

Hardware dependencies

We perform the experiments on an Intel Core i7-8850H CPU 2.60GHz, 16 GB
RAM, and 50 GB of disk space. No specific hardware features are required for
the artifact evaluation.

https://github.com/KTH-LangSec/silent-spring/tree/2c7cfab
https://github.com/KTH-LangSec/silent-spring/tree/2c7cfab

B.10. ARTIFACT APPENDIX 165

Software dependencies

We originally run our experiments (except for the experiment E2 of ODGen
evaluation) on Windows OS and presented these results in the paper. However,
CodeQL and our evaluation scripts support Linux and provide similar results.

Benchmarks

We provide five benchmarks for our experiments. The root directory of the arti-
fact repository contains folders with benchmark names from the list below. Clone
the repository with its Git submodules and follow set-up instructions to download
all code of benchmark-silent-spring and benchmark-npm-packages.

(benchmark-silent-spring): We compile an open-source dataset of 100 vulnera-
ble Node.js packages to evaluate the recall and precision metrics of our static
analysis. We refer to Section 6.1 and Table 3 of the paper for details of the
benchmark and our experiments against this set of packages.

(benchmark-odgen): We consider the dataset of 19 packages provided by the
tool ODGen to compare our static analysis approach with the state-of-the-
art results of ODGen. The paper presents the details of the dataset and
analysis results in Section 6.1 and Table 3 as well.

(benchmark-popular-apps): We evaluate our approach on popular Node.js ap-
plications from GitHub. The benchmark contains exact versions of 15 ana-
lyzed applications. The evaluation results are presented in Section 6.3 and
Table 2.

(benchmark-nodejs): We run our gadget detection analysis against Node.js ver-
sion 16.13.1. The source code of the analyzed Node.js is located in a folder
of the benchmark. Table 1 of the paper reports all the detected gadgets and
their summary.

(benchmark-npm-packages): We estimate the prevalence of the gadgets in an
experiment with the 10,000 most dependent-upon NPM packages. This bench-
mark contains these NPM packages. We describe the results of the experiment
in the last paragraph of Section 6.2.3.

Set-up

We provide two modes for testing the artifacts (1) a docker image with the
prepared environment and (2) detailed instructions on how to set up the en-
vironment on own machine. To use the docker image, pull the docker image
yu5k3/silent-spring-experiments:latest from Docker Hub, launch a docker
container, and run /bin/bash into the container to get access to the pre-configured
environment. In this mode, the reviewers may skip the setup and installation
steps, and move directly to the folder ~/projs/silent-spring in the docker
container and follow the instructions from Appendix B.10.

The following steps describe how to set up a required environment on own
machine.

166 PAPER B. SILENT SPRING

(S1): Clone the ODGen repository https://github.com/Song-Li/ODGen.git and
checkout commit 306f6f2. Follow its README file to set up the tool.

(S2): Clone the Silent Spring repository with its submodules https://github.com/
KTH-LangSec/silent-spring.git and checkout commit 2c7cfab.

(S3): Move to the scripts by cd silent-spring/scripts/. Further, it is impor-
tant to run any setup and evaluation scripts using the scripts as a working
directory.

(S4): Run the script ./benchmark-silent-spring.install-dependencies.sh
to install dependencies for benchmark-silent-spring.

(S5): Install NPM dependencies for the scripts by npm i.

Installation

The experimental evaluation requires the following software:
(I1): Node.js v.16.13.1. Follow the instruction on the official website to install

Node.js.
(I2): Cloc. We use cloc application to count lines of analyzed code. Use in the

official repository to download and install the latest version.
(I3): CodeQL v.2.9.2. Download and unzip an asset for your platform of the

version 2.9.2 from the official repository. Add the path of the codeql folder
to PATH environment variable.

Basic Test

We recommend a basic test for 1-2 NPM packages with our CodeQL queries to
check that all required components function correctly. The execution of command
node ./benchmark-silent-spring.codeql.js -l 1 from directory scripts
performs the analysis of only one NPM package from benchmark-silent-spring and
stores the results at ../raw-data/benchmark-silent-spring.codeql.limit
.md. The analysis should be completed in about 3 minutes. We provide a refer-
ence file for comparison with the basic test results. The easiest way to compare the
evaluation results with the reference is to execute git diff -- ../raw-data/
benchmark-silent-spring.codeql.limit.md. The count of detected cases in
the table should be the same.

Evaluation workflow

Major Claims

(C1): Our static analysis tool, built on top of CodeQL, achieves higher recall (up
to 97%) for prototype pollution detection as compared to existing CodeQL
analysis and the state-of-the-art tool ODGen. At the same time, it achieves
moderate precision (on average 39%). This is evaluated by the experiments
(E1) and (E2) described in Section 6.1 of the paper with results reported in
Table 3.

https://github.com/Song-Li/ODGen.git
https://github.com/KTH-LangSec/silent-spring.git
https://github.com/KTH-LangSec/silent-spring.git
https://nodejs.dev/
https://github.com/AlDanial/cloc
https://github.com/github/codeql-cli-binaries/releases/tag/v2.9.2

B.10. ARTIFACT APPENDIX 167

(C2): Our tool has been used to uncover 8 new critical vulnerabilities in popular
Node.js open-source applications. This is evaluated by the experiment (E3)
and described in Section 6.3 and Table 2 of the paper.

(C3): We use static and dynamic analysis to detect 11 new gadgets in Node.js
code that may lead to Remote Code Execution attacks. The gadget detection
is evaluated by the experiments (E4) and (E5) described in Section 6.2 and
summarized in Table 1 of the paper.

(C4): We estimate the prevalence of the detected gadgets on 10,000 most dependent-
upon NPM packages. The measurement of the prevalence is shown by the
experiment (E6) and described in Section 6.2.3 of the paper.

Experiments

All experiments should be run in the scripts folder to match the relative paths
in the script files. All scripts collect the results of experiments in the folder
raw-data. This folder already contains our results which can be used as reference
for comparison.

(E1): Prototype pollution detection with CodeQL [1 human-hour + 3 compute-
hours]: evaluate the existing CodeQL analysis and our analysis framework on
benchmark-silent-spring and benchmark-odgen.
Execution: Run the following scripts:

>node ./benchmark-silent-spring.codeql.js
>node ./benchmark-silent-spring.baseline.codeql.js
>node ./benchmark-odgen.codeql.js

Results: The file names of the analysis results correspond to the file names
with .md extension. The files consist of tables where columns contain the
detected cases for the executed CodeQL queries. The last row calculates the
total number of True Positives (TP) and False Positives (FP), as well as the re-
call and precision metrics. The result for benchmark-odgen contains only de-
tected sinks that should be matched to code locations from .PoC*.expected
files (including .PoC.ext.expected), e.g., benchmark-odgen/asciitable.
js@1.0.2/asciitable.PoC.expected. We summarized benchmark-silent-
spring results in Table 3 in the paper. The experiment should yield the recall
and precision metrics that correspond to the metrics of Total row in Table 3.
The results of benchmark-odgen are discussed in the last paragraph of Sec-
tion 6.1.

(E2): Prototype pollution detection by ODGen [1 human-hour + 11 compute-
hours]: evaluate ODGen analysis on benchmark-silent-spring and benchmark-
odgen.
Preparation: Set the absolute paths to ODGen (variable odgenDir) and the
silent-spring folder (variable ppStuffDir) in benchmark-odgen.odgen.js
and benchmark-silent-spring.odgen.js files. This is already done for
the provided docker image.
Execution: Run the following scripts:

168 PAPER B. SILENT SPRING

>node ./benchmark-silent-spring.odgen.js
>node ./benchmark-odgen.odgen.js

Results: The scripts create two reports for benchmark-silent-spring and
benchmark-odgen that are structured as the results of (E1). The results in
benchmark-silent-spring.odgen.md have worse metrics than we reported.
This is because ODGen makes random choices and, in our experiments, we
ran the ODGen tool several times and merged their best results from all runs
in Table 2 (in order to compare with their best configuration).

(E3): Vulnerability detection in applications [1 human-hour]: evaluate our analysis
to detect prototype pollution in Node.js applications.
Execution: Run the following script:

>node ./benchmark-popular-apps.codeql.js

Results: File benchmark-popular-apps.codeql.md contains the count of
the detected prototype pollution cases and links to the source code of the
detected sinks. The number of the detected cases corresponds to the column
Total - Cases of Table 2 in the paper. The provided script reports two extra
cases for one parse-server and one sails due to the usage of earlier version of
CodeQL in the original experiments.

(E4): Gadget detection (dynamic analysis phase) [1 human-hour]: evaluate the
dynamic analysis of three Node.js APIs for prototype pollution gadgets.
Execution: Run the following scripts:

>node ./gadgets.infer-properties.js
>node ./gadgets.dynamic-analysis.js

Results: The scripts report undefined properties subject to prototype pollu-
tion in the file gadgets.dynamic-analysis.csv. We detected 37 undefined
property reads in child_process, require, and vm APIs, and described
this experiment in Section 6.2.1. The property TERM can be reached on Win-
dows but not Linux. The list of the reported properties contains universal
properties of the identified gadgets that we describe in Table 1 in the paper.

(E5): Gadget detection (static analysis phase) [1 human-hour]: evaluate the data
flow analysis for the detected properties in (E4).
Execution: Run the following script:

>node ./gadgets.static-analysis.js

Results: We implement a CodeQL-based analysis to detect flows from pol-
luted properties to sinks, and validate the results manually, as described in
Section 6.2.2. The provided script summarizes the results and reports sources
that are the exported functions triggering a reading of polluted properties
and sinks that are the internal functions taking the read values. The report
gadgets.static-analysis.md counts sources and sinks to show feasibility
of the manual analysis. The folder gadgets.static-analysis.tmp contains
the detected function names.

B.10. ARTIFACT APPENDIX 169

(E6): Gadgets prevalence estimation [1 human-hour]: analyze the most dependent-
upon NPM packages to estimate potential exploitability of detected gadgets.
Preparation: Script ./gadgets.download-packages.sh downloads NPM
packages for analysis (execution takes 40 mins). Skip this step if you use the
docker image.
Execution: Run the script (takes about 15 minutes):

>node ./gadgets.prevalence-analysis.js

Results: The last line of the script’s output contains analysis results, report-
ing Packages with no main - 2041; packages have relative ’require’ - 4393;
packages have ’child_process’ methods - 350. We report the results of our
experiment in the last paragraph of Section 6.2.3 in the paper. The slight
discrepancy is due to the use of different versions of the NPM packages for
the analysis.

Version

Based on the LaTeX template for Artifact Evaluation V20220926. Submission,
reviewing and badging methodology followed for the evaluation of this artifact
can be found at https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

C

Paper C

Unveiling the Invisible: Detection
and Evaluation of Prototype
Pollution Gadgets with Dynamic
Taint Analysis

Mikhail Shcherbakov, Paul Moosbrugger, and Musard Balliu
Proceedings of the ACM Web Conference 2024,

WWW ’24

171

172 PAPER C. UNVEILING THE INVISIBLE

Abstract

Prototype-based languages like JavaScript are susceptible to prototype
pollution vulnerabilities, enabling an attacker to inject arbitrary properties
into an object’s prototype. The attacker can subsequently capitalize on the
injected properties by executing otherwise benign pieces of code, so-called
gadgets, that perform security-sensitive operations. The success of an attack
largely depends on the presence of gadgets, leading to high-profile exploits
such as privilege escalation and arbitrary code execution (ACE).

This paper proposes Dasty, the first semi-automated pipeline to help de-
velopers identify gadgets in their applications’ software supply chain. Dasty
targets server-side Node.js applications and relies on an enhancement of dy-
namic taint analysis which we implement with the dynamic AST-level instru-
mentation. Moreover, Dasty provides support for visualization of code flows
with an IDE, thus facilitating the subsequent manual analysis for building
proof-of-concept exploits. To illustrate the danger of gadgets, we use Dasty
in a study of the most dependent-upon NPM packages to analyze the pres-
ence of gadgets leading to ACE. Dasty identifies 1,269 server-side packages,
of which 631 have code flows that may reach dangerous sinks. We manually
prioritize and verify the candidate flows to build proof-of-concept exploits for
49 NPM packages, including popular packages such as ejs, nodemailer and
workerpool. To investigate how Dasty integrates with existing tools to find
end-to-end exploits, we conduct an in-depth analysis of a popular data vi-
sualization dashboard to find one high-severity CVE-2023-31415 leading to
remote code execution.

C.1 Introduction

JavaScript is arguably the most ubiquitous programming language in modern
applications, spanning client- and server-side web applications, as well as fully-
fledged desktop and mobile applications. While the dynamic and flexible nature
of JavaScript makes it adaptable to a myriad of use cases, past research shows
that this flexibility comes at the expense of several security risks [60, 208, 226].
A particularly attractive target for attackers on the Web is the Node.js ecosys-
tem [22, 60, 105, 194, 202, 204, 220] including the server-side runtime environment
Node.js and the package management system NPM, the largest software reposi-
tory on Earth.

Prototype pollution is a vulnerability inherent in languages that employ
prototype-based inheritance, like JavaScript [7]. A JavaScript object refers to
its parent via the prototype and, unless explicitly changed, every object shares
the same root prototype by default. Thus, any access to a non-existing property
on the object visits the object’s prototype chain, and ultimately the root proto-
type, to find the property. If an attacker can control the properties of the root
prototype, i.e., pollute it, they can influence the behavior of almost any object at
runtime with no need to access it directly. As a result, the attacker can pollute

C.1. INTRODUCTION 173

the prototype at one execution point and capitalize on the attack in a completely
different execution point, by triggering the execution of otherwise benign pieces
of code, so-called gadgets, that inadvertently read polluted properties of an ob-
ject from its prototype and use them in dangerous sinks, e.g., eval, to execute
arbitrary code.

End-to-end exploitation of prototype pollution requires two stages: (1) pol-
luting the prototype and (2) executing a gadget that inadvertently reads the
polluted property and uses it in a dangerous sink. Existing works [2,7,15,87,95,
105,106,194,220] primarily focus on the first stage, while the existence of gadgets
remains largely unexplored. Notably, Shcherbakov et al. [194] propose static anal-
ysis to detect gadgets in Node.js APIs and Kang et al. [87] study the prevalence
of prototype pollution in client-side web applications. While static identification
of gadgets struggles with a significant amount of false positives [194], server-side
gadgets provide a larger attack surface than client-side gadgets due to the pres-
ence of sinks that spawn new processes or interact with the file system.

Given the relevance of gadgets for the security of Web, we set out to study
the prevalence and impact of gadgets that cause arbitrary code execution (ACE)
in the NPM ecosystem, as well as to provide effective tool support to developers
to detect gadgets in the supply chain of their web applications. We argue that
prototype pollution gadgets should be treated similarly to memory corruption vul-
nerabilities such as return-oriented programming (ROP) [186] and jump-oriented
programming (JOP) [18], due to their high impact. In analogy, while the root
cause of ROP/JOP is memory corruption bugs, the industry standard now is to
mitigate ROP gadgets on the compiler and runtime level [24]. In absence compre-
hensive defenses against prototype pollution, our results call for developers and
researchers to pay attention to gadgets and their mitigations.

Our first contribution is a large-scale study of the most dependent-upon NPM
packages to identify gadgets leading to ACE. Drawing on the existing test suites of
packages and supported test frameworks, we automatically identify 1,269 server-
side packages, of which 631 packages have code flows that may reach dangerous
sinks. We manually prioritize and verify the candidate flows to build proof-of-
concept ACE exploits for 49 NPM packages, including popular packages such as
ejs, nodemailer and workerpool.

Our second contribution is Dasty, an efficient semi-automated pipeline able
to identify exploitable gadgets in server-side Node.js applications. We envision
that developers can use Dasty within a continuous integration pipeline, where the
client or maintainer of a package can generate, automatically or manually, tests
for the use case at hand. Dasty relies on an enhancement of dynamic taint analy-
sis for Node.js and uses the dynamic instrumentation framework NodeProf [209]
and the Truffle Instrumentation Framework [218]. Given the name of an NPM
package as input, Dasty automatically installs the package and its dependencies,
and uses the associated test suite to drive the dynamic taint analysis. The anal-
ysis automatically identifies, at runtime, any property accesses from an object’s
prototype, injects a taint mark, and records the code flows that reach dangerous

174 PAPER C. UNVEILING THE INVISIBLE

sinks, while implementing strategies, e.g., forced branch execution [207], to im-
prove effectiveness. Moreover, Dasty provides support for visualization of code
flows with an IDE, thus facilitating the subsequent manual analysis for building
proof-of-concept exploits. Our dynamic AST-level instrumentation provides sig-
nificantly better performance compared to Jalangi-based instrumentation [185]
and state-of-the-art tools such as Augur [3] (Section C.4).

To further showcase the danger of gadgets, we investigate how Dasty can be
combined with tools for detecting prototype pollution to find end-to-end exploits.
We use the Silent Spring project [194] in combination with Dasty to conduct an in-
depth analysis of Kibana, a popular data visualization dashboard with more than
10 million LoCs. The analysis identified one CVE-2023-31415 (acknowledged
of critical severity 9.9 and with a substantial bug bounty) leading to remote
code execution, which we responsibly reported to developers and helped them fix
it. We released Dasty as an open-source tool, and it is publicly available in a
GitHub repository [145]. We are currently reaching out to developers to report
the exploitable gadgets.

In summary, the paper makes the following contributions:
• We conduct the first systematic experiment to study the prevalence of server-

side gadgets in the NPM ecosystem, finding exploitable ACEs in 49 packages.
(Section C.4).

• Drawing on a principled methodology (Section C.3), we present Dasty, an efficient
semi-automated pipeline to find prototype pollution gadgets.

• We show that Dasty in combination with state-of-the-art tools for prototype
pollution detection [194] is readily applicable to real-world applications, finding
one end-to-end exploit of high severity in Kibana (Section C.4).

C.2 Background

End-to-end exploitation of prototype pollution requires two stages: (1) pollut-
ing the prototype and (2) triggering the gadget. We illustrate this workflow with
the simple example of Listing C.1. Consider a server-side application that handles
untrusted client-side requests and stores them in variable req. Additionally, the

1 const data = {};
2 /* Prototype pollution */
3 data[req.org][req.prj] = req.details;
4 /* Gadget */
5 const config = JSON.parse(configFile);
6 if (config.adminScript) {
7 exec(config.adminScript);
8 }

Listing C.1: Example of prototype pollution and gadget.

C.3. METHODOLOGY AND DESIGN CHOICES 175

application contains code that reads a configuration file stored in variable config
and executes a high-privilege script stored in property config.adminScript, if
this property is defined. An attacker controlling the value in adminScript can
achieve ACE on the server.

Specifically, line 3 contains a property assignment that pollutes the root pro-
totype whenever an attacker controls the value of req variable. If the attacker
sets req.org to ’__proto__’, the code reads the prototype of data variable,
which is initialized with the object created in line 1. This empty object has a
shared root prototype. Since the attacker controls req, they can assign any value
to any property of root prototype. This one-liner example illustrates a prototype
pollution vulnerability.

If a config file read on line 5 does not contain the property adminScript,
the attacker can add this property via the prototype pollution vulnerability and
get ACE on line 7. The expression config.adminScript looks up the property
in the prototype, reads the attacker-controlled value, and passes it to function
exec. We call the code in lines 6-8 a gadget. A main goal in this paper is
to identify gadgets automatically by analyzing the flows from sources such as
config.adminScript to sinks such as exec.
Threat model Our main threat model covers server-side NPM packages executed
on Node.js. We assume there exists prototype pollution in the application that
uses these packages, and aim to find exploitable gadgets. Therefore, we assume
an attacker is able to trigger execution of a function of the package by interacting
with the application but does not control all its arguments. This function should
be called in expected use cases, hence we assume that test suite of the package
describes typical scenarios of how the package can be used.

Our second threat model considers web applications, assuming that they run
in production configuration with default settings. We consider any application’s
public entry points, such as Web API, as untrusted and under the attacker’s
control, otherwise we do not assume the existence of prototype pollution vulner-
abilities.

C.3 Methodology and Design Choices

This section motivates and describes the design choices underpinning Dasty, and
presents our methodology following the high-level overview in Figure C.1. We
refer to Appendix C.7 for details on Dasty’s implementation. The methodology
starts with (1) an automatic setup of the source code, its dependencies and test
suites; (2) an automatic taint-enhanced analysis of the package; and (3) a manual
verification of the results.
Overview We use the running example in Listings C.2–C.4 to overview each
step and discuss key challenges. The package in Listings C.2 contains an intricate
gadget resulting in command injection. It provides a function run that runs a
command based on user-provided options in the form of an object. If no options

176 PAPER C. UNVEILING THE INVISIBLE

Package Name

Package

+ Test Suite

Setup

1. Setup

Instrumented

AST

FlowsAnalysis Configuration

Execution

Strategy

AST

Instrumentation

Execution

2. Analysis

Interesting Flows

Prioritization

Visualization +
PoC Verification

3. Verification

Figure C.1: High-level overview of Dasty’s workflow.

1 const { execSync} =
r equ i r e (’ child_process ’) ;

2 function run (opt ions) {
3 const opts = opt ions | | {} ;
4 const bin = opts . bin | |

’./ default . exe ’ ;
5 const newProcess =

opts . newProcess ;
6 const cmd = bin + ’ -- flag ’ ;
7 i f (newProcess)
8 execSync (cmd) ;
9 }

10
11 module . export s = {run } ;

Listing C.2: Code with a gadget
(index.js file).

1 const {run} =
r equ i r e (’../ index . js ’) ;

2
3 run () ; // t e s t 1
4 run ({ newProcess : true }) ; // t e s t 2

Listing C.3: Test suite (test/test.js file).

1 " name " : " gadget - example " ,
2 " scripts " : {
3 " test " : " npm audit &&

node test / test . js "
4 } ,

Listing C.4: Configuration
(package.json file fragment).

are provided, the execution falls back to a default executable (line 4). Moreover,
depending on the newProcess option (line 7), the command is either spawned as
a separate process (line 8) or not executed.

The package includes two tests executing the function with different options
(Listing C.3). To test the default execution, the test suite includes a set of
options in which options.bin is not specified. This implies that by polluting
the property options.bin, the property read in line 4 of Listing C.2 assigns any
attacker-controlled value to the variable bin. This value is then concatenated
with a string before passing it to the execSync function. To detect this gadget,
the analysis has to first identify undefined, i.e., potentially polluted, property
opts.bin. It then has to check if a polluted property can reach any dangerous
sink such as execSync. For this, the analysis should track attacker-controlled
value through all operations, e.g., assignments and concatenations. This leads to
the first question: How to construct an analysis that can detect potential gadgets
automatically? We answer this with an enhanced dynamic taint analysis based

C.3. METHODOLOGY AND DESIGN CHOICES 177

on AST instrumentation. The analysis injects a taint mark whenever a source,
e.g., opts.bin, is accessed, and propagates it through all operations. The phase
of this analysis is unintrusive as it injects the taint mark but not a value, and
aims to not alter the control flow of the execution.

Observe that the sink in line 8 in Listing C.2 can only be reached if the
newProcess option is set. This requires that the package contains a test that
defines newProcess but not opts.bin as test 2 in our example. If a test suite
does not contain such a test, the unintrusive analysis will miss the flow. In
addition, some flows may rely on control flow changes that are independent of
the test cases. To find such gadgets, we need to answer the question of how
to detect gadgets that require triggering control flow changes. We address this
challenge by introducing an additional phase called forced branch execution. As
the name suggests, it forces the execution of selected branches by changing the
results of conditionals. In our example, Dasty will change the conditional in line
7 to return true when newProcess is undefined. This is achieved automatically
because, in addition to the flow, Dasty records all properties that can be polluted,
i.e., both bin and newProcess.

Every test-driven run of Dasty results in code flows from source to sink, includ-
ing the path on which the taint mark was propagated through. In our example,
Dasty reports the source in line 4, the sink in line 8 of Listing C.2, and the
assignment and concatenation together with their location.

Setup

To conduct a taint-enhanced dynamic analysis, Dasty needs to download and
install a package, as well as identify an entry point script that can be executed.
This script should execute as many package exported functions as possible to find
gadgets. Since our threat model does not assume that an attacker can control
arguments of the exported functions, we require that the script realistically rep-
resents the usage of the package. Thus, our next question we need to answer is:
How can a package be automatically and adequately set up for the analysis?

Based on the NPM package name, Dasty automatically fetches the source code
from the package repository and installs the required dependencies. We use the
source repository instead of the bundled NPM package because the latter often
does not contain the test suites. For the example in Listings C.2–C.4, Dasty
installs index.js and identifies the test suite in test/test.js. We remark that
this step is needed only for our large-scale evaluation, otherwise a developer can
manually define and configure the test suite of choice.

Analysis

The core of our system is the taint-enhanced dynamic analysis to identify poten-
tially vulnerable flows, which is a complex and time-consuming process at scale.
Thus, we only want to analyze packages and processes that can potentially yield

178 PAPER C. UNVEILING THE INVISIBLE

vulnerable flows. This raises the question of how to filter out packages and pro-
cesses effectively to avoid unnecessary analyses. We approach this challenge with
an execution strategy on the package and process levels.

Execution strategy The dynamic analysis of a package requires a script for exe-
cution. Many packages include scripts implementing the functionality as intended
in the form of test suites. Tests avoid the need for custom scripts while exercising
realistic use cases of package usage. On the downside, test suites often contain
routines that are not part of the packages themselves. This can include the com-
pilation or building of the package, the execution of task runners, or the tests set
up by test frameworks. Such processes do not provide any valuable information
for the analysis. Dasty only instruments relevant parts of the executions by run-
ning the tests with a driver that intercepts all executed processes and executes
them according to an execution strategy. The strategy is implemented with an
allowlist and a denylist filtering of the programs and their arguments. For exam-
ple, Listing C.4 contains a test script that executes two commands, npm audit
and node test/test.js; Dasty analyzes only node test/test.js, ignoring
the first one.

AST instrumentation The taint analysis is based on AST-level instrumentation
of the target program. For instrumentation, we employ NodeProf [209] which in
turn utilizes the Truffle Instrumentation Framework [218]. Truffle is a framework
for building (dynamic) languages by implementing an AST interpreter that can be
run efficiently on the GraalVM [159]. It provides an API that allows developers to
take advantage of the optimization features of the Graal compiler. One language
built with the Truffle framework is Graal.js [160], a JavaScript implementation
that provides full compatibility with the latest ECMAScript specification and
supports Node.js. Truffle also provides an instrumentation framework [56] for
its languages to create tools such as profilers. The instrumentation is achieved
by attaching wrappers around the target nodes of the AST. The wrapper nodes
provide listeners for specific events, such as receiving the result of child nodes
or returning the result itself. NodeProf implements these wrappers for Graal.js
nodes to create an API that allows for the creation of efficient Node.js profilers
directly in JavaScript via Jalangi compatible hooks.

Compared to conventional code-level instrumentation [185], the AST instru-
mentation offers three major benefits: (1) it introduces less performance overhead.
Sun et al. [209] show that NodeProf is up to three orders of magnitudes faster
than the equivalent Jalangi instrumentation. The analyzed program’s source
code stays unmodified, making the analysis more compact; (2) the instrumen-
tation supports all language features implemented in the host Truffle language.
Graal.js is compatible with ECMAScript 2022, hence modern programs can be
run directly without compiling them into scripts compatible with older versions;
(3) it allows for the instrumentation of an application’s entire JavaScript code,
including the application and dependencies, as well as the built-in library code of
Node.js.

C.3. METHODOLOGY AND DESIGN CHOICES 179

Proxy-based tainting We base our taint tracking on wrapping sources with
a specialized taint proxy. This wrapper intercepts operations performed on it
and returns the wrapped value when expected by the program. Additionally, the
proxy stores the expected type of the value. If the type is unknown, the proxy tries
to infer it based on operations performed on it. The proxy also contains source
and sink information, such as the location and the property name. Lastly, it
includes the code flow of the tainted execution. Code flow refers to the operations
that the value was involved in. The taint proxy replaces the original value in the
program execution. By injecting the taint mark directly, it is propagated through
most operations by the runtime without requiring additional implementation.
Since we do not know the sources and their locations statically, the analysis does
source detection and taint injection simultaneously. In Listing C.2, the analysis
intercepts the property read in line 4. It checks if the property can potentially
reference a polluted value. If so, it injects a taint proxy containing the string
’default.exe’ as the underlying value. The concatenation in line 6 returns a
new taint proxy wrapping the resulting string (’default.exe --flag’), and
containing the same source information and the new code-flow entry reflecting
the operation.

Sources and sinks To find flows that might lead to prototype pollution gadgets,
we specify the sources as any property read that accesses a field of the prototype.
We conservatively define sinks as all Node.js API calls. As expected, the most
interesting vulnerabilities are triggered through API calls such as spawning a
process, sending requests or accessing the file system. Additionally, we include
internal JavaScript functions that convert strings into executable code such as
eval. We call these sinks standard. This lenient definition of sinks inevitably
leads to resulting flows that are not exploitable. However, since defining more
sinks does not negatively impact performance, we decide to filter sinks after the
analysis to not miss any potentially vulnerable flows. During the dynamic analy-
sis, we also observe cases where some of the Node.js APIs are replaced by mocks.
These functions mimic the behavior of real APIs in restricted ways, for exam-
ple, checking the expected values of arguments. Several test suites use mocks to
avoid changing the environment in tests, such as writing to a file or starting a
new process. Since mocks can ultimately be replaced by Node.js APIs, we treat
them as sinks. We identify these sinks by matching the name of a function with
an allowlist of Node.js APIs, e.g., spawn or exec. Finally, we also support the
list of universal gadgets by Shcherbakov et al. [194] as additional sinks in our
analysis. These gadgets are present in the source code of Node.js, and any call
to the corresponding Node.js APIs, e.g., spawn, with specific arguments allows
us to trigger these gadgets. We call these special sinks as they do not require the
sources to reach their arguments.

In summary, we support three sink detection modes: (1) standard, when a
value from a source reaches any Node.js API; (2) name-matched, when a value
from a source reaches a function with an allowlisted name; (3) special, when
the analysis calls a Node.js API pertaining to universal gadgets with specific

180 PAPER C. UNVEILING THE INVISIBLE

arguments.

Execution We propose dynamic taint analysis to identify potential gadgets. The
execution phase of the analysis includes (1) an unintrusive taint analysis for find-
ing flows without changing the control flow and (2) a forced branch execution for
increased coverage.

The unintrusive taint analysis aims to execute test suites by not altering the
program’s control flow. Dasty injects a taint mark to all prototype property reads
in every run to potentially capture all flows in one execution. Yet, injecting un-
expected values into a program can lead to control flow changes. This, in turn,
often entails exceptions and crashes, e.g., when passing invalid parameters to a
function or failing specific checks. Depending on the test setup, a crash can lead
to the premature termination of the execution, which can lead to missed flows.
The analysis attempts to avoid this in the initial run by executing the program
as close to a regular run as possible, despite injecting taint values. For that, the
analysis infers the value expected by the program and adopts the taint proxy
accordingly. When the execution encounters a control flow changing expression,
the taint proxy can provide the expected value, and the control flow stays unmod-
ified. Generally, the expected value is undefined, but this does not always hold.
The example package displays one such exception in line 4 of Listing C.2. For
such conditional assignments, the result of the expression (’./default.exe’)
represents the expected value when the property is not defined. To handle these
cases, the injection is delayed until the expression is fully evaluated. In addition
to default value extraction, the analysis tries to infer the expected type and value
based on operations, comparisons, and function calls. The unintrusive run records
all sources that lead to a sink, and the operations along the path, including all
conditionals that are affected by a tainted value.

While an unintrusive analysis can identify many flows, it cannot identify vul-
nerabilities that require changing the control flow. Consider the sink in line 8 of
our example. It can only be reached when the newProcess option is set. Hence,
finding this flow depends on the available test cases. Even if a test case is avail-
able, an exploit may potentially require multiple injections. To detect such flows,
Dasty conducts additional runs that selectively alter the control flow by force
executing specific branches that were recorded in the unintrusive run. Forced
execution refers to changing the result of a selected conditional to enforce the
execution of specific branches.

While force execution improves coverage, every control flow change can lead
to potential exceptions and crashes. Thus, force executing all conditionals at the
same time can significantly decrease accuracy. Instead, we propose a strategy
in which branches are force-executed one property at a time. Suppose a control
flow change produces new branches. In this case, the next run will force execute
all branches for the old property and any property included in the new branches
simultaneously. The analysis moves on to the next property if no new branches
are encountered. While only selected properties are force executed, all other

C.4. EVALUATION 181

sources are still injected with a tainted value similarly to the unintrusive run.
This way, the analysis can capture flows that rely on altering the control flow
by one tainted value while, ultimately, another tainted value flows into a sink.
This is the case in our example package, in which newProcess needs to be force
executed for bin to reach the sink.

Verification

As the final step, we need to verify the candidate flows produced by the auto-
mated analysis, answering the question of how to validate potential vulnerabilities
systematically. To streamline the process, we systematically prioritize and filter
flows more likely to lead to the desired vulnerabilities. Our main prioritization
criteria are specific sinks. Since we are primarily interested in ACE and related
vulnerabilities, we focus on sinks that allow us to spawn processes or execute in-
jected payloads directly. To verify a potential flow, we inspect the provided trace
of the tainted values, visualizing Dasty’s results within VSCode and manually
creating a payload based on it. The payload is then used to pollute the prototype
accordingly in a PoC to test the gadget.

C.4 Evaluation

This section answers the following research questions.
• RQ1: What is the prevalence of ACE gadgets in the NPM ecosystem and can

Dasty identify exploitable gadgets effectively?
• RQ2: How does Dasty’s effectiveness and performance compare with state-of-

the-art gadget detection tools?
• RQ3: How can Dasty be combined with state-of-the-art prototype pollution

detection tools to identify end-to-end exploits?

Dataset and setup

Dataset In line with our goal of a study to find gadgets that affect a large number
of applications, we use the most dependent-upon metric on packages from the
NPM ecosystem. This metric prioritizes packages that are used as dependencies
by most other applications. We use the open source service Libraries.io [212],
which provides an API to collect these packages. Ultimately, we were able to
collect a list of 9,564 up-to-date packages, which we use as our dataset.
Setup We run our large-scale experiment on the AMD EPYC 7742 64-Core 2.25
GHz server with 512 GB RAM. To leverage parallel execution, we split our dataset
into batches of NPM packages and run 2 to 5 instances of Dasty simultaneously
on a Docker container on Ubuntu 20.04.6 server. The Docker container manages a
MongoDB instance for collecting results. The total analysis timeout is 8 minutes
for each process. Dasty does not require special hardware for analyzing separate

182 PAPER C. UNVEILING THE INVISIBLE

packages. In fact, we developed, tested, and ran the performance evaluation on
the Ubuntu 22.04.2 laptop AMD Ryzen 7 5800H 8-Core 3.2 GHz with 16 GB
RAM. The timeout for the performance evaluation was set to 300 seconds. We
use Graal.js and Node.js v. 18.12.1 in our experiments.

RQ1: Identification of exploitable gadgets

We run Dasty pipeline to automatically set up and analyze 9,564 packages from
the dataset. Following our methodology, the analysis filters some packages out
in a pre-analysis step, performs the analysis, and collects the results for manual
validation. We describe the results of each step in detail.

Pre-analysis Dasty uses pre-filtering by package name before downloading and
installing a package. Because we are interested only in server-side packages, we
configure a list of keywords specific to client-side packages (for example, react,
angular), test and build frameworks, and their plugins (webpack, jest), and Type-
Script type definitions. This step filters out 3,138 packages of the dataset. Dasty
then automatically installs a package and its dependencies using the NPM CLI,
instruments code, and identifies and runs the test suites. Whenever a package
requires a specific environment setup, does not have a test suite, or does not use
npm test, Dasty reports an error and terminates the analysis. This step filters
out 3,446 additional packages. Moreover, Dasty identifies and excludes 1,124
packages which do not use Node.js APIs.

Here we focus on the scalability of the analysis and refrain from full implemen-
tation of framework-specific enhancements. Our goal is to highlight the prevalence
of the problem across a significant number of packages. The number of success-
fully analyzed packages can be augmented by manual environment configurations
and support for specific test workflows of target packages.

Analysis Dasty runs the taint-enabled analysis on 1,856 installed packages using
their test suites. It detects candidate gadgets in 1,269 packages and reports 3,703
unique sinks. We group the reported flows according to the type of sink, which
determines the potential impact of a gadget. As a result, the analysis identifies
flows that may lead to arbitrary code/command execution in 253 packages, unau-
thorized file read/write in 191 packages, unauthorized network operations in 150
packages, cryptographic failures in 37 packages, and no security-relevant flows in
638 packages.

Verification We manually analyze candidate gadgets of the most critical impact,
namely arbitrary code/command execution. We prioritize the packages with such
sinks and summarize the results in Table C.1 (a detailed list of exploitable gad-
gets can be found in Table C.3 in Appendix). Out of a total of 253 subject to
manual verification, 67 packages are discovered by the forced branch execution.
Each package contains flows from 1 to 4 sinks for manual validation. We first
check if a candidate package fits our threat model. We filter out 86 packages,
including 55 CLI tools and 31 packages that are used for testing or building apps.

C.4. EVALUATION 183

Sink Attack Sink Detection Mode TotalStandard Special Name
eval ACE 1/5 - - 5/16Function ACE 4/11 - -
exec ACI 0/1 2/25 0/31

37/219
execSync ACI 3/3 1/11

spawn ACI 9/16 10/91 2/5spawnSync ACI 0/3 8/25
fork ACI 1/1 1/7 -

require LFI 6/15 - - 7/18Module LFI 1/3 - -
Total: 25/58 22/159 2/36 49/253

Table C.1: Summary of exploitable gadgets (x/y denotes x exploitable packages
out of y packages reported by Dasty).

Subsequently, we analyze a call stack to a sink and filter out the cases where the
sink is called directly from the tests or test frameworks. This criterion allows us
to exclude 77 cases. Finally, we are left with 90 packages subject to vulnerabilities
pertaining to Arbitrary Code Execution (ACE), Arbitrary Command Injection
(ACI), and Local File Inclusion (LFI).
ACE gadgets We identify 16 packages containing sinks such as eval and
Function constructors. A flow from a polluted property read to an argument
of these sinks indicates that an attacker can control at least a part of the code
which is dynamically evaluated. We implement PoC code snippets demonstrat-
ing the attack in 5 out of 16 cases (see repository [101] for examples). The PoC
payload does not require much effort if the attacker controls the whole JavaScript
expression or the package code does not validate a value from a polluted property,
which is the case in the package csv-write-stream. The payloads for binary-parser
and tingodb are more convoluted. In binary-parser, the payload is inserted mul-
tiple times in the resulting code as a part of the function name. Using strings
and comments literals allows us to hide JavaScript code between injection points
from evaluation, and construct the payload. The package tingodb does not allow
the dot character in the payload. We can bypass this validation by encoding
the payload in BASE64 and evaluating it by eval(atob(’<BASE64>’)). These
cases demonstrate the difficulties of automatic exploit generation and the reason
for recurring to manual validation in our study.
ACI gadgets The functions of the child_process Node.js API can cause
arbitrary command injection if the attacker controls a process name and ei-
ther arguments or environment variables of the spawned process. We prioritize
child_process functions for manual validation and identify a total of 24 pack-
ages. We also detect 159 packages with special sinks, i.e., the attacker cannot con-
trol sink arguments but can execute functions subject to universal gadgets [194].
Finally, the analysis identifies 36 cases with name-matched sinks, i.e., flows to

184 PAPER C. UNVEILING THE INVISIBLE

functions that contain exec and spawn in their names. These functions can
point to mock implementations of child_process API in test cases.

For this category, we first attempt to pollute the detected property and reach
arguments of the sinks. Whenever this is sufficient to execute an arbitrary com-
mand, we confirm a case, as in nodemailer. Otherwise, we attempt to exploit
universal gadget for this sink and run a reverse shell that connects to the at-
tacker’s computer or a shell that opens a port and waits for connections. As s
result, we confirm 13 out of 58 standard sinks, 22 out of 159 special sinks, and 2
out of 36 name-matched sinks. We have a low rate of confirmed cases for special
sinks because 54 flows start the execution directly from the tests. The name-
matched cases, as expected, give us few gadgets because in 28 cases sink does not
execute any dangerous operation.

LFI gadgets These attack corresponds to ACE via Local File Inclusion, by eval-
uating the code of an included file via require function or Module object. This
attack usually requires the exploitation of other vulnerabilities to upload a file on
a target system. However, we found a way to use the file corepack/dist/npm.js,
shipped with Node.js, that contains the universal gadget for spawn, thus helping
us to construct the full exploits. Dasty identifies 18 packages of which we confirm
7 exploits. 3 of the exploits achieve a full chain to ACE, and 4 require uploading
a malicious file.

Summary Dasty successfully identifies 49 new exploitable gadgets and reports
the potentially exploitable flows of other attacks in 378 packages. We open source
all the detected gadgets in a GitHub repository [101]. The manual analysis took
on average 11 minutes per verified gadget.

RQ2: Effectiveness and performance comparison

Firstly, we evaluate the performance of our analysis on packages of different
scopes. Secondly, we compare the performance of Dasty with the state-of-the-
art tool Augur [3]. Thirdly, we attempt to reproduce the detected gadgets by
Augur to compare the effectiveness of both tools.

Package Description LoC Size Tests
small.js Small test file 5 0.1 KB 1

gm ImageMagick wrapper 5,154 121 KB 123
fs-extra File-system utility 8,570 59.5 KB 709
express Web-server framework 16,194 214 KB 1,262

Table C.2: Packages used for the performance evaluation.

Performance of Dasty
Table C.2 lists the packages and their sizes. Note that the size does not

necessarily correspond to the runtime, yet we provide it to give a sense of its

C.4. EVALUATION 185

V8 Node.js Graal Node.js NodeProf Analysis
0.0

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
Ti

m
e

(in
 se

co
nd

s)

0.09s

1.82s

2.3s 2.35s

Performance Overhead - small

(a) Small package.

V8 Node.js Graal Node.js NodeProf Analysis
0

1

2

3

4

5

Ex
ec

ut
io

n
Ti

m
e

(in
 se

co
nd

s)

0.45s

3.26s

4.36s

5.37s

Performance Overhead - gm

(b) Small package gm.

V8 Node.js Graal Node.js NodeProf Analysis
0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

(in
 se

co
nd

s)

5.91s

11.89s

16.33s

25.1s

Performance Overhead - fs-extra

(c) Medium-sized fs-extra.

V8 Node.js Graal Node.js NodeProf Analysis
0

25

50

75

100

125

150

175
Ex

ec
ut

io
n

Ti
m

e
(in

 se
co

nd
s)

2.39s

23.2s

43.65s

165.29s

Performance Overhead - express

(d) Large package express.

Figure C.2: Performance overhead on test-suite executions.

scope. small.js is a synthetic example of a gadget that reads a property, operates
string concatenation, and passes the value to exec.

We execute a test suite with the original Node.js V8 implementation to obtain
the baseline for overhead evaluation. To examine the performance of the instru-
mentation stack, we analyze each part separately. First, we run the test suite
with the Graal.js implementation. Next, we run the tests with instrumentation
via the extended NodeProf, instrumenting the same code expressions as we do
in a normal analysis run. Lastly, we conduct an unintrusive analysis of the test
suite. The results of the evaluation are shown in Figure C.2.

On average, the execution on GraalVM is 9.8 times slower than the V8 equiv-
alent. The average overhead introduced through NodeProf’s instrumentation is
46.40%. The performance impact through the analysis is on average 89.43%. It
varies considerably based on the size of the package and its test suite. The lowest
overhead for the smallest script small.js is 2.17%, while it expands to 278.67%
for the largest evaluated package express.

186 PAPER C. UNVEILING THE INVISIBLE

small.js gm
Packages

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(in
 se

co
nd

s)

2.35s

5.37s
3.42s

23.21s

Dasty
Augur

(a) ’Small’ executions.

fs-extra express
Packages

0

50

100

150

200

250

300

350

400

Ex
ec

ut
io

n
Ti

m
e

(in
 se

co
nd

s)

25.1s

165.29s

300s (timeout) 300s (timeout)

Dasty
Augur

(b) ’Big’ executions.

Figure C.3: Performance evaluation of Augur and Dasty.

Performance: Dasty vs Augur Dasty is the first to allow for dynamic taint
analysis gadgets in Node.js. Therefore, a fair performance comparison with other
state-of-the-art tools is not easily accomplished. However, in our initial tool
investigation, we identified Augur [3] as a potential candidate for dynamic taint
analysis and extended it to support taint tracking of polluted properties. Augur
implements the approach proposed by Karim et al. [90] that consists of two phases.
An intermediate language (IL) represents the taint flow that is created during the
instrumentation phase. In the analysis phase, the IL is executed on an abstract
machine that reports the taint flows. While Augur does not support the same
features as our analysis, such as recording of the code flow and forced branch
execution, its primary results are the same.

Figure C.3 shows the execution time of the test suites of the evaluated packages
on Augur and Dasty. Our evaluation shows that Augur performs slower on all
tests. On average, Augur was 784.57% slower than the equivalent analysis by
Dasty. Note that the maximum execution time is limited to 300 seconds due to
the timeout. The timeout occurs at the instrumentation phase of the analysis.
Effectiveness: Dasty vs Augur We also compare Augur and Dasty to demon-
strate the precision of the analysis. From the list of newly-verified gadgets, we
choose those that can be detected by our extended implementation of Augur.
These gadgets have standard sinks and at least one flow to the sink that does not
require Forced Branch Execution. Thereby, we select 21 packages and run the
analysis. Augur successfully detects the gadgets in 3 packages: forever-monitor,
gm and play-sound. The analysis of 3 packages was completed but did not detect
the correct flow. The test runners of 3 packages also spawn processes with actual
tests, and Augur does not analyze them. The analysis is terminated by timeout
for 8 packages and crashes for 4 on the test framework setup.
Summary Dasty introduces 1.2 - 3.8x average performance overhead compared
to NodeProf which allows us to complete the experiments successfully. Dasty is

C.4. EVALUATION 187

more effective and performant when compared to the analysis implementation
based on the state-of-the-art tool Augur.

RQ3: End-to-end exploit generation

To demonstrate the usefulness of Dasty and exploitable gadgets, we analyze the
production-ready software Kibana for end-to-end exploits. Since Dasty can only
find gadgets, we use the Silent Spring toolchain [195] to detect prototype pollution
vulnerabilities and then manually build an end-to-end exploit.

Kibana is an open source software for data visualization (10 million LoCs in-
cluding dependencies) and a component of the popular Elastic Stack solution [25],
including products that allow users to search, analyze and visualize data from
various sources in real-time. We choose Kibana due to the rich features for
data transformation, which usually increases the possibility to find exploitable
prototype pollution vulnerabilities. Kibana is also one of the popular Node.js ap-
plications with an active Bug Bounty program, hence subject to efforts of many
security researchers to detect vulnerabilities. Moreover, Kibana uses 2,174 de-
pendencies, thus increasing the chances to find exploits pertaining to our new
detected gadgets.

We clone Kibana version 8.7.0 and run Silent Spring toolchain [195] based on
CodeQL analyzer. We focused on the code of the application itself for prototype
pollution detection. The manual verification of 77 detected cases reveals that 33
cases are in client-side code, 28 cases are false positives, and 6 cases are potentially
exploitable. We succeeded to verify one case of exploitable prototype pollution
via the request DELETE of the URL /internal/uptime/service/enablement.

We explore all dependencies of Kibana and discover nodemailer NPM package
from the list of our verified gadgets. To trigger a gadget, we configure a connector
that sends an email by a custom event via nodemailer package. Kibana provides
Web API for all configuration steps, and all endpoints require low user privileges,
thus enabling the attack. This gadget allows us to get Remote Code Execution
on Elastic Cloud. We refer to Appendix C.7 for details on the detection and
exploitation of the vulnerability in Kibana.

The generation of the end-to-end exploit amounted to 35 hours by 2 authors,
with most time used for installation, reading documentation, running prototype
pollution analysis, and preparing API requests to trigger vulnerability on Elastic
Cloud. We reported this vulnerability to Elastic Bug Bounty Program. The
security team patched Kibana in less than 24 hours, issued CVE-2023-31415 with
critical 9.9 CVSS severity, and rewarded us with a substantial bounty. This
case study shows that Dasty in combination with tools for prototype pollution
detection can identify real vulnerabilities, while emphasizing the impact of our
exploitable gadgets.

188 PAPER C. UNVEILING THE INVISIBLE

C.5 Related Work

Prototype pollution vulnerabilities Recent years have seen an increased at-
tention to prototype pollution vulnerabilities by both researchers and practition-
ers [2,7,19,77,87,95,105,106,194,221]. In the seminal paper, Arteau [7] showcases
feasibility of prototype pollution in a number of libraries and an end-to-end ex-
ploit in the Ghost CMS platform. While practitioners’ forums have discussed the
impact of prototype pollution [19,77,221], the vast majority of research contribu-
tions target the detection of prototype pollution [105,106]. Li et al. [105] develop
custom static taint analysis to find 61 zero-day vulnerabilities leading to DOS
attacks. Kim et al. [95] use their static analysis tool DAPP to detect prototype
pollution patterns. Dasty’s contributions are complementary as they target the
second stage of exploitation, focusing on detection of gadgets that lead to ACE.

The work of Shcherbakov et al. [194] goes a step further and implements
static analysis to identify universal gadgets in Node.js APIs. They illustrate the
feasibility of the attack by semi-automated static analysis of Node.js APIs. Dasty
operates at the level of NPM packages and uses their universal gadgets and others
as sinks for the dynamic analysis. Kang et al. [87] study prototype pollution on
the client-side to exploit a range of vulnerabilities by dynamic analysis. Their
approach adapts the tool of Melicher et al. [124] which modifies the V8 engine.
Yet, their tool is limited to reporting flows as sources and sinks and does now
record the complete flows. Additionally, the tool builds on a deprecated V8 engine
that does not support all modern language features. Their focus on client-side
vulnerabilities does not provide direct Node.js compatibility.

Dynamic taint analysis for JavaScript Dynamic taint analysis is a popu-
lar technique to detect JavaScript vulnerabilities. Karim et al. [90] propose a
platform-independent taint analysis based on instrumentation. Their tool Ich-
nea is implemented atop the Jalangi framework and is not publicly available.
Aldrich et al. [3] provide Augur, a clean-slate implementation of Ichnea. The key
features of platform-independence and minimal interference with the execution
make Augur suitable for passive analyses like profiling, while posing performance
and development overhead with taint analysis. We extended Augur with support
for gadget detection, and our experiment shows limitations in performance and
effectiveness. Sun et al. [209] compare NodeProf to Jalangi showing a perfor-
mance overhead of three orders of magnitude for the latter. Staicu et al. [205]
propose Taser, a tool for Node.js built atop NodeProf with proxy wrappers. In
contrast to Dasty, Taser does not inject taints directly, but it simulates prop-
agation through the instrumentation steps, with trade-offs similar Ichnea [90],
while lacking support JavaScript features such as asynchronous functions. Cassel
et al. [32] implement NodeMedic to identify injection vulnerabilities in Node.js
packages. On the client side, Khodayari and Pellegrino [94] use taint analysis to
find DOM clobbering attacks. Their instrumentation via the Iroh.js [111] frame-
work injects payload strings into the taint sources and monitors the reachability

C.6. CONCLUSION 189

of dangerous sinks. By contrast, Dasty uses unintrusive taint analysis enhanced
with force branch execution to avoid program crashes. Force branch execution is
inspired by Steffens and Stock [207] who use it to find issues in postMessage han-
dlers. TruffleTaint by Kreindl et al. [99] uses Truffle to build language-agnostic
analysis.

Prototype pollution shares similarities with other vulnerabilities in web ap-
plications, e.g., object injection. Several works use static taint analysis to detect
code reuse vulnerabilities in Java [79,148], PHP [51,52,64], .NET [147,191], and
Android [166]. Xiao et al. [220] study hidden property attacks which are related
to prototype pollution. Lekies et al. [103] and Roth et al. [174] study script
gadgets, showing how they can bypass existing XSS and CSP mitigations.

C.6 Conclusion

We have presented an efficient pipeline, Dasty, to detect exploitable prototype
pollution gadgets in Node.js applications by dynamic taint analysis. We have
used Dasty in the first large-scale experiment to study the prevalence of server-
side gadgets in the most dependent-upon NPM packages, finding 49 exploitable
ACEs. We have shown how Dasty can be combined with tools for prototype
pollution to find end-to-end exploits in real-world application, including a high-
severity vulnerability in Kibana.

Acknowledgment

This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation, the Swedish Research Council (VR), and the Swedish Foundation for
Strategic Research (SSF).

C.7 Appendix

Implementation Details

Based on the methodology in Section C.3, we implement Dasty, an efficient dy-
namic taint analysis for prototype pollution gadgets. In this section, we describe
implementation aspects of Dasty’s components.

Pre-analysis and execution strategy

To filter out packages that are out of the scope of our threat model we conduct a
pre-analysis that evaluates if a package uses the Node.js API. This is done by an
instrumented run of the program that records every API call done by the project.

190 PAPER C. UNVEILING THE INVISIBLE

' --flag'bin

bin + ' --flag'

Truffle Instrumentation NodeProf

onInput(Taint());'./default.exe'

onInput()' --flag'

onResult()'./default.exe --flag'

onBinary(

 Taint(),

 ,

)

op=
left=
right=
result=

'+'

'./default.exe'

' --flag'
'./default.exe --flag'

Taint()'./default.exe --flag'

Taint()'./default.exe --flag'

Taint Analysis

Taint()'./default.exe' ' --flag' Wrapper Node1 3

4

5

6

8

7

9

2

Figure C.4: Excerpt of an AST-level instrumentation flow.

Since it is based on the same approach as the main analysis, it also doubles as a
dry-run.

Dasty then applies an execution strategy that intercepts all Node.js processes
and instruments them according to pre-defined criteria such as known test frame-
works and specific patterns (e.g., node test/). Dasty accomplishes the redirect
by via a custom node script that attaches the driver and is prepended to PATH.
Furthermore, every non-instrumented run first executes a script that overwrites
process.execPath, which is commonly used to spawn new processes.

Taint analysis

Dasty uses NodeProf [209] for taint tracking and extends it to support altering
the results of any expression by utilizing the unwind functionality of the Truffle
framework. When a node is unwound its wrapper can specify the result that
is passed to the parent node. We furthermore added some additional hooks
relevant useful our taint tracking as well as a taint checking API. Finally, we
ported NodeProf to newer Node.js (v 18.12.1) and JavaScript (ES 2022) versions.
The modified NodeProf version is available with the submission.
Proxy objects Dasty implements the taint value as an object with a value prop-
erty containing the wrapped value. The wrapper is implemented as a JavaScript
Proxy object, allowing to intercept operations performed on it. We leverage this
to return new taint proxies wrapping the expected value. That is, the proxy passes
the property access or application to the wrapped value and taints the result. If
the value is not defined, it falls back to a default value. The proxy also supports
type coercion by implementing Symbol.toPrimitive and Symbol.iterator to
return a suitable value based on the expected type.
Type inference Since the analysis has no knowledge of the sources before exe-
cution, it cannot determine what value is expected from polluted property reads.
Injecting a default value can lead to exceptions if it does not match the expected

C.7. APPENDIX 191

type. To prevent this, the analysis implements a lightweight type inference based
on a number of heuristics: (1) the expected type and value are extracted in condi-
tional assignments. (2) We use the binary + to infer the type based on its inputs.
(3) We infer the type based on property accesses that correspond to known func-
tions (e.g. substring indicates string). (4) When coerced, the taint proxy uses
the hint provided by JavaScript.

If no type can be inferred, the proxy defaults to string since this corresponds
most closely to a maliciously polluted property. For every type, the taint proxy
implements a default value that is used in case only the type but not the value
can be inferred.

Sources We specify sources as property accesses of objects with Object.prototype
in the prototype chain, which do not define the property themselves. The analysis
returns a taint proxy immediately after a potential source is detected. Whenever
the property access is part of a conditional, e.g., || or ??, the injection is post-
poned to the end of the evaluation of the expression. This way, the taint wrapper
contains the expected value when used in conditional assignments.

Taint propagation By injecting a source object directly into the program, the
runtime automatically handles most taint propagation. In addition, the proxy
takes care of all propagation operations performed on it. However, some propa-
gation needs to be handled separately. Concretely, these are all operations where
the taint is unwrapped before use. To propagate through such operations, we
instrument the corresponding expression and return a taint proxy if appropriate.

Figure C.4 illustrates the instrumentation flow on the concatenation opera-
tion in our example program (line 6 of Listing C.2). Every time an AST child
node is evaluated, the Truffle wrapper node, depicted by the dotted line, emits
onInput (2, 4). In the example case, the concatenation wrapper node receives
the evaluated value of the bin variable (1) followed by the constant string (3).
Since bin points to a tainted value, it is received automatically. When the con-
catenation node itself is evaluated (5), NodeProf uses the data received to call the
appropriate hook of the analysis with the relevant data. For the concatenation,
this corresponds to onBinary(’+’, [left], [right], [result]) (6). The
analysis handles the inputs accordingly based on the data and the instrumented
expression (7). In the example, this corresponds to creating a new taint value
wrapping the result of the concatenation. When the wrapper node receives the
new result (8), it replaces the original result and propagates it further up the tree
(9).

Additionally, our implementation supports propagation through the logical
operators || and && as well as comparisons (=== and == and their inverse). These
are required to propagate taint proxies to the conditional for forced branch exe-
cution. We instrument the unary operations ! and typeof similarly. Lastly, the
analysis uses instrumentation to emulate taint propagation through specific built-
in functions and Node.js API calls. For instance, a call to Array.prototype.join
should return a tainted string if an array element is tainted. We achieve this by

192 PAPER C. UNVEILING THE INVISIBLE

specifying a list of functions that mock the taint propagation, which are applied
before the actual function returns.

Sinks and unwrapping The analysis identifies Node.js API sinks by the func-
tion scope provided by NodeProf. We found that some APIs are regularly mocked
in tests. To still record flows to them, the analysis determines these sinks addi-
tionally by name. The analysis records a flow when a parameter passed to the
sink is tainted. Therefore, the parameters must be checked for every occurrence
of a sink. Since a tainted value can be nested in a non-tainted value - e.g., an
element in an array - the check has to be applied deeply. To decrease the perfor-
mance impact, we implement the check as part of the NodeProf API using the
Truffle’s language interoperability features.

A challenge with injecting taint proxies is that avoiding control flow changes
can only be guaranteed for instrumented expressions. Therefore, the analysis
unwraps taint proxies before they reach non-instrumented sections, such as the
Node.js library, to avoid unexpected exceptions and crashes. We accomplish this
by replacing the Node.js API call with a wrapper function during runtime. The
wrapper function checks the passed arguments for taints, unwraps them, and
applies the original function call on the unwrapped arguments.

When the execution reaches a special sink, the conditions required for trig-
gering the gadget are evaluated. These requirements refer to the pollutability of
specific properties of the arguments, as defined by Shcherbakov at al. [194].

Pipeline

For our large-scale experiment we implemented a pipeline that takes a list of
package names. It automatically downloads the packages, installs the dependen-
cies and executes the different analysis runs through the pipeline. All results
are stored in a separate MongoDB database for ease of access. Additionally,
the pipeline allows exporting the results in Static Analysis Results Interchange
Format (SARIF) [157], which we use to visualize the results in VSCode.

End-to-end Exploit Details

We analyze the source code of Kibana 8.7.0 and its dependencies.

Prototype pollution detection We run Silent Spring toolchain [195] against
Kibana source code. The first run terminates by timeout because of the codebase
includes all dependencies, and hence is too large. To overcome this issue, we
launch CodeQL for all subfolders in the repository separately. When the analysis
fails, we run it for nested subfolders to split the analyzed project in parts that
can be analyzed within reasonable time, with timeout set to 40 minutes. We use
Silent Spring’s mode of General query with Any Functions, which provides high
recall. This mode does not require application- or package-specific entry points
and allows us to perform the analysis for parts of the source code.

C.7. APPENDIX 193

We focused on the code of the application itself and confirmed
one of 77 detected cases. Listing C.5 shows a snippet of "DELETE
/internal/uptime/service/enablement" request handler, containing proto-
type pollution on line 10. Triggering this entry point, an attacker controls
namespace and param, and it allows them to pollute any property by setting
namespace to ’__proto__’ value.

1 getSyntheticsParams({ spaceId }) {
2 const finder = client.createFinder(spaceId);
3 const paramsBySpace = {};
4 for (const response of finder.find()) {
5 response.saved_objects.forEach((param) => {
6 param.namespaces?.forEach((namespace) => {
7 if (!paramsBySpace[namespace]) {
8 paramsBySpace[namespace] = {};
9 }

10 paramsBySpace[namespace][param.attr.key] = param.attr.value;
11 });
12 });
13 }
14 return paramsBySpace;
15 }

Listing C.5: Prototype pollution in Kibana.

Exploitation Listing C.6 reports an excerpt of SendmailTransport class that
sends a mail by spawning a specific process. It contains a gadget that can be
triggered by polluting the path and args properties. In lines 10-11, the members

1 class SendmailTransport {
2 constructor(options) {
3 options = options || {};
4 this.options = options || {};
5 this.path = ’sendmail’;
6 if (options) {
7 if (typeof options === ’string’) { /*...*/ }
8 else if (typeof options === ’object’) {
9 if (options.path) {

10 this.path = options.path;
11 this.args = options.args;
12 }
13 }
14 }
15 }
16
17 send(mail, done) {
18 sendmail = this._spawn(this.path, this.args);
19 }
20 }

Listing C.6: Exploitable gadget in nodemailer.

194 PAPER C. UNVEILING THE INVISIBLE

used in the spawn function (line 18) are assigned. The attacker should addition-
ally pollute the property sendmail to instantiate the class SendmailTransport
even if the target application uses another default transport. Thus, an attacker
needs to pollute three properties as shown in Listing C.6.

To trigger a gadget, the attacker should emulate the email sending by Web API
requests. A challenge to build the exploit is that the Kibana server crashes in 100
- 300 milliseconds (ms) after triggering the prototype pollution, thus preventing
the execution of the gadget in a subsequent request. We implement a BASH
script that sends many requests in parallel to trigger the gadget followed by single
request that triggers prototype pollution. Thereby, Kibana handles at least one
of the gadget-trigger requests precisely in the interval 100 - 300 ms. This race
condition works stable and in practice allows the attacker to get Remote Code
Execution on Elastic Cloud in all their attempts.

C.7. APPENDIX 195

Package Version LoC Sink Attack
Forced
Branch

Execution
Properties

asyncawait 3.0.0 38,271 spawnSync ACI shell; NODE_OPTIONS
better-queue 3.8.12 3,418 require LFI∗ store
binary-parser 2.2.1 3,804 Function ACE Ë alias

chrome-launcher 0.15.2 15,542 execSync ACI Ë shell; NODE_OPTIONS
coffee 5.5.0 3,208 fork ACI env

cross-port-killer 1.4.0 168 spawn ACI shell; env

cross-spawn 7.0.3 650 spawn ACI shell; env
spawnSync ACI shell; env

csv-write-stream 2.0.0 6,355 Function ACE separator
ejs 3.1.9 16,375 Function ACE Ë escapeFunction; client

dockerfile_lint 0.3.4 69,820 eval ACE arrays
download-git-repo 3.0.2 21,835 spawn ACI clone; GIT_SSH_COMMAND

dtrace-provider 0.8.5 1,048 require LFI∗ <any>
esformatter 0.11.3 103,863 require LFI plugins

exec 0.2.1 149 spawn ACI shell; env

external-editor 3.1.0 4,674 spawn ACI shell; env
spawnSync ACI shell; env

fibers 5.0.3 1,027 spawnSync ACI shell; NODE_OPTIONS
find-process 1.4.7 3,995 exec ACI∗ shell

fluent-ffmpeg 2.1.2 9,839 require LFI∗ presets
forever-monitor 3.0.3 24,805 spawn ACI command

gh-pages 5.0.0 16,417 spawn ACI shell; env
gift 0.10.2 11,827 spawn ACI shell; NODE_OPTIONS
gm 1.25.0 3,800 spawn ACI appPath

growl 1.10.5 298 spawn ACI Ë exec
hbsfy 2.8.1 57,481 require LFI p

jsdoc-api 8.0.0 117,470 spawn ACI NODE_OPTIONS
spawnSync ACI env

jsdoc-to-markdown 8.0.0 167,495 spawn ACI source; NODE_OPTIONS
spawnSync ACI source; env

liftoff 4.0.0 8,392 spawn ACI Ë env
mrm-core 7.1.14 55,246 spawnSync ACI shell; env

ngrok 5.0.0-beta.2 42,907 spawn ACI Ë shell; env
node-machine-id 1.1.12 170 exec ACI shell; NODE_OPTIONS

nodemailer 6.9.1 9,703 spawn ACI Ë sendmail; path; args
ping 0.4.4 672 spawn ACI shell; env

play-sound 1.1.5 103 execSync ACI players
spawn ACI Ë player; env

primus 8.0.7 18,629 require LFI transformer; parser
python-shell 5.0.0 444 spawn ACI pythonPath; env

require-from-string 2.0.2 848 Module LFI∗ prependPaths
requireg 0.2.2 3,477 spawnSync ACI shell; env

sonarqube-scanner 3.0.1 14,524 execSync ACI version
teen_process 2.0.4 38,503 spawn ACI Ë shell; env

the-script-jsdoc 2.0.4 156,801 spawn ACI shell; env
tingodb 0.6.1 44,294 Function ACE Ë _sub

window-size 1.1.1 469 execSync ACI shell; env
winreg 1.2.4 708 spawn ACI shell; NODE_OPTIONS

workerpool 6.4.0 2,276 fork ACI env

Table C.3: Summary of the exploitable gadgets. The Forced Branch Execution
column identifies that a gadget is detected by a forced branch execution run. The
Properties column contains the polluted property names for gadget exploitation.
∗ denotes the gadgets that require the attacker’s control of a local file for arbitrary
code execution.

D

Paper D

GHunter: Universal Prototype
Pollution Gadgets in JavaScript
Runtimes

Eric Cornelissen, Mikhail Shcherbakov, and Musard Balliu
Proceedings of the 33rd USENIX Security Symposium,

USENIX Security 2024

197

198 PAPER D. GHUNTER

Abstract

Prototype pollution is a recent vulnerability that affects JavaScript code,
leading to high impact attacks such as arbitrary code execution and privi-
lege escalation. The vulnerability is rooted in JavaScript’s prototype-based
inheritance, enabling attackers to inject arbitrary properties into an object’s
prototype at runtime. The impact of prototype pollution depends on the ex-
istence of otherwise benign pieces of code (gadgets), which inadvertently read
from these attacker-controlled properties to execute security-sensitive opera-
tions. While prior works primarily study gadgets in third-party libraries and
client-side applications, gadgets in JavaScript runtime environments are ar-
guably more impactful as they affect any application that executes on these
runtimes.

In this paper we design, implement, and evaluate a pipeline, GHunter,
to systematically detect gadgets in V8-based JavaScript runtimes with prime
focus on Node.js and Deno. GHunter supports a lightweight dynamic taint
analysis to automatically identify gadget candidates which we validate manu-
ally to derive proof-of-concept exploits. We implement GHunter by modify-
ing the V8 engine and the targeted runtimes along with features for facilitating
manual validation. Driven by the comprehensive test suites of Node.js and
Deno, we use GHunter in a systematic study of gadgets in these runtimes.
We identified a total of 56 new gadgets in Node.js and 67 gadgets in Deno,
pertaining to vulnerabilities such as arbitrary code execution (19), privilege
escalation (31), path traversal (13), and more. Moreover, we systematize,
for the first time, existing mitigations for prototype pollution and gadgets in
terms of development guidelines. We collect a list of vulnerable applications
and revisit the fixes through the lens of our guidelines. Through this exercise,
we also identified one high-severity CVE leading to remote code execution,
which was due to incorrectly fixing a gadget.

D.1 Introduction

JavaScript’s widespread adoption as a go-to programming language for full-stack
development speaks to its popularity, but it also exposes the applications to
heightened security risks. Researchers and practitioners are well-aware of these
issues, as witnessed by a multitude of prior studies [60,204,208,226]. JavaScript
runtime environments, such as Node.js [66] and Deno [83], which lie at the
heart of server-side JavaScript applications, become appealing targets for attack-
ers [2, 22, 60, 105, 194, 202, 220]. Vulnerabilities in the runtime environments can
compromise the security of applications running atop. In this paper, we set out
to study the security implications of a recent vulnerability, prototype pollution,
in JavaScript runtime environments.

Prototype pollution is a vulnerability affecting the JavaScript language [7].
JavaScript’s prototype-based inheritance allows an object to inherit properties
from its ancestors via the prototype chain. When accessing a property not present

D.1. INTRODUCTION 199

on the object, the prototype chain will be queried for that property instead. Un-
less explicitly changed, this chain connects all objects to a common root proto-
type. Pollution can occur when an attacker-controlled value is used to navigate
an object’s structure. Since each object has a runtime accessible reference to its
prototype, the attacker may be able to pick that reference and add a new prop-
erty. By doing this, the attacker can cause a change in behavior in another part
of the application.

The security implications of prototype pollution depend on the presence of
otherwise benign pieces of code (gadgets) that inadvertently read attacker-
controlled properties from the root prototype to execute sensitive operations,
e.g., arbitrary code. Gadgets in JavaScript runtime environments are particularly
dangerous because they are shared by all applications, thus increasing the attack
surface.

The vast majority of prior works focus on the detection of prototype pollution
by static analysis [95, 105, 106, 194, 220], while the existence of gadgets remains
largely unexplored [87,109,194,196]. This work is inspired by the recent pioneer-
ing of work of Shcherbakov et al. [194], which uses static taint analysis for three
Node.js APIs to find (combinations of) three gadgets, dubbed universal gadgets,
leading to arbitrary code execution. Our thesis is that dynamic analysis should
be preferable for identifying universal gadgets for these reasons: (a) the sources
of the analysis pertain to accesses of properties from the prototype, which is hard
to identify statically; (b) the highly-dynamic nature of JavaScript poses signifi-
cant challenges for static analysis, resulting in low precision and recall, and high
manual effort [194]; (c) realistic gadgets should trigger in common use cases of
API usages, which is best captured by the comprehensive test suite of runtime
environments.

To address these challenges, we design, implement, and evaluate a semi-
automated pipeline, GHunter, to comprehensively and systematically detect
universal gadgets in V8-based JavaScript runtimes, Node.js and Deno. Deno is a
particularly interesting target because it is proposed as a security-first runtime to
counter the shortcomings of Node.js. Specifically, GHunter customizes Deno,
Node.js, and the V8 engine to implement a lightweight dynamic taint analysis for
automatically identifying gadget candidates, which we validate manually to de-
rive proof-of-concept exploits. Driven by the test suite of a runtime environment,
GHunter detects property accesses from an object’s prototype, it injects a taint
value, and monitors the execution to identify the effects of the taint value on
security-sensitive sinks and unexpected terminations. Moreover, GHunter sup-
ports processing and representation of gadget candidates in SARIF format [157]
for visualization to facilitate the manual analysis.

We use GHunter in a comprehensive study of Node.js and Deno to identify
universal gadgets pertaining to a range of vulnerabilities, including arbitrary code
execution, server-side request forgery, privilege escalation, cryptographic down-
grade, and more. After processing, GHunter automatically identifies 301 and
418 gadget candidates in Node.js and Deno, respectively. We manually verified

200 PAPER D. GHUNTER

the gadget candidates to find 56 universal gadgets in Node.js and 67 universal
gadgets in Deno for a total of 28 person-hours. We further compare GHunter
with Silent Spring [194], showing that it provides increased precision and recall,
while reporting less gadget candidates for manual analysis. To support further
research on the topic, we make available publicly both GHunter [41] and the
gadgets [101].

We have responsibly disclosed our findings to the Node.js and Deno develop-
ment teams. Both acknowledged our report but neither considers them within
their current threat model. Node.js suggested a public discussion with their de-
velopers’ community on the dangers of gadgets.

In light of these results, we systematize, for the first time, existing mitigations
for prototype pollution and gadgets in terms of development guidelines. We then
collect a list of applications with end-to-end exploits pertaining to prototype
pollution, and revisit the fixes through the lens of our guidelines. Through this
exercise, we also identify existing issues, including one high-severity CVE-2023-
31414 leading to remote code execution, which was due to incorrectly fixing a
gadget.

Our contributions can be summarized as follows:
• We design and implement a semi-automated pipeline, GHunter, to systemati-

cally detect universal gadgets in JavaScript runtimes (Section D.4).
• We conduct a comprehensive analysis of Node.js and Deno to find 123 universal

gadgets subject to a range of vulnerabilities (Section D.5).
• We systematize existing mitigations against prototype pollution and gadgets,

and outline directions for future work, including an in-depth case study leading
to RCE (Section D.6).

D.2 Technical Background

In this section, we overview the life cycle of exploits pertaining to prototype
pollution vulnerabilities, and discuss the JavaScript runtime of interest and the
threat model.

Prototype Pollution and Gadgets

Prototype pollution is a vulnerability that occurs in prototype-based languages
like JavaScript [7]. An attacker manipulates a program’s prototype-based in-
heritance, leading to runtime modification of objects and potentially causing
otherwise benign code sequences, called gadgets, to execute dangerous opera-
tions. End-to-end exploitation of gadgets based in prototype pollution requires
two steps. The prototype must be polluted first, for example when processing
untrusted user data incorrectly, and then the gadget must be triggered.

To illustrate the vulnerability, Listing D.1 shows an artificial server application
which provides an in-memory key-value store for its users, logging every request to

D.2. TECHNICAL BACKGROUND 201

1 const users = { };
2 router.post("/:uid", (req, res) => {
3 users[req.uid][req.key] = req.value;
4 exec("echo ’A value was stored at’ $(date)");
5 res.status(200).send();
6 });
7 function exec(cmd, opts) {
8 opts = opts || {};
9 const shell = opts.shell || "/bin/sh";

10 op_spawn(‘${shell} -c ’${sanitize(cmd)}’‘);
11 }

Listing D.1: Example of prototype pollution and gadget.

standard output. It is vulnerable to prototype pollution and uses function exec
as a gadget. exec (line 7-11) is an otherwise benign runtime-provided function
to execute a command. It accepts the command to execute as a string and an
optional object opts to configure the shell in which to execute the command.

A request at vuln.com/uid?key=value causes the server to invoke the han-
dler on line 2-6. It extracts the user ID and the key-value pair from the URL
and stores it in memory (line 3). It then logs the time of the request (line 4) and
responds with a 200 status code (line 5).

An attacker can use this handler to perform prototype pollution. The mali-
cious request vuln.com/__proto__?shell=node -e ’...’ will add the prop-
erty shell with the value "node -e ’...’;" to the root object prototype on
line 3. This happens because the request instantiates the statement on line
3 as users["__proto__"]["shell"] = "node -e ’...’;". In particular,
users["__proto__"] gives a reference to Object.prototype which is then ex-
tended with the property shell.

The attacker can capitalize on the pollution of the shell property to turn
the benign call to exec into a remote code execution gadget. In particular,
because the application provides no options on line 4, line 8 assigns to opts an
empty JavaScript object. When evaluating the expression opts.shell on line
9, the shell property, missing from opts, will be looked up in the prototype
chain where it exists because of the pollution. Thus, opts.shell evaluates to
"node -e=’...’;" and is used instead of the default "/bin/sh" to evaluate
arbitrary JavaScript code.

JavaScript Runtimes: Node.js and Deno

In this work, we study universal gadgets in JavaScript runtime environments. Two
such runtime environments are Node.js and Deno. Both are open source software
projects built on top of the V8 JavaScript engine from Chromium. Node.js is
a popular JavaScript runtime [66] written in C++, commonly used for server
application development. Deno was created in response to Node.js with a focus on

202 PAPER D. GHUNTER

security [83]. It is written in Rust and uses TypeScript. The native (C++/Rust)
parts of these runtimes are what provides access to system resources and common
functionality such as buffers and cryptography libraries. In this work we focus on
these runtimes because of their popularity and shared JavaScript engine.

Deno’s focus on security is interesting for our work because it adds guardrails
for both pollution and gadgets. On the pollution side, Deno removed the
__proto__ property, rendering the attack described on Listing D.1 infeasible.
However, prototype pollution is still possible through, e.g., object merge func-
tions, a common source of prototype pollution. On the gadget side, Deno has a
permission system to reduce access to system resources and by extension the im-
pact of gadgets. However, we observe that the presence of a gadget implies some
access to the corresponding resource must have been granted to the application,
thus allowing exploits nonetheless.

Threat Model

Our threat model focuses on server-side JavaScript/TypeScript applications run-
ning on either Node.js or Deno. We assume the application is vulnerable to pro-
totype pollution, either directly or through third-party code. Our aim is to find
exploitable universal gadgets present in the JavaScript runtime for the purpose
of one of (directly or indirectly):

• Arbitrary Code/Command Execution (ACE). Gadgets that allow an attacker to
execute arbitrary JavaScript code or start an arbitrary command.

• Server Side Request Forgery (SSRF). Gadgets that allow an attacker to make
arbitrary network requests.

• Privilege Escalation. Gadgets that allow an attacker to perform an action their
normal privileges do not allow.

• Cryptographic Downgrade. Gadgets that downgrade the cryptography used by
the application to be weaker.

• Path Traversal. Gadgets that allow the attacker to manipulate the path of file
system operations.

• Unauthorized Modifications. Gadgets that allow the attacker to trigger modifi-
cations that should not happen as a result of normal operation.

• Log Pollution. Gadgets that change or control the contents of program logs.
• Denial of Service (DoS). Gadgets that deny access to the application.

We posit that many applications use some of these APIs in practice because of
the importance of the functionality they provide. Furthermore, we assume that
the runtime’s own test suite contains a representative sample of ways to use the
APIs. As a direct consequence, the presence of a gadget in a runtime implies
vulnerabilities in real-world applications.

D.3. OVERVIEW 203

Validation

Test Runner

Modified
Node.js/Deno

Modified
V8

Source
properties

Source to
Sink flows

Unexpected
terminations

SARIF

VSCode

Test suite

Gadget
candidate
generator

1 2 3 4

Figure D.1: Architecture and workflow of GHunter.

D.3 Overview

At a high level we develop a semi-automated dynamic analysis pipeline,
GHunter, for finding gadgets in runtime environments, as depicted in Figure
D.1. To achieve this goal, GHunter operates in three automated steps and one
manual step. Driven by the runtime’s test suite, the first step identifies candidate
properties for prototype pollution by detecting undefined property accesses. In
the second and third step, GHunter uses these candidate properties to simulate
pollution and detect reachability of dangerous sinks and unexpected termination,
respectively. These steps also rely on the runtime’s test suite and generate output
for gadget identification. The final step consists in manually verifying the results
of the second step, after preprocessing, using visualization of SARIF files in IDEs,
and generating proof-of-concept exploits.

Listing D.2 shows a universal gadget in Deno, which we will use to illustrate
the workflow of GHunter along with the different challenges we have to tackle.
Consider an application that uses the runtime API fetch, defined in Listing D.2,
to fetch user details from another service, for a given trusted user identifier uid.
The application will eventually execute the command:
fetch("https://192.168.3.14/users/"+uid)

to safely retrieve user information. Given the assumption that the application is
vulnerable to prototype pollution, our goal is to find out how we can use prototype
pollution to turn this seemingly benign request into a malicious gadget.
Step 1: Collecting source properties A key requirement is to find properties
that influence the behavior of a runtime API. These properties must not be defined
so that they are looked up in the prototype chain and a polluted value is used

204 PAPER D. GHUNTER

1 class Request {
2 constructor(input, init = {}) {
3 this.method = init.method || "GET";
4 // ...
5 }
6 }
7 function fetch(input, init = {}) {
8 const request = new Request(input, init);
9 const promise = mainFetch(request, false, request.signal);

10 //...
11 }
12 async function mainFetch(req, recursive, terminator) {
13 const res = op_fetch(req.method, /*...*/);
14 terminator[abortSignal.add]();
15 //...
16 }

Listing D.2: Simplified Deno fetch implementation.

instead. Hence, GHunter needs to determine which undefined property accesses
happen as a result of normal usage of a target runtime API. This is achieved by
observing the runtime behavior of code and taking note of undefined property
accesses. Moreover, GHunter uses the runtime environment’s test suite as a
representative sample of normal usage of the API.

For the fetch API in Listing D.2, GHunter runs Deno’s test suite to collect
a list of undefined properties that includes method (line 3) and signal (line 9).
This leads us to our first challenge of automatically identifying undefined property
accesses driven by the test suite of runtime APIs, which we discuss in Section D.4.

Step 2: Identifying source-to-sink flows GHunter uses the list of unde-
fined property accesses from the previous step as sources for further analysis.
To determine if a property is used for a purpose that is exploitable, GHunter
implements a lightweight taint analysis that identifies the reachability of values
of polluted properties into dangerous sinks. Driven by the test suite, it pollutes
the undefined properties with taint values and checks whether these values affect
the native (C++/Rust) code of the runtime environment, which conservatively
represents security-relevant sinks.

The function call to op_fetch in Listing D.2 (line 13) executes Deno’s native
networking implementation for fetch. To determine if a polluted value can reach
op_fetch, GHunter simulates prototype pollution and detects the polluted
property value in the call to op_fetch. For the property method, GHunter
pollutes the property with a taint value and runs the corresponding test case,
while intercepting every call to op_fetch and checking all arguments for the
presence of the taint value used for pollution. Indeed, given the list of properties
for fetch, GHunter finds that the property method reaches the sink op_fetch
on line 13. This leads us to our second challenge of automatically identifying

D.4. SYSTEM DESIGN AND IMPLEMENTATION 205

flows from undefined properties to sinks, which we discuss in Section D.4.
Step 3: Unexpected termination If normal usage of a runtime API (as rep-
resented by the test suite) does not result in a crash but the pollution of an un-
defined property does cause the API to crash, it implies that an attacker can use
the API to cause Denial of Service (DoS) attacks. Similarly to Step 2, GHunter
leverages the runtime’s test suite to detect DoS attacks pertaining to prototype
pollution. When polluting the property signal on line 9, GHunter causes the
fetch API to crash due to a type error on line 14. This leads us to our third
challenge of automatically identifying fatal crashes that cause DoS attacks on
applications that use the APIs under pollution, which we discuss in Section D.4.
Step 4: Manual validation The previous automated steps yield a list of poten-
tial sinks and unexpected program crashes pertaining to pollution of undefined
properties. These results do not necessarily imply that a runtime API is ex-
ploitable, but require manual validation. To aid the security analyst, GHunter
supports processing (e.g., removal of duplicates from different test cases) and
representation of results in SARIF format for visualization within an IDE.

In our example, the SARIF file contains two results, called gadget candidates,
for the fetch API: One for property method reaching the sink op_fetch and one
for property signal resulting in a program crash. The manual analysis of method
reveals that an attacker can override the default HTTP method from GET at wish,
revealing a true gadget. For instance, they can pollute method with value DELETE,
thus causing the command fetch("https://192.168.3.14/users/"+uid) to
delete user records (in Section D.5 we extend this attack to full Server Side Re-
quest Forgery). The analysis of the program crash due to signal reveals an
attacker can perform a DoS attack, thus denying users of access to data. In Sec-
tion D.4 we discuss this final challenge of effectively validating gadget candidates.

D.4 System Design and Implementation

We design GHunter to overcome the challenges outlined in Section D.3. In
line with the architecture and workflow of Figure D.1, this section describes and
motivates our design and explains how it supports comprehensive analysis of
JavaScript runtime environments for finding gadgets. First, we discuss source
properties and detail our approach to capturing them exhaustively. Second, we
show how to achieve comprehensive coverage for sinks into native runtime code
and how to identify source-to-sink flows by our lightweight taint analysis. Third,
we discuss unexpected termination and how to detect fatal terminations leading
to DoS attacks. Finally, we discuss the process of preprocessing and manually
validating results, as well as the current limitations of GHunter.

Along with the discussion of the design we also describe the implementation of
GHunter, which we implement against Node.js v21.0.0 and Deno v1.37.2. These
are the most recent versions of the respective runtimes that share a common V8
engine version, namely v11.8.172.17.

206 PAPER D. GHUNTER

Source Properties

In this work we consider undefined property accesses as sources. At a high level,
an undefined property access happens when code tries to read a property that
is not one of the object’s own properties. There are many ways in which this
can happen in JavaScript, including obj.prop as seen on line 3 of Listing D.2,
computed property names such as obj[str_var], array-indexed properties such
as obj[1], for-in loops, and various syntactic sugar forms such as destructur-
ing assignment. These features pose significant challenges for static analysis ap-
proaches [194], leading to both false positives (due to conservatively computing
undefined properties) and false negatives (due to computed property names).

To ensure we comprehensively capture all undefined property accesses we mod-
ify the V8 runtime to trap on property accesses that are looked up but not present
in the root object’s prototype object. This conservatively covers all property ac-
cesses that may be influenced by prototype pollution, excluding pollutions with
other side effects (i.e. existing prototype properties) and circumstantial pollutions
of specific types.

Because gadgets are pre-existing runtime API function calls in application
code, we are interested in undefined property accesses that happen as a result
of normal API usage. Thus, we leverage the runtime’s test suite as a proxy of
real API usage and capture all undefined property access that occur during test
execution. We store the observed property names on a per-test basis for use in
the next steps.

For our example of Section D.3 this step yields 95 properties for fetch from
the fetch_test.ts test suite in Deno.

Implementation To intercept all property accesses, we modify the code of
Runtime::GetObjectProperty and LoadIC::Load methods, which look up the
property name in an object’s prototype chain to read a property value. If the
property is not found in the chain we log the access attempt.

However, V8 implements optimizations to avoid slow calls to these meth-
ods when the property name can be easily determined, as in obj.prop. Thus,
we deoptimize the inline caches [28] and remove the bytecode handlers in the
methods AccessorAssembler::LoadIC_NoFeedback for named properties and
AccessorAssembler::KeyedLoadIC for array-indexed properties. This allows
us to trap on every property access, albeit with some performance degradation.

We also implement a separate file logger to dump the results of our tests and
extend the globals object with the log function. This enables our modifications
in the test suite to use the same logs for dumping call stacks as described later
in this section. The changes to V8 are limited to 8 files and modify 233 lines of
code in total.

D.4. SYSTEM DESIGN AND IMPLEMENTATION 207

Simulating Pollution

Given the names of undefined properties that are accessed for a test, we want to
simulate pollution of these properties to observe how it affects the behavior of
the runtime. To this end we extend the test runners to automatically modify test
files by injecting a code snippet that simulates prototype pollution.

To maximize effectiveness, the polluting snippet is injected at the top of the
test file. This ensures the entire test execution is affected by the pollution. In
comparison to injection using preloaded modules (e.g. through --require or
--module in Node.js) this avoids affecting irrelevant accesses that happen before
the test is started.

We use this prototype pollution simulation in the next two steps. In particular,
if N unique undefined property accesses were detected for a test, we run for both
the second and third stage of GHunter with N different instances of that test,
each with a different property polluted.

For our example this means the fetch_test.ts test file in Deno is dynam-
ically updated on the fly with a snippet that pollutes one of the 95 detected
properties at a time.

Implementation We use two types for the injected values: strings and objects.
To assign the property we use Object.defineProperty to add gettable (and
settable) value. This allows us to output a stack trace for all accesses to that
property. Additionally, we utilize this getter to return a unique identifier (incre-
mental number) for every access so that we can match sources and sinks by the
tainted value. Listing D.9 shows the injected snippet for string values, while the
snippet for object values is similar [41].

One of the values we use is a hexadecimal string so that it can be converted
into a number, if needed. To support code that expects Object as the type for
polluted values, we inject objects built based on JavaScript Proxy. These tainted
values emulate the reading of arbitrary properties via ProxyHandler, access to
an iterator to support for-of loop against this object, and conversion to primitive
types. Each of these access methods also produces a tainted value to propagate
the taint mark.

Source-to-Sink Flows

We consider function calls where JavaScript executions flow into the runtime’s
native code as sinks. To be able to exhaustively cover such sinks we study the
ECMAScript standard [61] to determine function calls that flow into V8 as well as
the runtime’s development documentation to understand where such flows occur
for the runtime’s native modules.

For V8, we find that functions such as eval and new Function() are the sinks
that create a function at runtime from their string arguments. In particular, both
functions create and subsequently execute JavaScript code. Thus, if a polluted

208 PAPER D. GHUNTER

value is used as (part of the) input to these functions, an attacker can potentially
execute arbitrary code.

For Node.js, based on its contributor documentation [38] and source code, we
identified internal APIs that interoperate with the C++ implementation from
JavaScript: linked bindings and internal bindings. After conducting tests, we
confirmed that linked bindings are intended for developers to extend Node.js
with additional C++ bindings, and this method is not used for Node.js runtime
APIs. Consequently, we determined that internal bindings comprehensively cover
all data flows from JavaScript to the C++ part of Node.js and are implemented
in a single JavaScript file: lib/internal/bootstrap/realm.js.

For Deno, similar to Node.js, we identify bindings as the only bridge between
JavaScript and Rust. This is based on the contributor documentation for #[op]
and #[op2] Rust attributes used throughout the Deno code base. As a result
we identify a single template file written in JavaScript in the deno_core code-
base that comprehensively covers all flows from JavaScript to Rust: core/run-
time/bindings.js.

When the sink receives a tainted value as one of its arguments, it logs infor-
mation about the sink being reached. This includes the sink name, call stack,
tainted value with an identifier for source matching, and the access path if the
tainted value is detected in a nested property of the argument.

For the running example of Section D.3 this step yields only one result in Deno,
namely that of pollution of the method property into the op_fetch binding.
Implementation To capture flows involved in creating functions at runtime,
we modified the method Compiler::GetFunctionFromEval(). This method
generates a function from a string passed into its first argument. Public APIs
such as eval and new Function() use this method. We test the value of the
first argument, and if it contains our tainted mark as a substring, we log the
argument’s value along with a record that this sink was triggered.

To capture the flows via binding code we implement a wrapping layer that
we apply to all bindings for both runtimes. This wrapper recursively replaces all
functions on a JavaScript object with a new function that inspects the arguments
for tainted values, calls the original function, and returns its result. If a tainted
value is detected we log the sink name, the argument index, the current stack
trace, and (if applicable) the path to the tainted value for objects (e.g. x if the
value of property o.x was tainted). This wrapper consists of approximately 380
lines of JavaScript code and is used in both realm.js and bindings.js for
Node.js and Deno respectively.

Unexpected Termination

Besides dangerous sinks we are also interested in pollutions that result in unex-
pected or non-termination of the program, indicating potential DoS attack. We
focus on fatal crashes that JavaScript code cannot catch and thus terminates
the application immediately. Because crashes may happen with no tainted value

D.4. SYSTEM DESIGN AND IMPLEMENTATION 209

reaching a sink, we perform this evaluation separately. GHunter can also de-
tect non-fatal crashes (catchable in JavaScript), which we do not include in our
results.

To comprehensively cover unexpected termination as a result of pollution, we
monitor all test executions and look for processes that exit with a non-zero exit
code. If a non-zero exit code is detected we evaluate the stdout and stderr of
the process to filter out expected failures such as test failures in order to report
only unexpected errors such as segfaults/panics, Out Of Memory (OOM), and
timeouts.

To avoid reporting crashes that may happen as a result of our runtime mod-
ifications, we perform this analysis on the original runtimes. This works be-
cause this stage relies exclusively on externally available information, namely the
previously-obtained list of undefined property accesses.

For the running example of Section D.3 this step yields only one result in
Deno, namely that of pollution of the signal property leading to an unexpected
TypeError.
Implementation To perform this part of the analysis, we re-use the test runner
that modifies test files with prototype pollution and instruct it to use the unmod-
ified version of the runtime. We extend the test runner to examine the exit code
and output (stdout and stderr) for each test it runs. In particular, if the exit
code is nonzero, it will check if the output matches an expected error (e.g. a test
failed) and if it does not, log the polluted property name and process output.

Manual Validation

To effectively validate and create proof-of-concept exploits from the results of Sec-
tion D.4 and Section D.4, we produce a SARIF file with all necessary information
for manual validation. The SARIF file format, in combination with a SARIF file
viewer, provides a convenient way for an analyst to interactively view results and
browse relevant code locations.

We preprocess the output of stages 2 and 3 to obtain a gadget candidate for
each unique detected sink or unexpected termination. For a reached sink, this
is determined by the property name and the stack trace for the sink call or the
stack trace for the polluted property access. For unexpected termination, this is
determined by the termination output.

For each gadget candidate, we include all relevant information for validation
and creation of a proof of concept. For detected sinks the gadget candidate is
presented as a triple consisting of the polluted property name as well as the API
and sink represented by the stack trace for the source and sink (SARIF viewers
allow for interactively browsing the stack). We also provide the value observed
at the sink which helps the analyst understand if the runtime manipulates the
polluted value. For unexpected terminations, we are limited to providing the
program output after the crash, but additionally we provide the name of the
polluted property as well as the test file that crashed.

210 PAPER D. GHUNTER

While each result represents only a single polluted property, if multiple proper-
ties affect the same API and sink these results will be co-located in the generated
SARIF file. This allows the analyst to combine multiple properties in a proof of
concept. Thus, in contrast to a gadget candidate, a gadget is a triple consisting
of the set of properties, API and sink. We remark that GHunter only detects
that a value reaches the sink but not the intended type or structure of that value.
The analyst has to analyze the API documentation and code to understand what
values to use in the proof-of-concept exploit.

For the running example of Section D.3, the SARIF file contains two entries,
one for the detected flow from the property method to the sink op_fetch and
one for the unexpected error as a result of polluting the property signal.
Implementation We generate the SARIF file from the logs of the second and
third stages. For the second stage we look for sinks where a tainted value was
observed and the corresponding source (property access for that exact value). As
a result any source that does not reach a sink is automatically discarded. If no
source can be found for a taint value at a sink (e.g. due to modifications to the
value), it is reported to the analyst separately. For the third stage we report any
test run resulting in a non-zero exit code with a stderr message other than a test
failure, excluding tests that failed in the initial run.

Limitations

Full-fledged taint tracking Our lightweight taint analysis favours performance.
This can be seen as a limitation with respect to manual validation because the
complete flow from source to sink is not readily available. In practice, we find
that the runtime code is relatively simple for most cases, and the flow from
source to sink can be identified quickly. Secondly, our lightweight taint tracking
may miss flows from sources to sinks in the event that the taint value is removed
in certain operation (e.g. splice). Again, we observe that most runtime code
does not perform modifications on values beyond simple transformations such as
converting a string to uppercase.
Polluted types The pollution simulation only pollutes using strings and objects.
We could additionally cover numbers and arrays for pollutions (booleans cannot
be taint tracked with our approach). This would only find flows where an explicit
type check prevents the tainted value from reaching a sink. Besides polluting with
different types, techniques such as concolic execution [109, 206] could be used to
improve coverage too.
Gadget chains In contrast to works on gadget detection in libraries and frame-
works [109,196], GHunter cannot find gadget chains where one pollution enables
another. This is because GHunter pollutes only a single property at the time.
Running an analysis where multiple properties are polluted at the same time
is possible in theory, but infeasible in practice due to the number of possible
combinations of properties.

D.5. EVALUATION 211

Binding coverage For Node.js we are unable to cover 25 bindings because they
exist at a property that is not configurable or not writable, thus preventing us
from wrapping them. We evaluated these functions and find them to have little
security relevance. For Deno we were unable to wrap 4 bindings, all async, because
they do not take any arguments. Such sinks are not interesting for our analysis
so we consider this a non-issue.
Test suite limitations Our approach relies on the comprehensiveness of the
runtime’s test suite. We are thus limited in our analysis by the coverage of
the source code by the test suite. We evaluate the coverage statistics and find
95.8% and 91.4% function coverage in Node.js and the Deno standard library
respectively. These percentages give confidence in the comprehensiveness of our
analysis.

D.5 Evaluation

This section describes the results of our comprehensive evaluation on Node.js and
Deno, answering the research questions:

• RQ1: How can we effectively identify exploitable universal gadgets in the Node.js
and Deno runtimes?

• RQ2: How does GHunter compare to Silent Spring?
• RQ3: What is the performance overhead of our taint-enhanced runtimes as

compared to the original runtimes? How to empirically validate transparency of
our taint-enhanced runtime with respect to the original runtimes?

Experimental setup We conduct our experiments on an AMD EPYC 7742
64-Core 2.25 GHz server with 512 GB of RAM. To optimize server resource uti-
lization, we execute tests in parallel. We utilize a modified test runner script
that runs test files in parallel with a 20 second timeout per test file. For Node.js
we adopt the existing test.py runner, for Deno we write a custom runner that
invokes deno test.

Universal Gadgets in Node.js and Deno

We demonstrate the effectiveness of GHunter through the number of detected
gadgets in light of the number of outputs for intermediate analysis steps.
Analysis of Node.js The target of our analysis of Node.js is the standard li-
brary built into the Node.js binary. The first step of our analysis produced
509,481 unique test-property combinations for 3,782 test files. The second and
third steps of our analysis found 22,860,092 sinks reached, 9,743 segfaults, and
6 tests that timeout. Preprocessing of results reduced the number of sink-source
pairs to 13,029 unique pairs and segfaults to 13 (no reduction in test timeouts).
Furthermore, we excluded source-sink pairs that could only lead to Denial of Ser-
vice: 11,730 sinks related to infrastructure code such as type checking, internal

212 PAPER D. GHUNTER

Attack Type Node.js Deno
Arbitrary Code/Command Execution 14 5

Server Side Request Forgery 6 3
Privilege Escalation 7 24

Cryptographic Downgrade 2 0
Path Traversal 3 10

Unauthorized Modifications 0 10
Log Pollution 0 1

Panic/Segfault 12 1
Out of Memory 0 3

Infinite Loop 0 2
Second Order 12 8

Total 56 67

Table D.1: Number of gadgets found by type per runtime.

utils, asynchronous call wrappers, exception and error message builders; 120 in
buffer.byteLengthUtf8; 258 in messaging.postMessage, which sends mes-
sages between workers; and 101 in the buffer parameter in fs.read which is
used for output of the sink call. After filtering, there are 820 gadget candidates
out of which we confirmed 56 to be exploitable. The manual verification process
required 31 person hours.

Analysis of Deno Our analysis of the Deno runtime covers the core API (acces-
sible by Deno), the Node.js compatibility module, and the Deno standard library.
We ran our pipeline on each separately, but accounted for duplicates when ag-
gregating the results, which we report here.

The first step of our analysis produced 21,786 unique test-property combina-
tions for 596 test files. The second and third steps of our analysis found 13,519
sinks reached, 1 panic, and 139 tests that timeout. Preprocessing of results re-
duced the number sink-source pairs to 399 unique pairs, 18 tests that timeout,
and no reduction in panics. As a result, we obtained 418 gadget candidates out of
which we confirmed 67 to be exploitable. The manual validation took 15 person
hours.

Node.js vs Deno We observe quite a large difference in numbers when com-
paring Node.js to Deno. First, Node.js produces significantly more results. One
reason for this is that Node.js has a larger test suite (both in terms of test files and
test cases). Despite Deno’s security focus, we find similar number of exploitable
gadgets. One reason for this is that Deno has a larger API surface. Another is
that prior work on gadgets has resulted in some protections being implemented
in Node.js, in fact some of the gadgets we find in Deno were previously identified
and addressed in Node.js.

Result classification We categorize our universal gadgets by the strongest ex-
ploit they can be used for. If multiple properties can be combined to achieve a
stronger exploit, we consider only the combination and not the weaker exploits
pertaining to a subset of properties. Table D.1 shows the aggregate number of

D.5. EVALUATION 213

gadgets per exploit category.
We omit gadgets without a security impact or that only cause a JavaScript

exception (they have limited impact since applications can catch such exceptions).
We include gadgets that presume an existing vulnerability (e.g. to write a file on
the systems) and call these second order gadgets.
New detected gadgets We highlight 4 gadgets here and refer to Table D.5 and
Table D.6 in Appendix, and code artifact [41] for the complete list of gadgets.

Listing D.3 shows a proof of concept (PoC) of the fetch gadget from Section
D.3. In addition to the property method, polluting the properties body and
headers allows attackers to control all aspects of the request to the application-
specific URL. Moreover, due to the way Deno’s fetch implementation stores
request URLs internally, the pollution of property 0 allows the attacker to override
the URL and achieve SSRF. This gadget transforms a simple benign-looking
request like fetch("http://example.com") into a completely unrelated HTTP
request.

1 // send a POST request to http://fake.com
2 ///
3 // PROTOTYPE POLLUTION:
4 Object.prototype[0] = ’http://fake.com’
5 Object.prototype.method = ’POST’
6 Object.prototype.body = ’{"pwned":"yes"}’
7 Object.prototype.headers = {"content-type":"application/json"}
8 ///
9 // GADGET:

10 fetch(’http://example.com’)

Listing D.3: PoC of fetch gadget (Deno).

Similarly, we found that the fetch API of Node.js can also exploited to achieve
SSRF attacks. In addition to controlling method and body, an attacker is able
to pollute socketPath to redirect HTTP requests to a local socket rather than
the specified URL. This gadget can be exploited to target local daemons, such as
Docker.

Another universal gadget in Deno allows for path traversal on temporary
files. Polluting dir allows an attacker to control where Deno.makeTempDir and
Deno.makeTempFile create temporary file system entries. Even if dir is specified
by the application, prefix still allows for path traversal by using a string like
../ as a prefix (prior to Deno v1.41.1). Depending on how the temporary file is
used, this gadget can be a setup for a stronger attack.

We also identify two new Arbitrary Code Execution (ACE) gadgets in Node.js,
located in the commonly used require and import functions. The gadget in
require has been fixed as of Node.js v18.19.0. We detail this gadget and its fix
in Section D.6. The gadget associated with import, shown in Listing D.4, can be
exploited by polluting the source property with JavaScript code and invoking
the import function on any .mjs file. This causes the code from the property to
be evaluated.

214 PAPER D. GHUNTER

API GT Silent Spring GHunter
GC TP/FP FN GC TP/FP FN

cp.exec 2 20 1/19 1 3 2/1 0
cp.execFile 1 16 0/16 1 2 1/1 0

cp.execFileSync 4 21 3/18 1 7 4/3 0
cp.execSync 4 13 3/10 1 7 4/3 0

cp.fork 2 25 1/24 1 6 2/4 0
cp.spawn 3 14 2/12 1 5 3/2 0

cp.spawnSync 4 11 3/8 1 7 4/3 0
import 1 0 0/0 1 5 1/4 0

require 3 19 2/17 1 4 1/3 2
vm.compileFunction 1 4 1/3 0 5 0/5 1

Total 25 143 16/127 9 51 22/29 3

Table D.2: Silent Spring vs GHunter on Node.js v16.13.1 with properties used in
Silent Spring gadgets as ground truth.

1 ///
2 // PROTOTYPE POLLUTION:
3 Object.prototype.source =’console.log("PWNED")’
4 ///
5 // GADGET:
6 import(’./any_file.mjs’)

Listing D.4: PoC of import gadget (Node.js).

GHunter vs Silent Spring

We compare the effectivess of GHunter and Silent Spring [194] in finding uni-
versal gadgets. Silent Spring can detect prototype pollution statically and also
universal gadgets in Node.js using a mix of dynamic and static taint analysis. The
two approaches differ in non-trivial ways. GHunter uses dynamic analysis to
detect pollutable properties at runtime and it is driven by the test suite of a run-
time environment. In contrast, Silent Spring syntactically identifies any property
reads and uses them in a dynamic analysis to check if they are pollutable. This
causes challenges with properties that are not identifiable statically, for exam-
ple computed properties. Moreover, GHunter analyzes all APIs systematically
(subject to coverage by the test suite), while Silent Spring analyzes only 3 APIs.

Because of these differences and the fact that some of the gadgets from Silent
Spring have since been fixed, we perform the following comparison: we use the
gadgets identified by both toolchains as a basis for ground truth and evaluate
whether or not each tool finds a gadget candidate (GC) for each property used in
the gadgets for a given API. This is because both toolchains can only taint/pollute
one property at a time and report one GC per property. We focus only on ACE
gadgets as was the case in Silent Spring.

Our first experiment uses the gadgets of Silent Spring as a ground truth on
Node.js v16.13.1. We recreated PoCs for all its gadgets to determine the af-
fected APIs and necessary properties. Based on this we created new test cases

D.5. EVALUATION 215

API GT Silent Spring GHunter
GC TP/FP FN GC TP/FP FN

cp.exec 1 9 0/9 1 2 1/1 0
cp.execFile 1 9 0/9 1 2 1/1 0

cp.execFileSync 4 11 3/8 1 7 4/3 0
cp.execSync 2 3 1/2 1 3 2/1 0

cp.fork 1 5 0/5 1 1 1/0 0
cp.spawn 3 9 2/7 1 5 3/2 0

cp.spawnSync 4 6 3/3 1 7 4/3 0
import 1 0 0/0 1 1 1/0 0

vm.SyntheticModule 3 3 1/2 2 1 1/0 2
Total 20 55 10/45 10 29 18/11 2

Table D.3: Silent Spring vs GHunter on Node.js v21.0.0 with properties used in
GHunter ACE gadgets as ground truth.

in the style of Silent Spring’s dynamic analysis. We reran both Silent Spring and
GHunter on Node.js v16.13.1 using these new test cases to obtain the results
shown in Table D.2. Ground truth (GT) is the number of GCs required to iden-
tify all gadgets of an API. False negatives (FN) represent the number of GCs that
were identified manually (and not by a tool), but are in the GT of a gadget. We
see that GHunter is more precise (0.43 compared to 0.11) and has better recall
(0.88 compared to 0.64). This is due to the underlying dynamic analysis, which
guarantees that a polluted property reaches a sink. GHunter has three FNs be-
cause it lacks features necessary to detect the sink (the require gadget requires
a chain of pollution; the vm gadget requires array support). For Silent Spring we
find nine FNs. The FNs for child process (cp) are due to the lack of support for
for-in analysis, causing it to miss one variant of the gadgets. For import it fails
to detect the gadget API and for require it fails to detect one property; in these
cases the true and false positives would have allowed the analyst to extrapolate
the properties reported as FNs here.

Our second experiment uses the gadgets of GHunter as a ground truth on
Node.js v21.0.0. For a fair comparison, we created test cases for ACE gadgets
from Table D.5 in the style of Silent Spring’s dynamic analysis. We reran both
GHunter and Silent Spring on Node.js v21.0.0 using these new test cases to
obtain the results shown in Table D.3. For this selection of gadgets, GHunter
finds more gadgets while reporting fewer gadget candidates, again showing better
precision (0.62 compared to 0.18) and recall (0.90 compared to 0.50), requiring
less manual work. Silent Spring again exhibits FNs for all child process APIs
because it lacks support for for-in construct. For the import gadget, Silent
Spring fails to detect the API that triggers the gadget.

In summary, these experiments show that GHunter is more precise, resulting
in less manual work required and higher accuracy. We believe this is primarily
due to the fully dynamic approach used by GHunter, which guarantees every
GC reaches a sink and provides support for dynamic language features. The
shortcomings of GHunter are due to the limitations discussed in Section D.4.

216 PAPER D. GHUNTER

Performance Overhead and Transparency

We evaluated the performance overhead incurred by GHunter in comparison
with the unmodified JavaScript runtimes. To evaluate the effect of the customized
runtimes and the customized V8 engines on the behavior of runtime APIs, referred
to as transparency, we use the test suites as oracles to identify behavioral changes.

Node.js Running the full Node.js test suite, which contains 3,810 tests, using
our modifications increased runtime by 111.72% (from 252s to 542s). The success
rate decreased from 3,782 to 3,669 cases, marking a 2.99% reduction. The number
of tests failing due to timeout increased from 2 to 44 cases.

Deno Running the three different test suites using our modifications increased
runtime by 4.46% (from 157s to 164s) for Deno core, by 43.85% (from 130s to 187s)
for Deno’s Node.js compatibility module, and by 5.93% (from 253s to 268s) for
Deno std. In total that is 14.63% (from 540s to 619s). The success rate decreased
by by 0.17% (from 1,145 to 1,143 out of 1,340) for Deno core, by nothing for
Deno’s Node.js compatibility module, and by 0.27% (from 2,207 to 2,201 out of
2,258) for Deno std. In total that is 0.15% (from 5,364 to 5,356 out of 5,648).
The number of tests failing due to timeout increased from 1 to 2 cases.

Evaluation The main reason for the decreased performance and higher failure
rate is the code responsible for checking tainted values in internal sinks. This code
recursively traverses received values of each argument of the sink. Unexpected
exceptions in the traversed objects’ code, such as in property getters, lead to fail-
ures. Additionally, the modified version extends globalThis with log, causing
some tests to fail.

D.6 Defense Best Practices

While previous works provide convincing evidence on the dangers of prototype
pollution, as of today, there is no comprehensive defense against this vulnerabil-
ity. In this section, we systematize the current proposals and mitigations and
outline directions for future work. Since our universal gadgets require the exis-
tence of prototype pollution, a reasonable question to ask is whether we should
mitigate the impact of the vulnerability by fixing the gadgets. Given the lack of
comprehensive defenses against prototype pollution, we think that gadgets should
be treated similarly to memory corruption vulnerabilities such as return-oriented
programming (ROP) and jump-oriented programming (JOP), due to their high
impact. Developers of runtimes or libraries are unaware of the presence of proto-
type pollution in the applications using their code. Therefore, it stands to reason
to assume the presence of vulnerabilities and treat the prototype objects as un-
trusted data, thus guaranteeing security by fixing gadgets in their code. Similarly,
application developers are unaware of prototype pollution in third-party libraries
or runtimes of their application, hence they should mitigate gadgets.

D.6. DEFENSE BEST PRACTICES 217

Gadget Mitigations

Gadget can be mitigated by avoiding the use of potentially polluted properties
in the code. A solution is to ensure that any access to the properties of an
object does not fall back to the object’s prototype chain. We distinguish different
mitigations depending on where in the code an object with a polluted prototype
may be created. This can be either the developer’s own code (e.g., a library or
module) or third-party code (e.g. dependencies or application code that use APIs
provided by the developer). This leads us to the first guideline.

G1: Explicit access to own properties

If the code accesses a property in only a few instances, developers should verify
each access explicitly.

Developers should check if an object defines an own property before accessing
it. This can be achieved with built-in methods such as
Object.hasOwn(obj, ’prop’)

We encountered this pattern regularly during our analysis of for-in loops to pre-
vent reading unexpected properties. These checks should be added every time a
potentially undefined property is accessed, thus preventing access to a polluted
property. This guideline can be applied regardless of where the object being
checked was created. However, overuse of these checks increases the codebase’s
complexity. Therefore, developers should follow other recommendations when-
ever their code makes use of many property accesses. We also recommend using
the method Object.keys, which returns the object’s own enumerable proper-
ties rather than for-in loops, which additionally iterate over properties in the
prototype chain.

G2: Safe object creation

When creating an object, developers should use either null prototypes or
built-in objects Map and Set.

The method call Object.create(null) and the object literal
{__proto__: null} allow to create objects that do not inherit from the pro-
totype hierarchy. In this case, any property access obj.prop returns undefined
unless prop is an own property of object obj. On the downside, this solution
can lead to unexpected exceptions. For example, code patterns like obj + "str"
will throw an exception because no toString method is available without the
prototype.

When the created object is returned by the underlying function or it is passed
as an argument to a third-party function, developers should copy the object to a
new object that includes Object.prototype to ensure backward compatibility.
We recommend assigning default values to unused properties to prevent pollution

218 PAPER D. GHUNTER

with attacker-controlled values in third-party code. This operation can be facil-
itated by, e.g., using the method Object.assign({}, defaultObj, obj). We
remark that the prototypes of nested objects require cloning the object by means
of a deep copy algorithm, for example, using the global method structuredClone.

An alternative solution is to use built-in objects that provide safe access to
properties. For instance, the Map object holds key-value pairs and provides meth-
ods such as Map.get that do not use the prototype chain to look up the stored
values. Hence, map.get(’prop’) can serve as a replacement for accesses to
objects.

G3: Safe copy of input data

Whenever an object is received as input data, developers should copy the
object’s properties to a safe object.

If a developer uses an object as a function argument (for example, options in
Listing D.5), or an object originating from a deserialization function (for example,
JSON.parse in Listing D.7), they should assume that the object’s prototype can
be polluted. A safe solution is to copy the expected properties to a new object
with null prototype. This can be achieved by creating a copy with only own
properties, using the expression {__proto__:null,...obj}. If the code returns
the received object back, the developers should use the original value instead of
the copied one to avoid compatibility issues.

The guidelines G1 and G3 may be backward incompatible when an object
relies on a prototype chain to define properties within nested prototypes. We ex-
pect this design pattern to be used for functions rather than data-type properties,
which are subject to prototype pollution. An empirical evaluation is necessary to
validate this claim.

As we can see, systematic mitigation of gadgets is an open problem. Develop-
ers are expected to identify all gadgets to universally apply mitigation techniques
to any potentially undefined property, which is infeasible in practice. Moreover,
gadget mitigation can be hard to apply to existing code bases since it requires
identifying every access to undefined properties. These considerations motivate
the need for solutions like the one proposed in this paper but we believe the guide-
lines can be automated as suggestions for quick fixes in IDEs or similar tooling.
Detection may require inter-procedural analysis, yet we expect that G1 and G2
can be implemented based on quick intra-procedural analysis.

Prototype Pollution Mitigations

Prototype pollution is the root cause for exploitation of gadgets, hence a compre-
hensive mitigation technique would solve the problem altogether. As with gadget
mitigations, this requires striking a balance between security and usability, which
makes it a challenging task. Here we discuss recommendations for developers and
opportunities for researchers.

D.6. DEFENSE BEST PRACTICES 219

Application Version Vulnerability Report PP Fix Gadget Gadget Fix App Mitigations

Kibana

6.6.0 CVE-2019-7609 Ë child_process.spawn é Ë G2, G3∗

7.6.2 HackerOne #852613 Ë lodash.template é é
7.7.0 HackerOne #861744 Ë lodash.template é Ë G3
8.7.0 CVE-2023-31415 Ë nodemailer é é

npm-cli 8.1.0 Reported by [194] Ë child_process.spawn Ë G2 é

Parse Server

4.10.6 CVE-2022-24760 Ë bson é Ë Denylisting
5.3.1 CVE-2022-39396 Ë bson é Ë Denylisting
5.3.1 CVE-2022-41878 Ë bson é Ë Denylisting
5.3.1 CVE-2022-41879 Ë bson é Ë Denylisting
5.3.1 Reported by [194] Ë require Ë G2∗, G3 é
6.2.1 CVE-2023-36475 Ë bson Ë –

Rocket.Chat 5.1.5 CVE-2023-23917 Ë bson Ë –

Table D.4: A summary of the RCEs exploited via prototype pollution. For each
application, we list the vulnerable version, a reference to the report, and the ex-
ploited gadget. PP Fix shows whether the prototype pollution was fixed; Gadget
Fix shows whether the gadget was fixed, including any applied guidelines; App
Mitigations details if mitigations against the attack were implemented in the ap-
plication. é indicates that no fix has been applied; Ë indicates that a fix was
applied but later bypassed; Ë indicates that a fix was applied and effectively pro-
tects against similar attacks. (∗) denotes a guideline that might be bypassed.

Guidelines for developers A general solution is to prevent any accesses to the
prototypes of objects, which can be achieved by the above-mentioned guidelines
for gadget mitigation. Following guideline G1, developers should avoid accesses to
object prototypes through property reading expressions. This is because proper-
ties such as __proto__ and constructor.prototype, which give accesses to the
prototype chain, are not defined in the object itself. Alternatively, this can also be
achieved by explicitly checking accesses to properties __proto__, constructor,
and prototype. Similar to own property checks for gadget mitigation, this mit-
igation introduces additional verbosity. Following guideline G2, one can instead
use data structures with either null prototypes or safe get and set functions.

Another solution is to prevent unintended modification to the prototype ob-
ject itself, which can be achieved with built-in functions such as freeze,
preventExtension, and seal [117]. These functions offer a mechanism to pre-
vent the creation of new properties on an object. The freeze function addition-
ally prevents overwriting. Node.js provides the experimental command-line fea-
ture, --frozen-intrinsics, which freezes the prototypes of built-in objects like
Array and Object. Similarly, Deno removes __proto__ from Object.prototype
by default.

While mitigating prototype pollution, these solutions can be problematic for
third-party packages that rely on changing the prototype to implement, e.g.,
polyfills. Also, they require coverage of all prototype object, including user-
defined classes which makes it verbose and hard to maintain for large projects.
We recommend these solution for the development of a new project while existing
project should perform regression testing to ensure that no functionalities are
disrupted.

https://research.securitum.com/prototype-pollution-rce-kibana-cve-2019-7609/
https://hackerone.com/reports/852613
https://hackerone.com/reports/861744
https://arxiv.org/pdf/2311.03919.pdf
https://huntr.com/bounties/ac24b343-e7da-4bc7-ab38-4f4f5cc9d099/
https://github.com/parse-community/parse-server/security/advisories/GHSA-prm5-8g2m-24gg
https://github.com/parse-community/parse-server/security/advisories/GHSA-xprv-wvh7-qqqx
https://github.com/parse-community/parse-server/security/advisories/GHSA-93vw-8fm5-p2jf
https://github.com/parse-community/parse-server/security/advisories/GHSA-462x-c3jw-7vr6
https://hackerone.com/reports/1631258

220 PAPER D. GHUNTER

Research opportunities Mitigation of prototype pollution and gadgets remains
an open problem. A recent proposal driven by Google aims to prevent prototype
pollution at the language- and runtime-level [175]. It proposes an opt-in secure
mode, which, if enabled, prevents accesses to prototypes with dynamic string keys.
It allows prototype access through reflection APIs instead of strings, thus only
requiring changes to __proto__ and constructor, whenever they are accessed
purposefully. While an important step in the right direction, this solution poses
challenges of backward compatibility for server- and client-side applications.

Case Studies

We evaluate fixes of known server-side prototype pollution vulnerabilities and
their gadgets to identify common issues in mitigations that permit attackers to
bypass the fixes. We conducted our search through public vulnerability reports
on HackerOne, blog posts, and publications related to open-source applications
over the past 5 years, summarizing our findings in Table D.4. Our results con-
tain 12 exploitable cases leading to Remote Code Execution (RCE) in 4 popular
applications. The root cause of their exploitability, namely code patterns that
allow to pollute prototypes, has been addressed in all cases. These vulnerabilities
involve 5 unique gadgets to achieve RCEs. For 4 of these gadgets, developers
proposed either fixes or mitigations for the attacks.

We identify 6 vulnerabilities that exploit a gadget in the bson package. The
Parse Server developers fixed 5 vulnerabilities that use this gadget with input
data validation through denylisting. However, these mitigations were bypassed
several times through unexpected means, e.g. with files metadata. Ultimately,
the dangerous feature was removed from bson, thereby fixing the gadget. Both
Parse Server and Rocket.Chat fixed their vulnerabilities through this method.
This highlights the need to fix gadgets because mitigation is difficult and often
leaves room for exploitation by other means.

The gadgets in lodash.template and nodemailer remain unaddressed and
could be exploited given new prototype pollutions. The maintainers of Kibana
banned the use of lodash.template in their code and mitigated it by intercepting
template calls and validating the polluted property when the package is included
as a transitive dependency.

However, as illustrated, it can be dangerous to leave gadgets unfixed. Next,
we detail two interesting gadgets and highlight issues in their fixes to demonstrate
the risk.
child_process.spawn The first mention of the spawn gadget appears in the re-
port CVE-2019-7609 by Michał Bentkowski, outlining a prototype pollution vul-
nerability in Kibana. Kibana spawns a node process, and the security researcher
discovered a method to execute arbitrary code through crafted environment vari-
ables of the new process.

Listing D.5 presents the necessary code of the spawn function to understand
the attack. If an application invokes spawn with two arguments, file and args,

D.6. DEFENSE BEST PRACTICES 221

1 function spawn(file, args, options) {
2 if (options === undefined)
3 options = {}
4 options = Object.assign({}, options)
5 options.env = options.env || process.env
6 options.file = options.shell || file
7 //...
8 internalSpawn({
9 file: options.file,

10 env: options.env,
11 //...
12 })
13 }

Listing D.5: Simplified Node.js spawn implementation.

then the third argument options is undefined. Line 3 creates a new object that
inherits Object.prototype, making it susceptible to prototype pollution. Line
4 makes a shallow copy of options to prevent changing the user’s options ob-
ject if passed. In our scenarios, this copy operation is inconsequential because
options is an empty object created within the function itself. Line 5 retrieves
the value of the env property. If the value is undefined, the code defaults to
process.env, assigning this to the env property of options. Line 6 similarly
handles the shell property from options and the file parameter. Subsequently,
the code passes the aggregated options to the internal implementation of the
spawn function, which initiates a new process. If an attacker pollutes the env
property in Object.prototype, line 5 will read the attacker-controlled value in-
stead of system environment variables. It allows the attacker to execute arbitrary
code, leading to RCE in Kibana.

The Kibana team fixed the prototype pollution vulnerability and mitigated
the gadget in PR #55697 to prevent similar attacks in later versions. Because
the gadget is part of Node.js’ source code, application developers are limited
to intercepting spawn calls and altering the arguments. Listing D.6 provides a
simplified version of this mitigation. The code uses a JavaScript Proxy to invoke
the patch function, thereby securing the options. It evaluates passed arguments
from the zero-based array args. If the argument at position 1 is an array, line
5 simply advances the position. If the subsequent argument at position 2 is an
object, it is treated as the options, and the prototypeless function then copies
the options’ own properties to new objects with null prototypes.

This mitigation follows our guidelines G2 and G3. Lines 16 and 18 create
new objects with null prototypes in accordance with G2, ensuring that care is
also taken for nested objects to prevent pollution of env when the value is read
from process.env. The use of Object.assign in lines 15 and 17 copies only
own properties from the original objects to the new objects with null prototypes,
following G3.

https://github.com/elastic/kibana/pull/55697

222 PAPER D. GHUNTER

1 cp.spawn = new Proxy(cp.spawn, {apply: patch})
2 function patch(target, thisArg, args) {
3 var pos = 1;
4 if (Array.isArray(args[pos]))
5 pos++ // fn(file, args, ...)
6 if (typeof args[pos] === ’object’) {
7 // fn(file, options, ...)
8 // fn(file, args, options, ...)
9 args[pos] = prototypeless(args[pos])

10 }
11 //...
12 return target.apply(thisArg, args)
13 }
14 function prototypeless(obj) {
15 var newObj = Object.assign(
16 Object.create(null), obj)
17 newObj.env = Object.assign(
18 Object.create(null), newObj.env)
19 return newObj
20 }

Listing D.6: Simplified spawn gadget mitigation in Kibana.

However, this mitigation has two critical weaknesses that allow the attacker
to bypass it. Developers are constrained to validating arguments and lack control
over modifications to arguments after passing them to Node.js functions. As ob-
served in line 5 of Listing D.5, the spawn function makes a copy of the received
options into a common empty object that shares its prototype with others. Con-
sequently, any properties of the options might be polluted again. Fortunately,
spawn does not copy the env property, so environment variables are not affected.
The other weakness is more dangerous and allows for bypassing all mitigations
and even security fixes in Node.js, as we will see later. Lines 6 and 9 of Listing D.6
are also exploitable by prototype pollution. The array args, like any array, has
Object.prototype in its prototype chain and looks up an undefined property.
Therefore, polluting the property 2 allows the attacker to control the options.
For this exploit, a gadget trigger might look as follows:
Object.prototype[2] = {
env: { NODE_OPTIONS: ’--inspect-brk=0.0.0.0:1337’ }

}
spawn(’node’, [’any_file.js’])

Thus, the spawn gadget is still exploitable in Kibana after mitigations. This
case highlights the importance for developers to exercise caution with security-
critical code, such as gadget mitigations, and to test it against other gadgets using
tools like GHunter to avoid introducing new exploitation flows into the code.

Shcherbakov et al. [194] introduce a variation of the spawn gadget. They
find that the name of a running process can be manipulated through the polluted
property shell, as shown in line 6 of Listing D.5. Additionally, they disclose new

D.6. DEFENSE BEST PRACTICES 223

1 // lib\internal\modules\cjs\loader.js
2 function readPackage(dir) {
3 const jsonPath = resolve(dir, ’package.json’)
4 const json = packageJsonReader.read(jsonPath)
5 if (json === undefined)
6 return false
7 return JSON.parse(json)
8 }
9 function tryPackage(requestPath) {

10 const pkg = readPackage(requestPath)?.main
11 if (!pkg) {
12 const js = resolve(requestPath, ’index.js’)
13 return loadFile(js)
14 }
15 loadFile(pkg)
16 }

Listing D.7: Simplified Node.js require implementation.

payloads for the exploit that operate without controlling environment variables
and controlling only one variable. They identify a vulnerability in the JavaScript
package manager npm-cli, and exploit it to demonstrate the practical feasibil-
ity of using this gadget. Although npm-cli contributors addressed the reported
prototype pollution, they did not mitigate the gadget.

In June 2022, the Node.js team attempted to fix this gadget in PR #43159. In
terms of our terminology, they implemented guideline G2 by assigning the value
ObjectFreeze(ObjectCreate(null)) to options in line 3 of Listing D.5 and
eliminated Object.assign() in line 4 to maintain the usage of options with a
null prototype. As discussed in Section D.6, G2 alone is insufficient to prevent
all forms of gadget exploitation, and G2 should be used in conjunction with G3.
GHunter reports a gadget for spawn when a user supplies their own options
object to spawn:

Object.prototype.shell = ’node’
Object.prototype.env = { NODE_OPTIONS: ’--inspect-brk=0.0.0.0:1337’ }
spawn(’app’, [’file.log’], {cwd: ’/tmp’})

This case illustrates the importance of a consistent approach in implementing
gadget fixes. When applying guideline G2, it is crucial to carefully handle input
data and copy it safely, while also applying G3. Relying on validating security-
critical parameters outside the gadget proves to be insecure.

require Shcherbakov et al. [194] report a gadget in require, a built-in function
in Node.js for including external modules from separate files as well as Node.js
modules, and utilize this gadget in one of the Parse Server exploits. Listing D.7
illustrates a gadget based on simplified Node.js code. The function tryPackage
receives a directory path for a module and invokes readPackage() in line 10.
The code in line 4 attempts to read package.json from the given directory. If

https://github.com/nodejs/node/pull/43159

224 PAPER D. GHUNTER

1 function ensureDeepObject(obj: any): any {
2 return Object.keys(obj).reduce((res, key) => {
3 const val = obj[key];
4 if (!key.includes(’.’))
5 res[key] = ensureDeepObject(val);
6 else
7 walk(res, key.split(’.’), val);
8 return res;
9 }, {} as any);

10 }
11 function walk(obj:any, keys:string[], val:any) {
12 const key = keys.shift()!;
13 if (keys.length === 0) {
14 obj[key] = val;
15 return;
16 }
17 if (obj[key] === undefined)
18 obj[key] = {};
19 walk(obj[key], keys, ensureDeepObject(val));
20 }

Listing D.8: Prototype pollution vulnerability in Kibana.

the read operation is successful, readPackage() parses the content of the file as
JSON and returns the parsed object in line 7. tryPackage then accesses the main
property in line 10, loads a file based on the path specified in the main property,
and evaluates its JavaScript code in line 15. Consequently, if package.json
lacks the main property, line 10 looks up the property in the prototype chain
of the returned object, allowing a polluted property from Object.prototype
to be assigned to pkg. This leads to the evaluation of JavaScript code from an
attacker-controlled file in line 15.

The Node.js team attempted to fix this gadget by applying guidelines G2 and
G3 to readPackage function. They correctly make a safe copy of the parsed
object in line 7 to an object with a null prototype. However, GHunter detects
a variation of the gadget in v18.13.0. If packageJsonReader can not find the
package.json file, the function returns false in line 6. Since Boolean is a prim-
itive type and all primitive types in JavaScript inherit from Object.prototype,
the expression (false)?.main in line 10 accesses the polluted value in
Object.prototype and assigns it to pkg, achieving the same attack. This makes
the require function exploitable, albeit through a different gadget.

End-to-end exploit To demonstrate the impact of this gadget, we analyze
Kibana version 8.7.0 for end-to-end exploits. We initially utilized the Silent
Spring [194] toolchain to detect prototype pollution vulnerabilities. The anal-
ysis reports 44 cases in the server-side code, with 6 being potentially exploitable.
The simplified code of one of the cases is presented in Listing D.8. Kibana loads a
config file, parses it into an object, and expands the properties from dot notation

D.7. RELATED WORK 225

into nested objects (e.g., {a.b:0} to {a:{b:0}}) with the ensureDeepObject
function. This code is vulnerable to prototype pollution. On line 19, the first
argument allows an attacker to get a reference to the prototype and then assign
a value to any property of the prototype in line 14.

To exploit this prototype pollution, an attacker should upload a configuration
file with a payload via the Web UI form and restart Kibana to trigger the parsing
of the new configuration file. During the restart process, Kibana crashed at
an early stage due to an unexpected polluted property that prevented gadget
execution via another web request. However, the application invoked require
multiple times during loading, allowing us to trigger it and achieve RCE. The
investigation process took 8 hours for one author already familiar with Kibana.
We reported this vulnerability, and the Kibana team acknowledged the issue,
assigning CVE-2023-31414 with a critical CVSS 9.1, and rewarding a substantial
bounty. The Node.js team fixed the require gadget in version 18.19.0.
Takeaways If developers fix only the prototype pollution vulnerabilities while
leaving its associated gadget exploitable, they remain at risk. Our case studies
show that many developers are aware of this risk and attempt to mitigate the
gadgets and similar attacks. However, this task is far from trivial. We identified
numerous gadgets and common coding issues that lead to new gadgets, empha-
sizing the need for more principled solutions. Our proposed guidelines are a step
forward in this direction.

D.7 Related Work

We discuss our work in the context of closely-related works that address proto-
type pollution vulnerabilities and position our contributions in the area of web
application security.
Universal gadgets in JavaScript runtimes The problem of identifying uni-
versal gadgets in JavaScript runtimes remains largely unexplored. To the best of
our knowledge, only the work of Shcherbakov et al. [194] studies universal gadgets
in Node.js. Section D.5 compares their work to GHunter.

Recent work by Shcherbakov et al. [196] uses dynamic taint analysis via pro-
gram instrumentation to find gadgets in NPM packages. This approach cannot
be used to identify universal gadgets which require modifications of runtime en-
vironments (Node.js and Deno) and the underlying V8 engine. Our universal
gadgets are complementary and contribute with additional dangerous sinks for
analysis such as [196], thus increasing their attack surface coverage. Kang et
al. [87] study prototype pollution on the client-side application by dynamic taint
tracking. Their analysis is implemented at the V8 JavaScript engine by adapt-
ing the tool of Melicher et al. [124]. Their focus on client-side vulnerabilities is
incompatible with server-side runtimes such as Node.js and Deno.

Other work [109, 206] uses concolic execution to find gadgets in client-side
JavaScript code. Concolic execution is a promising enhancement of dynamic

226 PAPER D. GHUNTER

analysis. Liu et al. [109] focus specifically on finding gadget chains where one
gadget unlocks the use of another gadget (e.g. by forcing a branch). It would be
interesting to apply these ideas to backend systems.

Prototype pollution In recent years, we have seen increased attention on pro-
totype pollution vulnerabilities by both academia and practitioners [7, 19, 77, 87,
95, 105, 106, 194, 221]. The work of Arteau [7] is the first to demonstrate the fea-
sibility of prototype pollution in a number of libraries. On the academic front,
the vast majority of research contributions focus on the detection of prototype
pollution [95, 105, 106]. These works use static taint analysis to find zero-day
vulnerabilities leading to DoS attacks. Our contributions are complementary
as they focus on the detection of universal gadgets rather than prototype pol-
lution. The security impact of prototype pollution is discussed in practitioner
forums [19, 77, 221]. Heyes [77] describes how prototype pollution can be ex-
ploited in Node.js to find vulnerabilities beyond DoS in black-box scenarios. Their
semi-automated approach uses PP-finder [221] to report all undefined properties
encountered during the execution and conducts manual inspection of packages
for vulnerabilities. This approach is practical for a few specific targets, yet it is
neither feasible at scale nor able to identify universal gadgets.

Code reuse attacks for the web Prototype pollution is a new class of code
reuse vulnerabilities in web applications and, as such, it shares similarities with
object injection vulnerabilities. Several works use static taint analysis to detect
code reuse vulnerabilities for a variety of languages including PHP [51,52,64,163],
.NET [147, 191], and Java [79, 148]. Xiao et al. [220] study a related type of
vulnerability coined hidden property attacks. Lekies et al. [103] and Roth et
al. [174] study the implications of script gadgets in bypassing existing XSS and
CSP mitigations. While all of these vulnerabilities rely on the reuse of code
gadgets, their precise connection is yet to be studied systematically. GHunter
implements a lightweight form of dynamic taint analysis at the level of JavaScript
runtimes and V8 engine. Dynamic taint analysis [181,182] is a popular technique
used to identify web-related vulnerabilities, including instrumentations at both
program- and runtime-level [1, 32,70,86,90,104,150,185].

D.8 Conclusion

We have presented a semi-automated pipeline, GHunter, able to find exploitable
universal gadgets in Node.js and Deno by lightweight dynamic taint analysis. We
have used GHunter in a comprehensive study of universal gadgets, finding a
total 123 exploitable gadgets. In absence of comprehensive defenses, we have
systematized existing mitigation for prototype pollution and gadgets in the form
of guidelines. We have used these guidelines in a study of existing exploits in real
applications to illuminate the current status, finding a high-severity exploit due
to the lack of principled mitigations.

D.9. APPENDIX 227

Acknowledgments We thank anonymous reviewers for the helpful suggestions
and feedback. This work was partially supported by the Swedish Foundation for
Strategic Research (SSF) under project CHAINS, the Swedish Research Council
(VR) under project WebInspector, and Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation
under project ShiftLeft.

D.9 Appendix

1 let __pollutedValue = ’0xEFFACED’, __accessIndex = 0;
2 Object.defineProperty(Object.prototype, ’${prop}’, {
3 get: function() {
4 const returnValue = __pollutedValue + __accessIndex;
5 __accessIndex += 1;
6 try {
7 throw new Error();
8 } catch(error) {
9 globalThis.log(returnValue + ’ source stack: ’ + error.stack);

10 }
11 return returnValue;
12 },
13 set: function(newValue) {
14 Object.defineProperty(this, ’${prop}’, {
15 value: newValue,
16 writable: true,
17 enumerable: true,
18 configurable: true
19 });
20 },
21 enumerable: ${prop === FORIN_SYMBOL ? "true" : "false"},
22 configurable: true,
23 });

Listing D.9: Injected snippet for polluting with a string value.

228 PAPER D. GHUNTER

Gadget Properties Attack Type
cluster.fork NODE_OPTIONS ACE

cp.exec NODE_OPTIONS ACE
cp.execFile NODE_OPTIONS ACE

cp.execFileSync

shell, NODE_OPTIONS ACE
shell, input ACE
uid PE
gid PE
cwd PT

cp.execSync NODE_OPTIONS ACE
input ACE

cp.fork NODE_OPTIONS ACE

cp.spawn

shell, NODE_OPTIONS ACE
uid PE
gid PE
cwd PT

cp.spawnSync

shell, NODE_OPTIONS ACE
shell, input ACE
uid PE
gid PE
cwd PT

crypto.privateEncrypt padding CD
crypto.publicEncrypt padding CD
crypto.subtle.encrypt kty Segfault

crypto.publicKey.export kty Segfault
crypto.privateKey.export kty Segfault

crypto.createPrivateKey type Segfault
passphrase Segfault

crypto.createPublicKey type Segfault
passphrase Segfault

fetch socketPath, body,
method, referrer SSRF

fs.createWriteStream mode PE

https.get
hostname, headers,
method, path, port,
NODE_TLS_REJEC...

SSRF

https.request

hostname, headers,
method, path, port,
NODE_TLS_REJEC...

SSRF

0 Segfault

http.get hostname, headers,
method, path, port SSRF

http.request hostname, headers,
method, path, port SSRF

http.Server.listen backlog Segfault
import source ACE

require (v18.13.0) main ACE
Socket.send address SSRF

stream.Duplex readableObjectMode Segfault
tls.TLSSocket.connect path Segfault

vm.SyntheticModule
sourceText,
lineOffset,
columnOffset

ACE

zlib.createGzip().write writableObjectMode Segfault

Table D.5: A summary of the exploitable first-order gadgets in Node.js. Gadget
identifies the public API that triggers a gadget; Properties specifies which properties
must be polluted; Attack Type specifies one of Arbitrary Code/Command Execution
(ACE), Cryptographic Downgrade (CD), Path Traversal (PT), Privilege Escalation
(PE), Server Side Request Forgery (SSRF), or Segfault.

D.9. APPENDIX 229

Gadget Properties Attack Type
fetch body, headers, method, 0 SSRF

Worker

env PE
ffi PE
hrtime PE
net PE
read PE
run PE
sys PE
write PE

Deno.makeTempDir dir PT
prefix PT

Deno.makeTempDirSync dir PT
prefix PT

Deno.makeTempFile dir PT
prefix PT

Deno.makeTempFileSync dir PT
prefix PT

Deno.mkdir mode PE
Deno.mkdirSync mode PE

Deno.open
append UM
mode PE
truncate UM

Deno.openSync
append UM
mode PE
truncate UM

Deno.writeFile append UM
mode PE

Deno.writeFileSync append UM
mode PE

Deno.writeTextFile append UM
mode PE

Deno.writeTextFileSync append UM
mode PE

Deno.run
cwd PT
gid PE
uid PE

Deno.Command
cwd PT
gid PE
uid PE

cp.exec shell, env ACE
cp.execFileSync shell, env ACE

cp.execSync shell, env ACE

cp.spawn
shell, env ACE
gid PE
uid PE

cp.spawnSync shell, env ACE

fs.appendFile length Loop
offset OOM

fs.writeFile length Loop
offset OOM

http.request hostname, method, path, port SSRF
https.request hostname, method, path, port SSRF

zlib.createBrotliCompress params Panic

json.JsonStringifyStream prefix UM
suffix UM

log.FileHandler formatter LP

tar.Tar.append gid PE
uid PE

yaml.stringify indent OOM

Table D.6: A summary of the exploitable first-order gadgets in Deno. Gadget
identifies the public API that triggers a gadget; Properties specifies which prop-
erties must be polluted; Attack Type specifies one of Arbitrary Code/Command
Execution (ACE), Log Pollution (LP), Loop, Out of Memory (OOM), Panic, Path
Traversal (PT), Privilege Escalation (PE), Server Side Request Forgery (SSRF), or
Unauthorized Modifications (UM).

230 PAPER D. GHUNTER

D.10 Artifact Appendix

Abstract

The artifacts develop lightweight taint analysis on top of the JavaScript runtimes
Node.js and Deno with the goal of identifying prototype pollution gadgets. In
particular, each artifact modifies the V8 JavaScript engine shared by Node.js
and Deno as well as some minor aspects of each runtime itself; these changes
are present as .patch files in the artifact. Additionally, each builds on top of
the project with tooling to run our analysis and generate results. Finally, the
last artifact constitutes modifications to Silent Spring used for the comparison
between GHunter and Silent Spring.

We demonstrate the functionality and reproducibility of the analysis artifacts
and evaluate the effectiveness of our analysis against Silent Spring in terms of
precision and recall. The results of the former refer to Section 5.1 and Table 1, 5
and 6 while the latter refers to Section 5.2 and Table 2 and 3.

Description & Requirements

Security, privacy, and ethical concerns

There are no risks for the users relating to security and privacy of their machines.
The artifact has been used to detect gadgets in production-ready software and
these vulnerabilities have been responsibly disclosed to the vendors.

How to access

The artifacts are accessible on GitHub at https://github.com/KTH-LangSec/
ghunter/tree/23abc11 which encompasses three sub projects: the Deno analysis
artifact, the Node.js analysis artifact, and the Silent Spring comparison artifact.

Hardware dependencies

We performed the experiments described in this appendix on an AMD Ryzen 7
3700x 8-core CPU (3.60GHz) with 32 GB RAM and 50 GB of disk space. No
specific hardware features are required for the artifact evaluation.

Software dependencies

We performed the experiments on the Ubuntu 22.04 OS. We used Docker as an
OCI container runtime.

Benchmarks

Deno v1.37.2 We run our gadget detection analysis against Deno version 1.37.2.
The source code of this benchmark is incorporated as git submodules in the

https://github.com/KTH-LangSec/ghunter/tree/23abc1188b32868981b268e59058b6d96f2c421b
https://github.com/KTH-LangSec/ghunter/tree/23abc1188b32868981b268e59058b6d96f2c421b

D.10. ARTIFACT APPENDIX 231

ghunter4deno sub project (named deno, deno_core, and rusty_v8). Sec-
tion 5.1 and Table 1 of the paper reports the aggregate number of gadgets
detected and Table 6 of the paper reports all the detected first-order gadgets
in detail.

Deno standard library v0.204.0 In addition to Deno v1.37.2, we run our gad-
get detection analysis against the Deno standard library version 0.204.0. The
source code of this benchmark is incorporated as a git submodule in the
ghunter4deno sub project (named deno_std). Section 5.1 and Table 1 and
6 also report on this benchmark.

Node.js v21.0.0 We run our gadget detection analysis against Node.js version
21.0.0. The source code of this benchmark is incorporated as a git submodule
in the ghunter4node sub project (named node). Section 5.1 and Table 1 of
the paper reports the aggregate number of gadgets detected and Table 5 of
the paper reports all the detected first-order gadgets in detail.
Additionally, we run our gadget detection analysis against Node.js version
21.0.0 for a comparison to Silent Spring. The test cases for this comparison
are located src/ss21. Section 5.2 and Table 3 of the paper reports on the
results of this analysis.

Node.js v16.13.1 We run our gadget detection analysis against Node.js version
16.13.1 for a comparison to Silent Spring. The test cases for this comparison
are located src/ss16. Section 5.2 and Table 2 of the paper reports on the
results of this analysis.

Silent Spring We compare our results against those of Silent Spring. We do
this on both Node.js v16.13.1 and v21.0.0. Our adaptation of Silent Spring
is located in the silentspring4ghunter sub project. This benchmark re-
embeds the respective Node.js benchmarks on separate commits (a6ae944
and 14966b5 resp.). Section 5.2 and Table 2 and 3 (resp.) of the paper
report on the results of this analysis.

Set-up

We provide two modes for testing the Deno and Node.js artifacts (1) a prepared
OCI container and (2) instructions on how to set up the environment from scratch.
We only provide instructions on how to set up the environment from scratch for
the Silent Spring artifact.

(S1): Deno. For the analysis of Deno use either the OCI container image ghcr.io/
kth-langsec/ghunter4deno1 by pulling it, launching it, and attaching a
shell. Alternatively, build the container image by following the instructions
from the README of https://github.com/KTH-LangSec/ghunter4deno at
commit 63a9faa. In this mode, the users may skip the rest of (S1) and (I1).
For a local set-up, clone https://github.com/KTH-LangSec/ghunter4deno
with submodules recursively and checkout commit 63a9faa. Then continue

1a4c29470545af82a0d8b446e1594ba4e78ad45babdf3af51c72f54fad1c35860

https://github.com/KTH-LangSec/ghunter4deno/tree/63a9faaa440c9eb8a80f1a5cdabda894b6cc0fe2
https://github.com/KTH-LangSec/ghunter4deno/tree/63a9faaa440c9eb8a80f1a5cdabda894b6cc0fe2

232 PAPER D. GHUNTER

with (I1).
(S2): Node.js. For the analysis of Node.js use either the OCI container image by

pulling ghcr.io/kth-langsec/ghunter4node2, launching it, and attaching
a shell. Alternatively, build the container image by following the instructions
from the README of https://github.com/KTH-LangSec/ghunter4node at
commit 86aad7c. In this mode, the users may skip the rest of (S2) and (I2).
For a local set-up, clone https://github.com/KTH-LangSec/ghunter4node
with submodules recursively and checkout commit 86aad7c. Then continue
with (I2).

(S3): Silent Spring. For the comparison to Silent Spring, clone https://github.com
/KTH-LangSec/silentspring4ghunter with submodules recursively. For the
comparison on Node.js v16.13.1 checkout commit a6ae944 and for the com-
parison on Node.js v21.0.0 checkout commit 14966b5. In either case, continue
with (I3)-(I5).

Installation

(I1): Deno development prerequisites. See https://github.com/denoland/deno-
docs commit 7b4aa84 file building_from_source.md.

(I2): Node.js development prerequisites. See https://github.com/nodejs/node
commit 38d0e69 file BUILDING.md.

(I3): CodeQL v2.9.2. Download and unzip an asset for your platform of version
2.9.2 from the official repository. Add the path of the codeql folder to PATH
environment variable.

(I4): Node.js v16.13.1. Follow the instructions on the official website to install
Node.js version 16.13.1 for the comparison on this Node.js version.

(I5): Node.js v21.0.0. Follow the instructions on the official website to install
Node.js version 21.0.0 for the comparison on this Node.js version.

Basic Test

(B1): Deno. We recommend running the source-to-sink analysis with a single
test case as a basic test. First build using ./make.sh s2s sync, then run
the basic test using ./analyze.sh 2 20 basic-test. The first command
compiles Deno and can take up to an hour, the latter runs a simple analysis
that should take about one minute. This is expected to yield about 6 gadget
candidates.

(B2): Node.js. We recommend running the source-to-sink analysis with a sin-
gle test case as a basic test. We provide a script to perform this test,
./nodejs-test-one.sh. This will build Node.js for the analysis and run
the analysis with a single test. This command compiles Node.js, which can
take up to an hour, and runs a simple analysis that should take about one

2a2b09930d54d652f192d086a91186d5d9d94c14f2deae451b88e563fcb38231a

https://github.com/KTH-LangSec/ghunter4node/tree/86aad7cf43aad4ef29c6cf799fdfe7e97930a9c5
https://github.com/KTH-LangSec/ghunter4node/tree/86aad7cf43aad4ef29c6cf799fdfe7e97930a9c5
https://github.com/KTH-LangSec/silentspring4ghunter
https://github.com/KTH-LangSec/silentspring4ghunter
https://github.com/KTH-LangSec/silentspring4ghunter/tree/a6ae944d8c4bcd5aae020d018e9e63cebb229cde
https://github.com/KTH-LangSec/silentspring4ghunter/tree/14966b50550fdb0f8c8888c6642c5a86bf1e661c
https://github.com/denoland/deno-docs/tree/7b4aa843f7b8315b0f5129af16521b7a44100c8e
https://github.com/denoland/deno-docs/tree/7b4aa843f7b8315b0f5129af16521b7a44100c8e
https://github.com/nodejs/node/tree/38d0e69347de4db532a3bb6bddf51ead9ff764f8
https://nodejs.org/en
https://nodejs.org/en

D.10. ARTIFACT APPENDIX 233

minute. This is expected to yield about 10 unique source-to-sink pairs after
filtering.

(B3): Silent Spring. Follow the basic test instructions for the original Silent Spring
artifact.

Evaluation workflow

Major Claims

(C1): Our dynamic analysis tool applied to Deno uncovered 67 universal gadgets.
This is evaluated by experiment (E1) and described in Section 5.1 and Table
6 of the paper.

(C2): Our dynamic analysis tool applied to Node.js uncovered 56 universal gad-
gets. This is evaluated by experiment (E2) and described in Section 5.1 and
Table 5 of the paper.

(C3): Our dynamic analysis tool has higher precision and recall than Silent Spring
for finding universal gadgets on two different Node.js versions. This is evalu-
ated by experiment (E3)-(E6) and described in Section 5.2 of the paper.

Experiments

We describe a total of 6 experiments, 2 related to claims (C1) and (C2) and 4
related to (C3). The former cover the first 3 benchmarks and the latter cover
the last 3 benchmarks.

(E1): Analysis of Deno, 10 human-minutes + <4 compute-hours + 50GB disk:
Full analysis of the Deno runtime for universal gadgets.
Set-up: Follow (S1).
Preparation: Follow (B1).
Execution: Start ./run.sh, optionally with a number of workers (default
5) and test timeout (default 20s) as ./run.sh <W> <T>.
Results: The output at the end of the analysis provides a table of which
expected gadget candidates from Table 6 of the paper were found as well as the
analysis numbers from Section 5.1 (paragraph Analysis of Deno); This output
can be recomputed by running the numbers.sh script after the analysis has
finished. The exact numbers may differ but are expected to be similar. The
folder _aggregate will contain the final two SARIF files for manual analysis,
which can be compared to the SARIF files in the results directory.

(E2): Analysis of Node.js, 10 human-minutes + <4 compute-hours + 50GB disk:
Partial analysis of the Node.js runtime for universal gadgets in the
child_process API.3
Set-up: Follow (S2).

3The full analysis can be performed by substituting “child_process” for “all” in the experiment
steps, but this requires hardware similar to that described in the paper rather than hardware
similar to that described in this appendix and is expected to take over 96 hours to complete.

234 PAPER D. GHUNTER

Preparation: Follow (B2).
Execution: Start ./run-child_process-s2s.sh, optionally with a num-
ber of workers (default 5) and test timeout (default 20s)
as ./run-child_process-s2s.sh <W> <T>, to perform the source-to-sink
analysis.
After the script has finished, start ./run-child_process-crashes.sh, op-
tionally with a number of workers (default 5) and test timeout (default 20s) as
./run-child_process-crashes.sh <W> <T>, to perform the unexpected-
termination analysis.
Results: The output at the end of the former script constitutes part of the
aggregate analysis numbers from Section 5.1 of the paper except limited to
the child_process API (expect ~70,000 sinks reached with ~1,500 unique
sink-source pairs before filtering, and ~40 unique sink-source pairs after fil-
tering). It produces the SARIF files for manual review in a folder named
node/fuzzing/X-YYYY-MM-DD-HH-MM-SS.
The output at the end of the latter script constitutes the remaining part of the
aggregate analysis numbers from Section 5.1 of the paper except limited to the
child_process API (expect 2 gadget candidates out of ~111,000 crashes).

(E3): Comparison on Node.js v21.0.0 GHunter, 10 human-minutes + <2
compute-hour + 50GB disk: The GHunter part of the comparison between
GHunter and Silent Spring on Node.js v21.0.0.
Set-up: Follow (S2).
Preparation: Not applicable.
Execution: Start ./run-compare-ss-21.sh to run the source-to-sink anal-
ysis for the relevant APIs for the comparison.
Results: This will output the results and also store them in the node/
fuzzing.ss21 folder. There will be 9 folders following the X-YYYY-MM-
DD-HH-MM-SS naming scheme. Each maps to a row from Table 3 of the
paper according to the mapping found in the project’s README and con-
tains two relevant files: count.txt for the number presented as “GC” in
Table 3 and compare.json with the properties and corresponding sinks of
each gadget candidate (validating them is a manual process). False negatives
are derived as FN = GT − TP .

(E4): Comparison on Node.js v21.0.0 Silent Spring, 10 human-minutes + <5
compute-hours + 2GB disk: The Silent Spring part of the comparison between
GHunter and Silent Spring on Node.js v21.0.0.
Set-up: Follow (S3) and checkout 14966b5.
Preparation: Run node --version and ensure you are using v21.0.0.
Execution: Start ./compare.sh.
Results: The script writes the raw results for the comparison as a folder per
row of Table 3 in the paper in the raw-data folder. Each folder contains
the raw output from Silent Spring as well as a ghunter.log file with the
data for comparison. In particular, the last line (starting with Candidates)
is the “GC” number from Table 3 and the data preceding it (starting from

D.10. ARTIFACT APPENDIX 235

all props) contains the true and false positives data (validating them is a
manual process). False negatives are derived as FN = GT − TP .

(E3): Comparison on Node.js v16.13.1 GHunter, 10 human-minutes + <2
compute-hour + 50GB disk: The GHunter part of the comparison between
GHunter and Silent Spring on Node.js v16.13.1.
Set-up: Follow (S2).
Preparation: Not applicable.
Execution: Start ./run-compare-ss-16.sh to run the source-to-sink anal-
ysis for the relevant APIs for the comparison.
Results: This will output the results and also store them in the node/
fuzzing.ss16 folder. There will be 11 folders following the X-YYYY-MM-
DD-HH-MM-SS naming scheme. Each maps to a row from Table 2 of the
paper according to the mapping found in the project’s README and con-
tains two relevant files: count.txt for the number presented as “GC” in
Table 2 and compare.json with the properties and corresponding sinks of
each gadget candidate (validating them is a manual process). False negatives
are derived as FN = GT − TP .

(E6): Comparison on Node.js v16.13.1 Silent Spring, 10 human-minutes + <6
compute-hours + 2GB disk: The Silent Spring part of the comparison between
GHunter and Silent Spring on Node.js v16.13.1.
Set-up: Follow (S3) and checkout a6ae944.
Preparation: Run node --version and ensure you are using v16.13.1.
Execution: Start ./compare.sh.
Results: The script writes the raw results for the comparison as a folder per
row of Table 2 in the paper in the raw-data folder. Each folder contains
the raw output from Silent Spring as well as a ghunter.log file with the
data for comparison. In particular, the last line (starting with Candidates)
is the “GC” number from Table 2 and the data preceding it (starting from
all props) contains the true and false positives data (validating them is a
manual process). False negatives are derived as FN = GT − TP .

Version

Based on the LaTeX template for Artifact Evaluation V20231005. Submission,
reviewing and badging methodology followed for the evaluation of this artifact
can be found at https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

References

[1] Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and
Stefano Paraboschi. Cage4deno: A fine-grained sandbox for deno subpro-
cesses. 2023.

[2] Mohammad M. Ahmadpanah, Daniel Hedin, Musard Balliu, Lars Eric Ols-
son, and Andrei Sabelfeld. SandTrap: Securing JavaScript-driven trigger-
action platforms. In 30th USENIX Security Symposium, USENIX Security
21. USENIX Association, 2021.

[3] Mark W. Aldrich, Alexi Turcotte, Matthew Blanco, and Frank Tip. Augur:
Dynamic taint analysis for asynchronous javascript. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering,
ASE’22, 2023.

[4] Rahaf Alkhadra, Joud Abuzaid, Mariam AlShammari, and Nazeeruddin Mo-
hammad. Solar winds hack: In-depth analysis and countermeasures. In 2021
12th International Conference on Computing Communication and Network-
ing Technologies (ICCCNT), pages 1–7. IEEE, 2021.

[5] Ambionics. PHPGGC - library of PHP unserialize() payloads. https://gi
thub.com/ambionics/phpggc.

[6] AppCheck. Template Injection in JsRender and JsViews. https://appche
ck-ng.com/template-injection-jsrender-jsviews/.

[7] Olivier Arteau. Prototype pollution attack in NodeJS application. NorthSec,
2018.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for Android apps. In PLDI 2014, page 29, 2014.

[9] Todd M Austin, Scott E Breach, and Gurindar S Sohi. Efficient detection
of all pointer and array access errors. In Proceedings of the ACM SIG-
PLAN 1994 conference on Programming Language Design and Implemen-
tation, pages 290–301, 1994.

237

https://github.com/ambionics/phpggc
https://github.com/ambionics/phpggc
https://appcheck-ng.com/template-injection-jsrender-jsviews/
https://appcheck-ng.com/template-injection-jsrender-jsviews/

238 REFERENCES

[10] Pavel Avgustinov, Oege De Moor, Michael Peyton Jones, and Max Schäfer.
Ql: Object-oriented queries on relational data. In 30th European Conference
on Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

[11] John Aycock. A brief history of just-in-time. ACM Computing Surveys
(CSUR), 35(2):97–113, 2003.

[12] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. Less is more:
Quantifying the security benefits of debloating web applications. In 28th
USENIX Security Symposium, USENIX Security 19, pages 1697–1714.
USENIX Association, 2019.

[13] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi. Efficient and
flexible discovery of php application vulnerabilities. In EuroS&P’17, pages
334–349, 2017.

[14] Musard Balliu, Daniel Schoepe, and Andrei Sabelfeld. We are family: Relat-
ing information-flow trackers. pages 124–145, 2017.

[15] Michał Bentkowski. Exploiting prototype pollution – RCE in Kibana (CVE-
2019-7609). https://research.securitum.com/prototype-pollution
-rce-kibana-cve-2019-7609.

[16] Masudul Hasan Masud Bhuiyan, Adithya Srinivas Parthasarathy, Nikos Vasi-
lakis, Michael Pradel, and Cristian-Alexandru Staicu. SecBench.js: An
executable security benchmark suite for server-side javascript. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE),
pages 1059–1070. IEEE, 2023.

[17] Stephen M Blackburn, Perry Cheng, and Kathryn S McKinley. Myths and
realities: The performance impact of garbage collection. ACM SIGMETRICS
Performance Evaluation Review, 32(1):25–36, 2004.

[18] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-
oriented programming: a new class of code-reuse attack. In Proceedings of the
6th ACM symposium on information, computer and communications security,
pages 30–40, 2011.

[19] Sergey Bobrov. Client-Side Prototype Pollution and useful Script Gadgets.
https://github.com/BlackFan/client-side-prototype-pollution.

[20] Alex Brasetvik. Report #852613 - Remote Code Execution on Cloud via
latest Kibana 7.6.2. https://hackerone.com/reports/852613.

[21] Alex Brasetvik. Report #861744 - Remote Code Execution in coming Kibana
7.7.0. https://hackerone.com/reports/861744.

https://research.securitum.com/prototype-pollution-rce-kibana-cve-2019-7609
https://research.securitum.com/prototype-pollution-rce-kibana-cve-2019-7609
https://github.com/BlackFan/client-side-prototype-pollution
https://hackerone.com/reports/852613
https://hackerone.com/reports/861744

REFERENCES 239

[22] Fraser Brown, Shravan Narayan, Riad S. Wahby, Dawson R. Engler, Ranjit
Jhala, and Deian Stefan. Finding and preventing bugs in JavaScript bindings.
In Symposium on Security and Privacy (S&P), 2017.

[23] Kim B Bruce. Foundations of object-oriented languages: types and semantics.
MIT press, 2002.

[24] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Ste-
fan Brunthaler, and Mathias Payer. Control-flow integrity: Precision, secu-
rity, and performance. ACM Computing Surveys (CSUR), 50(1):16:1–16:33,
2017.

[25] Elasticsearch B.V. Elastic Stack: Elasticsearch, Kibana, Beats, Logstash -
Elastic. https://www.elastic.co/elastic-stack/.

[26] Elasticsearch B.V. Kibana 8.15.1 Security Update (ESA-2024-27, ESA-2024-
28). https://discuss.elastic.co/t/kibana-8-15-1-security-updat
e-esa-2024-27-esa-2024-28/366119.

[27] Elasticsearch B.V. Kibana Source Code. https://github.com/elastic/k
ibana/.

[28] Mathias Bynens. Javascript engine fundamentals: Shapes and inline caches.
https://mathiasbynens.be/notes/shapes-ics.

[29] Sicong Cao, Biao He, Xiaobing Sun, Yu Ouyang, Chao Zhang, Xiaoxue Wu,
Ting Su, Lili Bo, Bin Li, Chuanlei Ma, Jiajia Li, and Tao Wei. Oddfuzz:
Discovering java deserialization vulnerabilities via structure-aware directed
greybox fuzzing. In 44th IEEE Symposium on Security and Privacy, SP
2023, San Francisco, CA, USA, May 21-25, 2023, pages 2726–2743. IEEE,
2023.

[30] Sicong Cao, Xiaobing Sun, Xiaoxue Wu, Lili Bo, Bin Li, Rongxin Wu, Wei
Liu, Biao He, Yu Ouyang, and Jiajia Li. Improving java deserialization gadget
chain mining via overriding-guided object generation. In 45th IEEE/ACM
International Conference on Software Engineering, ICSE 2023, Melbourne,
Australia, May 14-20, 2023, pages 397–409. IEEE, 2023.

[31] Darion Cassel, Nuno Sabino, Ruben Martins, and Limin Jia. NODEMEDIC-
FINE: Automatic Detection and Exploit Synthesis for Node.js Vulnerabilities.

[32] Darion Cassel, Wai Tuck Wong, and Limin Jia. Nodemedic: End-to-end anal-
ysis of node.js vulnerabilities with provenance graphs. In 8th IEEE European
Symposium on Security and Privacy, EuroS&P 2023, Delft, Netherlands, July
3-7, 2023, pages 1101–1127. IEEE, 2023.

https://www.elastic.co/elastic-stack/
https://discuss.elastic.co/t/kibana-8-15-1-security-update-esa-2024-27-esa-2024-28/366119
https://discuss.elastic.co/t/kibana-8-15-1-security-update-esa-2024-27-esa-2024-28/366119
https://github.com/elastic/kibana/
https://github.com/elastic/kibana/
https://mathiasbynens.be/notes/shapes-ics

240 REFERENCES

[33] CERT Coordination Center. VU#843464 - SolarWinds Orion API authenti-
cation bypass allows remote command execution. https://kb.cert.org/
vuls/id/843464.

[34] Bofei Chen, Lei Zhang, Xinyou Huang, Yinzhi Cao, Keke Lian, Yuan Zhang,
and Min Yang. Efficient detection of java deserialization gadget chains via
bottom-up gadget search and dataflow-aided payload construction. In 2024
IEEE Symposium on Security and Privacy (SP), pages 150–150. IEEE Com-
puter Society, 2024.

[35] Cristina Cifuentes, Andrew Gross, and Nathan Keynes. Understanding caller-
sensitive method vulnerabilities: A class of access control vulnerabilities in
the java platform. In SOAP 2015, pages 7–12, 2015.

[36] BSON Parser contributors. BSON Parser for node and browser. https:
//github.com/mongodb/js-bson.

[37] Bun contributors. Bun: an all-in-one JavaScript runtime, bundler, transpiler
and package manager. https://bun.sh/.

[38] Node.js contributors. Adding v8 fast api. https://github.com/nodejs/no
de/blob/v21.0.0/doc/contributing/adding-v8-fast-api.md.

[39] Node.js contributors. Node.js documentation. https://nodejs.org/api/c
hild_process.html.

[40] Node.js contributors. Node.js JavaScript runtime v16.13.1. https://gith
ub.com/nodejs/node/tree/v16.13.1/lib.

[41] Eric Cornelissen, Mikhail Shcherbakov, and Musard Balliu. Ghunter: Uni-
versal prototype pollution gadgets in javascript runtimes. https://github
.com/KTH-LangSec/ghunter.

[42] Eric Cornelissen, Mikhail Shcherbakov, and Musard Balliu. GHunter: Univer-
sal Prototype Pollution Gadgets in JavaScript Runtimes. In Davide Balzarotti
and Wenyuan Xu, editors, 33rd USENIX Security Symposium, USENIX Secu-
rity 2024, Philadelphia, PA, USA, August 14-16, 2024. USENIX Association,
2024.

[43] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 238–252, 1977.

[44] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.
Journal of logic and computation, 2(4):511–547, 1992.

https://kb.cert.org/vuls/id/843464
https://kb.cert.org/vuls/id/843464
https://github.com/mongodb/js-bson
https://github.com/mongodb/js-bson
https://bun.sh/
https://github.com/nodejs/node/blob/v21.0.0/doc/contributing/adding-v8-fast-api.md
https://github.com/nodejs/node/blob/v21.0.0/doc/contributing/adding-v8-fast-api.md
https://nodejs.org/api/child_process.html
https://nodejs.org/api/child_process.html
https://github.com/nodejs/node/tree/v16.13.1/lib
https://github.com/nodejs/node/tree/v16.13.1/lib
https://github.com/KTH-LangSec/ghunter
https://github.com/KTH-LangSec/ghunter

REFERENCES 241

[45] Patrick Cousot and Radhia Cousot. Abstract interpretation: past, present
and future. In Proceedings of the Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1–10, 2014.

[46] Crispin Cowan, F Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole.
Buffer overflows: Attacks and defenses for the vulnerability of the decade.
In Proceedings DARPA Information Survivability Conference and Exposition.
DISCEX’00, volume 2, pages 119–129. IEEE, 2000.

[47] Stefano Cristalli, Edoardo Vignati, Danilo Bruschi, and Andrea Lanzi.
Trusted Execution Path for Protecting Java Applications Against Deserial-
ization of Untrusted Data. In RAID 2018, pages 445–464, 2018.

[48] CrowdStrike. SUNSPOT Malware Technical Analysis. https://www.crow
dstrike.com/blog/sunspot-malware-technical-analysis/.

[49] CSAW. Applied Research Competition. https://www.csaw.io/research.

[50] Johannes Dahse and Thorsten Holz. Simulation of built-in PHP features
for precise static code analysis. In Network and Distributed System Security
Symposium (NDSS 2014), 2014.

[51] Johannes Dahse and Thorsten Holz. Static detection of second-order vulner-
abilities in web applications. In 23rd USENIX Security Symposium, USENIX
Security 14, pages 989–1003. USENIX Association, 2014.

[52] Johannes Dahse, Nikolai Krein, and Thorsten Holz. Code reuse attacks in
PHP: automated POP chain generation. In Conference on Computer and
Communications Security (CCS), pages 42–53, 2014.

[53] Thurston HY Dang, Petros Maniatis, and David Wagner. The performance
cost of shadow stacks and stack canaries. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security, pages
555–566, 2015.

[54] James C. Davis, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee.
The impact of regular expression denial of service (ReDoS) in practice: an
empirical study at the ecosystem scale. In Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), 2018.

[55] James C. Davis, Francisco Servant, and Dongyoon Lee. Using selective mem-
oization to defeat regular expression denial of service (ReDoS). In Symposium
on Security and Privacy (S&P), 2021.

https://www.crowdstrike.com/blog/sunspot-malware-technical-analysis/
https://www.crowdstrike.com/blog/sunspot-malware-technical-analysis/
https://www.csaw.io/research

242 REFERENCES

[56] Michael L. Van de Vanter, Chris Seaton, Michael Haupt, Christian Humer,
and Thomas Würthinger. Fast, flexible, polyglot instrumentation support for
debuggers and other tools. CoRR, abs/1803.10201, 2018.

[57] Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex Potanin.
Evil Pickles: DoS Attacks Based on Object-Graph Engineering. In ECOOP
2017, pages 10:1–10:32, 2017.

[58] dnlib contributors. dnlib: .NET module/assembly reader/writer library. ht
tps://github.com/0xd4d/dnlib.

[59] Adam Doupé, Weidong Cui, Mariusz H. Jakubowski, Marcus Peinado,
Christopher Kruegel, and Giovanni Vigna. dedacota: toward preventing
server-side XSS via automatic code and data separation. In Conference on
Computer and Communications Security (CCS), pages 1205–1216, 2013.

[60] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan
Saltaformaggio, and Wenke Lee. Towards measuring supply chain attacks
on package managers for interpreted languages. In Network and Distributed
System Security Symposium (NDSS), 2021.

[61] Ecma International. ECMAScript® 2015 Language Specification - ECMA-
262 Edition 6. https://262.ecma-international.org/6.0/.

[62] Ecma International. Standard ECMA-335 Common Language Infrastructure
(CLI). https://ecma-international.org/publications-and-standar
ds/standards/ecma-335/.

[63] Pierre Ernst. Look-ahead Java deserialization, January 2013.

[64] Stefan Esser. Utilizing Code Reuse/ROP in PHP Application Exploits. Pro-
ceedings of the Black Hat USA, 2010.

[65] James Forshaw. Are you my Type? Breaking .NET Through Serialization.
Proceedings of the Black Hat USA, 2012.

[66] OpenJS Foundation. Node.js JavaScript runtime. https://nodejs.org/.

[67] Chris Frohoff and contributors. ysoserial: a proof-of-concept tool for gen-
erating payloads that exploit unsafe java object deserialization. https:
//github.com/frohoff/ysoserial.

[68] Xiang Fu, Xin Lu, Boris Peltsverger, Shijun Chen, Kai Qian, and Lixin Tao.
A static analysis framework for detecting SQL injection vulnerabilities. In
COMPSAC 2007, pages 87–96, 2007.

[69] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman Publishing Co., Inc., USA, 1995.

https://github.com/0xd4d/dnlib
https://github.com/0xd4d/dnlib
https://262.ecma-international.org/6.0/
https://ecma-international.org/publications-and-standards/standards/ecma-335/
https://ecma-international.org/publications-and-standards/standards/ecma-335/
https://nodejs.org/
https://github.com/frohoff/ysoserial
https://github.com/frohoff/ysoserial

REFERENCES 243

[70] François Gauthier, Behnaz Hassanshahi, and Alexander Jordan. AF-
FOGATO: runtime detection of injection attacks for node.js. In International
Symposium on Software Testing and Analysis (ISSTA), 2018.

[71] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard. Information flow analysis of android applications in droidsafe. In
NDSS, 2015.

[72] GWT Project. Issue #9709: Java Deserialization vulnerability in GWT-RPC.
https://github.com/gwtproject/gwt/issues/9709.

[73] Ian Haken. Automated Discovery of Deserialization Gadget Chains. Proceed-
ings of the Black Hat USA, 48, 2018.

[74] Mahmoud Hammad. Handlebars Template Injection and RCE. https://ma
hmoudsec.blogspot.com/2019/04/handlebars-template-injection-a
nd-rce.html.

[75] Byron Hawkins and Brian Demsky. Zenids: introspective intrusion detection
for PHP applications. In ICSE 2017, pages 232–243, 2017.

[76] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. JS-
Flow: tracking information flow in JavaScript and its APIs. In Symposium
on Applied Computing (SAC), 2014.

[77] Gareth Heyes. Server-side prototype pollution: Black-box detection without
the dos. https://portswigger.net/research/server-side-prototype
-pollution.

[78] TJ Holowaychuk and Joshua Boy Nicolai Appelman. Growl: Growl support
for Node.js. https://www.npmjs.com/package/growl.

[79] Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. An
in-depth study of more than ten years of java exploitation. In Conference on
Computer and Communications Security (CCS), pages 779–790, 2016.

[80] Jin Huang, Yu Li, Junjie Zhang, and Rui Dai. Uchecker: Automatically
detecting php-based unrestricted file upload vulnerabilities. In DSN 2019,
pages 581–592, 2019.

[81] Huli. GoogleCTF 2022 Horkos Writeup. https://blog.huli.tw/2022/07
/11/en/googlectf-2022-horkos-writeup/.

[82] Back4App Inc. Back4App: the cloud platform for building, deploying and
scaling applications. https://www.back4app.com.

[83] Deno Land Inc. Deno: a modern runtime for JavaScript and TypeScript.
https://deno.com/.

https://github.com/gwtproject/gwt/issues/9709
https://mahmoudsec.blogspot.com/2019/04/handlebars-template-injection-and-rce.html
https://mahmoudsec.blogspot.com/2019/04/handlebars-template-injection-and-rce.html
https://mahmoudsec.blogspot.com/2019/04/handlebars-template-injection-and-rce.html
https://portswigger.net/research/server-side-prototype-pollution
https://portswigger.net/research/server-side-prototype-pollution
https://www.npmjs.com/package/growl
https://blog.huli.tw/2022/07/11/en/googlectf-2022-horkos-writeup/
https://blog.huli.tw/2022/07/11/en/googlectf-2022-horkos-writeup/
https://www.back4app.com
https://deno.com/

244 REFERENCES

[84] GitHub Inc. CodeQL. https://codeql.github.com.

[85] International Organization for Standardization. ISO/IEC 14882:2020 - Pro-
gramming languages - C++. https://www.iso.org/standard/79358.htm
l.

[86] Jordan Jueckstock and Alexandros Kapravelos. VisibleV8: In-browser Mon-
itoring of JavaScript in the Wild. In Proceedings of the ACM Internet Mea-
surement Conference (IMC), October 2019.

[87] Zifeng Kang, Song Li, and Yinzhi Cao. Probe the proto: Measuring client-
side prototype pollution vulnerabilities of one million real-world websites. In
Network and Distributed System Security Symposium (NDSS 2022), 2022.

[88] Ilya Kantor. Currying and Partial Application. https://javascript.inf
o/currying-partials.

[89] Vini Kanvar and Uday P. Khedker. Heap abstractions for static analysis.
ACM Comput. Surv., 49(2), June 2016.

[90] Rezwana Karim, Frank Tip, Alena Sochůrková, and Koushik Sen. Platform-
independent dynamic taint analysis for javascript. IEEE Transactions on
Software Engineering, 46(12):1364–1379, 2020.

[91] James Kettle. Server-Side Template Injection. https://portswigger.net/
research/server-side-template-injection.

[92] Abdulraheem Khaled. Prototype Pollution in Python. https://blog.abd
ulrah33m.com/prototype-pollution-in-python/.

[93] Soheil Khodayari and Giancarlo Pellegrino. JAW: studying client-side CSRF
with hybrid property graphs and declarative traversals. In 30th USENIX
Security Symposium, USENIX Security 21. USENIX Association, 2021.

[94] Soheil Khodayari and Giancarlo Pellegrino. It’s (dom) clobbering time: At-
tack techniques, prevalence, and defenses. In 2023 IEEE Symposium on Se-
curity and Privacy (SP), pages 1041–1058, 2023.

[95] Hee Yeon Kim, Ji Hoon Kim, Ho Kyun Oh, Beom Jin Lee, Si Woo Mun,
Jeong Hoon Shin, and Kyounggon Kim. Dapp: automatic detection and
analysis of prototype pollution vulnerability in Node.js modules. International
Journal of Information Security, pages 1–23, 2021.

[96] Kiuwan. OWASP Top 10 2017 – A8 Insecure Deserialization. https://www.
kiuwan.com/blog/owasp-top-10-2017-a8-insecure-deserialization
/.

https://codeql.github.com
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html
https://javascript.info/currying-partials
https://javascript.info/currying-partials
https://portswigger.net/research/server-side-template-injection
https://portswigger.net/research/server-side-template-injection
https://blog.abdulrah33m.com/prototype-pollution-in-python/
https://blog.abdulrah33m.com/prototype-pollution-in-python/
https://www.kiuwan.com/blog/owasp-top-10-2017-a8-insecure-deserialization/
https://www.kiuwan.com/blog/owasp-top-10-2017-a8-insecure-deserialization/
https://www.kiuwan.com/blog/owasp-top-10-2017-a8-insecure-deserialization/

REFERENCES 245

[97] Igibek Koishybayev and Alexandros Kapravelos. Mininode: Reducing the
attack surface of Node.js applications. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), 2020.

[98] Nikolaos Koutroumpouchos, Georgios Lavdanis, Eleni Veroni, Christoforos
Ntantogian, and Christos Xenakis. ObjectMap: Detecting Insecure Object
Deserialization. In PCI’19, pages 67–72, 2019.

[99] Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and
Hanspeter Mössenböck. Multi-language dynamic taint analysis in a poly-
glot virtual machine. In Proceedings of the 17th International Conference on
Managed Programming Languages and Runtimes, MPLR ’20, pages 15–29,
2020.

[100] Matías Lang. Bypassing a Restrictive JS Sandbox. https://licenciapara
hackear.github.io/en/posts/bypassing-a-restrictive-js-sandbox
/.

[101] Language-Based Security group at KTH Royal Institute of Technology.
Server-side prototype pollution gadgets. https://github.com/KTH-Lan
gSec/server-side-prototype-pollution, 2024.

[102] Per Larsen and Ahmad-Reza Sadeghi, editors. The Continuing Arms Race:
Code-Reuse Attacks and Defenses. ACM / Morgan & Claypool, 2018.

[103] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß, Eduardo A. Vela Nava,
and Martin Johns. Code-reuse attacks for the web: Breaking cross-site script-
ing mitigations via script gadgets. In CCS 2017, pages 1709–1723, 2017.

[104] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later: large-
scale detection of DOM-based XSS. In Conference on Computer and Com-
munications Security (CCS), pages 1193–1204, 2013.

[105] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. Detecting Node.js
prototype pollution vulnerabilities via object lookup analysis. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ESEC/FSE
2021, page 268–279, New York, NY, USA, 2021. Association for Computing
Machinery.

[106] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. Mining Node.js vul-
nerabilities via object dependence graph and query. In 31st USENIX Security
Symposium, USENIX Security 22. USENIX Association, 2022.

[107] Snyk Limited. Snyk: a developer security platform. https://snyk.io.

https://licenciaparahackear.github.io/en/posts/bypassing-a-restrictive-js-sandbox/
https://licenciaparahackear.github.io/en/posts/bypassing-a-restrictive-js-sandbox/
https://licenciaparahackear.github.io/en/posts/bypassing-a-restrictive-js-sandbox/
https://github.com/KTH-LangSec/server-side-prototype-pollution
https://github.com/KTH-LangSec/server-side-prototype-pollution
https://snyk.io

246 REFERENCES

[108] Yinxi Liu, Mingxue Zhang, and Wei Meng. Revealer: Detecting and ex-
ploiting regular expression denial-of-service vulnerabilities. In Symposium on
Security and Privacy (S&P), 2021.

[109] Zhengyu Liu, Kecheng An, and Yinzhi Cao. Undefined-oriented program-
ming: Detecting and chaining prototype pollution gadgets in node. js tem-
plate engines for malicious consequences. In 2024 IEEE Symposium on Secu-
rity and Privacy (SP). IEEE Computer Society, 2024.

[110] Magnus Madsen, Frank Tip, and Ondrej Lhoták. Static analysis of event-
driven node.js javascript applications. In Proceedings of the 2015 ACM SIG-
PLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pitts-
burgh, PA, USA, October 25-30, 2015, 2015.

[111] Felix Maier. Iroh. https://github.com/maierfelix/Iroh.

[112] Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees. In Dongho
Won and Seungjoo Kim, editors, Information Security and Cryptology -
ICISC 2005, 8th International Conference, Seoul, Korea, December 1-2, 2005,
Revised Selected Papers, volume 3935 of Lecture Notes in Computer Science,
pages 186–198. Springer, 2005.

[113] MDN Web Docs. Function Prototype - JavaScript. https://developer.mo
zilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
/Function.

[114] MDN Web Docs. Inheritance and the prototype chain - JavaScript. https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritanc
e_and_the_prototype_chain.

[115] MDN Web Docs. JavaScript Functions. https://developer.mozilla.or
g/en-US/docs/Web/JavaScript/Reference/Functions.

[116] MDN Web Docs. JSON.stringify() - JavaScript. https://developer.mozi
lla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/J
SON/stringify.

[117] MDN Web Docs. Object. https://developer.mozilla.org/en-US/docs
/Web/JavaScript/Reference/Global_Objects/Object.

[118] MDN Web Docs. Object Initializer - JavaScript. https://developer.mozi
lla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object
_initializer.

[119] MDN Web Docs. Object.assign() - JavaScript. https://developer.mozi
lla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/O
bject/assign.

https://github.com/maierfelix/Iroh
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

REFERENCES 247

[120] MDN Web Docs. Object.defineProperty() - JavaScript. https://develope
r.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Obj
ects/Object/defineProperty.

[121] MDN Web Docs. Object.getPrototypeOf() - JavaScript. https://develope
r.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Obj
ects/Object/getPrototypeOf.

[122] MDN Web Docs. Symbol - JavaScript. https://developer.mozilla.or
g/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol.

[123] MDN Web Docs. Type coercion - Glossary. https://developer.mozilla.
org/en-US/docs/Glossary/Type_coercion.

[124] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin
Jia. Riding out DOMsday: Towards detecting and preventing DOM cross-
site scripting. In Network and Distributed System Security Symposium (NDSS
2018), 2018.

[125] Microsoft. C# Language Specification - Types. https://learn.microsof
t.com/en-us/dotnet/csharp/language-reference/language-specifi
cation/types.

[126] Microsoft. C# Language Specification - Unsafe Code. https://learn.mi
crosoft.com/en-us/dotnet/csharp/language-reference/language-s
pecification/unsafe-code.

[127] Microsoft. C# Language Specification - Variables. https://learn.micros
oft.com/en-us/dotnet/csharp/language-reference/language-speci
fication/variables.

[128] Microsoft. Delegates in C#. https://learn.microsoft.com/en-us/dotn
et/csharp/programming-guide/delegates/.

[129] Microsoft. FieldInfo.SetValue Method. https://learn.microsoft.com/en
-us/dotnet/api/system.reflection.fieldinfo.setvalue.

[130] Microsoft. Finalizers (C# Programming Guide). https://learn.microsof
t.com/en-us/dotnet/csharp/programming-guide/classes-and-struc
ts/finalizers.

[131] Microsoft. Language Integrated Query (LINQ). https://learn.microsof
t.com/en-us/dotnet/csharp/linq/.

[132] Microsoft. Serialization in .NET. https://learn.microsoft.com/en-us/
dotnet/standard/serialization/.

[133] Microsoft. System.Collections.IEnumerable Interface. https://learn.micr
osoft.com/en-us/dotnet/api/system.collections.ienumerable.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getPrototypeOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getPrototypeOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getPrototypeOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Glossary/Type_coercion
https://developer.mozilla.org/en-US/docs/Glossary/Type_coercion
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/unsafe-code
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/variables
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/variables
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/variables
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.fieldinfo.setvalue
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.fieldinfo.setvalue
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/finalizers
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/finalizers
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/finalizers
https://learn.microsoft.com/en-us/dotnet/csharp/linq/
https://learn.microsoft.com/en-us/dotnet/csharp/linq/
https://learn.microsoft.com/en-us/dotnet/standard/serialization/
https://learn.microsoft.com/en-us/dotnet/standard/serialization/
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable

248 REFERENCES

[134] Microsoft. System.Diagnostics.Process.Start Method. https://learn.micr
osoft.com/en-us/dotnet/api/system.diagnostics.process.start.

[135] Microsoft. System.Reflection.MethodBase.Invoke Method. https://learn.
microsoft.com/en-us/dotnet/api/system.reflection.methodbase.
invoke.

[136] Microsoft. System.Runtime.Serialization.ISerializable Interface. https://le
arn.microsoft.com/en-us/dotnet/api/system.runtime.serializat
ion.iserializable.

[137] Microsoft. System.Type.GetField Method. https://learn.microsoft.co
m/en-us/dotnet/api/system.type.getfield.

[138] Microsoft. Data Execution Prevention (DEP). https://learn.microsoft.
com/en-us/windows/win32/memory/data-execution-prevention, 2023.

[139] MITRE. CWE-416: Use After Free. https://cwe.mitre.org/data/defin
itions/416.html.

[140] MITRE. CWE-502: Deserialization of Untrusted Data. https://cwe.mitr
e.org/data/definitions/502.html.

[141] MITRE. CWE-78: Improper Neutralization of Special Elements used in an
OS Command (’OS Command Injection’). https://cwe.mitre.org/data
/definitions/78.html.

[142] MITRE. CWE-94: Improper Control of Generation of Code (’Code Injec-
tion’). https://cwe.mitre.org/data/definitions/94.html.

[143] D. Mitropoulos, P. Louridas, M. Polychronakis, and A. D. Keromytis. De-
fending against web application attacks: Approaches, challenges and implica-
tions. IEEE Transactions on Dependable and Secure Computing, 16(2):188–
203, 2019.

[144] Anders Møller and Michael I. Schwartzbach. Static program analysis,
October 2018. Department of Computer Science, Aarhus University,
http://cs.au.dk/˜amoeller/spa/.

[145] Paul Moosbrugger, Mikhail Shcherbakov, and Musard Balliu. Dasty: Dy-
namic taint analysis tool for prototype pollution gadgets detection. https:
//github.com/KTH-LangSec/Dasty.

[146] Alvaro Muñoz and contributors. YSoSerial.Net: A proof-of-concept tool for
generating payloads that exploit unsafe .NET object deserialization. https:
//github.com/pwntester/ysoserial.net.

[147] Alvaro Muñoz and Oleksandr Mirosh. Friday the 13th json attacks. Proceed-
ings of the Black Hat USA, 2017.

https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.process.start
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.process.start
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.invoke
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.invoke
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.methodbase.invoke
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.serialization.iserializable
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.serialization.iserializable
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.serialization.iserializable
https://learn.microsoft.com/en-us/dotnet/api/system.type.getfield
https://learn.microsoft.com/en-us/dotnet/api/system.type.getfield
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/94.html
https://github.com/KTH-LangSec/Dasty
https://github.com/KTH-LangSec/Dasty
https://github.com/pwntester/ysoserial.net
https://github.com/pwntester/ysoserial.net

REFERENCES 249

[148] Alvaro Muñoz and Christian Schneider. Serial killer: Silently pwning your
java endpoints, 2018.

[149] Santosh Nagarakatte. Full spatial and temporal memory safety for c. IEEE
Security & Privacy, 2024.

[150] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier.
Nodest: feedback-driven static analysis of node.js applications. In Joint
Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, (FSE), 2019.

[151] Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. Mod-
ular call graph construction for security scanning of node.js applications. In
International Symposium on Software Testing and Analysis (ISSTA), 2021.

[152] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program
analysis. springer, 2015.

[153] Nodeca. js-yaml: YAML 1.2 parser and serializer for JavaScript. https:
//github.com/nodeca/js-yaml.

[154] Clément Notin. Server-Side Template Injection (SSTI) in ASP.NET Razor.
https://clement.notin.org/blog/2020/04/15/Server-Side-Templat
e-Injection-(SSTI)-in-ASP.NET-Razor/.

[155] npm Inc. npm - Node Package Manager. https://www.npmjs.com/.

[156] npm Inc. and contributors. npm: a JavaScript package manager. https:
//github.com/npm/cli.

[157] OASIS. Static analysis results interchange format (sarif) version 2.1.0. http
s://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html.

[158] Oracle. Defining Serializable Fields for a Class. https://docs.oracle.co
m/en/java/javase/22/docs/specs/serialization/serial-arch.html
#defining-serializable-fields-for-a-class.

[159] Oracle. Graal. https://www.graalvm.org/.

[160] Oracle. Graal.js: a ECMAScript 2023 compliant JavaScript implementation
built on GraalVM. https://github.com/oracle/graaljs.

[161] OWASP. Deserialization of untrusted data. https://owasp.org/www-com
munity/vulnerabilities/Deserialization_of_untrusted_data.

[162] OWASP. OWASP Top Ten. https://owasp.org/www-project-top-ten/.

https://github.com/nodeca/js-yaml
https://github.com/nodeca/js-yaml
https://clement.notin.org/blog/2020/04/15/Server-Side-Template-Injection-(SSTI)-in-ASP.NET-Razor/
https://clement.notin.org/blog/2020/04/15/Server-Side-Template-Injection-(SSTI)-in-ASP.NET-Razor/
https://www.npmjs.com/
https://github.com/npm/cli
https://github.com/npm/cli
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oracle.com/en/java/javase/22/docs/specs/serialization/serial-arch.html#defining-serializable-fields-for-a-class
https://docs.oracle.com/en/java/javase/22/docs/specs/serialization/serial-arch.html#defining-serializable-fields-for-a-class
https://docs.oracle.com/en/java/javase/22/docs/specs/serialization/serial-arch.html#defining-serializable-fields-for-a-class
https://www.graalvm.org/
https://github.com/oracle/graaljs
https://owasp.org/www-community/vulnerabilities/Deserialization_of_untrusted_data
https://owasp.org/www-community/vulnerabilities/Deserialization_of_untrusted_data
https://owasp.org/www-project-top-ten/

250 REFERENCES

[163] Sunnyeo Park, Daejun Kim, Suman Jana, and Sooel Son. FUGIO: automatic
exploit generation for PHP object injection vulnerabilities. In 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-
12, 2022, 2022.

[164] Parse Community. Parse Server. https://github.com/parse-community
/parse-server.

[165] Sergio Pastrana and Guillermo Suarez-Tangil. A first look at the crypto-
mining malware ecosystem: A decade of unrestricted wealth. In Proceedings
of the Internet Measurement Conference, pages 73–86, 2019.

[166] Or Peles and Roee Hay. One class to rule them all: 0-day deserialization
vulnerabilities in android. In WOOT’15, 2015.

[167] PHP Documentation. PHP: Object Serialization. https://www.php.net/
manual/en/language.oop5.serialization.php.

[168] Emilio Pinna. Sandbox Break Out: Nunjucks Template Engine. https:
//disse.cting.org/2016/08/02/2016-08-02-sandbox-break-out-nun
jucks-template-engine.

[169] Python Software Foundation. Python Documentation: Built-in Functions.
https://docs.python.org/3/library/functions.html.

[170] Shawn Rasheed, Jens Dietrich, and Amjed Tahir. Laughter in the wild: A
study into dos vulnerabilities in YAML libraries. In TrustCom/BigDataSE
2019, pages 342–349, 2019.

[171] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 49–61, 1995.

[172] Rocket.Chat. Rocket.Chat communications platform. https://github.com
/RocketChat/Rocket.Chat.

[173] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-
oriented programming: Systems, languages, and applications. ACM Trans.
Inf. Syst. Secur., 15(1):2:1–2:34, 2012.

[174] Sebastian Roth, Michael Backes, and Ben Stock. Assessing the impact of
script gadgets on CSP at scale. In Asia Conference on Computer and Com-
munications Security, (ASIA CCS), 2020.

[175] Shu-yu Guo Santiago Díaz. Prototype pollution mitigation / symbol.proto:
Tc39 proposal for mitigating prototype pollution. https://github.com/t
c39/proposal-symbol-proto.

https://github.com/parse-community/parse-server
https://github.com/parse-community/parse-server
https://www.php.net/manual/en/language.oop5.serialization.php
https://www.php.net/manual/en/language.oop5.serialization.php
https://disse.cting.org/2016/08/02/2016-08-02-sandbox-break-out-nunjucks-template-engine
https://disse.cting.org/2016/08/02/2016-08-02-sandbox-break-out-nunjucks-template-engine
https://disse.cting.org/2016/08/02/2016-08-02-sandbox-break-out-nunjucks-template-engine
https://docs.python.org/3/library/functions.html
https://github.com/RocketChat/Rocket.Chat
https://github.com/RocketChat/Rocket.Chat
https://github.com/tc39/proposal-symbol-proto
https://github.com/tc39/proposal-symbol-proto

REFERENCES 251

[176] Joanna CS Santos, Mehdi Mirakhorli, and Ali Shokri. Seneca: Taint-based
call graph construction for java object deserialization. Proceedings of the ACM
on Programming Languages, 8(OOPSLA1):1125–1153, apr 2024.

[177] Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon. An in-
depth study of java deserialization remote-code execution exploits and vul-
nerabilities. ACM Transactions on Software Engineering and Methodology,
32(1):25:1–25:45, 2023.

[178] SCH-Tech. Razor Pages SSTI RCE. https://www.schtech.co.uk/razo
r-pages-ssti-rce/.

[179] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29, 1999.

[180] Bruce Schneier. Secrets and lies: digital security in a networked world. Wiley,
2015.

[181] Daniel Schoepe, Musard Balliu, Benjamin C Pierce, and Andrei Sabelfeld.
Explicit secrecy: A policy for taint tracking. In 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pages 15–30. IEEE, 2016.

[182] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In IEEE S&P, 2010.

[183] Robert Seacord. Combating Java Deserialization Vulnerabilities with Look-
Ahead Object Input Streams (LAOIS), June 2017.

[184] SecureFlag Knowledge Base. Server-Side Template Injection in .NET. https:
//knowledge-base.secureflag.com/vulnerabilities/server_side_t
emplate_injection/server_side_template_injection__net.html.

[185] Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs.
Jalangi: a selective record-replay and dynamic analysis framework for
javascript. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pages 488–498. ACM, 2013.

[186] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM
conference on Computer and communications security, pages 552–561, 2007.

[187] Hossain Shahriar and Hisham Haddad. Object injection vulnerability discov-
ery based on latent semantic indexing. In SAC, pages 801–807, 2016.

[188] Mikhail Shcherbakov. Prototype Pollution Leads to RCE: Gadgets Every-
where. https://i.blackhat.com/Asia-23/AS-23-Shcherbakov-Proto
type-Pollution-Leads-to-RCE.pdf, 2023.

https://www.schtech.co.uk/razor-pages-ssti-rce/
https://www.schtech.co.uk/razor-pages-ssti-rce/
https://knowledge-base.secureflag.com/vulnerabilities/server_side_template_injection/server_side_template_injection__net.html
https://knowledge-base.secureflag.com/vulnerabilities/server_side_template_injection/server_side_template_injection__net.html
https://knowledge-base.secureflag.com/vulnerabilities/server_side_template_injection/server_side_template_injection__net.html
https://i.blackhat.com/Asia-23/AS-23-Shcherbakov-Prototype-Pollution-Leads-to-RCE.pdf
https://i.blackhat.com/Asia-23/AS-23-Shcherbakov-Prototype-Pollution-Leads-to-RCE.pdf

252 REFERENCES

[189] Mikhail Shcherbakov. Exploiting the Unexploitable: Insights from the Kibana
Bug Bounty. https://media.defcon.org/DEF%20CON%2032/DEF%20CON%
2032%20presentations/DEF%20CON%2032%20-%20Mikhail%20Shcherba
kov%20-%20Exploiting%20the%20Unexploitable%20Insights%20from
%20the%20Kibana%20Bug%20Bounty.pdf, 2024.

[190] Mikhail Shcherbakov and Musard Balliu. SerialDetector, February 2021. Soft-
ware.

[191] Mikhail Shcherbakov and Musard Balliu. SerialDetector: Principled and
Practical Exploration of Object Injection Vulnerabilities for the Web. In 28th
Annual Network and Distributed System Security Symposium, NDSS 2021,
virtually, February 21-25, 2021, 2021.

[192] Mikhail Shcherbakov and Musard Balliu. Silent Spring: Prototype Pollution
Leads to Remote Code Execution in Node.js. https://media.defcon.org
/DEF%20CON%2031/DEF%20CON%2031%20presentations/Mikhail%20Shc
herbakov%20Musard%20Balliu%20-%20Silent%20Spring%20Prototype%
20Pollution%20Leads%20to%20Remote%20Code%20Execution%20in%20
Node.js.pdf, 2023.

[193] Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu. Silent
Spring: Prototype Pollution Leads to Remote Code Execution in Node.js -
Artifacts. https://github.com/KTH-LangSec/silent-spring.

[194] Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu. Silent
Spring: Prototype Pollution Leads to Remote Code Execution in Node.js. In
32nd USENIX Security Symposium, USENIX Security 2023, Anaheim, CA,
USA, August 9-11, 2023. USENIX Association, 2023.

[195] Mikhail Shcherbakov, Musard Balliu, and Cristian-Alexandru Staicu.
USENIX’23 Artifact Appendix: Silent Spring: Prototype Pollution Leads to
Remote Code Execution in Node.js. In 32nd USENIX Security Symposium
(USENIX Security 23). USENIX Association, 2023.

[196] Mikhail Shcherbakov, Paul Moosbrugger, and Musard Balliu. Unveiling the
Invisible: Detection and evaluation of prototype pollution gadgets with dy-
namic taint analysis. In Tat-Seng Chua, Chong-Wah Ngo, Ravi Kumar,
Hady W. Lauw, and Roy Ka-Wei Lee, editors, Proceedings of the ACM on
Web Conference 2024, WWW 2024, Singapore, May 13-17, 2024, pages 1800–
1811. ACM, 2024.

[197] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your
contexts well: understanding object-sensitivity. In POPL 2011, pages 17–30,
2011.

https://media.defcon.org/DEF%20CON%2032/DEF%20CON%2032%20presentations/DEF%20CON%2032%20-%20Mikhail%20Shcherbakov%20-%20Exploiting%20the%20Unexploitable%20Insights%20from%20the%20Kibana%20Bug%20Bounty.pdf
https://media.defcon.org/DEF%20CON%2032/DEF%20CON%2032%20presentations/DEF%20CON%2032%20-%20Mikhail%20Shcherbakov%20-%20Exploiting%20the%20Unexploitable%20Insights%20from%20the%20Kibana%20Bug%20Bounty.pdf
https://media.defcon.org/DEF%20CON%2032/DEF%20CON%2032%20presentations/DEF%20CON%2032%20-%20Mikhail%20Shcherbakov%20-%20Exploiting%20the%20Unexploitable%20Insights%20from%20the%20Kibana%20Bug%20Bounty.pdf
https://media.defcon.org/DEF%20CON%2032/DEF%20CON%2032%20presentations/DEF%20CON%2032%20-%20Mikhail%20Shcherbakov%20-%20Exploiting%20the%20Unexploitable%20Insights%20from%20the%20Kibana%20Bug%20Bounty.pdf
https://media.defcon.org/DEF%20CON%2031/DEF%20CON%2031%20presentations/Mikhail%20Shcherbakov%20Musard%20Balliu%20-%20Silent%20Spring%20Prototype%20Pollution%20Leads%20to%20Remote%20Code%20Execution%20in%20Node.js.pdf
https://media.defcon.org/DEF%20CON%2031/DEF%20CON%2031%20presentations/Mikhail%20Shcherbakov%20Musard%20Balliu%20-%20Silent%20Spring%20Prototype%20Pollution%20Leads%20to%20Remote%20Code%20Execution%20in%20Node.js.pdf
https://media.defcon.org/DEF%20CON%2031/DEF%20CON%2031%20presentations/Mikhail%20Shcherbakov%20Musard%20Balliu%20-%20Silent%20Spring%20Prototype%20Pollution%20Leads%20to%20Remote%20Code%20Execution%20in%20Node.js.pdf
https://media.defcon.org/DEF%20CON%2031/DEF%20CON%2031%20presentations/Mikhail%20Shcherbakov%20Musard%20Balliu%20-%20Silent%20Spring%20Prototype%20Pollution%20Leads%20to%20Remote%20Code%20Execution%20in%20Node.js.pdf
https://media.defcon.org/DEF%20CON%2031/DEF%20CON%2031%20presentations/Mikhail%20Shcherbakov%20Musard%20Balliu%20-%20Silent%20Spring%20Prototype%20Pollution%20Leads%20to%20Remote%20Code%20Execution%20in%20Node.js.pdf
https://github.com/KTH-LangSec/silent-spring

REFERENCES 253

[198] SolarWinds. New Findings from Our Investigation of SUNBURST. https:
//orangematter.solarwinds.com/2021/01/11/new-findings-from-o
ur-investigation-of-sunburst/.

[199] SolarWinds. SolarWinds Security Advisories. https://www.solarwinds.c
om/trust-center/security-advisories.

[200] Fausto Spoto, Elisa Burato, Michael D. Ernst, Pietro Ferrara, Alberto Lovato,
Damiano Macedonio, and Ciprian Spiridon. Static identification of injection
attacks in java. ACM Trans. Program. Lang. Syst., 41(3):18:1–18:58, 2019.

[201] Cristian-Alexandru Staicu and Michael Pradel. Freezing the web: A study
of ReDoS vulnerabilities in JavaScript-based web servers. In 27th USENIX
Security Symposium, USENIX Security 18, pages 361–376. USENIX Associ-
ation, 2018.

[202] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. SYN-
ODE: understanding and automatically preventing injection attacks on
Node.js. In Network and Distributed System Security Symposium (NDSS),
2018.

[203] Cristian-Alexandru Staicu, Sazzadur Rahaman, Ágnes Kiss, and Michael
Backes. Bilingual problems: Studying the security risks incurred by native
extensions in scripting languages. arXiv preprint arXiv:2111.11169, 2021.

[204] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael Pradel,
and Andrei Sabelfeld. An empirical study of information flows in real-world
JavaScript. In 14th ACM SIGSAC Workshop on Programming Languages and
Analysis for Security, PLAS, 2019.

[205] Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders
Møller, and Michael Pradel. Extracting taint specifications for javascript
libraries. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pages 198–209, 2020.

[206] Marius Steffens. Understanding emerging client-side web vulnerabilities using
dynamic program analysis. 2021.

[207] Marius Steffens and Ben Stock. PMForce: Systematically analyzing postmes-
sage handlers at scale. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’20, pages 493–505, 2020.

[208] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. How the
web tangled itself: Uncovering the history of client-side web (in)security. In
26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017. USENIX Association, 2017.

https://orangematter.solarwinds.com/2021/01/11/new-findings-from-our-investigation-of-sunburst/
https://orangematter.solarwinds.com/2021/01/11/new-findings-from-our-investigation-of-sunburst/
https://orangematter.solarwinds.com/2021/01/11/new-findings-from-our-investigation-of-sunburst/
https://www.solarwinds.com/trust-center/security-advisories
https://www.solarwinds.com/trust-center/security-advisories

254 REFERENCES

[209] Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. Effi-
cient dynamic analysis for node.js. In Proceedings of the 27th International
Conference on Compiler Construction, CC 2018, pages 196–206, 2018.

[210] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal War in Memory.
In Security & Privacy, pages 48–62, 2013.

[211] Phil Thomas. Code Injection to RCE with .NET. https://blog.stratum
security.com/2024/04/29/code-injection-to-rce-with-net/.

[212] Inc Tidelift. Libraries.io: The open source discovery service. https://libr
aries.io.

[213] Aleksei Tiurin. Deserialization vulnerabilities: attacking deserialization in
JS. https://www.acunetix.com/blog/web-security-zone/deserializ
ation-vulnerabilities-attacking-deserialization-in-js/.

[214] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore
Guarnieri. Andromeda: Accurate and scalable security analysis of web appli-
cations. In FASE, pages 210–225, 2013.

[215] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundaresan.
Soot - a java bytecode optimization framework. In CASCON, 1999.

[216] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André De-
Hon, and Jonathan M. Smith. Breakapp: Automated, flexible application
compartmentalization. In Network and Distributed System Security Sympo-
sium, (NDSS), 2018.

[217] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos
Kallas, Ben Karel, André DeHon, and Michael Pradel. Preventing dynamic
library compromise on Node.js via RWX-based privilege reduction. In Con-
ference on Computer and Communications Security (CCS), 2021.

[218] Christian Wimmer and Thomas Würthinger. Truffle: A self-optimizing run-
time system. In Proceedings of the 3rd Annual Conference on Systems, Pro-
gramming, and Applications: Software for Humanity, SPLASH ’12, pages
13–14, 2012.

[219] Markus Wulftange. CVE-2019-0604: Details of a Microsoft SharePoint RCE
Vulnerability, 2019.

[220] Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang Yang, Hong Hu,
Guofei Gu, and Wenke Lee. Abusing hidden properties to attack the Node.js
ecosystem. In 30th USENIX Security Symposium, USENIX Security 21.
USENIX Association, 2021.

https://blog.stratumsecurity.com/2024/04/29/code-injection-to-rce-with-net/
https://blog.stratumsecurity.com/2024/04/29/code-injection-to-rce-with-net/
https://libraries.io
https://libraries.io
https://www.acunetix.com/blog/web-security-zone/deserialization-vulnerabilities-attacking-deserialization-in-js/
https://www.acunetix.com/blog/web-security-zone/deserialization-vulnerabilities-attacking-deserialization-in-js/

REFERENCES 255

[221] YesWeHack. Server side prototype pollution, how to detect and exploit. ht
tps://blog.yeswehack.com/talent-development/server-side-proto
type-pollution-how-to-detect-and-exploit/.

[222] Zero Day Initiative. CVE-2022-38108: RCE in SolarWinds Network Perfor-
mance Monitor. https://www.zerodayinitiative.com/blog/2023/2/27
/cve-2022-38108-rce-in-solarwinds-network-performance-monit
or.

[223] Zero Day Initiative. Finding Deserialization Bugs in the SolarWind Platform.
https://www.zerodayinitiative.com/blog/2023/9/21/finding-des
erialization-bugs-in-the-solarwind-platform.

[224] Zero Day Initiative. Three Bugs in Orion’s Belt: Chaining Multiple Bugs for
Unauthenticated RCE in the SolarWinds Orion Platform. https://www.ze
rodayinitiative.com/blog/2021/1/20/three-bugs-in-orions-bel
t-chaining-multiple-bugs-for-unauthenticated-rce-in-the-sol
arwinds-orion-platform.

[225] Zero Day Initiative. Three More Bugs in Orion’s Belt. https://www.zero
dayinitiative.com/blog/2021/2/11/three-more-bugs-in-orions-b
elt.

[226] Markus Zimmermann, Cristian-Alexandru, Cam Tenny, and Michael Pradel.
Small world with high risks: A study of security threats in the npm ecosys-
tem. In 28th USENIX Security Symposium, USENIX Security 19. USENIX
Association, 2019.

https://blog.yeswehack.com/talent-development/server-side-prototype-pollution-how-to-detect-and-exploit/
https://blog.yeswehack.com/talent-development/server-side-prototype-pollution-how-to-detect-and-exploit/
https://blog.yeswehack.com/talent-development/server-side-prototype-pollution-how-to-detect-and-exploit/
https://www.zerodayinitiative.com/blog/2023/2/27/cve-2022-38108-rce-in-solarwinds-network-performance-monitor
https://www.zerodayinitiative.com/blog/2023/2/27/cve-2022-38108-rce-in-solarwinds-network-performance-monitor
https://www.zerodayinitiative.com/blog/2023/2/27/cve-2022-38108-rce-in-solarwinds-network-performance-monitor
https://www.zerodayinitiative.com/blog/2023/9/21/finding-deserialization-bugs-in-the-solarwind-platform
https://www.zerodayinitiative.com/blog/2023/9/21/finding-deserialization-bugs-in-the-solarwind-platform
https://www.zerodayinitiative.com/blog/2021/1/20/three-bugs-in-orions-belt-chaining-multiple-bugs-for-unauthenticated-rce-in-the-solarwinds-orion-platform
https://www.zerodayinitiative.com/blog/2021/1/20/three-bugs-in-orions-belt-chaining-multiple-bugs-for-unauthenticated-rce-in-the-solarwinds-orion-platform
https://www.zerodayinitiative.com/blog/2021/1/20/three-bugs-in-orions-belt-chaining-multiple-bugs-for-unauthenticated-rce-in-the-solarwinds-orion-platform
https://www.zerodayinitiative.com/blog/2021/1/20/three-bugs-in-orions-belt-chaining-multiple-bugs-for-unauthenticated-rce-in-the-solarwinds-orion-platform
https://www.zerodayinitiative.com/blog/2021/2/11/three-more-bugs-in-orions-belt
https://www.zerodayinitiative.com/blog/2021/2/11/three-more-bugs-in-orions-belt
https://www.zerodayinitiative.com/blog/2021/2/11/three-more-bugs-in-orions-belt

	List of Papers
	Acknowledgement
	Acronyms
	Contents
	Thesis
	Introduction
	Research Questions
	Research Methodology
	Contributions
	Outline

	Background
	Memory Safety
	Managed Languages and Runtimes
	Program Analysis

	Code-Reuse Attacks Taxonomy
	Code-Reuse Attacks in Memory Unsafe Languages
	Code-Reuse Attacks in Managed Runtimes
	Code Injection Attacks
	Exploit Primitives
	Related Work
	Contributions

	Call-Flow Hijacking Attacks
	Exploit Primitives
	Related Work
	Contributions

	Data-only Attacks
	Exploit Primitives
	Related Work
	Contributions

	Attack Chains

	Summary of Publications
	SerialDetector: Principled and Practical Exploration of Object Injection Vulnerabilities for the Web
	Takeaways
	Statement of Contribution

	Silent Spring: Prototype Pollution Leads to Remote Code Execution in Node.js
	Takeaways
	Statement of Contribution

	Unveiling the Invisible: Detection and Evaluation of Prototype Pollution Gadgets with Dynamic Taint Analysis
	Takeaways
	Statement of Contribution

	GHunter: Universal Prototype Pollution Gadgets in JavaScript Runtimes
	Takeaways
	Statement of Contribution

	Conclusions and Future Work

	Included Papers
	SerialDetector: Principled and Practical Exploration of Object Injection Vulnerabilities for the Web
	Introduction
	Technical Background
	Application-level OIVs
	Infrastructure-level OIVs

	Overview of the Approach
	Root cause of Object Injection Vulnerabilities
	SerialDetector

	Taint-Based Static Analysis
	CIL language and notation
	Intra-procedural dataflow analysis
	Modular inter-procedural analysis

	Implementation
	Anatomy of SerialDetector
	Challenges and Limitations

	Evaluation
	In-depth Analysis of Azure DevOps Server
	Microsoft Azure DevOps
	Threat models
	SerialDetector in action

	Related works
	Conclusion
	Appendix

	Silent Spring: Prototype Pollution Leads to Remote Code Execution in Node.js
	Introduction
	Context and Technical Background
	Prototype-based OIV
	Threat Model

	Overview
	Methodology
	Prototype Pollution Detection
	Gadget Detection
	Exploit Generation

	Implementation
	Evaluation
	Evaluation of Prototype Pollution
	Gadget Detection
	End-to-End Exploitation

	Related Work
	Conclusion
	Appendix
	Object Injection Vulnerabilities
	Non-trivial Gadget Sources
	NPM RCE II
	Advanced Prototype Pollution Pattern
	Evaluation Results

	Artifact Appendix

	Unveiling the Invisible: Detection and Evaluation of Prototype Pollution Gadgets with Dynamic Taint Analysis
	Introduction
	Background
	Methodology and Design Choices
	Setup
	Analysis
	Verification

	Evaluation
	Dataset and setup
	RQ1: Identification of exploitable gadgets
	RQ2: Effectiveness and performance comparison
	RQ3: End-to-end exploit generation

	Related Work
	Conclusion
	Appendix
	Implementation Details
	End-to-end Exploit Details

	GHunter: Universal Prototype Pollution Gadgets in JavaScript Runtimes
	Introduction
	Technical Background
	Prototype Pollution and Gadgets
	JavaScript Runtimes: Node.js and Deno
	Threat Model

	Overview
	System Design and Implementation
	Source Properties
	Source-to-Sink Flows
	Unexpected Termination
	Manual Validation
	Limitations

	Evaluation
	Universal Gadgets in Node.js and Deno
	GHunter vs Silent Spring
	Performance Overhead and Transparency

	Defense Best Practices
	Gadget Mitigations
	Prototype Pollution Mitigations
	Case Studies

	Related Work
	Conclusion
	Appendix
	Artifact Appendix

	References

