
Doctoral Thesis in Computer Science

To Secure a Flow:
From Specification to Enforcement

of Information Flow Control
AMIR M. AHMADIAN

kth royal institute of technology

Doctoral Thesis in Computer Science

KTH Royal Institute of Technology

Stockholm, Sweden 2025

Academic Dissertation which, with due permission of the KTH Royal Institute of Technology,
is submitted for public defence for the Degree of Doctor of Philosophy on Tuesday the 11th March 2025,
at 9:00 a.m. in Kollegiesalen, Brinellvägen 6, Stockholm.

To Secure a Flow:
From Specification to Enforcement
of Information Flow Control
AMIR M. AHMADIAN

© Amir M. Ahmadian
© �Musard Balliu, Roberto Guanciale, Mads Dam, Guido Salvaneschi, Matvey Soloviev, Aditya Oak,

and Anoud Alshnakat

Cover page photo: Voyager Pulsar Map - NASA Jet Propulsion Laboratory

TRITA-EECS-AVL-2025:22
ISBN 978-91-8106-199-4

Printed by: Universitetsservice US-AB, Sweden 2025

“If life transcends death,
then I will seek for you there.
If not, then there too.”

Abstract

The use of software has become increasingly prevalent, affecting nearly every aspect
of our daily lives. In this landscape, ensuring the security of software systems is
more critical than ever, as vulnerabilities can lead to significant social and financial
consequences. Information flow control is a research area focused on developing
methods and techniques to provide strong security guarantees against software
attacks and vulnerabilities. Information flow control achieves this by tracking how
information flows within a program, ensuring that sensitive data does not reach
unauthorized outputs. This process can be challenging as it requires precisely
defining the software system’s security policy and developing mechanisms to enforce
that policy against different types of attackers with varying capabilities.

In this thesis, we examine language-based approaches to enforcing information
flow control in software systems, with a focus on defining appropriate security
policies, attacker models, and enforcement mechanisms to proactively secure modern
software systems. The thesis contributes to the state of the art of information
flow security in several directions, both theoretical and practical, by investigating
four key research questions: defining non-trivial security policies for real-world
scenarios, developing appropriate attacker models, creating mechanisms to enforce
information flow security conditions, and applying language-based techniques to
real-world programming languages. On the policy specification side, we provide a
knowledge-based security framework capable of expressing many variants of dynamic
policies as well as the Determinacy Quantale, a new semantic model for expressing
disjunctive policies in database-backed programs, focusing on the conflict-of-interest
classes. We examine the role of attackers in defining security conditions, specifically
two types of active attackers and three types of passive attackers with various
degrees of capabilities. Moreover, we investigate enforcement mechanisms, such
as security type systems and symbolic execution, developed to statically enforce
various information flow security policies. Finally, to demonstrate the applicability
of language-based approaches in real-world programs, we implement and evaluate
the proposed enforcement mechanisms in the programming languages Java and P4.

iii

Sammanfattning

Användningen av mjukvara har blivit alltmer utbredd och påverkar i stort sett alla
aspekter av våra dagliga liv. I detta sammanhang är det viktigare än någonsin
att säkerställa säkerheten i mjukvarusystem, eftersom sårbarheter kan leda till
betydande sociala och ekonomiska konsekvenser. Informationsflödeskontroll är
ett forskningsområde som fokuserar på att utveckla metoder och tekniker för att
tillhandahålla starka säkerhetsgarantier mot mjukvaruattacker och sårbarheter.
Informationsflödeskontroll uppnår detta genom att spåra hur information flödar i ett
program och säkerställa att känslig data inte når obehöriga utdata. Denna process
kan vara utmanande eftersom den kräver en exakt definition av mjukvarusystemets
säkerhetspolicy och utveckling av mekanismer för att upprätthålla policyn mot olika
typer av angripare med varierande förmågor.

I denna avhandling undersöker vi språkbaserade tillvägagångssätt för att upprät-
thålla informationsflödeskontroll i mjukvarusystem, med fokus på att definiera
lämpliga säkerhetspolicies, angriparmodeller och mekanismer för verkställande för
att proaktivt säkra moderna mjukvarusystem. Avhandlingen bidrar till den aktuella
forskningen inom informationsflödesäkerhet på flera sätt, både teoretiska och prak-
tiska, genom att undersöka fyra centrala forskningsfrågor: att definiera icke-triviala
säkerhetspolicies för verkliga scenarier, att utveckla relevanta angriparmodeller, att
skapa mekanismer för att upprätthålla villkor för informationsflödesäkerhet samt att
tillämpa språkbaserade tekniker på verkliga programmeringsspråk. När det gäller
policy-specifikation presenterar vi ett kunskapsbaserat säkerhetsramverk som kan
uttrycka många varianter av dynamiska policies samt Determinacy Quantale, en ny
semantisk modell för att uttrycka disjunktiva policies i databasstödda program, med
särskilt fokus på intressekonfliktklasser. Vi undersöker angriparens roll i att definiera
säkerhetsvillkor, särskilt två typer av aktiva angripare och tre typer av passiva
angripare med olika grad av förmågor. Vi undersöker mekanismer för efterlevnad,
såsom säkerhetstypsystem och symbolisk exekvering, som utvecklats för att statiskt
upprätthålla olika informationsflödessäkerhetspolicies. Slutligen, för att demonstrera
användbarheten av språkbaserade metoder i verkliga program, implementerar och
utvärderar vi de föreslagna mekanismerna på språk Java och P4.

v

List of Papers

A. Language Support for Secure Software Development with Enclaves
Aditya Oak, Amir M. Ahmadian, Musard Balliu, and Guido Salvaneschi
Proceedings of the 34th Computer Security Foundations Symposium (CSF),
2021

B. Enclave-Based Secure Programming with JE
Aditya Oak, Amir M. Ahmadian, Musard Balliu, and Guido Salvaneschi
Proceedings of IEEE Secure Development Conference (SecDev), 2021

C. Dynamic Policies Revisited
Amir M. Ahmadian and Musard Balliu
Proceedings of the 7th European Symposium on Security and Privacy
(EuroS&P), 2022

D. Disjunctive Policies for Database-Backed Programs
Amir M. Ahmadian, Matvey Soloviev, and Musard Balliu
Proceedings of the 37th Computer Security Foundations Symposium (CSF),
2024

E. Securing P4 Programs by Information Flow Control
Anoud Alshnakat, Amir M. Ahmadian, Musard Balliu, Roberto Guanciale,
and Mads Dam
Manuscript

vii

Acknowledgement

Five years ago, on a cold autumn evening in 2019, I set out for Sweden to study for
a PhD, unaware of the roads life would unfold before me. I could not have imagined
the lessons, the friendships, the losses, and the quiet moments of doubt that shaped
this journey. To all those who offered their support and encouragement along the
way, who made this journey a possibility, I offer my deepest gratitude.

To my supervisor, Musard Balliu — thank you!
For your guidance, your patience, and the knowledge you so generously shared. For
the conversations, the laughter, the BBQs, and the incredible people you introduced
me to. I have learned so much from you, both in research and in life.

Special thanks to my other supervisor, Dilian Gurov. Although I never had the
chance to collaborate with you on research, I had the privilege of knowing you and
working alongside you in the Computer Science Doctoral Programme. I’m thankful
for your kindness, your support, and the care you have shown — not just to me,
but to all the PhD students in the CS programme.

I would like to express my gratitude to my opponent Limin Jia, and the grading
committee members Aslan Askarov, Ioana Boureanu, and Alejandro Russo for
reviewing this thesis and evaluating my work. Special thanks to Roberto Guanciale
for serving as the chair of my defense, Philipp Haller for being the advance reviewer
of this thesis, and Romy and Oscar for helping me with the Swedish abstract.

My co-authors Anoud Alshnakat, Matvey Soloviev, Aditya Oak, Guido Salvaneschi,
Roberto Guanciale, Musard Balliu, and Mads Dam, thank you for the discussions,
the debates, and the opportunity of learning alongside you.

To Sofia, Xiaolin, Honglian, Priyanka, Frank, Naila, Mikhail, Ioana, SiKai, Antonio,
Aman, Matvey, Khashayar, Jesper, Mojtaba, Javier Cabrera, Christian, Eric, Monica,
André, Javier Ron, Shuangjie, Sijing, Carmine, Ning, Serena, Camilla, Sakib, Kilian,
Vivi, Tianyi, Arve, Yuxin, Manon, Marcus, Henrik, Deepika, and all the friends
and colleagues in the Division of Theoretical Computer Science, thank you for the
talks, the fikas and — as someone recently pointed out — socializing with me in
the kitchen.

ix

Many thanks to my friends in the EECS PhD Council, especially Susanna, Saumey,
Joel, Jura, Simon, Fereidoon, Alireza, and Sina, with whom I worked to improve
the experience of PhD students in EECS and alongside whom I learned so much
about the inner workings of KTH.

I’m endlessly grateful to Romy, Ånoud, Åndreas, and Raphina for always being
there — for listening, for understanding, and for tolerating me through the ups and
downs. I cherish your presence in my life.

To my Iranian friends in Sweden, Ehsan, Maryam, Yasmin, Mohammad, Mojtaba,
Maryam, Sina, Mahmoud, Sahba, Amir, and Vahid, thank you for the camaraderie,
the support, and the memories that made the long nights and dark winters of
Sweden, ever so slightly, more bearable.

Last but certainly not least, my deepest gratitude goes to my family; without their
support, this journey would have been impossible.
To Maman, Baba, Azadeh, Sara, and Hamze, for their endless love, encouragement,
and unwavering support — your belief in me, even when I doubted myself, has been
my greatest source of strength. Thank you for everything.

As I reach the end of this path, I do so with both joy and longing. There is a quiet
space in all of this that belongs to my dad and my grandmother, whom I lost while
on this journey, far from home. Your absence is a void that words cannot fill, yet
your love, kindness, and support continue to shape me. Though you are not here
to see this moment, you are with me in every word, every page, and every step
forward.

x

Acronyms

List of commonly used acronyms:

BLP Bell–LaPadula model
DAC Discretionary access control
DLM Decentralized Label Model
DL Determinacy lattice
DQ Determinacy quantale
IFC Information flow control
LBS Language-based security
LoI Lattice of information
MAC Mandatory access control
NSU No-sensitive-upgrade
QoI Quantale of information
SME Secure multi-execution
SOT Symbolic output tree
TINI Termination-insensitive noninterference
TSNI Termination-sensitive noninterference

xi

Contents

Abstract iii

Sammanfattning v

List of Papers vii

Acknowledgement ix

Acronyms xi

Contents xiii

Thesis

1 Introduction 3
1.1 Research Questions . 5
1.2 Research Methodology . 6
1.3 Contributions . 8
1.4 Outline . 10

2 Software Security 11

3 Information Flow Control 17
3.1 Specification . 17
3.2 Enforcement . 30
3.3 Application . 44

4 Thesis Results 47

5 Conclusion and Future Work 53

xiii

Papers

A Language Support for Secure Software Development with Enclaves 61
A.1 Introduction . 62
A.2 Trusted Execution Environments in a Nutshell 64
A.3 JE Design . 66
A.4 Security Framework . 69
A.5 Endorsement and Nonmalleable Attacks . 83
A.6 Implementation . 86
A.7 Evaluation. 87
A.8 Related Work . 90
A.9 Conclusion . 92
Appendix A Proofs . 93

B Enclave-Based Secure Programming with JE 115
B.1 Introduction . 116
B.2 JE Design . 118
B.3 Attacker Model and Enforcement . 118
B.4 Code Compilation and Implementation . 122
B.5 Evaluation. 126
B.6 Related Work . 130
B.7 Conclusion . 131

C Dynamic Policies Revisited 135
C.1 Introduction . 136
C.2 Problem Setting and Solution Overview . 138
C.3 Language Design . 141
C.4 Security Framework . 143
C.5 Facets of Dynamic Policies . 151
C.6 Verification of Dynamic Policies . 154
C.7 Implementation and Evaluation . 162
C.8 Related Work . 166
C.9 Conclusion . 167
Appendix A Bounded Memory Attacker . 168
Appendix B Examples for the Forgetful Attacker 170
Appendix C Proofs. 171

xiv

D Disjunctive Policies for Database-Backed Programs 181
D.1 Introduction . 182
D.2 Background. 184
D.3 Information Ordering in Databases . 188
D.4 Security Framework . 195
D.5 Enforcement of Disjunctive Policies. 198
D.6 Implementation and Evaluation . 207
D.7 Related Work . 210
D.8 Conclusions . 211
Appendix A Interpretations of Query Determinacy. 213
Appendix B Relation Between DL and LoI . 214
Appendix C Determinacy Quantale Axioms . 216
Appendix D Relation Between DQ and QoI . 220
Appendix E Correctness of Dependency Analysis 221
Appendix F Query Analysis . 224

E Securing P4 Programs by Information Flow Control 231
E.1 Introduction . 232
E.2 P4 Language and Security Challenges . 234
E.3 Solution Overview . 239
E.4 Semantics . 241
E.5 Types and Security Condition . 244
E.6 Security Type System . 248
E.7 Implementation and Evaluation . 257
E.8 Related Work . 258
E.9 Conclusion . 260
Appendix A Use Cases . 261
Appendix B P4BID Use Cases . 268
Appendix C Typing Rules . 270
Appendix D State Type Operations . 271
Appendix E Proofs and Guarantees. 272

Bibliography

xv

Thesis

1 | Introduction

“The real world was full of larger structures, smaller structures, simpler and
more complex structures than the tiny portion comprising sentient creatures
and their societies, and it required a profound myopia of scale and similarity
to believe that everything beyond this shallow layer could be ignored. ”

– Greg Egan, Diaspora

Software has become an indispensable component of modern life, influencing nearly
every aspect of our daily life. From the smartphones in our pockets to the sophisti-
cated systems supporting critical infrastructure, software has reshaped the way we
communicate, work, and interact with the world. However, as software integrates
deeper into our lives, the need to ensure its security becomes ever more critical.
Vulnerabilities such as EternalBlue [141], Log4Shell [191], and Heartbleed [107]
demonstrate the severe implications of software flaws and the significant damage
they can cause.

To mitigate such risks and ensure software security, developers and organizations
employ various practices. The history of these security measures mirrors the evolution
of software systems, adapted to meet the challenges of new technologies. In the 1960s,
during the mainframe era, access control became one of the first measures to ensure
security. Early systems like MIT’s Compatible Time-Sharing System introduced
user accounts and passwords to restrict unauthorized access. As computers began
serving multiple users, researchers developed models such as the Bell-LaPadula
(BLP) [1] model to enforce stricter security and provide formal security guarantees in
highly sensitive systems. Models such as BLP [1] and Biba [6] became standards for
defining standard security practices in military and governmental systems. Efforts
like the U.S. Department of Defense’s Orange Book [10] established guidelines for
building and evaluating secure software, emphasizing on principles such as access
control and least privilege.

The rise of personal computers in the 1980s and the growth of network-connected
systems in the 1990s shifted the focus from isolated mainframe systems to protecting
software running on millions of individual devices. During this period, secure software
design principles gained prominence, aiming to reduce the risk of exploitable flaws.

3

Problems such as buffer overflow and privilege escalation became common, which
led to the development of methods such as bounds checking, stack canaries, and
stricter enforcement of the principle of least privilege. During this era, malware
often spread through infected files or email attachments and targeted computers,
leading to a surge in the popularity of antivirus software.

As the Internet became more popular, security measures also evolved to protect the
increasingly complex web applications. Unlike traditional software, web applications
included many dynamically changing features and were typically made up of a
mashup of various code from many sources. Input validation and sanitization
became critical to defend against attacks like SQL injection and cross-site scripting
(XSS). Authentication and session management techniques gained prominence for
web applications that relied on user login systems. Measures such as two-factor
authentication and secure cookie handling were adopted to prevent unauthorized
access, and encryption techniques, such as SSL/TLS protocols, became standard to
ensure secure data transmission.

In the smartphone era, new threats arose due to the unique features of mobile apps.
Learning the lessons of the PC era, mobile operating systems were equipped with
strict permission systems to ensure apps only have access to the data they need, and
this access was transparent to the end-user. Technologies such as app sandboxing
were developed to limit the applications to their own run-time environment, limiting
the damage caused by issues such as buffer overflow and malware.

Modern software is inherently complex, with applications made up of interconnected
components and from potentially untrusted sources. The dynamic nature of software
development, driven by continuous updates, addition of new features, and external
dependencies, makes ensuring security ever more challenging. Traditional security
practices, such as testing, are less effective in this dynamic environment, and while
practices such as secure coding and penetration testing are helpful, they often do
not cover every threat, especially in today’s large-scale systems.

Given the various threats and vulnerabilities discovered every day, it is clear that we
need to shift from reactive security measures to proactive ones, providing provable
security guarantees against the challenges of modern-day software systems. To
achieve this goal, we need to define precisely what we mean by securing software.
This requires defining suitable security policies to secure the system against specific
attacker types, and devising practical mechanisms to enforce these security policies.
This thesis is one step towards achieving this goal.

Language-based information flow control. Information flow control (IFC) is
an area of software security that tracks how the information propagates within
a program. This propagation typically occurs from program inputs (sources) to
outputs (sinks), and generally, ensuring security means preventing undesirable flows
e.g. from sensitive data sources to public sinks.

4

To verify a program’s security via information flow control, one must formally model
the program and its environment and provide a precise definition of what security
means. These ingredients of information flow control, which we discuss in more
detail in Chapter 3, are as follows:

• System model: Provides a precise model encompassing the possible behaviors
of the program.

• Attacker model: Models the observations of the attacker through sinks that
they can see, and specifies their capabilities, such as whether they only observe
the program execution or try to actively interfere with it.

• Security policy: Labels the sources and sinks, and specifies which flows are
considered secure.

• Security condition: A condition that states whether the system model
complies with the security policy for a given attacker.

Once the security requirements of the program have been formally defined using
these ingredients, an enforcement mechanism is used to enforce the security
condition in practice. One approach to enforce information flow control is called
Language-Based Security (LBS). Language-based security operates on the source-
level of the program and leverages programming language analysis and verification
techniques to enforce the security requirements defined in the IFC specifications.
Through these mechanisms, language-based security can provide formal security
guarantees for information flow policies and ensure that programs behave securely
against various attacker models.

1.1 Research Questions

The primary objective of this thesis is to investigate challenges related to various
aspects of language-based information flow control. This research seeks to advance
the state of the art with regard to defining information flow control policies for
appropriate attacker models in real-world settings, developing novel security
conditions to verify the security of software systems, and proposing enforcement
mechanisms to enforce these security conditions. This objective leads to the
following research questions:

RQ1: How can non-trivial security policies be defined to effectively address
specific real-world scenarios?

RQ2: What are the appropriate attacker models for scenarios where simple
attacker models fail to adequately account for the full range of security threats
faced by the system?

5

RQ3: How can we develop mechanisms to enforce realistic information flow
security conditions in a sound and precise manner?

RQ4: How can information flow control techniques be effectively and man-
ageably applied to real-world programming languages?

1.2 Research Methodology

This thesis adopts a deductive research methodology to develop and validate new
language-based methods for information flow control. We follow a three-step process:
(1) specification, (2) enforcement, and (3) application. The process begins by
formalizing the programming language, which serves as the foundation for deriving
a program model. Subsequently, we define the security requirements of the system
by considering aspects such as attacker models and security policies. The outcome
of this step is a security condition used to verify the desired security properties
of the program model. Language-based mechanisms are designed and developed
to enforce the security condition. Formal proofs establish the soundness of the
developed mechanisms, ensuring their adherence to the security condition. Finally,
these mechanisms are evaluated through practical implementation and case studies.

Define Program Model

Specify Security Requirements

Develop Language-based Mechanisms

Formal Proofs

Implementation and Evaluation

Specification

Enforcement

Application

Figure 1.1: Research methodology

Figure 1.1 illustrates the overall methodology employed in this thesis. We briefly
outline the steps that define each component of this methodology.

Define program model. The first step is to develop a program model. This
includes defining constructs for specifying the program’s structure and behavior.

6

We formalize the programming language by defining its syntax and semantics, from
which we can develop a program model for the programs written in that language.

Specify security requirements. We specify the security requirements of the
system by defining attacker models relevant to the potential security threats. In-
formation flow security policies are defined to state how the data may flow within
the program. This formalization provides a rigorous foundation for developing the
security condition, which is used to verify whether the given program model is secure
under the defined attacker model and security policy. This step is iterative, as both
the program model and security requirements may need to be refined multiple times
to achieve an acceptable model.

Develop language-based mechanisms. With the program model and security
condition in place, language-based mechanisms are developed to enforce the security
condition. At this stage, the security condition is translated into formal constraints,
such as typing rules or logical assertions, that the mechanisms must enforce. This step
bridges the gap between abstract security requirements and concrete implementation
requirements by clearly defining what constitutes a secure program. This step also
involves an iterative interaction with the previous step, as adjustments to the
security requirements and their definitions may be necessary to align them with the
developing mechanism.

Formal proofs. To ensure the language-based mechanisms work as intended, formal
proofs are provided to demonstrate the soundness of the proposed mechanisms with
respect to the security requirements. A mechanism is sound if it only accepts
programs that are indeed secure. This is irrespective of whether all secure programs
are accepted by the mechanism, as, due to the overapproximation inherent in many
language-based mechanisms, they sometimes reject secure programs. It is ideal for
a language-based mechanism to guarantee soundness while rejecting as few secure
programs as possible.

These proofs rely on deductive reasoning on the program model and the security
condition, establishing that the developed mechanisms meet their theoretical objec-
tives. This step closely follows the development of the language-based mechanisms.
Occasionally, during the proof process, it becomes necessary to revisit and modify
the mechanisms to ensure they can be formally proved.

Implementation and evaluation. Applying the theoretical mechanisms to
practical programs is the final step in this process. This involves implementing
the proposed mechanisms in prototype tools and evaluating them on practical case
studies. This step is separate from the previous ones. The previous steps, focused
only on theoretical aspects, generally model the core of a real-world programming
language and propose and prove the language-based mechanisms on this core. At
the application step, this formalized core is adapted and extended, enabling the
application of the theoretical results of previous steps to practical programs.

7

1.3 Contributions

Figure 1.2 provides an overview of the included papers and their relation to the
research questions. We briefly outline these contributions in Chapter 4. For detailed
explanations, readers are referred to the full papers in their respective chapters.

TEE Security

A B

Dynamic Policies

C

Disjunctive Policies

D

P4 Security

E

Security Policy
(RQ1)

Enforcement
Mechanism

(RQ3)

Attacker
Model
(RQ2)

Real-world Applications
(RQ4)

Figure 1.2: The papers included in the thesis

For RQ1, in Paper C, we investigate scenarios where the security policy is dynamic
and can change during the execution of the program. By revisiting the existing
security conditions for dynamic policies, we highlight the critical role of the attacker
in defining the security condition. Consequently, we propose a novel knowledge-based
security framework that establishes a clear connection between dynamic policies
and attacker models.

In Paper D, we explore disjunctive policies, which address the problem of defining
policies that restrict access to information based on conflict-of-interest classes. They
allow the flow of information only if the observer has not accessed any conflicting
data from other classes. Given the relevance of this class of policies to database
applications, in Paper D, we focus on database-backed programs. We propose the
Determinacy Quantale as a new semantic model to express disjunctive policies in
terms of database views, and develop a security condition to verify the security of
database-backed programs with respect to this class of policies.

For RQ2, we investigate active attackers in the context of trusted execution envi-

8

ronments in Papers A and B. In contrast to passive attackers, who only observe
parts of the execution of the program, active attackers actively interfere with the
normal execution of the program through data or control flow modifications. A
trusted execution environment (also called an enclave) is a secure area within a
device’s main processor that ensures sensitive data and operations are protected,
isolated, and executed securely, even in the presence of a compromised operating
system. Active attackers are a natural choice here because the host of the trusted
execution environment may be untrusted and potentially malicious. Since the host
controls the execution environment, it is important to consider attackers that are
more powerful than a simple passive attacker.

We investigate security against two types of active attackers: one that manipulates
the data passed to the enclave, and another that manipulates the control flow of the
program by calling any enclave method as many times and in any order. In Papers
A and B, we propose a security type system that statically guarantees robustness
against these types of active attackers, ensuring that active attackers cannot learn
more information than a passive attacker.

As mentioned before, our security framework for dynamic policies, introduced in
Paper C, also accommodates various attacker models. We investigate three types
of passive attackers: perfect recall attackers (who remember all past information),
bounded memory attackers (who have limited memory), and forgetful attackers
(who forget their past knowledge when the policy changes).

For RQ3, we investigate various static enforcement mechanisms, each tailored to
specific use cases. Papers A and B propose a security type system that incorporates
labelings for confidentiality and integrity. In Paper E, we develop a security type
system augmented with interval analysis. This interval analysis tracks the range
of possible values for each type, enabling the expression and enforcement of data-
dependent security policies. We formally prove that this permissive yet sound type
system enforces noninterference in P4 programs.

To enforce disjunctive policies, in Paper D, we propose a disjunctive type-based
dependency analysis that represents database dependencies of each possible run of
the program as a set of queries. The result of this analysis is a set of sets of queries,
capturing the dependencies of all possible runs of the program. To ensure security
with respect to disjunctive policies, we verify that each set of dependencies is in line
with the constraints of the conflict-of-interest classes described by the policy.

We adapt a symbolic execution approach to enforce dynamic policies in Paper C.
We symbolically execute the program and capture the program model as a symbolic
output tree, where each node contains information about observable outputs, path
conditions, and the security policy active at the time the output was produced.
Using this information, we verify the program’s security compliance with respect to
the active policy for each execution point in the program.

To address RQ4, we develop static enforcement mechanisms for programming

9

languages Java and P4. In Paper E we implement a security type system for the P4
programming language, We use this type system to statically enforce data-dependent
security policies on the input and output packets of a programmable switch, ensuring
the security of P4 programs.

To verify the security of a Java program in the presence of dynamic policies, in
Paper A, we introduce DynCoVer. It relies on symbolic execution to analyze a
Java program and produce a symbolic output tree, encoding observable outputs
and the active policy. This symbolic output tree is later used, in combination with
Z3 solver, to verify the security of the program with respect to dynamic security
policies.

Furthermore, in Paper A, we develop a programming model and a security type
system for enclave-based Java programs. In this approach, user-defined annotations
on standard Java code are used to automatically partition the program into enclave
and non-enclave parts, and our type system ensures that this partitioned program
enforces robustness.

1.4 Outline

Chapter 2 provides an overview of the field of software security in general, empha-
sizing how security guarantees can be described in a formal manner and briefly
discussing the limitations of existing solutions. Chapter 3 introduces language-based
information flow control, which is the primary focus of the thesis. It examines
how information flow requirements can be specified, enforced, and applied using
language-based techniques, and highlights the thesis’s contributions to the current
state of the art. Chapter 4 presents a summary of the publications included in the
thesis, along with an overview of the author’s contributions. Chapter 5 concludes
the thesis with a discussion on potential future work and directions for further
research.

10

2 | Software Security

“She had racked her piecemeal recollection of her species’ history and found
only a hierarchy of destruction: of her species devastating the fauna of planet
Earth, and then turning on its own sibling offshoots, and then at last, when
no other suitable adversaries remained, tearing at itself. Mankind brooks no
competitors, She has explained to them — not even its own reflection. ”

– Adrian Tchaikovsky, Children of Time

The recognition of the importance of formalizing software security dates back to
the early 1970s, a period during which several research initiatives focused on this
area were funded by the United States Department of Defense. During this time,
significant progress was made in understanding how to formally define and evaluate
the security properties of computing systems. A key contribution to this effort
was the development of the so-called Orange Book (formally known as the Trusted
Computer System Evaluation Criteria) [10], which established a framework for
evaluating and certifying the security of computer systems. This period also saw the
emergence of formal verification methods, which aimed to bridge the gap between
theoretical security models and practical systems.

While traditional software engineering methods focus on developing functional soft-
ware that meets user requirements, formalization goes further by ensuring that the
system’s behavior is secure under all conditions. The software development process
typically involves stages such as requirements gathering, design, implementation,
testing, and maintenance. Formal methods contribute at many of these stages by
providing formal specifications of the system, defining security requirements and
policies, and proving the correctness of the system.

Security policy. The first step in having any meaningful formalization of security
is to identify what constitutes sensitive information within the system and needs
protection. A security policy provides this definition by specifying the sensitive and
non-sensitive information. It serves as a baseline against which the security of the
system can be evaluated.

11

Confidentiality
In

te
gr

ity
AvailabilitySecurity

Figure 2.1: CIA triad

Traditionally, the security properties of a system are divided into three categories:
confidentiality, integrity and availability, often dubbed as the CIA triad (depicted
in Figure 2.1).

• Confidentiality focuses on preserving the secrecy of sensitive information.
In this context, information is classified into various sensitivity levels, such
as secret and public. Confidentiality requirements stipulate that sensitive
information should not be accessible to unauthorized entities (e.g. users or
processes). Here, accessible refers to the ability to observe, read, or copy the
information, while an unauthorized entity may technically overwrite sensitive
information without violating confidentiality.

• Integrity focuses on the trustworthiness of information. Integrity is often
regarded as the dual of confidentiality, with information classified into trust-
worthiness levels, such as trusted and untrusted. Integrity requirements state
that information should remain trustworthy throughout its lifecycle. This
means that unauthorized entities cannot create, modify, or tamper with the
information in any way.

• Availability guarantees that the system is reliable, and information is acces-
sible by an authorized entity when requested, ensuring that services are not
denied to authorized users, even in the face of disruptions or attacks.

While each of these principles addresses a distinct dimension of the overall security
of the system, they lack formal definitions and are not entirely orthogonal to one
another, meaning that they can sometimes overlap or even conflict in certain
scenarios. For example, confidentiality may be enforced through integrity violations,
where corrupting or tampering with secret data makes it invalid, thus preserving the
secrecy of the original data. Similarly, confidentiality can also be enforced through
availability violations; for instance, denying access to secret data altogether makes
it inaccessible to any user, thereby protecting the confidentiality of the data.

12

Attacker model. An important factor in guaranteeing the system’s security is
defining who (or what) the system is being protected against. This is known as the
attacker model and typically involves specifying the scope of the actions and the
capabilities of the attacker attempting to compromise the system. An attacker’s
capabilities may range from passively observing the program’s behavior to actively
interfering with its execution by manipulating data or code. Accurately defining
the attacker — whether it is one measuring small timing deviations in program
execution or one modifying a web page’s behavior through code injection — must
correspond to the specific requirements of the program and the context in which it
is deployed. This alignment ensures that the implemented security measures are
both theoretically sound and practically effective.

A well-known example of an attacker model in network systems is the Dolev-Yao
model [9], which provides a theoretical framework for analyzing the security of
cryptographic protocols. It assumes an active attacker who has complete control
over the network, meaning they can eavesdrop, intercept, modify, and inject packets.
The attacker in this model is assumed to have unlimited computational power but
is constrained in their abilities regarding the cryptographic primitives in use, such
as encryption and authentication methods [9]. The Dolev-Yao model is widely used
to evaluate the security of protocols in terms of their resilience to various attacks,
such as message interception, replay, and forgery.

Enforcement. Once a suitable attacker model and security policy for a system
are defined, the next step is to enforce security in practice. This can be achieved
through an enforcement mechanism, which consists of a set of safeguards, methods,
and techniques designed to verify the system’s compliance with the policy and
either prevent or flag unauthorized operations. Enforcement mechanisms can take
various forms depending on the specific security goals and the nature of the system.
Examples of such mechanisms include access control, data encryption, firewalls, and
sandboxing.

Access control. Access control is one of the most well-known and widely used
enforcement mechanisms in computer systems. It focuses on regulating who (or
what) can access specific resources or information. The fundamental idea behind
access control is to limit access to resources only to authorized entities, thereby
protecting systems and data from unauthorized access or modification. Typically,
access control mechanisms define sets of rules based on subjects (users or processes),
objects (resources or information), and the operations (actions) that subjects can
perform on objects [14].

Access control can be broadly classified into two types: mandatory access control
(MAC) and discretionary access control (DAC). MAC is a rigid approach where
access rules are created by a central authority based on policies and security labels
of the system. MAC is often used in highly secure environments like government or
military systems. On the other hand, DAC allows resource owners to define their

13

own access policies, granting them the ability to decide who can access or modify
their resources.

Access control mechanisms assume that the attacker cannot directly tamper with the
enforcement mechanism itself, but can still employ attacks such as privilege escalation
to gain higher-level access. This can be accomplished through various methods,
ranging from exploiting bugs in programs to using social engineering tactics. A
related concern is the Confused Deputy Problem [11], where an authorized program
with high-level access mistakenly uses its privileges on behalf of an attacker. This
happens when the program is tricked into performing actions for the attacker,
allowing unauthorized access despite the program’s original permissions.

One of the initial attempts to formalize access control was the Bell–LaPadula
(BLP) [1] model, developed in 1973 with the aim of providing a formal basis
for confidentiality using access control policies. As an example of a mandatory
access control (MAC) system, the main purpose of BLP was to formalize the U.S.
Department of Defense multilevel security policy. The security policy is described
as a set of access control rules that use security levels on objects and clearances
for subjects. Security levels range from the most sensitive (e.g. Top Secret) down
to the least sensitive (e.g. Unclassified). This gives rise to a multilevel security
requirement, which essentially ensures that a subject at a higher level does not
convey information to a subject at a lower level. These requirements are formalized
in terms of the No Read Up property, stating that a subject can only read from
objects at a lower or equal security level, and the No Write Down property, stating
that a subject can only write to an object at a higher or equal security level. The
Bell–LaPadula model has influenced the design and implementation of the early
security-aware operating systems, such as Multics [3].

The Biba Model [6] was developed in 1975 as the dual of the Bell–LaPadula model
with an emphasis on integrity policies. It ensured integrity through two key principles:
the simple integrity property (No Write Up) and the star integrity property (No
Read Down) [6]. These principles ensure that users cannot write data to a higher
integrity level (thus preventing modification of trusted data) and cannot read data
from a lower integrity level (thus preventing untrusted data from affecting trusted
ones).

An example of access control systems in action, which is widely used today, is the
permission system of modern mobile operating systems. Android, for example,
employs a permission-based model to regulate how apps interact with the underlying
system and user data. An app must declare the permissions it needs and the user
must grant them, in many cases explicitly, in order for the app to function as
intended. This approach is designed to provide users transparent control over the
data they share with the app.

For example, consider a fitness tracking app that is designed to help users monitor
their workouts, track running routes, and set health goals. To function, it requests

14

permissions such as access to Access Fine Location for GPS tracking, Activity
Recognition to detect motions like walking or running, and Internet Access to sync
data with the cloud. These permissions are critical for providing core features, such
as displaying detailed workout statistics and allowing users to review their progress
over time. The user, wanting to use any of these functionalities, must either grant
them explicitly, or in the case of Internet Access, can at least be aware of it.

Even though such an app might appear benign and does not request any unrelated
permissions, such as access to contacts or SMS, it can still misuse the data it
legitimately procured. For example, the app requests Access Fine Location, which
is critical for route tracking. However, without additional safeguards, it can misuse
this permission to track users’ movements for unrelated purposes, such as selling
their location data to advertisers. Having Internet Access permission to sync fitness
data also allows the app to upload user’s personal data, such as sensitive location
history, to its servers.

Issues such as these are well-known limitations of access control mechanisms. While
these mechanisms regulate access to data, they cannot ensure that the data is used
appropriately after access is granted. By design, access control mechanisms restrict
who can access data, but they cannot control what an authorized entity does with
the data after access has been granted. For example, in the case of the fitness app,
if the app is authorized to access certain data, it may, either through error or malice,
propagate that data to an unauthorized entity, thereby violating the security policy.
This issue is particularly relevant in the mobile ecosystem, where apps are typically
provided by external developers, often unknown to the user, and downloaded from
an app store. As a result, the code is inherently untrusted and could potentially
have been provided by an attacker.

Covert channels. The root of this limitation of access control mechanisms is that
they can only offer protection when the sensitive data is accessed explicitly. This
means the subject must attempt to directly access the protected object. There are
many indirect information channels in a computer system, often referred to in the
literature as covert channels [2]. These channels use mechanisms not designed for
information transfer to convey data, and are classified into several categories [28]:

• Implicit flows: These occur when the control flow of a program depends on
some secret information, and different secret values produce different attacker-
observable behaviors.

• Termination channels: Termination leaks occur when a program’s termination
(or non-termination) depends on secret information. In such cases, an attacker
who can observe whether the program halts or continues running, can infer
some information about the secret information based on the observed behavior.

• Timing channels: Timing leaks occur when the time it takes for a program to
execute depends on secret data. In such cases, an attacker that can observe

15

the time taken to execute specific parts of the program can deduce some
information about the value of sensitive data based on these observations.

• Power channels: A power covert channel exploits variations in power consump-
tion to convey information, that is, a malicious process modulates its power
usage in a way that is detectable by another process, thereby using it as a side
channel to leak information.

• Probabilistic channels: A probabilistic covert channel uses the stochastic
behavior of the system to leak information indirectly, such that the leakage
occurs with some probability rather than deterministically. Here, secret
information influences the observable behavior of the program, modifying the
probability distribution of the observable data.

• Resource exhaustion channels: This channel leaks information by exhausting a
finite, shared resource (e.g. memory, CPU, disk space). The exhaustion of this
shared resource, or its absence, can be observed by another party, allowing the
information to be conveyed without using traditional explicit communication
channels.

Challenges such as covert channels highlight the importance of approaches that can
track how the information propagates through a system, ensuring that it adheres to
the security policy in an end-to-end manner. In the security literature, this approach
is referred to as Information Flow Control (IFC) [28].

IFC mechanisms operate by defining sources and sinks of information and tracking
how data flows within the program from these sources to the sinks. This is unlike
traditional access control mechanisms, which manage access to data only at specific
points. For example, in the case of a fitness app, the user’s location provided by
the location service (e.g. a GPS sensor) is a source of information, and the map
where this information is displayed or the network socket where it is sent are sinks
of information. Android’s permission system controls only the source. It checks
whether the app has the Access Fine Location permission, and if granted, allows the
app to read the location information. An IFC mechanism, however, goes further by
tracking how the information read from a source, such as the location service, is
used throughout the program. It ensures, based on a security policy, that sensitive
information read from a location service source does not flow to unauthorized sinks,
such as a network socket. By tracking information flows at a granular level, IFC can
prevent unauthorized propagation of data, even in the presence of covert channels.

However, implementing information flow control in practice faces significant chal-
lenges, including defining precise models of attackers and systems, enforcing flow
policies in complex software systems, and designing policies that accurately reflect
real-world requirements. In the next chapter, we will look at information flow control
in detail and investigate these challenges while highlighting the contributions of the
thesis.

16

3 | Information Flow Control

“And because, in all the Galaxy, they had found nothing more precious than
Mind, they encouraged its dawning everywhere. They became farmers in
the fields of stars; they sowed, and sometimes they reaped. And sometimes,
dispassionately, they had to weed. ”

– Arthur C. Clarke, 2010

Security enforcement mechanisms like access control fall short in preventing unau-
thorized information flows, especially through covert channels. Information flow
control addresses this limitation by tracking how data is propagated within a sys-
tem and ensuring it adheres to security policies. IFC defines sources and sinks
of information and enforces rules on how information can flow from sources to
sinks, preventing leaks by tracking what happens to the data even after it has been
accessed. However, information flow control requires a complete analysis of the
system as a whole, which, given the increasing complexity of modern software, poses
both theoretical and practical challenges [37]. One popular approach in this domain
is called Language-Based Security (LBS) [28], which relies on programming language
analysis techniques to enforce information flow control.

This chapter introduces language-based information flow control. It is divided into
three sections, each focusing on a key aspect: how to specify information flow control
properties, how to enforce them using language-based mechanisms, and how to
apply these techniques to real-world programming languages. Each section includes
a brief overview of the concepts, followed by our contributions.

3.1 Specification

Figure 3.1 illustrates the main ingredients necessary for analyzing a program using
information flow control. We rely on these ingredients to precisely define what it
means for a program to be secure in a specific setting.

17

Security Policy

Attacker Model

Program Model

Security
Condition

¥

q

Enforcement

Figure 3.1: Information flow analysis ingredients

The program model provides a precise representation of the behavior of the program.
For example, the program model can be represented as a state transformer, which
produces a set of executions, capturing various behaviors of the program.

To define an information flow security policy, we need to identify sources and sinks
of information. The security policy categorizes these sources and sinks into various
security classifications (i.e. labels) and defines acceptable information flows between
sources and sinks, specifying what constitutes a secure flow within the system. For
example, for confidentiality, information from secret sources should not flow to
public sinks, and dually, for integrity, information from untrusted sources should
not affect (or flow to) trusted sinks.

The attacker model is used to represent the security level and the capabilities
of the attacker. It identifies which parts of the system the attacker can observe
(e.g. program outputs, specific memory regions, or network communications). It
also defines the information the attacker has about the system’s internal workings
(e.g. whether they know the source code or can observe execution termination). The
model considers the attacker’s abilities with regard to the execution environment
(e.g. whether they can track execution steps or measure execution time) and their
computational power (e.g. whether they can break cryptographic primitives or are
computationally bounded). Additionally, it defines whether the attacker is passive
or active (e.g. do they just observe the execution or actively interfere with the
execution). Ideally, one would like to show that a system is secure even against the
most powerful attackers; however, this is often neither necessary nor feasible.

These ingredients allow us to define the semantic security condition, which verifies
whether the program model complies with the security policy for a given attacker.
The enforcement mechanism, used to practically validate the security of the program,
should in practice imply this security condition. In other words, the semantic security
condition provides a baseline against which the correctness of the enforcement
mechanism is validated.

18

Program Model

A program model provides a well-defined specification of the program’s behavior.
The overall behavior of the program, as well as the internal details of the system,
such as the stored values in memory, is part of this specification. A common
approach is to model a computer program as a state transformer, representing the
execution of the program as a sequence of transitions between states. A state is a
snapshot of the memory of the system at a given point in time. Initial memory,
as well as inputs to the system, are modeled via initial states [57]. The program
takes an initial state as input and produces a final state based on the program
instructions.

Program 3.1

1 bool h; // secret variable
2 bool l; // public variable
3

4 l = 0;
5 if (h)
6 skip;
7 else
8 l = 1;
9 l = 1;

Take Program 3.1 as an example. It is
a simple program that has two boolean
variables: a secret variable h and a public
variable l. A state, in this case, assigns
values to these two variables. For brevity,
we represent false and true values with
0 and 1, respectively. Figure 3.2 depicts
the program model as a set of runs. A
run is a sequence of states that describes
the behavior of the program as it executes
from an initial state (depicted as a dashed
node) to a final one. Runs r1 to r4 capture
all the possible executions of Program 3.1.

h = 0
l = 0

h = 0
l = 0

h = 0
l = 1

h = 0
l = 1

r1

h = 0
l = 1

h = 0
l = 0

h = 0
l = 1

h = 0
l = 1

r2

h = 1
l = 0

h = 1
l = 0

h = 1
l = 0

h = 1
l = 1

r3

h = 1
l = 1

h = 1
l = 0

h = 1
l = 0

h = 1
l = 1

r4

Figure 3.2: Program 3.1 model

19

Security Policy

In an information flow control context, we need to specify sources and sinks of
information. Commonly, the initial value of program variables or the inputs to the
program are considered sources of information, and the final values of variables or
the outputs produced by the program are sinks of information.

The security policy assigns security labels to these sources and sinks and defines the
allowed information flow between them. A common approach for defining a secure
flow is to define an ordering between security labels, and state that information for
a specific label is only allowed to flow to the same label or a higher ones. These
labels and their ordering can form a lattice [4].

We depict a simple lattice for confidentiality in Figure 3.3a, where there are two
security labels: secret for sensitive information and public for public information.
The ordering puts secret information above public information, which means that
data from public sources may flow to secret sinks but not vice versa. This closely
aligns with the Bell-LaPadula (BLP) model’s No Read Up and No Write Down
rules, which prevent the unauthorized disclosure of sensitive information between
different security levels.

public

secret

(a) Confidentiality

trusted

untrusted

(b) Integrity

secret
untrusted

public
untrusted

secret
trusted

public
trusted

(c) Confidentiality and integrity

Figure 3.3: Security lattices

Dually, the integrity lattice depicted in Figure 3.3b classifies data into untrusted
and trusted categories, with the ordering stating that only trusted data may flow to
untrusted sinks. This is in line with the intuition that untrusted data should not
affect (and corrupt) trusted data. For example, consider a web application where
users can provide inputs through form submissions. These user-provided inputs
are labeled as untrusted, whereas the records of the backend database of the web
application are trusted. The integrity policy ensures that untrusted inputs should
not be able to directly update or modify the trusted database records.

For a system in which both confidentiality and integrity constraints are important,
labels and orderings such as the one depicted in Figure 3.3c may be employed. For

20

example, here the ordering indicates that (public, trusted) data can flow to (secret,
trusted) but (secret, trusted) cannot flow to (public, untrusted). Because there is no
arrow between (secret, trusted) and (public, untrusted), this means that these labels
are incomparable.

Static vs dynamic policies. The security policies are broadly divided into two
categories: static and dynamic. A security policy is called static when the initial
labeling of the data does not change throughout the life-cycle of the system. In
other words, what was initially declared secret will always remain secret, and what
was public will always remain public (i.e. its sensitivity level is not elevated to secret
while the system is running).

This, however, is not always the case with most real-world systems, where the
security requirements of the system change during the life cycle of the system. This
means that the sensitivity level of the information can change to a lower level
(downgrade) or a higher level (upgrade). This makes dynamic policies a natural
choice for many real-world applications, e.g. healthcare systems, social networks,
and database systems, where access to information may be granted or revoked for
different principals in accordance with their specific role at a given moment. For
example, assume a user Alice who works within an organization and can observe
secret data. When Alice leaves the organization, it is necessary to change the policy
and set her security level to public.

Conjunctive vs disjunctive policies. Another class of information flow policies
is disjunctive policies. These policies capture scenarios where the security policy
must restrict access to information based on conflict-of-interest classes, allowing the
flow of information only if the observer has not seen conflicting data from any of
the other classes. An example of such policies is the so-called ethical wall policy
[12], which is widely known in the business world and used to manage information
where there are conflicts of interest. A disjunctive policy is used to prevent conflicts
of interest by restricting access to conflicting information. For instance, consider
Alice, a lawyer at a firm that represents two rival companies, A and B. Ethical
constraints dictate that if Alice is working with company A, she must not be able
to access information related to company B, as her involvement with A creates a
conflict of interest with B. In this scenario, a disjunctive policy ensures that Alice
can only access information about B if she has not previously accessed any data
about company A.

Disjunctive policies contrast with conjunctive policies, where access to information
is determined by the conjunction of some access criteria. In conjunctive policies,
an entity can access certain information only if all required conditions are satisfied.
For example, a conjunctive policy might state that Alice is permitted to access a
company’s data only if she works for the law firm and has completed a particular
training course.

21

Attacker Model

The security level of the attacker, their capabilities, and what they can observe
about the program’s behavior play a crucial role in our definition of security. Our
assumptions of the attacker depend on the setting in which the program is supposed
to be used. In a system where multiple processes have to share the same memory,
such as multi-threaded or mainframe systems, we can assume an attacker that can
observe the public part of the memory, which is shared between all processes. In this
setting, the attacker is just another process that observes how the other processes
modify this public memory section.

While in scenarios such as web applications, where the program is executed on the
server and only the results are returned to the client, we can assume the attacker is
a client and can only observe the values produced by the server program.

To illustrate this, let us revisit Program 3.1. Figure 3.4 depicts the runs of this
program as observed by an attacker that can only see the public part of the memory.
Hereafter, we call what an attacker can observe of a run as an observation trace.

l = 0

l = 0

l = 1

l = 1

t1

l = 1

l = 0

l = 1

l = 1

t2

l = 0

l = 0

l = 0

l = 1

t3

l = 1

l = 0

l = 0

l = 1

t4

Figure 3.4: public observation traces of Program 3.1

In language-based context, the program’s source code and the resulting program
model are considered public knowledge. This implies that an attacker has full
knowledge of the program’s source code and can predict its behavior under various
initial conditions. An attacker thus attempts to learn sensitive information by trying
to match which specific run of the program aligns with their observation trace.

22

A common trait in recent works on information flow control has been to model
attackers by relying on epistemic models of knowledge, representing the knowledge
of the attacker as an equivalence relation on the initial states of the program, which
partitions the domain of all possible states into equivalence classes by relating two
states whenever the attacker cannot distinguish between them.

For example, an attacker knowing the source code of Program 3.1 knows that its
program model can be represented by the runs depicted in Figure 3.2. Suppose
the attacker sees the observation trace t1 from Figure 3.4. Initially, the attacker
considers all the runs in Figure 3.2 possible, meaning they cannot distinguish any
of the initial states, partitioning the set of all initial states as depicted in Figure
3.5. At the first step of the observation trace t1, seeing l = 0, the attacker can
narrow down the possible runs to r1 and r3. This means that they can partition
the initial states as depicted in Figure 3.6, reflecting the fact that the attacker can
distinguish the initial states in which l has a different value. Later, at step 3 of t1,
when the attacker observes the transition from l = 0 to l = 1, they can further
deduce that only r1 could have produced this observation. By this reasoning, the
attacker infers that only the initial state corresponding to r1 could have generated
the observation trace t1, thus further refining the partition of initial states and
producing the equivalence relation of Figure 3.7. As a result, the attacker can
conclude that the initial value of the secret variable h must have been 0.

h = 0
l = 0

h = 0
l = 1

h = 1
l = 0

h = 1
l = 1

Figure 3.5

h = 0
l = 0

h = 0
l = 1

h = 1
l = 0

h = 1
l = 1

Figure 3.6

h = 0
l = 0

h = 0
l = 1

h = 1
l = 0

h = 1
l = 1

Figure 3.7

Termination. Another capability of the attacker that must be considered is
whether they can detect the termination of the program’s execution. To illustrate
this, assume an attacker that observes the outputs of Program 3.2. An attacker
that can observe termination sees the observation traces depicted in Figure 3.8,
where each node is the observable output, and p indicates the termination of the
execution, whereas an attacker that cannot detect termination sees the observation
traces depicted in Figure 3.9.

23

Program 3.2

1 bool h; // secret variable
2

3 print(1);
4 print(2);
5 print(3);
6 while (h)
7 {
8 skip;
9 }

The attacker seeing the observation
traces of Figure 3.8 can distinguish
between the initial states that will
cause the program to output 1, 2,
and 3 and loop forever (i.e. h = 1)
and the ones that output the same
values but terminate (i.e. h = 0),
thereby learning the value of the
secret variable h. In contrast, the
second attacker cannot learn this,
as the observation traces of Fig-
ure 3.9 do not let them distinguish
between the terminating and non-
terminating behaviors.

1 2 3

1 2 3 p

Figure 3.8: Traces with termination

1 2 3

1 2 3

Figure 3.9: Traces without termination

Passive and active attackers. An attacker can either just observe the execution of
the program or try to actively interfere with it by code injection or data manipulation.
The former is referred to as a passive attacker, while the latter is called an active
attacker. Whether an attacker is passive or active plays a crucial role in the security
of the system.

Program 3.3

1 int h; // secret variable
2 int l; // public variable
3

4 l = 0;
5 [•];
6 print(l);

Consider Program 3.3, which simply
prints the contents of a public variable.
We usually model the abilities of active
attackers by placing holes [•] in the
program through which the attacker can
inject their code. For example, in Pro-
gram 3.3, an active attacker can simply
inject l = h into the hole [•] on line
5 and observe the value of the secret
variable h being printed.

Active attackers are relevant in web applications, where code from different providers
may be included on the same web page, or in trusted execution environments, where
the host is not trusted and may attempt to alter the program’s execution by
manipulating the data being sent to the enclave.

24

Semantic Security Condition

The semantic security condition establishes a baseline for evaluating the program’s
security, ensuring that the program model complies with the security policy under
that specific model of attacker. The definition and guarantees of a semantic security
condition depend on the attacker’s capabilities and our definition of security. As
a result, different security policies and attacker models lead to distinct security
conditions, each addressing specific security concerns.

System

secret input

public input

secret output

public output

p

Figure 3.10: Noninterference

Noninterference [8] is the most well-known semantic security condition in information
flow control. It ensures that secret inputs do not influence the observable public
outputs of the system. Consider Figure 3.10, which depicts a system with both
secret and public inputs and outputs. secret inputs represent sensitive data, such
as passwords, while public outputs are the observable results visible to external
observers. Noninterference follows the intuition that the values of secret inputs
should not interfere with the public outputs, meaning that any change in the system’s
secret inputs should not affect the public outputs, ensuring that actions involving
secret data remain completely opaque to public observers.

Noninterference is defined formally by analyzing the observation traces of the system:

ñ Definition 3.1
A system satisfies noninterference if, for any two different inputs differing
only in their secret-level values, the observation traces visible to a public-
level observer are indistinguishable.

There are two well-known variants of noninterference based on the attacker’s ability
with regard to termination. Termination-insensitive noninterference (TINI) refers
to definitions in which the attacker cannot distinguish between terminating and
non-terminating observation traces. In contrast, termination-sensitive noninter-
ference (TSNI) applies when the attacker can detect termination, meaning that
programs which leak secret information through termination, such as Program 3.2,
are considered interfering.

25

Limitations of noninterference. Noninterference ensures that the system does
not reveal any information about the secret inputs. However, this strong security
guarantee comes at a price. It is often not possible for many practical computer
systems to satisfy this property, as in many cases, a system needs to release certain
sensitive information as part of its intended functionality.

Program 3.4

1 string pass; // secret variable
2

3 bool check(string guess) {
4 if (pass == guess)
5 return 1;
6 else
7 return 0;
8 }

Consider Program 3.4, which
implements a simple password
checker. Such a program must
reveal some information that
depends on the secret value
(i.e. the password), as the out-
put needs to differ when a
user enters the correct password
compared to when they enter
an incorrect one.

Declassification and endorsement. In the security literature, the intentional
release of secret information is called declassification. Noninterference is unable to
capture programs that include declassification. While declassification is intuitively
easy to understand, it is challenging [69] to define formal security policies and
semantic conditions for programs with declassification that are not only enforceable
in practice but also cover a wide range of scenarios where the secure release of
information is necessary.

The challenge of formally defining declassification in relation to standard noninter-
ference is largely due to the various aspects and forms of declassification. Generally,
declassification requirements are categorized into four dimensions [69]: What infor-
mation is released? Who performs the release of information? Where in the system
the information release takes place? When the information release takes place?

The concept of endorsement is the dual of declassification in systems focused on
integrity. Endorsement raises the integrity level of untrusted data to trusted, allowing
it to safely affect the system’s trusted data. Program 3.5 depicts a common use case
of endorsement in web applications. The user-provided input on line 4 is considered
untrusted because it might contain malicious content, such as SQL injection, and
therefore should not be directly passed to the backend database. To address this,
the user-provided input is sanitized to ensure it does not contain any malicious
content. After the sanitization operation on line 5, the input is considered safe. At
this point, the endorse operator on line 6 is used to raise the integrity level of the
sanitized input to trusted, allowing it to be safely inserted to the backend database.

Robustness. In a system that incorporates active attackers and declassification,
another key information flow challenge is to precisely define the effects of the
active attacker on confidentiality. This concept, known as robustness [34], focuses on

26

Program 3.5

1 database db;
2 string input, sanInput, enInput;
3

4 input = form.data(); // untrusted user input
5 sanInput = sanitize(input)
6 enInput = endorse(sanInput)
7 db.insert(enInput)

whether an adversary can exploit declassification to bypass confidentiality guarantees.
Specifically, it ensures that active attackers, who can pass data or inject code into
the running program, cannot learn more information than a passive attacker who
merely observes the program execution.

Program 3.6

1 string h; // secret variable
2 int releaseTime = 2042; // public variable
3

4 bool release(int time) {
5 if (time >= releaseTime)
6 return declassify(h);
7 else
8 return 0;
9 }

To illustrate this, let us consider Program 3.6, which implements a function release
whose return value depends on the time parameter. Under a passive attacker,
secret variable h is only declassified when time meets or exceeds the predefined
releaseTime threshold, checked on Line 2. However, an active attacker capable of
manipulating the time variable can prematurely trigger declassification, effectively
controlling the release of information via declassification.

This problem can arise in many real-world settings, such as trusted execution
environments. A trusted execution environment (also called an enclave) is a secure
area within a device’s main processor that ensures sensitive data and operations are
protected, isolated, and executed securely, even in the presence of a compromised
operating system. Since in this setting an untrusted host controls the execution
environment, the data passed to the system, or even the order of function executions,
can be controlled by active attackers.

27

Contributions

Having introduced the main ingredients necessary for analyzing a program using
information flow control, in this section, we put our contributions within this context
and discuss closely related works.

Security policies. Denning’s seminal work, “A Lattice Model of Secure Informa-
tion Flow” [4] laid the mathematical foundation for reasoning about information
flow security in computer systems. The model employs a lattice structure to repre-
sent different security levels, where each level corresponds to a specific degree of
confidentiality or sensitivity of the information, allowing the systematic enforcement
of security policies that govern how information can flow between entities. Lan-
dauer and Redmond [13] introduced the Lattice of Information (LoI) as a model
for representing and comparing information. Their model is a lattice structure
whose elements are equivalence relations that partition a given set into subsets of
indistinguishable elements. In this construction, the partial order is defined on the
notion of refinement: an equivalence relation is deemed higher in the hierarchy if it
contains finer partitions (i.e. smaller equivalence classes) than another equivalence
relation. The Lattice of Information is limited to join and meet operations on
equivalence relations, making it suitable only for expressing conjunctive policies. To
address this limitation, Hunt and Sands [181] extended the Lattice of Information
and proposed the Quantale of Information, which includes an additional tensor
operator making it suitable for representing the disjunction of equivalence relations.
Unlike the Brewer and Nash model for disjunctive policies [12], which was rooted
in the area of access control, the Quantale of Information [181] is the first model
to provide an extensional characterization of disjunctive policies as an information
flow policy.

Bender et al. [99] introduced the Disclosure Lattice as a database counterpart of
the Lattice of Information. This model orders sets of queries based on the amount
of information they reveal about the underlying database. We observe that the
definition of disclosure order is not precise enough to capture information disclosure
in the information flow sense. Therefore in Chapter D we use a query determinacy-
based ordering and propose the Determinacy Lattice to enforce information flow
policies on database queries. Building on the quantale model of Hunt and Sands
[181], we extend this definition to the Determinacy Quantale, intended as a semantic
model to express disjunctive policies in terms of database views. Building on the
Determinacy Quantale and the Quantale of Information [181], we present a security
condition for verifying disjunctive policies in database-backed programs.

Robustness. Over the years, active attackers and their effect on security have
been investigated by researchers [23, 34, 63, 71, 80]. Zdancewic and Myers [23,
34] introduced the notion of robustness for systems that include the controlled
downgrading of information via declassification. Research on robustness, in general,
investigates the effect of active attackers in comparison to passive attackers, ensuring

28

that a system under active attack reveals no more information than the system
under a passive attacker’s observation, meaning that declassification cannot be
exploited to obtain more information than was intended.

Given the relevance of active attackers in trusted execution environments, in Chapter
A, we explore active attacker models and their effect on the robustness of programs
running on trusted execution environments. We examine two attacker models: one
that can manipulate data by modifying the parameters passed to the methods of
the enclave program, and another that can affect the control flow of the program
by changing the order and frequency of calling the enclave program’s methods. We
propose two robustness-based security conditions to ensure security against these
types of attackers.

Dynamic policies. Attacker models have also been investigated with regards to
dynamic policies [43, 64, 72, 88, 114, 116]. In this setting, usually the epistemic
capabilities of the attacker, such as their logical omniscience or their memory recall,
are investigated.

Askarov and Chong [88] proposed a general framework for capturing the semantics
of dynamic policies for all attackers. Their security condition defines learning as a
change in knowledge, based on the intuition that an attacker only learns something
from an event if the attacker’s knowledge after the event is more precise than
their knowledge before. They argued that in a dynamic policy setting, security
for the most powerful attacker does not necessarily imply security against all
attackers, demonstrating that a secure program under a perfect recall attacker can
be insecure under a weaker attacker. Van Deft et al. [116] improved on Askarov
and Chong’s [88] framework by proposing a new definition for progress-insensitive
security, eliminating the problematic behavior of some types of willfully stupid
attackers who may remember some observations while ignoring others.

To understand the relationship between various attacker models and the security
condition, and to capture scenarios where the release of information is transient,
we investigate dynamic security policies in Chapter C. We focus on three types of
attackers: a perfect recall attacker who can remember all observed information from
the past, a bounded memory attacker with limited memory who can only retain
observations within a certain range, and a forgetful attacker who forgets past obser-
vations when the policy changes (used to model scenarios where released information
was transient). We introduce the notion of inconsistent policies, capturing cases
where the policy change is not in line with the attacker’s knowledge and restricts the
attacker’s access to some information they already possess. We introduce a security
framework that incorporates policy consistency and the attacker model to capture
the semantics of dynamic policies. In contrast to Askarov and Chong [88], we prove
that, in the absence of inconsistent policies, security against a perfect recall attacker
does indeed imply security against weaker attackers.

29

3.2 Enforcement

The next step is to enforce the semantic security condition through a language-
based enforcement mechanism. This mechanism consists of methods and techniques
for verifying information flow properties, ranging from syntactic to semantic and
from static to dynamic approaches. There is an intricate trade-off between the
expressiveness of the security condition and the practical ability of the language-
based mechanism to enforce it.

In general, enforcement mechanisms are evaluated by two key criteria: soundness
and completeness. Soundness ensures that the mechanism accepts only secure
systems, while completeness guarantees that secure systems are not incorrectly
flagged as insecure by the mechanism. Another important aspect of the usability of
enforcement mechanisms is their precision. Due to the overapproximation inherent
in language-based mechanisms, they sometimes reject secure programs. While
rejecting a secure program does not compromise the soundness of the mechanism, it
does reduce its usability. The ideal is to have a permissive yet sound language-based
mechanism that guarantees soundness while rejecting as few secure programs as
possible.

Although one can come up with advanced semantic security conditions able to
express a wide range of security properties, their practical value is limited if there is
no enforcement mechanism that can effectively validate whether a program adheres
to them or not. The enforcement mechanisms discussed in this section vary in terms
of their permissiveness and their ability to enforce different security conditions.

The enforcement of information flow typically requires mechanisms to track the data
flow within a system. In general, enforcement mechanisms can be categorized into
two classes: static and dynamic. Static techniques enforce security at compile time
by analyzing the program code without executing it. This approach is appealing
because it verifies the program prior to execution, thereby eliminating runtime
overhead. Dynamic techniques, on the other hand, ensure program security by using
runtime information to perform information flow analysis. They prevent insecure
behaviors during execution, through techniques such as modifying the program’s
semantics to prevent information leaks or terminating the program if a leak is
detected.

Dynamic Techniques

Dynamic techniques enforce security policies during program execution by monitoring
the program’s runtime behavior. These methods supervise the actual execution of the
program and make adjustments as needed to ensure security. Dynamic approaches
are especially useful in highly dynamic environments, like web applications, where
code and data are not always known before runtime.

30

We provide a brief overview of some dynamic techniques but omit excessive details,
as the main focus of this thesis is static information flow control and no contributions
were made toward dynamic enforcement mechanisms.

Security monitors. A popular approach in dynamic enforcement is called a
security monitor, which is another program that monitors the execution of the target
program, checking for policy violations and intervening by halting the execution or
modifying the program’s behavior in the event of a policy violation. The flexibility
of monitors in enforcing security in highly dynamic contexts often comes at the
cost of runtime overhead. In many cases, such as real-time systems or network
devices, this additional overhead can be unacceptable. Additionally, dynamic
monitoring is inherently limited in enforcing noninterference, as it is a hyperproperty
[74]. Unlike traditional properties, such as safety and liveness [7], which can be
enforced on a single run, hyperproperties are defined over multiple runs and capture
the relationships between them. As a result, hyperproperties cannot be precisely
enforced in practice by examining only one run [74].

To overcome this issue, monitors sometimes need to overapproximate. For instance,
in a dynamic setting, updating the value of a public variable in only one branch
of a conditional guarded by a secret condition may lead to partial information
leakage. This occurs because the variable’s value changes in one execution while
remaining unchanged in an alternative execution. To address this problem, many
dynamic IFC methods use the so-called no-sensitive-upgrade (NSU) check [62],
which terminates the program’s execution whenever a public variable is updated
within a secret context.

secret
copy

public
copy

secret secret

public public

p

p p

Figure 3.11: Secure multi-execution

Secure multi-execution. Secure
multi-execution (SME) is another run-
time enforcement mechanism for infor-
mation flow [75, 92]. This approach en-
forces noninterference by running mul-
tiple copies of the program, each cor-
responding to a specific security level.
Outputs are allowed only if the secu-
rity level of the program matches the
security level of the output channel, and
inputs that are not visible at the pro-
gram’s security level are replaced with default values. Figure 3.11 depicts how secure
multi-execution achieves noninterference by running the program twice, once as a
secret copy and once as a public copy.

Secure multi-execution has been shown to be both sound and precise [86]. Soundness
ensures that every execution at a specific security level cannot access the data from
higher security levels. As a result, all outputs it produces are generated only from
data at or below its level, guaranteeing noninterference. Precision, on the other

31

hand, guarantees that if a program is noninterfering under normal execution, its
behavior remains identical to that under secure multi-execution for terminating runs
[86].

print(v)v = ⟨vsecret | vpublic⟩

vsecret

vpublic

Figure 3.12: Faceted execution

Faceted execution. Faceted execution [89] is another dynamic enforcement
mechanism closely related to secure multi-execution [123]. It simulates the multiple
executions of SME while avoiding unnecessary redundant executions by creating
multiple facets, or views, of data corresponding to different security levels. For
example, a value v would be represented as ⟨vsecret | vpublic⟩, where vsecret is the
value observable to secret observers (i.e. the secret facet) and vpublic is the default
value observable to public (i.e. the public facet). As depicted in Figure 3.12, the
program is executed as if both facets are being executed simultaneously, but the
outputs to any observer are restricted to the facet they are allowed to see.

Static Techniques

Various static mechanisms exist for analyzing a program’s source code to track infor-
mation flow and enforce security, each offering unique advantages and disadvantages.
Next, we will introduce some of these mechanisms.

Security type system

A type system is a formal system consisting of a set of rules that assign a type
(e.g. integer, float, string) to each term of a program. A term is a language construct
of the programming language, such as variables, expressions, or functions. The rules
of the type system define valid operations and values for these terms, aiming to
prevent type-related errors and reduce bugs in the program. Type-related errors
occur when operations are applied to terms of incompatible types, such as attempting
to perform arithmetic on non-numeric data, potentially leading to unpredictable
behavior or program crashes.

A security type system builds upon standard type systems by assigning security
labels as types. The type checker then follows a set of rules designed to enforce a
specific security condition, often a variant of noninterference. Ultimately, the goal
of the security type system is to guarantee that a well-typed program — one that
satisfies the typing rules — is secure with respect to the defined security condition.

32

Program 3.7

1 bool h; // secret variable
2 bool l; // public variable
3

4 if (h)
5 l = 1;
6 else
7 l = 0;

Consider Program 3.7. This program is
insecure because, although it does not ex-
plicitly assign the value of the secret vari-
able h to the public variable l, a public
observer can still deduce the value of h
by observing l. This deduction is possible
because of an implicit flow, which arises
due to the control flow dependency of l
on h through the if statement.

We use this program to illustrate how a type system can prevent implicit flows and
enforce noninterference. Consider the typing rules depicted in Figure 3.13.

T-Assign
⊢ x : ℓx ⊢ e : ℓe pc ⊑ ℓx ℓe ⊑ ℓx

pc ⊢ x := e

T-If
⊢ e : ℓe pc′ = pc ⊔ ℓe pc′ ⊢ c1 pc′ ⊢ c2

pc ⊢ if e then c1 else c2

Figure 3.13: Security type system

Assume that the type ℓ (hereafter referred to as a label) is chosen from the lattice
shown in Figure 3.3a, i.e. ℓ ∈ {public, secret}. These rules aim to protect confiden-
tiality by enforcing noninterference, which means preventing information flows from
secret variables to public variables.

This type system uses judgments of the form pc ⊢ c, signifying that a program c
is typable within the security context pc. The program context pc is a special type
(i.e. pc ∈ {public, secret}) that denotes the security label of the current control flow
context. The pc prevents implicit flows by enforcing restrictions on the execution of
commands that could implicitly convey secret data through program behavior.

Consider the rule T-Assign. This rule ensures that an assignment to a variable x is
permitted only if all variables in the expression e are allowed to flow to x. Here, pc
prevents implicit flows by ensuring that an assignment is typable only if the label
of the assigned variable, ℓx, is at least as restrictive as pc, which is checked by the
ordering relation of the lattice pc ⊑ ℓx. The check ℓe ⊑ ℓx ensures that the labels of
all variables in the expression e are below the label of x, and thus, are permitted to
flow to it.

The rule T-If says that a conditional statement is typable in context pc only if
each of its sub-commands, c1 and c2, are typable in context pc ⊔ ℓe. Here, ℓe is
the least upper bound of the labels of all the variables in e, and ⊔ is the lattice’s

33

join operator, which returns the least upper bound of the labels pc and ℓe. In the
context of the lattice shown in Figure 3.3a, this means that if either pc or ℓe is
secret, their least upper bound will also be secret.

To illustrate how a type system works, we type-check Program 3.7 using these rules.
At the start of the program, the pc is public, reflecting that no secret control flow
dependencies exist. However, when type checking the if (h) statement, the pc
is raised to secret, as the control flow now depends on the secret variable h. We
type-check the assignments on lines 5 and 7 under this secret context, pc′. Starting
with the assignment l = 1, we observe that the label of the assigned variable is
public, since variable l is public, and the label of expression 1 is also public, as
it is a constant value without any variables. However, the type checking of this
command fails. While the check ℓe ⊑ ℓx succeeds, indicating that an explicit flow is
permissible, the check pc′ ⊑ ℓx fails. This is because secret ̸⊑ public, indicating an
implicit flow. Consequently, this assignment is rejected under the current program
context pc′, effectively preventing an implicit information flow.

The ability to soundly track implicit flows is one of the key advantages of static
enforcement mechanisms. A type system can ensure that no possible path within
the if statement contains insecure flows.

Another major advantage of security type systems is compositionality. Compo-
sitionality refers to the ability of the type system to maintain that the security
guarantees of individual program components hold when these components are
combined. Consider the typing rule depicted in Figure 3.14. This rule states that
the sequential composition of two commands, c1 and c2, is well-typed if each of
those commands is individually well-typed.

T-Seq
pc ⊢ c1 pc ⊢ c2

pc ⊢ c1; c2

Figure 3.14: Sequential composition rule

Compositionality is essential for building secure, modular, and scalable systems,
where security guarantees of the whole system can be inferred from the security
guarantees of its individual components.

However, this compositionality comes at a price. Since individual components are
type-checked independently before being composed together, the order in which
components are type-checked does not affect the final result. As a result, these type
systems are unable to enforce policies where the security policy and the labeling
of data depend on various factors, such as location in code, time, or user-specific
conditions.

Type systems’ overapproximation is to ensure soundness, as they must conservatively
account for all potential flows of information within the program. Since precise

34

runtime behavior may not be fully determined statically, type systems err on the
side of caution, rejecting programs that may be insecure, even if they are secure at
runtime.

Program 3.8

1 bool h; // secret variable
2 bool l; // public variable
3

4 if (h)
5 l = 1;
6 else
7 l = 1;

To illustrate this, consider Program 3.8.
This program is rejected by the typing
rules of Figure 3.13 due to overapprox-
imation, despite being secure. Similar
to Program 3.7, the type system raises
the program context pc to secret when
entering the if (h) statement. Inside
the branches, the pc remains secret, and
any assignments within these branches
are treated as potentially leaking secret
information. However, both branches
assign the same value (1) to the public variable l, meaning no information about h
is being leaked. The type system overapproximates by assuming the possibility of
different behaviors in the branches based on h. This overapproximation leads to
the program being rejected because the assignment to l, which is public, occurs in
a context with a secret pc, violating the T-Assign rule, even though the actual
runtime behavior is secure.

More expressive type systems, such as the ones based on dependent types [117]
or refinement types [176], can capture additional information about the types and
make the security type systems more precise. These systems usually involve complex
typing rules and require more sophisticated reasoning, making them challenging to
implement and difficult to use effectively. Nevertheless, one could argue that these
more expressive type systems are necessary for verifying the security of real-world
programs.

The expressiveness of the type system goes hand in hand with the expressiveness of
the security policies they are designed to enforce. Simple security type systems, such
as the one in Figure 3.13, are limited to security policies that can be expressed by
annotating program terms with fixed labels. These policies have limited ability to
express complex scenarios, such as those involving distributed systems, side channels,
and data-dependent policies.

A data-dependent policy defines the security label of the data based on its value. Such
policies are particularly useful in scenarios where data is considered secret only under
certain conditions. For instance, consider a network firewall that aims to ensure that
internal network packets do not leak to external, attacker-visible networks. In this
case, a packet would be labeled secret only if its source and destination IP addresses
belong to the internal network address range (192.168.*.*). These data-dependent
policies cannot be represented using simple security labels, such as those employed
in Figure 3.13.

35

The attacker model is another important aspect to consider when designing a
type system. Generally, type systems such as the one presented in Figure 3.13
consider only passive attackers, who observe the public variables or the outputs of
the program. When the threats to the program’s security involve active attackers,
the type system needs to be modified to accommodate the effects of the attacker’s
actions and provide security guarantees such as robustness [34]. Such issues are
particularly important in trusted execution environments, where the host system
might be compromised (and untrusted), enabling an attacker to affect the data and
control flow of the program.

Type-based dependency analysis

Security type systems, such as the one introduced in Section 3.2, are flow-insensitive,
meaning that they assign a fixed security label to each term. Such fixed labels have
limited flexibility. For example, in the case of variables, they do not account for
changes in the sensitivity of the data stored within the variable. To illustrate the
limitations of flow-insensitivity, consider Program 3.9 from [85].

Program 3.9

1 int h1, h2; // secret variables
2 int l1, l2; // public variables
3 int tmp;
4

5 tmp = h1;
6 h1 = h2;
7 h2 = tmp;
8

9 tmp = l1;
10 l1 = l2;
11 l2 = tmp;

This program is rejected by flow-insensitive security type systems due to the in-
consistent label of the variable tmp. If tmp is labeled as secret, the assignment on
line 5 will be insecure, and if tmp is labeled public, the assignment on line 9 will be
rejected. The issue lies in the inability of flow-insensitive systems to adapt the label
of tmp over time to accurately reflect the security label of its contents.

Flow-sensitive security type systems have been investigated over the years to address
this limitation [78, 136]. These systems, however, have their own limitations, such
as difficulty in handling aliasing, imprecision when analyzing loops, and limitations
in analyzing individual components in isolation.

36

Another approach to address the limitation of flow-insensitive type systems is
type-based dependency analysis [85]. A type-based dependency analysis explicitly
tracks dependencies between program variables. Unlike security labels, where each
variable is assigned a fixed security label (e.g. secret for confidentiality or trusted
for integrity), a type-based dependency analysis captures how the variables interact
with each other and how their dependencies propagate through the program. For
example, consider the code z = x + y. Here, the value of z is computed based
on the values of x and y, and the type-based dependency analysis records that z
depends on both x and y.

To illustrate how a type-based dependency analysis works, consider the rules depicted
in Figure 3.15.

T-Assign
Γ = Γid[x 7→ fv(e) ∪ {pc}]

⊢ x := e : Γ

T-If
⊢ ci : Γi

Γ′
i = Γi; Γid[pc 7→ fv(e) ∪ {pc}] i = 1, 2

⊢ if e then c1 else c2 : (Γ′
1 ∪ Γ′

2)[pc 7→ {pc}]

Figure 3.15: Type-based dependency analysis

The typing rules use judgments of the form ⊢ c : Γ, which state that the typing
of program c produces the dependencies described in the environment Γ. Here,
Γ : Var → 2Var is an environment that maps each variable to a set of variables,
describing its dependencies. The identity environment Γid maps each variable
to a singleton set that includes only the variable itself. For instance, Γid(x) =
{x}. The function fv(e) returns the set of free variables in the expression e. For
example, fv(y * z + 1) = {y, z}. The composition Γ2; Γ1 represents the sequential
composition of two environments. Intuitively, the result of sequential composition is
Γ2 with all dependencies already established in Γ1 substituted accordingly.

In the T-Assign rule, the dependencies of the assigned variable are determined
by the free variables of the assignee expression fv(e) and the program context pc.
Here, pc is just a special variable that is also mapped to a dependency set. The
T-If rule works by first extracting the dependencies of each sub-command. For each
sub-command, it updates the dependencies of its program context pc to include the
free variables of the condition guard expression e. The final result is the union of
these environments, indicating the merging of the dependencies of both branches.

Program 3.10

1 if (x != 0)
2 x = y;
3 else
4 x = z;

Type-based dependency analysis, like other type-
based analyses, also overapproximates. Consider
Program 3.10, a simple program with a single if
statement. In this program, the final value of x
depends only on the initial value of x and either y
or z. However, according to the T-If rule, the final
dependency set of x would be x, y, z. This is because
the analysis, unaware of the actual value of x, must

37

conservatively track dependencies from both branches to guarantee soundness.

One of the advantages of type-based dependency analysis is its independence from
the security policy. In security type systems such as the one introduced in Section
3.2, the security policy must be known at the time of type checking. This means that
the sensitivity level of the terms must be known in order to correctly assign a security
label to them. A type-based dependency analysis eliminates this requirement. A
program can be analyzed once to extract the dependencies of its terms, and these
dependencies can then be checked against various security policies without the need
to reanalyze the program.

Symbolic execution

Another static enforcement method is symbolic execution [5], which analyzes a
program by tracking symbolic values rather than actual values during execution.
Instead of executing the program with concrete input values, symbolic execution
assigns symbolic values to statically unknown inputs. As the program executes,
symbolic expressions over concrete and symbolic values are built up to represent the
state of variables at each point, capturing their relationship to inputs and control
flow conditions. Wherever the program’s execution branches, such as upon reaching
conditionals or in loops, symbolic execution explores all possible paths. It generates
a predicate that encodes the conditions under which that specific path was reached.
These predicates are referred to as path conditions. By constructing and analyzing
these path conditions, symbolic execution can systematically explore all possible
paths, while keeping track of the conditions under which a specific path was visited.
These symbolic expressions and path conditions form symbolic states, which describe
the program’s state at various points during the execution.

A symbolic execution tree is a structure that represents all possible runs of a program.
In this tree, each node corresponds to a symbolic state. For instance, an if statement
splits the tree into two branches, one where the condition holds true and one where
it is false. To illustrate how symbolic execution operates, consider Program 3.11.

The diagram of Figure 3.16 represents the symbolic execution tree of Program 3.11.
Symbolic execution visits all paths of the program by tracking symbolic values for
x and y (i.e. inputs) rather than their actual values. It initially sets x 7→ α and
y 7→ β, where α and β represent symbolic values for any integer value. The variable
z is assigned the concrete value 0.

The path conditions and the symbolic expressions assigned to x, y, and z form the
symbolic states of Program 3.11. For presentation purposes, in Figure 3.16, we show
the path conditions over the edges connecting the symbolic states.

The if statement at line 4 splits the tree with two path conditions: β ≥ 0 (then
branch) and β < 0 (else branch). The then branch goes through the assignments

38

Program 3.11

1 int function(int x, int y)
2 {
3 int z = 0;
4 if (y >= 0)
5 {
6 y = y + x;
7 x = y - x;
8 y = y + x;
9 return(x);

10 }
11 else
12 {
13 if (y + z < 0)
14 z = y * (-1);
15 return(z);
16 }
17

18 return(x);
19 }

of lines 6-8 and swaps the values of x and y, eventually returning x. The else
branch checks the condition y + z < 0, again splitting the tree. If y + z < 0 holds,
the variable z is assigned the negation of y, and the program returns it. Finally,
if neither of the if conditions hold, the program returns x. Note that this path is
unreachable because the path condition β ≥ 0 ∧ β + z ≥ 0 is unsatisfiable and is
therefore pruned during symbolic execution. However, for presentation purposes,
we still depict this path in Figure 3.16.

Each path in the tree from the start node to a leaf represents a set of runs. The
conjunction of path conditions along each path represents the conditions that, if
satisfied by an initial state, will result in the execution of the program along that
path. For example, the concrete initial state (x = 42, y = 7) will execute along
the path starting with the condition β ≥ 0, eventually leading to the final state
(x = 7, y = 42), and returning 7.

Recall that information flow security conditions specify a relationship between inputs
(sources) and outputs (sinks). In symbolic execution, this relationship is captured
by the output’s symbolic expression, which represents the effect of symbolic values
(inputs) on the output. This characteristic makes symbolic execution an effective
static analysis technique for enforcing various information flow security conditions.

39

start

x 7→ α
y 7→ β
z 7→ 0

x 7→ α
y 7→ β
z 7→ 0

x 7→ α
y 7→ β + α
z 7→ 0

x 7→ β
y 7→ β + α
z 7→ 0

x 7→ β
y 7→ α
z 7→ 0

return(β)

x 7→ α
y 7→ β
z 7→ 0

x 7→ α
y 7→ β
z 7→ −β

return(−β) return(α)
p

β ≥ 0

β ≥ 0

β ≥ 0

β ≥ 0

β ≥ 0

β < 0

β < 0
∧

β + z < 0

β < 0
∧

β + z < 0

β < 0
∧

β + z ≥ 0

Figure 3.16: Symbolic execution tree of Program 3.11

For example, we want to enforce noninterference on Program 3.11 under a security
policy that specifies input x is secret and input y is public. By the definition of
noninterference, the secret input x should not influence the return value of this
function. Referring to the diagram in Figure 3.16, we can see that the symbolic
output values, represented in the leaf nodes, are β, −β, and α. Since the input
to symbolic variable mapping was x 7→ α and y 7→ β, the first two outputs are
noninterfering. However, even though the last output (i.e. α) is interfering, the path
condition leading to it is β < 0 ∧ β + z ≥ 0, and since the symbolic state maps
z 7→ 0, this path condition is unsatisfiable. This means there is no initial state that
can possibly lead to this output. Thus, Program 3.11 is deemed noninterfering.

40

Programs such as Program 3.11 are rejected by security type systems and type-
based dependency analysis systems because, due to overapproximation, they cannot
determine that the insecure path leading to the return of variable x is actually
unreachable. This example highlights a key advantage of symbolic execution,
particularly that enforcement mechanisms based on symbolic execution are generally
more precise.

Symbolic execution, however, suffers from scalability problems. The root of the
problem is loops (or recursion) that depend on inputs. Since we do not know the
actual value of the input, we do not know how many times the loop must be unfolded.
This leads to path explosion, where the number of paths grows exponentially, making
exhaustive exploration computationally infeasible.

Contributions

Having introduced the most common language-based mechanisms to enforce infor-
mation flow control, we now proceed to discuss closely related works while presenting
our contributions in this area.

Security Type systems. The most well-known approach for statically enforcing
information flow control is a security type system [28]. Since the seminal work of
Volpano et al. [18], which introduced the first type system proven to guarantee
secure flow analysis based on Denning’s lattice model [4], type systems have come a
long way.

Security type systems have been employed to enforce information flow control in
various contexts [19, 34, 80, 122, 126, 134, 184]. Many of these approaches are
mainly focused on application-level security guarantees [18, 19, 34]. The security
guarantees of security type systems may fail to hold if the underlying software stack
or the operating system is compromised [126]. For example, if the attacker exploits
some vulnerabilities to gain extra information about the running program (such as
in the Heartbleed vulnerability), or if the host in a cloud provider is compromised
and the attacker has gained privileged access to the machine, they can bypass
the guarantees of the type system and access sensitive information. To address
this challenge, Gollamudi and Chong [126] propose the use of trusted execution
environments. By partitioning the program and putting all the components dealing
with the sensitive information in a trusted execution environment, one can ensure
that even if the underlying system is compromised, the guarantees of the trusted
execution environments still protect the sensitive data.

The approach of Gollamudi and Chong [126] relies on trusted execution environments
to enforce security against active attackers who can arbitrarily corrupt non-enclave
code. They propose a calculus and security type system modeling SGX-like trusted
execution environments. They employ a translation that analyzes the code and
infer the appropriate placement of code and data into enclaves to ensure security

41

guarantees against low-level attackers. Even though their approach guarantees
confidentiality by safely storing sensitive data within the enclave, it does not
consider robustness [23, 34] against active attackers.

In Chapter A, we propose a security type system for enforcing robustness for
programs running on trusted execution environments. In our model, we assume
the integrity of the program inside the enclave is intact, and that active attackers
can only influence the execution of this enclave program through gateway method
calls. Gateways are special methods within the enclave program that serve as access
points for interaction between non-enclave and enclave programs. We consider two
attacker models, one that manipulates data by modifying the parameters of gateway
calls, and the other that influences execution by arbitrarily calling gateways, in any
order or frequency. We prove that our type system can guarantee robustness against
these attackers.

Enforcing data-dependent polices. For systems with more complicated security
policies, we need more precise enforcement mechanisms, such as flow-sensitive
security types [46] and dependent types [117]. Liquid information flow types [176]
were developed on top of refinement type systems [103, 112, 182] to statically express
and enforce data-dependent information flow policies. A refinement type enriches
types with predicates that circumscribe the values described by the type. Liquid
information flow types [176] rely on this concept and associate each security type
with a predicate describing the values under which that security type holds. This
approach allows the security type system to enforce expressive data-dependent
information flow policies.

In Chapter E, we develop a security type system to enforce noninterference for
P4 programs. P4 is a domain-specific language for programming programmable
network devices, such as switches. Because of the data-dependent nature of network
environments, simple public and secret labels are not enough to model the security
requirements of P4 programs. To overcome this problem, we propose an idea
similar to refinement security types and augment security types with intervals of the
form [a, b], where a and b are integers. These intervals express the range of values
associated with the security type. By performing interval analysis on P4 types and
making judgments based on the value of these intervals, we are able to express and
enforce data-dependent policies, such as if the packet’s destination address is in
range 192.168.*.*, its fields are secret, otherwise they are public.

One of the drawbacks of many security type systems is the burden they impose on
the programmer to modify and annotate the code according to a specific security
policy, effectively shaping and constraining how the program is written. This limits
the applicability of security type systems, as it essentially requires a programmer
who is also a security expert and knows the security requirements of the system.

Policy-agnostic enforcement mechanisms have been developed to reduce this burden
[96, 97, 131]. In this approach, the policy is specified once and managed by the

42

runtime, eliminating the need to repeat the policy checks throughout the program
code [96].

We adopted a annotation-free approach in our security type system for P4 programs
described in Chapter E. It uses programmer-specified input (output) policies to
derive the security types of the initial (final) states. In this approach, the programmer
can omit policy-related annotations from the code and instead associate policies
with the initial and final states.

Symbolic execution. In addition to type systems, various other methods have
been proposed over the years to enforce information flow control, including abstract
interpretation [33], model checking [93], symbolic execution [90], relational logics
[42, 83, 84], and theorem proving [39].

Balliu et al. [90] proposed EnCoVer, a framework for verifying information flow
security in programs by combining symbolic execution and epistemic logic. They
rely on symbolic execution to extract a bounded model of program behavior in the
form of a symbolic output tree (SOT). A symbolic output tree is a structure that
represents the possible outputs of a program based on different symbolic inputs.
Like a symbolic execution tree, each path in the symbolic output tree corresponds
to a unique sequence of nodes and path conditions, but with each node representing
an observable output’s value, it focuses on how variations in input conditions lead to
different outputs. They formalize noninterference using epistemic logic and present
an algorithm to reduce the epistemic model over the SOT to a first-order formula
that can be checked via an SMT solver.

In Chapter C, we extend the approach of EnCoVer to enforce dynamic policies. We
use symbolic execution to extract a symbolic output tree from the program’s code
and represent the dynamic security policies as first-order formulas over the nodes of
this SOT. The program’s security is then verified against various attacker models
using an SMT solver. This approach allows us to have a more precise verification
compared to the type systems, because the SOT not only prunes the unreachable
paths, but also precisely tracks and records the active security policy at each node
in the SOT.

Enforcing IFC in database-backed programs. A significant amount of research
has been conducted into enforcing information flow control for database-backed
applications [41, 52, 59, 65, 109, 122]. The main challenge is to track information
flows across the program-database boundary, reconciling database access control
mechanisms with program-level information flow control mechanisms. Guarnieri et al.
[163] proposed Daisy, a security monitor for database-backed applications. It tracks
the dependencies between program variables and database tuples by leveraging the
Disclosure Lattice [99, 104] supporting for both column-level and row-level policies.
Existing works in this domain have focused solely on conjunctive policies. However,
disjunctive policies are a natural choice in databases, as they align with real-world
scenarios where information is stored in databases and ethical wall policies need

43

to be enforced based on conflict-of-interest classes. In Chapter D, we address this
issue by relying on the Determinacy Quantale and query determinacy to specify and
verify disjunctive policies in terms of database queries and views.

Hunt and Sands [85] proposed a type-based dependency analysis that is parametric
in the choice of the security lattice. In their approach, the powerset of program
variables is used as the security lattice, and a principal type is derived, from which
all other types (for any choice of lattice) can be inferred. This approach provides a
clean separation between analysis and policy, allowing the dependency analysis to
be performed only once and then verified against various policies.

To enforce disjunctive policies for database-backed programs in Chapter D, we
adapted the type-based dependency analysis of Hunt and Sands [85] and modified it
to keep track of the dependencies of program paths separately. Instead of merging
the dependency sets after if statements, we kept them as separate sets. In this
approach, the result of the dependency analysis is a set of sets of dependencies, each
set representing the dependencies of a possible run. When verifying the program’s
security with respect to disjunctive policies, we ensure that the dependencies of each
path are secure under at least one of the disjuncts of the policy.

3.3 Application

Despite significant progress in language-based information flow control research
over the past two decades in defining security policies, semantic conditions, and
enforcement mechanisms, their application to real-world programming languages
and systems still faces many challenges. Popular programming languages do not
support information flow control out of the box, and designing sound language-based
mechanisms for them is often a complex and difficult process. In this section,
we focus on practical language-based information flow control tools developed for
mainstream languages.

Contributions

We present our contributions to this area and discuss the closely related work.

Java language. The Java programming language has been the focus of many works
on enforcing information flow control. The Jif compiler [19], developed by researchers
at Cornell, is one of the initial attempts to integrate information flow control into
Java programs. Jif’s security type system was built using the Decentralized Label
Model (DLM) [20] and is capable of statically enforcing confidentiality and integrity
information flow policies.

We leverage Jif in Chapter A to develop JE , a programming model for partitioning
Java programs into enclave and non-enclave parts. The idea is that the program
is annotated by the programmer, and these annotations are used to partition the

44

program. For example, the code and the data of the classes annotated with @Enclave
are placed inside the enclave, while all the other classes will remain outside. The
enclave and non-enclave environments are then put into two separate execution
environments, where they communicate with each other via Java RMI [203]. JE

uses security annotations, such as @Secret, to mark secret variables. The security
type system uses this annotations to verify the security of the partitioned program.
Our implementation relies on Jif [19] to implement our proposed type system. The
partitioned program is translated to Jif, type checked to verify its security, and
then transformed to use RMI communication. Drawing on the guarantees of the
type system, we can be confident that the partitioned program satisfies robustness
against active attackers who control the non-enclave environment.

There has been a long line of work focused on verifying static information flow
policies by automated theorem proving [39, 82, 90, 95, 135]. Balliu et al. developed
ENCoVer [90], which uses Java Pathfinder [30] to extract program dependencies
from Java programs and verifies static noninterference policies by means of SMT
solving and model checking. In Chapter C, we use a similar approach to develop
DynCoVer, which is a tool designed to verify dynamic policies in Java programs.
DynCoVer uses Symbolic Pathfinder [102] to extract a symbolic output tree from
Java programs. Each node in this tree captures an observable output of the program
along with the information about the active policy at the time the output occurred.
DynCoVer uses this information to generate a quantifier-free first-order formula
for each node, capturing the security policy, the observable traces, and the program
model. The satisfiability of these formulas is then checked via the Z3 solver [58],
verifying the security of the program at each output point. We evaluate DynCoVer
on a benchmark suite of various dynamic policy scenarios and attacker models, as
well as on a social network use case that investigates scenarios such as publishing
public posts, following users, and blocking them.

P4 language. P4BID [192] developed a security type system for Core P4 [180].
They extend P4 data types with security labels and prove that well-typed programs
satisfy noninterference. However, P4BID only supports simple security policies and
does not take into account tables or external functions. To address these limitations,
in Chapter E, we develop Tap4s, a prototype tool implementing a P4 security type
system enriched with interval analysis. Our formalization of P4 closely resembles the
real-world P4 syntax and semantics, enabling our prototype tool to enforce security
policies on P4 programs with minor modification. The interval analysis coupled with
the type checking enables Tap4s to specify and enforce data-dependent policies.
In addition, Tap4s’s implementation is annotation-free, meaning that there is no
need to annotate the target P4 program with types. Instead, we define separate
input and output policies, the type checker then uses the input policy to initialize
program types (e.g. for packet headers, variables, metadata), propagates these types
through the program by following the typing rules, and ensures that the final types
are in line with what is allowed in the output policy.

45

4 | Thesis Results

“The Answer to the Great Question... Of Life, the Universe and Everything...
Is... Forty-two, said Deep Thought, with infinite majesty and calm. ”

– Douglas Adams, The Hitchhiker’s Guide to the Galaxy

In this section, we provide an overview of the papers included in this thesis, along
with a statement of the author’s contributions. The thesis consists of five papers,
labeled Papers A through E. Four of these papers — Papers A to D — have already
been published in peer-reviewed conference proceedings, while Paper E is currently
submitted to a peer-reviewed conference and is undergoing the review process.

Table 4.1 summarizes the contributions of the thesis author to each of the papers
included in this thesis. In the table, indicates that the task was completed entirely
by the thesis author, denotes that the task was completed in collaboration with
coauthors, and indicates that the thesis author did not contribute to the task.

Table 4.1: Summary of contributions

Specification Mechanism Proof Implementation Evaluation

Paper A

Paper B

Paper C

Paper D

Paper E

The formatting and style of the papers have been adjusted to align with the
overall format of the thesis, but their content remains unchanged from the original
publications. Additionally, the bibliography for all the papers and the introductory
part of the thesis has been unified and is included at the end of the thesis.

47

Paper A: Language Support for Secure Software Development
with Enclaves

Aditya Oak, Amir M. Ahmadian, Musard Balliu, and Guido Salvaneschi.
“Language support for secure software development with enclaves” In 2021
IEEE 34th Computer Security Foundations Symposium (CSF), pp. 1-16. IEEE,
2021.

The paper presents JE , a programming model for Java that relies on a security
type system to enforce robustness against realistic active attackers in the context
of trusted execution environments (TEE). A trusted execution environment, also
referred to as an enclave, is a secure area within the main processor. The operations
within the enclave are opaque to the host operating system, as guaranteed by the
processor. This ensures that sensitive data and operations are protected, isolated,
and executed securely, even in the presence of a compromised host.

In this paper, we highlight the importance of considering realistic active attacker
models in the trusted execution environment setting. To this end, we consider two
attacker models: the havoc active attacker (HAA), who is limited to modifying
parameters passed through method calls to the enclave program, and the havoc
reordering active attacker (HRAA), who is capable of controlling the order and
frequency of enclave method calls. Both of these active attackers model scenarios
in which the non-enclave environment is compromised and under active attacker
control. We investigate robustness in enclave-enabled programs, ensuring that these
non-enclave active attackers cannot learn more than a passive attacker.

We provide a core calculus for JE and propose a semantic security condition to
capture robustness, ensuring that HAA and HRAA attackers do not learn more
information than a passive attacker. We statically enforce this security condition
using a security type system that accounts for both confidentiality and integrity
labels and incorporates special operators to model declassification and endorsement.
We prove the soundness of this type system, guaranteeing that well-typed programs
are robust with respect to HAA and HRAA attackers.

On the implementation side, JE relies on user-specified annotations to automatically
partition the program into enclave and non-enclave parts. It uses Java RMI [203] to
enable remote communication between the two partitions and Jif [19] to type-check
the resulting program and ensure it satisfies robustness.

Statement of contribution. The idea of using annotations to partition a program
into enclave and non-enclave parts was proposed and developed collaboratively
by all authors, resulting in the development of the JE programming model. The
formalization of JE , the development of the type system, and the proofs were
carried out by the author of the thesis in collaboration with Musard. All authors
contributed to the writing of the paper.

48

Paper B: Enclave-Based Secure Programming with JE

Aditya Oak, Amir M. Ahmadian, Musard Balliu, and Guido Salvaneschi.
“Enclave-based secure programming with JE” In 2021 IEEE Secure Develop-
ment Conference (SecDev), pp. 71-78. IEEE, 2021.

In this paper, we detail the implementation of JE , which was formally introduced
in our previous paper. To guarantee robustness and enforce security against active
attackers, we proposed a security type system, detailed in our CSF paper, “Language
Support for Secure Software Development with Enclaves.”

We implemented JE on Intel SGX, by relying on the Jif [19] type system and the
SGX-LKL framework [204]. The design goals of JE were to: (1) Abstract away the
SGX implementation details by allowing the programmer to easily specify the parts
of the program that must run inside the trusted execution environment. (2) Provide
simple means to specify and enforce security policies.

To achieve this goal, we provided a set of security annotations and operators,
such as @Secret specifying secret variables, @Enclave specifying enclave classes, and
declassify and endorse operators to define declassification and endorsement opera-
tions, respectively. The JE compiler relies on these annotations to automatically
partition the program, generate the logic for enclave management, and convert the
program to Jif in order to verify the information flow policies.

Initially, JE analyzes the program and, based on the annotations, splits it into
two partitions: the enclave and the non-enclave partitions. This process puts the
classes annotated with @Enclave and all their dependencies in the enclave partition,
while keeping all the other classes in the non-enclave partition. Next, the enclave
partition is converted into an equivalent Jif [19] program, and Jif’s type checker
is used to statically enforce our robustness condition. Finally, the JE compiler
generates a remote interface for all the gateway methods using Java RMI [203] to
enable communication between the enclave and the non-enclave partitions.

We evaluate JE on several use cases from the literature, including a battleship game,
a secure event processing system, and a popular processing framework for big data,
showing that it can correctly handle complex cases of program partitioning and
robust information flow control.

Statement of contribution. This paper focused on showcasing the programming
model introduced in Paper A. The author of the thesis was involved in developing
the use cases to better showcase JE . Furthermore, the thesis author, in collaboration
with Musard, contributed to the sections explaining the theoretical contributions
of the paper, including the attacker models and the security guarantees of the
implementation. All authors contributed to the writing of the paper.

49

Paper C: Dynamic Policies Revisited

Amir M. Ahmadian and Musard Balliu. “Dynamic policies revisited” In
2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P), pp.
448-466. IEEE, 2022.

This paper presents a knowledge-based security framework for dynamic policies. We
revisit existing knowledge-based security conditions for dynamic policies, highlight
their limitations, and emphasize the role of the attacker and their capabilities in the
security conditions. By examining this relationship, we propose a new framework
that establishes a clear connection between dynamic policies and the associated
attacker model.

We provide formal definitions of attacker knowledge for three categories of attackers:
perfect recall (who remembers all past information), bounded memory (who has
limited storage), and forgetful attackers (who forget information at policy change).
We introduce the novel notion of policy consistency, ensuring that policy changes do
not occur if the attacker already possesses the information the new policy intends
to protect. Building on policy consistency, we define the concept of policy repair
which adjusts inconsistent policies to produce a consistent policy that respects the
attacker’s current knowledge. Together, these components — attacker models, policy
consistency, and policy repair — allow us to build a security framework for dynamic
policies. This framework presents a unified approach to enforcing dynamic policies
and can address the facets of dynamic policies discussed in the literature [114].

We develop a verification algorithm that combines symbolic execution with SMT
solving to verify policy compliance, identify policy inconsistencies, and generate
repaired policies. Using symbolic execution, we extract the program’s model and
generate a quantifier-free first-order formula representing both the security policy
and the program model. The unsatisfiability of this formula, verified through an
SMT solver, confirms the security of the program.

We implement this approach in DynCoVer, a prototype tool designed to verify
dynamic information flow policies in Java programs. We evaluate DynCoVer on
a micro benchmark suite covering various dynamic policy scenarios, as well as a
social network use case, demonstrating the practical effectiveness of our framework
in real-world scenarios.

Statement of contribution. The theoretical parts of the paper were developed
collaboratively by Musard and the thesis author. We explored the idea of a novel
security condition to address the limitations of existing works, and, in collabora-
tion with Musard, further refined this idea into a security framework capable of
accommodating various facets of dynamic policies. The prototype tool DynCoVer,
the benchmark, and the use case were developed by the author of the thesis. Both
authors contributed to the writing of the paper.

50

Paper D: Disjunctive Policies for Database-Backed Programs

Amir M. Ahmadian, Matvey Soloviev, and Musard Balliu. “Disjunctive
policies for database-backed programs” In 2024 IEEE 37th Computer Security
Foundations Symposium (CSF), pp. 388-402. IEEE, 2024.

Disjunctive policies are a special family of security policies that restrict access to
information based on conflict-of-interest classes. They specify conflict-of-interest
classes and define a so-called ethical wall, permitting the flow of information from
one class only if the observer has not accessed any data from conflicting classes.
The Quantale of Information (QoI) [181] was proposed as a semantic model to
describe such disjunctive dependencies, extending the previously established Lattice
of Information.

Building on QoI, and motivated to provide a formal model for reasoning about dis-
junctive dependencies in database-backed programs, we introduce the Determinacy
Quantale (DQ), a query-based lattice structure designed to represent disjunctive
dependencies in databases.

Relying on QoI and DQ, we define an extensional security condition tailored to
database-backed programs. This condition ensures that the knowledge conveyed
by the program’s execution adheres to at least one of the disjuncts specified by the
policy, indicating that the execution relied on at least one set of non-conflicting
classes.

We propose a type-based dependency analysis for a simple imperative language
that includes simple database queries. This analysis tracks row and column level
database dependencies while also accounting for disjunctions introduced by the
program’s control flow.

To validate the practical applicability of this approach, we developed DiVerT, a
prototype tool that enforces query-based disjunctive policies leveraging the proposed
type-based dependency analysis. We evaluate DiVerT on a functional test suite
and various realistic use cases.

Statement of contribution. The idea of adapting the Quantale of Information
to the database setting was proposed by the author of the thesis. This was further
developed in collaboration with Musard and Matvey into the Determinacy Quantale.
The proposed type-based dependency analysis was designed and developed by the
author of the thesis. The development of the query abstraction method and the
soundness proofs was a joint effort among all the authors. The prototype tool
DiVerT, the functional test suite, and the use cases were developed by the author
of the thesis. All authors contributed to the writing of the paper.

51

Paper E: Securing P4 Programs by Information Flow Control

Anoud Alshnakat, Amir M. Ahmadian, Musard Balliu, Roberto Guanciale, and
Mads Dam. “Securing P4 programs by information flow control” Manuscript

In the area of software-defined networking, Programming Protocol-independent
Packet Processors (P4) is a domain-specific language that is the leading standard
for programming programmable network devices, such as switches.

In this paper, we propose a security type system to ensure information flow security
in P4 programs. The goal is to protect the confidentiality of sensitive network
information, such as congestion information and MAC addresses, and preventing
their leakage to public networks. Developing a security type system for P4 presents
two main challenges: (1) P4 programs are highly data-dependent, meaning that
packets are processed based on the values of their various fields, such as address,
time-to-live, or ports. (2) The existence of non-native components, such as externs
and tables.

Externs are functions not implemented in P4, such as hash or checksum functions,
where their behavior depends on the underlying device architecture. Tables are stat-
ically unknown components that contain the routing information and are configured
and updated at runtime by the network.

To address the first challenge, we extend security types with simple intervals of the
form ⟨a, b⟩, where a and b are integers. These interval-based security types enable
us to represent data-dependent policies, such as “a packet is only secret if its source
and destination IP addresses fall within the range 192.168.*.*.” The security type
system then uses these intervals to perform a more permissive, data-aware type
checking of the program.

To address the second challenge, we rely on user-defined contracts which capture a
bounded model of the behavior of the externs and tables. When the type system
encounters these components, it uses the contracts to drive the analysis.

We formalize this type system and prove it sound, guaranteeing that well-typed P4
programs satisfy noninterference. The proposed type system has been implemented
in a prototype tool, Tap4s, and evaluated on a functional test suite and five use
cases.

Statement of contribution. The idea of using a security type system for P4
security, as well as the rules of the type system, was developed collaboratively by
all the authors. The implementation of Tap4s was undertaken by the author of the
thesis, while the use cases were developed in collaboration with Anoud. All authors
contributed to the writing of the paper.

52

5 | Conclusion and Future Work

“Schiller. A German dramatist of three centuries ago. In a play about Joan of
Arc [...] said, ‘Against stupidity, the gods themselves contend in vain.’ I’m no
god and I’ll contend no longer. Let it go, Pete, and go your way. Maybe the
world will last our time and, if not, there’s nothing that can be done anyway. ”

– Isaac Asimov, The Gods Themselves

This thesis contributes to the state of the art of language-based information flow
control in theoretical and practical domains. Throughout this thesis, we have
addressed the following research questions: (RQ1) How can non-trivial security
policies be defined to effectively address specific real-world scenarios? (RQ2) What
are the appropriate attacker models for scenarios where simple attacker models fail
to adequately account for the full range of security threats faced by the system?
(RQ3) How can we develop mechanisms to enforce realistic information flow security
conditions in a sound and precise manner? (RQ4) How can information flow
control techniques be effectively and manageably applied to real-world programming
languages?

To address RQ1, we investigated security conditions for settings with dynamic
security policies and proposed a knowledge-based security framework that emphasizes
the critical role of the attackers and a policy’s consistency with the attacker’s
knowledge in the definition of security condition for dynamic policies. In addition,
we proposed the Determinacy Quantale, a new semantic model capable of expressing
disjunctive policies in terms of database views. It enabled us to develop a security
condition capable of verifying the security of database-backed programs with respect
to disjunctive policies.

The thesis also examined a range of passive and active attackers in accordance
with RQ2. To guarantee the robustness of programs running on trusted execution
environments, we investigated two types of realistic active attackers, one that
manipulates the data passed to the enclave, and another that can manipulate the
control flow of the program. We proposed a security type system that can guarantee
a well-typed program running inside the enclave is robust with respect to these
attackers. Furthermore, to highlight the importance of attacker capabilities on

53

security conditions in settings with dynamic policies, we investigated three types of
attackers: perfect recall, bounded memory, and forgetful, and accommodated them
into our dynamic policy security framework.

RQ3 has been addressed throughout this thesis by investigating a range of static
language-based mechanisms to enforce information flow control. We examined
security type systems for enforcing robustness against active attackers for programs
running inside trusted execution environments. We augmented security types
with interval analysis to develop a permissive, yet sound type system capable of
expressing and enforcing data-dependent policies for P4 programs. We utilized a
disjunctive type-based dependency analysis to capture the disjunctive dependencies
of database-backed programs in terms of database queries, enabling us to develop
an enforcement mechanism capable of verifying the security of these programs with
respect to disjunctive policies. Finally, we combined a symbolic execution-based
approach with epistemic logic to express and enforce dynamic policies in Java
programs.

RQ4 has been addressed throughout this thesis by implementing and evaluating the
proposed enforcement mechanisms on Java and P4 programming languages. We
developed a parser and a type checker for the P4 programming language, capable of
expressing and statically enforcing data-dependent security policies on P4 programs.
We implemented our proposed symbolic execution-based approach in a tool named
DynCoVer to ensure the security of Java programs in the presence of dynamic
policies. In addition, we developed a programming model and a security type system
capable of automatically partitioning Java programs into enclave and non-enclave
parts, ensuring that the partitioned program is robust against active attackers.

Future work

From a broader perspective, the field of information flow control presents many op-
portunities for advancement in both theory and practice. There is growing potential
for extending existing methods and expanding their applicability to increasingly
complex, real-world environments.

One natural target is the heterogeneous software systems, where code from multiple
sources interacts in complex ways. The key challenge here is adapting language-based
methods to large-scale codebases spanning across various programming languages and
platforms. This challenge becomes even more pronounced when the heterogeneous
program interacts with databases. In such scenarios, it is necessary to track
information flows across program code, query languages, and storage backends.
Future research should focus on developing unified, cross-boundary enforcement
mechanisms that ensure security guarantees are maintained even when components
are developed with different programming languages and libraries.

Another important research avenue is cloud-based systems, where applications are

54

distributed across various platforms and containers. In this setting, information
flow control can ensure that sensitive data does not flow to unauthorized parts of
the infrastructure. However, this is a challenging task due to the complexity of
cloud-based systems, as data moves through many stages, gets processed by different
services, logged for debugging, and transferred between containers. Orchestration
tools, such as Kubernetes, manage the deployment and communication of these
services. information flow control could help enforce strict data flow policies, ensuring
that sensitive data is only accessible to authorized services. Monitoring tools that
track system performance often collect logs. IFC methods could prevent sensitive
information from being included in these logs, reducing the risk of accidental
data leakage. Automated deployment pipelines, which facilitate rapid software
updates, present another challenge. IFC could verify that incremental updates do
not introduce new ways for sensitive information to leak.

Finally, the development of robust IFC toolchains remains an open challenge. Fu-
ture efforts should focus on creating mature language-based tools for mainstream
programming languages and improving their scalability and usability for large code-
bases. The ultimate goal in this area should be to create a seamless developer
experience, enabling precise data-flow tracking and stronger security guarantees
without imposing significant overhead or requiring drastic changes to existing devel-
opment practices. This line of research highlights the need for refined enforcement
mechanisms, scalable toolchains, and user studies to guide the practical adoption of
IFC in real-world applications.

On a more focused level, future research may improve and extend the approaches
proposed in this thesis in several directions.

JE programming model can be extended to support more Java features, handling
the automated partitioning and type checking of Java programs beyond the core
subset formalized in JE . Furthermore, the type system of JE can be generalized to
support multiple enclaves and nonmalleable information flow [134]. Future avenues
of research on disjunctive policies can be enhancing our type-based dependency
analysis to make it more precise by eliminating the dependencies of unreachable
paths, supporting database operations such as insert and update, and adapting
a more realistic database model capable of expressing advanced features such as
triggers and procedures. DynCoVer can be updated to support newer versions of
Java, while the underlying security framework can be extended to take into account
integrity policies as well as the interplay between integrity and confidentiality in
the presence of dynamic policies. Future directions for improving Tap4s and its
data-dependent type system include adapting a more permissive security condition
to support declassification, improving the contract language for a more precise
modeling of externs such as cryptographic primitives, and extending the type system
to account for side channels.

55

Papers

Paper A

Language Support for Secure Software
Development with Enclaves

Aditya Oak, Amir M. Ahmadian, Musard Balliu, and Guido Salvaneschi

Abstract

Confidential computing is a promising technology for securing code and data-
in-use on untrusted host machines, e.g., the cloud. Many hardware vendors
offer different implementations of Trusted Execution Environments (TEEs).
A TEE is a hardware protected execution environment that allows performing
confidential computations over sensitive data on untrusted hosts. Despite
the appeal of achieving strong security guarantees against low-level attackers,
two challenges hinder the adoption of TEEs. First, developing software in
high-level managed languages, e.g., Java or Scala, taking advantage of existing
TEEs is complex and error-prone. Second, partitioning an application into
components that run inside and outside a TEE may break application-level
security policies, resulting in an insecure application when facing a realistic
attacker.

In this work, we study both these challenges. We present JE , a program-
ming model that seamlessly integrates a TEE, abstracting away low-level
programming details such as initialization and loading of data into the TEE.
JE only requires developers to add annotations to their programs to enable the
execution within the TEE. Drawing on information flow control, we develop a
security type system that checks confidentiality and integrity policies against
realistic attackers with full control over the code running outside the TEE.
We formalize the security type system for the JE core and prove it sound for a
semantic characterization of security. We implement JE and the security type
system, enable Java programs to run on Intel SGX with strong security guar-
antees. We evaluate our approach on use cases from the literature, including
a battleship game, a secure event processing system, and a popular processing
framework for big data, showing that we correctly handle complex cases of
partitioning, information flow, declassification, and trust.

61

A.1 Introduction

Confidential computing includes recent technologies to protect data-in-use through
isolating computations to a hardware-based Trusted Execution Environment (TEE).
TEEs provide hardware-supported enclaves to protect data and code from the system
software. Over the past few years, an array of TEE designs has been developed,
including Intel’s Software Guard Extensions (SGX) [101, 108], ARM TrustZone [60],
MultiZone [175] and others [125, 129, 159, 168, 172]. Using TEEs, data can be
loaded securely in plain text and processed at native speed within an enclave even
on a third-party machine. SGX is a TEE implementation from Intel which has been
successfully used in a number of industry products [197, 198].

The issue with confidential computing Supporting confidential computing in a way
that is both accessible for developers and technically secure is still an open problem.

First, seamless integration of enclave programming into software applications
remains challenging. For example, Intel provides a C/C++ interface to the SGX
enclave but no direct support is available for managed languages. As managed
languages like Java and Scala are extensively used for developing distributed ap-
plications, developers need to either interface their programs with the C++ code
executing in the enclave (e.g. using the Java Native Interface [202]) or compile
their programs to native code (e.g. using Java Native [199]) relinquishing many
advantages of managed environments.

A second aspect concerns security with realistic attackers. Standard security
analysis of code protects against passive attackers, as common for untrusted/buggy
code executing in a single trusted host [28]. Yet, with enclaves, programs run
in a trusted environment within an untrusted host: the attacker can control the
untrusted environment to cause additional leaks of sensitive information through the
interface between the two environments. An active attacker may force the enclave
program to violate the security policy by compromising the integrity of inputs at the
interface or by controlling the execution order of interface components, e.g. to trigger
execution paths and side effects that were not possible in the original program.
Current research adopts Information Flow Control (IFC) to ensure that the code
within an enclave does not leak sensitive information to the non-enclave environment
[119, 126, 178]. This research, however, either takes a limited view of a passive
attacker that only observes the data leaving the enclave, or it incorporates the
effects of an active attacker into the execution semantics and the security condition,
thus requiring additional verification effort to secure enclave programs.

These challenges lead us to the following key research questions addressed by the
paper: (a) How to enable seamless integration of enclaves and managed languages
like Java? (b) What is the right security model for realistic enclave attacks and how
to statically verify the security of enclave programs with respect to these attacks?
(c) How to harden state-of-the-art IFC tools to verify security in the TEE context?

62

(d) How to demonstrate feasibility via realistic use cases?

Accessible and secure confidential computing To address the questions above, we
present JE , a programming model that offers language-level integration of enclave
technology. We leverage IFC to secure applications running within TEEs and
propose a security condition and an enforcement mechanism targeting realistic
attackers in the context of TEEs.

To support seamless integration of enclave programming, JE defines a program-
ming model for developers of enclave applications as a Java extension based on three
annotations and two operators. Programmers can execute computations securely
just by adding the @Enclave annotation to classes to be placed inside the enclave and
the @Gateway annotation to the methods accessible from the non-enclave environment.
Also, programmers can label secret data with @Secret annotations and control the
release of secret information to the non-enclave environment via the declassify
operator as well as the influence of untrusted information from the non-enclave
environment via endorse operator. JE builds on the Java information flow (Jif)
security-typed language [19] to statically check confidentiality and integrity policies
of code running within an enclave. A JE program is automatically translated into
an equivalent Jif program.

To provide security against realistic attackers, our key observation is that a
program is secure in the presence of enclave active attackers iff the program does
not leak additional sensitive information as compared to executing the program
in the presence of a passive attacker. Inspired by the line of works on IFC for
distributed applications [24, 34], we propose robustness, a semantic characterization
of security for enclaves for two realistic active attackers. Robustness captures the
interplay between the integrity of untrusted data coming from the non-enclave
environment and the confidentiality of secret data within the enclave, ensuring that
an active attacker does not learn additional information. We enforce robustness
with a security type system for a core of JE to check that the active attackers’
control over inputs at the enclave interface and over the execution order of interface
components does not enable them to learn more sensitive information than a passive
attacker who merely observes the outputs at the interface. Importantly, our security
type system can be used to check robustness for the partitioned programs leveraging
existing verification efforts for the original program before partitioning. In contrast
to existing type systems for robust declassification [24, 34, 80], our security type
system is flow sensitive [46] which poses additional challenges with declassification
policies and enclave attackers.

To validate the design of JE , we verify several case studies from the literature. To
validate our approach to security for enclaves, we prove our security type system
sound with respect to robustness, showing that it accepts only secure programs.
The implementation of JE and the case studies discussed in the paper are publicly

63

available 1. In summary, this paper makes the following contributions:

• We present JE , a programming model that seamlessly supports computations
inside an enclave. In this model, programmers use annotations to identify the
computations to be executed inside the enclave.

• We provide a core calculus for JE and propose a semantic security model
to capture the essence of information flows in the presence of active enclave
attackers.

• We enforce robustness statically via a security type system, which we prove
sound for programs implemented in JE .

• We evaluate the applicability of JE using different case studies.

The paper is structured as follows. Section A.2 introduces enclave technology and
the different approaches for enclave software development. Section A.3 overviews
the JE design. In Section A.4, we present a security framework for JE . Section E.7
describes the implementation. The evaluation is in Section A.7. Section A.8 presents
related work and Section E.9 concludes.

A.2 Trusted Execution Environments in a Nutshell

In this section, we introduce TEEs and we refer to Intel SGX, as a concrete
implementation. TEEs make use of dedicated processor instructions and modified
memory access mechanisms to enable private computations. The principle behind
a TEE is to provide applications with memory isolation. With the help of the
dedicated instructions, applications can create private memory regions known as
enclaves. An enclave is essentially a reserved area in the system memory protected
by the CPU. Data inside an enclave is protected from high privilege software such
as OS, VMM and BIOS. This design leads to two distinct execution environments –
the enclave environment (trusted environment) and the non-enclave environment
(regular system memory).

Intel Software Guard Extensions (SGX) [101, 108] is an enclave implementation
from Intel introduced with the sixth generation Intel core and Intel Xeon E3 v6
server processors.

The SGX Mechanism

In SGX enabled systems, the BIOS reserves a contiguous part of the DRAM as
Processor Reserved Memory (PRM). Currently, the size of the PRM is limited to

1https://prg-grp.github.io/je-lang

64

https://prg-grp.github.io/je-lang

128 MB. Out of this PRM, a memory region of about 90 MB is used as Enclave
Page Cache (EPC) which stores the enclave code and data. The content of the
enclave memory is encrypted using the Memory Encryption Engine (MEE) and is
decrypted only when inside the CPU. This solution protects the enclave data from
an attacker having physical access to DRAM. An application creates a new enclave
using the ECREATE instruction. The enclave memory can only be accessed from
inside the enclave. The CPU rejects any attempt to access the enclave memory from
the non trusted environment. SGX provides a Remote Attestation (RA) service to
verify the integrity of the data loaded inside the enclave. We refer to Costan and
Devadas [124] for a detailed description of SGX.

Software Development with SGX

There are two main development methodologies used for programming with SGX
enclaves. One is to use the C/C++ interface provided by Intel along with the
Microsoft Visual Studio IDE. In this approach, a programmer writes their application
in C/C++, programs to be executed inside and outside the enclave are written in two
separate projects and together they form a complete application. The application
is compiled using the Intel compiler integrated into the IDE. The benefit of this
approach is that the developer can keep the trusted code base (TCB) minimal.
Unfortunately, no such support is available for applications written in managed
languages. The other approach is to use systems based on library OSes [113, 121,
147, 148, 166]. They allow running unmodified applications inside the enclave. The
application and the library OS are compiled together into an image file and the host
OS runs the image inside the enclave.

Attacker models with enclaves

In this work, we consider two attacker models: a passive attacker and (two variants
of) an active attacker. A passive attacker cannot modify the execution state of the
program (inside or outside the enclave) and can only observe the entire execution
state of the non-enclave environment. The rationale is that a developer can partition
the original program into an enclave component and a non-enclave component,
assuming that the partitioned program will be as secure as the original program,
so long as the enclave component contains the secret data as well as any code that
accesses these data.

The active attacker model extends the threat model considered in [119, 126] and
considers that an active attacker can arbitrarily alter the state of the non-enclave
environment and hence it can modify the data exchanged between the two environ-
ments. An active attacker can influence the execution of the enclave component
either by compromising the integrity of inputs at the interface or by controlling

65

the execution order of the interface components. Both cases may lead to triggering
execution paths and side effects that were not possible in the original program, thus
enabling learning more sensitive information than a passive attacker.

For both attacker models, we only assume that the enclave hardware and software,
except for the JE source program, are trusted. The JE uses static analysis to check
that a passive attacker learns no more information about secret data than allowed by
the original program, and to check that an active attacker learns no more information
than a passive attacker. Denial-of-service attacks, arbitrary destruction of enclaves
by the host OS, hardware side-channel attacks, and power analysis attacks are out
of the scope of this paper. We also ignore covert channels including termination
and timing. While termination channels have well-understood information leakage
bounds [55], orthogonal techniques such as constant-time programming [120] and
predictive mitigation mechanisms [70] can help mitigating some of these concerns.

A.3 JE Design

We propose a language design that supports computations inside an SGX enclave.
Our approach, JE , relieves the programmer from dealing with the lower-level details
of SGX, such as enclave creation, initialization, and destruction. Moreover, JE sup-
ports security annotations to define application-level policies that are subsequently
interpreted as information flow policies and are verified via a security type system.

Program A.1: Language constructs

1 @Enclave
2 class Encrypter {
3
4 @Secret static String key;
5
6 @Gateway
7 public static String encrypt(String plaintext) {
8 String cipher = encode(plaintext, key);
9 return declassify(cipher);

10 }
11 }

JE Annotations

JE extends the Java language with annotations to specify the parts of the program
that run inside SGX as well as the sensitive data. We demonstrate these features
using a routine to securely encrypt data (Program A.1). Encryption is based on a
key that should be kept secret; hence the whole encryption operation should run
within the enclave. JE supports the following annotations to define security policies.

66

Program A.2: The endorse operator

1 @Enclave
2 class Encrypter {
3
4 @Secret static String key;
5
6 @Gateway
7 public static String encrypt(String plaintext) {
8 String cipher = "";
9 String plaintextE = endorse(plaintext);

10 if (plaintextE.length() == 8) {
11 String var1 = encode(plaintextE, key);
12 cipher = declassify(var1);
13 }
14 return cipher;
15 }
16 }

Class annotation @Enclave A programmer can annotate any class with the
@Enclave annotation. Hereafter, we refer to such classes as enclave classes. The code
and the data that belong to enclave classes are placed inside the enclave. To ensure
that data and computations related to encryption take place within the enclave, the
class Encrypter in Program A.1 is annotated with the @Enclave annotation.

Field annotation @Secret A programmer can annotate fields of an enclave class with
the @Secret annotation – we refer to such fields as secret fields. The annotation denotes
that the field holds sensitive information. Any program construct influenced by a secret
field will also be considered as secret in order to prevent flows of any sensitive data from
the enclave to the non-enclave environment. In Program A.1, the key field is used as a key
for encryption. The key field is annotated with the @Secret annotation to denote that its
value must not be leaked to the non-enclave environment.

Method annotation @Gateway Static methods defined inside an enclave class can be
annotated with the @Gateway annotation. We refer to these methods as @Gateway methods.
These methods act as an interface between the enclave and the non-enclave environment:
the execution switches from the non-enclave environment to the enclave when a gateway
method is called from the non-enclave environment. In Program A.1, the encrypt method
is annotated with the @Gateway annotation to ensure that encryption is performed within
the enclave. The encrypt method encrypts the plaintext argument with the secret key
and returns the corresponding cipher text to the external environment. The return value
of a gateway method should not be influenced by secret information.

Operator declassify The declassify unary operator downgrades a secret value into
a public value. In Program A.1, the value in cipher (Line 8) is influenced by the secret
field key. Hence, cipher is considered sensitive and cannot be returned to the non-enclave

67

environment. However, the encryption can be considered secure as an observer cannot
learn useful information by observing only the ciphertext. The declassify operator is
used to control the release of sensitive information by explicitly declassifying a secret value
provided it can be trusted (see the following paragraph).

Operator endorse The endorse operator endorses an untrusted value into a trusted
one. A declassification can get triggered based on the specific value of a variable. As a
result, a malicious user can influence the value of a variable to trigger the declassification.
JE ensures that only trusted values are declassified and application of the declassify
operator does not depend on untrusted values. By default, the arguments to the gateway
methods are considered untrusted as they are received from the non-enclave environment.
In Program A.2, the gateway method encrypt accepts the plaintext argument from the
non-enclave environment. We explicitly trust the identifier plaintext (Line 9). As a result,
plaintextE is a trusted version of plaintext and the declassification no longer depends
on an untrusted variable. Program A.2 is valid because the var1 identifier is declassified
(Line 12) and it is trusted. For this reason, the application of the declassify operator
(Line 12) does not depend on an untrusted value. Also, the code in Program A.1 is invalid
as the identifier cipher being declassified (Line 8) is untrusted.

Compilation phases

The first step of the compilation process involves automatically translating a JE program
into an equivalent Jif program. The generated program is verified using the Jif compiler. If
the compilation succeeds, the code for data exchange between the enclave and non-enclave
environments along with the initialization code is added. Finally, two JARs corresponding
to each environment are generated. A detailed description of the compilation steps is
provided in the technical report [185].

Execution Model

We execute JE programs in two separate JVMs, one running in the external environment
and one within the enclave. By default, a JE program starts its execution inside the
non-enclave environment. When a program running in the non-enclave environment calls a
gateway method, the corresponding parameters are passed to the enclave-environment and
the called gateway method executes inside the enclave.

When a gateway method is called from the non-enclave environment, the corresponding
arguments are serialized and copied (deep copy) into the enclave. Hence, this semantics
results in a distinct copy of each argument inside the enclave. To avoid inconsistent copies
of an object in the two environments, once a gateway method is called, we prevent any
further usage of all its arguments in the non-enclave environment.

68

CL ::= class C {f,m} | classEnclave C {f,m}
m ::= methodϕ(p){S; return(e)}
S ::= skip | if e then S1 else S2 | S1;S2 | while e do S

x := declassify(e) | x := eG | C.f := eG

e ::= x | v | e.f | e1 ⊕ e2

eG ::= e | e.m(p)
v ::= n | C | unit

Figure A.1: Syntax of JE

A.4 Security Framework

This section presents a security framework for reasoning about the confidentiality and
integrity properties of enclave programs. We formalize a core of JE by defining the
syntax and semantics (Section A.4 and A.4). Drawing on IFC, we present a security
model (Section A.4) with the following ingredients: a security policy specifying the
parts of the program that contain secret/trusted information, and the parts that contain
public/untrusted information (Section A.4); an attacker model specifying the capabilities
of active and passive attackers (Section A.4); a security condition capturing a semantic
characterization of security with respect to the program semantics, the attacker model, and
the security policy. Finally, we present a security type system that enforces the security
condition in a sound manner (Section A.4).

JE Syntax

JE is an imperative language extended with constructs for static classes, methods and
fields as shown in Figure A.1. CL represents the list of class definitions in a program. We
write l for a finite list of elements l1, · · · , ln. We distinguish two types of classes: normal
classes (class) which are executed in the non-enclave environment and enclave classes
(classEnclave) which are executed in the enclave environment. Each class is defined with
a list of fields f and methods m. We assume classes C ∈ Class, methods m ∈ Method,
and fields f ∈ Field are uniquely identified.

We define a method by the list of formal parameters p and method body S, and use the
annotation ϕ ∈ {G,NG} to indicate whether (G) or not (NG) a method is a gateway. The
method body S is a sequence of commands that is executed when the method is called,
followed by return(e) for the return value of the method. JE distinguishes two types of
expressions, side-effect free expressions e including variables x ∈ V ars, values v ∈ V al,
fields accesses e.f , and binary operations ⊕, and side-effectful expressions eG which extend
e with method calls e.m(p). Commands S include standard features such as assignment to
class fields and variables, conditionals, loops, and sequencing. Command x := declassify(e)
is semantically equivalent to an assignment and it is used for declassification. Command
x := eG, assigns the result of evaluating eG to the variable x. If eG is a method call, e.g. the

69

assignment x := C.m(p) denotes a call to method m of class C with actual parameters
p, and stores the return value in variable x. Similarly C.f := eG assigns the result of
evaluating eG to the field f of class C. Values are integers n ∈ Z, class identifiers or unit.

JE Operational Semantics

We define the (big-step) operational semantics of JE . A configuration ⟨S,M,H⟩ consists
of a command S, a memory M = V ars→ V al mapping variables to values, and a heap
H = Class×Field→ V al mapping class and field identifiers to values. A state σ = ⟨M,H⟩
is a pair of a memory M and a heap H. An observation trace t is a (possibly empty)
sequence of events β ∈ V al, and t1.t2 denotes trace concatenation.

We use judgments of the form α ⊢δ ⟨S,M,H⟩ ⇓t M′,H′ to denote that a configuration
⟨S,M,H⟩ evaluates to memory M′ and heap H′ in execution mode α ∈ {N,E} with
static mode δ = Class ∪ V ar → {N,E}, and produces an observation trace t. We write
α ⊢δ ⟨S,M,H⟩ ⇓ M′,H′ if the observation trace is empty and α ⊢δ ⟨S,M,H⟩ ⇓t _ to
ignore the final state. We use modes to distinguish between the enclave environment (E)
and the non-enclave environment (N). An execution mode α indicates the current execution
environment of a configuration, while a static mode δ associates a class identifier or a
variable with the execution environment it was assigned to, statically. Abusing notation,
we write α ⊢δ ⟨S; return(e),M,H⟩ ⇓ M,H ▷ v for commands that yield a value v, via
the return command. To simplify the presentation, we assume that the sets of variable,
field, and class identifiers of the enclave environment and non-enclave environment are
disjoint. An initial configuration starts in the non-enclave execution mode and it executes
a sequence of commands S0 from an initial state ⟨M0,H0⟩, i.e. N ⊢δ ⟨S0,M0,H0⟩.

The semantics of expressions, Figure A.2, is mostly standard. We use judgments of the
form α ⊢δ ⟨eG,M,H⟩ ⇓β ⟨v,M′,H′⟩ to denote that an expression eG evaluates to value
v, memory M′, and heap H′ in state ⟨M,H⟩, execution mode α, static mode δ, and it
emits the event β. Rule Method interacts with the execution semantics of commands
to execute the method body, hence it can potentially alter the execution state. We use
the auxiliary functions getMethod : Class×Method→ m to extract a method definition,
and fields : Class→ ℘(Field) extract the set of fields of class C. We write M[x 7→ v] to
denote a memoryM with variable x assigned the value v. Similarly, H[(C, f) 7→ v] denotes
a heap H with field f of class C assigned the value v. The full semantics of expressions is
reported in Figure A.7.

Rule Field Access evaluates expression e to a class identifier C, ensures that the execution
mode and static mode are the same, and performs a lookup of its field f in the heap H. It
then returns the resulting value v as well as the memory and heap, which are unchanged.

Rule Method evaluates expression e to a class identifier C and uses the getMethod function
to get the definition of its method m. Next, it checks that either the execution mode and
static mode are the same (α = δ(C)) or that the execution mode is non-enclave (N), the
static mode is enclave (E), and m is a gateway method (α = N ∧ δ(C) = E ∧ϕ = G). This
condition ensures that only methods from the classes that have the same static mode as the
current execution mode can be called, with the exception that the non-enclave execution
mode can call the gateway methods of enclave classes. For the latter, our rules enforce the

70

Field Access
α ⊢δ ⟨e,M,H⟩ ⇓ ⟨C,M,H⟩ α = δ(C) v = H(C, f)

α ⊢δ ⟨e.f,M,H⟩ ⇓ ⟨v,M,H⟩

Method
α ⊢δ ⟨e,M,H⟩ ⇓ ⟨C,M,H⟩ methodϕ(p){S; return(e)} = getMethod(C, m)((

α = δ(C)
)
∨
(

α = N ∧ δ(C) = E ∧ ϕ = G
))

M∗ =M[pi 7→ σ(qi)] i = 1, ..., |p|

δ(C) ⊢δ ⟨S; return(e),M∗,H⟩ ⇓ M∗′
,H′ ▷ v M′ =M∗′

\ [pi] i = 1, ..., |p|
(α = δ(C)⇒ β = ϵ) (α = N ∧ δ(C) = E ∧ ϕ = G⇒ β = v)

α ⊢δ ⟨e.m(q),M,H⟩ ⇓β ⟨v,M′,H′⟩

Figure A.2: Excerpt of JE expression semantics

Store
α ⊢δ ⟨eG,M,H⟩ ⇓β ⟨v,M′,H′⟩ α = δ(C) H′′ = H′[(C, f) 7→ v]

α ⊢δ ⟨C.f := eG,M,H⟩ ⇓β M′,H′′

Return
α ⊢δ ⟨e,M,H⟩ ⇓ ⟨v,M,H⟩

α ⊢δ ⟨return(e),M,H⟩ ⇓ M,H ▷ v

Figure A.3: Excerpt of JE command semantics

copy semantics in a call-by-value fashion. The rule substitutes the actual parameters for
the formal parameters and executes the method body, returning a value. Finally, if the
method is a gateway call, the emitted event is the return value v, otherwise the empty
event ϵ.

Figure A.3 provides an excerpt of evaluation rules for JE commands. The full set of rules
can be found in Figure A.9. Rule Store updates the field in the heap with the associated
value and checks that α = δ(C) to ensure that execution mode, and the static mode of
class C are the same. The event that Store emits is equal to the event emitted during the
evaluation of expression eG. Rule Return evaluates the expression in the current state
and returns the associated value.

Security Model

Security Policy

JE adopts security labels to specify application-level policies as information flow policies.
A security label ℓ is a tuple ⟨ℓC , ℓI⟩ of a confidentiality label ℓC and an integrity label ℓI .
We use two levels, Public (P) and Secret (S), for confidentiality, and two levels, Trusted (T)
and Untrusted (U), for integrity. Intuitively, for confidentiality, data from Secret sources
should not flow to Public sinks unless it is explicitly declassified by the developer, and,

71

for integrity, data from Untrusted sources should not flow to Trusted sinks unless it is
explicitly endorsed by the developer. These requirements are reflected by the ordering
relation between security labels, namely P < S and T < U. The product lattice L lifts the
constraints to an ordering relation over label pairs such that ℓ1 ⊑ ℓ2 iff ℓ1C ⊑ ℓ2C and
ℓ1I ⊑ ℓ2I . The lattice L defines the join ℓ1 ⊔ ℓ2 and meet ℓ1 ⊓ ℓ2 operators to compute
least upper bound and greatest lower bound of two labels, respectively. A security policy is
then defined by an assignment of security labels to variables, classes and fields of an JE

program.

Attacker Model

We use the security labels to define the view of the memory and heap from the attacker’s
perspective. In our setting, the attacker is at level ⟨P,U⟩ and it can observe all of initial
program state (i.e. the initial memory and the initial heap) that is labeled as public P.
This is because an attacker has full control of the non-enclave state and it is allowed
to learn any public data of the enclave state. We assume that each variable, class, and
field has an associated security label from the lattice L as defined by a security mapping
Γ : (V ar ∪ Class ∪ Field)→ L. We then define indistinguishability over pairs of program
states for a security mapping Γ and an attacker at security level A = ⟨P,U⟩.

ñ Definition A.1 (State indistinguishability)

Two memories M1 and M2 are indistinguishable for the attacker A (written
M1 =A M2) iff ∀x. δ(x) = N , M1(x) = M2(x), and ∀x. δ(x) = E such that
Γ(x) = ⟨P,−⟩, M1(x) =M2(x).
Two heaps H1 and H2 are indistinguishable for the attacker A (written H1 =A

H2) iff ∀C. δ(C) = N,∀f ∈ fields(C), H1(C, f) = H2(C, f) and ∀C. δ(C) =
E,∀f ∈ fields(C) such that Γ(C.f) = ⟨P,−⟩, H1(C, f) = H2(C, f).
Two program states σ1 = ⟨M1,H1⟩ and σ2 = ⟨M2,H2⟩ are indistinguishable for
the attacker A (written σ1 =A σ2) iff M1 =A M2 and H1 =A H2.

Intuitively, two indistinguishable memories assign the same value to the public variables
inside and outside of enclave. Similarly, two indistinguishable heaps assign the same value
to all of the fields of non-enclave classes and the public fields of enclave classes.

As secret values are stored inside the enclave, the only way for an attacker to learn
secret information is by observing the return values of gateway methods. In fact, the
attacker observations are captured by our semantics in Figure A.3 via traces t and events
β. Therefore, we can define indistinguishability for program executions by requiring that
any two indistinguishable initial states produce the same observation traces. This implies
that an attacker cannot discriminate the two initial states, thus it cannot learn secret
information from the enclave environment.

72

ñ Definition A.2 (Execution indistinguishability)
Let S be a JE program and σ1 and σ2 be two initial states such that σ1 =A σ2.
Two executions are indistinguishable (written N ⊢δ ⟨S, σ1⟩ ≈A N ⊢δ ⟨S, σ2⟩) if
N ⊢δ ⟨S, σ1⟩ ⇓t1 _ and N ⊢δ ⟨S, σ2⟩ ⇓t2 _ then t1 = t2.

In line with existing works [55], execution indistinguishability ignores information leaks
that are due to program (non) termination. The definition ensures security w.r.t. a passive
non-enclave attacker that observes only the results of gateway method calls. In particular,
it rejects all programs that leak secret information to the non-enclave environment. As
such condition can be restrictive for most practical scenarios (see Section A.3 for examples),
developers resort to various forms of declassification operations to release secret information
in a controlled manner. We refer to prior works for an overview of various dimensions of
declassification [69]. In our setting, declassification can be dangerous as it can be abused
by an active attacker to release secret information in a way that it was not intended by
the developer [34]. Next, we define the attackers that are relevant in the context of enclave
programs.

Passive and Active Attackers

We consider three types of attackers: the passive attacker (PA), the havoc active attacker
(HAA) limited to modifying parameters passed to gateway calls, and the havoc reordering
active attacker (HRAA) capable of controlling the order and frequency in which gateway
methods are called. Both active attackers are reasonable in our context as the attacker
fully controls the non-enclave environment. We use the PA attacker as a reference model to
show that the HAA attacker and the HRAA attacker do not learn more secret information
than the PA attacker.

The PA does not intervene in the execution of the program, it just observes observation
traces (as in Figure A.3) to learn secret information from the enclave. The active attackers
can influence the execution. The HAA attacker can modify the non-enclave state and
hence the parameters passed to gateway methods, thus modifying the behavior of the
program executing inside the enclave. This may change the behavior of the program in
a way that leaks information about the enclave secrets, e.g. by abusing declassification
operations that were intended in the context of a PA attacker. We illustrate the issue via
an example inspired by Askarov and Myers [80].

Program A.3 contains a gateway method foo whose return value depends on the time
parameter. The intention of the developer, who assumes a PA attacker, is to declassify
secretV al only after the releaseT ime has elapsed. This is implemented by comparing
the time in which method call was issued with the predefined releaseT ime (Line 10).
Yet, an HAA attacker can arbitrarily change the value of time and control the release of
information via declassification. This example motivates the need for a security condition
that rejects scenarios where an active attacker learns more secret information than a passive
attacker.

To model the active capability of the HAA attacker, we introduce program holes [•] [34].
Holes represent program contexts where an HAA attacker can insert an untrusted code a

73

Program A.3: HAA attacker

1 @Enclave
2 class FooClass {
3
4 @Secret static int secretVal;
5 static int releaseTime = 2025
6
7 @Gateway
8 public static int foo(int time) {
9 int res = 0;

10 if (time >= releaseTime)
11 res = declassify(secretVal);
12 else
13 res = 0;
14
15 return res;
16 }
17 }

to modify the program’s state. Because the only way an attacker can affect the execution
of enclave code is via gateways, we extend our program syntax by adding [•];x := e.m(p)
and [•];C.f := e.m(p), and define the active attacks.

ñ Definition A.3 (JE program with holes)

A program with holes S[−→•] is defined by extending the syntax in Figure A.1 as
follows:

S[−→•] ::= . . . | [•];x := e.m(p) | [•];C.f := e.m(p)
where m is a gateway method.

An HAA attacker can execute any untrusted code a in a hole before method calls. However,
this code can only contain variables, classes, and fields in the non-enclave environment
which are by definition public and untrusted. We define the attacker’s code as follows:

a ::= skip | a1; a2 | q := e (where q ∈ p) (A.1)

While an HAA attacker can inject arbitrary untrusted code in the non-enclave environment,
we argue that the definition above captures the most powerful attack strategies of HAA
attacker.

« Lemma A.1
The attack code definition presented in A.1, captures the most powerful attack
strategies available to an HAA attacker, who controls the non-enclave environ-
ment.

Proof. The proof of this lemma is presented in Appendix A.1.

74

We write S[−→a] for a program under an HAA attack −→a . In this setting, a passive attack
can be modeled as S[−−→skip].

An HRAA attacker controls both the code and data memory outside the enclave. Hence
in addition to the HAA attack capability, an HRAA attacker can change the order and
frequency of gateway method calls issued from the non-enclave environment. This can
cause information leaks as the (attacker-controlled) order and frequency of gateway calls
may influence the values returned to the non-enclave environment.

Program A.4: HRAA attacker

1 @Enclave
2 class FooClass {
3
4 @Secret static int secret1, secret2;
5 static boolean releaseTrigger = false;
6
7 @Gateway
8 public static void bar() {
9 releaseTrigger = true;

10 }
11 @Gateway
12 public static int foo() {
13 int res = 0;
14 if (releaseTrigger) {
15 releaseTrigger = !releaseTrigger;
16 res = declassify(secret1); }
17 else {
18 releaseTrigger = !releaseTrigger;
19 res = declassify(secret2); }
20
21 return res;
22 }
23 }

Program A.4 illustrates the problem. Consider the non-enclave program FooClass.bar();
FooClass.foo(). The intended order of issuing gateway methods is bar();foo(), hence
this program is secure with respect to an HAA attacker. secret1 is always going to be
declassified, and the resulting trace depends on its value. However, an HRAA attacker
that controls the code memory outside the enclave can change the order of gateway calls
to foo();bar() and learn the declassified value of secret2.

A similar argument applies to calling gateway methods multiple times. For instance, if a
gateway was intended to be called only once, calling it more than once might leak sensitive
information. We revisit Program A.4 to illustrate the problem. Consider the non-enclave
program FooClass.foo() revealing the value of secret1. An HRAA attacker can instead
call FooClass.foo();FooClass.foo() and learn the declassified value of secret2.

Since the HRAA attacker has full control over the non-enclave code and memory, and the
secrets reside only inside the enclave, we model them as sequences of gateways calls.

75

ñ Definition A.4 (Program under HRAA control)
We define the program under HRAA control as a sequence of gateway calls:

S′[−→•] ::= S′
1[−→•];S′

2[−→•] | [•];x := C.m(p)

where m is a gateway method defined in S[−→•].

In this model, the attack definition of A.1 will remain unchanged, indicating that HRAA
attacker subsumes the power of HAA attacker.

« Lemma A.2
The attacker code defined in A.1, captures the most powerful attack strategies
available to the HRAA attacker.

Proof. The proof is similar to Lemma A.1 and is presented in Appendix A.1.

Security Condition

In our setting, programs use declassification to release secret information in a controlled
manner. Intuitively, a program is secure if an active attacker cannot learn more secret
information than a passive attacker. Drawing on the idea of robust declassification [34],
we present robustness, a security condition that formalizes this intuition.

ñ Definition A.5 (Robustness under HAA)

Program S[−→•] is robust w.r.t an HAA attacker A if for all σ1, σ2,
−→a 1,
−→a 2

N ⊢δ ⟨S[−→a 1], σ1⟩ ≈A N ⊢δ ⟨S[−→a 1], σ2⟩ ⇒ N ⊢δ ⟨S[−→a 2], σ1⟩ ≈A N ⊢δ ⟨S[−→a 2], σ2⟩

Robustness holds whenever for an attack vector −→a and two indistinguishable initial states
σ1, σ2, if the program S[−→a 1] satisfies execution indistinguishability (Definition A.2), then
for another attack vector −→a 2, the program S[−→a 2] also satisfies execution indistinguishability.
In other words, the attacker observations of S[−→a 2]’s observation traces do not reveal any
secrets apart from what the attacker already knows by the observation traces of the program
S[−→a 1]. The PA attacker is captured by executions of the program S[−−→skip].

We extend robustness to capture HRAA attackers.

ñ Definition A.6 (Robustness under HRAA)

Program S[−→•] is robust w.r.t an HRAA attacker A if for all σ1, σ2,
−→a 1,
−→a 2 and

for all S′[−→•]:

N ⊢δ ⟨S[−→a 1], σ1⟩ ≈A N ⊢δ ⟨S[−→a 1], σ2⟩ ⇒ N ⊢δ ⟨S′[−→a 2], σ1⟩ ≈A N ⊢δ ⟨S′[−→a 2], σ2⟩

76

This definition ensures that the HRAA attacker does not learn more information by
changing the order and frequency of gateway calls. Observe that if S′[

−→
a′] triggers an

execution that was not possible S[−→a], and that execution’s return value depended on some
declassified secret, the active power may enable the HRAA attacker to learn information
that they would not have learned originally. In Program A.3, the program S[−→a] ::=
[a1]; FooClass.bar(); [a2]; FooClass.foo() is not robust under HRAA because the program
S′[
−→
a′] ::= [a′

1]; FooClass.foo(); [a′
2]; FooClass.bar() enables the HRAA attacker to reveal

the declassified value of secret2. A similar argument applies to calling gateway methods
that were defined in S[−→•] but were never called. As expected, this definition is stronger
than Definition A.5.

Delayed Declassification

While our security condition extends the definition of robust declassification [34] to the
setting of realistic enclave attackers, there are some key differences pertaining to traces
and attacker observations. Robust declassification considers every assignment to public
variables as immediately visible to the attacker, because it defines the observations as
projection over the public part of the memory. This definition does not reflect the enclave
attacker model, because TEEs encrypt the entire enclave memory, so even if a public
variable is modified inside the enclave, it is not visible to the attacker unless it is written
to the non-enclave memory. This motivates our use of a trace-based observation model as
generated by the return values of gateway method calls.

Program A.5: Delayed declassification

1 @Enclave
2 class FooClass {
3
4 @Secret static int secretVal;
5
6 @Gateway
7 public static int foo(int input) {
8 int x = declassify(secretVal);
9 int l = 0;

10 if (input > 0)
11 l = x;
12 else
13 l = 7
14
15 return l;
16 }
17 }

This model poses additional challenges with handling of declassification policies. For
example, Program A.5 satisfies robust declassification because the attacker input neither
affects the decision to declassify nor the declassified value itself. This is achieved by making
the value in variable x observable to the attacker immediately. However, in our model, the
declassified value in x will not be visible to the attacker until it is returned by the gateway

77

method. Because the attacker controls the input and therefore the assignment in line 11,
this results in controlling the decision to declassify the secret value. Hence, the program is
not robust. In fact, for attack vectors a ::= input := 0 and a′ ::= input := 1, our definition
of robustness will correctly reject the program. We dub this concept delayed declassification.
Observe that delayed declassification is orthogonal to the well-known Where and What
dimensions of declassification [69] and it appears as result of the trace-based observation
model.

Security Type System

This section presents a security type system to enforce robustness. In line with the enclave
attacker model, the program from the non-enclave environment is public and untrusted,
while program from the enclave environment is trusted and its input data can be labeled
by the developer as either public or secret. We label secret fields with < S,T >as they
contain sensitive information and are protected by the enclave. The security label of the
arguments of a gateway method is defaulted to < P,U >and while the return parameter is
labeled as < P,T >or < P,U >.

The goal of our type system is to ensure robustness against the active attackers. To achieve
this, the type system checks that the decision to declassify a secret, or to return it, is
not influenced by untrusted non-enclave data, thus ensuring that the attacker cannot
control the decision to release secret data. The security type system enforces the Where
dimension of declassification for a PA attacker [69] and it has been proved sound with
respect to the security condition of gradual release [51]. We extend the type system to
additionally account for active attacks in our setting and prove it sound for robustness.
This has the advantage of reusing existing verification efforts via security type systems,
which assume a PA attacker, and verifying only on the effect of an active attacker whenever
these programs have been verified for the PA attacker. In our setting, this may happen
whenever a developer partitions an existing (secure) program to execute with enclaves.

Our security type system uses a typing environment Γ : (V ar ∪ Class ∪ Field) → L
mapping variables, classes, and fields to security labels from the security lattice L. We also
use another environment Π : (V ar ∪ Class ∪ Field)→ B that maps variables, fields, and
classes to boolean flags. A flag d ∈ B can be true (T) or false (F), and is used to track the
propagation of declassified values. Initially, every variable and field has the flag initialized
to false and the flag is set to true whenever they store a value that may be affected by
declassification. We define the ordering relation F < T on flags, which will be useful in
the sub-typing and method rules.

The label of every variable, field, and class in our setting, is a tuple consisting of a security
label and a flag (ℓ, d). We use indexes ℓ and d to access elements of this tuple. e.g. pcℓ

will show the security label of pc. Methods are typed in isolation using type signatures
of the form

(
Γ−,Π−

pc′ Γ+,Π+
)

(ℓ,d)
which require a environments Γ− and Π− before

the method is invoked, environments Γ+ and Π+ after the method invocation, the label
of its return value (ℓ, d), and the program counter label pc′ capturing the lower bound
on method’s side-effects [126]. The typing judgments for expressions are of the form
Γ,Π ⊢δ eG : τ , meaning that in mode δ, and environments Γ and Π, an expression eG

78

has the type τ . If the expression eG is a method, then τ is a method type, otherwise τ
is a type (ℓ, d) representing the security label of e. Similarly, the typing judgments for
commands have the form pc,Γ,Π ⊢δ S : Γ′,Π′ where Γ and Π are the environments before,
and Γ′ and Π′ are the environments after the execution of command S, δ is the static,
and pc is the program counter label used to prevent implicit flows. The judgment for the
return command is of the form pc,Γ,Π ⊢δ return(e) : Γ,Π ▷ (ℓ, d) to capture the security
label ℓ and the flag d of the returned value.

Figure A.4 depicts an excerpt of the typing rules for expressions. The full list of rules is
reported in Figure A.8. The only non-standard rule here is T-Method. Rule T-Method
checks that method’s body S; return(e) is well-typed under pc′, Γ−, Γ+, Π−, and Π+ and
it returns the label (ℓ, d) of the result.

T-Int

Γ, Π ⊢δ n : (⟨P,T⟩, F)

T-Op
Γ, Π ⊢δ e1 : (ℓ1, d1) Γ, Π ⊢δ e2 : (ℓ2, d2)

Γ, Π ⊢δ e1 ⊕ e2 : (ℓ1 ⊔ ℓ2, d1 ∨ d2)

T-Method
methodϕ(p){S; return(e)} = getMethod(C, m) pc′, Γ−, Π− ⊢δ S; return(e) : Γ+, Π+ ▷ (ℓ, d)

Γ, Π ⊢δ C.m(p) :
(

Γ−, Π−
pc′ Γ+, Π+

)
(ℓ,d)

Figure A.4: Excerpt of typing rules for expressions
Figure A.5 presents a few interesting rules for commands; we refer to Figure A.10 for the
full list. In our type system, variables are flow-sensitive (see rule T-Assign in Figure A.10),
while fields are flow-insensitive, i.e. their security label is defined via annotations. In fact,
rule T-Store ensures that the join of the security labels of pc and expression e is at least
as restrictive as the label of field C.f . Moreover, the rule ensures that if the security label
of ℓ1 ⊔ ℓ2 ⊔ pcℓ is secret ⟨S,−⟩, the store is defined in the enclave, and it ensures that if
the flag of e is true, this command can only be executed in a trusted context. This is
to prevent untrusted input from controlling the propagation and release of declassified
values. Finally, even though C.f ’s security labels are flow-insensitive, its flag is not, and it
is updated to the disjunction of the flags of e and pc. This rule also updates the flag of
class C, so if a class has a field affected by a declassified value, the whole class is going to
be flagged true. The rule T-Store is only for side-effect free expressions (i.e. e). There is
also e.m(p) that combined with Store can act as a method call or a gateway method call.
Rule T-Store-Call and T-Store-Gateway-Call type check method calls and gateway
method calls, respectively. Similarly, type checking assignments is broken into three rules,
T-Assign, T-Assign-Call, and T-Assign-Gateway-Call.

Rule T-Declassify ensures that only trusted data is allowed to be declassified ℓ ⊑ ⟨S,T⟩
and declassification can only happen in public and trusted context pcℓ ⊑ ⟨P,T⟩. This
prevents attacker-controlled untrusted data from influencing the decision to declassify
secret information. The security label of variable x will be ⟨P,T⟩ and its flag will be true
T .

Rule T-Return sets the security label of the returned value to the join of the security
labels of program context and the expression. This is to prevent the implicit flows that
may happen when returning in a secret context. Additionally, if the expression e’s flag is

79

true, return can only be executed in a trusted context. This is to prevent attacker from
affecting the decision to return a declassified value.

Rule T-Store-Gateway-Call handles the type checking of gateway methods call from a
store. The security labels of gateway parameters are explicitly defined in Γ− and must have
the ⟨P,U⟩ security label (∀p ∈ p. Γ−(p) = ⟨P,U⟩), and their flag (defined in Π−) should
be false ∀p ∈ p.Π−(p) = F . The rule ensures that the gateway can only return public
values (ℓ2 ⊑ ⟨P,U⟩), the labels of actual parameters are less restrictive than the predefined
labels of formal parameters Γ(qi) ⊑ Γ−(pi), and the method’s typing environment is
satisfied (∀y ∈ dom(Γ−).Γ(y) ⊑ Γ−(y)). Additionally, the typing environment after type
checking the method body should respect the method’s predefined post typing environment
(∀y ∈ dom(Γ+).Γ+(y) ⊑ Γout(y)), while ensuring that the type of identifiers other than
those used by the method remains unchanged (∀y ∈ dom(Γ) \ dom(Γ+).Γ(y) = Γout(y)).
Similar conditions apply to Π environment. At last, the rule updates the flag of field C.f
to false, so even a declassified value, after returning from a gateway method has a false
flag.

T-Store
Γ, Π ⊢δ C.f : (ℓ1, d1) Γ, Π ⊢δ e : (ℓ2, d2) ℓ2 ⊔ pcℓ ⊑ ℓ1

ℓ1 ⊔ ℓ2 ⊔ pcℓ = ⟨S,−⟩ ⇒ δ(C) = E pcd ∨ d2 = T ⇒ pcℓ ⊔ ℓ1 = ⟨−,T⟩ d′ = d2 ∨ pcd

pc, Γ, Π ⊢δ C.f := e : Γ, Π
[
C.f 7→ d′, C 7→ Π(C) ∨ d′

]
T-Declassify
Γ, Π ⊢δ e : (ℓ, d) ℓ ⊑ ⟨S,T⟩ pcℓ ⊑ ⟨P,T⟩ δ(x) = E

pc, Γ, Π ⊢δ x := declassify(e) : Γ
[
x 7→ ℓ ⊓ ⟨P,T⟩

]
, Π
[
x 7→ T

]
T-Return
Γ, Π ⊢δ e : (ℓ, d) d = T ⇒ pcℓ = ⟨−,T⟩

pc, Γ, Π ⊢δ return(e) : Γ, Π ▷ (pcℓ ⊔ ℓ, d)

T-Store-Gateway-Call
Γ, Π ⊢δ C.f : (ℓ1, d1) Γ, Π ⊢δ C′.m(p) :

(
Γ−, Π−

pc′ Γ+, Π+
)

(ℓ2,d2)

δ(C) = N δ(C′) = E ℓ2 ⊑ ⟨P,U⟩ ∀p ∈ p.Γ−(p) = ⟨P,U⟩ ∀p ∈ p.Π−(p) = F

ℓ2 ⊔ pcℓ ⊑ ℓ1 Γ(qi) ⊑ Γ−(pi) i = 1...|p| Π(qi) = Π−(pi) i = 1...|p|
∀y ∈ dom(Γ−).Γ(y) ⊑ Γ−(y) ∀y ∈ dom(Γ+).Γ+(y) ⊑ Γout(y)

∀y ∈ (dom(Γ) \ dom(Γ+).Γ(y) = Γout(y) ∀y ∈ dom(Π−).Π(y) ⊑ Π−(y)
∀y ∈ dom(Π+).Π+(y) ⊑ Πout(y) ∀y ∈ (dom(Π) \ dom(Π+).Π(y) = Πout(y)

pc, Γ, Π ⊢δ C.f := C′.m(q) : Γout, Πout

[
C.f 7→ F

]
Figure A.5: Excerpt of typing rules for commands

To illustrate our type system, we revisit the example of Program A.3. The type system
rejects this program because the declassify operator can only be used in a trusted program
context pc. Rules T-Op and T-If-Else set the pc security label to the join of the security
labels of time and releaseTime. Since time has security label ⟨P,U⟩ (as it comes from
outside of the enclave), and releaseTime has security label ⟨P,T⟩ (as it comes from the

80

enclave), we have that pcℓ = ⟨P,U⟩ ⊔ ⟨P,T⟩ = ⟨P,U⟩. Next, rule T-Declassify does not
allow the declassification since pcℓ ̸⊑ ⟨P,T⟩.

We prove that our security type system enforces robustness for the HAA attacker.

� Theorem A.1
If pc,Γ,Π ⊢δ S[−→•] : Γ′,Π′ then S[−→•] satisfies robustness under HAA.

We now show how it can be extended with minimal changes to enforce robustness for
HRAA attackers. The additional power of HRAA attacks comes from the ability to control
the order and frequency of gateway calls. Whenever a gateway call modifies trusted
identifiers inside the enclave, this can be used to influence declassification operations that
are performed by another method. This can be prevented by computing the set of shared
identifiers Σ containing all global variables and fields that are assigned to in at least one
method and accessed in at least one method. (i.e. Σ contains all global variables and
fields that are used and modified in one or more gateways methods) We compute Σ in
a preprocessing step up to reaching a fixed point. We can then use the typing rules of
Figures A.4 and A.5 under the constraint that the initial environment considers the integrity
label of every variable and field in Σ as untrusted. i.e. ∀ x ∈ Σ. Γ0[x 7→ ⟨Γ0(x)C ,U⟩] and
∀ C.f ∈ Σ. Γ0[C.f 7→ ⟨Γ0(C.f)C ,U⟩].

The intuition is that by considering shared identifiers as untrusted, we enable the security
type system to reject programs that use these identifiers to declassify information (ex-
plicitly or implicitly) and return it via a gateway method. For example, Program A.4 is
rejected by our type system. After the preprocessing phase, Σ = {releaseTrigger} since
releaseTrigger is assigned to in one method call and accessed in another. By assigning
the security label ⟨P,U⟩ to releaseTrigger, rule T-Declassify (Line 16) will fail since
declassification is not allowed in an untrusted context.

Recall from last section that if different program executions call different gateways and
those gateways return declassified values, the HRAA attacker can learn more by calling
the gateways that were not called in the original program. In order to prevent this, we
add another step to the type checking process to ensure that all gateways which declassify
secret values are called in all possible executions of the (non-enclave) program.

This process is performed in several steps:

1. Identify the set of all the gateway methods in S[−→•] denoted by GD such that their
return value’s flag is true (i.e. Γ,Π ⊢δ C.m(p) : (−)(−,T)).

2. Enumerate the paths of the program and extract the set of gateway calls along those
paths. This is achieved by a depth-first traversal of the program’s graph. We use
pathsGW (S[−→•]) to denote the set of all possible paths of S[−→•], and pathGWi for
the set of gateway calls in path i.

3. Check that GD is a subset of all of the possible paths of S[−→•]. In other words:

GD ⊆ pathGWi ∀i ∈ pathsGW (S[−→•])

This process is performed after calculating Σ and type checking methods in isolation, but
before type checking the program itself. If the above process fails, we reject the program

81

as not robust against HRAA attacker. This requirement reflects the power of the HRAA
attacker outside the enclave, rejecting programs that do not call all declassifying gateways.
To improve permissiveness and security, such programs can be moved to the enclave and
exposed to the non-enclave environment as a single gateway method.

We remark that our enforcement accepts programs with noninterfering runs that do not
always declassify information. Program A.6 presents a program with both interfering
and noninterrfering runs. The program satisfies robustness (Definition A.6) and is also
accepted by the type system. In fact, if variable trustedLow (Line 4, a public and trusted
variable) is set to true, only noninterfering computations will be executed and an HRAA
attacker program such as [choice=v];ComputeArray.compute(choice); will observe the
result “Done with computation” + choice. Otherwise, if trustedLow is set to false, an
interfering run will be executed and the attacker will observe the declassified average value.

Program A.6: Noninterfering runs under HRAA

1 @Enclave
2 class ComputeArray {
3
4 static boolean trustedLow;
5 @Secret static int[] array;
6
7 @Gateway
8 public static String compute(int choice) {
9 int avg = computeAvg(array);

10 String res = 0;
11 if (trustedLow) {
12 if (choice == 1) {
13 computation1(array); //noninterfering
14 } else if (choice == 2) {
15 computation2(array); //noninterfering
16 } else if (choice == 3) {
17 computation3(array); //noninterfering
18 }
19 res = "Done with computation" + choice;
20 }
21 }
22 else {
23 res = String.valueOf(declassify(avg));
24 }
25 return res;
26 }
27 }

This example demonstrates that even though our type system requires calling all of the
declassifying gateways along all program’s executions, it does not mean that all of the runs
of the program are necessarily interfering.

We prove soundness of the security type system with respect to the HRAA attacker.

82

� Theorem A.2
If pc,Γ,Π ⊢δ S[−→•] : Γ′,Π′ with regard to Σ and GD, then S[−→•] satisfies robust-
ness under HRAA.

We refer to Appendix A.1 for the proofs of theorems.

Use case for the HRAA attacker Our enforcement mechanism for the HRAA attacker
requires a program to call all gateways that declassify secret information in any execution
of a program. While this condition may seem restrictive, it is necessary in order to ensure
that an attacker as powerful as HRAA cannot manipulate the program to tamper with
declassification in unintended ways.

We identify the setting of IoT app platforms as a promising use case for enforcing security
against the HRAA attacker [157]. IoT apps allow users to run simple trigger-action apps in
cloud-based IoT platforms to seamlessly connect their IoT services and devices. Upon the
triggering of an event, e.g. “EZVIZ camera senses motion at home”, the app executes code
to perform an action, e.g. “Send an email with the camera stream”. Currently, the users
have to trust the cloud provider with the sensitive information of their services and devices
to run apps on their behalf. TEEs can help executing user apps securely in an untrusted IoT
cloud platform and protect against the HRAA attacker. Specifically, the user can leverage
enclaves to securely connect their services and smart devices, e.g. Email and EZVIZ camera,
via authentication tokens (using code patterns similar to Program A.10) and use these
tokens to execute trigger-action automations via gateway methods that simply transfer
data between services and devices, and do not declassify sensitive information. In this
setting, only the authentication gateway declassifies sensitive information, thus making
these programs amenable to verification by our type system.

A.5 Endorsement and Nonmalleable Attacks

Endorsement

We extend our security framework to accommodate explicit endorsement of untrusted
information coming from the non-enclave environment via gateway calls. This enables
a developer to mark untrusted expressions as trusted, explicitly, to indicate that the
security policy should be insensitive to their value. Following the approach of Askarov and
Myers [80], we extend the syntax and semantics of JE with command x := endorseη(e).
Each endorsement command has a unique label η, and produces an endorsement event
endorse(η, v), which records the label η along with the endorsed value v.

Endorse
E ⊢δ ⟨e,M,H⟩ ⇓ ⟨v,M,H⟩ δ(x) = E M′ =M[x 7→ v]

E ⊢δ ⟨x := endorseη(e),M,H⟩ ⇓endorse(η,v) M′,H

We define irrelevant attacks as the set of attacks that are endorsed, and therefore can
be excluded from the set of attacks used in Definition A.5. Using this concept, we argue

83

that Definition A.5 should only hold for relevant attacks. Given a program S[−→•], starting
state σ, and attacker vector −→a which produces trace t (i.e. ⟨S[−→a], σ⟩ ⇓t), relevant attacks,
denoted by Ω(S[−→a], σ), are the attacks that lead to the same sequence of endorsement
events as in t.

We define relevant attacks by using irrelevant traces, which given trace t, are the set of
all traces that agree with t on some prefix of endorsement events until they necessarily
disagree on some endorsement. Formally:

ñ Definition A.7 (Irrelevant traces)

Given a trace t, where endorsements are marked as endorse(ηj , vj), define a set
of irrelevant traces based on the number of endorsements in t

ψi(t) = {t′ | t′ = k.endorse(ηi, v
′
i).k′}

where k is a prefix of t′ with i− 1 events all of which agree with endorse events
in t, and vi ̸= v′

i. We define ψ(t) ≜
⋃

i
ψi(t) as a set of irrelevant traces w.r.t.

trace t.

Now, we can define the relevant attacks as the set of attacks that do not lead to irrelevant
traces.

ñ Definition A.8 (Relevant attacks)

Given a program S[−→•], starting state σ, and attacker vector −→a such that
⟨S[−→a], σ⟩ ⇓t, relevant attacks Ω(S[−→a], σ) are defined as:

Ω(S[−→a], σ) = {a′ |⟨S[
−→
a′], σ⟩ ⇓t′ ∧ t′ ̸∈ ψ(t)}

Using the definition relevant attacks, we can redefine the robustness property. This new
security condition accounts for the fact that the active effect on endorsed expressions does
not matter.

ñ Definition A.9 (Robustness with endorsement)

Program S[−→•] is robust w.r.t an HAA attacker A if for all σ1, σ2,
−→a 1 and for all

−→a 2 ∈ Ω(S[−→a 1], σ1)

N ⊢δ ⟨S[−→a 1], σ1⟩ ≈A N ⊢δ ⟨S[−→a 1], σ2⟩ ⇒ N ⊢δ ⟨S[−→a 2], σ1⟩ ≈A N ⊢δ ⟨S[−→a 2], σ2⟩

This definition is similar to the original robustness property, except that instead of ensuring
indistinguishability for all possible attacks, it only ensures indistinguishability for the
relevant attacks, effectively ignoring the influence of irrelevant attacks.

Figure A.6 presents the typing rule for endorsement. Similar to the T-Declassify, T-
Endorse ensures that endorseη(e) can only be used inside the enclave environment, and
endorsement can only occur in a public and trusted context pcℓ ⊑ ⟨P,T⟩. This is to

84

T-Endorse
Γ, Π ⊢δ e : (ℓ, d) pcℓ ⊑ ⟨P,T⟩ δ(x) = E

pc, Γ, Π ⊢δ x := endorseη(e) : Γ
[
x 7→ ℓ ⊓ ⟨S,T⟩

]
, Π
[
x 7→ d

]
Figure A.6: Typing rule for endorse command

prevent attacker-controlled untrusted data to influence the decision to endorse untrusted
information.

Now, we present type soundness to prove that any well-typed program under the extended
type system satisfies the new robustness property of Definition A.9.

� Theorem A.3
If pc,Γ,Π ⊢δ S[−→•] : Γ′,Π′ then S[−→•] satisfies robustness with endorsement.

We can use a similar approach to model endorsement of HRAA attacker. However, we
have to modify the definition of relevant attacks to account for the difference between the
order and frequency of endorsement events in S′[−→•] and S[−→•].

In the new definition of relevant attacks, we use the unique endorsement label η to
ensure that the value of an endorsement used in S[−→•] is equal to the value of that same
endorsement in S′[−→•] independently of the order and frequency of that endorsement’s
event. We lift the definition of irrelevant traces and relevant attacks to this new setting.

ñ Definition A.10 (HRAA irrelevant traces)

Given a trace t, where endorsements are marked as endorse(ηj , vj), define the
set of irrelevant traces as:

ψR(t) = {t′ | ∃ endorse(ηj , vj) ∈ t, ∃ endorse(ηi, vi) ∈ t′. ηj = ηi and vj ̸= vi}

Observe that we need Definition A.10 because, if we used Definition A.7, there might be
cases where there is an irrelevant trace t′, but there exist no k with i− 1 events such that
all of its endorse events agree with t, thus, t′ cannot be marked as irrelevant.

ñ Definition A.11 (HRAA relevant attacks)

Given programs S[−→•] and S′[−→•], starting state σ, and attacker vector −→a
such that ⟨S[−→a], σ⟩ ⇓t, the set of relevant attacks w.r.t HRAA attacker
ΩR(S[−→a], S′[−→•], σ) are defined as:

ΩR(S[−→a], S′[−→•], σ) = {a′ |⟨S′[
−→
a′], σ⟩ ⇓t′ ∧ t′ ̸∈ ψ(t)}

Now, using this new definition of relevant attacks, we can redefine the robustness property
w.r.t HRAA attacker.

85

ñ Definition A.12 (Robustness under HRAA with endorsement)

Program S[−→•] is robust w.r.t an HAA attacker A if for all σ1, σ2,
−→a 1, and for

all S′[−→•] such that ∀−→a 2 ∈ ΩR(S[−→a1], S′[−→•], σ1)

N ⊢δ ⟨S[−→a 1], σ1⟩ ≈A N ⊢δ ⟨S[−→a 1], σ2⟩ ⇒ N ⊢δ ⟨S′[−→a 2], σ1⟩ ≈A N ⊢δ ⟨S′[−→a 2], σ2⟩

This definition ensures that in a robust program w.r.t HRAA attacker, as long as the
endorsed values are equal, the result of execution for all possible orders and frequencies of
gateway calls is indistinguishable.

We can augment the security type system of HRAA attacker with rule of Figure A.6 to
enforce robustness. The following theorem proves that any well-typed program under the
extended type system w.r.t HRAA attacker satisfies the robustness property of Definition
A.12.

� Theorem A.4
If pc,Γ,Π ⊢δ S[−→•] : Γ′,Π′ with regard to Σ and GD, then S[−→•] satisfies robust-
ness under HRAA with endorsement.

We refer the readers to Appendix A.1 for the proofs of Theorems A.3 and A.4.

Nonmalleable Attacks

Transparent endorsement [134] was introduced as a dual to robust declassification to
prevent attacks arising from trusted agents endorsing information that their provider could
not have seen. It is a common practice in TEE to have encrypted data passed to the enclave
from outside, if these encrypted data are labeled secret, then the type system will reject
the program and prevent the malleable attacks. Otherwise, if these encrypted ciphertexts
are labeled public even though they contain secret plaintexts, then it is possible to receive
an input which its provider cannot read, thus opening up the system to malleable attacks.
While from a technical perspective transparent endorsement can be accommodated into
our framework along the lines of Cecchetti et al. [134], we postpone it to future work.

A.6 Implementation

In this section, we describe the implementation of JE for Intel SGX and discuss the gap
with our formal model.

The JE runtime operates with two separate execution environments, namely the non-
enclave environment and enclave environment, which correspond to two separate Java
Virtual Machines. The communication between the two environments is achieved using
Java RMI [203].

86

The JE compilation process involves multiple steps. A JE program is first partitioned,
then translated to Jif to check security, and finally transformed to use RMI communication.
A detailed description of the code transformations implemented by the JE compiler with a
complete step-by-step example is in the technical report [185].

In addition to the abstractions supported in the formal model, i.e. static classes and static
fields, the implementation supports additional Java features, including objects and generics.
We convert JE programs that include objects and generics into equivalent Jif programs.
Because the implementation leverages Jif for label propagation, JE security analysis is
flow-insensitive, in contrast to the security type system, where the analysis is flow-sensitive
on program variables. In the implementation, we do not assign any default Jif label to
the local variables, hence, local variables get the security label of the expression they are
initialized with. We remark that this decision is sound with respect to the language subset
considered in our formal model. In fact, if a (declassification-free) program is deemed secure
by Jif’s flow-insensitive analysis, then it is also secure with respect to our flow-sensitive
analysis. However, soundness may come at the expense of additional manual annotations
due to the flow insensitivity of Jif’s analysis.

Another difference with our formal model is the enforcement of delayed declassification.
We not do implement the propagation of the declassify flag (d) used to track delayed
declassification in section A.4. Instead, we require that every declassify operator is used
only as a parameter of a return statement. Since any declassifications are performed
within the scope of the return statement, it simply disallows the programmer to write
code subject to delayed declassification leaks. We implement this check during the static
analysis.

We use the SGX-LKL [204] framework to run the JAR corresponding to the enclave
partition. SGX-LKL uses Linux Kernel Library [77] to handle system calls from the
application within the enclave. In SGX-LKL, the application JAR, a JVM, and the
necessary LKL binaries are compiled to a single image file. SGX-LKL loads the image and
runs it inside the enclave.

A.7 Evaluation

In this section, we present the evaluation of JE . We implemented case studies to demon-
strate how the design of JE can address the security requirements of distributed applications.
The goal of the case studies is to exhibit the features of the language. Additional case
studies are provided in the technical report [185].

Password Checker

Program A.7 shows a password checker. The class PasswordChecker is annotated with the
@Enclave annotation. As a result, during run time, the PasswordChecker class is placed
inside the enclave. The field password is annotated with the @Secret annotation. The
method checkPassword returns a boolean which is the result of the comparison of hashes
of the field password and parameter guess. The code snippet without any annotations

87

Program A.7: Password checker

1 @Enclave
2 class PasswordChecker {
3 @Secret static String password;
4
5 @Gateway
6 public static boolean checkPassword(String guess) {
7 return (getHash(guess) == declassify(getHash(password)));
8 }
9 }

is a valid Java code. The case study demonstrates the HAA attacker scenario. The
parameter guess 6 to the gateway method checkPassword is controlled by the attacker
and is considered untrusted.

Apache Spark

Program A.8

1 class MainClass {
2
3 public static void main(String[] args) {
4 JavaSparkContext sc = new JavaSparkContext(new SparkConf().setAppName("Foo"));
5 JavaRDD<EncRec> recList = sc.parallelize(getEncryptedRecords());
6 List<StatRecord> recList = recList.map(x -> StatUtil.process(x));
7 }
8 }

Program A.9

9 @Enclave
10 class StatUtil {
11 @Secret static String key;
12
13 @Gateway
14 public static StatRecord process(EncRec rec) {
15 EncRec recE = endorse(rec);
16 Record rec = decrypt(key, recE);
17 // process the decrypted record
18 return declassify(rec);
19 }
20 }

Spark [79] is a popular processing framework for big data. It is widely used for machine
learning and streaming jobs within clusters. We show a JE implementation of secure
medical data processing using the enclave and Spark. The goal is to process encrypted
medical records inside the enclave to extract statistics about the records. Program A.8

88

represents the code running outside the enclave. We create a Spark context object sc
(Line 4) and store the encrypted records to be processed in a JavaRDD (resilient distributed
dataset) object recList (Line 5) which is a distributed data structure to store the data
to be processed. EncRec is an encrypted medical record. The StatUtil class (Line 10)
contains a gateway method process (Line 14) that accepts an encrypted record, it decrypts
it with the secret key key, and returns the corresponding statistical information StatRecord.
Hence, a medical record is only decrypted inside the enclave, protecting the medical data.
The code without any annotations is a valid Java program, and the programmer only needs
to add the annotations without any extra modifications to the original program.

Updatable Password Checker

Program A.10: Updatable password checker

1 @Enclave
2 class UpdatablePasswordChecker {
3 @Secret static String password;
4
5 @Gateway
6 public static void updatePassword(String currPass, String newPass) {
7 if (checkPassword(currPass) == true) {
8 password = newPass;
9 }

10 }
11 @Gateway
12 public static boolean checkPassword(String guess) {
13 boolean result = false;
14 String guessE = endorse(guess);
15 if (endorse(password).equals(guessE)) { // endorsing password
16 result = true; // result of type <S,T>
17 }
18 return declassify(result); // declassifying result
19 }
20 }

We consider a password checker with a provision for updating the password via a gateway
method. Program A.10 shows the class UpdatablePasswordChecker annotated with the
@Enclave annotation. It contains a secret field password and two gateway methods, namely,
checkPassword and updatePassword. The checkPassword method (Line 12) compares the
argument guess with the field password and returns the result of the comparison as a
boolean. Method updatePassword (Line 6) assigns the value of the argument newPass to
the secret field password (Line 8). This case study illustrates the HRAA attack scenario.
The attacker can reorder the calling sequence of gateway methods. Since the gateway
method updatePassword assigns an untrusted value to the secret field password (Line 8),
the secret field can no longer be trusted. Therefore, we infer the security level of the
password secret field as ⟨S,U⟩. The field password needs to be endorsed (Line 15) to
allow the declassification (Line 18). JE detects secret fields that can be modified by an

89

attacker and the programmer needs to explicitly trust such fields to allow any dependent
declassification.

A.8 Related Work

This section compares JE with closely related work on securing distributed applications
with TEEs, focusing on information flow control, frameworks for TEEs, and secure program
partitioning.

Information flow control and enclaves

Recent works leverage IFC and enclaves to build applications with strong security guarantees.
These works target specific challenges in the domain space, including security foundations
of enclave applications, secure code partitioning for enclaves and language support for
programming in TEEs. JE pushes the boundary in several directions providing: (a)
language support for Java applications in Intel SGX; (b) a security type system enabling
verification of secure partitioning against realistic attacker models; (c) formalization and
soundness proofs with respect to semantic characterization of security; (d) a prototype
implementation supported by case studies.

Sinha et al. [119] present Moat, a system for statically verifying confidentiality properties
of Intel SGX programs in the presence of passive and active attackers. They combine a
flow sensitive type system with automated theorem proving to check confidentiality policies
with declassification. Their active attacker is similar to our HAA attacker, assuming
arbitrary modification of non-SGX code. By contrast, we focus on verifying robustness of
an application against active attacker which has the advantage of using a more lightweight
analysis whenever a program is already proved secure against passive attackers. Moreover,
we consider more powerful attackers, and target languages with managed runtimes, thus
shielding developers from SGX-specific details. Follow-up work by Sinha et al. [130]
enforces Information Release Confinement, an access control policy which allows SGX
code to perform arbitrary computations ensuring that it can only generate output to
the non-SGX memory through encrypted channels. While this approach cannot enforce
expressive information flow policies, it implements Control Flow Integrity to ensure that
an active attacker does not compromise the control flow of an executions. Our approach
would require similar techniques to enforce security against the HRAA attacker.

Inspired by Moat, Gollamudi and Chong [126] propose a security type system to enforce
flexible information flow policies for an SGX-enabled imperative language. They abstract
away the details of enclave management and develop a translation tool to automatically infer
the parts of the program to be executed inside the enclaves. They consider active attackers
and formalize security using knowledge-based conditions. By contrast, our approach
enforces robustness for a mainstream language like Java. Recent work by Gollamudi et al.
[162] uses enclaves to enforce more expressive confidentiality and integrity against passive
attackers in a distributed setting. Like us, both works come with soundness proofs of
security, with the key difference that our work targets robustness instead of variants of
noninterference. Liu et al. [139, 164] study automated program partitioning with SGX for

90

passive attackers. We argue that passive attackers are too weak in the context of SGX,
hence our work provides the formal grounds for extending and proving their techniques in
a realistic setting.

A large array of works study IFC in distributed settings [24, 27, 31, 52, 53, 138]. These
works address the problem of secure program partitioning across nodes in a distributed
system under the assumption that low integrity nodes may be controlled by an active
attacker. Our work draws inspiration from these approaches and extends them to capture
attacker models arising in TEEs.

Existing works target the foundations of IFC in presence of active attackers [34, 63, 67,
71, 80, 134] and enforce robustness via security type systems.

Programming frameworks for TEEs

To reduce the trusted computing base, in contrast to running unmodified applications
inside SGX, some approaches focus on partitioning the application into components that
execute within the enclave and the rest, which executes in the untrusted environment.
Glamdring [137] propose the first source-level partitioning framework for securing C appli-
cations with Intel SGX. Developers annotate sensitive data and Glamdring automatically
partitions the application into untrusted and enclave parts. Panoply [142] generates ap-
plication binaries from the annotated source code where annotations specify the parts
of the application to be run inside separate enclaves. DynSGX [143] provides tools to
dynamically load, unload and execute compiled functions inside SGX enclaves efficiently.
While these works leverage enclaves to enforce strong isolation properties, they do not
enforce application-level policies and lack formal security guarantees.

Several works aim to ease the programming of applications that (partially) execute within
an enclave. Coppolino et al. [160] present a comparative analysis of the existing approaches
for securing Java applications with Intel SGX. RUST-SGX [167] provides memory-safe SGX
support for Rust through a memory management scheme to control the interface between
Rust and Intel’s C/C++ APIs. Civet [178] is a programming framework for Java using
an XML file to specify the classes that are executed inside the enclave. Civet leverages
dynamic information flow control to track insecure flows within the enclave. Uranus [170]
supports executing Java functions inside SGX enclaves. It provides two method-level
annotations JECall and JOCall to indicate methods to be executed inside and outside the
enclave respectively. Secure Routines [161] is a programming framework for SGX in the Go
language. Programmers can execute Go functions (goroutine) inside an enclave, and use
low-overhead channels to communicate with the untrusted environments. Like us, these
works aim at developing programming models with enclaves. However they lack provable
security guarantees and require security analysis of the partitioned application from scratch.
Other works propose processor model calculi to capture necessary conditions for safe
remote execution of enclave programs. Subramanyan et al. [146] introduce an abstract
processor model to verify the security guarantees of Intel SGX under specific adversary
capabilities. Sinha [144] studies confidentiality risks that can be exploited by application
and infrastructure attacks in SGX applications. Autarky [174] is a controlled-channel
attack resistant framework based on a modified SGX ISA.

91

Running unmodified applications inside SGX

Haven [113] was the first system built to run unmodified Windows legacy applications
inside Intel SGX. SCONE [121] is a Docker extension that uses SGX to protect container
processes. SGX-LKL [166], SGXKernel [147], Graphene-SGX [148], and Occlum [177] are
library OS based frameworks designed to run unmodified Linux applications inside the
SGX enclave.

Multitier programming and secure program partitioning

The JE programming model is inspired by the multitier programming paradigm [44, 48,
156] – for a comprehensive overview of multitier programming, we refer to the survey by
Weisenburger et al. [179]. In multitier programming, the code for different tiers is written
as a single compilation unit and the compiler automatically splits it into the components
associated to each individual tier. Different works extend the multitier programming model
with information flow policies to build secure web applications via security type systems [66,
110, 122, 165] and symbolic execution [115]. In contrast to JE , none of these approaches
enforce robustness properties.

A.9 Conclusion

In this paper we present JE , a language for confidential computing which supports
enclave-enabled applications. First, JE seamlessly integrates with a high-level, managed
language, and enables programmers to develop secure enclave-enabled applications by
adding annotations to Java programs. Second, JE comes with a security model that
accounts for realistic attackers, that, in the case of enclave programming, can tamper with
the code and the data of the non-enclave environment. We define the notion of robustness
of enclave-enabled programs and prove that it is correctly enforced by the JE type system.

We evaluate our approach on several use cases from the literature, including a battleship
game, a secure event processing system, and a popular processing framework for big
data, showing that it can correctly handle complex cases of partitioning, information flow,
declassification and trust.

We envision different avenues for future work including a generalization of our framework
to multiple enclaves and nonmalleable information flow. On the practical side, we plan to
extend our automated partitioning and compilation algorithms to handle Java programs
beyond the core JE fragment.

Acknowledgments

Thanks are due to Owen Arden and anonymous reviewers for their helpful feedback on this
paper. This work is partially supported by the Deutsche Forschungsgemeinschaft (DFG) –
SFB 1119 – 236615297, the BRF Project 1025524 from the University of St.Gallen, the
Swedish Foundation for Strategic Research (SSF), the Swedish Research Council (VR),
and Digital Futures.

92

Appendices

Appendix A Proofs

Attacker Code

In this section, we present proofs for Lemma A.1 and Lemma A.2.

«

Î

Lemma A.1
The attack code definition presented in A.1, captures the most powerful attack
strategies available to an HAA attacker, who controls the non-enclave environ-
ment.

Proof. Because HAA attacker is in control of the non-enclave environment, he can poten-
tially insert his code anywhere in the program. But the effects of his code is limited to what
is presented in A.1. Because there are no secret values in non-enclave environment, all of
the active attacker’s commands executed outside of enclave can eventually have one of the
following effects: modifying the parameters passed to a gateway during gateway method
calls, or making the program diverge. We don’t consider the case with divergence, because
in this case the active attacker makes even less observations than the passive attacker.

We justify this argument by structural induction on the possible commands available to
HAA attacker:

skip This case is straightforward because it has no effect on the return value of gateways.
x := eG If x is not one of the parameters passed to a gateway (i.e. p), then this assignment

has no effect on the values inside of enclave. The case that x is one of gateway
parameters is captured by attack q := e. We also have to consider the cases when
eG is a method call, either to a gateway or a non-enclave method. We limit HAA
attacker from calling additional gateway methods, and this ability will be captured
by HRAA attacker. On the other hand if eG is a non-enclave method call, we can
simply replace x := eG with x := e′, where e′ is the value returned from the method.

C.f := eG Similar to the assignment case.
if e then S1 else S2 Because this command is outside of enclave, e is either public value

from σ, or a value set by the attacker. In both cases, the attacker knows its value,
thus instead of writing an if statement, he can directly write the command S1 or S2.
Moreover, the attacker can only have an effect on the values inside enclave if S1 or
S2 update the values of gateway parameters. Thus, this case can be reduced to a
command of form q := e which captures the intended effect of if e then S1 else S2.

93

while e do S This case is similar to the conditional, except that by using a non-terminating
loop, the attacker can make the program diverge and limit his own observations. We
ignore this kind of active attacker because it makes even less observations than the
passive attacker.

S1;S2 we have three cases:

• Neither S1 nor S2 modifies the gateway parameter, then this command will
have no effect on the enclave, hence the attack code can be ignored.

• Only one of S1 or S2 modify the parameters of a gateway method. Without
loss of generality, assume S2 is the command that makes this modification.
Using the above cases, we can combine S1;S2 to a command S of the form
q := e that has the same effect as S1;S2.

• Both of S1 and S2 modify gateway parameters. In this case S1;S2 can be
reduced to q1 := e; q2 := e′, and this structure is presentable by the syntax of
a in A.1.

«

Î

Lemma A.2
The attacker code defined in A.1, captures the most powerful attack strategies
available to the HRAA attacker.

Proof. The HRAA attacker has complete control over the non-enclave environment includ-
ing code and memory, and he can potentially modify the code outside of the enclave in
anyway he wants. Since sensitive data is stored inside the enclave and is only accessible
via gateways, the HRAA attacker can only leverage his power by calling the gateways in
any order and with any frequency, and the effects of his code is limited to the attack code
presented in A.1.

The HRAA attacker can execute any JE program that uses the gateways, but this will
not make them more powerful than the attacks presented in A.1. The HRAA attacker’s
commands executed outside of enclave can eventually have one of the following effects:
modifying the parameters passed to a gateway during gateway method calls, or making
the program diverge.

Because the proof of this lemma is very similar to the proof of Lemma A.1, we only
investigate some of the most interesting commands available to HRAA attacker, as the
rest of them can be reconstructed straightforwardly from the proof of Lemma A.1.

x := eG If x is not one of the parameters passed to a gateway (i.e. p), then this assignment
has no effect on the values inside of enclave. The case that x is one of gateway
parameters is captured by attack q := e. We also have to consider the cases when eG

is a method call, either to a gateway or a non-enclave method. HRAA attacker can
call additional gateway methods, and the case that eG is a gateway method call can
be captured by Definition A.4 and the ability of HRAA attacker to call any gateway
methods. On the other hand if eG is a non-enclave method call and it does not call

94

any gateways, we can argue that since everything outside of enclave is public, the
attacker can simply replace x := eG with x := e′, where e′ is the value returned from
the method. If eG is a non-enclave method call and it does call some other gateways,
the attacker can capture the effect of running x := eG by simply calling the gateway
which was inside eG.

if e then S1 else S2 Since this command is outside of the enclave, e is either a public
value, or a value set by the attacker. In both cases, the attacker knows its value,
therefore instead of writing the if statement, he can directly write the command S1
or S2, and since S1 or S2 can have one or a sequence of gateway calls, The behavior
of the if statement can be captured by Definition A.4 as one or a sequence of gateway
calls.

while e do S In this case, similar to the if statement, the attacker knows the value of e.
We should consider 4 cases:

• The loop is finite and S has no gateway calls: The attacker can only have an
effect on the values inside enclave if S updates the values of gateway parameters.
Thus, this case can be reduced to a command of form q := e which captures
the intended effect of while e do S.

• The loop is finite and S has gateway calls: Which means that it can be
represented by Definition A.4 as a sequence of gateway calls.

• The loop is infinite: It does not matter whether S has gateway calls or not.
Since the execution never terminates and Definition A.2 is only defined on
terminating programs, we can ignore this case.

Type System Soundness

In this section, we present the proof of Theorem A.1. We have to show that if a program is
well-typed, then changing the attack vector −→a will not change the attacker’s observations.
We use events and traces to keep track of these observations. In our setting, only gateway
method expressions (e.m(p)) emit an event, and this event is the return value of the
gateway method. So, before proving Theorem A.1, we present two lemmas about gateway
method calls.

Based on the syntax of our language, a gateway method can only be executed in an
Assignment or a Store command. First we present a lemma for the assignment:

« Lemma A.3 (Assignment gateway method calls)

Suppose that S[−→•] is [•];x := C.m(p) . If pc,Γ,Π ⊢δ S[−→•] : Γ′,Π′, Class
C is inside enclave, and m is a gateway method, then for all possible attacks
−→a and

−→
a′ , if N ⊢δ ⟨S[−→a], σ1⟩ ≈A N ⊢δ ⟨S[−→a], σ2⟩ then N ⊢δ ⟨S[

−→
a′], σ1⟩ ≈A

N ⊢δ ⟨S[
−→
a′], σ2⟩.

95

Proof. In our system, the body of a method is type-checked in isolation using the rule
T-Method. Because we are in a Non-Enclave–Enclave context, method m is definitely a
gateway, the body of the method no longer has any holes, and all of the parameters of the
method (p) are now variables with the label (⟨P,U⟩, F).

The event that a method call emits is determined by its return value. In other words, the
last command of a method’s body is return(e) and the value of the expression e is the
event. By induction on the structure of S:

skip This case is trivial, as it does not affect the emitted event.
x := eG By rule T-Assign, the label of variable x is updated according to the label of eG

and current context pc. Thus, if eG or the context are affected by attacker’s inputs,
the resulting label will be untrusted U. Note that eG can be a method expression,
this case will be an enclave–enclave method call, so it will not produce any events,
and even though there are no explicit holes in this command, the attacker’s inputs
can still be passed as one of the method’s parameters, so it is possible to have a
return value that is untrusted. Additionally, if eG is affected by some declassified
value, it is going to have a True flag, and by rule T-Assign, this assignment can
only happen in trusted contexts.

C.f := eG This case is very similar to the Assign case, but more limited because of the
flow insensitivity of T-Store. C is a class inside of enclave, so f ’s security label is
either ⟨P,T⟩ or ⟨S,T⟩. In any case, its value can only be updated in trusted context
and by trusted values. So, changing the attack vector cannot have any effect on a
trusted field’s value.

x := declassify(e) Using T-Declassify rule, we ensure that expression e should be
trusted and it can only be declassified in a trusted context. Thus, the resulting
variable x always has ⟨P,T⟩ label. However, because e is secret, its value can be
different in σ1 and σ2. To keep track of the propagation of this declassified value,
and control its delayed release, in rule T-Declassify we make sure x’s flag is True.

return(e) For gateway calls, the rule T-Assign-Gateway-Call uses the precondition
ℓ ⊑ ⟨P,U⟩ to ensure the return value’s label is public, but based on whether it was
affected by the attacker or not, it can be trusted or untrusted. Since the assumption
pc,Γ,Π ⊢δ S[−→•] : Γ implies that S[−→•] is well-typed then e’s label is indeed ⊑ ⟨P,U⟩.
Having this assumption, we continue by induction on the structure of e:

• v: This case is trivial. The return value is independent of the attacks. In other
words

Trace(N ⊢δ ⟨S[−→a], σ1⟩) = Trace(N ⊢δ ⟨S[−→a], σ2⟩) =

Trace(N ⊢δ ⟨S[
−→
a′], σ1⟩) = Trace(N ⊢δ ⟨S[

−→
a′], σ2⟩)

= v

• x: Following the semantics of ASSIGN (x := eG), the value of x was determined
by some expression eG. We have to consider four cases:

– eG security label is ⟨P,T⟩ and its flag is False: Because eG value was not
affected by any declassified value, and because the security label is public
and trusted, following the initial indistinguishability of states σ1 =A σ2,

96

and the fact that trusted values are not effected by attacker inputs, we can
easily conclude eG evaluates to the same value in ⟨S[−→a], σ1⟩, ⟨S[

−→
a′], σ1⟩,

⟨S[−→a], σ2⟩, and ⟨S[
−→
a′], σ2⟩.

– eG security label is ⟨P,T⟩ and its flag is True: eG is affected by declassified
values, and because its security label is trusted, we know that it was not
affected by the attacker’s input. Obviously, the declassified values might be
different in σ1 and σ2, however, by the initial indistinguishability of states
σ1 =A σ2 and the assumption Trace(N ⊢δ ⟨S[−→a], σ1⟩) = Trace(N ⊢δ

⟨S[−→a], σ2⟩), we can conclude that the declassified values were equal in σ1
and σ2. Thus it is straightforward to deduce that eG will evaluate to equal
values in ⟨S[−→a], σ1⟩, ⟨S[

−→
a′], σ1⟩, ⟨S[−→a], σ2⟩, and ⟨S[

−→
a′], σ2⟩.

– eG security label is ⟨P,U⟩ and its flag is False: eG value was not affected
by any declassified value, it was just affected by the public values and
the attacker’s inputs. So following the initial indistinguishability of states
σ1 =A σ2 and the assumption Trace(N ⊢δ ⟨S[−→a], σ1⟩) = Trace(N ⊢δ

⟨S[−→a], σ2⟩), we can show that Trace(N ⊢δ ⟨S[
−→
a′], σ1⟩) = Trace(N ⊢δ

⟨S[
−→
a′], σ2⟩) will also hold. This is because the public values are unchanged,

and the only difference is in the attacker’s input, which is the same in both
⟨S[
−→
a′], σ1⟩ and ⟨S[

−→
a′], σ2⟩. Thus, even thought the return value is possibly

different, it is still going to be the same in ⟨S[
−→
a′], σ1⟩ and ⟨S[

−→
a′], σ2⟩, hence

Trace(N ⊢δ ⟨S[
−→
a′], σ1⟩) = Trace(N ⊢δ ⟨S[

−→
a′], σ2⟩).

– eG security label is ⟨P,U⟩ and its flag is True: This means that eG was
effected by both attacker input and declassified values. However, by rules
T-Assign and T-Store we know that after getting affected by declassified
values, it was only affected by untrusted values directly (not through
a condition or loop). Thus by assumption Trace(N ⊢δ ⟨S[−→a], σ1⟩) =
Trace(N ⊢δ ⟨S[−→a], σ2⟩) we can learn that the declassified value is the same
in σ1 and σ2. The rest is similar to the previous case, when the attacker’s
input changes, ⟨S[

−→
a′], σ1⟩ and ⟨S[

−→
a′], σ2⟩ might produce possibly different

yet still equal events. Thus Trace(N ⊢δ ⟨S[
−→
a′], σ1⟩) = Trace(N ⊢δ

⟨S[
−→
a′], σ2⟩) will still hold.

• C.f : Following the semantics of Store (C.f := eG), the value of C.f was
determined by some expression eG. This case is easier than the assignment
because C is a class inside of enclave, so the security label of its field f can
be either ⟨P,T⟩ or ⟨S,T⟩. By rule T-Assign-Gateway-Call we already know
that the return value has a label ⊑ ⟨P,U⟩, thus C.f ’s label is definitely ⟨P,T⟩.
This label means that the value stored in C.f is not affected by the attacker’s
input, so following the initial indistinguishability of states σ1 =A σ2, and
the assumption Trace(N ⊢δ ⟨S[−→a], σ1⟩) = Trace(N ⊢δ ⟨S[−→a], σ2⟩), we can
conclude that Trace(N ⊢δ ⟨S[

−→
a′], σ1⟩) = Trace(N ⊢δ ⟨S[

−→
a′], σ2⟩) will also

hold.
• e1 ⊕ e2: By induction on the structure of e1 and e2, we see that they can be

one of the above cases. Thus it is straightforward to show that Trace(N ⊢δ

⟨S[
−→
a′], σ1⟩) = Trace(N ⊢δ ⟨S[

−→
a′], σ2⟩) will hold.

97

if e then S1 else S2 We have four cases:

• e is public and trusted: Because e is public and trusted it evaluates to equal
values in ⟨S[−→a], σ1⟩ and ⟨S[

−→
a′], σ1⟩ and (in case of declassification) to pos-

sibly different yet still equal values in ⟨S[−→a], σ2⟩ and ⟨S[
−→
a′], σ2⟩. Therefore,

by assumption Trace(N ⊢δ ⟨S[−→a], σ1⟩) = Trace(N ⊢δ ⟨S[−→a], σ2⟩), its easy
to conclude that the if statement takes the same branch and Trace(N ⊢δ

⟨S[
−→
a′], σ1⟩) = Trace(N ⊢δ ⟨S[

−→
a′], σ2⟩) also holds.

• e is public and untrusted: In this case neither S1 nor S2 can have any de-
classification. A public value evaluates to the same values in σ1 and σ2,
however because e is also untrusted, it can also been affected by attacker’s
input. However because attacker’s input only changes when the attack vector
changes, we can easily conclude that by having the initial indistinguisha-
bility of states σ1 =A σ2, e will evaluate to equal values in ⟨S[−→a], σ1⟩ and
⟨S[−→a], σ2⟩ and (based on the attacker’s input) to possibly different yet still
equal values in ⟨S[

−→
a′], σ1⟩ and ⟨S[

−→
a′], σ2⟩. So it is possible for the if condition

to take different branches when the attacker vector changes. Now because
e is untrusted, pc’s security label also becomes untrusted, rules T-Assign
and T-Store, prevent the assignment or store of declassified values in the
body of the if statement. So the values that depend on declassified values
cannot be affected by this condition. (ultimately this is what we wanted to
achieve by using flags, to disallow attacker input to control the branch that can
indirectly affect the final declassification value). From here on it is straight-
forward to show that by the initial indistinguishability of states σ1 =A σ2
and the assumption Trace(N ⊢δ ⟨S[−→a], σ1⟩) = Trace(N ⊢δ ⟨S[−→a], σ2⟩),
Trace(N ⊢δ ⟨S[

−→
a′], σ1⟩) = Trace(N ⊢δ ⟨S[

−→
a′], σ2⟩) will also hold.

• e is secret and trusted: By rule T-Declassify neither S1 nor S2 can have
any declassification. Any assignment or store inside S1 and S2 is going to be
secret, and have to be declassified in order to be able to affect the return value.
We can use this intuition, the initial indistinguishability of states σ1 =A σ2,
and the assumption Trace(N ⊢δ ⟨S[−→a], σ1⟩) = Trace(N ⊢δ ⟨S[−→a], σ2⟩) to
conclude that Trace(N ⊢δ ⟨S[

−→
a′], σ1⟩) = Trace(N ⊢δ ⟨S[

−→
a′], σ2⟩) holds.

• e is secret and untrusted: This case is similar to the last one, but by rule
T-Store any store command is not possible in S1 and S2 and because the
result of any assignment inside S1 and S2 is going to be secret and untrusted,
it cannot be declassified later on, so it can never effect the return value.

while e do S This case is similar to the case for conditionals. The only difference is
that in this case, untrusted attacker inputs can cause the program to diverge,
and by definition of trace indistinguishability, we consider non-terminating traces
indistinguishable.

S1;S2 We have two cases:

• S1; return(e): S1 can be any of the above commands except return(e). Addi-
tionally, we can use an argument similar to the one we used for return(e) case
to show that the return value will be the same for programs S[−→a] and S[

−→
a′].

98

• S1;S2: This case is fairly straightforward, because neither S1 nor S2 have a
return command, they do not affect the trace.

We also need another Lemma for calling a gateway method through the Store command:

« Lemma A.4 (Store gateway method calls)

Suppose that S[−→•] is [•];C′.f := C.m(p) . If pc,Γ,Π ⊢δ S[−→•] : Γ′,Π′ , Class
C′ is outside the enclave, C is inside enclave, and m is a gateway method, then
for all possible attacks −→a and

−→
a′ , if N ⊢δ ⟨S[−→a], σ1⟩ ≈A N ⊢δ ⟨S[−→a], σ2⟩ then

N ⊢δ ⟨S[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S[

−→
a′], σ2⟩.

Proof. Similar to Lemma A.3.

Now, using Lemma A.3 and Lemma A.4, we can prove Theorem A.1.

�

Î

Theorem A.1
If pc,Γ,Π ⊢δ S[−→•] : Γ′,Π′ then S[−→•] satisfies robustness under HAA.

Proof of Theorem A.1. Following the approach of [34], suppose that for the well-typed
program S[−→a], and states σ1 =A σ2, we have N ⊢δ ⟨S[−→a], σ1⟩ ≈A N ⊢δ ⟨S[−→a], σ2⟩. We
need to show that for all possible attacks a′, the execution indistinguishability holds.
Formally:

∀
−→
a′ . N ⊢δ ⟨S[

−→
a′], σ1⟩ ≈A N ⊢δ ⟨S[

−→
a′], σ2⟩

Execution is in non-enclave environment, and the security label of all variables, fields
and classes outside of enclave is ⟨P,U⟩. It is worth noting that the values returned from
gateways can be ⟨P,T⟩, but because the security label of pc outside of enclave is ⟨P,U⟩,
the final label of the variable holding this returned value will be ⟨P,T⟩ ⊔ ⟨P,U⟩ = ⟨P,U⟩,
furthermore, since all of the fields outside of enclave are ⟨P,U⟩, by sub-typing rule we can
store a ⟨P,T⟩ inside it, but it will be treated as a ⟨P,U⟩ after that.

We present the proof by structural induction on S[−→•]. It is worth noting that we will not
consider x := declassiy(e) command, because the semantics of Declassify ensures that
this command is only executed inside of enclave.

If S[−→•] is Skip then we are done. Because it does not have a hole. So we continue by
structural induction for the other cases of S[−→a]:

[−→a];x := eG: If eG is not a method expression, then it will not have any effect on the
trace, and we are done. If eG is a method expression e.m(p), we have to consider
two cases: If m is a method outside of enclave it does not produce any events, so

99

the trace remains unchanged. If m is a gateway method, by Lemma A.3, we already
know that its returned value (event) will be indistinguishable for all attacks, thus
∀
−→
a′ . N ⊢δ ⟨S[

−→
a′], σ1⟩ ≈A N ⊢δ ⟨S[

−→
a′], σ2⟩.

[−→a];C′.f := eG: Similar to the previous case. If eG is not a method expression or m is
outside of enclave, we are done. Otherwise, if eG is a method expression e.m(p) and
m is a gateway method, by Lemma A.4, we know that the return values (events) are
indistinguishable for all attacks, thus ∀

−→
a′ . N ⊢δ ⟨S[

−→
a′], σ1⟩ ≈A N ⊢δ ⟨S[

−→
a′], σ2⟩ will

hold.
if e then S1[−→a1] else S2[−→a2]: If S1[−→a1] and S2[−→a2] does not have gateway calls, then exe-

cuting this command will have no effect on the trace. So we only consider cases in
which at least one of S1[−→a1] or S2[−→a2] has a gateway method call.
By the fact that the execution is outside of enclave we know that e is public. By using
the initial indistinguishability of states σ1 =A σ2, and the results of Lemmas A.3
and A.4, we can infer that e will evaluate to the same value v in both configurations
⟨e, σ1⟩ ⇓ ⟨v, σ1⟩ and ⟨e, σ2⟩ ⇓ ⟨v, σ2⟩. Therefore, the conditional takes the same
branch in both configurations.
Without loss of generality, assume that v is non-zero, then configurations ⟨S[−→a], σ1⟩
and ⟨S[−→a], σ2⟩ will be reduced to ⟨S1[−→a1], σ1⟩ and ⟨S1[−→a1], σ2⟩, respectively. Similarly,
⟨S[
−→
a′], σ1⟩ will reduce to ⟨S1[

−→
a′

1], σ1⟩ and ⟨S[
−→
a′], σ2⟩ will reduce to ⟨S1[

−→
a′

1], σ2⟩. By
assumption N ⊢δ ⟨S[−→a], σ1⟩ ≈A N ⊢δ ⟨S[−→a], σ2⟩ we have N ⊢δ ⟨S1[−→a1], σ1⟩ ≈A

N ⊢δ ⟨S1[−→a1], σ2⟩. So, by induction hypothesis we can obtain N ⊢δ ⟨S1[
−→
a′

1], σ1⟩ ≈A

N ⊢δ ⟨S1[
−→
a′

1], σ2⟩. Which in turn implies that N ⊢δ ⟨S[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S[

−→
a′], σ2⟩.

while e do S1[−→a]: We only consider the case in which S1[−→a] has a gateway method call.
By an argument similar to the conditional, we can show e will evaluate to the
same value v in both σ1 and σ2. If v is zero, then both configurations ⟨S1[

−→
a′], σ1⟩

and ⟨S1[
−→
a′], σ2⟩ will terminate without making any changes to the trace. Thus

N ⊢δ ⟨S1[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S2[

−→
a′], σ2⟩ will hold.

If v is non-zero, then by N ⊢δ ⟨while e do S1[−→a], σ1⟩ ≈A N ⊢δ ⟨while e do S1[−→a], σ2⟩,
it is necessary that N ⊢δ ⟨S1[−→a], σ1⟩ ≈A N ⊢δ ⟨S1[−→a], σ2⟩ holds. Then by induction
hypothesis we have N ⊢δ ⟨S1[

−→
a′], σ1⟩ ≈A N ⊢δ ⟨S1[

−→
a′], σ2⟩. If either ⟨S1[

−→
a′], σ1⟩

or ⟨S1[
−→
a′], σ2⟩ diverges, then its corresponding loop ⟨while e do S1[

−→
a′], σ1⟩ or

⟨while e do S1[
−→
a′], σ2⟩ also diverges. Then by definition of execution indistin-

guishability, N ⊢δ ⟨S1[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S1[

−→
a′], σ2⟩ holds. On the other hand, if

both ⟨S1[
−→
a′], σ1⟩ and ⟨S1[

−→
a′], σ2⟩ terminate, it is straightforward to show that the

gateway calls inside of S1[
−→
a′] are issued the same number of times under σ1 and σ2.

By Lemmas A.3 and A.4, we already know that events resulted from these gateway
calls are indistinguishable, thus the traces of N ⊢δ ⟨S1[

−→
a′], σ1⟩ and N ⊢δ ⟨S1[

−→
a′], σ2⟩

will be indistinguishable, meaning that N ⊢δ ⟨S1[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S1[

−→
a′], σ2⟩ holds.

S1[−→a1];S2[−→a2]: We only consider the cases in which S1[−→a1] and S2[−→a2] have gateway method
calls. By induction on structure of S1[

−→
a′

1] we can show that it either diverges
or terminates. Similar to the case of while loop, if it diverges in at least one of
the configurations, by definition N ⊢δ ⟨S[

−→
a′

1], σ1⟩ ≈A N ⊢δ ⟨S[
−→
a′

1], σ2⟩ holds. If it

100

terminates in both configurations, we can use the result of Lemmas A.3 and A.4
to infer that these execution will result in indistinguishable traces. Thus N ⊢δ

⟨S1[
−→
a′

1], σ1⟩ N ⊢δ≈A ⟨S1[
−→
a′

1], σ2⟩ will hold.

If S1[
−→
a′

1] terminates in both configurations, we can consider S2[
−→
a′

2]. Imagine
⟨S1[
−→
a′

1], σ1⟩ ⇓t M′
1,H′

1 and ⟨S1[
−→
a′

1], σ2⟩ ⇓t M′
2,H′

2. By the result of Lemmas A.3
and A.4 and initial state indistinguishability, it is fairly straightforward to show that
M′

1 =A M′
2 and H′

1 =A H′
2. Now, a similar argument can be used for S2[

−→
a′

2] to
infer that N ⊢δ ⟨S2[

−→
a′

2], σ1⟩ ≈A N ⊢δ ⟨S1[
−→
a′

2], σ2⟩ also holds.

We can present the proof of Theorem A.2 similar to the proof of Theorem A.1. First, we
change Lemma A.3 to account for the untrusted label of the values in shared state Σ.

« Lemma A.5 (Gateway method calls)

Suppose that S[−→•] is [•];x := C.m(p) . If pc,Γ,Π ⊢δ S[−→•] : Γ′,Π′ w.r.t
HRAA attacker, Class C is inside enclave, and m is a gateway method, then
for all possible attacks −→a and

−→
a′ , if N ⊢δ ⟨S[−→a], σ1⟩ ≈A N ⊢δ ⟨S[−→a], σ2⟩ then

N ⊢δ ⟨S[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S[

−→
a′], σ2⟩.

Notice that the definition of Lemma A.5 is similar to Lemma A.3. This is because we are
not considering any ordering of gateway calls yet, we are just using this lemma to show
that the indistinguishability of gateways’ return values is independent of the attacker input
and the shared state.

Only Fields can act as shared states, since variables are local. In rule T-Store, pcd ∨ d2 =
T ⇒ pcℓ ⊔ ℓ1 = ⟨−,T⟩ ensures that the value of shared state (which is untrusted) cannot
directly or indirectly be affected by declassified values.

To prove this lemma we just have to extend the definition of untrusted value to attacker
inputs and all of the fields in Σ. Gateway return value’s independence from attacker input
can be shown from the change in attack vector a′, and its independence of shared state can
be proved from the public indistinguishability of states σ1 and σ2, and the untrustedness
of shared state. We omit this proof because its structure is similar to the proof presented
for Lemma A.3.

Now, using this lemma we can prove Theorem A.2.

�

Î

Theorem A.2
If pc,Γ,Π ⊢δ S[−→•] : Γ′,Π′ with regard to Σ and GD, then S[−→•] satisfies robust-
ness under HRAA.

Proof of Theorem A.2. Suppose that for the well-typed program with fixed order of execu-
tion S[−→a], and states σ1 =A σ2, we have N ⊢δ ⟨S[−→a], σ1⟩ ≈A N ⊢δ ⟨S[−→a], σ2⟩. We need

101

to show that in all possible ordering and frequency of gateways calls, and for all possible
values for the parameters of gateways, the execution indistinguishability holds. Formally:

∀S′, a′. N ⊢δ ⟨S′[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S′[

−→
a′], σ2⟩

Using Lemma A.5, by induction on the structure of S′:

[
−→
a′];x := C.m(p): If C.m(p) was a gateway method originally called in S[−→•], N ⊢δ

⟨S′[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S′[

−→
a′], σ2⟩ is going to be a direct result of Lemma A.7,

which shows that the indistinguishability of gateways’ return values (and its resulting
event) is independent of the value of parameters passed to them by the attacker and
the shared state.
However, it is also possible that C.m(p) is a gateway method, not originally called
in S[−→•]. Because of the preprocessing step of GD we can conclude that C.m(p) does
not have any new declassifications, by initial indistinguishability of states σ1 and σ2,
and equality of attack vector and shared state on both sides, we can conclude that
N ⊢δ ⟨S′[

−→
a′], σ1⟩ ≈A N ⊢δ ⟨S′[

−→
a′], σ2⟩ holds.

S′
1[
−→
a′

1];S′
2[
−→
a′

2]: We know that both S′
1[
−→
a′

1] and S′
2[
−→
a′

2] have gateway calls. By Rule T-
Declassify we know that untrusted values cannot have any effect on the decision
to declassify. Therefore, we can conclude that changing the order or frequency
of gateway calls cannot lead to any new declassifications. By the assumption
N ⊢δ ⟨S[−→a], σ1⟩ ≈A N ⊢δ ⟨S[−→a], σ2⟩, and the fact that any of the gateway calls in
S′

1[
−→
a′

1] and S′
2[
−→
a′

2] that had a declassification were also in S[−→a] (because GD was a
subset of it), we conclude that declassified secrets had the same value in σ1 and σ2.
We know that the return value of gateway calls can depend on declassified secrets
(which are equal in σ1 and σ2), attacker input (which is the same (

−→
a′) for both

programs), public values (that are equal in both states), and the values in shared
state. Of these values, only shared state can be different between S[−→•] and S′[−→•].
We know that they cannot effect declassifications, we also know by the definition
of shared state that their value might change by the order of execution, resulting
in different traces for S′

1[
−→
a′

1];S′
2[
−→
a′

2] compared to any other order of calling these
gateways. However, since their value is determined by the order of execution, we
are going to get similar traces for each possible order of execution. Thus, we can
conclude that N ⊢δ ⟨S′

1[
−→
a′

1];S′
2[
−→
a′

2], σ1⟩ ≈A N ⊢δ ⟨S′
1[
−→
a′

1];S′
2[
−→
a′

2], σ2⟩ will always hold
no matter the order of gateway method calls in S′

1[
−→
a′

1] and S′
2[
−→
a′

2].

Using these cases it is straightforward to conclude that the indistinguishability of traces
will be preserved ∀S′, a′. N ⊢δ ⟨S′[

−→
a′], σ1⟩ ≈A N ⊢δ ⟨S′[

−→
a′], σ2⟩.

Type Soundness for Endorsement

In this section, we present the proof of Theorem A.3 which follows a similar structure as
the proof of Theorem A.1. We just have to extend Lemma A.3 and Lemma A.4 to account
for relevant attacks. We revisit Lemma A.3:

102

« Lemma A.6 (Assignment gateway method calls)

Suppose that S[−→•] is [•];x := C.m(p) . If pc,Γ,Π ⊢δ S[−→•] : Γ′,Π′, Class C
is inside enclave, and m is a gateway method, then for all possible attacks −→a
and
−→
a′ such that

−→
a′ ∈ Ω(S[−→a], σ1), if N ⊢δ ⟨S[−→a], σ1⟩ ≈A N ⊢δ ⟨S[−→a], σ2⟩ then

N ⊢δ ⟨S[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S[

−→
a′], σ2⟩.

All of the parameters of the method (p) are now variables in the body of method m with
the label (⟨P,U⟩, F). Let’s continue by induction on the structure of S for some of the
interesting cases:

x := eG Following the rule T-Assign, the label of variable x is updated according to
the label of eG and current context pc. Thus, if eG or the context are affected by
attacker’s inputs, the resulting label will be untrusted U. However, now it is possible
that eG or context were endorsed. In this case we can use the fact that a′ is a
relevant attacks to infer that the endorsed values will be the same in S[−→a] and
S[
−→
a′]. Additionally, if eG was affected by some declassified value it is going to have

a True flag, and if it eventually affects the return value of the method, we can use
N ⊢δ ⟨S[−→a], σ1⟩ ≈A N ⊢δ ⟨S[−→a], σ2⟩ to conclude the declassified secrets were equal
in states σ1 and σ2.

x := endorseη(e) Rule T-Endorse ensures that e can only be endorsed in a trusted context.
Using this rule, combined with assumption N ⊢δ ⟨S[−→a], σ1⟩ ≈A N ⊢δ ⟨S[−→a], σ2⟩
and the fact the a′ is an attack relevant to a, allows us to conclude that the result
of endorsement will be equal under a and a′.

x := declassify(e) Rule T-Declassify ensures that expression e should be trusted and it
can only be declassified in a trusted context. But now that we have endorsement, it is
possible that e or the context were affected by attacker’s input. However, because a′

is a relevant attack, we can be sure that endorsed values are the same under a and a′.
Moreover, because e can be secret, its value can be different in σ1 and σ2. To keep
track of the propagation of this declassified value, and control its delayed release, rule
T-Declassify makes x’s flag True. Now if e is eventually returned, we can conclude
the result of declassification was equal under a and a′, so the indistinguishability of
traces N ⊢δ ⟨S[

−→
a′], σ1⟩ ≈A N ⊢δ ⟨S[

−→
a′], σ2⟩ will also hold.

We should also revisit Lemma A.4, but its proof is going to be similar to that of Lemma A.6.
Utilizing these lemmas, the proof of Theorem A.3 will be completely similar to the proof
of Theorem A.1.

The proof of Theorem A.4 is similar to the proof of Theorem A.2, with two main differences:

1. Variables and fields in shared state are untrusted, and therefore can be endorsed.
2. It is possible that S′[−→•] lead to additional endorsement.

Similar to the proof of Theorem A.2, we propose a lemma to check the indistinguishability
of single gateway calls.

103

« Lemma A.7 (Gateway method calls)

Suppose that S[−→•] is [•];x := C.m(p) . If pc,Γ,Π ⊢δ S[−→•] : Γ′,Π′ w.r.t HRAA
attacker, Class C is inside enclave, and m is a gateway method, then for all
possible attacks −→a and

−→
a′ such that

−→
a′ ∈ ΩR(S[−→a], S[−→•], σ1), if N ⊢δ ⟨S[−→a], σ1⟩

≈A N ⊢δ ⟨S[−→a], σ2⟩ then N ⊢δ ⟨S[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S[

−→
a′], σ2⟩.

Notice that in Lemma A.7, in the definition of relevant attacks S′[−→•] is equal to S[−→•].
This is because we are not considering any ordering of gateway calls yet. However, the
values of attacker input and untrusted shared state can be endorsed, and affect the return
value. nevertheless, because a′ is a relevant attack, we know that the endorsed value are
the same in S[−→a] and S[

−→
a′], regardless of whether they originated from the attacker inputs

or the shared state. We omit its proof because it is similar to the proof presented for
Lemma A.6.

Now, using this lemma we can prove Theorem A.4.

�

Î

Theorem A.4
If pc,Γ,Π ⊢δ S[−→•] : Γ′,Π′ with regard to Σ and GD, then S[−→•] satisfies robust-
ness under HRAA with endorsement.

Proof. Suppose that for the well-typed program with fixed order of execution S[−→a], and
states σ1 =A σ2, we have N ⊢δ ⟨S[−→a], σ1⟩ ≈A N ⊢δ ⟨S[−→a], σ2⟩. We need to show that in
all possible ordering and frequency of gateways calls, and for all relevant attacks a′, the
execution indistinguishability holds. Formally:

∀S′, a′ ∈ ΩR(S[−→a], S′[−→•], σ1). N ⊢δ ⟨S′[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S′[

−→
a′], σ2⟩

Using Lemma A.7, by induction on the structure of S′:

[
−→
a′];x := C.m(p): If C.m(p) was a gateway method originally called in S[−→•], N ⊢δ

⟨S′[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S′[

−→
a′], σ2⟩ is going to be a direct result of Lemma A.7.

However, it is also possible that C.m(p) is a gateway method, not originally called
in S[−→•]. Because of the preprocessing step of GD we can conclude that C.m(p) does
not have any new declassifications, but it is still possible for it to have some new
endorsements. We consider two cases:

• If C.m(p) did not had new endorsement, by initial public indistinguishability
of states σ1 and σ2, and equality of attack vector and shared state on both
sides, we can conclude that N ⊢δ ⟨S′[

−→
a′], σ1⟩ ≈A N ⊢δ ⟨S′[

−→
a′], σ2⟩ holds.

• If it had any new endorsement, this new endorsed value is either from the shared
state or attacker input. Nevertheless, shared state is equal in both sides because
we do not have any reordering of gateways, attacker input is also equal because
both sides use a′. These facts along with the public indistinguishability of

104

states σ1 and σ2, allows us to show that N ⊢δ ⟨S′[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S′[

−→
a′], σ2⟩

also holds in this case.

S′
1[
−→
a′

1];S′
2[
−→
a′

2]: We have to consider two cases:

• S′
1[
−→
a′

1];S′
2[
−→
a′

2] calls no new gateways: In this case different order and frequency
of execution can change the shared state. We know that values of the shared
state are untrusted, but they can be endorsed. However, because a′ is a relevant
attack w.r.t S′[−→•] and S[−→•], any endorsed shared state is going to have the
same value in S[−→•] and S′[−→•]. This allows us to conclude that even though
the vales of shared state can be different between S[−→•] and S′[−→•], the shared
state values that are endorsed and can affect declassifications are equal. The
rest of the proof for this case is similar to Theorem A.2.
By Rule T-Declassify and the preprocessing step ofGD we know that changing
the order or frequency of gateway calls cannot lead to any new declassifications,
and by the assumption N ⊢δ ⟨S[−→a], σ1⟩ ≈A N ⊢δ ⟨S[−→a], σ2⟩, and the fact that
any of the gateway calls in S′

1[
−→
a′

1] and S′
2[
−→
a′

2] that had a declassification were
also in S[−→a] (because GD was a subset of it), we can conclude that declassified
secrets had the same value in σ1 and σ2.
The return value of gateway calls can depend on declassified secrets (which
we shown are equal in σ1 and σ2), attacker input (which is the same (

−→
a′) for

both programs), public values (that are equal in both states), and the values
in shared state. Of these values, only shared state can be different between
S[−→•] and S′[−→•], resulting in different traces for S′

1[
−→
a′

1];S′
2[
−→
a′

2] compared to any
other order of calling these gateways. However, since the value of shared state
is determined by the order of execution, we are going to get similar traces for
each possible order of execution.

• S′
1[
−→
a′

1];S′
2[
−→
a′

2] calls a new gateway not originally called in S[−→•]. We have to
consider two cases:

– They have no new endorsements: The return value of gateway call can
depend on attacker input (which is the same (

−→
a′) for both programs),

public values (that are equal in both states), and the values in shared
state which can be different between S[−→•] and S′[−→•]. However, since
the value of shared state is determined by the order of execution, we are
going to get similar traces for each possible order of execution. Thus
N ⊢δ ⟨S′[

−→
a′], σ1⟩ ≈A N ⊢δ ⟨S′[

−→
a′], σ2⟩ holds.

– S′[−→•] leads to new endorsements: By GD we know that these new en-
dorsements cannot lead to any new declassifications. Additionally, these
new endorsed values can either be from the shared state or attacker input.
Shared state is equal in both sides because we have similar ordering of
gateways in S′

1[
−→
a′

1];S′
2[
−→
a′

2], attacker input is also equal because both sides
use a′. These facts along with the public indistinguishability of states σ1

and σ2, allows us to show that N ⊢δ ⟨S′[
−→
a′], σ1⟩ ≈A N ⊢δ ⟨S′[

−→
a′], σ2⟩ also

holds in this case.

105

Therefore, we can conclude thatN ⊢δ ⟨S′
1[
−→
a′

1];S′
2[
−→
a′

2], σ1⟩ ≈A N ⊢δ ⟨S′
1[
−→
a′

1];S′
2[
−→
a′

2], σ2⟩
will always hold no matter the order of gateway method calls in S′

1[
−→
a′

1] and S′
2[
−→
a′

2].

Using these cases it is straightforward to conclude that for all S′ and relevant attacks a′ the
indistinguishability of traces will be preserved N ⊢δ ⟨S′[

−→
a′], σ1⟩ ≈A N ⊢δ ⟨S′[

−→
a′], σ2⟩

106

Int

α ⊢δ ⟨n,M,H⟩ ⇓ ⟨n,M,H⟩

Unit

α ⊢δ ⟨unit,M,H⟩ ⇓ ⟨unit,M,H⟩

Class

α ⊢δ ⟨C,M,H⟩ ⇓ ⟨C,M,H⟩

VAR
α = δ(x) v =M(x)

α ⊢δ ⟨x,M,H⟩ ⇓ ⟨v,M,H⟩

Field Access
α ⊢δ ⟨e,M,H⟩ ⇓ ⟨C,M,H⟩ α = δ(C) v = H(C, f)

α ⊢δ ⟨e.f,M,H⟩ ⇓ ⟨v,M,H⟩

Op
α ⊢δ ⟨e1,M,H⟩ ⇓ ⟨n1,M,H⟩ α ⊢δ ⟨e2,M,H⟩ ⇓ ⟨n2,M,H⟩ n′ = n1 ⊕ n2

α ⊢δ ⟨e1 ⊕ e2,M,H⟩ ⇓ ⟨n′,M,H⟩

Method
α ⊢δ ⟨e,M,H⟩ ⇓ ⟨C,M,H⟩ methodϕ(p){S; return(e)} = getMethod(C, m)((

α = δ(C)
)
∨
(

α = N ∧ δ(C) = E ∧ ϕ = G
))

M∗ =M[pi 7→ σ(qi)] i = 1, ..., |p|

δ(C) ⊢δ ⟨S; return(e),M∗,H⟩ ⇓ M∗′
,H′ ▷ v M′ =M∗′

\ [pi] i = 1, ..., |p|
(α = δ(C)⇒ β = ϵ) (α = N ∧ δ(C) = E ∧ ϕ = G⇒ β = v)

α ⊢δ ⟨e.m(q),M,H⟩ ⇓β ⟨v,M′,H′⟩

Figure A.7: Large-step semantics for JE expressions

107

T-Unit

Γ, Π ⊢δ unit : (⟨P,T⟩, F)

T-Int

Γ, Π ⊢δ n : (⟨P,T⟩, F)

Sub Typing
Γ, Π ⊢δ e : (ℓ, d) ℓ ⊑ ℓ′ d ⊑ d′

Γ, Π ⊢δ e : (ℓ′, d′)

T-Class
Γ(C) = ℓ Π(C) = d

Γ, Π ⊢δ C : (ℓ, F)

T-Var
Γ(x) = ℓ Π(x) = d

Γ, Π ⊢δ x : (ℓ, d)

T-Field Access
Γ(C.f) = ℓ Π(C.f) = d

Γ, Π ⊢δ C.f : (ℓ, d)

T-Op
Γ, Π ⊢δ e1 : (ℓ1, d1) Γ, Π ⊢δ e2 : (ℓ2, d2)

Γ, Π ⊢δ e1 ⊕ e2 : (ℓ1 ⊔ ℓ2, d1 ∨ d2)

T-Method
methodϕ(p){S; return(e)} = getMethod(C, m) pc′, Γ−, Π− ⊢δ S; return(e) : Γ+, Π+ ▷ (ℓ, d)

Γ, Π ⊢δ C.m(p) :
(

Γ−, Π−
pc′ Γ+, Π+

)
(ℓ,d)

Figure A.8: Typing rules for expressions

108

Skip

α ⊢δ ⟨skip,M,H⟩ ⇓ M,H

Return
α ⊢δ ⟨e,M,H⟩ ⇓ ⟨v,M,H⟩

α ⊢δ ⟨return(e),M,H⟩ ⇓ M,H ▷ v

Assign
α ⊢δ ⟨eG,M,H⟩ ⇓β ⟨v,M′,H′⟩ α = δ(x) M′′ =M′[x 7→ v]

α ⊢δ ⟨x := eG,M,H⟩ ⇓β M′′,H′

Store
α ⊢δ ⟨eG,M,H⟩ ⇓β ⟨v,M′,H′⟩ α = δ(C) H′′ = H′[(C, f) 7→ v]

α ⊢δ ⟨C.f := eG,M,H⟩ ⇓β M′,H′′

Seq
α ⊢δ ⟨S1,M,H⟩ ⇓t1 M1,H1 α ⊢δ ⟨S2,M1,H1⟩ ⇓t2 M2,H2

α ⊢δ ⟨S1; S2,M,H⟩ ⇓t1.t2 M2,H2

Seq-return
α ⊢δ ⟨S,M,H⟩ ⇓t M1,H1 α ⊢δ ⟨return(e),M1,H1⟩ ⇓ M1,H1 ▷ v

α ⊢δ ⟨S; return(e),M,H⟩ ⇓t M1,H1 ▷ v

If-Else-T
α ⊢δ ⟨e,M,H⟩ ⇓ ⟨n,M,H⟩ n ̸= 0 α ⊢δ ⟨S1,M,H⟩ ⇓t M′,H′

α ⊢δ ⟨if e then S1 else S2,M,H⟩ ⇓t M′,H′

If-Else-F
α ⊢δ ⟨e,M,H⟩ ⇓ ⟨0,M,H⟩ α ⊢δ ⟨S2,M,H⟩ ⇓t M′,H′

α ⊢δ ⟨if e then S1 else S2,M,H⟩ ⇓t M′,H′

While-F
α ⊢δ ⟨e,M,H⟩ ⇓ ⟨0,M,H⟩

α ⊢δ ⟨while e then S,M,H⟩ ⇓ M,H

While-T
α ⊢δ ⟨e,M,H⟩ ⇓ ⟨n,M,H⟩

n ̸= 0 α ⊢δ ⟨S,M,H⟩ ⇓t1 M′,H′ α ⊢δ ⟨while e then S,M′,H′⟩ ⇓t2 M
′′

,H
′′

α ⊢δ ⟨while e then S,M,H⟩ ⇓t1.t2 M
′′

,H
′′

Declassify
E ⊢δ ⟨e,M,H⟩ ⇓ ⟨v,M,H⟩ δ(x) = E M′ =M[x 7→ v]

E ⊢δ ⟨x := declassify(e),M,H⟩ ⇓ M′,H

Figure A.9: Large-step semantics of JE commands

109

T-Skip

pc, Γ, Π ⊢δ skip : Γ, Π

T-Sub-Typing
pc1, Γ1, Π1 ⊢δ S : Γ′

1, Π′
1 pc1 ⊑ pc2 Γ1 ⊑ Γ2 Π1 ⊑ Π2

pc2, Γ2, Π2 ⊢δ S : Γ′
2, Π′

2

T-Assign
Γ, Π ⊢δ e : (ℓ, d) ℓ ⊔ pcℓ = ⟨S,−⟩ ⇒ δ(x) = E d = T ⇒ pcℓ = ⟨−,T⟩

pc, Γ, Π ⊢δ x := e : Γ
[
x 7→ pcℓ ⊔ ℓ

]
, Π
[
x 7→ d ∨ pcd

]
T-Store

Γ, Π ⊢δ C.f : (ℓ1, d1) Γ, Π ⊢δ e : (ℓ2, d2) ℓ2 ⊔ pcℓ ⊑ ℓ1

ℓ1 ⊔ ℓ2 ⊔ pcℓ = ⟨S,−⟩ ⇒ δ(C) = E pcd ∨ d2 = T ⇒ pcℓ ⊔ ℓ1 = ⟨−,T⟩ d′ = d2 ∨ pcd

pc, Γ, Π ⊢δ C.f := e : Γ, Π
[
C.f 7→ d′, C 7→ Π(C) ∨ d′

]
T-Seq
pc, Γ, Π ⊢δ S1 : Γ′, Π′ pc, Γ′, Π′ ⊢δ S2 : Γ′′, Π′′

pc, Γ, Π ⊢δ S1; S2 : Γ′′, Π′′

T-Seq-Return
pc, Γ, Π ⊢δ S : Γ′, Π′ pc, Γ′, Π′ ⊢δ return(e) : Γ′, Π′ ▷ (ℓ, d)

pc, Γ, Π ⊢δ S; return(e) : Γ′, Π′ ▷ (ℓ, d)

T-If-Else
Γ, Π ⊢δ e : (ℓ, d)

(pcℓ ⊔ ℓ, pcd ∨ d), Γ, Π ⊢δ S1 : Γ′, Π′ (pcℓ ⊔ ℓ, pcd ∨ d), Γ, Π ⊢δ S2 : Γ′, Π′

pc, Γ, Π ⊢δ if e then S1 else S2 : Γ′, Π′

T-While
Γ, Π ⊢δ e : (ℓ, d) (pcℓ ⊔ ℓ, pcd ∨ d), Γ, Π ⊢δ S : Γ′, Π′

pc, Γ, Π ⊢δ while e then S : Γ′, Π′

T-Declassify
Γ, Π ⊢δ e : (ℓ, d) ℓ ⊑ ⟨S,T⟩ pcℓ ⊑ ⟨P,T⟩ δ(x) = E

pc, Γ, Π ⊢δ x := declassify(e) : Γ
[
x 7→ ℓ ⊓ ⟨P,T⟩

]
, Π
[
x 7→ T

]
T-Return
Γ, Π ⊢δ e : (ℓ, d) d = T ⇒ pcℓ = ⟨−,T⟩

pc, Γ, Π ⊢δ return(e) : Γ, Π ▷ (pcℓ ⊔ ℓ, d)

Figure A.10: Typing rules for commands

110

T-Assign-Call
Γ, Π ⊢δ C.m(p) :

(
Γ−, Π−

pc′ Γ+, Π+
)

(ℓ,d)
pcℓ ⊑ pc′

ℓ δ(x) = δ(C)

d = T ⇒ pcℓ = ⟨−,T⟩ Γ(qi) ⊑ Γ−(pi) i = 1...|p| Π(qi) = Π−(pi) i = 1...|p|
∀y ∈ dom(Γ−).Γ(y) ⊑ Γ−(y) ∀y ∈ dom(Γ+).Γ+(y) ⊑ Γout(y)

∀y ∈ (dom(Γ) \ dom(Γ+).Γ(y) = Γout(y) ∀y ∈ dom(Π−).Π(y) ⊑ Π−(y)
∀y ∈ dom(Π+).Π+(y) ⊑ Πout(y) ∀y ∈ (dom(Π) \ dom(Π+).Π(y) = Πout(y)

pc, Γ, Π ⊢δ x := C.m(q) : Γout

[
x 7→ pcℓ ⊔ ℓ

]
, Πout

[
x 7→ d ∨ pcd

]
T-Assign-Gateway-Call

Γ, Π ⊢δ C.m(p) :
(

Γ−, Π−
pc′ Γ+, Π+

)
(ℓ,d)

δ(x) = N δ(C) = E ℓ ⊑ ⟨P,U⟩ ∀p ∈ p.Γ−(p) = ⟨P,U⟩
∀p ∈ p.Π−(p) = F Γ(qi) ⊑ Γ−(pi) i = 1...|p| Π(qi) = Π−(pi) i = 1...|p|

∀y ∈ dom(Γ−).Γ(y) ⊑ Γ−(y) ∀y ∈ dom(Γ+).Γ+(y) ⊑ Γout(y)
∀y ∈ (dom(Γ) \ dom(Γ+).Γ(y) = Γout(y) ∀y ∈ dom(Π−).Π(y) ⊑ Π−(y)
∀y ∈ dom(Π+).Π+(y) ⊑ Πout(y) ∀y ∈ (dom(Π) \ dom(Π+).Π(y) = Πout(y)

pc, Γ, Π ⊢δ x := C.m(q) : Γout

[
x 7→ pcℓ ⊔ ℓ

]
, Πout

[
x 7→ F

]
T-Store-Call

Γ, Π ⊢δ C.f : (ℓ1, d1) Γ, Π ⊢δ C′.m(p) :
(

Γ−, Π−
pc′ Γ+, Π+

)
(ℓ2,d2)

δ(C) = δ(C′) d2 = T ⇒ pcℓ = ⟨−,T⟩ ℓ1 ⊔ ℓ2 ⊔ pcℓ = ⟨S,−⟩ ⇒ δ(C) = E

pcℓ ⊑ pc′
ℓ ℓ2 ⊔ pcℓ ⊑ ℓ1 Γ(qi) ⊑ Γ−(pi) i = 1...|p| Π(qi) = Π−(pi) i = 1...|p|
∀y ∈ dom(Γ−).Γ(y) ⊑ Γ−(y) ∀y ∈ dom(Γ+).Γ+(y) ⊑ Γout(y)

∀y ∈ (dom(Γ) \ dom(Γ+).Γ(y) = Γout(y) ∀y ∈ dom(Π−).Π(y) ⊑ Π−(y)
∀y ∈ dom(Π+).Π+(y) ⊑ Πout(y) ∀y ∈ (dom(Π) \ dom(Π+).Π(y) = Πout(y)

pc, Γ, Π ⊢δ C.f := C′.m(q) : Γout, Πout

[
C.f 7→ d2 ∨ pcd

]
T-Store-Gateway-Call
Γ, Π ⊢δ C.f : (ℓ1, d1) Γ, Π ⊢δ C′.m(p) :

(
Γ−, Π−

pc′ Γ+, Π+
)

(ℓ2,d2)
δ(C) = N

δ(C′) = E ℓ2 ⊑ ⟨P,U⟩ ∀p ∈ p.Γ−(p) = ⟨P,U⟩ ∀p ∈ p.Π−(p) = F

ℓ2 ⊔ pcℓ ⊑ ℓ1 Γ(qi) ⊑ Γ−(pi) i = 1...|p| Π(qi) = Π−(pi) i = 1...|p|
∀y ∈ dom(Γ−).Γ(y) ⊑ Γ−(y) ∀y ∈ dom(Γ+).Γ+(y) ⊑ Γout(y)

∀y ∈ (dom(Γ) \ dom(Γ+).Γ(y) = Γout(y) ∀y ∈ dom(Π−).Π(y) ⊑ Π−(y)
∀y ∈ dom(Π+).Π+(y) ⊑ Πout(y) ∀y ∈ (dom(Π) \ dom(Π+).Π(y) = Πout(y)

pc, Γ, Π ⊢δ C.f := C′.m(q) : Γout, Πout

[
C.f 7→ F

]
Figure A.10: Typing rules for commands

111

112

Paper B

Enclave-Based Secure Programming with
JE

Aditya Oak, Amir M. Ahmadian, Musard Balliu, and Guido Salvaneschi

Abstract

Over the past few years, major hardware vendors have started offering pro-
cessors that support Trusted Execution Environments (TEEs) allowing confi-
dential computations over sensitive data on untrusted hosts. Unfortunately,
developing applications that use TEEs remains challenging. Current solu-
tions require using low-level languages (e.g., C/C++) to handle the TEE
management process manually – a complex and error-prone task. Worse, the
separation of the application into components that run inside and outside the
TEE may lead to information leaks. In summary, TEEs are a powerful means
to design secure applications, but there is still a long way to building secure
software with TEEs alone.

In this work, we present JE , a programming model for developing TEE-enabled
applications where developers only need to annotate Java programs to define
application-level security policies and run them securely inside enclaves.

115

B.1 Introduction

In cloud computing, cloud service providers offer their infrastructure as a service, and
clients use it on an ad-hoc basis. This approach ensures on-demand computing and
storage provisioning, but it comes at the price of trusting the cloud providers with
potentially sensitive data. Nevertheless, the cloud computing paradigm entails many
security and privacy concerns as data is inevitably processed on third-party machines.
For example, the cloud could be compromised, but also, the cloud infrastructure
may not have strict access control policies to rule out unauthorized access of data.
Traditional privacy-preserving techniques struggle to mitigate such issues. For
example, symmetric and asymmetric cryptography require encrypted data to be first
decrypted to perform any computations – making plaintext data accessible to the
hosting infrastructure. On the other hand, homomorphic encryption schemes [150]
allow performing computations directly on the encrypted data, but their high
computation time and large ciphertext size can severely affect the application’s
performance.

Hardware-based Trusted Execution Environments (TEEs) are hardware enclaves
that protect data and code from the system software. A number of hardware vendors
have introduced TEE technologies including Intel with Software Guard Extensions
(SGX) [101, 108], ARM with TrustZone [60], MultiZone [175] and others [125, 129,
159, 168, 172]. In TEEs, data can be processed at native speed ensuring that it
remains protected even on a third-party machine without having to encrypt it –
expensive homomorphic encryption can be avoided to yield better performance.

Despite TEE implementations have been used in a number of industry products [197,
198], programming software that takes advantage of TEE functionalities remains
challenging.

Figure B.1 shows the implementation of a simple password checker using the C/C++
interface for the Intel SGX enclave (in Microsoft Visual Studio with SGX add-on).
With the current approach, programmers need to deal with the low-level details of
enclave programming, e.g. partitioning the code into separate files that define the
program running outside the enclave (main.cpp) and the program running inside
the enclave (enclave.cpp), defining a separate interface between the environments
with the semantics of parameter passing (enclave.edl), and setting up the enclave
creation (main.cpp, lines 5 to 9) and its disposal after use (main.cpp, line 14).

Though the enclave environment is protected by the hardware, an attacker controlling
the non-enclave environment can initiate various attacks on the sensitive data
residing inside the enclave, thus compromising the overall application security. In
Figure B.1, an attacker that controls the non-enclave environment can manipulate
the parameters passed to the checkPassword() call to the enclave code. In such
case, the compiler would not alert the programmer to report a potential security
issue.

116

This leads us to the following key research questions: (a) How to enable seamless
integration of enclaves and managed languages like Java? (b) How to check the
security of enclave programs with respect to realistic enclave attackers?

In summary, this paper makes the following contributions:

• We present JE , a language design to seamlessly support enclave programming.

• We describe the implementation of JE and evaluate its applicability by pre-
senting different case studies.

Program B.1: enclave.edl

1 enclave {
2 trusted {
3 public void checkPassword([in, size=len] char* guess, [out]
4 int* result, size_t len);
5 };
6 };

Program B.2: enclave.cpp

1 const char* password = "secret";
2 void checkPassword(char* guess, int* result, size_t len) {
3 strcmp(guess, password) == 0) ?
4 *result = 1 : *result = 0;
5 }

Program B.3: main.cpp

1 #include "sgx_urts.h"
2 #include "enclave_u.h"
3 #define BUF_LEN 100
4 int main() {
5 sgx_enclave_id_t eid;
6 sgx_status_t ret = SGX_SUCCESS;
7 sgx_launch_token_t token = {0};
8 int updated = 0;
9 ret = sgx_create_enclave(ENCLAVE_FILE, SGX_DEBUG_FLAG, &token, &updated, &eid, NULL);

10 if (ret != SGX_SUCCESS) { ... /* exception */ }
11 char* guess = ... // read guess from stdin
12 int result = 0;
13 checkPassword(eid, guess, &result, BUF_LEN);
14 if (SGX_SUCCESS != sgx_destroy_enclave(eid)) {...}
15 return 0;
16 }

Figure B.1: Password checker, C++

117

B.2 JE Design

The goal of the JE design is twofold. (i) The design should abstract away the
TEE management details allowing the programmer to easily specify the parts of
the program that must run inside the TEE. (ii) The design should provide simple
means to specify and enforce security policies for an application. To this end, we
provide a set of security annotations and functions. The JE compiler leverages these
annotations to automatically partition the application and generate the logic for
the enclave management (creation, initialization, communication). The JE compiler
uses the security annotations and functions to verify information flow policies via a
security type system.
We illustrate the JE features using the password checker routine provided in Fig-
ure B.2. In JE , a class can be annotated with the @Enclave annotation (dubbed
enclave class). Both code and data of enclave classes are stored inside the enclave.
To ensure that data and computations concerning encryption take place within
the enclave, the Password Checker class in Figure B.2 is annotated with the @Enclave
annotation. Within an enclave class, the @Secret annotation identifies secret fields. The
portions of a program influenced by a secret are also considered secret to prevent flows
of sensitive data that may leak outside the enclave. The password field (line 3) is an-
notated with the @Secret annotation to denote that its value should not be leaked to
the non-enclave environment. The static methods of enclave classes annotated with the
@Gateway annotation (gateway methods) act as the interface between the enclave and the
non-enclave environments. The checkPassword method (line 6) is annotated with the
@Gateway annotation. The checkPassword method accepts a string from the non-enclave
environment and compares it with the password field, the result of the comparison is
returned to the non-enclave environment as a boolean value. The return value of the
gateway methods must not be influenced by secret information.

In addition to annotations, we introduce two operators. The declassify is a unary operator
to downgrade a secret value into a public one to release sensitive information. The result
of the equality comparison of password and guess is stored in the result field (line 8).
Since the result field is influenced by the password secret field, it is also considered as a
sensitive. We apply the declassify operator to the result variable (line 9) to ensure that
result can be released to the non-enclave environment. The declassify operator can
only declassify the trusted values. The operator endorse endorses an untrusted value into
a trusted one. The arguments of gateway methods come from the non-enclave environment
and are considered untrusted by default. We apply the endorse operator to the guess
argument (line 7). The trusted value is stored in the variable guessE. Hence result
variable is not influenced by any untrusted value and is declassified successfully (line 9).

B.3 Attacker Model and Enforcement

In this section we discuss the attacker models considered in JE , and provide an overview
of the security type system used in JE to enforce security against these attackers.

118

Program B.4: PasswordChecker.java

1 @Enclave
2 class PasswordChecker {
3 @Secret static String password = ...;
4
5 @Gateway
6 public static boolean checkPassword(String guess) {
7 String guessE = endorse(guess);
8 boolean result = guessE.equals(password);
9 return declassify(result);

10 }
11 }

Program B.5: Main.java

1 class Main {
2 public static void main(String[] args) {
3 String guess = ... // read guess from stdin
4 PasswordChecker.checkPassword(guess);
5 }
6 }

Figure B.2: Password checker, JE

Attacker Model

We assume that the application has two parts – one running inside and the other running
outside the enclave. The attacker controls the non-enclave environment by: (1) controlling
the non-enclave data memory, or (2) controlling the non-enclave code and data memory.
These attacker capabilities induce two attacker models of interest.

Program B.6 illustrates the attacker models. The program stores a list of secret integers
called secretData, and provides methods to access single elements of secretData and
to release the average of these secret integers whenever the trigger genAvg is set. In the
traditional setting without enclaves, where we trust everything in the system, this program
is secure, since the secret values are written to the public variables of the main method
only after declassification.

Now, consider a scenario where we need to run this code on an untrusted system. The
traditional security assumptions are no longer sufficient, because the attacker can now
access the system and learn the secretData by simply inspecting the memory.

One way to protect this data on an untrusted system is to use enclaves, thus relying on the
hardware features to prevent the attacker from inspecting the enclave memory, and thus,
protect the secretData. The naive way of achieving this would be to partition Program B.6
into secret and public parts, and put the secretData and all the methods that interact
with it in a separate class Storage (Program B.7), and put it inside the enclave. The main
(public) part of the program remains outside of the enclave (Program B.8).

119

Program B.6: Before partitioning

1 class Main {
2 static int[] secretData;
3 static boolean genAvg = false;
4
5 public static void main(String[] args) {
6 int data1 = getData(1);
7 // ...
8 releaseAvg();
9 float avg = getAverage();

10 }
11
12 public static int getData(int input) {
13 return declassify(secretData[input]);
14 }
15
16 public static void releaseAvg() {genAvg = true;}
17
18 public static float getAverage() {
19 if (genAvg) {
20 float avg = doAverage(secretData);
21 return declassify(avg);
22 }
23 else { return 0.0f; }
24 }
25 }

However, this naive partitioning is not enough to protect the secretData stored inside the
enclave against different types of attacks from the non-enclave environment. In this work,
we investigate two types of attackers that can exploit the enclave−non-enclave interface to
learn the secrets stored inside of the enclave.

The first attacker controls the data memory outside of the enclave, hence they can
manipulate the parameters passed to getData method, and learn all of the elements of
secretData one by one. The second attacker controls both the data and code memory,
hence they can change the order of method calls, e.g. call Storage.releaseAvg() in any
order, and thus control the release of value avg. The enforcement mechanisms implemented
in JE enforce security against these types of active attackers and ensure that enclave
programs do not leak secret data.

Type System

JE uses security labels to specify application-level policies. The security labels are not
part of the language but are inferred automatically by JE . A security label is a 2-tuple
consisting a confidentiality and an integrity label. We consider two labels Public and Secret
for confidentiality, and two labels Trusted and Untrusted for integrity. Security labels form
a standard (product) security lattice [4] and the order relation among the labels determines
the allowed information flows for confidentiality and integrity.

120

Program B.7: Inside enclave

1 // inside of enclave
2 class Storage {
3 static int[] secretData;
4 static boolean genAvg = false;
5
6 // gateway
7 public static int getData(int input) {
8 return declassify(secretData[input]);
9 }

10
11 // gateway
12 public static void releaseAvg() {genAvg = true;}
13
14 // gateway
15 public static float getAverage() {
16 if (genAvg) {
17 float avg = doAverage(secretData);
18 return declassify(avg);
19 }
20 else { return 0.0f };
21 }
22 }

Program B.8: Outside enclave

1 // outside of enclave
2 class Main {
3 public static void main(String[] args) {
4 int data1 = Storage.getData(1);
5 // ...
6 Storage.releaseAvg();
7 float avg = Storage.getAverage();
8 }
9 }

The security type system tracks the implicit and explicit flows of information within the
program by checking the security labels at each command, and propagating the security
labels accordingly.

The programmer should explicitly specify the data inside the enclave that is considered
secret. A secret field is labeled with a Secret and Trusted security label (2-tuple) as
it contains sensitive information originating from inside an enclave class and hence, it
is considered not tampered with by an attacker. The rules of the type system prevent
storing secret data outside the enclave, prohibit information flow of enclave’s secret data
to non-enclave environment (unless secret information is intentionally declassified by the
programmer in a secure manner), and ensure that gateway methods can only return values
having the Public confidentiality level.

121

The type system prevents classes inside of the enclave to call into classes outside of the
enclave. This is to control the flow of information and ensure that the only way for passing
data to the non-enclave environment is through the return values of gateways.

The type system is mainly standard, but adds some extra safeguards to ensure security
against active attackers. To enforce security against data memory attacker, we have to
make sure that manipulating the parameters of gateway methods does not leak secret data.
To achieve this, the type system assigns Public and Untrusted security label to the data
coming from the non-enclave environment, and checks that the declassification of secret
data is not influenced by untrusted values, thus ensuring that only the developer controls
the decision to release secret data and not the active attacker.

The data and code memory attacker is more powerful than the data memory attacker. In
order to enforce security against this attacker, we have to make sure that changing the
order and frequency of calling gateways, or even calling new gateways, does not leak secret
data (i.e. it does not lead to declassifying new secrets). To this end, the type system
generates a list of all the gateways that declassify secret values and makes sure that all
of these gateways are called in all possible executions of the program. This approach
ensures that no new declassifying gateways can be called by the active attacker unless it
has already been called in some way by the developer. Additionally, to prevent data leaks
through changing the order and frequency of gateway calls, the type system marks all of
the variables and fields shared between gateways as Untrusted. Similar to the parameters
of gateway methods, these untrusted values cannot influence declassifications. The formal
details of JE ’s security type system are presented in [186].

B.4 Code Compilation and Implementation

The JE compilation process involves multiple steps. Programs B.9 to B.15 shows how
a JE program (Program B.9) is partitioned (Program B.10 and B.11), translated to Jif
to check security (Program B.12 and B.13), and augmented with RMI communication
(Program B.14 and B.15). We now describe these individual compilation steps followed by
the implementation details.

Code Partitioning

A JE program is first analyzed and, based on the annotations, it is split into two partitions
– the enclave and the non-enclave partition. All the classes annotated with the @Enclave
annotation and all their required dependencies belong to the enclave partition. All the
remaining classes belong to the non-enclave partition. Program B.9 shows a complete JE

program that encrypts string data using the secret key field.

The complete program includes a Main class (Line 1) and an Encrypter class (Line 8).
The Encrypter class is annotated with the @Enclave annotation hence it belongs to the
enclave partition. Program B.11 and B.10 show the partitioned JE programs.

In this phase, the JE compiler also performs some correctness checks and collects information
required for conversion into an equivalent Jif program (see next section).

122

Program B.9: JE code

1 class Main {
2 public static void main(String[] args) {
3 String plaintext = "message";
4 String cipher = Encrypter.encrypt(plaintext);
5 } }
6
7 @Enclave
8 class Encrypter {
9 @Secret private static String key;

10
11 @Gateway
12 public static String encrypt(String plaintext) {
13 String palintextE = endorse plaintext;
14 String cipher = encode(plaintext, key);
15 return declassify cipher;
16 } }

Program B.10: Partition outside the enclave

1 class Main {
2 public static void main(String[] args) {
3 String plaintext = "message";
4 String cipher = Encrypter.encrypt(plaintext);
5 }
6 }

Program B.11: Partition inside the enclave

1 @Enclave
2 final class Encrypter {
3 @Secret private static String key;
4
5 @Gateway
6 public static String encrypt(String plaintext) {
7 String plaintextE = endorse plaintext;
8 String cipher = encode(plaintext, key);
9 return declassify cipher;

10 }
11 }

Conversion to Jif

Next, the partition to run inside the enclave is converted into an equivalent Jif [19]
program. Jif extends Java with security labels to statically enforce information flow
control. A Jif security label is a pair consisting of a confidentiality level and an in-
tegrity level. In the example, Program B.13 is the equivalent Jif Program B.11. The

123

non-enclave partition remains unchanged (Program B.10 and Program B.12). Conver-
sion of the JE program into Jif involves the following steps. (1) JE secret fields are
converted into Jif fields with {Enclave->*;Enclave<-*} label (Program B.11, Line 3 and
Program B.13, Line 2). Such label represents values that are secret and trusted. (2) For
gateway methods, the arguments and the return value are labeled with the Jif’s {} and
{Enclave->_;Enclave<-*} labels respectively. The {} label denotes public and untrusted
information while the {Enclave->_;Enclave<-*} label represents the public and trusted
information (Program B.13, Line 5). (3) The declassify operator in JE corresponds to
the declassify operator in Jif (Program B.13, Line 8).

Program B.12: Jif code outside the enclave

1 class Main {
2 public static void main(String[] args) {
3 String plaintext = "message";
4 String cipher = Encrypter.encrypt(plaintext);
5 }
6 }

Program B.13: Jif code inside the enclave

1 final class Encrypter [principal Enclave] authority(Enclave) {
2 private {Enclave->*; Enclave<-*} key;
3
4 public String{Enclave->_; Enclave<-*} encrypt{Enclave<-*}(String{} plaintext)
5 where authority(Enclave) {
6 String plaintextE = endorse(plaintext, {} to {Enclave<-*});
7 String{Enclave->*; Enclave<-*} cipher = encode(plaintext, key);
8 return declassify (cipher, {Enclave->*; Enclave<-*} to {Enclave->_; Enclave<-*});
9 }

10 }

The obtained Jif program is compiled using the Jif compiler to ensure proper label
propagation and checking.

Remote Communication

The next step introduces the code required for the communication via Java RMI [203]
between the enclave and the non-enclave partition. As in RMI, remote objects are reachable
only through an interface, for each class annotated with the @Enclave annotation, the
JE compiler generates a remote interface containing all the gateway methods. Next, the
JE compiler creates a wrapper class implementing the interface above for each enclave
class. This way, all the gateway methods of an enclave class are exposed remotely to the
non-enclave environment through the remote interface. Finally, the method calls to the
enclave class from the non-enclave environment are replaced with an RMI lookup that
returns a remote reference to the interface of the wrapper class.

124

Program B.14: Non-enclave partition – communication

1 class Main{
2 public static void main(String[] args) {
3 String plaintext = "message";
4
5 Remote remoteServer = Naming.lookup("rmi://IPAddr/RemoteEncr");
6 RemoteEncr remSrvStub = (RemoteEncr) remoteServer;
7 String cipher = remSrvStub.wrapEncrypt(plaintext);
8 }
9 }

Program B.15: Enclave partition – communication

1 interface RemoteEncr extends Remote {
2 public String wrapEncrypt(String plaintext);
3 }
4 class EncrypterWrapper extends UnicastRemoteObject implements RemoteEncr {
5
6 @Override
7 public String wrapEncrypt(String plaintext) {
8 return Encrypter.encrypt(plaintext);
9 } }

10 final class Encrypter { ... }

Note that, we prohibit remote calls from the enclave to the non-enclave environment. For
example, in Program B.15, the JE compiler generates the RemoteEncr interface (Line 1)
and the EncrypterWrapper class, which acts as a wrapper for the class Encrypter, and
implements the RemoteEncr interface (Line 4). The EncrypterWrapper class defines a
method wrapEncrypt which calls the static method Encrypter.encrypt (Line 8). In the
non-enclave environment (Program B.14), the JE compiler transforms the direct calls
Encrypter.encrypt(plaintext) to a lookup of enclave remote class (Line 5) and to a call
the wrapEncrypt method of the remote interface EncrypterWrapper (Line 7).

Packaging

All the classes to be placed inside and outside the enclave are packaged into two separate
executable JAR files. Both JAR files contain an executable class, which includes code
for initialization to set up the RMI registry and to publish remote objects required for
communication. The user code executes after the initialization phase is complete. The
compilation flow is illustrated in Figure B.3.

Implementation

We employ JavaParser [200] — a parser library for Java — to perform the code analysis
and source code transformation described in section B.4. As shown in Figure B.3, the

125

JE code

 Code
partitioning

Conversion to
 Jif

 Jif compiler

 Remote
communication

 JVM

SGX

Regular

JVM

Code inside TEE

 Code outside TEE

Packaging

Jif verification

Runtime

Figure B.3: JE compilation phases

enclave program is deployed inside an Intel SGX enclave and executed using a JVM. We
use the SGX-LKL framework [204] to support JVM execution inside the enclave. Running
a JVM inside the enclave provides the advantages of managed languages but in comparison
to running a native code, this approach suffers from a large TCB size.

B.5 Evaluation

We evaluate JE with case studies to demonstrate that it can address the security require-
ments of distributed systems. The aim of the case studies is to demonstrate the core
security features of JE . The case studies consider basic Java constructs, mainly due to
Jif’s limited Java support and the various static constraints enforced by the Jif compiler.
The case studies are of the order of tens of LOC.

We implement a secure distributed event processing (CEP) system based on Adaptive-
CEP [149]. In CEP, event sources produce events that can carry data and are processed in
a cluster of distributed nodes. AdaptiveCEP adapts the placement of the event processing
operators to maximize throughput. In the secure CEP case study, every event is encrypted
before it is sent to the cluster. Event processing nodes decrypt the events inside the enclave,
perform the processing, and emit the corresponding output events.

Figure B.4 shows the code for secure CEP using a filter event processor node. The
FilterNode class implements a filter node that can be placed on a remote machine. It
contains a gateway method filter (Line 25) that accepts an encrypted event and an
encrypted predicate. The event is decrypted inside the enclave (Line 32), the predicate is
applied to the event payload, and the result is returned (Line 33).

This way, the event data are protected from an attacker that controls the OS. The attacker
can only observe the encrypted events EncEvent passed as an argument to the process
method.

We also implemented a secure calculator as described in [126]. In this case study,
confidential data is placed inside the enclave and, during runtime, a user provides tasks to
perform on confidential data from the non-enclave environment. The tasks are executed
inside the enclave and the result is returned to the non-enclave environment.

126

Program B.16

1 class Main {
2 public static void main(String[] args) {
3 List<IntEvent> events =
4 Generator.getIntEvents(100);
5 List<EncIntEvent> encEvents =
6 encrypt(events);
7 List<EncIntEvent> result =
8 encEvents.stream().
9 filter(FilterNode.filter).

10 collect(Collectors.toList());
11 }
12 }
13
14 class EncIntEvent extends EncEvent {
15 private EncInt val; // encrypted integer
16 private String origin;
17 }

Program B.17

18 @Enclave
19 class FilterNode {
20
21 @Secret private static String key;
22 static private Predicate predicate;
23
24 @Gateway
25 public static boolean filter(EncIntEvent event) {
26 if(!sanitize(event)) {
27 return null;
28 }
29 boolean result;
30 try {
31 EncInt encInt = endorse(event).getVal();
32 Integer val = decrypt(encInt, key);
33 result = apply(predicate, val);
34 } catch (Exception e) {
35 return null;
36 }
37 return declassify(result);
38 }
39 }

Figure B.4: Secure complex event processing

Figure B.5 illustrates tax computation on salary information using the secure calculator.
The TaskProcessor class is annotated with the @Enclave annotation because it contains
a secret field salary (Line 16) and a gateway method process (Line 19) that must be
protected within the enclave. A user submits a list of tax-related computation tasks

127

Program B.18

1 class Main {
2 public static void main(String[] args) {
3 List<Task> taskList = getTaskSeq("TAX");
4 Double tax =
5 TaskProcessor.process(taskList);
6 }
7 }
8
9 class Task {

10 public Double run (Double input) {
11 // Task computation
12 }
13 }

Program B.19

14 @Enclave
15 class TaskProcessor {
16 @Secret static Double salary;
17
18 @Gateway
19 public static Double process(List<Task> taskList) {
20 if !(sanitize(taskList)) {
21 return null;
22 }
23 List<Task> taskListE = endorse(taskList);
24 try {
25 Double result = salary;
26 for (Task task : taskList) {
27 result = task.run(result);
28 }
29 } catch (Exception e) {
30 return null;
31 }
32 return declassify(result);
33 }
34 }

Figure B.5: Secure calculator

(taskList) to the process method (Line 5) where the tasks are executed sequentially
inside the enclave. The untrusted input taskList is first sanitized (Line 20) to verify that
it holds certain integrity properties such as it is not null and not empty. If the sanitization
check succeeds, then the taskList field is endorsed (23); otherwise, null is returned.
When translating to Jif, we use Jif’s checked endorsement construct to implement input
sanitization. The input sanitization reduces the information leakage by only allowing the
verified tasks to interact with the secret fields and influence the returned value.

The case study demonstrates that the code can be easily partitioned using annotations

128

such that the sensitive information is kept inside the enclave, and a user from the non-
enclave environment can only observe the result of predefined sensitive operations that are
declassified explicitly by the developer.

Program B.20

1 class Main {
2 // opponent's grid status
3 static boolean[][] gridOpp;
4
5 public static void main(String[] args) {
6 boolean gameOver = false;
7 while(!gameOver) {
8 // opponent's guess
9 Guess g2 = getGuess();

10 updateOppGrid(g2);
11 int result = Grid.applyGuess(g2);
12 // generate and send the guess
13 // to the opponent along with
14 // the result of the previous guess
15 }
16 }
17 }

Program B.21

18 @Enclave
19 class Grid {
20 @Secret private static boolean[][] grid;
21
22 @Gateway
23 public static int applyGuess(Guess guess) {
24 Guess guessE = endorse(guess);
25 // ship here?
26 int result = apply(guessE);
27 return declassify(result);
28 }
29
30 private static int apply(Guess guess) {
31 // check for the presence of battleship
32 return result;
33 }
34 }

Figure B.6: Battleship game

Figure B.6 shows a JE implementation of the Battleship game as in [34].

In the battleship game, each of the two players owns a secret grid. Initially, players position
their battleships randomly on the grid. The game then proceeds in rounds and in each
round, players guess a position on the opponent’s grid. At the end of a round, players are
told if the guessed location contains a battleship. The goal is to successfully guess all the

129

battleship locations on the opponent’s grid. The game ends when a player guesses all the
battleship locations.

This case study demonstrates a scenario where we need to declassify some secret information
depending on the external inputs. Initially, both grids are secret and in each round, a grid
location needs to be made public via declassification. The location to declassify depends
on the guess of the opponent; thus, we need to endorse the opponent’s guess to declassify
the location.

Figure B.6 shows the code run on every player’s machine. The Main class is placed outside
the enclave and it stores the status of the opponent’s grid (Line 3). The main method
consists of a while loop in which a player sends and receives guesses. The Grid class
is placed inside the enclave. The secret variable grid (Line 20) stores the status of a
player’s grid. The gateway method applyGuess (Line 23) accepts the opponent’s guess
as an argument and checks if the guessed location contains a battleship. The argument
guess is untrusted and we use the endorse operator (Line 24) to raise the integrity level
to Trusted. The apply method (Line 30) extracts the array indices from the argument
guess and checks if a battleship is present at the array location. The variable result has
Secret confidentiality level as it is implicitly influenced by the secret field grid (inside the
apply method, when checking for the battleship location). The subsequent declassification
operation (Line 27) downgrades its confidentiality level to Public. The declassified value of
result is returned to non-enclave environment (Line 27).

The case study demonstrates the use of the endorse and declassify operators to declassify
secret information securely by endorsing the untrusted values explicitly.

B.6 Related Work

In this section we compare JE to closely related works. We divide them into three broad
categories.

Application partitioning for enclaves

Various works have considered partitioning an application for enclaves based on input
provided by the user, such as annotations or configuration files. Glamdring [137] performs
source-level partitioning of C code based on annotations. Panoply [142] creates low
TCB application binaries from the annotated C applications. These works consider
input sanitization checks across the enclave interface but do not employ information flow
checks. Civet [178] and Uranus [170] perform Java application partitioning based on XML
configuration and user annotations respectively. Secure Routines [161] extends annotation-
based partitioning for Go programs. Unlike JE , they consider only passive attackers and
provide limited information-flow control guarantees.

130

Enclaves and information flow control

Gollamudi et al. [126] consider information flow control for enclave applications focusing on
erasure policies. DFLATE [162] presents noninterference guarantees in distributed TEEs
settings. In contrast to these works, JE provides robustness guarantees against stronger
active attackers. Moat [119] and its successor [130] automate confidentiality verification
for enclaves programs.

Information flow control for distributed systems

Various works [24, 27, 31, 52, 53, 138, 139, 164] have employed information flow control
techniques to prevent information leaks at the network boundaries in distributed settings.
Inspired by these approaches, JE uses IFC techniques to secure data flow across the enclave
- non-enclave interface.

B.7 Conclusion

In this paper we presented JE , a programming framework for enclave-enabled applications
where developers use annotations to specify and guide the application partitioning and
security policies. We implemented several case studies from literature showing that JE

correctly handles application partitioning while providing strong security guarantees against
realistic attackers.

Acknowledgments

We are grateful to the anonymous reviewers for their valuable feedback on this paper. We
would like to thank Robert Kubicek, Jonas Seng, and Jesse-Jermaine Richter for their
contribution to the JE implementation. This work is partially supported by the Deutsche
Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297, the BRF Project 1025524 from
the University of St.Gallen, the Swedish Foundation for Strategic Research (SSF), the
Swedish Research Council (VR), and Digital Futures.

131

132

Paper C

Dynamic Policies Revisited

Amir M. Ahmadian and Musard Balliu

Abstract

Information flow control and dynamic policies is a difficult relationship yet to
be fully understood. While dynamic policies are a natural choice in many real-
world applications that downgrade and upgrade the sensitivity of information,
understanding the meaning of security in this setting is challenging. In this
paper we revisit the knowledge-based security conditions to reinstate a simple
and intuitive security condition for dynamic policies: A program is secure if
at any point during the execution the attacker’s knowledge is in accordance
with the active security policy at that execution point. Our key observation is
the new notion of policy consistency to prevent policy changes whenever an
attacker is already in possession of the information that the new policy intends
to protect. We use this notion to study a range of realistic attackers including
the perfect recall attacker, bounded attackers, and forgetful attackers, and
their relationship. Importantly, our new security condition provides a clean
connection between the dynamic policy and the underlying attacker model
independently of the specific use case. We illustrate this by considering the
different facets of dynamic policies in our framework.

On the verification side, we design and implement DynCoVer, a tool for
checking dynamic information-flow policies for Java programs via symbolic
execution and SMT solving. Our verification operates by first extracting a
graph of program dependencies and then visiting the graph to check dynamic
policies for a range of attackers. We evaluate the effectiveness and efficiency of
DynCoVer on a benchmark of use cases from the literature and designed by
ourselves, as well as the case study of a social network. The results show that
DynCoVer can analyze small but intricate programs indicating that it can
help verify security-critical parts of Java applications. We release DynCoVer
publicly to support open science and encourage researchers to explore the
topic further.

135

C.1 Introduction

Information flow control provides an appealing security framework for reasoning
about dependencies between information sources and information sinks, and for
ensuring that these dependencies adhere to desirable security policies. In a language-
based setting, this security framework has the following ingredients: (1) an execution
model which is given by the execution semantics of a program; (2) an attacker
model specifying the observation power of an attacker over the attacker-visible
sources and sinks; (3) a security policy specifying, for each execution point, the
permitted information flows from sources to sinks, disallowing information flows
from secret/high sources to public/low sinks; (4) a security condition (or security
property) capturing a program’s security with respect to an execution model, an
attacker model, and a security policy. A classical security condition is noninterference
requiring that any two executions starting with equal values on public sources yield
equal values on public sinks [8].

A common trait in much recent work on information flow control has been the
appeal to attacker-centric security conditions based on the concept of knowledge
as a fundamental mechanism to bring out what security property is being sought
and compare it with the knowledge permitted by the security policy [51, 61, 81].
Arguably, this appeal to knowledge, usually as equivalence relations on initial states,
has produced clear and intuitive security conditions able to accommodate various
notions of information downgrading (declassification) on which soundness arguments
for enforcement mechanisms, e.g. security type systems, can be based [18, 28, 69].
In a nutshell, knowledge-based security conditions capture an intuitive requirement:
A program is secure with respect to a security policy if at any point during the
program’s execution, the attacker’s knowledge is not greater than the knowledge
permitted by the active security policy at that execution point.

While this simple and elegant condition is well-understood for static multilevel
security policies that only downgrade the sensitivity of information, it does not
appropriately capture the security requirements of systems that change their secu-
rity policies dynamically, thus both downgrading and upgrading the sensitivity of
information in response to security-sensitive events. This is not satisfactory because
dynamic policies are a natural choice for many real-world applications, e.g. health-
care systems, social networks, database systems, where access to information may
be granted or revoked to different principals in accordance with their specific role at
a given moment [88, 98, 114, 116]. Existing works address the challenge of dynamic
policies by proposing security conditions that capture specific facets of a targeted
use case [40, 49, 51, 56, 64, 68, 88, 98]. Broberg et al. [114] systematize existing
research on dynamic policies illuminating the different facets exhibited by existing
security conditions.

In this paper we revisit the state-of-the-art of security conditions for dynamic
policies to reinstate attacker-centric knowledge-based conditions. Our starting point

136

is the work of Askarov and Chong [88] which proposes a general framework for
weakening of the attackers’ observation power to accommodate dynamic policies. We
further revise and develop this framework targeting three types of realistic attackers:
(1) perfect recall attackers recalling all observations on public sinks; (2) bounded
memory attackers recalling a bounded number of observations on public sinks; and
(3) forgetful attackers recalling observations on public sinks up to a security policy
change. While the first two attackers are standard, the third attacker, as we will see,
is useful in settings where the release of knowledge is transient and it is limited to the
event of a security policy change. For example, the event of changing the database
policy to revoke access on a table to user A may reflect the security requirement
that user A should no longer read data from that table, independently of whether
or not user A accessed the table before the policy change.

Our key observation is the notion of policy consistency to reflect the observation
power of an attacker and thus prevent a policy change whenever the attacker is
already in possession of the information that the new policy intends to protect.
For example, under the model of a perfect recall attacker, a policy change that
revokes access to a resource that the attacker has already observed (possibly at a
past time when access to that resource was granted to the attacker) should result
in an inconsistent policy, since it violates the assumption on the perfect recall
attacker. Unfortunately, existing works assume that policy changes are always
consistent, which has often resulted in ad hoc and unintuitive security conditions.
This simple but fundamental insight allows us to reestablish clear and intuitive
attacker-centric knowledge-based conditions for dynamic policies. More importantly,
the new security conditions are in line with the above-mentioned ingredients required
by a security framework and they provide a clean separation between policy concerns
and enforcement concerns. A policy designer can instantiate our framework in
accordance with the security requirements for the use case at hand, by specifying
the most suitable attacker model. We validate our framework by revisiting the
facets of dynamic policies by Broberg et al. [114]. Moreover, in contrast to Askarov
and Chong [88], we prove that, in absence of inconsistent policy changes, a perfect
recall attacker is indeed stronger than a bounded memory attacker and a forgetful
attacker. Finally, we discuss policy updates whenever inconsistencies are detected.

Our second contribution is the design and implementation of algorithms for verifying
dynamic information-flow policies via symbolic execution and SMT solving. Our
verification method operates by first extracting program dependencies and then using
these dependencies to check dynamic policies for a range of attackers including perfect
recall, bounded memory, and forgetful attackers. The verification algorithms adapt
and extend existing approaches for checking noninterference via automated theorem
proving [39, 90] and self composition [82] to the setting of dynamic policies, including
the detection and repair of inconsistent policy changes. We implement [188] an
open-source prototype for Java programs and evaluate the effectiveness and efficiency
on a collection of benchmark from the literature and designed by ourselves, as well as
the case study of a social network. The results show that DynCoVer can analyze

137

small but intricate programs indicating that it can help verify security-critical parts
of Java applications.

In summary the paper offers these contributions:

• We revisit the state-of-the-art security conditions for dynamic policies and rein-
state clear and intuitive knowledge-based conditions based on the observation
power of the attacker (Section C.2 and C.4).

• We show how our new framework can be used to capture the different facets
of dynamic policies proposed in the literature (Section C.5).

• We design verification algorithms based on symbolic execution and SMT
solving to check the security of Java programs for a range of attacker models,
as well as to detect inconsistent policies (Section C.6).

• We implement DynCoVer [188] and evaluate the efficiency and effective-
ness on a collection of benchmarks and the case study of a social network
(Section C.7).

C.2 Problem Setting and Solution Overview

This section gives an informal overview of dynamic policies discussing the challenges,
pointing out limitations of existing solutions, and arguing for revised knowledge-
based security conditions. The key question is: What is a suitable security condition
for dynamic policies?

To provide a common ground for comparing the different approaches, we borrow the
notation and examples from Askarov and Chong [88] and Broberg et al. [114]. We
write A→ B (A ̸→ B) to denote a security policy allowing (disallowing) information
flows from security level A to security level B. We assume that no information
flows between different security levels are allowed initially. For simplicity, the name
of a program variable (e.g. movie) will match the security level of the variable
(e.g. Movie).

We write ki and pi to denote the attacker’s knowledge and the active security policy
at program location i, respectively. By default, we assume that attackers are perfect
recall, remembering any information they observe during a program’s execution.
A popular security condition [61, 81, 116], which is used in systems that handle
only declassification of information, is given by equation (C.1) requiring that at any
location i the attacker’s knowledge ki is smaller1 than the policy knowledge (i.e. the
knowledge allowed by the security policy) pi.

pi ⊆ ki (C.1)
1In this notation, knowledge corresponds to uncertainty, hence the bigger the set, the smaller

the knowledge (see Section C.4).

138

Consider the scenario in Program C.1 where user Alice purchases a time-limited
subscription on a streaming service to watch a movie. After the subscription ends,
the security policy changes, however Alice still attempts to watch movie.

Program C.1

1 Movie→ Alice

2 Alice.watch(movie)
3 Movie ̸→ Alice

4 Alice.watch(movie)

One could argue that this program should be con-
sidered insecure because Alice watches movie
when she no longer has a subscription. Here,
the release of knowledge is considered transient
and it should satisfy the active security policy
at every program location. Hence, despite be-
ing perfect recall, Alice should not be able to
watch movie at a time this is disallowed by the
policy (line 4). In fact, equation (C.1) holds

in line 2 since Alice watches the movie and the policy allows her to watch
movie, i.e. hence p2 ⊆ k2 since {movie} ⊆ {movie}. However, in line 4 we
have that p4 ̸⊆ k4 since All ̸⊆ {movie}, where All denotes the set of all possi-
ble movies. Hence, the program is correctly rejected by the security condition (C.1).

Program C.2

1 Movie→ Alice

2 Alice.watch(movie)
3 Movie ̸→ Alice

4 Alice.watch("NoSubscription!")

Consider now Program C.2, a variation
of Program C.1, displaying the message
NoSubscription! after the second pol-
icy change. This program is also re-
jected by condition (C.1) since p4 ̸⊆ k4,
i.e. All ̸⊆ {movie}, even though the
NoSubscription! message does not
leak anything.

To address this case, Askarov and Chong [88] identify the power of perfect recall
attacker as a key issue and present a security condition that accounts for weaker
attackers. Their security condition requires that the attacker’s change in knowledge
should be allowed by the active policy, thus at any program location i + 1 the
attacker’s knowledge ki+1 should be smaller than the attacker’s prior knowledge
and the policy knowledge at location i:

pi ∩ ki ⊆ ki+1 (C.2)

Condition (C.2) now accepts Program C.2 as secure since p3 ∩ k3 ⊆ k4, i.e. All ∩
{movie} ⊆ {movie}. However, surprisingly condition (C.2) also accepts Program C.1
since p3 ∩ k3 ⊆ k4, i.e. All ∩ {movie} ⊆ {movie}. The root of the issue here is
that perfect recall attacker is too powerful and can remember any observations
made in the past, e.g. in line 2. To overcome this issue, Askarov and Chong only
consider condition (C.2) for weaker attackers with bounded memory. For example, a
bounded memory attacker that remembers only the last observation would now reject
Program C.1 since the second observation of movie in line 4 reveals new information
to a bounded memory attacker. In fact, now p3 ∩ k3 ⊆ k4 since All∩All ̸⊆ {movie}.
Similarly, Program C.2 is secure since a bounded attacker learns nothing about

139

movie by observing the message NoSubscription!, namely p3 ∩ k3 ⊆ k4 since
All ∩ All ⊆ All. Condition (C.1) treats these programs similarly for a bounded
memory attacker.

A key question arises at this point: How does a policy designer choose the right
attacker model, and hence security condition, for their setting? While in principle
there may always exist a bounded memory attacker that accommodates specific
use cases as above, it is unclear what such attacker model should be. Askarov
and Chong answer this question by requiring that condition (C.2) holds for all
attackers, including perfect recall and bounded memory attackers. This is important
because it enables compositional reasoning and facilitates enforcement by a security
type system, however, security for all attackers can be too restrictive in settings
where, e.g, only the perfect recall or a bounded memory attacker is realistic. In fact,
Broberg et al. [114] discuss use cases where the same program can be considered
either secure or insecure under different attacker models.

More importantly, condition (C.2) permits any policy changes although these changes
may contradict the assumptions about the attacker.

Consider Program C.3 handling information about users’ salaries. Initially, both
Alice and Bob allow Eve to learn their salaries, however, the program displays only
the average salary to Eve. Then Alice decides that her salary should no longer be
visible to Eve and the program displays Bob’s salary.

Program C.3

1 Alice→ Eve

2 Bob→ Eve

3 outputEve((Alice.salary + Bob.salary) / 2)
4 Alice ̸→ Eve

5 outputEve(Bob.salary)

Let As and Bs be the salary of Alice and Bob, respectively. Under a perfect
recall attacker, Program C.3 satisfies condition (C.2). Indeed Eve can combine the
average salary (line 2) and Bob’s salary to learn Alice’s salary, hence k5 = {(As, Bs)}.
Therefore, p4 ∩ k4 ⊆ k5 since {All × Bs} ∩ {(a, b) | (a + b)/2 = (As + Bs)/2} =
{(As, Bs)} ⊆ {(As, Bs)}. The program is also accepted for a bounded memory
attacker that remembers only the last output.

Under the perfect recall attacker, we argue that Program C.3 should not be accepted.
The mere definition of perfect recall assumes that the attacker remembers any
observations and can use these observations to infer information about the salaries
of Alice and Bob. The real problem lies in the change of the policy in line 4. Because
Eve’s knowledge in line 3 reveals some information about Alice’s salary (and Eve

140

has perfect recall) the policy change in line 4 is inconsistent, trying to revoke access
to a resource, i.e. Alice’s salary, that Eve has already some information about.
Hence, the policy change in line 4 should be disallowed in the case of a perfect
recall attacker. A similar argument applies to Program C.1 and Program C.2
under the perfect recall attacker. The reader may find this surprising, especially
for Program C.2, but, again, the attacker has perfect recall, hence they remember
the observation of movie in line 2. Therefore, restricting access to the attacker to
some information they already have is meaningless and should be prevented by the
security condition. In fact, by considering the intersection of the knowledge and
policy (pi ∩ ki), condition (C.2) effectively enforces condition (C.1) under a different
policy p = pi ∩ ki. This leads us to proposing a new (class of) conditions which is
parameterized by an attacker A:

pA
i ⊆ kA

i (C.3)

In contrast to condition C.1, condition C.3 makes the role of the attacker explicit in
the definitions of knowledge and policy, as well as considers the consistency of a
security policy. We instantiate the security condition (C.3) to characterize three
attacker models: perfect recall, bounded memory, and forgetful. For the perfect recall
attacker, our security condition corresponds to equation (C.1), ensuring that policy
changes are consistent at any program location i. For a bounded memory attacker,
the condition captures a weaker attacker which remembers observations up to a
predefined bound m, extending the weaker attackers of Askarov and Chong [88]
with policy consistency checks. Finally, the forgetful attacker captures scenarios
in which the release of knowledge is transient and limited to the event of a policy
change, thus ensuring that the attacker forgets (or resets) their knowledge whenever
there is a policy change. This attacker model allows: (1) Reject Program C.1 since
Alice attempts to (re-)watch the movies at a time this is prevented by the active
policy; (2) Accept Program C.2 (Program C.3) since Alice (Eve) does not learn
any information about movie (Alice’s salary) at any time this is prevented by the
active policy.

C.3 Language Design

We present a simple imperative language with extended commands for policy change
and outputs. We assume that outputs are performed on channels associated with
security labels X, Y, ℓ ∈ L.

Syntax Figure C.1 presents the syntax of our language. Expression e consists of
program variables x, values v, and binary operations ⊕. For simplicity, we restrict
values to only integers n. Most of the commands are standard with the exception
of output and setPolicy. Output command outputℓ(e) evaluates expression e to

141

V alues v ::= n
Expressions e ::= v | x | e1 ⊕ e2
Commands c ::= skip | x := e | c1; c2 | if e then c1 else c2

| while e do c | outputℓ(e) | setPolicy(p)

Figure C.1: Syntax

Skip

⟨skip; c, σ, p⟩ ϵ−→ ⟨c, σ, p⟩

Assign
σ(e) = v

⟨x := e, σ, p⟩ ϵ−→ ⟨skip, σ[x 7→ v], p⟩

Seq
⟨c1, σ, p⟩

α−→ ⟨c′
1, σ

′, p′⟩
⟨c1; c2, σ, p⟩

α−→ ⟨c′
1; c2, σ

′, p′⟩

If-Else-T
σ(e) ̸= 0

⟨if e then c1 else c2, σ, p⟩
ϵ−→ ⟨c1, σ, p⟩

If-Else-F
σ(e) = 0

⟨if e then c1 else c2, σ, p⟩
ϵ−→ ⟨c2, σ, p⟩

While

⟨while e do c, σ, p⟩ ϵ−→ ⟨if e then (while e do c) else skip, σ, p⟩

Output
σ(e) = v

⟨outputℓ(e), σ, p⟩ o(v,ℓ)−−−−→ ⟨skip, σ, p⟩

Set-Policy

⟨setPolicy(p′), σ, p⟩ np(p′)−−−−→ ⟨skip, σ, p′⟩

Figure C.2: Semantics

some value v and then outputs v on channel ℓ. Command setPolicy(p) sets the
current security policy to p.

Semantics Figure C.2 presents the operational semantics of the language. A
configuration is a tuple ⟨c, σ, p⟩ consisting of a command c, a store σ mapping
variables to values (i.e. σ = V ars→ V al), and a policy p that represents the current
active security policy. We use judgments of the form ⟨c, σ, p⟩ α−→ ⟨c′, σ′, p′⟩ to denote
that configuration ⟨c, σ, p⟩ can take a single step to configuration ⟨c′, σ′, p′⟩ and
optionally emit an event α ∈ Ev.

Events Ev include o(v, ℓ) to denote the output of value v on channel ℓ, np(p′) to
denote the activation of new policy p′, or ϵ to indicate that no event was emitted.

We write σ(e) = v to indicate that expression e evaluates to value v in store
σ. We write σ[x 7→ v] to denote a new store that maps variable x to value v
and otherwise behaves the same as σ. Most of the semantic rules are standard.
Command setPolicy(p′) modifies a configuration to activate policy p′ and emits
the new policy event np(p′). Output command outputℓ(e) evaluates e to value v,
and emits the event o(v, ℓ).

142

A trace t ∈ Ev∗ is a (possibly empty) sequence of events. We write | t | for the
length of trace t and t1.t2 for concatenation of traces t1 and t2. We define projection
of an event α to channel ℓ, written α⇂ℓ, as: α⇂ℓ= α if α = o(v, ℓ), otherwise α⇂ℓ= ϵ.
We lift projection to traces as: (α.t′)⇂ℓ= α⇂ℓ .t′⇂ℓ if t = α.t′, otherwise t⇂ℓ= ϵ.

We write ⟨c, σ, p⟩ t=⇒ ⟨c′, σ′, p′⟩ if ⟨c, σ, p⟩ takes one or more steps to reach config-

uration ⟨c′, σ′, p′⟩ while producing the trace t. We write ⟨c, σ, p⟩ t=⇒n⟨c′, σ′, p′⟩ to
denote n execution steps and omit the final configuration whenever it is irrelevant,
as in ⟨c, σ, p⟩ t=⇒ . An execution point i denotes a configuration (ci, σi, pi) such that

⟨c0, σ0, p0⟩
t=⇒i⟨ci, σi, pi⟩.

C.4 Security Framework

In this section, we present knowledge-based and attacker-centric security conditions
for a range of relevant attackers and explore their differences. As discussed informally
in Section C.2, the security condition has the form pA

i ⊆ kA
i , meaning that in every

step of the program’s execution, the active security policy should be the upper
bound of the attacker’s knowledge. We instantiate this condition for different
attacker models to consider security-relevant events such as policy changes and
attacker-visible program outputs.

Security Polices

We consider a multi-user setting where a program c handles data on behalf of
different users which are identified by security labels ℓ ∈ L. For simplicity, we
assume that the users’ data is read upfront and resides in the initial store of the
computation. Section C.4 presents an extension to programs with arbitrary inputs.

A security policy p is a list of flows of the form ℓ1 → ℓ2 and is used to define what
an observer at a specific security label ℓ2 is allowed to learn about the initial values
with label ℓ1. We assign security labels to the variables and use function Γ which is a
mapping from variables to security labels (i.e. V ars 7→ ℓ). For simplicity, the name
of a program variable (e.g. x) will match its security label (e.g. X), and we write
X → A to denote that an observer at channel with label A can learn values with
label X (i.e. X can flow to A). Throughout this paper, we use pinit as a predefined
initial policy from which all programs start their execution. It is a simple reflexive
policy that only allows a security label to flow to a corresponding channel with the
same label (i.e. X → X). We use X → A to add new non-reflexive flows to the list
of allowed policies, and X ̸→ A to revert (disallow) such a flow.

143

A security policy induces an equivalence relation over stores. Intuitively, for the
flow X → A, two stores are related to each other by an equivalence relation for an
observer on channel A if they have identical values for variables with security label
X. Formally:

σ ≡p
A σ′ iff ∀x ∈ V ar : Γ(x) = X and X → A ∈ p. σ(x) = σ′(x)

We write [σ]pA for the set of stores in the same equivalence class as σ with respect
to a policy p and an observer A. If σ ≡A σ′ (i.e. σ′ ∈ [σ]pA), then an observer on
channel A cannot distinguish between stores σ and σ′. Henceforth, we call such an
observer the attacker and fix its label to A. Observe that more fine-grained policies
can be defined in the expected manner by refining the definition of [σ]pA, e.g. by
mapping each label to an equivalence relation on program stores as defined by the
policy p [116, 163]. We discuss fine-grained policies in Section C.6.

In line with existing work on dynamic policies [88, 116, 163], we assume that policy
changes are not observable externally, e.g. to an attacker A. In our multi-user
setting, policy changes result from internal events of the underlying system itself,
e.g. restricting access to a service, and these operations are typically carried out by
the system administrator. This assumption applies to real-world scenarios where a
user does not directly control their access rights, while the policies governing these
access rights are introduced to the system by an administrator. Nevertheless, our
framework can be easily extended to accommodate observable policy changes by
considering such events similar to program outputs.

Security Conditions and Attacker Models

Our main focus is on the confidentiality of data, hence we consider a (logically
omniscient) passive attacker that knows the program’s source code and wants to
deduce sensitive information about the initial store values. Our goal is to identify
security conditions for dynamic policies by investigating the relationship between
the attacker’s knowledge and the policy knowledge for a range of attackers.

We present our knowledge-based security conditions for perfect recall and forgetful
attackers. For space reasons, we refer the reader to Appendix C.3 for similar results
on bounded memory attackers.

Perfect Recall Attacker

We model this attacker’s knowledge of the initial store σ as a set k, which includes
all of the possible stores that can produce the same observable trace. We assume
the attacker with security level A is passively observing all outputs on channel with
label A. When a command such as outputA(v) executes, the attacker sees this
output and learns the value v. We define attacker’s knowledge as:

144

ñ Definition C.1 (Perfect recall attacker knowledge at point i)

Given program c with initial store σ, and initial policy pinit, which produces
trace t after i execution steps, i.e. ⟨c, σ, pinit⟩

t=⇒i, the knowledge of a perfect
recall attacker that observes program outputs on channel A is defined as:

ki(c, σ, pinit, A) = {σ′ | ⟨c, σ′, pinit⟩
t′

=⇒j ∧ t⇂A= t′⇂A}

Intuitively, ki(c, σ, pinit, A) is the set of initial stores that the attacker at channel A
believes are possible when observing the trace t⇂A at execution point i. Thus, the
larger the knowledge set, the less certain the attacker is of the actual values in σ.

The Perfect Recall attacker has unlimited memory and can remember all outputs on
channel A. This attacker is the most powerful attacker, because once they observe
an output value they will never forget it, hence, a policy can no longer restrict the
knowledge resulting from the attacker’s past observations. Arguably, in presence
of such an attacker, programs like C.3 should be rejected, because, as mentioned
earlier, we cannot make the attacker forget what they already know. Therefore, it
is not reasonable to issue a new policy that prevents this attacker from learning
information which they already know.

With this intuition in mind, we need to ensure that any policy update is consistent
with the current knowledge of the perfect recall attacker:

ñ Definition C.2 (Policy consistency)

For all execution points i, and security policies pi such that

⟨c, σ, pinit⟩
t=⇒i−1⟨setPolicy(pi); ci, σi−1, pi−1⟩

np(pi)−−−−→ ⟨ci, σi−1, pi⟩

we say policy pi is consistent with the current attacker knowledge
ki−1(c, σ, pinit, A) if [σ]pi

A ⊆ ki−1(c, σ, pinit, A).

Program C.4

1 setPolicy(X → A);
2 outputA(1);
3 setPolicy(X ̸→ A);
4 outputA(x);

A security policy induces an equivalence
relation over all possible stores, and
[σ]pi

A is a set of stores in the same equiv-
alence class as initial store σ. Since
by Definition C.1 attacker knowledge
ki−1(c, σ, pinit, A) is also a set of ini-
tial stores, it is straightforward to check
[σ]pi

A ⊆ ki−1(c, σ, pinit, A).

For example in Program C.4, the new policy X ̸→ A in line 3 is consistent, because
the attacker does not learn anything about x by observing the output in line 2, hence

145

the new policy that disallows learning x is consistent. However, under this new
policy, Program C.4 should be rejected, because the output of x in line 4 happens
at a time when the policy does not allow it.

We follow this intuition to define security.

ñ Definition C.3 (Observation security)

For all execution points i such that

⟨c, σ, pinit⟩
t=⇒i−1⟨outputA(e); ci, σi−1, pi−1⟩

α−→ ⟨ci, σi, pi⟩

program c is secure if [σ]pi

A ⊆ ki(c, σ, pinit, A).

This definition ensures that, whenever an output on channel A happens, the attacker’s
knowledge at that point is allowed by the current policy. In other words, the policy
places an upper bound on the attacker’s knowledge2, and if the knowledge does not
exceeds that limit, the program is secure.

ñ Definition C.4 (Security condition for perfect recall)

A program c is secure under the perfect recall attacker if Definitions C.2
and C.3 hold.

We deliberately separate Definitions C.2 and C.3 to distinguish between policy
consistency checks and security checks. A failed policy consistency check means that
there is a mismatch between the attacker’s power and the new policy. Therefore, a
policy inconsistency can be repaired with a new policy that takes into account the
attacker’s knowledge. On the other hand, a failure of observation security (Definition
C.3) cannot be repaired and it implies that the program is insecure.

Forgetful Attacker

We now consider an attacker that resets its knowledge after a policy change. This
is specially useful for real-world applications where the release of information is
not permanent and should be consistent with the active security policy at the time
of the release. Program C.1 in Section C.2 is an example of the usefulness of this
attacker model. Intuitively, a policy change at an execution point i means that, from
the point i onward, the new policy should govern the release of information and any
past knowledge should be ignored. The term “forgetful attacker” may not exactly
reflect a real world attacker that suddenly forgets everything after a policy change.
It is an artifact of modeling scenarios in which a policy change enforces a new

2Observe that the attacker’s knowledge, in contrast to the policy knowledge, is precise, and it
is not an upper bound.

146

condition on information release, independently of what an attacker may already
know as result of past observations. For example, an employee may have accessed a
company’s information (and even stored it externally), however, no access to the
same information should be allowed when they leave the company. This setting
requires ignoring the attacker’s knowledge prior to the policy change, essentially
resulting in a forgetful attacker. We first discuss some examples illuminating the
subtleties of forgetful attackers and then present our security condition.

Program C.5

1 setPolicy(X → A, Y → A);
2 outputA(y);
3 if (x > 0) then
4 outputA(1);
5 setPolicy(X ̸→ A, Y ̸→ A);
6 if (x <= 0) then
7 outputA(1);
8 outputA(2);

Consider Program C.5 as an example. When
the execution reaches the setPolicy com-
mand in line 5, there are two possible traces
that the attacker could have observed: t1 =
y.1 and t2 = y, both leaking the value of
y. One may think that trace t1 leaks the
sign of x but this is not the case. Because
the attacker’s knowledge is derived through
observations and the policy changes are not
observable, the attacker cannot tell which
if statement has produced the output 1 of
trace t1. Therefore, these traces reveal noth-

ing about x, and at the time of policy change, the attacker only knows y as stipulated
by the policy in line 1. The new policy now prevents the attacker from learning y
again, hence no outputs after the policy change should leak y. In fact, all executions
after the policy change will output the values 1 and 2. Note that even though the
output 1 on line 7 happens after the policy change, it still cannot leak the sign of x,
therefore, Program C.5 is secure.

Program C.6

1 setPolicy(X → A, Y → A);
2 outputA(1);
3 if (x > 0) then
4 outputA(y);
5 setPolicy(X ̸→ A, Y ̸→ A);
6 if (x <= 0) then
7 outputA(y);
8 outputA(2);

Program C.6 is similar except that it
outputs the value of y at lines 4 and
7. In this case, if the execution did not
take the first if statement, the attacker
observes the trace t = 1 which leaks
nothing about x or y, thus at the time
of policy change the attacker forgets
nothing. However, when y is outputted
in line 7, the attacker learns this value
and because this is not allowed by the
policy, the program is insecure.

Programs can leak through the progress of computation e.g. when the number of
outputs depends on information that is disallowed by the policy [55]. It is our
intuition that forgetful attackers should not forget these progress leaks. Once the
length of a trace, i.e. the number of outputs, leaks some information, any extension
of that trace will leak the same information again, thus it is not reasonable for
a forgetful attacker to forget progress leaks. This can be captured by making

147

forgetful attackers remember the number of observed outputs, including the ones
that happened before a policy change. This approach captures progress leaks even
when they manifest after a policy change. This is similar to the idea of counting
attackers presented in van Deft et al. [116].

Program C.7

1 setPolicy(X → A);
2 if (x > 0) then
3 outputA(1);
4 outputA(1);
5 else
6 outputA(1);
7 setPolicy(X ̸→ A);
8 outputA(1);

Program C.7 illustrates the effect of progress
leaks on the attacker’s knowledge. When the
execution reaches the policy change at line 7,
the attacker could have observed trace t1 = 1
or t2 = 1.1. Since the policy change event is
not observable by the attacker and any program
execution can yield at least 2 outputs (e.g. trace
1.1), the attacker learns nothing about x. Later,
after the new policy at line 7 becomes active,
the output at line 8 occurs. One of the traces
that the attacker could have observed at this
point is t2 = 1.1.1. This trace leaks that the

first if statement must have been executed and x > 0, which violates the active
policy. Therefore, the number of outputs leaks the sign of x, which happens after
the policy change, hence the program should be flagged as insecure.

With these intuitions in mind, we proceed to define the knowledge of forgetful
attacker. We call the trace between two policy changes an epoch and use the
policy events (np(p)) to partition the trace into multiple epochs. At each step, the
observable events of the last epoch, as well as the number of events in previous
epochs can affect the forgetful attacker’s knowledge. To be able to separate the last
epoch from the whole trace, we define the following auxiliary functions: splitPolicy(t)
takes a trace t and returns a tuple containing all events before and after the last
new policy (np(p)) event; split(t, n) takes a trace t and a number n, and returns a
tuple containing the first n events and the reminder of events in the trace.

ñ Definition C.5
Given a trace t such that t = α1 . . . αi . . . αk,

splitPolicy(t) =


(ϵ, t) if αr ̸= np(p) r = 1 . . . k

(α1...αi , αi+1...αk) if αi = np(p)
∧ αr ̸= np(p) r = i + 1 . . . k

(t, ϵ) if αk = np(p)

148

ñ Definition C.6
Given a trace t such that t = α1 . . . αi.αi+1 . . . αk,

split(t, n) =
{

(t, ϵ) if k ≤ n

(α1 . . . αi , αi+1 . . . αk) if i = n

Using these auxiliary functions, we can proceed to define the forgetful attacker’s
knowledge as:

ñ Definition C.7 (Forgetful attacker knowledge at point i)

Program c with initial store σ and initial policy pinit produces trace t

after i execution steps, i.e. ⟨c, σ, pinit⟩
t=⇒i. Let (t1, t2) = splitPolicy(t), we

define for the knowledge of a forgetful attacker that observes the program
outputs on channel A as:

kfrg
i (c, σ, pinit, A) = {σ′ | ⟨c, σ′, pinit⟩

t′′

==⇒j

∧ (t′′
1 , t′′

2) = split(t′′⇂A, | t1⇂A|)
∧ t′′

2 = t2⇂A}

Intuitively, for each execution point i, we identify the traces before (t1) and after (t2)
the last policy change. The goal is to forget the knowledge induced by attacker’s trace
t1⇂A and compute the knowledge induced by t2⇂A. We achieve this by considering
any initial states that produce the same number of outputs as | t1⇂A| and the same
outputs as t2⇂A. Note that this condition (as all our conditions) is progress sensitive
and accounts for progress leaks. We remark that progress leaks are never forgotten
once they are revealed at some execution point.

We can now use the definition of knowledge from Definition C.7 to obtain the
security condition for forgetful attackers.

ñ Definition C.8 (Security condition for forgetful attacker)

For all execution points i such that

⟨c, σ, pinit⟩
t=⇒i−1⟨outputA(e); ci, σi−1, pi−1⟩

α−→ ⟨ci, σi, pi⟩

program c is secure if [σ]pi

A ⊆ kfrg
i (c, σ, pinit, A).

Appendix C.2 exercises the definition for Programs C.5–C.7 to investigate their
security.

149

We can now show that if a program is secure against the perfect recall attacker, it
is also secure against less powerful attackers such as bounded memory attackers
and forgetful attackers. Here, we present a theorem and prove this claim for the
forgetful attackers.

� Theorem C.1
Given a program c, initial store σ, and initial policy pinit, if for all execution
points i, c is secure against perfect recall attacker Aper, it is also secure
against forgetful attacker Afrg. Formally:

[σ]pi

A ⊆ ki(c, σ, pinit, Aper) =⇒ [σ]pi

A ⊆ kfrg
i (c, σ, pinit, Afrg)

Appendix C.3 contains the proof of Theorem C.1 and the corresponding theorem
for bounded memory attackers.

Repairing Inconsistent Policies

An inconsistent policy means that the policy is incompatible with the current
knowledge of the attacker. One approach is to always reject the programs with
inconsistent polices, because pi ̸⊆ ki. Alternatively, we can suggest the user a
new policy that is consistent with the attacker’s current knowledge. Generally, a
policy change is inconsistent if it restricts access to information that has already
been learned by the attacker. Our goal is to relax these restrictions and add what
has been learned by the attacker to the new policy to achieve a consistent policy.
The intersection of the new policy and the attacker’s knowledge (pi ∩ ki) is a good
candidate because it includes all of the new flows introduced by the new policy,
and uses the knowledge of the attacker to relax the restrictions of the new policy.
Intuitively, the consistent policy pi∩ki corresponds to the most adequate policy that
meets the intention of the policy change pi while being in line with the attacker’s
current knowledge ki.

ñ Definition C.9 (Consistent policy repair)

For all execution points i such that

⟨c, σ, pinit⟩
t=⇒i−1⟨setPolicy(pi); ci, σi−1, pi−1⟩

np(p′
i)−−−−→ ⟨ci, σi−1, p′

i⟩

the repaired policy p′
i is induced by [σ]pi

A ∩ ki−1(c, σ, pinit, A).

While previous approaches [88, 116, 163] use intersection as part of the security
conditions, here we emphasize that it corresponds to a new consistent policy, thus

150

making it explicit for the user that security of the program is checked against a
different (repaired) policy.

Generalization to Programs with Inputs

In a framework of dynamic policies, it is natural to model new information arriving
into the system via input channels. We show how our framework can accommodate
programs with inputs with minimal changes. We extend the syntax of the language
with an input command inputℓ(x) which reads a value from the input channel
with label ℓ and assigns it to variable x. Clark and Hunt [57] have shown that for
deterministic interactive systems, streams are sufficient to model arbitrary interactive
input strategies. An input stream is an infinite sequence of values representing the
pending inputs on a channel. We assume there is one input channel for each security
level ℓ and an input environment ω mapping labels to input streams. We extend the
configurations ⟨c, σ, p, ω⟩ with the input environment ω and the evaluation steps as
expected. We write v : vs for a input stream with the first element v and remaining
elements vs, and ω[ℓ 7→ vs] for the input environment that maps input stream with
label ℓ to vs and otherwise behaves the same as ω. The semantics of input command
is defined as:

Input
ω(ℓ) = v : vs ω′ = ω[ℓ 7→ vs]

⟨inputℓ(x), σ, p, ω⟩ i(v,ℓ)−−−→ ⟨skip, σ[x 7→ v], p, ω′⟩

This command updates the store σ with value v for variable x, and continues with
vs as the reminder of the input stream of label ℓ, while emitting the input event
i(v, ℓ). Events and traces are extended with input events in the expected manner.

We can now define security policies as equivalence relations over input environments.
Two input environments are equivalent for a policy p and an attacker on channel A,
i.e. ω ≡A

p ω′ iff ∀ℓ→ A ∈ p . ω(ℓ) = ω′(ℓ). We write [ω]pA for the equivalence class
of ω with respect to the policy p and attacker A. With these definitions at hand,
we can easily redefine the attacker knowledge over input environments and use the
same security conditions adapted with the new definitions of attacker knowledge
and security policies. This extension are straightforward and we omit them here in
the interest of space.

C.5 Facets of Dynamic Policies

In this section we revisit the facets of dynamic policies, introduced by Broberg et
al. [114], and discuss them in our framework from an attacker-centric perspective.
Our goal is to show how these facets can be accommodated in our framework,

151

illuminating on the different types of flows. We have modified and adapted the use
cases to fit our language model with explicit outputs.

Time-transitive flows A flow is time-transitive if it moves information from level
X to level Z via a third level Y , while a direct flow from X to Z is never allowed
by the policy. Program C.8 illustrates such a flow. It reveals information about
Patient to DrPhil who joined the hospital after Patient had left.

Program C.8

1 setPolicy(Patient→ Hospital,Hospital ̸→ DrPhil);
2 hospital := patientData;
3 setPolicy(Patient ̸→ Hospital,Hospital→ DrPhil);
4 drPhil := hospital;
5 outputDrP hil(drPhil);

According to Broberg et al. [114] time-transitive flows should be considered insecure
in scenarios where a data flow such as Patient→ Hospital is only allowed temporary
for as long as Patient is under treatment in the hospital. Our framework can identify
the insecurity of such scenarios; when outputDrP hil(drPhil) happens it indirectly
reveals the value of patientData which is not allowed by the active policy. A similar
argument applies to bounded memory and forgetful attackers. The main reason for
rejecting these flows is that the observer DrPhil did not see the data at the time
he was allowed to and the actual flow has happened at a time when patient had
already left the hospital.

Broberg et al. [114] also interpret time-transitive flows as secure by considering the
assignment in line 2 as a permanent declassification. Using permanent declassification
means changing the label of patientData to Hospital permanently, however, this
means that the policy Patient ̸→ Hospital becomes irrelevant, since patientData
no longer has the label of Patient and hence it not affected by its policy. In
our framework, this interpretation amounts to a program that allows flows from
Hospital to DrPhil and subsequently outputs the data to DrPhil.

Program C.9

1 setPolicy(Creditcard→ Log);
2 outputLog(creditcard);
3 setPolicy(Creditcard ̸→ Log);
4 outputLog(creditcard);

Replaying flows model scenarios in
which when a piece of information is re-
leased, it can be released again, regardless
of the active policy. Program C.9 illus-
trates such a flow. When creditcard is
written to a log file, it should be available
until the log is cleared.

Replaying flows should be considered secure when the release of information is
permanent [114]. Permanent release of information means that an observer can

152

access any information they had learned before, irregardless of the active policy.
For example in Program C.9, if the output in line 2 permanently releases the
creditcard information to Log, the observer at level Log can always access it later.
This definition can be captured by our framework, by adapting the Definition C.9
for inconsistent policies. This means that the new policy will be the intersection of
the knowledge of the attacker k and new the policy p, and since the output in line 2
adds creditcard to the knowledge of the attacker, k ∩ p will always include that
knowledge, hence permanently releasing it.

However, considering information as permanently released is not always the natural
choice in every situation; for example in Program C.1, Alice should not have access
to the movie after her subscription ended. Forgetful attackers in our framework are
good candidates for dealing with such scenarios where we want to ignore the effects
of the earlier release and accept or reject programs only based on the current active
policy. This intuition is similar to the insecure time-limited subscription example of
Broberg et al. [114].

Program C.10

1 setPolicy(Salary → Screen);
2 outputScreen(0);
3 setPolicy(Salary ̸→ Screen);
4 outputScreen(salary);

Direct Release means that information is
considered released as soon as the current
policy permits the flow. Program C.10 il-
lustrates such a flow where salary is not
printed to the screen when the flow is al-
lowed, but it is printed when the flow is no
longer permitted.

Broberg et al. [114] argue that these flows are insecure when the attacker can
only observe information that is actively provided (through for example an output
channel). In Program C.10 nothing about salary has been printed to the screen,
hence it makes sense to assume that an observer does not know this information.
Our framework follows this intuition and rejects this flow under all attacker types
and policy checks; because an attacker learns nothing from output of line 2 and the
output on line 4 always violates the active policy.

However, this type of flow can be considered secure if we model attackers as
constantly observing, directly in the memory, all the information which they are
allowed to learn. We can model such a behavior by outputting all the variables
with label Salary as soon as the policy Salary → Screen is activated. However,
doing so effectively changes the nature of this flow to a replaying flow, and as it
was discussed earlier, replaying flows can be secure only if we consider permanent
release of information.

Whitelisting flows A flow is allowed whenever there is some part of the policy that
allows for it. Program C.3 in Section C.2 is an example of whitelisting flows, where
the observer Eve can use her knowledge of (Alice.salary + Bob.salary) / 2
and Bob.salary to learn the salary of Alice. For perfect recall attackers, our
framework rejects this class of programs because they have inconsistent policy

153

changes. This is inline with the insecure example presented by Broberg et al. [114]
which argue that information belonging to two entities Alice and Bob (in this case
the average of their salaries) should be available only when both of them allow it.

Program C.11

1 setPolicy(Secret→ Public,Key → Public);
2 outputP ublic(secret XOR key);
3 setPolicy(Secret ̸→ Public,Key → Public);
4 outputP ublic(key);

Broberg et al. [114] presents Program C.11 as a secure example for whitelisting flows,
where first the encrypted value (secret XOR key) is released and then later the
key. Broberg et al. [114] argue for the security of this example on the grounds that
key is an encryption key, and “with the release of this key an observer learns the
secret information that was earlier released encrypted under that key, even though
part of the policy does not allow the secret to be released”. This intuition is inline
with inconsistent policy repair of Definition C.9, since we know that the encrypted
values have already been outputted and publishing the key releases them as well,
we should either explicitly add Secret→ Public to the policy, or use Definition C.9
to update the policy.

C.6 Verification of Dynamic Policies

This section discusses the precise verification of dynamic policies by symbolic
execution and automated theorem proving. Our verification approach operates
in two phases: (1) it extracts the dependencies of a source program by means of
symbolic execution and (2) it verifies the security conditions for dynamic policies
under different attacker models by relying on an SMT solver.

We impose some restrictions on the source program to make the analysis in (1)
feasible. First, we assume a bounded model of runtime behavior, hence programs
always terminate. Second, we assume all inputs from external environments can
be read at the beginning. Hence, to support programs with inputs, one can assign
fresh variables to each of the elements of a (finite) input stream. The output of
phase (1) is a graph capturing dependencies between program inputs and outputs.
We refer to existing works for details on symbolic execution [35].

Specifically, we analyze source programs symbolically to extract precise dependencies
between program inputs and outputs. Observe that this information is sufficient to
reason about security because security policies refer to program inputs and attacker
observations are made though program outputs.

154

start

xn1

1n2

3n4

2 n3

3 n5

end

y > 0

y > 0

y ≤ 0

y ≤ 0

Figure C.3: SOT of Program C.12

For each program output, our symbolic anal-
ysis stores a path condition Pc ∈ PC and
an output expressions e ∈ Exp which are
defined over the program inputs. The path
condition is a predicate that represents the
set of initial concrete values that trigger the
execution of an output expression e. In par-
ticular, any satisfying assignment3 δ of path
condition Pc determines a concrete program
output as computed by δ(e).

We represent these dependencies in the form
of symbolic output trees (SOT) consisting
of: (a) a set of nodes B labeled with output
expressions e ∈ Exp; (b) a set of control
flow edges E ⊆ B × B; (c) a set of path
conditions PC; (d) a mapping from nodes
to output expressions O : B 7→ Exp; (e)
a mapping from edges to path conditions
L : E 7→ PC; and (f) a root node Start.

Program C.12

1 setPolicy(X → A, (Y > 0)→ A);
2 outputA(x);
3 if (y > 0) then
4 outputA(1);
5 else
6 outputA(2);
7 outputA(3);

We also extend the SOT with a special
node End, in order to make terminal
states explicit in the construction. Fig-
ure C.3 illustrates the SOT of Program
C.12. Node n3 indicates that for all ini-
tial values of variable y such that y ≤ 0,
the second output of the program is the
expression 2.

We define security policies with respect
to an attacker at security level A. For
a program variable x such that X → A,

we denote its initial value by l (for low) to reflect that variable x can be observed by
A, otherwise we denote it by h (for high). We lift this notation to tuples of input
variables

−→
l and

−→
h in the expected manner. Moreover, we support fine-grained

policies modeled by predicates ϕ over initial values of variables. We define the policy
P over

−→
l ,
−→
h , written as P (

−→
l ,
−→
h) by the predicate:
−→
l =
−→
l ′ ∧ ϕ (C.4)

where
−→
l ′ stands for the renames of low variables, and predicate ϕ represents the

leaked (i.e. declassified) expressions which is defined over low and high identifiers,
3A satisfying assignment is a mapping from the free variables of P c to values, which makes the

predicate P c evaluate to true.

155

and their renames. The policy predicate P (
−→
l ,
−→
h) induces an equivalence relation

[σ]PA over initial stores σ, which corresponds to the policy knowledge (cf. Section C.4).
The relation can be constructed as follows: Let σ and σ′ be two program stores over
program variables and their renames, respectively, unprime(S) be an operator “undo-
ing” the variable renames over a set S, and q(σ)(σ′) be the evaluation of a predicate q

over σ and σ′. Then the equivalence relation [σ]PA = unprime({σ′ |P (
−→
l ,
−→
h)(σ)(σ′)})

defines the policy knowledge induced by the predicate P (
−→
l ,
−→
h).

For example, the policy in line 1 of Program C.12 means that variable x is low,
variable y is high, and expression y > 0 is leaked. Following equation (C.4), we
write the policy P (x, y) as x = x′ ∧ (y > 0 = y′ > 0).

We remark that the policy P (
−→
l ,
−→
h) corresponds to a global static policy encoding

of a standard declassification policy ϕ [29]. In fact, prior work by Balliu et al. [90]
shows how a static policy P (

−→
l ,
−→
h) can be verified against an SOT by means of an

SMT solver. Definition C.10 presents the process of generating such a formula.

ñ Definition C.10

An SOT S is secure wrt. a security policy P (
−→
l ,
−→
h) iff the following

formula is unsatisfiable:

P (
−→
l ,
−→
h) ∧

∨
n∈N(S)

(
Pcn(

−→
l ,
−→
h) ∧

(∧
n′∈N(S)

¬
(

Pcn′(
−→
l ,
−→
h ′) ∧ −→O n(

−→
l ,
−→
h) = −→O n′(

−→
l ,
−→
h ′)
)))

where −→O n is the tuple of output expressions along the SOT path to node n,−→
O n = −→O n′ denotes the component-wise equality of two tuples, and N(S)
is the nodes of S.

Definition C.10 presents a logical encoding of our security condition p ⊆ ki of
Section C.4 for the perfect recall attacker and a static policy p. Specifically, the
condition is true if all initial stores that satisfy policy p are contained in the attacker’s
knowledge set ki at each program point i. We focus only on program outputs,
since non-observable commands do not affect knowledge. The non-satisfiability
of the formula above implies that for any initial state (

−→
l ,
−→
h) that satisfies the

policy P (
−→
l ,
−→
h) and reaches some output node n (i.e. n ∈ N(S) and Pcn(

−→
l ,
−→
h))

yielding an output sequence −→O n, it is impossible to find another state (
−→
l ,
−→
h ′)

that satisfies the policy and reaches some output node n′ (i.e. n ∈ N(S) and
Pcn′(

−→
l ,
−→
h ′)) yielding a different output sequence −→O n′ . Consequently, for any

initial store (
−→
l ,
−→
h) ∈ P (

−→
l ,
−→
h), we have that (

−→
l ,
−→
h) ∈ ki, thus verifying the

156

security condition. By contrast, if the formula is satisfiable, there exist two stores
that satisfy the policy P (

−→
l ,
−→
h), but either one store does not reach the output

node or the two stores produce different output sequences. This implies that there
is an initial store (

−→
l ,
−→
h) ∈ P (

−→
l ,
−→
h), such that (

−→
l ,
−→
h) ̸∈ ki, thus violating the

security condition.

For example, the SOT of Figure C.3 is secure wrt. the above-mentioned policy
P (x, y), as witnessed by the following unsatisfiable formula:

x = x′ ∧ (y > 0 = y′ > 0) ∧
∨

n∈N(S)

(
Pcn(x, y) ∧

(∧
n′∈N(S)

¬
(

Pcn′(x, y′) ∧ −→O n(x, y) = −→O n′(x, y′)
)))

We revise this condition to verify deterministic programs with dynamic policies
for our attacker models. In a dynamic setting, the active policy at each node of S
might be different from its parent or children. Therefore, instead of generating a
single formula for the whole SOT, we need to generate a formula for every node n

corresponding to its policy Pn(
−→
l ,
−→
h). To this end, we modify the SOT generation

algorithm and enrich each node with an additional attribute to store the active
policy at the time of its creation.

Perfect Recall Attacker

We use Definition C.11 to check the security of a program wrt. the perfect recall
attacker.

ñ Definition C.11

An SOT S secure iff for all n ∈ N(S) with active policy Pn(
−→
l ,
−→
h), the

following formula is unsatisfiable:

Pn(
−→
l ,
−→
h) ∧

(
Pcn(

−→
ln ,
−→
hn) ∧

(∧
n′∈N(S)

¬
(

Pcn′(
−→
ln ,
−→
hn

′) ∧ −→O n(
−→
ln ,
−→
hn) = −→O n′(

−→
ln ,
−→
hn

′)
)))

157

In contrast to Definition C.11 here the active policy can be different in each node
(as denoted by Pcn(

−→
ln ,
−→
hn)). For a node n the formula is unsatisfiable only if there

is no other node with a satisfiable path condition Pcn′(
−→
ln ,
−→
hn

′) that can produce
a different output. Unsatisfiability of the formula for a node n means that the
program is secure wrt. the active policy at that node. To ensure security for the
SOT we repeat this process for all nodes, regenerate the formula at each node and
check its satisfiability. If none of the formulas are satisfiable, we can conclude that
the SOT S is secure.

We use a similar approach to verify the policy consistency. However, because we do
not have specific nodes for policy changes, we mark all of the nodes that appear
right after a policy change and only check the policy consistency on those nodes
using the following definition:

ñ Definition C.12

Given an SOT S, active policy Pn(
−→
l ,
−→
h), and parent(n) which returns

the parent of node n, a policy change is consistent iff for all n ∈ N(S)
such that n comes right after a policy change, the following formula is
unsatisfiable:

Pn(
−→
l ,
−→
h) ∧

(
Pcparent(n)(

−→
ln ,
−→
hn) ∧

(∧
n′∈N(S)

¬
(

Pcn′(
−→
ln ,
−→
hn

′) ∧ −→O parent(n)(
−→
ln ,
−→
hn) = −→O n′(

−→
ln ,
−→
hn

′)
)))

If a node was marked as an output after a policy change, before checking its security
using Definition C.11, we first use Definition C.12 to check the policy consistency.
The process is similar to Definition C.11, except that here instead of using the path
condition and output of node n, we use the path condition and output of its parent
(Pcparent(n)(

−→
ln ,
−→
hn) and −→O parent(n)(

−→
ln ,
−→
hn), respectively).

Following Definition C.2 in Section C.4, we check that the attacker knowledge is
allowed by the new policy. If node n is marked by the policy change it means that a
policy change has happened between n and parent(n), so we use the output of the
node before the policy change (parent node) −→O parent(n)(

−→
ln ,
−→
hn) and the new policy

(policy of the current node) Pn(
−→
l ,
−→
h) to generate the formula, and check that the

new policy is in line with the observations up to n’s parent.

The unsatisfiability of this formula means that the policy change between nodes
parent(n) and n is consistent.

158

start

xn1

1n2

1n3

2n4

3n6

2 n5

3 n7

end

y > 0

y > 0

y ≤ 0

y ≤ 0

Figure C.4: SOT of Program C.13

Figure C.4 illustrates the SOT of Program
C.13. As in the previous example, a node
with expression x represents outputting the
initial value of x (with Pc = true), while
y > 0 and y ≤ 0 are path conditions. The
nodes following a policy change are shown
with dashed lines (nodes n1 and n5).

Program C.13

1 setPolicy(X → A, Y ̸→ A);
2 outputA(x);
3 outputA(1);
4 outputA(1);
5 if (y > 0) then
6 outputA(2);
7 setPolicy(X ̸→ A, Y ̸→ A);
8 if (y <= 0) then
9 outputA(2);

10 outputA(3);

This program is rejected by the Definition
C.12, because the policy change between
nodes n3 and n5 is inconsistent. The gener-
ated formula for node n5 is:(

Pcn3(∅, {x, y}) ∧
(∧

n′∈N(S)

¬
(

Pcn′(∅, {x′, y′})

∧
−→
O n3(∅, {x, y}) = −→O n′(∅, {x′, y′})

)))

The path condition of node n3 is true and its output sequence is On3 = (x, 1, 1).
The formula is satisfiable if there exists a value for y or x where Pcn3(y) holds and
for all nodes falsifies either the path conditions or the equality between outputs.
The only node on the same level as n3 is n3 itself, which clearly means that the
path condition is also true. However, since the output sequences are (x, 1, 1) and
(x′, 1, 1), it is sufficient to pick any value for x and x′ such that x′ ̸= x to satisfy the
following formula. This implies that the policy change at node n5 is inconsistent.(

true ∧ ¬
(

true ∧ (x, 1, 1) = (x′, 1, 1)
))

The following theorems show soundness of Definition C.11 and Definition C.12 wrt.
the security conditions of Definition C.3 and Definition C.2, respectively.

159

� Theorem C.2
Given a SOT S, if the formula in Definition C.11 is unsatisfiable for all
nodes n ∈ S, then S satisfies Definition C.3.

� Theorem C.3
Given a SOT S, if the formula in Definition C.12 is unsatisfiable for
all nodes n ∈ S such that n follows a policy change, then S satisfies
Definition C.2.

Forgetful Attacker

In line with the definitions of forgetful attackers in Section C.4, we ignore the actual
values of the output expressions occurring before the last policy change. Therefore
the output tuple −→O frg

n for the forgetful attacker replaces all of the outputs that
occurred before the last policy change with the constant value 1. Additionally,
while generating the inner conjunction of the formula, we only consider the nodes
that have the same number of policy changes as n, using the auxiliary function
sameNP (S, n). Definition C.13 adapts Definition C.11 for forgetful attackers:

ñ Definition C.13

Given an SOT S, policy Pn(
−→
l ,
−→
h) at node n, S is secure wrt. forgetful

attacker iff for all n ∈ N(S), the following formula is unsatisfiable:

Pn(
−→
l ,
−→
h) ∧

(
Pcn(

−→
ln ,
−→
hn) ∧

(∧
n′∈sameNP (S,n)

¬
(

Pcn′(
−→
ln ,
−→
hn

′) ∧ −→O frg
n (
−→
ln ,
−→
hn) = −→O frg

n′ (
−→
ln ,
−→
hn

′)
)))

It uses −→O frg
n to compute output sequences, ignoring the values leaked before the

policy change. Additionally, it only generates the formula for the nodes with the
same number of policy changes. This is because the only relevant nodes for a
forgetful attacker are the ones that are on the same epoch as the current node.
Progress leaks are captured by the number of constant values in −→O frg

n and the
actual values leaked in the other epochs are ignored.

To illustrate this process, we revisit Program C.7 and its SOT in Figure C.5, and
check the security for the forgetful attacker using Definition C.13. For example, at

160

node n5 the generated formula is:(
Pcn5(∅, x) ∧

(∧
n′∈sameNP (S,n)

¬
(

Pcn′(∅, x′) ∧ −→O frg
n5 (∅, x) = −→O frg

n′ (∅, x′)
)))

start

1n1

1n3

1n5

1 n2

1 n4

end

y > 0

y > 0

y > 0

y ≤ 0

y ≤ 0

Figure C.5: SOT of Program C.7

The path condition of node n5 is x > 0
and its output sequence is −→O frg

n5 =
(true, true, 1). The formula is satisfi-
able if there exists a value for x where
Pcn5(x) holds, and for all nodes it fal-
sifies either the path condition or the
equality between outputs. The only
node with the same number of policy
changes and at the same level as n5 is
n5 itself. This clearly means that the
output sequences are equal. Therefore,
to satisfy the formula we need a value x′

that falsifies the path condition x′ > 0,
which can be any non-positive value.
Thus, the formula is satisfiable and the
program is insecure.

Theorem C.4 shows the soundness of Definition C.13 wrt. the security condition for
the forgetful attacker.

� Theorem C.4
Given a SOT S, if the formula in Definition C.13 is unsatisfiable for all
nodes n ∈ S, then S satisfies Definition C.3 for the forgetful attacker.

We refer to Appendix C.3 for proof sketches of the theorems, and Appendix C.1 for
the verification algorithm of bounded memory attackers.

Policy Repair

This section we discuss an approach for generating repair policies. As discussed
in Section C.4, a repair policy should ideally be the intersection between attacker
knowledge and the new inconsistent policy. The approach presented here leverages
the information provided by the SOT to calculate the attacker’s knowledge at node n
as a combination of the direct (outputs) and indirect (Pc values) observations made

161

by the attacker. However, this approach does not always result in the intersection as
defined by Definition C.9 as it sometimes over-approximates the attacker’s knowledge.
Developing a precise approach for generating consistent policies is left for future
work.

When the policy consistency check fails at some node n, we can calculate the knowl-
edge by traversing the SOT from n up to node start and collecting the attacker’s
explicit observations (i.e. the output expressions) and implicit observation (i.e. Pcs).
It is important to note that not all output expressions and Pcs leak information,
therefore we should only collect the ones that are leaking some information. Here
we achieve this by applying a preprocessing step to the SOT, which uses a bounded
memory attacker with memory capacity of m = 1 to determine the leaked expressions
at each level of SOT. The addition of these leaked expressions to the new policy
gives a candidate repaired policy.

The intuition behind this approach is that a new policy can only be inconsistent if it
is more restrictive than the current policy. Thus a repaired policy should ease some
of those restrictions. To this end, we extract already leaked expressions and add
them to the inconsistent policy, which gives us the most restrictive version of policy
that is consistent with the knowledge. After generating the repaired policy, we
should also update the policy field of n’s children up to the next policy change. This
is because all of the nodes between n and the ones with a new policy are affected
by the inconsistent policy.

C.7 Implementation and Evaluation

We implemented the algorithms presented in Section C.6 by extending ENCoVer
[91] and creating a prototype dubbed DynCoVer [188]. Like ENCoVer, Dyn-
CoVer relies on Symbolic PathFinder (SPF) [102], an extension of Java PathFinder
(JPF) [30], to concolically execute programs and extract the symbolic output trees
from Java bytecode.

DynCoVer analyzes the program by means of concolic testing and does the
following in a loop to explore all execution paths of the program and generate the
SOT: it starts with concrete and symbolic values for input variables and executes
the program concolically to collect each step’s path condition. These conditions
are then passed to a constraint solver to generate new inputs that explore different
paths. Upon reaching an output statement, the output expression is evaluated in
the symbolic state and a new node representing the result of that evaluation is
added to the SOT. The path condition that directed the program to this output
statement is also saved in the node.

After generating the SOT, DynCoVer traverses the tree using a depth-first search
(DFS) strategy, and for each node, depending on the attacker, it generates the

162

formulas described in Section C.6. Then, DynCoVer feeds the generated formula
to a satisfiability modulo theory (SMT) solver (Z3 in the current implementation).
If the SMT solver answers that the formula is satisfiable, then the analyzed program
is deemed insecure. DynCoVer repeats this process for all of the nodes in SOT and
if the SMT solver’s answer was unsatisfiable for all nodes, the program is accepted
as secure.

For the perfect recall and bounded memory attackers, DynCoVer also checks
the policy consistency for all nodes that are marked as “nodes following a policy
change”. DynCoVer uses Definition C.12 for generating the policy consistency
check formula, feeds it to the SMT solver, and if the result was unsatisfiable, it
deems the policy change as consistent, and moves on to checking the security on
that node.

DynCoVer also supports policy repair by relying on the heuristic of Section C.6.
If configured in repair mode, DynCoVer performs preprocessing on the SOT and
identifies leaking expressions. Upon reaching an inconsistent policy, it shows a
warning message, proceeds to generate the repaired policy, and prints it to the user.

DynCoVer uses ENCoVer [91] as a basis and extends it with support for dynamic
polices, policy consistency checks, and policy repair. DynCoVer is approximately
6 KLOC as computed by CLOC and includes nearly 86 classes/interfaces. Like
ENCoVer, the class of programs that DynCoVer can handle is indirectly limited
by the class of programs SPF (JPF core and its symbolic extension) can handle and
the class of constraints Z3 can solve.

Case Studies

To evaluate the effectiveness and efficiency of DynCoVer, we carried out two
different experiments. First, we created a micro benchmark suite to facilitate
checking and understanding dynamic policy scenarios and different types of attackers.
Second, we implemented and verified the core of a social network to demonstrate
the effectiveness of our security conditions in a real-world scenario.

These case studies target three objectives: (1) to validate that the results of
DynCoVer are in line with the conditions in Section C.4; (2) to ensure that
the policy repair heuristic works as expected; (3) to evaluate the performance of
DynCoVer.

Benchmark

Our benchmark consists of 25 programs, including programs from the paper, to
demonstrate different aspects of dynamic policies. It includes programs with various
constructs, loops, and implicit leaks. This benchmark is implemented in Java, and

163

Table C.1: Benchmark evaluation results
DynCoVer Attacker Inconsistent JPF Time (ms) SOT

Result Type Policy Mode Inst OA ME FG FS PR Nodes

Program 3 Perfect Reject 2940 219.5 8.7 1.5 31.6 − 2
Program 3 ✓ Perfect Repair 2940 231.6 8.8 0.6 31.5 20.4 2
Program 3 ✓ Forgetful − 2940 217.4 8.7 1.6 31.4 − 2

Program 7 × Perfect Reject 2964 316.4 38.4 2.6 84.1 − 5
Program 7 × Bounded Reject 2964 301.0 38.6 2.5 84.3 − 5
Program 7 × Forgetful − 2964 298.2 38.5 2.3 69.0 − 5

Program 13 Perfect Reject 2982 292.7 49.5 1.9 63.3 − 7
Program 13 ✓ Perfect Repair 2982 367.1 49.0 1.9 91.5 47.7 7
Program 13 ✓ Bounded Reject 2982 341.6 47.0 3.6 111.5 − 7
Program 13 ✓ Forgetful − 2982 300.0 48.6 2.9 68.2 − 7

DynCoVer Results: ✓ the program is secure; × the program is insecure; the program has an inconsistent
policy change.
Inconsistent Policy: What to do when facing an inconsistent policy: Reject the inconsistent policies; Repair
the policy.
JPF Inst: total number of instructions executed by JPF
Time: OA: overall; ME : model extraction ; FG: interference formula generation; FS : interference formula
satisfiability checking; PR: policy repair (only if applicable)
SOT Nodes: Number of nodes in the generated Symbolic Output Tree

the only use of non-standard command is the setPolicy method, indicating a policy
change. Each program has a configuration file which defines the attacker type, its
memory capacity, and the method used to deal with inconsistent policies. These
.jpf configuration files are used by JPF’s virtual machine and DynCoVer to verify
the program.

Table C.1 shows an excerpt of programs from the benchmark, Table C.3 in the
Appendix contains more programs. As we can see in column “DynCoVer Result”,
DynCoVer rejects insecure programs and accepts secure ones, in line with the defi-
nitions in Section C.4. In addition to the results for security and policy consistency,
Table C.1 also reports some information about the efficiency and performance of
DynCoVer. For simple programs with small number of outputs, the SOT size
and the evaluation time of DynCoVer is low. But when testing more complex
programs with multiple loops and outputs, the performance decreases. Memory
usage of DynCoVer is around 235 MB for simple programs, and starts to increase
when the number of loops and instructions increases.

Social Network

In this case study, we implemented a social network that simulates the interactions
between users, and contains some of the main functionalities of a social network,
such as following, unfollowing, blocking other users, sending DMs, and creating
groups and events. Users also have privacy settings and change their setting to hide
their sensitive information such as phone number. The high level of interactivity

164

Table C.2: Social network evaluation results
DynCoVer Attacker Inconsistent JPF Time (ms) SOT

Result Type Policy Mode Inst OA ME FG FS PR Nodes

postForFollowers Perfect Reject 13953 659.4 270.5 11.5 168.0 − 24
postForFollowers ✓ Forgetful − 13953 795.6 293.3 12.4 160.3 − 24

blockingUser Perfect Reject 14133 656.3 274.5 10.5 163.5 − 25
blockingUser ✓ Forgetful − 14133 599.4 226.6 11.5 160.1 − 25

forwardingDM × Perfect Reject 13037 519.0 169.5 4.2 154.1 − 12
forwardingDM × Bounded Reject 13037 499.5 166.8 4.4 145.0 − 12
forwardingDM × Forgetful − 13037 495.9 164.4 4.1 130.0 − 12

phoneNumberPrivacy ✓ Perfect Reject 13135 656.6 181.0 14.0 261.5 − 21
phoneNumberPrivacy ✓ Forgetful − 13135 680.7 212.7 9.8 242.9 − 21
leakMembership ✓ Perfect Reject 18569 747.0 286.8 10.1 232.0 − 19

leakMembership_leave Perfect Reject 18850 802.2 314.9 8.7 283.8 − 21
leakMembership_leave ✓ Forgetful − 18850 769.0 301.8 13.0 231.7 − 21

leakEventInfo ✓ Perfect Reject 10676 427.5 159.5 2.0 73.9 − 4

between entities in a social networks makes it a good candidate for dynamic policy
analysis.

A social network is naturally an interactive program, whose behavior is determined
by the actions of different users of the system. To model these behaviors and
make them amenable to extract the SOT of the program with DynCoVer, we
implemented an additional program which simulates the behavior of different users
involved in the execution of the interactive program.

The Java implementation of the social network has 5 classes and 659 LOCs. There
is one class for each of the entities: server, user, group, event, and post. To evaluate
this case study, 6 different scenarios have been implemented and examined. The
results of these experiments are reported in Table C.2.

In the postForFollowers scenario, users interact by following each other and
creating posts. The goal here is to ensure that a post is only visible to the followers
of a certain user. This scenario is secure for a forgetful attacker, and inconsistent
for a perfect recall attacker. This is because the ex-follower has already seen some
of the unfollowed user’s posts. The second scenario is similar, but this time a user
can block their followers. Similarly, this program is secure for a forgetful attacker
and inconsistent for a perfect recall attacker. The policy repair mode does not make
sense for these scenarios, because after unfollowing or getting blocked, the observer
should no longer be able to see the user’s old posts.

The next scenario simulates forwarding a user’s DM to another user. This scenario
is insecure for all types of attackers, because a third user should not be able to see
other users’ DMs. The phoneNumberPrivacy scenario checks the privacy settings
of a user. Initially, the user’s information such as the phone number is private.
However, a user can changes their privacy setting to make the phone number public.
The goal here is to make sure that users cannot see other users’ private information.
This scenario is secure for both perfect recall and forgetful attackers.

165

Next, we consider a scenario in which a user’s membership in a group should be
kept secret from all users that are not in that group. A user cannot see the group
members until they are added to that group. This scenario is secure for all three
types of attackers. Now, if we change this scenario in such a way that a users leaves
the group after learning the names of its members, then the program is inconsistent
for perfect recall and secure for forgetful attackers. In the last scenario we consider
events. Here a user should not be able to see an event’s information such as its title
or date unless they are invited to it. The program is secure for this scenario.

C.8 Related Work

This section discusses closely related works targeting dynamic policies and infor-
mation flow control. We refer to Broberg et al. [114] for a survey on dynamic
policies.

Our security framework is inspired by the work of Askarov and Chong [88] on
knowledge-based security conditions for dynamic policies. They propose a general
framework for capturing the semantics of dynamic policies for all attackers, showing
that secure program under perfect recall attacker can be insecure under a weaker
attacker. We revisit and extend their framework to accommodate three realistic
attacker models and point out the challenges with policy consistency. Because the
notions of perfect recall attacker and bounded memory attackers have well-defined
interpretations in applications and epistemic logics [16], security conditions should be
specific about the attacker model and uncover inconsistent policies. This allows us to
show that the security of a program under a stronger attacker implies security under
weaker attackers. Moreover, we propose a security condition for forgetful attackers
to capture transient release of sensitive information, instantiating the framework of
Askarov and Chong. On the enforcement side, DynCoVer uses automated theorem
proving while Askarov and Chong design a security type system, each targeting
well-known trade-offs between precision and scalability. Van Deft et al. [116] improve
the framework of Askarov and Chong with regards to progress-insensitive security,
showing how a type system enforces security against all attackers. By contrast, our
conditions are progress sensitive, while progress insensitivity can be accommodated
following Van Deft et al. [116]. Broberg et al. [114] illuminate the different facet of
dynamic policies proposed in the literature [22, 40, 49, 56, 64, 98, 163]. We revisit
and discuss this facets in our framework by developing the corresponding security
conditions or pointing out mismatches. Other works addressing the challenge of
flexible policies include Chudnov and Naumann [152] framework for downgrading
policies in reactive programs, Lu and Zhang’s [173] framework for non-transitive
policies, and Kozyri and Schneider’s [171] reactive labels.

Recently, Li and Zhang [184] propose a general-purpose framework for dynamic
policies. Their approach categorizes dynamic policies into persistent and transient

166

policies, and uses the notion of effective traces to define a unified knowledge-based
security condition. By contrast, our work departs from existing works on dynamic
policies, by focusing on an attacker-centric approach and tries to address the issues
of dynamic policies through policy consistency and the relation between attacker
power and policy.

Our enforcement techniques build on the line of work on verifying static information
flow policies by automated theorem proving [39, 82, 90, 95, 135]. To our best
knowledge, none of these works addresses either dynamic policies or the issues of
policy consistency and policy repair. A precursor of our approach is the work of
Balliu et al. [90] which also uses Java Pathfinder to extract program dependencies
and verify static noninterference policies by symbolic execution. Our verification
conditions are similar to Balliu et al. [90] for static policies, and develop them
further to accommodate dynamic policies. Paragon [133] extends Java with support
for dynamic policies using a security type system [64, 72] and it enforces security for
the perfect recall attacker. By contrast, DynCoVer additionally supports bounded
memory and forgetful attacker models with policy consistency and repair. Other
languages and tools supporting information flow control for perfect recall attackers
include JIF [19], LIO [87], Jeeves [96], and JOANA [111].

C.9 Conclusion

We have revised knowledge-based security conditions for dynamic policies and pro-
posed attacker-centric conditions for perfect recall, bounded memory, and forgetful
attackers. Drawing on the notion of policy consistency, we studied the relationship
with the different facets of dynamic policies as well as policy repair. To verify and
repair dynamic policies under different attacker models, we designed, implemented,
and evaluated DynCoVer, an open source tool based on symbolic execution and
SMT solving. An interesting avenue for future work is to investigate the interplay
between integrity and confidentiality for dynamic policies [34, 71, 80, 134].

Acknowledgments

We thank Roberto Guanciale and anonymous reviewers for the feedback. This work
is partially supported by the JointForce project funded by Swedish Research Council
(VR), Swedish Foundation for Strategic Research (SSF), Facebook, and Digital
Futures.

167

Appendices

Appendix A Bounded Memory Attacker

The unlimited memory of perfect recall attacker means that it can remember
everything it once observed. A bounded memory attacker is a variant of perfect
recall attacker with a limited memory (called m hereafter). After observing m
outputs, its memory will become full and in order to capture any new outputs the
oldest observation should be removed from it (in a FIFO manner).

Security Policies

The security condition used for bounded memory attacker is similar to Definition
C.4, except that when computing the knowledge of a bounded memory attacker,
we have to consider its memory capacity (m) as well as the number of outputs it
has observed. If the number of outputs is less than m, the attacker is going to
behave just like prefect recall, and if it is more than m, the attacker is going to only
remember the last m observations.

With this intuition, we can define the auxiliary function suffix(t,m) which takes a
trace t and returns the last m events of the trace:

ñ Definition C.14
Given trace t as t = α1.α2...αk, suffix(t,m) is defined as:

suffix(t,m) =
{

t if k ≤ m

αk−m...αk if k > m

Now, we can define the knowledge of a bounded memory attacker at execution point
i.

ñ Definition C.15
Program c with initial store σ, and initial policy pinit produces trace t

after i execution steps, i.e. ⟨c, σ, pinit⟩
t=⇒i . We write kbnd

i (c, σ, pinit, A, m)
for the knowledge of an attacker that observes the outputs of this program

168

on channel A and has a bounded memory capacity of length m, and define
it as follows:

kbnd
i (c, σ, pinit, A, m) = {σ′ | ⟨c, σ, pinit⟩

t′

=⇒j

∧ suffix(t⇂A, m) = suffix(t′⇂A, m)}

By adapting Definitions C.2 and C.3 to kbnd
i (c, σ, pinit, A, m) for attacker knowledge,

we can use Definition C.4 to check security for bounded memory attackers as well.

Verification of Dynamic Policies

Since a bounded memory attacker is a special type of perfect recall with limited
observations, the verification approach used for checking a program’s security against
a bounded attacker is also similar to the verification for a perfect recall attacker.
We just have to modify Definition C.11 to account for the limited memory of the
attacker.

ñ Definition C.16

Given an SOT S, active policy Pn(
−→
l ,
−→
h) at node n, S is secure wrt.

bounded memory attacker with memory capacity m iff for all nodes n ∈
N(S), the following formula is unsatisfiable:

Pn(
−→
l ,
−→
h) ∧

(
Pcn(

−→
ln ,
−→
hn) ∧

(∧
n′∈N(S)

¬
(

Pcn′(
−→
ln ,
−→
hn

′) ∧ −→O m
n (
−→
ln ,
−→
hn) = −→O m

n′(
−→
ln ,
−→
hn

′)
)))

where −→O m
n is a tuple of the last m output expressions encountered on

a path in SOT from node Start to node n, −→O m
n = −→O m

n′ denotes the
component-wise equality between two tuples, and N(S) is the nodes of
SOT S.

In this definition we limit the length of the attacker’s observations by m, which
is the capacity of his memory. In other words, −→O m

n contains the last m outputs
observable by the attacker. Therefore by checking −→O m

n (
−→
ln ,
−→
hn) = −→O m

n′(
−→
ln ,
−→
hn

′) for
all n′ ∈ N(S) we are looking for nodes that can – from the attacker’s perspective –
produce the same trace of outputs.

The process of checking a program’s policy consistency for a bounded memory

169

attacker is similar to that of a perfect recall attacker (Definition C.12); the only
difference is that we should use −→O m

n instead of −→O n during the generation of the
formula for checking consistency.

To illustrate this, we revisit Program C.13 and check its policy consistency under
a bounded memory attacker with memory capacity of m = 2. For example, the
generated formula for node n5 is:(

Pcn3(∅, {x, y}) ∧
(∧

n′∈N(S)

¬
(

Pcn′(∅, {x′, y′})

∧
−→
O 2

n3(∅, {x, y}) = −→O 2
n′(∅, {x′, y′})

)))

The output sequence of node n3 is O2
n3 = (1, 1). The formula is satisfiable if there

exists a value for y or x where Pcn3(y) holds, and for all nodes it falsifies either the
path conditions or the equality between outputs. For this attacker, it is possible
for the nodes which are not on the same level to have equal outputs, so we have
to consider all n′ ∈ N(S). However, in this example, there are two nodes that can
possibly produce an output sequence equal to (1, 1). n2 with output sequence (x, 1)
and n3 with (1, 1), for both of which the path condition is also true. We consider
n3 first, because in this case both of the output sequences are (1, 1), which means
that the inner formula is true, hence the result of conjunction is false. This means
that even without considering n2 we can be conclude that the whole formula is
unsatisfiable and the policy change at node n5 is consistent. Similarly, we can apply
Definition C.16 to all of the nodes in S and show that Program C.13 is in fact
secure.

The following theorem shows soundness of Definition C.16 wrt. the security condition
for a bounded memory attacker.

� Theorem C.5
Given a SOT S, if the formula in Definition C.16 is unsatisfiable for all
nodes n ∈ S, then S satisfies Definition C.3 for the bounded memory
attacker.

Proof. Similar to the proof of Theorem C.2.

Appendix B Examples for the Forgetful Attacker

In this section, we revisit some of the examples presented in Section C.4 to demon-
strate how a forgetful attacker’s knowledge is calculated.

170

For Program C.5 we calculate the attacker’s knowledge after the output of line
8. Without the loss of generality, let us assume x = 5 and y = 7. At this point,
the attacker has observed the trace t = 7.1.2. There is also an unobservable new
policy event between 1 and 2, thus the splitPolicy(t) function gives us the sub-traces
(7.1, 2). The length of the sub-trace t1 = 7.2 is 2, so the knowledge of attacker will
be all of the stores that can produce a trace ending with 2 that has exactly two
other observable events (of any value) before that:

kfrg
8 (c, σ, pinit, A) = {σ′ | ⟨c, σ′, pinit⟩

t′′

==⇒j

∧ (t′′
1 , t′′

2) = split(t′′⇂A, 2)
∧ t′′

2 = 2}

This corresponds to all the stores with any value for x, and since the active policy p
at execution point i = 8 is also the set of all the stores, security condition C.3 holds.
If we repeat this process for all execution points, we can see that the program is
accepted by Definition C.3.

Similarly, the knowledge of the attacker at line 8 of Program C.6 will be all of the
stores that can produce a trace that ends with sub-trace 7.2 and have exactly one
other observable event before that, which will be the stores with any value for x, but
only value 7 for y. Since the active security policy at this point is the set of all stores
with any value for both x and y, the security condition p8 ⊆ kfrg

8 (c, σ, pinit, A) does
not hold and Program C.6 is rejected as insecure.

In Program C.7, for a positive x, the attacker observes the trace t = 1.1.1 after the
output on line 8. The splitPolicy(t) function gives us the tuple (1.1, 1) and since
| 1.1 | is 2, the attacker knowledge will be all of the stores that can produce a trace
that ends with 1, and have exactly two other observable event before that:

kfrg
8 (c, σ, pinit, A) = {σ′ | ⟨c, σ′, pinit⟩

t′′

==⇒j

∧ (t′′
1 , t′′

2) = split(t′′⇂A, 2)
∧ t′′

2 = 1}

The only stores that can produce such a trace are the ones with x > 0, which implies
that the security condition does not hold and the program is rejected as insecure.

Appendix C Proofs

Proof of Verification Soundness

Here we present sketches for the proofs of Theorems C.2, C.3, and C.4.

171

�

Î

Theorem C.2
Given a SOT S, if the formula in Definition C.11 is unsatisfiable for all
nodes n ∈ S, then S satisfies Definition C.3.

Proof. By Definition C.3, a program is insecure if there is a point i during the
execution in which the policy is not contained in the knowledge (i.e. pi ̸⊆ ki). This
means that there is a value such that it is in the policy but not in the knowledge.
Similarly, in the SOT, if the formula corresponding to a node n is satisfiable, it
means that there exist two stores that satisfy the policy P (

−→
l ,
−→
h), but either one

store does not reach the output node or the two stores produce different output
sequences. This implies that there is an initial store (

−→
l ,
−→
h) ∈ P (

−→
l ,
−→
h), such that

(
−→
l ,
−→
h) ̸∈ ki, thus violating the security condition.

On the other hand if the formula at node n is unsatisfiable, it implies that for any
initial state (

−→
l ,
−→
h) that satisfies the policy P (

−→
l ,
−→
h) and reaches node n producing

the output sequence −→O n, it is impossible to find another state (
−→
l ,
−→
h ′) that satisfies

the policy and reaches some output node n′ (i.e. n ∈ N(S) and Pcn′(
−→
l ,
−→
h ′))

yielding a different output sequence −→O n′ . If we repeat this process for all nodes
n ∈ S, and none of their formulas are satisfiable, it means that there are no outputs
in SOT S such that pi ̸⊆ ki.

�

Î

Theorem C.3
Given a SOT S, if the formula in Definition C.12 is unsatisfiable for
all nodes n ∈ S such that n follows a policy change, then S satisfies
Definition C.2.

Proof. The proof of this theorem is similar to Theorem C.2. However, because in
the SOT we do not have any nodes for the policy change, we have to capture the
policy changes on the next output nodes.

In the policy consistency check formula (Definition C.12) the policy part of the
formula (P (

−→
l ,
−→
h)) is generated at node n because we want it to reflect the new policy,

however, the rest of the formula is generated for n’s parent node (i.e. parent(n)).
The satisfiability of this formula means that there exist two stores that satisfy the
new policy P (

−→
l ,
−→
h) at node n, but either one store does not reach an output or

the two stores produce different output sequences up to parent(n). This implies
that there is an initial store (

−→
l ,
−→
h) ∈ Pn(

−→
l ,
−→
h), such that (

−→
l ,
−→
h) ̸∈ ki−1, thus

violating the policy consistency condition.

If we repeat this process for all nodes n ∈ S with new policy, and none of their
formulas are satisfiable, it means that there are no policy changes in SOT S such

172

that pi ̸⊆ ki−1. Here we assume that there is always an output after a policy change.
For programs that have a policy change as their last command, we can use the node
End for policy consistency check and apply Definition C.12.

�

Î

Theorem C.4
Given a SOT S, if the formula in Definition C.13 is unsatisfiable for all
nodes n ∈ S, then S satisfies Definition C.3 for the forgetful attacker.

Proof. The difference between the the security condition of the forgetful attacker
and the perfect recall is that the latter uses Definition C.7 to calculate the attacker’s
knowledge.

This definition limits the observations of the attacker to the number of outputs
before the policy change and the values of outputs after a policy change. The output
function −→O frg

n used in the forgetful attacker’s formula (Definition C.13) captures this
behavior by ignoring the value of outputs before the last policy change (replacing
them with a constant value), and only keeping the actual value of the outputs that
happened after the policy change.

The rest is similar to the proof of Theorem C.2. The satisfiability of the formula
of Definition C.13 means that there exist two stores that satisfy the new policy
P (
−→
l ,
−→
h) at node n, but if they reach an output, the output sequences up to

node n wrt. −→O frg
n will be different. This implies that there is an initial store

(
−→
l ,
−→
h) ∈ Pn(

−→
l ,
−→
h), such that (

−→
l ,
−→
h) ̸∈ kfrg

i , thus violating the security condition
condition.

Proof of Attacker Power

In this section, we present Theorem C.6 to prove the claim that in the absence
of inconsistent policy changes, a program which is secure against a perfect recall
attacker is also secure against a bounded memory attacker.

� Theorem C.6
Given a program c with no inconsistent policy changes, initial store σ, and
initial policy pinit, if for all execution points i, c is secure against perfect
recall attacker Aper, it is also secure against bounded memory attacker
Am

bnd with memory capacity m ∈ N . Formally:

pi ⊆ ki(c, σ, pinit,Aper) =⇒
pi ⊆ kbnd

i (c, σ, pinit, Am
bnd, m) ∀m ∈ N

173

Proof. We should consider all execution points i such that

⟨c, σ, pinit⟩
t=⇒i⟨ci, σi, pi⟩

and continue with structural induction on command ci.

All of the commands presented in Figure C.1 should be considered here. However,
not all of them have an effect on the knowledge, therefore we only investigate
command outputℓ(e). Without the loss of generality let us assume that e is visible
to the attacker Am

bnd.

Since knowledge is monotone, the more observations an attacker has, the smaller
his knowledge set will be. We can use this fact to limit the number of cases we have
to investigate for different values of m. Thus, we only consider two scenarios:

• if | (t.α)⇂Am
bnd
|≤ m then the bounded memory attacker with memory capacity

m is going to know everything that the perfect recall attacker knows. Hence

ki(c, σ, pinit, Aper) = kbnd
i (c, σ, pinit, Am

bnd, m)

and since by assumption we know that pi ⊆ ki(c, σ, pinit, Aper), we can con-
clude:

pi ⊆ kbnd
i (c, σ, pinit, Am

bnd, m)

• if | (t.α)⇂Am
bnd
|> m then the bounded memory attacker Am

bnd had less observa-
tions than the perfect recall attacker. Hence

ki(c, σ, pinit, Aper) ⊆ kbnd
i (c, σ, pinit, Am

bnd, m)

and since by assumption we know that pi ⊆ ki(c, σ, pinit, Aper), we can conclude
that

pi ⊆ kbnd
i (c, σ, pinit, Am

bnd, m)

also holds.

As a result, the security condition:

pi ⊆ kbnd
i (c, σ, pinit, Am

bnd, m) ∀m ∈ N

holds for all values of m ∈ N .

Additionally, if ci is setPolicy(p′) we can use the assumption that program c does
not have any inconsistent policies to conclude that Definition C.2 holds for perfect
recall attacker Aper for all execution points i. Since we already established that

174

bounded memory attacker Am
bnd’s knowledge is less than or equal to Aper at each

execution point, it is straightforward to show that:

pi ⊆ kbnd
i−1(c, σ, pinit, Am

bnd, m)

which means that the policy changes are also consistent for bounded memory attacker
Am

bnd.

Theorem C.1 proves a similar claim for the forgetful attackers.

�

Î

Theorem C.1
Given a program c, initial store σ, and initial policy pinit, if for all execution
points i, c is secure against perfect recall attacker Aper, it is also secure
against forgetful attacker Afrg. Formally:

[σ]pi

A ⊆ ki(c, σ, pinit, Aper) =⇒ [σ]pi

A ⊆ kfrg
i (c, σ, pinit, Afrg)

Proof. The proof of this theorem is similar to Theorem C.6. We consider all
execution points i such that:

⟨c, σ, pinit⟩
t=⇒i⟨ci, σi, pi⟩

and only investigate the case where command ci is outputℓ(e), and assume that e
is visible to the attacker Afrg. Let us consider three scenarios:

• If splitPolicy(t) is (ϵ, t), then the observations of forgetful attacker are the
same as the observations of the perfect recall attacker, hence:

ki(c, σ, pinit, Aper) = kfrg
i (c, σ, pinit, Afrg)

Since by assumption we know that pi ⊆ ki(c, σ, pinit, Aper), we can conclude:

pi ⊆ kfrg
i (c, σ, pinit, Afrg)

• If splitPolicy(t) is (t, ϵ), then the forgetful attacker makes no observations after
the policy change and only knows | t |. Thus,

ki(c, σ, pinit, Aper) ⊆ kfrg
i (c, σ, pinit, Afrg)

Hence, we can conclude that:

pi ⊆ kfrg
i (c, σ, pinit, Afrg)

175

• If splitPolicy(t) is (t1, t2). Since knowledge is monotone and t2 is a sub-trace
of t, the knowledge set of an observer that sees t2 is bigger that the knowledge
set of the observer of t. Additionally, for all events before t2, the attacker Aper

observed the actual value of the event while the attacker Afrg only knows
that an event has occurred. Therefore, it is straightforward to show that the
knowledge of Afrg is less than the knowledge of Aper:

ki(c, σ, pinit, Aper) ⊆ kfrg
i (c, σ, pinit, Afrg)

Therefore we can conclude that:

pi ⊆ kfrg
i (c, σ, pinit, Afrg)

176

Table C.3: Benchmark evaluation results (Extended Table)
DynCoVer Attacker Inconsistent JPF Time (ms) SOT

Result Type Policy Mode Inst OA ME FG FS PR Nodes

Program 1 Perfect Reject 2937 279.1 8.7 1.4 69.3 − 2
Program 1 ✓ Perfect Repair 2937 242.5 8.5 0.3 39.7 19.6 2
Program 1 × Forgetful − 2937 222.0 8.5 1.4 29.5 − 2

Program 2 Perfect Reject 2937 211.3 8.6 1.4 27.6 − 2
Program 2 ✓ Perfect Repair 2937 249.5 8.6 0.3 52.0 19.9 2
Program 2 ✓ Forgetful − 2937 210.8 8.5 1.4 25.7 − 2

Program 3 Perfect Reject 2940 219.5 8.7 1.5 31.6 − 2
Program 3 ✓ Perfect Repair 2940 231.6 8.8 0.6 31.5 20.4 2
Program 3 ✓ Forgetful − 2940 217.4 8.7 1.6 31.4 − 2

Program 4 × Perfect Reject 2937 229.2 6.8 1.6 41.3 − 2
Program 4 × Forgetful − 2937 216.5 7.2 1.5 31.5 − 2

Program 5 Perfect Reject 2972 252.4 46.8 1.5 32.0 − 5
Program 5 ✓ Perfect Repair 2972 342.9 48.7 1.3 74.3 47.2 5
Program 5 ✓ Forgetful − 2972 279.8 48.1 2.3 51.7 − 5

Program 6 × Perfect Reject 2972 294.3 48.9 2.1 48.4 − 5
Program 6 × Bounded Reject 2972 278.3 51.0 1.8 42.3 − 5
Program 6 × Forgetful − 2972 250.4 45.9 1.6 31.7 − 5

Program 7 × Perfect Reject 2964 316.4 38.4 2.6 84.1 − 5
Program 7 × Bounded Reject 2964 301.0 38.6 2.5 84.3 − 5
Program 7 × Forgetful − 2964 298.2 38.5 2.3 69.0 − 5

Program 8 × Perfect Reject 2938 214.2 6.7 1.3 14.8 − 1
Program 8 × Perfect Repair 2938 213.8 6.7 0.1 13.6 27.2 1
Program 8 × Forgetful − 2938 198.5 6.5 1.3 13.3 − 1

Program 9 Perfect Reject 2942 226.9 6.9 1.7 39.3 − 3
Program 9 ✓ Perfect Repair 2942 250.0 6.7 0.5 51.3 20.6 3
Program 9 × Forgetful − 2942 221.4 6.7 1.6 36.4 − 3

Program 10 × Perfect Reject 2937 224.2 6.4 1.6 39.0 − 2
Program 10 × Forgetful − 2937 211.6 7.0 1.5 28.9 − 2

Program 11 Perfect Reject 2940 218.1 8.6 2.4 23.9 − 2
Program 11 ✓ Perfect Repair 2940 330.8 9.4 0.4 39.2 29.1 2

Program 12 ✓ Perfect Reject 2954 265.5 37.8 2.0 52.3 − 4
Program 12 ✓ Bounded Reject 2954 269.3 37.8 2.0 49.3 − 4
Program 12 ✓ Forgetful − 2954 276.8 38.5 2.1 43.4 − 4

Program 13 Perfect Reject 2982 292.7 49.5 1.9 63.3 − 7
Program 13 ✓ Perfect Repair 2982 367.1 49.0 1.9 91.5 47.7 7
Program 13 ✓ Bounded Reject 2982 341.6 47.0 3.6 111.5 − 7
Program 13 ✓ Forgetful − 2982 300.0 48.6 2.9 68.2 − 7

WhileLoop_5 ✓ Perfect Reject 3393 705.6 96.2 26.7 385.9 − 30
WhileLoop_10 ✓ Perfect Reject 4093 1743.7 172.8 100.4 1226.4 − 85
WhileLoop_50 ✓ Perfect Reject 20493 198030 1797 68486 126451 − 1425

DynCoVer Results: ✓ the program is secure; × the program is insecure; the program has an inconsistent policy
change.
Inconsistent Policy: What to do when facing an inconsistent policy: Reject the inconsistent policies; Repair the policy.
JPF Inst: total number of instructions executed by JPF
Time: OA: overall; ME : model extraction ; FG: interference formula generation; FS : interference formula satisfiability
checking; PR: policy repair (only if applicable)
SOT Nodes: Number of nodes in the generated Symbolic Output Tree

177

178

Paper D

Disjunctive Policies for Database-Backed
Programs

Amir M. Ahmadian, Matvey Soloviev, and Musard Balliu

Abstract

When specifying security policies for databases, it is often natural to formulate
disjunctive dependencies, where a piece of information may depend on at
most one of two dependencies P1 or P2, but not both. A formal semantic
model of such disjunctive dependencies, the Quantale of Information, was
recently introduced by Hunt and Sands as a generalization of the Lattice
of Information. In this paper, we seek to contribute to the understanding
of disjunctive dependencies in database-backed programs and introduce a
practical framework to statically enforce disjunctive security policies. To that
end, we introduce the Determinacy Quantale, a new query-based structure
which captures the ordering of disjunctive information in databases. This
structure can be understood as a query-based counterpart to the Quantale
of Information. Based on this structure, we design a sound enforcement
mechanism to check disjunctive policies for database-backed programs. This
mechanism is based on a type-based analysis for a simple imperative language
with database queries, which is precise enough to accommodate a variety
of row- and column-level database policies flexibly while keeping track of
disjunctions due to control flow. We validate our mechanism by implementing
it in a tool, DiVerT, and demonstrate its feasibility on a number of use cases.

181

D.1 Introduction

Database security and information flow security have largely evolved as two disparate
areas [28, 38], while sharing closely-related foundations and mechanisms to enforce
security. Modern applications commonly rely on shared database backends to
provide rich functionality to a multitude of mutually distrusting users. In response
to frontend demands, database query languages, with features such as triggers,
store procedures, and user-defined functions, have increasingly come to resemble
full-fledged programming languages, thus calling into question the adequacy of the
underlying access control models [104, 128]. A security policy describes the totality
of expectations that we have of a computer system in the face of adversaries that
seek to satisfy objectives that may differ from ours. In the context of database
systems, whose purpose is to retain and provide information, the security policies of
interest constrain who is allowed to learn what parts of that information. A class of
such security policies which has proven particularly challenging to enforce with the
methods of database security are disjunctive policies, which states that given two
pieces of information, some entity may either learn one or the other, but not both.

A common example of disjunctive policies are databases which contain personally
identifiable information, such as medical trial data. Biometric parameters of partici-
pants are important confounders that must be considered when drawing conclusions
from the data, but at the same time releasing too many parameters of any one
participant (such as their height, age and weight) might be sufficient to deanonymize
them with high confidence [26]. Hence, a security policy for such a database may
specify that the user may learn height and age, or height and weight, or age and
weight, but not all three. Other examples of scenarios where disjunctive policies are
useful include differential privacy [45] and secret sharing.

In this paper, we combine insights from database security and information flow
research to develop a formal model for reasoning about disjunctive information in
database-backed programs, and thus take a step towards reconciling the two fields.
Our model makes it possible to reason about the semantic information dependencies
in a program that performs queries, and compare them against a disjunctive policy.
Building upon this, we propose a provably sound static enforcement mechanism
that ensure that the policy is satisfied.

It is customary in information flow models to represent information as an equivalence
relation on states, with the refinement order of equivalence relations corresponding
to having more information. This representation can be used for both the actual
information conveyed by a computational process and the bound imposed on it as
part of a simple, non-disjunctive security policy. The possible equivalence relations
on a given universe of states form a structure called the Lattice of Information
(LoI) [13], in which security-relevant questions can be answered, such as whether a
program reveals no more information than is allowed by the security policy, or what
information is revealed by the combination of two programs. Similar questions have

182

been addressed in the database community using an analogous object called the
Disclosure Lattice [99]. We observe that this definition is actually insufficient to
characterize information, which motivates us to introduce a more specific structure
based on query determinacy, the Determinacy Lattice (DL). The formal relation
between the Disclosure Lattice or our definition and LoI was hitherto unexplored,
and more importantly neither of them can be used to represent disjunctions as seen
in our motivating example.

Recently, Hunt and Sands [181] proposed a new information flow structure called
the Quantale of Information (QoI), which seeks to address this shortcoming and
establish a formal setting for representing, combining and comparing disjunctions
of information. We build upon this work to introduce an analogous structure, the
Determinacy Quantale (DQ), representing disjunctive dependencies in database-
backed programs. As we show, this structure can be formally related to the QoI,
and this relationship is analogous to that between the LoI and the DL. We then
use the DQ to design a knowledge-based security condition that relates disjunctive
dependencies in database-backed programs to disjunctive policies.

We are the first to address the problem of enforcing disjunctive policies. Prior
works that develop language-based enforcement techniques in database-backed
applications do not support disjunctive policies, while database-level dependencies
are restricted to coarse approximations that incorrectly reject secure programs, such
as our previous example [52, 65, 122, 163, 165].

Perhaps unsurprisingly, path sensitivity of a static analysis is key to capturing
disjunctive dependencies. We show how standard flow-sensitive type-based depen-
dency analysis [116] can be adapted to a compositional path-sensitive analysis and
thus capture disjunctive dependencies in terms of database queries. To represent
these dependencies in the DQ model, we introduce a sound approximation of the
information disclosed by each database query which is precise enough to represent
complex combinations of both row- and column-level dependencies. Finally, in
the DQ, the combination of these analyses can be proven sound with respect to
our security condition. We expect that the overall architecture of the resulting
soundness proof, in which we relate a sequence of abstractions of the behaviour
of a program to ordered elements of the DQ, can be generalized to many other
enforcement mechanisms for our security condition.

To demonstrate the practicality of our approach, we implement this type-based
dependency analysis and query approximation for database-backed programs and
evaluate it on a test suite and some use cases which effectively illustrate the need
for disjunctive dependencies and disjunctive policies.

183

Summary of contributions.

• We introduce a formal model for reasoning about disjunctive dependencies and
policies in databases. In the process, we show how to reconcile perspectives
from the database security and information flow communities.

• We introduce a database-specific model of knowledge, the Determinacy Lattice,
and a disjunctive extension, called the Determinacy Quantale, and explore
their relationship to established general-purpose semantic models.

• Using our model, we define an extensional security condition for database-
backed programs that accommodates disjunctive policies.

• We propose a type-based program analysis to capture disjunctive dependencies
in database-backed programs, combine them with a novel abstraction of queries,
and prove them sound with respect to our security condition. This is presented
as an instance of a generalizable architecture for such soundness proofs.

• We implement a prototype tool that uses type-based dependency analysis and
query approximation to verify query-based disjunctive policies for database-
backed programs, and demonstrate its feasibility on a test suite and a number
of use cases.

The rest of paper is structured as follows. After reviewing preliminaries in Sec-
tion D.2, we give our account of the DL and introduce the DQ in Section D.3. In
Section D.4, we formalize our model of database-backed programs and the security
policies we impose on them, culminating in a formal security condition. We present
enforcement mechanisms in Section D.5, and their implementation and evaluation
in Section E.7. In Section E.8, we contextualize our contributions with a discussion
of related work, and finally summarize conclusions in Section E.9.

D.2 Background

Lattice of Information

An equivalence relation ∼ ⊆ A×A on a set A is a binary relation that is reflexive,
symmetric, and transitive. For example, the equivalence relation parity on the set
A = {0, 1, 2, 3} is defined as {(x, y) | x, y ∈ A∧x mod 2 = y mod 2}. An equivalence
relation partitions its underlying domain into disjoint equivalence classes. Given an
equivalence relation P on a set A and a ∈ A, [a]P denotes the unique equivalence
class induced by P that a belongs to. We write [P] to denote the set of all equi-
valence classes induced by P . We call [P] a partition of A and hereafter we may

184

also refer to each element, i.e. equivalence class, of the partition [P] as a cell. For
example, parity partitions A into cells {0, 2} and {1, 3}.

Equivalence relations over states are commonly used to represent an agent’s knowl-
edge, by relating two states whenever the agent cannot distinguish between them.
When an equivalence relation models knowledge, we also call the cells induced by
it knowledge sets. These have a distinct intuitive interpretation when we consider
functions f that take in some state and return an agent’s view of it. We will write
the equivalence relation induced by the output of f as ∼f = {(x, y) | f(x) = f(y)}.
In that case, in a state a, the knowledge set [a]∼f

represents the agent’s remaining
uncertainty about the state, in the sense of all the states that the agent still considers
possible, after observing the output of f . The agent knows anything that is true
in all states in the knowledge set. In this paper, we use the terms knowledge and
information interchangeably.

A complete lattice is a set equipped with a partial ordering (reflexive, antisymmetric,
and transitive) relation, maximal and minimal elements ⊤ and ⊥ for this relation
and a join (least upper bound) for any subset of elements. The meet (greatest lower
bound) of a subset can be defined as the join of the set of all lower bounds of that
subset [21]. The Lattice of Information (LoI) [13] is a structure for representing
the ordering of information with equivalence relations. Let L(A) be the set of all
equivalence relations defined on a given domain A. The LoI ranks these equivalence
relations based on the information they reveal about the underlying domain. Given
two equivalence relations P, Q ∈ L(A), this ordering can be defined as follows:

P ⊑ Q→ ∀a, a′ ∈ A (a Q a′ ⇒ a P a′)

For any set S ⊆ L(A), the least upper bound of S is the equivalence relation R
defined as:

∀x, y ∈ A (x R y ↔ ∀P ∈ S. x P y).

Formally, LoI(A) = ⟨L(A),⊑,
⊔
⟩ denotes the LoI on domain A, with ordering

relation ⊑ and join
⊔

. The top element ⊤ in the lattice is the most precise
equivalence relation id such that id = {(x, y) | x, y ∈ A ∧ x = y}, and the bottom
element ⊥ is the least precise equivalence relation all = {(x, y) | x, y ∈ A}.

The join of any two equivalence relations P ⊔Q , being their least upper bound, is
the least informative equivalence relation that is at least as informative as either of
P and Q (i.e. is an upper bound on both), and thus represents the information that
is conveyed from learning both P and Q. We refer to this as the conjunction of the
information in P and Q.

185

Quantale of Information

The LoI captures the conjunction of any two information sources P and Q as the
join of their respective equivalence relations. However, it does not offer an operator
that would yield a representation of their disjunction, that is, the information that
can be obtained from having access to one of them, but not both. In fact, the
disjunction can not in general be represented as a single equivalence relation, and
thus an element of the LoI, at all. To address this limitation, Hunt and Sands [181]
propose a generalization of the LoI called the Quantale of Information (QoI). A
quantale is a complete lattice with an additional binary “tensor” operator ⊗. In the
QoI, the tensor is used to represent conjunction, while the lattice join represents
disjunction.

The core idea behind the quantale structure is to interpret the disjunction P1∨. . .∨Pn

of several knowledge relations as describing all knowledge relations R in which the
knowledge always comes from one of the Pi. More concretely, in any possible state
a ∈ A, the agent’s knowledge [a]R should equal its knowledge in the same state in
one of the disjuncts, [a]Pi

. Which disjunct it is may depend on the state, so the
agent may have knowledge from Pi in the state a but knowledge from Pj in some
other state a′. Relations R that satisfy this condition are called tilings, based on
a picture of covering (since every state needs to be in some equivalence class) the
space of possible states A with knowledge sets drawn from any of the disjuncts.
Following Hunt and Sands, we define the set of all tilings

mix(P) = {R ∈ LoI(A) | x ∈ [R]⇒ (∃P ∈ P. x ∈ [P])},

where P is a set of equivalence relations.

We would like to think of a relation R′ as describing no more knowledge than a
disjunction

∨
P if it’s bounded above by some R ∈ mix(P) in the LoI, and more

generally define the quantale ordering S ⊑ T for S,T ⊆ L(A) as ∀S ∈ S, ∃T ∈
T. S ⊑ T . The resulting relation is not antisymmetric on general sets of relations or
even mixes of general sets, reflecting the circumstance that there may be multiple
mixes representing the same knowledge. As it is standard in lattice theory [25], we
use the downwards closure operator ⇓ to obtain canonical representations of the
order cycles of ⊑ and hence construct a partial order.

⇓P = {Q ∈ LoI(A) | Q ⊑ P}

The tiling closure of a set of equivalence relations P,

tc(P) = ⇓mix(P),

then canonically represents the knowledge permitted by the disjunction
∨
P. The

set tc(P) can still be interpreted as a list of possible equivalence relations, now
including any equivalence relation that does not reveal more information than the
disjunction.

186

We then take the elements of the QoI on a state set A to be all tiling closures of
subsets of A, with the ordering ⊑ being set inclusion. For the tensor P ⊗ Q =
tc({P ⊔Q | P ∈ P, Q ∈ Q}), we rely on the join operator of the LoI ⊔ to calculate
the least upper bound of any possible pair of equivalence relations in P and Q and
then canonicalise the result. Since the sets are interpreted disjunctively, the join∨

i Pi can simply be defined as tc(
⋃

i Pi).

Program D.1

1 if (x <= 0) then
2 out(-1 ,u);
3 out(x mod 2 == 0, u);
4 else
5 out(1, u);
6 out(x div 2 == 0, u);

-2 -1
0 1
2 3

all
-2 -1
0 1
2 3

Q

-2 -1
0 1
2 3

P

-2 -1
0 1
2 3

∼prg

-2 -1
0 1
2 3

R

Figure D.1: Some equivalence relations on {−2,−1, 0, 1, 2, 3}

� Example D.1
Program D.1 operates on a secret integer x between -2 and 3, outputting to
user u whether it is greater than zero, and either (if it isn’t) whether it is
even, or (if it is) whether it equals 0 or 1 (by dividing by 2, rounding down
and testing for 0). We expect the information released by the program
(∼prg in Figure D.1) to be bounded by the disjunction of the knowledge
relations capturing the two possible branches (resp. Q, P).
This could not be accurately expressed with LoI operations, since Q, P
and ∼prg are all incomparable, but the join of Q and P (as the only
available nontrivial way of combining them) is equal to ⊤ and so would
equally bound a program that directly releases x. However, ∼prg can
be tiled with equivalence classes from Q and P , and we in fact have
mix({Q, P}) = {Q, P, R,∼prg}. So in the QoI, tc({∼prg}) ⊑ tc({Q, P}),
and hence ∼prg ⊑ Q ∨ P .

187

D.3 Information Ordering in Databases

Our goal is to introduce our semantic model for the information revealed by database
queries, the Determinacy Lattice, and its extension to disjunctive dependencies,
the Determinacy Quantale. To this end, we first review a standard formalism for
reasoning about databases that we will employ.

A Primer on Relational Database Models

We use the relational model to formally define databases [15]. In this model, we
distinguish between the database schema D, which specifies the structure of the
database, and the database state db, which specifies its actual content.

A database schema D is a (nonempty) finite set of relation schemas t, written as
D = {t1, ..., tn}. A relation schema (table) t is defined as a set of attributes paired
with a set of constraints, where an attribute is a name paired with a domain. The
number of attributes in t (written as |t|) is referred to as its arity. A tuple is a set
of data representing a single record within a relation schema. Each tuple contains
values for each attribute defined in the relation schema.

A database state db is a snapshot of the database schema D at a particular point in
time. It represents the actual data stored in the database, consisting of a collection
of tables and their respective tuples. We write JtKdb to represent the tuples of table
t under database state db.

We write states(D) to denote the set of all database states of D. A database
configuration is ⟨D, Γ⟩ where D is the database schema and Γ is a set of integrity
constraints. We denote ΩD = {db | db ∈ states(D) ∧ ⊢ db : Γ} where ⊢ is
an appropriate notion of constraint Γ being satisfied. An integrity constraint is
an assertion about a database that must be satisfied for a database state to be
considered valid. Various classes of integrity constraints exist, for instance functional
dependencies which capture primary-key constraints, and inclusion dependencies
which are used in foreign-key constraints [15].

Relational calculus. We rely on the Domain Relational Calculus (DRC) for our
query language. In the DRC, a (non-boolean) query q over a database schema D
has the form {x | ϕ}, where x is a sequence of variables, ϕ is a first order formula
over D, and the free variables of ϕ are those in x. The evaluation of a query q,
denoted by JqKdb, is the set of tuples that satisfy the formula ϕ with respect to db.
A boolean query is written as { | ϕ}, and its evaluation JqKdb is defined to be the
boolean value true if and only if some tuple in db satisfies ϕ. We use Q to indicate
the universe of all possible queries. The domain relational calculus employed here
follows the standard convention, and we refer the reader to the relevant literature
for a more comprehensive description of DRC [15].

188

emp : name role salary

mng : division manager

Figure D.2: Database schema for employees and managers

� Example D.2
The database schema in Figure D.2 contains relations for employees emp
and managers mng. A query returning the set of tuples containing the
division names and the salary of the managers of each division can be
written as:

{(d, s) | ∃n, r. emp(n, r, s) ∧ ∃m. mng(d, m) ∧ n = m}.

Views. In DRC, a database view is a relation defined by the result of a non-boolean
query. Database views act as virtual tables and, as we will see, are useful when
defining security policies. Formally, a view v defined over database schema D is
a tuple ⟨id, q⟩, where id is the view identifier and q is the non-boolean query over
schema D defining the view. The query q may refer to other views, but we assume
that views do not have cyclic dependencies.

The materialization of a view v in a database state db is the evaluation of its defining
query q in that state, i.e. JqKdb. We use v.q to refer to the defining query of view v.
We extend relational calculus in the standard way to work with views [128].

Determinacy Lattice

Given query sets Q, Q′ ∈ P(Q), query determinacy [76] captures whether results of
the queries in Q are always sufficient to determine the result of the queries in Q′.

ñ Definition D.1
Q determines Q′ (denoted by Q ↠ Q′) iff for all database states db1, db2,
if JqKdb1 = JqKdb2 for all q ∈ Q, then Jq′Kdb1 = Jq′Kdb2 for all q′ ∈ Q′.

Intuitively, Q ↠ Q′ means that pairs of databases for which all queries in Q return
the same result also give the same result under any query in Q′. This is in fact
equivalent to the initial gloss that the results of queries in Q′ can be computed from
the results of queries in Q, as we show in detail in Appendix D.1.

Query determinacy allows us to define an ordering on sets of queries based on the
information they reveal. We call this ordering determinacy order, denote it by ⪯,

189

and define it as ∀Q, Q′ ∈ P(Q), Q ⪯ Q′ iff Q′ ↠ Q.

� Example D.3

Consider queries q1 = {(n, r) | ∃s. emp(n, r, s)} and q2 = {(r) |
∃n, s. emp(n, r, s)} defined on the relations of Figure D.2. Query q1 dis-
closes the name and the role of the employees while q2 only returns their
role. Intuitively, q1 reveals more information than q2, which means q2 ⪯ q1.

This definition of determinacy order is a preorder (reflexive and transitive), but not
necessarily a partial order, as it is not anti-symmetric. In other words, q1 ⪯ q2 and
q2 ⪯ q1 does not necessarily mean that q1 = q2. As in Section D.2, this essentially
means that query sets are not canonical representations of the information revealed
by them. To rectify this, we form the closure ↓ under the determinacy order, so the
determinacy order becomes set inclusion. Intuitively, ↓Q will contain all the queries
in Q whose answers can be inferred by the set of queries Q. Formally, ↓Q is defined
as:

↓Q = {q ∈ Q | {q} ⪯ Q}

Using the definitions of determinacy order and closure ↓, we can then define the
Determinacy Lattice as follows:

ñ Definition D.2
Given a universe of queries Q, the Determinacy Lattice DL(Q) is a com-
plete lattice ⟨L,⊑,

⊔
,⊥,⊤⟩ such that:

• L = {↓Q | Q ⊆ Q}

• ↓Q1 ⊑ ↓Q2 iff Q1 ⪯ Q2

•
⊔

i ↓Qi = ↓
⋃

i Qi

• ⊥ = ↓∅, ⊤ = ↓Q,

where ⪯ is the determinacy order on Q.

Disclosure order and information flow properties. Our definition of the
Determinacy Lattice is similar to the definition of the Disclosure Lattice introduced
by Bender et al. [99]. A Disclosure Lattice is a lattice built upon a disclosure order,
which is a partial order on sets of queries satisfying additional conditions that are
expected of an ordering according to the amount of information disclosed by each
set of queries. Bender et al. [99] define the disclosure order as follows:

190

ñ Definition D.3
Given a universe of queries Q, a disclosure order ⪯ is a preorder on P(Q)
that satisfies the following properties:

1. For all Q1, Q2 ∈ P(Q), if Q1 ⊆ Q2 then Q1 ⪯ Q2

2. If P ⊆ P(Q) and ∀P ∈ P, P ⪯ Q then
⋃

P ⪯ Q

The first property in this definition ensures that adding new elements to a set of
queries only increases the amount of disclosed information and the second property
allows us to derive a meaningful upper bound on the information disclosure.

The intended use of disclosure order was to order sets of queries based on the
amount of information they reveal about the underlying database. However, we
make the observation that this definition is not specific enough to characterize
information disclosure in the information flow sense. For example, consider query
containment [15], defined as:

ñ Definition D.4
Given queries q1, q2 ∈ Q, we say that q1 is contained in q2, denoted by
q1 ⊆ q2, if for every database states db ∈ ΩD, we have Jq1Kdb ⊆ Jq2Kdb.

vl

0
1

100 + s

Figure D.3: Table t

Query containment satisfies all of the require-
ments of a disclosure order (Def. D.3), but it is
not enough to guarantee security. To illustrate
this, consider a database with a single table t
given in Figure D.3.

Table t has a single column vl, and contains
values 0, 1, and 100+s, where s is a secret value
that can be either 0 or 1. We thus consider two
possible instances of this database, one where t contains values 0, 1, and 100 and
another where it contains 0, 1, and 101. Now, consider the following queries:

q1 : {(vl1) | ∃vl2. t1(vl1) ∧ t2(vl2) ∧ vl1 < 100}
q2 : {(vl1) | ∃vl2. t1(vl1) ∧ t2(vl2) ∧ vl1 < 100 ∧ vl1 = vl2 − 100}

where t1 and t2 are just logical copies of table t. It is common practice to make
logical copies of relation and use them in queries with self-joins [193]. The result of
query q1 is always 0 and 1. The result of query q1 is 1 if the secret s is 1 and 0 if s
is 0. As it is evident, for these queries, query containment holds and the result of
query q2 is contained in the results of q1. However, an observer seeing the result of
query q2 can learn the value of secret s.

191

This example illustrates that query containment (a disclosure order) is not sufficient
to guarantee the confidentiality of the secret s in an information flow setting. To
ensure information flow security, we require a stronger condition, such as the notion
of query determinacy order (Def. D.1) that we chose to rely on in this paper.

Relation between the DL and the LoI. There exists a close relationship
between the DL and the LoI. Specifically, a query q defined over a database schema
D induces an equivalence relation q∼ on database states db. We can formally define
this equivalence relation as:

q∼ = {(db1, db2) | db1, db2 ∈ ΩD ∧ JqKdb1 = JqKdb2}

We write [q∼] to denote the set of all equivalence classes induced by q. Given an
equivalence relation q∼ on set ΩD and db ∈ ΩD, [db]q∼ denotes the equivalence class
induced by q∼ to which the database state db belongs. We further lift this definition
to sets of queries Q = {q1, q2, ..., qn}:

Q∼ = {(db1, db2) | db1, db2 ∈ ΩD

∧
1≤i≤n

JqiKdb1 = JqiKdb2}

This interpretation of database queries as equivalence relations provides a direct
connection between the DL and the LoI, where the lattice elements correspond
to Q∼, the ordering ⊑ to the determinacy order ⪯, and join and meet follow the
definitions of the DL.

« Lemma D.1
For all Q, there is a complete lattice homomorphism from the Determinacy
Lattice DL(Q) to the Lattice of Information defined on {Q∼ | Q ∈ DL(Q)}.

We prove this Lemma in Appendix D.2. To the extent that we believe Q∼ to
accurately represent the information conveyed by the queries in Q, this lemma
implies that joins and order comparisons can be performed in the DL without
explicit reference to the LoI.

Determinacy Quantale

We introduce a generalization of the Determinacy Lattice, called the Determinacy
Quantale (DQ), to represent disjunctive dependencies. Our definition of the DQ is
intended as a counterpart to the QoI [181], analogously to how the DL corresponds
to the LoI. To achieve this, we define a query-set counterpart of the tiling closure
operator to capture the disjunction of sets of queries. Since sets of queries correspond
to LoI elements (equivalence relations), disjunctive QoI elements (sets of equivalence
relations) will be represented as sets of sets of queries. Each set of queries in the
outer set represents a possible combination of queries that does not reveal more
information than is allowed by the disjunction.

192

Analogously to the QoI, the tiling closure of a set of sets of queries is defined by
forming the downward closure under ⊑ (from the DL) of their mix. The query-set
equivalent of the mix operator is defined on a set of sets of queries Q = {Q1, ..., Qn}
such that Qi ∈ DL(Q) for i = 1, ...n as follows:

mix(Q) = {P ∈ DL(Q) | x ∈ [P∼]⇒ (∃Q ∈ Q.x ∈ [Q∼])}

where [Q∼] denotes the equivalence classes of Q as defined previously. We then
define the tiling closure for a set Q of elements of the DL as tc(Q) = ⇓mix(Q). We
then formally define the Determinacy Quantale DQ(Q) as follows.

ñ Definition D.5
Given a universe of queries Q, let DL(Q) be the Determinacy Lattice
defined on Q. The Determinacy Quantale DQ(Q) is the quantale ⟨I,⊑
,
∨

,⊗, 1⟩, with:

• I = {tc(Q) | Q ⊆ DL(Q)}

•
∨

i Pi = tc(
⋃

i Pi)

• P⊗Q = tc
(⋃

P ∈P,Q∈Q(P ⊔Q)
)

• ⊑=⊆

• ⊤ = DL(Q), ⊥ = ∅, 1 = ∅,

where P,Q ⊆ DL(Q).

In Appendix D.3 we show that Def. D.5 satisfies the usual quantale axioms [181].
As with the DL and LoI, the DQ embeds into a QoI by a quantale homomorphism.
This QoI is defined on sets of equivalence relations derived from sets of sets of
queries by the following map:

ñ Definition D.6
Given a set of sets of queries Q,

JQK = {Q∼ | Q ∈ Q}.

We can then formally state the relationship between the DQ and QoI as follows.

« Lemma D.2
For all Q, there is a quantale homomorphism from the Determinacy Quan-
tale DQ(Q) to the Quantale of Information defined on {JQK | Q ⊆ DL(Q)}.

The proof of Lemma D.2 is presented in Appendix D.4.

193

� Example D.4
To illustrate the Determinacy Quantale in practice, consider Program D.2,
which issues either query q1 = {(r, vl) | ∃s, n. emp(n, r, s)∧r = Intern∧vl =
s} or q2 = {(r, vl) | ∃s, n. emp(n, r, s)∧r = CEO∧vl = n)} to the database.
Query q1 returns the role and salary columns of the entry in table emp if
the role of that entry is Intern. Similarly, query q2 returns the role and
name columns if the role of the entry in emp is CEO.
Consider a policy defined on queries v1 = {(r, n) | ∃s. emp(n, r, s)} and
v2 = {(r, s) | ∃n. emp(n, r, s)}. v1 and v2, which respectively project on
the name and role, and the role and salary columns of emp, are used in
defining the disjunctive security policy v1 ∨ v2.
For this example, we assume a database that has only one row in the emp
table, and we also limit the domain of possible roles to {CEO, Intern}.
These limitations are necessary in order to have a finite representation
of the potential query sets and enables us to effectively depict the sets
produced by the mix and tc operators.
Program D.2 depicts a disjunction that – ignoring variable y – depends
either on q1 or q2 (i.e. q1 ∨ q2), which on the DQ can be represented as a
point tc(↓{q1})∨tc(↓{q2}). Similarly, the policy v1∨v2 can be represented
on the DQ by tc(↓{v1}) ∨ tc(↓{v2}).
Illustrating this point requires calculating the mix set of v1 and v2, which
includes all sets of queries whose equivalence relation can be constructed
from the equivalence classes of ↓{v1}∼ and ↓{v2}∼. Unfortunately, for any
sufficiently rich query language, our definition of mix inevitably yields an
infinite set, as infinitely many queries that are “morally equivalent” or even
the same up to renaming variables represent the same knowledge set. To
compactly represent such infinite sets, we will pick just one representative,
and define

hc(Q) = {Q′ | ∃Q ∈ Q. Q∼ = Q′
∼}

as a closure operator that adds all equivalent queries. Then
mix

(
{↓{v1}, ↓{v2}}

)
will be the set hc({↓{v1}, ↓{v2}, ↓{p1}, ↓{p2}}),

where p1 = {(r, vl) |
(
∃s, n. emp(n, r, s) ∧ r = Intern ∧ vl = s

)
∨(

∃s, n. emp(n, r, s) ∧ r = CEO ∧ vl = n
)
} and p2 = {(r, vl) |(

∃s, n. emp(n, r, s) ∧ r = CEO ∧ vl = s
)
∨
(
∃s, n. emp(n, r, s) ∧ r =

Intern ∧ vl = n
)
}.

Therefore, we can depict the policy as the point ⇓(hc({↓{v1}, ↓{v2},
↓{p1}, ↓{p2}})) on the DQ. Similarly, the DQ point of the Program D.2
(i.e. tc(↓{q1})∨ tc(↓{q2})), can also be depicted by the point ⇓hc({↓{p1}})
on the DQ. We illustrate the part of the DQ which includes these points in
Figure D.4, and as it is evident from the figure, conclude that Program D.2
is inline with the policy.

194

Program D.2

1 if (y > 0) then

2 x ← q1

3 else

4 x ← q2

5 out(x, u); tc(↓{v1}) tc(↓{v2}) tc(↓{q1}) tc(↓{q2})

⇓hc({↓{p1}})

⇓hc({↓{v1}, ↓{v2}, ↓{p1}, ↓{p2}})

Figure D.4: A portion of the DQ for queries q1, q2, v1, v2

D.4 Security Framework

Drawing on the quantale model of dependencies for programs and databases, we
develop an extensional condition that defines security for programs that interact
with databases and support disjunctive security policies. We will later use the
security condition to prove soundness of enforcement mechanisms in Section D.5.
Specifically, we formalize the syntax and semantics of a simple imperative language
with database queries. Programs read the input from the database via queries, while
users receive the output through predefined output channels. We define (disjunctive)
security policies as views over the database and interpret them end-to-end. We then
use this model to define a knowledge-based security condition for our setting.

Language

Syntax. The syntax for the commands of our language as depicted in Figure D.5,
primarily consists of standard commands such as assignment, conditionals, and
loops.

c := skip | if e then c1 else c2 | x← q | x := e | c1; c2 | while e do c | out(e, u)

Figure D.5: Language syntax

The command out(e, u) outputs the result of evaluating expression e to user u ∈ U .
The command x ← q issues the query q to the database and stores the result in
variable x. For modeling the queries, we rely on conjunctive queries with comparison
introduced in Section D.5.

Expressions e can be variables x ∈ Vars, values (integers) n ∈ Val, binary operations
e1 ⊕ e2, single tuples tp ∈ Val, and set of tuples tp ∈ Val. For simplicity, we do not
provide de-constructors for database tuples.

195

Semantics. As discussed in Section D.3, a database state (or simply state) db ∈ ΩD

is defined with respect to a schema D and a finite set of integrity constraints. A
configuration ⟨c, m, db⟩ consists of a command c, a memory m = Var→ Val mapping
variables to values, and a state db.

Int

⟨n, m, db⟩ ↓ n

Tuple

⟨tp, m, db⟩ ↓ tp

TupleSet

⟨tp, m, db⟩ ↓ tp

Var
vl = m(x)

⟨x, m, db⟩ ↓ vl

Op
⟨e1, m, db⟩ ↓ n1 ⟨e1, m, db⟩ ↓ n2 n = n1 ⊕ n2

⟨e1 ⊕ e2, m, db⟩ ↓ n

Figure D.6: Semantic rules for expressions

The semantics of expressions is mostly standard and its rules are presented in
Figure D.6. We use judgments of the form ⟨e, m, db⟩ ↓ vl to denote that an
expression e evaluates to value vl in memory m and state db. For simplicity, we
refrain from defining binary operations on tuples, unless the underlying database
query is boolean.

We use judgments of the form ⟨c, m, db⟩ α−→ ⟨c′, m′, db′⟩ to denote that a configuration
⟨c, m, db⟩ in one step evaluates to memory m′ and state db′ and (possibly) produces
an observation α ∈ Obs; we write ϵ whenever a command produces no observation.
We write m[x 7→ vl] to denote a memory m with variable x assigned the value vl.

Figure D.7 provides the semantic rules for commands. The query evaluation rule
QueryEval is similar to assignment as it evaluates a query q into state db and
stores the result in the variable x. We use the command out(e, u) to produce an
observation. Formally, an observation α ∈ Obs is a tuple ⟨o, u⟩, where u ∈ U is the
identifier of the user observing the output and o is the result of evaluating expression
e, which is either a simple value or the result set of a non-boolean query.

We write ⟨c, m, db⟩ τ=⇒u⟨c′, m′, db′⟩ to denote when ⟨c, m, db⟩ takes one or more
steps to reach configuration ⟨c′, m′, db′⟩ while producing the trace (sequence of
observations) τ ∈ Obs∗. We omit the final configuration whenever it is irrelevant
and write ⟨c, m, db⟩ τ=⇒u.

Security Model

We now introduce our knowledge-based security model for disjunctive security
policies. For simplicity, we denote the initial program memory by m0 and assume it
is fixed and public to all users, hence the only way to input sensitive information is
through database queries. Users make observations through output channels, hence

196

Skip

⟨skip, m, db⟩ ϵ−→ ⟨ϵ, m, db⟩

Assign
⟨e, m, db⟩ ↓ vl m′ = m[x 7→ vl]

⟨x := e, m, db⟩ ϵ−→ ⟨ϵ, m′, db⟩

IfTrue
⟨e, m, db⟩ ↓ n n ̸= 0

⟨if e then c1 else c2, m, db⟩ ϵ−→ ⟨c1, m, db⟩

IfFalse
⟨e, m, db⟩ ↓ n n = 0

⟨if e then c1 else c2, m, db⟩ ϵ−→ ⟨c2, m, db⟩

WhileTrue
⟨e, m, db⟩ ↓ n n ̸= 0

⟨while e do c, m, db⟩ ϵ−→ ⟨c; while e do c, m, db⟩

WhileFalse
⟨e, m, db⟩ ↓ n n = 0

⟨while e do c, m, db⟩ ϵ−→ ⟨ϵ, m, db⟩

Seq
⟨c1, m, db⟩ α−→ ⟨c′

1, m′, db′⟩

⟨c1; c2, m, db⟩ α−→ ⟨c′
1; c2, m′, db′⟩

SeqEmpty

⟨ϵ; c, m, db⟩ ϵ−→ ⟨c, m, db⟩

QueryEval
vl = E [[q]]db m′ = m[x 7→ vl]

⟨x← q, m, db⟩ ϵ−→ ⟨ϵ, m′, db⟩

Output
⟨e, m, db⟩ ↓ vl

⟨out(e, u), m, db⟩
⟨vl,u⟩
−−−−→ ⟨ϵ, m, db⟩

Figure D.7: Semantics rules for commands

their knowledge of the database is determined by what they can infer based on these
observations. This model induces standard equivalence relations for database states
and observation traces.

Database state equivalence. Two states db and db′ are equivalent with respect
to a set of tables and views V , written as db ≈V db′, iff all tables and views in V
have identical contents in db and db′. Formally, states db and db′ are equivalent
with respect to V iff for all view v ∈ V, E [[v.q]]db = E [[v.q]]db′ and for all table
t ∈ V, JtKdb = JtKdb′ . A set of tables and views V induces an equivalence relation,
and for a state db, the equivalence class [db]V contains all states that are equivalent
to db with respect to V .

Trace equivalence. We use trace projection to define trace equivalence. The
projection of a trace τ for user u written as τ⇂u is the sequence of all observations
in τ that u can observe. Traces τ1 and τ2 are equivalent with respect to user u,
written as τ1 ≈u τ2, iff the projection of one of them to u is the prefix of the other,
i.e. τ1⇂u ⪯ τ2⇂u or τ1⇂u ⪰ τ2⇂u.

Equivalence of trace prefixes is a standard technicality needed to ignore leaks
due to program’s progress/termination [55], and here we adapt a definition of
trace equivalence which does not differentiate between program divergence and
termination [163].

197

User knowledge. When executing a program prg, we assume memory is always
initially in the all-zero state m0. Thus, we can view a program’s execution for any
user as a function from database db to user-observable output traces, τprg,u(db) = τ⇂u

when ⟨prg, m0, db⟩ τ=⇒u. This function induces an equivalence relation on databases,
JprgKu = ∼τprg,u , which characterizes the knowledge of db conveyed by the output
of prg to u.

Security policy. A security policy is a list of user policies (written as Pu) for each
user u ∈ U . User policies are defined as views and table identifiers over a database
schema, and determine what a user u is allowed to observe.

con := {v} | {t} | con1 ∪ con2

dis := {con} | dis1 ∪ dis2

Pu := dis

Figure D.8: Syntax of user policy

Figure D.8 presents the syntax of disjunctive
policies for our model. They are defined as
a set of sets in order to represent a disjunc-
tion of conjunctions of simpler policies. A
conjunction con is a set of view v and table
t identifiers, and a disjunction dis is a set
of conjunctions. For example, the policy Pu

for user u who is allowed to see table t1 and view v1, or view v2 but not both, is
defined as Pu = {{t1, v1}, {v2}}.

The overall policy of the system, written as P , is the list of user policies. Per
Def. D.6, the policy Pu can be represented semantically as an element JPuK of the
Quantale of Information. Thus, we can formulate our security condition as the
assertion that the knowledge of the database that the execution of the program prg
conveys to u is bounded above by the disjunctive knowledge allowed by the policy,
JPuK.

ñ Definition D.7
The program prg is secure for the user u and policy Pu if JprgKu ⊑ JPuK.

D.5 Enforcement of Disjunctive Policies

Having formulated the security condition, we would like to prove that useful programs
satisfy it. To this end, we introduce a sound static enforcement mechanism, which
imposes some structural limitations on the policy and trades off some completeness
for the sake of efficiency and ease of analysis.

Figure D.9 illustrates how our mechanism functions at a high level. We assume as
input a program and policy in the format described in Figure D.5 and Figure D.8
respectively. The program is then subjected to a static dependency analysis (Sec-
tion D.5), which computes an overapproximate set of possible paths of control flow
through the program, along with the queries (dependencies) retrieved for each path,

198

Policy

Program Dependency
Analysis

Query
Abstraction

Query
Abstraction

Security
Check

Figure D.9: Enforcement steps

giving an element of the DQ, that is a (disjunctive) set of (conjunctive) sets of
queries. Per Figure D.8, the policy is also already given in this format.

We would like to verify that the program dependencies are bounded by the policy
in the DQ, as by Lemma D.2, this entails the security condition (Def. D.7) that the
disjunctive information that is revealed by the program is bounded above by the QoI
interpretation of the policy. However, checking DQ ordering on general queries may
be computationally costly. We therefore abstract (Section D.5) both the policy and
the path dependencies into a more tractable format (symbolic tuples), which again
overapproximates the information they can retrieve. To guarantee soundness, we
require that the views in the policy are such that this abstraction is lossless for them.
Finally, as the security check (Section D.5), we compute a tractable comparison on
sets of sets of symbolic tuples that can be shown to imply DQ ordering.

Conjunctive Queries

While our theoretical definitions are based on the fully-general domain relational
calculus as a query language, to avoid complexity, our enforcement mechanism will
work with a restricted subset called conjunctive queries with comparisons (CQCs).
This language is a subset of relational calculus that only employs conjunction (∧)
and existential quantification (∃) and omits disjunction (∨), negation (¬), and
universal quantification (∀). CQCs can model SELECT-FROM-WHERE portion of SQL,
where there are only AND and comparisons in the WHERE clause.

Our language for (non-boolean) CQC q over a database schema D employs the
standard notation [15, 193], and has the form heading← body:

ans(y)← R1(x1), ..., Rn(xn), C1, ..., Cm

where R1, ..., Rn are relations in D, and x1, ..., xn are their variables. We use
Var(q) = x1 ∪ ... ∪ xn to denote the set of variables appearing in the body of the
query q. C1, ..., Cm are formulae of the form xi ⊕ xj where ⊕ is the comparison
operator which could be anything from <,≤, =, ̸=, >,≥ and xi and xj are either
variables in Var(q) or constants.

199

We require that y ⊆ Var(q). Without loss of generality, we assume that there are
no self-joins in the query. In case of queries with self-joins, we can make logical
copies of the relations to accommodate them [193]. The body of a CQC q comprises
two parts, namely the relation identifiers R1, ..., Rn referred to as ids(q), and the
conditions C1, ..., Cm denoted by cnd(q).

Similarly to Section D.3, the evaluation of q on the database state db (denoted by
E [[q]]db) is defined by taking all tuples in the cartesian product of ids(q) in db that
satisfy cnd(q), and projecting to the column set y.

� Example D.5
Consider the database schema in Figure D.2. The following query returns
a set of tuples containing the names of divisions whose managers have a
salary of more than 50:

ans(d)← emp(n, r, s), mng(d, m), n = m, s > 50

Type-based Dependency Analysis

Our static dependency analysis builds on the generic type system of van Delft et
al. [116] and extends it with support for disjunctive dependencies. We intuitively
expect that a disjunctive dependency analysis must be path-sensitive, so as to
distinguish between different executions and also keep track of the history of
observations. Both of these requirements are often challenging for type-based
analyses, which do not naturally align with the execution order. We will first
illustrate these challenges with examples and then present our analysis.

Program D.3

1 if (y > 0) then
2 x := w + z;
3 else
4 x := x + 1;
5 out(x,u);

Program D.3 illustrates the need for path sensi-
tivity. The analysis should distinguish between
the then branch, where variable x depends on
the set {y, w, z}, and the else branch where x
depends on {y, x}. Our reference analysis [116]
would join these two sets at the end of the if
statement, ultimately yielding the dependency
set {x, y, w, z}. In our analysis, these sets are
never joined, but instead combined to form a
set of sets, namely, {{y, w, z}, {y, x}}, where the outer set represents a disjunctive
dependency and the inner sets represent conjunctive dependency.

Program D.4 illustrates the need to keep track of the observation history. It outputs
x at lines 5 and 10, and the dependency set of x in both places is {{q1, z}, {q2, z}}.
However, this program will always output both q1 and q2. Now, if a policy only

200

T-Skip

⊢ skip : Γid

T-Assign
Γ = Γid[x 7→ {fv(e) ∪ {pc}}]

⊢ x := e : Γ

T-QueryEval
Γ = Γid[x 7→ {{q, pc}}]

⊢ x← q : Γ

T-If
⊢ ci : Γi Γ′

i = Γi; Γid[pc 7→ {fv(e) ∪ {pc}}] i = 1, 2 Γ′ = (Γ′
1 ⋓ Γ′

2)[pc 7→ {{pc}}]

⊢ if e then c1 else c2 : Γ′

T-While
⊢ c : Γc Γf = (Γc; Γid[pc 7→ {fv(e) ∪ {pc}}])∗ Γ′ = Γf [pc 7→ {{pc}}]

⊢ while e do c : Γ′

T-Output
Γ′ = Γid[u 7→ {fv(e) ∪ {pc, u}}]

⊢ out(e, u) : Γ′

T-Seq
⊢ c1 : Γ1 ⊢ c2 : Γ2 Γ′ = Γ2; Γ1

⊢ c1; c2 : Γ′

Figure D.10: Type-based dependency analysis rules

allows user u to see either query q1 or q2, the outputs at lines 5 and 10 will be
incorrectly accepted. Hence, the analysis should account for all outputs to user u.

Program D.4

1 if (z == 0) then
2 x ← q1;
3 else
4 x ← q2;
5 out(x,u);
6 if (z != 0) then
7 x ← q1;
8 else
9 x ← q2;

10 out(x,u);

Figure D.10 depicts the rules of our disjunctive depen-
dency analysis. We use judgments of the form ⊢ c : Γ,
where Γ is an environment mapping variables Var to
set of sets of dependencies Dep. The set of variables
is Var = PV ∪ U ∪ {pc}, where PV are program
variables, U are users, and pc is the program context.
The dependencies Dep are Dep = Var ∪ Q, where Var
are variables and Q are queries that can be issued to a
database. We use u ∈ U to indicate the dependencies
of all outputs to user u.

We start by introducing the operators and auxiliary
functions employed within the rules, and then proceed
to explain the rules themselves. The operator ⊗ is
used to join two (or more) sets of sets, defined as:

Γ1(x1)⊗ ...⊗ Γn(xn) = {S1 ∪ ... ∪ Sn | Si ∈ Γi(xi) i = 1, . . . , n}

For example, the join of Γ1(x) = {{x, y}, {z, y}} and Γ2(y) = {{w}, {x, z}} is:

Γ1(x)⊗ Γ2(y) = {{x, y, w}, {x, y, z}, {z, y, w}}

Intuitively, the result of the join operator is a set of sets capturing the product of
the original sets of sets under the set union operation. We use this operator to
calculate all the possible combinations of two environments.

201

Γ2; Γ1 represents the sequential composition of two environments. Intuitively, Γ2; Γ1
is the same as Γ2 but updated with all of the dependencies that have been previously
established in Γ1. Formally:

Γ2; Γ1(x) =
⋃

S2∈Γ2(x)

⊗
y∈S2

Γ1(y)

For example, the sequential composition of the environments

Γ1 = [x 7→ {{x}, {y}}, y 7→ {{y}}, pc 7→ {{y, pc}}]
Γ2 = [x 7→ {{pc, x}}, y 7→ {{pc, y}}, pc 7→ {{pc}}]

evaluates to

Γ2; Γ1 = [x 7→ {{x, y, pc}, {y, pc}}, y 7→ {{pc, y}}, pc 7→ {{y, pc}}]

Finally, the operator ⋓ calculates the union of two environments: Γ1 ⋓ Γ2 = ∀x ∈
Var, Γ1(x) ∪ Γ2(x). This operator is used in conditionals to capture the disjunctive
join of the two branches. For example, in line 5 in Program D.3, Γ1(x) = {{y, w, z}}
and Γ2(x) = {{y, x}}, and the result of (Γ1 ⋓ Γ2)(x) would be {{y, w, z}, {y, x}}.

For loops, we rely on the fixed-point of Γ, denoted by Γ∗, which we define as:

Γ∗ =
⋃

n>0
Γn

where Γ0 = Γid and Γn+1 = Γn; Γ.

In these rules, Γid is the identity environment, defined as ∀x ∈ Var, Γid(x) = {{x}},
and fv(e) denotes the free variables of expression e.

T-Assign updates the dependency set of the assigned variable x to the set of the
free variables of expression e and pc, otherwise it matches the identity environment.
Rule T-QueryEval is similar to assignment, except that instead of fv(e), it adds
query q to the dependency set.

T-If sequentially composes the dependency sets of each branch with the environment
Γid[pc 7→ {fv(e) ∪ {pc}}], thus adding variables of the branch condition to the
dependency set of each branch. Finally, these environments (Γ1 and Γ2) are joined
disjunctively using the ⋓ operator.

T-While uses the fixed-point operator to calculate the dependency set of the loop.
To do so, it first calculates the dependency set of the loop body, which is sequentially
composed with Γid[pc 7→ {fv(e) ∪ {pc}}] to account for the dependencies to the
loop condition. Finally, the fixed-point operator computes the dependency set of
the while loop.

T-Output relies on the dependency set including fv(e), {pc} and {u}, where fv(e)
includes all the variables of the expression outputted to user u, {pc} captures the

202

implicit dependencies to the path conditions, and {u} is the dependency set of
user u and captures the history of dependencies that user u might have observed
up to this point. Observe that by the definition of sequential composition, all the
dependencies of the previous outputs will be added to u.

This analysis yields a final environment Γfin. The result of the analysis is the value of
this environment for the user identifier u, which includes both queries and program
variables. Since program variables do not contain sensitive information, and we
are primarily concerned with queries, we refine the result of Γfin(u) to only include
queries. This refined outcome defines the ultimate result of our analysis, denoted as
QLu:

QLu ≜
⋃

S∈Γfin(u)

{S ∩Q}

The soundness proof of our enforcement relies on the circumstance that, if the set of
queries on which the u-outputs of prg depend when running on a database state db
are denoted by Qprg,u(db), then this set is guaranteed to be found in the set QLu

produced by the dependency analysis. We show how to define Qprg,u(db) using a
taint-tracking semantics presented in Appendix D.5. Formally, this gives rise to
the following soundness condition for the dependency analysis.

« Lemma D.3
For all db ∈ ΩD, Qprg,u(db) ∈ QLu(prg).

Query Abstraction

Even for CQCs, comparing the information revealed by sets of queries is hard in
general. To define a well-behaved and more tractable determinacy order on which
to build our DQ, we introduce another overapproximating abstraction, which we
will use to soundly label queries and policies.

We define a symbolic tuple as ⟨T, ϕ, π⟩, where T = {t1, t2..., tn} is a set of table
identifiers, ϕ is a boolean combination of equality, inequality, and comparisons over
the columns of the tables in T , and π is a subset of the columns of the tables in T .
In a symbolic tuple, π denotes the query’s projection on the columns of the tables
in T , and ϕ defines the constraints over the rows.

� Example D.6

The symbolic tuple of query ans(d)← emp(n, r, s), mng(d, m), n = m, s >
50 defined on the relations of Figure D.2 would be ⟨{emp, mng}, s >
50 ∧ n = m, {d}⟩.

203

While calculating the exact set of symbolic tuples of a relational calculus query is
intractable for many classes of queries, it is tractable for conjunctive queries with com-
parison (CQC). Given a conjunctive query q = ans(y)← R1(x1), ..., Rn(xn), C1, ..., Cm,
the function sts computes a symbolic tuple from q as follows:

sts(q) = ⟨ids(q′),
(∧

C∈cnd(q′)

C
)
, y⟩

where ids(q′) and cnd(q′) defined in Section D.5 return the relation identifiers and
conditionals of q′, respectively. Here, q′ is the query obtained by recursively replacing
views with their definitions. We lift this definition to sets of queries Q, and define
sts(Q) as {

⋃
q∈Q sts(q)}.

Using sts, we define the function σst for a set of sets of queries Q as follows:

σst(Q) = {sts(Q) | Q ∈ Q}

Policy Analysis. The function σst can also be used to map a disjunctive security
policy to a set of labels. However, in order to ensure soundness and avoid approxi-
mation, we place some constraints on policies. (1) To make computing the set of
symbolic tuples tractable we only support policies with views in the CQC form. (2)
We require that the symbolic tuples of views be well-formed, which we define as:

ñ Definition D.8
The symbolic tuple ⟨T, ϕ, π⟩ is said to be well-formed if it satisfies:

dep(ϕ) ⊆ π

where ϕ = C1 ∧ ... ∧ Cn and dep(ϕ) =
⋃

i∈{1,...,n} fv(Ci) returns the column
dependency set of ϕ.

Well-formedness ensures that the symbolic tuples are precise, at the expense of
limiting a view to only applying constrains on the columns which it projects on.

Furthermore, we treat the table identifiers used in policies as special views that
return the whole table. For instance, a policy which allows access to table emp can
be rewritten as view ans(n, r, s)← emp(n, r, s).

As discussed in Section D.4, the disjunctive security policy of user u (written as Pu)
is a set of conjunctions con, interpreted as a disjunction of conjunctions of table and
view identifiers. For a policy Pu that adheres to the constraints mentioned earlier,
σst is defined as follows:

σst(Pu) = {sts(con) | con ∈ Pu}

204

Labels. In our model, a security label ℓ is defined as a set of symbolic tuples, and
we define the ordering relation of two labels, written as ℓ1 ⊑st ℓ2, as follows:

ñ Definition D.9
ℓ1 ⊑st ℓ2 iff for all symbolic tuples ⟨T, ϕ, π⟩ ∈ ℓ1, there are well-formed
symbolic tuples ⟨T1, ϕ1, π1⟩, ..., ⟨Tn, ϕn, πn⟩ in ℓ2 such that T ⊆ (T1 ∪ ... ∪
Tn), T1, ..., Tn are disjoint, ϕ |= (ϕ1∧...∧ϕn), and dep(ϕ)∪π ⊆ (π1∪...∪πn).

To ensure soundness, we assume that all of the symbolic tuples in the right hand
side of ⊑st are well-formed. This definition relies on entailment to check the ordering
of ϕ, and write ϕ1 |= ϕ2 which means that any assignment that satisfies ϕ1 also
satisfies ϕ2.

� Example D.7

Consider symbolic tuples ℓ1 = {⟨{emp}, s = 10, {r}⟩} and ℓ2 =
{⟨{emp, mng}, s > 5, {r, s, m}⟩}. We have ℓ1 ⊑st ℓ2 since {emp} ⊆
{emp, mng}, {r} ⊆ {r, s, m}, s = 10 |= s > 5 and {s} ∪ {r} ⊆ {r, s, m}.

Enforcement

The dependency analysis of Section D.5 extracts the dependencies of program prg’s
outputs to user u and produces QLu. Applying σst to QLu yields a set of labels, each
bounding the information revealed in some path, the u-knowledge of prg (denoted
by k(prg)u). We interpret this as a disjunction, as any execution follows along one
particular path.

Similarly, applying σst to the disjunctive security policy of user u (i.e. Pu) results in
a set of labels. Each label faithfully captures one conjunction, and so the policy is
also represented as a set of labels ak(Pu), interpreted disjunctively.

By Lemma D.2, to verify that the security condition is satisfied, it is sufficient to
establish that QLu ⊑ Pu in the DQ. However, checking ⊑ in the DQ is not generally
tractable. For the security check, we therefore instead perform a twofold approx-
imation: we check ordering for the conjunctive inner sets using the approximate
ordering ⊑st, and approximate the mix-based ordering on the disjunctive outer sets
in a way that loses little relative to our analysis:

ñ Definition D.10
We say that k(prg)u ⊑∗ ak(Pu) iff

∀ℓk ∈ k(prg)u, ∃ℓak ∈ ak(Pu). ℓk ⊑st ℓak

205

ak(Pu)

k(prg)u

Pu

QLu

JPuK

JQLuK

prg JprgKu

⇒ ⇒

⇒ ⊑
⊑⊑⊑

∗
D.A.

σst

σst
QoIDQ

Figure D.11: Overall architecture of our proof

where ℓak and ℓk are labels, and ⊑st is the symbolic tuple ordering of Def. D.9. To
ensure faithful labeling of policies, we assume all of the symbolic tuples in ℓak are
well-formed as defined in Def. D.8. We can then formalize the relationship between
⊑∗ and ⊑ as follows.

« Lemma D.4
If σst({Q1, ..., Qn}) ⊑∗ σst({P1, ..., Pm}), then in the DQ, (Q1∨ ...∨Qn) ⊑
(P1 ∨ ... ∨ Pm).

We refer the readers to Appendix D.6 for the proof of this Lemma.

Soundness Proof

Figure D.11 outlines the overall architecture of our enforcement mechanism and the
correctness assertion that we make of it.

The rightmost column of Figure D.11 represents a chain of information order relations
in the QoI, which we establish for each enforcement step. Following the chain from
bottom to top, we obtain the security condition of Def. D.7. At the same time, the
“left boundary” of the figure, comprising the D.A., σst abstractions and ⊑∗ check,
represents the computations that are actually performed to check a program.

� Theorem D.1
If a program prg satisfies Def. D.10, then it is secure in the sense of
Def. D.7.

Proof. The statement follows from establishing the implications in the diagram of
Figure D.11. The top left cell is Lemma D.4; the top right cell is Lemma D.2; and
the bottom cell (dependency analysis) is Appendix D.5.

206

D.6 Implementation and Evaluation

In this section, we describe our prototype DiVerT [194], which implements the
type-based dependency analysis of Section D.5 and query abstraction of Section D.5
to verify the security of database-backed programs. We then evaluate DiVerT’s
effectiveness using functional tests and an assortment of real-world-inspired use
cases.

Implementation

To evaluate the feasibility and security of our approach in practice, we implemented
the type-based dependency analysis of Section D.5. For the sake of practicality,
instead of CQC, DiVerT uses the SELECT-FROM-WHERE portion of SQL, which is
analogous to CQC as described in Section D.5. Following the query analysis of
Section D.5, these SQL queries are then converted into symbolic tuples. For the
security check, the symbolic tuples with the result of the program analysis must be
compared to those representing the policy; to perform this comparison following
Def. D.9, we use the Z3 SMT solver [58]. Our implementation operates on programs
in the language presented in Section D.4, with the addition of two macros @Table@
and @Policy@ for defining the tables’ schema and the security policy.

Test suite

To validate our implementation, we use a functional test suite consisting of 20
programs, designed to capture a broad variety of examples of disjunctive dependen-
cies. This suite includes programs with row- and column-level policies of varying
granularity levels, and those necessitating the use of SMT solvers for verification.
Furthermore, the tests verify the behaviour of the dependency analysis by incorpo-
rating complex conditionals, loops, and implicit and explicit outputs. The tests can
be found in the implementation repository [194].

Use cases

We evaluate DiVerT on four use cases inspired by real-world problems in which
disjunctive policies naturally arise. The purpose of this evaluation is to validate the
security analysis of DiVerT on realistic scenarios involving disjunctive policies, and
ensure that its behaviour is consistent with the definitions of Section D.4. Rather
than analysing complete applications for each example, we therefore focus on smaller
kernels that capture the core security-critical behaviour of the respective problem.

207

Privacy-preserving location service. Multilateration is a technique to determine
the location of a user by measuring their distance to known reference points [17].
Two distances are sufficient to narrow a user’s location down to one of two points on
a map, and three identify the location unambiguously. Consider a location service
provider which tracks, for some number of users, not only their precise location
but also their distances to certain points of interest (PoI) such as restaurants or
shops. An advertiser wants to query this service to provide location-based ads. For
example, if the user is close to a shop A, and A has a sale going on, the user may
be enticed by this information.

Privacy and business considerations make it desirable to not reveal the precise
location of the user to the advertisement company accessing the database, while
still allowing for some location-based services in this vein. If the advertiser were to
learn the distance of a single user to two or more PoIs at a specific time, the user’s
location could be inferred. However, we may still want to release the user’s distance
to any one PoI which they are currently closest to. This can be interpreted as a
disjunctive policy, in which the information revealed for each user is bounded by
the disjunction of that user’s distances to some single PoI.

The database schema consists of a single table Distance(id, poi, dis, loc),
which stores the ID of each user, the name of the PoI, their distance, and the user’s
precise location. We implement a small example with two PoIs {‘restaurant’, ‘mall’}
and two users {1, 2}. Let the view vi,j for each user i and PoI j be defined
as the query SELECT id, poi FROM Distance WHERE id = i AND poi = j. The
disjunctive policy then covers every combination of user and PoI as a possibility:{

{v1,‘restaurant’, v2,‘restaurant’}, {v1,‘restaurant’, v2,‘mall’},
{v1,‘mall’, v2,‘restaurant’}, {v1,‘mall’, v2,‘mall’}

}
We test two programs against this policy. In one, the advertiser uses internal
parameters identifying a target user and interest, and issues a single query requesting
that user’s distance from the relevant point of interest. In the other, the advertiser
still targets a particular user, but queries all of that user’s distances. As expected,
DiVerT accepts the former program, but rejects the latter.

Privacy-preserving data publishing. Expanding upon the motivating example
in the introduction, we consider the case of programs querying a database with
personally identifiable information (i.e. quasi-identifiers). As discussed before,
revealing too many quasi-identifiers may make it possible to identify an individual.
We consider the example of a medical database [26] with a table Patients(zip,
gen, dis) storing the ZIP code of residence, gender and disease of patients. An
agent querying the database should not learn more than two of these at a time.
For simplicity’s sake, we only consider queries that retrieve the same data from
each patient. Defining v1 = SELECT dis, gen FROM Patients, v2 = SELECT zip,

208

gen FROM Patients, and v3 = SELECT zip, dis FROM Patients, the disjunctive
policy can then be written as {{v1}, {v2}, {v3}}.

Once again, we validate two programs against this policy. Branching on an in-
ternal parameter, the client will issue one query to select data for either male or
female patients. In the first program, all queries take the form of SELECT dis FROM
Patients WHERE gen = ‘F’, whereas in the second one, one of the queries addition-
ally filters on the ZIP code: SELECT dis FROM Patients WHERE gen = ‘F’ AND
zip = 10001. Again, only the latter program is rejected by DiVerT. This reveals
a potential subtlety, as data dependency and hence release of information may arise
not only from what columns are selected, but also from conditions restricting the
set of rows.

Secret sharing. We implement a (t, n) secret sharing schema that splits a secret
value s into n shares s1, s2, ..., sn. These shares are then distributed among n parties
p1, p2, ..., pn, each receiving a unique share. A secure secret sharing schema requires
that the secret s can only be reconstructed if t or more participants combine their
shares. If the number of combined shares is less than t, no information about the
secret should be revealed. This requirement naturally translates to a disjunctive
policy s1 ∨ s2 ∨ ... ∨ sn, stipulating that participants can each only learn one share.

We assume that the shares s1, s2, ..., sn are created by a secure secret sharing
schema and are then stored in a database. The database schema consists of the
table Shares(shareID, shareVal) which stores the ID of each share and their
corresponding value.

The policy only allows a user to read one of the shares (i.e. only one row of the table).
We define the view vi for each share as SELECT shareVal, shareID FROM Shares
WHERE shareID = i where i = 1, ..., n. The corresponding disjunctive policy is
going to look like {{v1}, {v2}, ..., {vn}}.

We implement a program that executes a subroutine for each user, issuing a database
query to retrieve the user’s share. For example the query for a user to retrieve the
share number 5 is SELECT shareVal FROM Shares WHERE shareID = 5 and it is
correctly accepted by DiVerT. If the same user issues another query to retrieve
share number 6, it violates the policy and hence the program is rejected. This
scenario shows that DiVerT is able to correctly enforce row-level policies precisely.

Online shop. This use case models an online shop and a user with a gift card can
only use it to “buy” items that match the value of the gift card. Here we consider a
scenario with an online shop that only provides digital items and they are stored
in a database. The database schema consists of the items table Items(id, name,
data) which stores the ID and name of each digital item. We define a view vn

for each item as SELECT data, name FROM Items WHERE name = n where n is the
item’s name.

Assume a database that has the items Movie, CinemaTicket, Audiobook, Ebook, and

209

GymMem. A policy should only allow the user to access a certain amount of items
whose value adds up to value of gift card. For instance a disjunctive policy may
look like:{
{vMovie, vCinemaTicket}, {vAudiobook, vEbook}, {vGymMem}, {vCinemaTicket, vEbook}

}
We model a user program that issues queries to select items, e.g. SELECT data FROM
Items WHERE name = ‘Movie’.

DiVerT accepts this query because view vMovie allows the user to access Movie.
We create two different scenarios; in one the user issues another query asking
for Audiobook, which DiVerT rejects. In the second scenario, the user asks for
CinemaTicket which is allowed by the policy, and hence DiVerT accepts it.

D.7 Related Work

This section puts our contributions in the context of related works in the areas
of information flow security and database security, discussing security models of
dependencies and tractable enforcement mechanisms. To our knowledge, we are the
first to explore enforcement mechanisms for disjunctive policies, as well as to reconcile
semantic models of (disjunctive) dependencies across the areas of information flow
control and database access control.

Security models. Semantic models of dependencies have a long history since
the introduction of the Lattice of Information (LoI) by Landauer and Redmond
[13]. These models define a lattice structure to represent information as equivalence
relations ordered by refinement and serve as cornerstone to justify soundness of
various dependency analysis at the heart of enforcement mechanisms for security. For
example, the universal lattice by Hunt and Sands [46] models dependencies between
program variables such that the lattice elements are sets of variables ordered by set
containment, and uses it to justify soundness against baseline security conditions,
e.g. noninterference [8].

Within the database community, Bender et al. [99, 104] define the notion of
Disclosure Lattice to represent the information disclosed by sets of database queries.
Disclosure Lattice has been further developed by Guarnieri et al. [163] to enforce
conjunctive information-flow policies for database-backed programs. We point out
that not all disclosure orders are suitable to represent information disclosure in
the context of information flow control: By studying its relation to LoI, we show
that query determinacy and the stronger notion of equivalent query rewriting [76]
provide sound abstraction, while query containment does not.

Our work builds on recent work by Hunt and Sands [181], which provides a semantic
model for disjunctive dependencies, under the notion of the Quantale of Information.

210

We study quantale structures in the context of databases, providing support for
disjunctive policies in database-backed programs. While these policies are rooted
in the area of access control, cf. ethical wall policies [12], the work of Hunt and
Sands [181] is the first to provide an extensional characterization as information-
flow policies. Drawing on our new notion of Determinacy Quantale, we develop a
security condition to capture the security of database-backed programs in presence
of disjunctive database policies.

Enforcement mechanisms. The problem of enforcing disjunctive policies for
programs and/or databases is completely unexplored. We study how a standard
type-based program analysis [116], equipped the notion of path sensitivity, can be
adapted to statically capture disjunctive program dependencies.

At the core of our analysis is a new abstraction of database queries which enables
flexible enforcement of disjunctive policies by means of SMT solvers, as witnessed
by our use cases. An immediate benefit of our Determinacy Quantale is that we
can prove soundness of the enforcement with respect to a solid semantic baseline for
disjunctive dependencies.

There exists a wide array of works enforcing conjunctive policies for database-backed
programs. Guarnieri et al. [163] propose dynamic monitoring to enforce database
policies. Their abstractions are limited to boolean queries and rely on the Disclosure
Lattice of Bender et al. [99, 104], which may cause soundness issues when assuming
query containment as the underlying lattice order.

Language-integrated queries are supported by a range of works such as SIF [52]
and JsLinq [122], SeLinks [65], UrFlow [73], DAISY [163], Jacqueline [131], and
LWeb [165] for row- and column-level conjunctive policies. These works apply
PL-based enforcement techniques such as type systems, dependent types, refinement
types, and symbolic execution to database-backed programs [59, 117, 163, 165], but
lack support for expressing and enforcing disjunctive policies.

Li and Zhang [136] explore path-sensitive program analysis to improve precision of
information flow analysis, yet they do not consider disjunctive policies. QAPLA
[140] is a database access control middleware supporting complex security policies,
such as linking and aggregation policies, with focus only on access control.

D.8 Conclusions

We presented a case for the significance of disjunctive dependency analysis to the
security of database-backed programs. After reviewing recent theoretical develop-
ments in representing disjunctive information, we introduced two structures, the
Determinacy Lattice and the Determinacy Quantale, as database-oriented coun-
terparts to theoretical structures representing simple and disjunctive knowledge
respectively.

211

Using these structures, we formulated a security condition which expresses that a
database-backed program satisfies a given disjunctive policy. In order to enforce this
security condition, we developed a type-based static analysis to compute a bound
on the disjunctive dependencies of database-backed programs in a model language.
By a series of approximations, this bound itself can be tractably compared to the
representation of a static policy.

These steps constitute an enforcement mechanism for disjunctive policies, which we
proved sound with respect to our security condition. To showcase this enforcement
mechanism, we implemented it in our prototype tool, DiVerT. In order to validate
this prototype and the overall framework, we verified the tool on a set of functional
tests covering a variety of language features and disjunctive information patterns,
as well as several use cases representing real-world scenarios in which we want to
enforce disjunctive policies.

Acknowledgements

We are grateful to David Sands and Roberto Guanciale for fruitful discussions, and
would also like to thank the anonymous reviewers for their insightful comments and
feedback.

This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation,
the Swedish Research Council (VR), and the Swedish Foundation for Strategic
Research (SSF).

212

Appendices

Appendix A Interpretations of Query Determinacy

We prove the following technical lemma to show that the two intuitive interpretations
of the definition of query determinacy are equivalent.

« Lemma D.5
If A is recursively enumerable and f : A → B and g : A → C are
computable, then the following are equivalent:

(i) For all a, a′ ∈ A, if f(a) = f(a′), then g(a) = g(a′).

(ii) There exists a computable h : B → C such that for all a ∈ A,
g(a) = h(f(a)).

Proof.

(ii)⇒(i): Suppose b = f(a) = f(a′), and h is as in (ii). Then g(a) = h(f(a)) = h(b),
and g(a′) = h(f(a′)) = h(b).

(i)⇒(ii): Let f̂ : B ⇀ A be the partial function that enumerates A and for a given b ∈ B
returns the first a ∈ A it finds such that f(a) = b. This is computable, per the
algorithmic description provided. This does not necessarily satisfy f̂(f(a)) = a,
but we do have f(f̂(f(a))) = f(a) by definition (since the enumeration of
A will either encounter a or another a′ such that f(a′) = f(a) eventually).
Hence g(f̂(f(a))) = g(a) by (i). So defining h by h(b) = g(̂f(b)), we find that
h(f(a)) = g(a) as required.

Instantiating Lemma D.5 with A as the set of possible databases, f as the function
rQ(db) = {JqKdb | q ∈ Q} that computes the results of the queries in Q on db, and g
as the same for Q′, we find that Q determining Q′ indeed means that the (results of)
queries in Q are always sufficient to determine (compute) the result of the queries
in Q′.

213

Appendix B Relation Between DL and LoI

We first prove some auxiliary lemmas, and then proceed to prove Lemma D.1.

« Lemma D.6
For sets of queries Q1, Q2 ∈ DL(Q), the ordering ↓Q1 ⊑ ↓Q2 on the DL
implies Q1∼ ⊑ Q2∼ on the LoI defined on {Q∼ | Q ∈ DL(Q)}:

↓Q1 ⊑ ↓Q2 → Q1∼ ⊑ Q2∼

Proof. The definition of the ordering relation of the LoI (Section D.2) and Q1∼ ⊑
Q2∼ would give us:

Q1∼ ⊑ Q2∼ → ∀db, db′ ∈ ΩD (db Q1∼ db′ ⇒ db Q2∼ db′) (1)

By the definition of equivalence relations for query sets (Q∼), for all db, db′ ∈ ΩD

we have:

(db Q1∼ db′ ⇒ db Q2∼ db′)→(
(Jq2Kdb = Jq2Kdb′

∀q2 ∈ Q2)⇒ (Jq1Kdb = Jq1Kdb′
∀q1 ∈ Q1)

)
(2)

(1) and (2) would give us:

Q1∼ ⊑ Q2∼ → ∀db, db′ ∈ ΩD(
(Jq2Kdb = Jq2Kdb′

∀q2 ∈ Q2)⇒ (Jq1Kdb = Jq1Kdb′
∀q1 ∈ Q1)

)
(3)

On the other hand, by the definition of the Determinacy Lattice D.2, we have
↓Q1 ⊑ ↓Q2 ↔ Q1 ⪯ Q2. From the definition of determinacy ordering, Q1 ⪯ Q2
means Q2 ↠ Q1. By the definition of query determinacy (Def. D.1) we know that
Q2 ↠ Q1 if:

∀db, db′ ∈ ΩD

(
(Jq2Kdb = Jq2Kdb′

∀q2 ∈ Q2)⇒ (Jq1Kdb = Jq1Kdb′
∀q1 ∈ Q1)

)
(4)

It is evident from (3) and (4) that ↓Q1 ⊑ ↓Q2 → Q1∼ ⊑ Q2∼ holds.

Relying on Def. D.6 to establish the set of equivalence relations derived from a set
of sets of queries, we propose following lemma:

214

« Lemma D.7
For any set of sets of queries Q ⊆ DL(Q), the join of Q on the DL implies
the join of JQK on the LoI defined on {Q∼ | Q ∈ DL(Q)}:⊔

Q→
⊔
JQK

Proof. Assume there is a set of queries R ∈ DL(Q) such that R =
⊔
Q.

By the definition of the Determinacy Lattice D.3, we have
⊔

Q = ↓
⋃

Q which would
give us R = ↓

⋃
Q. By the definitions of ↓ and query determinacy(Def. D.1), it is

straightforward to see (
⋃
Q) ↠ ↓

⋃
Q and ↓

⋃
Q ↠ (

⋃
Q). Replacing ↓

⋃
Q with

R, by the definition of query determinacy (Def. D.1) we have R ↠ (
⋃
Q):

∀db, db′ ∈ ΩD

(
∀r ∈ R. JrKdb = JrKdb′

→ ∀p ∈
⋃

Q. JpKdb = JpKdb′
)

(1)

and (
⋃
Q) ↠ R:

∀db, db′ ∈ ΩD

(
∀p ∈

⋃
Q. JpKdb = JpKdb′

→ ∀r ∈ R. JrKdb = JrKdb′
)

(2)

(1) and (2) would give us:

∀db, db′ ∈ ΩD (∀r ∈ R. JrKdb = JrKdb′
↔ ∀p ∈

⋃
Q. JpKdb = JpKdb′

) (3)

Assume
⊔
JQK is an equivalence relation R′. By the definition of the join of the LoI

(Section D.2):⊔
JQK = ∀db, db′ ∈ ΩD (db R′

∼ db′ ↔ ∀Q ∈ Q. db Q∼ db′)

and by the definition of equivalence relations for query sets, for all db, db′ ∈ ΩD we
have: ⊔

JQK =

(∀r ∈ R′. JrKdb = JrKdb′
↔ ∀Q ∈ Q. ∀q ∈ Q. JqKdb = JqKdb′

) =

(∀r ∈ R′. JrKdb = JrKdb′
↔ ∀p ∈

⋃
Q. JpKdb = JpKdb′

) (4)

(3) and (4) would allow us to conclude R = R′, hence
⊔
Q→

⊔
JQK.

215

«

Î

Lemma D.1
For all Q, there is a complete lattice homomorphism from the Determinacy
Lattice DL(Q) to the Lattice of Information defined on {Q∼ | Q ∈ DL(Q)}.

Proof. To prove this homomorphism, we need to show that the Determinacy Lat-
tice’s ordering and join, as well as the top and bottom elements imply their LoI
counterparts. Lemmas D.6 and D.7 provide the proofs of ordering and join. The
proof for top and bottom elements:

• ↓Q → (↓Q)∼

• ↓∅→ (↓∅)∼

follows trivially from the definition of ↓ and ∼.

Appendix C Determinacy Quantale Axioms

We follow the approach of [181] to prove that our definition of the Determinacy
Quantale is indeed a quantale. We begin by defining what is a quantale.

ñ Definition D.11
A quantale is a structure ⟨L,⊑,∨,⊗, 1⟩ such that:

1. ⟨L,⊑,∨⟩ is a complete join-semilattice

2. ⟨L,⊗, 1⟩ is monoid, that is ⊗ is associative and ∀x ∈ L, x⊗ 1 = x =
1⊗ x

3. ⊗ distributes over ∨.

A quantale is called commutative when its ⊗ operator is commutative [181].

Next, we prove some lemmas that are later used in the proof of Theorem D.2.

« Lemma D.8
Both mix and tc are closure operators.

Proof. A closure operator is a function f : P(A) → P(A) from the power set of
domain A to itself that satisfies the following properties for all sets X, Y ⊆ A:

• f is extensive: X ⊆ f(X)

216

• f is increasing: X ⊆ Y ⇒ f(X) ⊆ f(Y)

• f is idempotent: f(f(X)) = f(X)

It is straightforward to show that both mix and tc satisfy these conditions.

ñ Definition D.12
For a closure operator ↓ defined on the domain A, and a function F : A→ A,
say that F weakly commutes with ↓ if F (cl(X)) ⊆ cl(F (X)) for all X ⊆ A.

« Lemma D.9
Let ↓ : A → A be a closure operator and let X, Y ⊆ A. Suppose that
F : A → A weakly commutes with ↓ and that G : A × A → A weakly
commutes with ↓ in each argument. Then:

1. ↓(F (↓(X))) = ↓(F (X))

2. ↓(G(↓(X)× ↓(Y))) = ↓(G(X × Y))

Proof. Routine, following the properties of closure operator.

« Lemma D.10
Let P,Q ⊆ DL(Q), the union operator ∪ weakly commutes with tc:

tc(tc(P) ∪ tc(Q)) = tc(P ∪Q)

Proof. It suffices to show R ∈ tc(tc(P) ∪ tc(Q)) iff R ∈ tc(P ∪ Q), which follows
easily from the definitions of ∪ and tc.

« Lemma D.11
The join operator of DL weakly commutes with tc in each argument

Proof. Let P, Q ∈ DL(Q), and let S ⊆ DL(Q). If Q∼ is tiled by JSK then P∼ ⊔Q∼
is tiled by {P∼ ⊔ R | R ∈ JSK}. This follows easily from the definition of the
equivalence relation induced by a query (i.e. ∼), mix, Lemma D.7 and the fact that
[P∼ ⊔Q∼] = {A ∩B | A ∈ [P∼], B ∈ [Q∼]} \∅.

217

« Lemma D.12
Given two sets of sets of queries Q,P ⊆ DL(Q) it holds that:

tc(Q)⊗ tc(P) = Q⊗ P

Proof. By Lemma D.11 we know that the join operator of DL weakly commutes
with tc in each argument. We apply this lemma to the definition of ⊗ operator:

tc(Q)⊗ tc(P) =

tc(
⋃

Q∈tc(Q),P ∈tc(P)

(Q ⊔ P)) =

tc(
⋃

Q∈Q,P ∈P
(Q ⊔ P)) =

Q⊗ P

« Lemma D.13
Given two sets of sets of queries Q,P ⊆ DL(Q) it holds that:

Q ∨ P = P ∨Q

Proof. Follows directly from the definition of ∨ in the DL and the commutativity of
union operator ∪.

Q ∨ P =
↓(Q ∪ P) =
↓(P ∪Q) =
P ∨Q

Now, we show that DQ in Def. D.5 is a quantale.

� Theorem D.2
The Determinacy Quantale is a commutative quantale.

Proof. We have to show that our definition of Determinacy Quantale respects the
quantale axioms of Def. D.11.

218

1. Showing ⟨I,⊑,∨⟩ is a complete join-semilattice is straightforward following
Lemma D.8 and the fact that tc is a closure operator.

2. We should show that ⊗ is associative and 1 is a unit:

a. For the associativity of ⊗ we need to show that P⊗(Q⊗R) = (P⊗Q)⊗R.
Here we rely on Lemmas D.11 and D.12 to eliminate the nested uses
of tc and the basic properties of ∪ operator to show that both sides of
P⊗ (Q⊗ R) = (P⊗Q)⊗ R can be reduced to identical expressions.
Left side:

P⊗ (Q⊗ R) =

P⊗ tc(
⋃

Q∈Q,R∈R
(Q ⊔R)) =

P⊗ (
⋃

Q∈Q,R∈R
(Q ⊔R)) =

tc(
⋃

P ∈P,T ∈(
⋃

Q∈Q,R∈R
(Q⊔R))

(P ⊔ T)) =

tc(
⋃

P ∈P,Q∈Q,R∈R)

(P ⊔Q ⊔R)) (1)

Right Side:

(P⊗Q)⊗ R =

tc(
⋃

P ∈P,Q∈Q
(P ⊔Q))⊗ R =

(
⋃

P ∈P,Q∈Q
(P ⊔Q))⊗ R =

tc(
⋃

T ∈(
⋃

P ∈P,Q∈Q
(P ⊔Q)),R∈R

(T ⊔R)) =

tc(
⋃

P ∈P,Q∈Q,R∈R)

(P ⊔Q ⊔R)) (2)

By (1) and (2) we can conclude that P⊗ (Q⊗ R) = (P⊗Q)⊗ R.
b. To show that 1 = ∅ is a unit for ⊗ we need to show that ∀x ∈ I, x⊗ 1 =

x = 1 ⊗ x. Using ∅ as the unit, and applying the definition of ⊗ will
give us:

Q⊗∅ = tc(
⋃

Q∈Q
(Q)) = tc(Q) = Q

which following the associativity of ⊗ gives us ∀x ∈ I, x⊗∅ = x = ∅⊗x.

219

3. To establish distributivity we need to show that P⊗(Q∨R) = (P⊗Q)∨(P⊗R).
We again rely on Lemmas D.11 and D.12 and basic properties of ∪ to show:

P⊗ (Q ∨ R) =
P⊗ tc(Q ∪ R) =
P⊗ (Q ∪ R) =

tc(
⋃

P ∈P,T ∈(Q∪R)

(P ⊔ T)) =

tc(
⋃

P ∈P,Q∈Q
(P ⊔Q) ∪

⋃
P ∈P,R∈R

(P ⊔R)) =

tc((P⊗Q) ∪ (P⊗ R)) =
(P⊗Q) ∨ (P⊗ R)

4. Commutativity of ⊗ is inherited directly from Lemma D.13 and the commuta-
tivity of ⊔ in DL.

P⊗Q =

tc(
⋃

P ∈P,Q∈Q
(P ⊔Q)) =

tc(
⋃

P ∈P,Q∈Q
(Q ⊔ P)) =

Q⊗ P

Appendix D Relation Between DQ and QoI

We first provide some auxiliary lemmas, and then proceed to prove Lemma D.2.

« Lemma D.14
Given sets of sets of queries Q,P ⊆ DL(Q), tc(Q) ⊆ tc(P) on the DQ
implies Jtc(Q)K ⊆ Jtc(P)K on the QoI defined on {JQK | Q ⊆ DL(Q)}.

Proof. Trivial from the Def. D.6.

« Lemma D.15∨
i Pi on the DQ implies

∨
iJPiK on the QoI defined on {JQK | Q ⊆ DL(Q)}.

Proof. Trivial from the Def. D.6.

220

« Lemma D.16
Given sets of sets of queries Q,P ⊆ DL(Q), tc(Q) ⊗ tc(P) on the DQ
implies Jtc(Q)K⊗ Jtc(P)K on the QoI defined on {JQK | Q ⊆ DL(Q)}.

Proof. Follows trivially from Def. D.6 and Lemma D.7.

«

Î

Lemma D.2
For all Q, there is a quantale homomorphism from the Determinacy Quan-
tale DQ(Q) to the Quantale of Information defined on {JQK | Q ⊆ DL(Q)}.

Proof. To prove this homomorphism, we need to show that the Determinacy Quan-
tale’s ordering, join and tensor, as well as the top and bottom elements imply their
QoI counterparts. Lemmas D.14, D.15, and D.16 provide the proofs of ordering,
join and tensor, respectively. The proof of the top element:

• DL(Q)→ LoI(JQK)

follows from Def. D.6 and Lemma D.1, and the proof of the bottom element:

• ∅→ ∅

is trivial.

Appendix E Correctness of Dependency Analysis

To show that the diagram in Figure D.11 commutes, we aim to show commutativity
for each cell in it. In this section, we establish this for the bottommost cell of it. To
that end, we need to establish that the QoI point JQLuK that corresponds to the
query list QLu = {Q1, . . . , Qn} extracted from a program prg by the dependency
analysis is an upper bound on the knowledge relation JprguK induced by prg.

The basic outline of the argument rests on identifying a particular single equivalence
relation k(QL, prg) ∈ mix([Q1∼], . . . , [Qn∼]), which satisfies JprgK ⊑ k(QL, prg).
Intuitively, this relation captures how much information the program could leak at
most if it output the full result of every query that its output depends on. As long
as the analysis is sound, this is an instantiation of the disjunction represented by
QL, with each disjunct selected precisely for those starting configurations where the
program’s output turns out to depend on the queries enumerated in that disjunct.

221

For a fixed program prg and user u, we assume the existence of a function Q = Qprg,u

from databases db ∈ ΩD to sets of queries, which returns the set of those queries
performed when executing prg on database db whose result taints some output to
the user u. We formally define the function Q by relying on a taint analysis.

Taint analysis.The semantics of the taint analysis enriches the normal operational
semantics of the language in the sense that it has transitions whenever the operational
one does, and acts the same on those components of a configuration that exist in the
operational one; so runs in it can be put in one-to-one correspondence to operational
ones.

The rules of the taint analysis presented in Figure D.12 are fairly straightforward.
We use mapping ∆ to map each variable to a set of dependencies of variables and
queries.

The rules for if rely on auxiliary command set pc to δ to restore the dependency
set of pc to its previous state (∆(pc)) upon exiting the if branch. We sequentially
composite this command with the body of if to ensure its execution after leaving
the if branch’s body. The rules for while use set pc to δ in a similar manner.

The rule TA-Output uses fv(e) to extract all the variables of expression e, and
relies on the union of the ∆s of those variables to calculate β, which is the set of
dependencies the execution up to this output, depended on.

We extend the definition of trace τ to a sequence of observations of the form ⟨vl, u, β⟩,
and use the notation τ⇃⇃u to denote the sequence of all βs in τ that u can observe.
We use this notation to define function Q as follows:

ñ Definition D.13

Given a database state db and user u, such that ⟨c, m0, db⟩ τ=⇒u, Q(db) is
defined as {β | β ∈ τ⇃⇃u}

A proof of Lemma D.3 can then proceed by a straightforward induction on the
semantics.

In Def. D.13 we formally define the function Q. This function satisfies a closure
property that informally states that if on two given databases the output depended
on different sets of queries, then the choice of the set of dependencies itself must
have been due to the outcome of a query which is among the dependencies in both
databases and evaluates to a different result.

« Lemma D.17
For all db, db′ ∈ ΩD, if Q(db) ̸= Q(db′), then there exists a particular query
q ∈ Q(db) ∩Q(db′) such that JqKdb ̸= JqKdb′ .

222

TA-Skip

⟨∆, skip, m, db⟩ ϵ−→ ⟨∆, ϵ, m, db⟩

TA-Assign
⟨e, m, db⟩ ↓ vl m′ = m[x 7→ vl] ∆′ = ∆[x 7→ ∆(pc) ∪

⋃
x∈fv(e) ∆(x)]

⟨∆, x := e, m, db⟩ ϵ−→ ⟨∆′, ϵ, m′, db⟩

TA-QueryEval
vl = JqKdb m′ = m[x 7→ vl] ∆′ = ∆[x 7→ ∆(pc) ∪ q]

⟨∆, x← q, m, db⟩ ϵ−→ ⟨∆′, ϵ, m′, db⟩

TA-IfTrue
⟨e, m, db⟩ ↓ n n ̸= 0 c′

1 = c1; set pc to ∆(pc) ∆′ = ∆[pc 7→ ∆(pc) ∪
⋃

x∈fv(e) ∆(x)]

⟨∆, if e then c1 else c2, m, db⟩ ϵ−→ ⟨∆′, c′
1, m, db⟩

TA-IfFalse
⟨e, m, db⟩ ↓ n n = 0 c′

2 = c2; set pc to ∆(pc) ∆′ = ∆[pc 7→ ∆(pc) ∪
⋃

x∈fv(e) ∆(x)]

⟨∆, if e then c1 else c2, m, db⟩ ϵ−→ ⟨∆′, c′
2, m, db⟩

TA-WhileTrue
⟨e, m, db⟩ ↓ n n ̸= 0

c′ = c; while e do c; set pc to ∆(pc)
∆′ = ∆[pc 7→ ∆(pc) ∪

⋃
x∈fv(e) ∆(x)]

⟨∆, while e do c, m, db⟩ ϵ−→ ⟨∆′, c′, m, db⟩

TA-WhileFalse
⟨e, m, db⟩ ↓ n n = 0
c′ = set pc to ∆(pc)

∆′ = ∆[pc 7→ ∆(pc) ∪
⋃

x∈fv(e) ∆(x)]

⟨∆, while e do c, m, db⟩ ϵ−→ ⟨∆′, ϵ, m, db⟩

TA-Seq
⟨∆, c1, m, db⟩ α−→ ⟨∆′, c′

1, m′, db′⟩

⟨∆, c1; c2, m, db⟩ α−→ ⟨∆′, c′
1; c2, m′, db′⟩

TA-SeqEmpty

⟨∆, ϵ; c, m, db⟩ ϵ−→ ⟨∆, c, m, db⟩

TA-Output
⟨e, m, db⟩ ↓ vl β = ∆(pc) ∪

⋃
x∈fv(e) ∆(x)

⟨∆, out(e, u), m, db⟩
⟨vl,u,β⟩
−−−−−→ ⟨∆, ϵ, m, db⟩

TA-SetPC
∆′ = ∆[pc 7→ δ]

⟨∆, set pc to δ, m, db⟩ ϵ−→ ⟨∆′, ϵ, m, db⟩

Figure D.12: Taint analysis rules

We say that database states db and db′ are equivalent with respect to a dependency
set S (written as db ≈S db′) iff JyKdb = JyKdb′ for all y ∈ S where y ∈ Q.

223

« Lemma D.18

For all states db1 and db2 and users u, if ⟨c, m0, db1⟩
t1=⇒u, ⟨c, m0, db2⟩

t2=⇒

u, Q ≜ Q(db1) = Q(db2) and db1 ≈Q db2, then t1⇂u= t2⇂u.

We then define k(QLu, prg) as the equivalence relation

{(db, db′) ∈ Ω2
D | Q(db) = Q(db′) ∧ (db, db′) ∈ Q(db)∼},

that is, we partition each respective subset of databases db that shares one set of
queries Q(db) into equivalence classes according to the knowledge relation induced
by Q(db).

« Lemma D.19
JprgKu ⊑ k(QLu, prg) ⊑ JQLuK.

Proof.

• k(QLu, prg) ⊑ JQLuK: Will in fact show that k(QLu, prg) ∈ mix([Q1∼], . . . ,
[Qn∼]), where QLu = {Q1, . . . , Qn}. For that, it suffices to show that every
equivalence class x ∈ [k(QLu, prg)] is also an equivalence class of one of the
Qi. Let db ∈ x be arbitrary. Then claim that x ∈ [Q(db)], which suffices
since by Lemma D.3, Q(db) is one of the Qi. To establish this, just need to
show that Q(db) = Q(db′) for all db′ such that (db, db′) ∈ Q(db)∼, so that
(db, db′) ∈ k(QLu, prg) as well. But this follows from Lemma D.17: if some
db′ has (db, db′) ∈ Q(db)∼, then JqKdb = JqKdb′ for all q ∈ Q(db), but then we
must not have Q(db) ̸= Q(db′).

• JprgKu ⊑ k(QLu, prg): Straightforward application of Lemma D.18.

Appendix F Query Analysis

Symbolic Tuple Ordering

To show that the symbolic tuples ordering of Def. D.9 induces a determinacy order
and prove Lemma D.20 we first need to define the evaluation of a symbolic tuple in
a database state.

224

Symbolic tuple evaluation. The evaluation of a symbolic tuple ⟨T, ϕ, π⟩ in the
database state db written as J⟨T, ϕ, π⟩Kdb is a π-projection on the set of db’s tuples
defined on the join of tables in T that satisfy the constraint ϕ. Formally:

ñ Definition D.14
Given database state db and symbolic tuple ⟨T, ϕ, π⟩, J⟨T, ϕ, π⟩Kdb is defined
as:

{tp⇂π| tp ∈
∏
t∈T

JtKdb, tp |= ϕ}

where tp⇂π is a tuple with its columns limited to those in π, and tp |= ϕ
means that tuple tp satisfies formula ϕ.

We proceed to prove Lemma D.20.

« Lemma D.20
Given two sets of queries Q1 and Q2, if sts(Q1) ⊑st sts(Q2) then Q1 ⪯ Q2.

Proof. Assume ℓQ1 = sts(Q1) and ℓQ2 = sts(Q2). By Def. D.9 we want to show
that if for all symbolic tuples ⟨T, ϕ, π⟩ ∈ ℓQ1 , there is a set of well-formed symbolic
tuples S = ⟨T1, ϕ1, π1⟩, ..., ⟨Tn, ϕn, πn⟩ such that S ⊆ ℓQ2 , T1, ..., Tn are disjoint,
T ⊆ (T1 ∪ ... ∪ Tn), ϕ |= (ϕ1 ∧ ... ∧ ϕn), and dep(ϕ) ∪ π ⊆ (π1 ∪ ... ∪ πn), then
Q1 ⪯ Q2.

We assume an intermediate symbolic tuple stitr and define it as ⟨T1 ∪ ... ∪ Tn, ϕ1 ∧
... ∧ ϕn, π1 ∪ ... ∪ πn⟩. stitr models the symbolic tuples created from the join
of ⟨T1, ϕ1, π1⟩, ..., ⟨Tn, ϕn, πn⟩. Additionally, T1, ..., Tn are disjoint, which by the
definition of symbolic tuples means that π1, ..., πn and the dependencies of ϕ1, ..., ϕn

are also disjoint, effectively making stitr the symbolic tuple of the Cartesian product
of tuples ⟨T1, ϕ1, π1⟩, ..., ⟨Tn, ϕn, πn⟩.

We want to show that the symbolic tuples in S can determine stitr:

∀db1, db2 ∈ ΩD. JstKdb1 = JstKdb2 ∀st ∈ S → JstitrKdb1 = JstitrKdb2 (1)

For a specific database state db, JstitrKdb would give us all the tuples defined on
T1, ..., Tn satisfying ϕ1 ∧ ... ∧ ϕn and projected on the columns in π1 ∪ ... ∪ πn.

Assume there is a pair of databases db1, db2 ∈ ΩD such that JstKdb1 = JstKdb2 ∀st ∈ S
holds but JstitrKdb1 ̸= JstitrKdb2 . By the assumption JstKdb1 = JstKdb2 ∀st ∈ S we
know that for all st ∈ S, if tuple tp is in JstKdb1 it is also in JstKdb2 , and vice versa.

For JstitrKdb1 ̸= JstitrKdb2 to hold, we have to consider two cases:

225

1. There is a tuple tp ∈ JstitrKdb1 such that tp cannot be constructed from the
tuples in set {tp′ ∈ JstKdb1 | st ∈ S}

- All of the symbolic tuples st ∈ S are well-formed and T1, ..., Tn are
disjoint, which makes stitr the symbolic tuple of the Cartesian product
of S. This means that tuple tp ∈ JstitrKdb1 is defined on the product
of tables T1, ..., Tn, satisfies ϕ1 ∧ ... ∧ ϕn, and projected on π1 ∪ ... ∪ πn.
Which means that each tuple tp ∈ JstitrKdb1 is constructed from the merge
of tuples tp1, ..., tpn where tpi ∈ J⟨Ti, ϕi, πi⟩Kdb1 for i = 1, ..., n. Thus,
this case is not possible.

2. There is a tuple JstitrKdb2 such that tp cannot be constructed from the tuple
set {tp′ ∈ JstKdb2 | st ∈ S}

- Similar to the first case.

Next, we need to show that stitr determines ⟨T, ϕ, π⟩:

∀db1, db2 ∈ ΩD. JstitrKdb1 = JstitrKdb2 → J⟨T, ϕ, π⟩Kdb1 = J⟨T, ϕ, π⟩Kdb2 (2)

By JstitrKdb1 = JstitrKdb2 we know ∀tp1 ∈ JstitrKdb1 ,∃tp2 ∈ JstitrKdb2 and tp1 = tp2,
and ∀tp2 ∈ JstitrKdb2 ,∃tp1 ∈ JstitrKdb1 and tp2 = tp1.

Intuitively, for a given database db, JstitrKdb has has more columns and tuples than
J⟨T, ϕ, π⟩Kdb. Symbolic tuple ⟨T, ϕ, π⟩ throws away some columns by limiting the
resulting tuples to tables in T which is a subset of T1 ∪ ... ∪ Tn and projecting on π
which is a subset of π1 ∪ ... ∪ πn. It also eliminate some rows by applying ϕ to the
result set, which is stronger than ϕ1 ∧ ... ∧ ϕn.

We need to show that applying these limitations maintains query determinacy. We
consider these cases separately:

Columns: Projecting away some columns from the evaluation of stitr is going to maintain
query determinacy. We denote by tp⇂π, projecting tuple tp to only columns
specified in π, additionally we use the notation col(T) to indicate the columns
of T . We use the same notation for tuples and write col(tp) to denote the
set of columns of tuple tp. For a tuple tp such that tp ∈ JstitrKdb1 and
tp ∈ JstitrKdb2 , by projecting away some columns from tp we end up with
a new tuple tp′ = tp⇂π such that col(tp′) ⊆ col(tp). Since tp is in both
JstitrKdb1 and JstitrKdb2 , and by the definition of ordering π ⊆ π1 ∪ ... ∪ πn, we
can conclude tp′ will also be in both J⟨T1 ∪ ... ∪ Tn, ϕ1 ∧ ... ∧ ϕn, π⟩Kdb1 and
J⟨T1 ∪ ... ∪ Tn, ϕ1 ∧ ... ∧ ϕn, π⟩Kdb2 , this follows easily from Def. D.14.

Rows: Removing some rows from the last step is going to maintain query determi-
nacy. By the definition of ordering we know that dep(ϕ) ∪ π ⊆ π1 ∪ ... ∪ πn

and that ⟨T1, ϕ1, π1⟩, ..., ⟨Tn, ϕn, πn⟩ are well-formed, which means that ϕ

226

only applies to the columns that were retrieved by the intermediate tu-
ple (projected to π). Since ϕ is a stronger condition than ϕ1 ∧ ... ∧ ϕn,
for a tuple tp such that tp ∈ J⟨T1 ∪ ... ∪ Tn, ϕ1 ∧ ... ∧ ϕn, π⟩Kdb1 and tp ∈
J⟨T1 ∪ ... ∪ Tn, ϕ1 ∧ ... ∧ ϕn, π⟩Kdb2 , if tp satisfies ϕ then tp would also be in
both J⟨T1 ∪ ... ∪ Tn, ϕ, π⟩Kdb1 and J⟨T1 ∪ ... ∪ Tn, ϕ, π⟩Kdb2 . Otherwise, if tp is
not in one of then, it is not going to be in the other one either.

Tables: Similar to the first case, for a tuple tp such that tp ∈ J⟨T1 ∪ ... ∪ Tn, ϕ, π⟩Kdb1

and tp ∈ J⟨T1 ∪ ... ∪ Tn, ϕ, π⟩Kdb2 , by projecting away the columns of some of
the tables from tp we end up with a new tuple tp′ = tp⇂col(T). Since tp is in both
J⟨T1 ∪ ... ∪ Tn, ϕ1 ∧ ... ∧ ϕn, π⟩Kdb1 and J⟨T1 ∪ ... ∪ Tn, ϕ1 ∧ ... ∧ ϕn, π⟩Kdb2 , and
by Def. D.9 T ⊆ T1∪...∪Tn, we can conclude t′ will also be in both J⟨T, ϕ, π⟩Kdb1

and J⟨T, ϕ, π⟩Kdb2 .

(1) and (2) would give us:

∀db1, db2 ∈ ΩD. JstKdb1 = JstKdb2 ∀st ∈ S → J⟨T, ϕ, π⟩Kdb1 = J⟨T, ϕ, π⟩Kdb2

which allows us to conclude ⟨T1, ϕ1, π1⟩...⟨Tn, ϕn, πn⟩ determines ⟨T, ϕ, π⟩.

Repeating this process for all of the symbolic tuples in ℓQ1 would give us Q2 ↠ Q1
which means Q1 ⪯ Q2.

Symbolic Tuple and DQ Ordering

We present the proof of Lemma D.4.

«

Î

Lemma D.4
If σst({Q1, ..., Qn}) ⊑∗ σst({P1, ..., Pm}), then in the DQ, (Q1∨ ...∨Qn) ⊑
(P1 ∨ ... ∨ Pm).

Proof. Assume σst({Q1, ..., Qn}) = {ℓQ1 , ..., ℓQn
} and σst({P1, ..., Pm}) = {ℓP1 , ..., ℓPm

}.
We have {ℓQ1 , ..., ℓQn

} ⊑∗ {ℓP1 , ..., ℓPm
}.

By the definition of ⊑∗ and Lemma D.20, we know that for each Qi in {Q1, ..., Qn}
there is at least one Pj in {P1, ..., Pm} such that Qi ⪯ Pj .

We apply tc to Qi and Pj which would give us tc(Qi) ⊆ tc(Pj). By applying
tc to every element of {P1, ..., Pm}, using the basic properties of ∪ we will have
tc(Qi) ⊆ tc(P1) ∪ ... ∪ tc(Pm) for all i ∈ {1, ..., n}.

Since the tiling closure of each Qi is individually less than tc(P1)∪ ...∪ tc(Pm), their
union would still be less that tc(P1) ∪ ... ∪ tc(Pm) which gives us:

tc(Q1) ∪ ... ∪ tc(Qn) ⊆ tc(P1) ∪ ... ∪ tc(Pm) (1)

227

We apply the tiling closure to both sides of (1) and rely on Lemma D.10 to remove
the nested uses of tc, which would give us:

tc(Q1 ∪ ... ∪Qn) ⊆ tc(P1 ∪ ... ∪ Pm)

which by the definition of ∨ in the DQ would mean (Q1∨...∨Qn) ⊑ (P1∨...∨Pm)

228

Paper E

Securing P4 Programs by Information
Flow Control

Anoud Alshnakat, Amir M. Ahmadian, Musard Balliu,
Roberto Guanciale, and Mads Dam

Abstract

Software-Defined Networking (SDN) has transformed network architectures
by decoupling the control and data planes, enabling fine-grained control over
packet processing and forwarding. P4, a language designed for programming
data plane devices, allows developers to define custom packet processing
behaviors directly on programmable network devices. This provides greater
control over packet forwarding, inspection, and modification. However, the
increased flexibility provided by P4 also brings significant security challenges,
particularly in managing sensitive data and preventing information leakage
within the data plane.

This paper presents a novel security type system for analyzing information
flow in P4 programs by combining security types with interval analysis. The
proposed type system allows the specification of security policies in terms
of input packet bits rather than program variables. We formalize this type
system and prove it sound, guaranteeing that well-typed programs satisfy
noninterference. Our prototype implementation Tap4s, evaluated on several
use cases, demonstrates the effectiveness of this approach in detecting security
violations and information leakages.

231

E.1 Introduction

Software-Defined Networking (SDN) [127] is a software-driven approach to net-
working that enables programmatic control of network configuration and packet
processing rules. SDN achieves this by decoupling the routing process, performed
in the control-plane, from the forwarding process performed in the data-plane.
The control-plane is often implemented by a logically-centralized SDN controller
that is responsible for network configuration and setting forwarding rules. The
data-plane consists of network devices, such as programmable switches, that process
and forward packets based on instructions received from the control-plane. Before
SDN, hardware providers had complete control over the supported functionalities of
the devices, leading to lengthy development cycles and delays in deploying new fea-
tures. SDN has shifted this paradigm, allowing application developers and network
engineers to implement specific network behaviors, such as deep packet inspection,
load balancing, and VPNs, and execute them directly on networking devices.

Network Functions Virtualization (NFV) further expands upon this concept, enabling
the deployment of multiple virtual data-planes over a single physical infrastructure
[118]. SDN and NFV together offer increased agility and optimization, making them
cornerstones of future network architectures. Complementing this evolution, the
Programming Protocol-independent Packet Processors (P4) [105] domain-specific
language has emerged as a leading standard for programming the data-plane’s
programmable devices, such as FPGAs and switches. Additionally, P4 serves as a
specification language to define the behavior of the switches as it provides a suitable
level of abstraction, yet detailed enough to accurately capture the behavior of the
switch. It maintains a level of simplicity and formalism that allows for effective
automated analysis [189].

NFVs and SDNs introduce new security challenges that extend beyond the famous
and costly outages caused by network misconfigurations[169]. Many data-plane
applications process sensitive data, such as cryptographic keys and internal network
topologies. The complexity of these applications, the separation of ownership of
platform and data-plane in virtualized environments, and the integration of third-
party code, facilitate undetected information leakages. Misconfiguration may deliver
unencrypted packets to public network, bugs may leak sensitive packet metadata or
routing configurations that expose internal network topology, and malicious code
may build covert channels to exfiltrate data via legitimate packet fields such as TCP
sequence number and TTL [50].

In this domain, the core challenge lies in the data dependency of what is observable,
what is secret, and the packet forwarding behavior. An attacker may be able to
access only packets belonging to a specific subnetwork, only packets for a specific
network protocol may be secret, and switches may drop packets based on the
matching of their fields with routing configurations. These data dependencies make
information leakage a complex problem to address in SDN-driven networks.

232

Existing work in the area of SDN has focused on security of routing configurations
by analyzing network flows that are characterized by port numbers and endpoints.
However, these works ignore indirect flows that may leak information via other packet
fields. Existing work in the PL area (including P4BID [192]) substantially ignore
data dependencies and lead to overapproximations unsuitable for SDN applications.
For example, the sensitivity of a field in a packet might depend on the packet’s
destination.

We develop a new approach to analyze information flow in P4 programs. A key idea
is to augment a security type system (which is a language-based approach to check
how information can flow in a program) with interval analysis, which in the domain
of SDNs can be used to abstract over the network’s parameters such as subnetworks
segments, range of ports, and non-expired TTLs. Therefore, in our approach, in
addition to a security label, the security type also keeps track of an interval.

Our analysis begins with an input policy, expressed as an assignment of types to
fields of the input packet. For instance, a packet might be considered sensitive only if
its source IP belongs to the internal network. The analysis conservatively propagates
labels and intervals throughout the P4 program in manner reminiscent of dynamic
information flow control [47] and symbolic execution, cf. [90]. This process is not
dependent on a prior assignment of security labels to internal program variables,
thus eliminating the need for the network engineer to deal with P4 program internals.
The proposed analysis produces multiple final output packet typings, corresponding
to different execution paths. These types are statically compared with the output
security policy, which allows to relate observability of the output to intervals of
fields of the resulting packets and their metadata.

The integration of security types and intervals is challenging. On one hand, the
analysis should be path-sensitive and be driven by values in the packet fields to
avoid rejecting secure programs due to overapproximation. On the other hand the
analysis must be sound and not miss indirect information flows. Another challenge
is that the behaviors of P4 programs depend on tables and external functions, but
these components are not defined in P4. We address this by using user-defined
contracts that overapproximate their behavior.

Summary of contributions.

• We propose a security type system which combines security labels and abstract
domains to provide noninterference guarantees on P4 programs.

• Our approach allows defining data-dependent policies without the burden of
annotating P4 programs.

• We implement the proposed type system in prototype tool Tap4s1 and evaluate
it on a test suite and 5 use cases.

1https://github.com/amir-ahmadian/TAP4S

233

https://github.com/amir-ahmadian/TAP4S

E.2 P4 Language and Security Challenges

This section provides a brief introduction to the P4 language and its key features,
while motivating the need for novel security analysis that strikes a balance between
expressiveness of security policies and automation of the verification process.

P4 manipulates and forwards packets via a pipeline consisting of three stages:
parser, match-action, and deparser. The parser stage dissects incoming packets,
converting the byte stream into structured header formats. In the match-action
stage, these headers are matched against rules to determine the appropriate actions,
such as modifying, dropping, or forwarding the packet to specific ports. Finally, the
deparser stage reconstructs the processed packet back into a byte stream, ready for
transmission over the network.

P4 switch

External Network
Internal Network

192.168.*.*

Control Plane

IPv4_lpm

Tables

[1-9] [10-20]

Figure E.1: Congestion notifier network layout

Program E.1 implements a switch that manages congestion in the network of Figure
E.1. We assume this switch is the only ingress and egress point for traffic entering
and exiting the internal network, connecting it to external networks. We use this
program as a running example throughout the paper. In an IPv4 packet, the explicit
congestion notification (ECN) field provides the status of congestion experienced
during the packet’s transmission. ECN value 0 indicates that neither the sender nor
the receiver supports the ECN capability, 1 and 2 indicate that the sender supports
ECN and the packet can be marked if congestion occurs, and 3 indicates that the
packet has experienced congestion.

1 const bit<19> THRESHOLD = 10;
2
3 struct headers {
4 ethernet_t eth;
5 ipv4_t ipv4;
6 }
7
8 void decrease (inout bit<8> x) {
9 x = x - 1;

10 }
11

234

Program E.1: Congestion notifier

12 parser MyParser(packet_in packet, out headers hdr,
13 inout metadata meta,
14 inout standard_metadata_t
15 standard_metadata) {
16
17 state start {
18 transition parse_ethernet;
19 }
20
21 state parse_ethernet {
22 packet.extract(hdr.eth);
23 transition select(hdr.eth.etherType) {
24 0x0800: parse_ipv4;
25 default: accept;
26 }
27 }
28
29 state parse_ipv4 {
30 packet.extract(hdr.ipv4);
31 transition accept;
32 }
33 }
34 control MyCtrl(inout headers hdr,
35 inout metadata meta,
36 inout standard_metadata_t standard_metadata) {
37 action drop() {
38 mark_to_drop(standard_metadata);
39 }
40 action ipv4_forward(bit<48> dstAddr, bit<9> port) {
41 standard_metadata.egress_spec = port;
42 hdr.eth.srcAddr = hdr.eth.dstAddr;
43 hdr.eth.dstAddr = dstAddr;
44 decrease(hdr.ipv4.ttl);
45 }
46 table ipv4_lpm {
47 key = { hdr.ipv4.dstAddr: lpm; }
48 actions = { ipv4_forward; drop; }
49 default_action = drop();
50 }
51 apply {
52 if (hdr.ipv4.isValid()) {
53 if (hdr.ipv4.dstAddr[31:24] == 192 &&
54 // BUG: hdr.ipv4.dstAddr[7:0] == 192 &&
55 hdr.ipv4.dstAddr[23:16] == 168){
56 if (standard_metadata.enq_qdepth >= THRESHOLD)
57 hdr.ipv4.ecn = 3;
58 } else {
59 hdr.ipv4.ecn = 0;
60 }
61 ipv4_lpm.apply(); //forward all valid packets
62 } else {
63 drop();
64 } } }

235

P4 structs and headers. Structs are records used to define the format of P4
packets. Headers are special structs with an additional implicit boolean indicating
the header’s validity, which is set when the header is extracted. Special function
isValid (line 52) is used to check the validity of a header.

For example, the struct headers on line 3 has two headers of type ethernet_t
and ipv4_t, as depicted in Figure E.2. The fields of the ethernet_t specify the
source and destination MAC addresses and the Ethernet type. The header ipv4_t
represents a standard IPv4 header with fields such as ECN, time-to-live (TTL),
source and destination IP addresses.

dstAddr srcAddr etherType

ethernet_t fields

. . . ecn . . . ttl . . . srcAddr dstAddr

ipv4_t fields

Figure E.2: Packet header

Parser. The parser dissects incoming raw packets (packet on line 12), extracts
the raw bits, and groups them into headers. The parser’s execution begins with the
start state and terminates either in reject state or accept state accepting the
packet and moving to the next stage of the pipeline.

For example, MyParser consists of three states. The parsing begins at the start
state (line 17) and transitions to parse_ethernet extracting the Ethernet header
from the input packet (line 22), which automatically sets the header’s validity
boolean to true. Next, depending on the value of hdr.eth.etherType, which
indicates the packet’s protocol, the parser transitions to either state parse_ipv4
or state accept. If the value is 0x0800, indicating an IPv4 packet, the parser
transitions to state parse_ipv4 and extracts the IPv4 header (line 30). Finally,
it transitions to the state accept (line 31), accepts the packet, and moves to the
match-action stage.

Match-Action. This stage processes packets as instructed by control-plane-
configured tables. A table consists of key-action rows and each row determines the
action to be performed based on the key value. Key-action rows are updated by the
control-plane, externally to P4. By applying a table, the P4 program matches the
key value against table entries and executes the corresponding action. An action is
a programmable function performing operations on a packet, such as forwarding,
modifying headers, or dropping the packet.

The match-action block MyCtrl of Program E.1 starts at line 34. If the IPv4 header
is not valid (line 52) the packet is dropped. Otherwise, if the packet’s destination
(line 53-55) is the internal network, the program checks for congestion. The standard
metadata’s enq_qdepth field indicates the length of the queue that stores packets
waiting to be processed. A predefined THRESHOLD is used to determine the congestion

236

status and store it in the ecn field (line 57 and 59). Finally, the packet is forwarded
by applying the ipv4_lpm table (line 61). This table, defined at line 46, matches
based on longest prefix (lpm) of the IPv4 destination address (hdr.ipv4.dstAddr),
and has two actions (shown on line 48): ipv4_forward which forwards the packet
and drop which drops the packet. If no match exists, the default action on line 49
is invoked.

Calling conventions. The P4 is a heapless language, implementing a unique
copy-in/copy-out calling convention that allows static allocation of resources. P4
function parameters are optionally annotated with a direction (in, inout or out).
The direction indicates how arguments are handled during function invocation and
termination, offering fine-grained control over data visibility and potential side
effects.

For example, inout indicates that the invoked function can both read from and write
to a local copy of the caller’s argument. Once the function terminates, the caller
receives the updated value of that argument. For instance, assume hdr.ipv4.ttl
value is 10 in line 43. The invocation of decrease copies-in the value 10 to
parameter x, and the assignment on line 9 modifies x to value 9. Upon termination,
the function copies-out the value 9 back to the caller’s parameter, changing the
value of hdr.ipv4.ttl to 9 in line 44.

Externs. Externs are functionalities that are implemented outside the P4 program
and their behavior is defined by the underlying hardware or software platform.
Externs are typically used for operations that are either too complex or not directly
expressible in P4’s standard constructs. This includes operations like hashing,
checksum computations, and cryptographic functions. Externs can directly affect
the global architectural state that is external to the P4 state, but their effects to
the P4 state are controlled by the copy-in/copy-out calling convention.

For example, the extern function mark_to_drop (line 38) signals to the forwarding
pipeline that a packet should be discarded. Generally, the packet is sent to the port
identified by the standard metadata’s egress_spec field, and dropping a packet is
achieved by setting this field to the drop port of the switch. The drop port’s value
depends on the target switch; we assume the value is 0.

Problem statement

The power and flexibility of P4 to programmatically process and forward packets
across different networks provides opportunities for security vulnerabilities such
as information leakage and covert channels. For instance, in Program E.1, the
standard metadata’s enq_qdepth field, which indicates the length of the queue that
stores packets waiting to be processed, indirectly reveals the congestion status of
the current switch. Similarly, the ecn field of a packet, carrying explicit congestion

237

information, can also reveal the congestion status of the network.

Given that the congestion information of an internal network and the switch are
considered sensitive, packets traveling to the external networks should not carry
this information. Therefore, Program E.1 sets the ecn field to 0 if the packet’s
destination IP address belongs to the external network (line 59), otherwise the
congestion status is changed according to the switch’s congestion. The application
of the ipv4_lpm table (line 61) forwards the packet to a table-specified port. If the
forwarding ports are not configured properly by the table or a bug (line 54) sets the
ecn field on the packets leaving the internal network, the packets forwarded to an
external network will leak information about the internal network’s congestion state.
Covert channels can also result from buggy or malicious programs. For example, by
encoding the ecn field into the ttl field, an adversary can simply inspect ttl to
deduce the congestion status.

To detect these vulnerabilities, we set out to study the security of P4 programs
by means of information flow control (IFC). IFC tracks the flow of information
within a program, preventing leakage from sensitive sources to public sinks. Infor-
mation flow security policies are typically expressed by assigning security labels to
the sources and sinks and the flow relations between security labels describe the
allowed (and disallowed) information flows. In our setting, the sensitivity of sources
(sinks) depends on predicates on the input (output) packets and standard metadata.
Therefore, we specify the security labels of sources (i.e. input packet and switch
state) by an input policy, while the security labels of the sinks (i.e. output packet
and switch state) are specified by an output policy.

The input policy of Program E.1, describing the security label of its sources is
defined as:

If the switch’s input packet has the protocol IPv4
(i.e. hdr.eth.etherType is 0x0800) and its IPv4 source ad-
dress hdr.ipv4.srcAddr belongs to the internal network subnet
192.168.*.*, then the ecn field is secret, otherwise it is public. All
the other fields of the input packet are always public, while the switch’s
enq_qdepth is always secret.

(1)

Program E.1 should not leak sensitive information to external networks. An output
policy defines public sinks by the ports associated with the external network and
labels the fields of the corresponding packets as public.

Packets leaving the switch through ports 10 to 20 are forwarded to the
external network and are observable by attackers. Therefore, all fields
of such packets should be public. All the other packets are not observable
by attackers.

(2)

238

Our goal is to identify a static security analysis that strikes a balance between
expressiveness and automation of the verification process. We identify three main
challenges that a security analysis of P4 programs should address:

1. Security policies are data-dependent. For instance, the ecn field is sensitive
only if the packet is IPv4 and its IP source address is in the range 192.168.*.*.

2. The analysis should be value- and path-sensitive, reflecting the different values
of header fields. For example, the value of the field etherType determines the
packet’s protocol and its shape. This information influences the reachability
of program paths; for instance if the packet is IPv4 the program will not go
through the parser states dedicated to processing IPv6 packets.

3. Externs and tables behavior are not defined in P4. Tables are statically-
unknown components and configured at runtime. For example, a misconfigu-
ration of the ipv4_lpm table may insecurely forward packets with sensitive
fields to an external network.

Note that P4 lacks many features that could negatively affect analysis precision,
including heap, memory aliasing, recursion, and loops.

Threat model. Our threat model considers a network attacker that knows the
code of the P4 program and observes data on public sinks, as specified by a policy.
We also assume that the keys and the actions of the tables are public and observable,
but tables can pass secret data as the arguments of the actions. Because of the
batch-job execution model, security policies can be specified as data-dependent
security types over the initial and final program states. We aim at protecting against
storage channels pertaining to explicit and implicit flows, while deferring other side
channels, e.g. timing, to future work.

E.3 Solution Overview

We develop a novel combination of security type systems and interval abstractions
to check information flow policies. We argue that our lightweight analysis of P4
programs provides a sweet spot balancing expressiveness, precision and automation.

Data-dependent policies are expressed by security types augmented with intervals,
and the typing rules ensure that the program has no information flows from secret
(H) sources to public (L) sinks. Specifically, a security type is a pair (I, ℓ) of an
interval I indicating a range of possible values and a security label ℓ ∈ {L, H}. For
simplicity, we use the standard two-element security lattice {L, H} ordered by ⊑
with lub ⊔. For example, the type (⟨1, 5⟩, L) of the ttl field of the ipv4 header
specifies that the ttl field contains public data ranging between 1 and 5.

239

The security types allow to precisely express data-dependent policies such as (1).
The input and output policies in our approach specify the shape of the input and
output packets. Since packets can have many different shapes (e.g. IPv4 or IPv6),
these policies may result in multiple distinct policy cases. For example, input policy
(1) results in two cases:

In the first input policy case, the packet’s hdr.eth.etherType is 0x0800, its IPv4
source address is in the internal network of interval ⟨192.168.0.0, 192.168.255.255⟩,
hdr.ipv4.ecn and standard metadata’s enq_qdepth can contain any value (rep-
resented as ⟨∗⟩) but are classified as H , while all other header fields are (⟨∗⟩, L)
(omitted here). We express this policy using our security types as follows:

hdr.eth.etherType : (⟨0x0800, 0x0800⟩, L)
hdr.ipv4.srcAddr : (⟨192.168.0.0, 192.168.255.255⟩, L)

hdr.ipv4.ecn : (⟨∗⟩, H)
standard_metadata.enq_qdepth : (⟨∗⟩, H)

The intervals and labels in these security types describe the values and labels of the
initial state of the program under this specific input policy case.

The second input policy case describes all the packets where hdr.eth.etherType is
not 0x0800 or IPv4 source address is outside of the range ⟨192.168.0.0, 192.168.255
.255⟩, all of the packet header fields are (⟨∗⟩, L), while the standard metadata’s
enq_qdepth is still (⟨∗⟩, H).

Similarly, the output policy (2) can be expressed with the output policy case: “if the
standard metadata’s egress_spec is (⟨10, 20⟩, L), then all of the packet’s header
fields are (⟨∗⟩, L).”

It turns out that this specific output policy case is the only interesting one, even
though output policy (2) can result in two distinct policy cases. In the alternative
case, the fact that the attacker is unable to observe the output packet can be
represented by assigning (⟨∗⟩, H) to all of the fields of the packet. The flow relation
among security labels, as determined by the ordering of the security labels, only
characterizes flows from H sources to L sinks as insecure. This implies that any
policy cases where the source is L or the sink is H cannot result in insecure flows.
Thus, the alternative case is irrelevant and can be safely ignored.

Driven by the data-dependent types, we develop a new security type system that
uses the intervals to provide a finer-grained assignment of security labels. Our
interval analysis allows the type system to statically eliminate execution paths that
are irrelevant to the security policy under consideration, thus addressing the second
challenge of precise analysis. For example, our interval analysis can distinguish
between states where hdr.eth.etherType is 0x0800 and the states where it is not,
essentially providing a path-sensitive analysis. This enables the analysis to avoid
paths where hdr.eth.etherType is not 0x0800 when checking the policy of IPv4

240

packets. As a result, we exclude paths visited by non-IPv4 packets when applying
the ipv4_lpm table in line 61. This reduces the complexity of the analysis as we
avoid exploring irrelevant program paths, and helps reduce false positives in the
results.

Finally, to address the challenge of tables and externs, we rely on user-defined
contracts which capture a bounded model of the component’s behavior. Upon
analyzing these components, the type system uses the contracts to drive the analysis.
For Program E.1, the contract for a correctly-configured table ipv4_lpm ensures
that if the packet’s hdr.ipv4.dstAddr belongs to the internal network, then the
action ipv4_forward (line 40) forwards the packet to ports and MAC addresses
connected to the internal network.

Even if the ipv4_lpm table is correctly configured and its contract reflects that, bugs
in the program can still cause unintended information leakage. For example, on line
54, the if condition might have been incorrect and instead of checking the 8 most
significant bits (i.e. [31,24]) of the hdr.ipv4.dstAddr, it checks the least significant
bits (i.e. [7,0]). This bug causes the hdr.ipv4.ecn field in some packets destined
for the external network to include congestion information, leading to unintended
information leaks. Such errors are often overlooked but can be detected by our type
system.

In the end, to ensure that the program does not leak sensitive information, the
final types produced by the type system are checked against an output policy. If
this check succeeds, the program is deemed secure. The details of this process
and the role of the interval information in the verification process are explained in
Section E.6.

E.4 Semantics

In this section, we briefly summarize a big-step semantics of P4. The language’s
program statements, denoted by s, include standard constructs such as assignments,
conditionals, and sequential composition. Additionally, P4 supports transition
statements, function calls, table invocations, and extern invocations as shown in
Figure E.3.

Values, represented by v, are either big-endian bitvectors b (raw packets) or structs
{f1 = v1, ..., fn = vn} (representing headers).

P4 states m are mappings from variables x to values v. In this slightly simplified
semantics, variables are either global or local. States can thus be represented as
disjoint unions (mg, ml), where mg (ml) maps global (local) variables only.

While externs in P4 can modify the architectural state, they cannot change the
P4 state itself. To simplify our model, we integrate the architectural state into

241

v ::= b | {f1 = v1, ..., fn = vn}
e ::= v | x | ⊖e | e⊕ e′ | e.f | e[b : bitv′] | {f1 = e1, ..., fn = en}

lval ::= x | lval.f | lval[b : b
′]

s ::= skip | lval := e | s1; s2 | if e then s1 else s2 | apply tbl |
f(e1, ..., en) | transition select e {v1 : st1, ..., vn : stn} st

Figure E.3: Syntax

P4’s global state, treating it as a part of the global state. Therefore, in our model
the externs are allowed to modify the global state of P4. To maintain isolation
between the program’s global variables and the architectural state, we assume that
the variable names used to represent the global state are distinct from those used
for the architectural state.

Expressions e use a standard selection of operators including binary ⊕, unary ⊖,
comparison ⊗, and struct field access, as well as bitvector slicing e[b : a] extracting
the slice from index a to index b of e, and m(e) is the evaluation of e in state m.
An lvalue lval is an assignable expression, either a variable, a field of a struct, or a
bitvector slice. The semantics of expressions is standard and consists of operations
over bitvectors and record access.

The semantics of statements uses a mapping E from function names f to pairs
(s, (x, d)), where (x, d) is the signature of f , a sequence of pairs (xi, di) of function
parameters with their directions di ∈ {in, out, inout}. Additionally, E maps parser
state names st to their bodies. Furthermore, since P4 programs may depend
on external components, E also maps externs f and tables t to their respective
implementations.

The semantic rules presented in Figure E.4 rely on judgments of the form E : m1
s−→

m2 to represent the execution of statement s under mapping E which starts from
state m1 and terminates in m2.

Many of the rules in Figure E.4 are standard and are therefore not explained here.
Rule S-Call fetches the invoked function’s body s and signature, and copies in the
arguments into m′

l, which serves as the local state for the called function and is used
to execute the function’s body. Note that the function’s body can modify the global
state, but cannot change the caller’s local state due to P4’s calling conventions.
After executing the function’s body, the variables in final local state m′′

l must be
copied out according to the directions specified in the function’s signature. Given
a direction di, the auxiliary function isOut returns true if the direction is out or
inout. We rely on this function to copy-out the values from m′′

l back to the callee
only for parameters with out and inout direction.

242

S-Skip

E : m skip−−→ m

S-Assign
m′ = m[lval 7→ m(e)]

E : m lval:=e−−−−−→ m′

S-Seq
E : m s1−→ m′

E : m′ s2−→ m′′

E : m s1;s2−−−→ m′′

S-Cond-T
m(e) = true
E : m s1−→ m′

E : m if e then s1 else s2−−−−−−−−−−−−−→ m′

S-Cond-F
m(e) = false
E : m s2−→ m′

E : m if e then s1 else s2−−−−−−−−−−−−−→ m′

S-Call
(s, (x, d)) = E(f) m′

l = {xi 7→ (mg,ml)(ei)}
E : (mg,m

′
l)

s−→ (m′
g,m

′′
l)

E : (mg,ml)
f(e1,...,en)−−−−−−−→ (m′

g,ml)[ei 7→ m′′
l (xi) | isOut(di)]

S-Extern
(semf , (x, d)) = E(f) m′

l = {xi 7→ (mg,ml)(ei)}
(m′

g,m
′′
l) = semf (mg,m

′
l)

E : m f(e1,...,en)−−−−−−−→ (m′
g,ml)[ei 7→ m′′

l (xi) | isOut(di)]

S-Trans

st′ =

{
sti if m(e) = vi

st otherwise
E : m E(st′)−−−−→ m′

E : m transition select e {v1:st1,...,vn:stn} st−−−−−−−−−−−−−−−−−−−−−−−−→ m′

S-Table
(e, semtbl) = E(tbl) semtbl((mg,ml)(e1), ..., (mg,ml)(en)) = (a, v)

(s, (x1, none), ..., (xn, none)) = E(a) m′
l = {xi 7→ vi} E : (mg,m

′
l)

s−→ (m′
g,m

′′
l)

E : (mg,ml)
apply tbl−−−−−→ (m′

g,ml)

Figure E.4: Semantic rules

For example, in Program E.1 let ml = {hdr.ipv4.ttl 7→ 2} when invoking
decrease at line 44. The local state of decrease (i.e. the copied-in state) be-
comes m′

l = {x 7→ 2}. After executing the function’s body (line 8), the final local
state will be m′′

l = {x 7→ 1} while the global state mg remains unchanged. Finally,
the copying out operation updates the caller’s state to m′′ = (mg, {ttl 7→ 1}) by
updating its local state.

The S-Extern rule is similar to S-Call. The key difference is that instead of
keeping a body in E, we keep the extern’s behavior defined through semf . This
function takes a state containing the global mg and copied-in state m′

l and returns

243

(possibly) modified global and local states, represented as semf (mg, m′
l) = (m′

g, m′′
l).

Finally, the extern rule preforms a copy-out procedure similar to the function call.

The S-Trans rule defines how the program transitions between parser states based
on the evaluation of expression e. It includes a default state name st for unmatched
cases. If in program state m, expression e evaluates to value vi, the program transi-
tions to state name sti according to the defined value-state pattern. However, if the
evaluation result does not match any of the vi values, the program instead transitions
to the default state st. For example, assume that m(hdr.eth.etherType) = 0x0800
on line 23 of Program E.1. The select expression within the transition statement
will transition to the state parse_ipv4, and executes its body.

Rule S-Table fetches from E the table’s implementation semtbl and a list of
expressions e representing table’s keys. It then proceeds to evaluate each of these
expressions in the current state (mg, ml), passing the evaluated values as key values
to semtbl. The table’s implementation semtbl then returns an action a and its
arguments v. We rely on E again to fetch the body and signature of action a,
however, since in P4 action parameters are directionless we use none in the signature
to indicate there is no direction. Finally, similar to S-Call we copy-in the arguments
into m′

l, which serves as the local state for the invoked action and is used to execute
the action’s body. For example, let m(hdr.ipv4.dstAddr) = 192.168.2.2 at line 61,
and the semantics of table ipv4_lpm contains:

192.168.2.2 7→ ipv4_forward (4A:5B:6C:7D:8E:9F, 5)

then the table invokes action ipv4_forward with arguments 4A:5B:6C:7D:8E:9F
and 5.

E.5 Types and Security Condition

In our approach types are used to represent and track both bitvector abstractions
(i.e. intervals) and security labels, and we use the same types to represent input and
output policies.

In P4, bitvector values represent packet fragments, where parsing a bitvectors
involves slicing it into sub-bitvectors (i.e. slices), each with different semantics such
as payload data or header fields like IP addresses and ports. These header fields
are typically evaluated against various subnetwork segments or port ranges. Since
header fields or their slices are still bitvectors, they can be conveniently represented
as integers, enabling us to express the range of their possible values as I = ⟨a, b⟩,
the interval of integers between a and b.

We say a bitvector v is typed by type τ , denoted as v : τ , if τ induces a slicing of v
that associates each slice with a suitable interval I and security level ℓ ∈ {L, H}. We
use the shorthand Iℓ

i to represent a slice of length i, with interval I ⊆ ⟨0, 2i− 1⟩ and

244

security label ℓ. The bitvector type can therefore be presented as τ = In
ℓn
in
· · ·I1

ℓ1
i1

,
representing a bitvector of length Σn

j=1ij with n slices, where each slice i has interval
Ii and security label ℓi. Singleton intervals are abbreviated ⟨a⟩, ⟨⟩ is the empty
interval, and ⟨∗⟩ is the complete interval, that is, the range ⟨0, 2i − 1⟩ for a slice of
length i. Function lbl(τ) indicates the least upper bound of the labels of slices in τ .

To illustrate this, let τ1 be ⟨∗⟩H2 ·⟨0, 1⟩L3 which types a bitvector of length 5 consisting
of two slices. The first slice has a length of 3, with values drawn from the interval
⟨0, 1⟩ and security label L. The second slice, with a length of 2, has a security
label H , and its values drawn from the complete interval ⟨0, 3⟩ (indicated by ∗).
Accordingly, lbl(τ1) evaluates to H ⊔ L = H .

Type τ is also used to denote a record type, where record {f1 = v1, ..., fn = vn} is
typed as ⟨f1 : τ1; ...;fn : τn⟩ if each value vi is typed with type τi.

In this setting, the types are not unique, as it is evident from the fact that a bitvector
can be sliced in many ways and a single value can be represented by various intervals.
For example, bitvector 1 0 0 can be typed as ⟨4⟩L3 , or ⟨∗⟩L1 ·⟨0, 1⟩L2 , or ⟨2⟩L2 ·⟨∗⟩L1 .

State types. A type environment, or state type, γ = (γg, γl) is a pair of partial
functions from variable names x to types τ . Here, γg and γl represent global and
local state types, respectively, analogous to the global (mg) and local (ml) states
in the semantics. We say that γ can type state m, γ ⊢ m, if ∀x ∈ m, m(x) : γ(x).
A state type might include a type with an empty interval; we call this state type
empty and denote it as •.

Let lblOf(lval, γ) be the security label of lval in state type γ. The states m1 and
m2 are considered low equivalent with respect to γ, denoted as m1∼

γ
m2, if for all

lval such that lblOf(lval, γ) = L, then m1(lval) = m2(lval) holds.

� Example E.1

Assume a state type γ = {x 7→ ⟨∗⟩H1 ·⟨0, 1⟩L2 } The following states m1 =
{x 7→ 0 0 0 } and m2 = {x 7→ 1 0 0 } are low equivalent wrt. γ. However,
states m1 = {x 7→ 0 0 0 } and m3 = {x 7→ 1 0 1 } are not low equivalent
even though both can be typed by γ.

Contracts. A table consists of key-action rows, and in our threat model, we assume
the keys and actions of the tables are always public (i.e. L), but the arguments of the
actions can be secret (i.e. H). Given that tables are populated by the control-plane,
the behavior of a table is unknown at the time of typing. We rely on user-specified
contracts to capture a bounded model of the behavior of the tables. In our model, a
table’s contract has the form (e, Conttbl), where e is a list of expressions indicating
the keys of the table, and Conttbl is a set of tuples (ϕ, (a, τ)), where ϕ is a boolean
expression defined on e, and a denotes an action to be invoked with argument types
τ when ϕ is satisfied.

245

For instance, the ipv4_lpm table of Program E.1 uses hdr.ipv4.dstAddr as its
key, and can invoke two possible actions: drop and ipv4_forward. An example of
a contract for this table is depicted in Figure E.5. This contract models a table
that forwards the packets with hdr.ipv4.dstAddr = 192.*.*.* to ports 1-9, the
ones with hdr.ipv4.dstAddr = 10.*.*.* to ports 10-20, and drops all the other
packets. Notice that in the first case, the first argument resulting from the table
look up is secret.(

[hdr.ipv4.dstAddr],{(
dstAddr[31 : 24] = 192, (ipv4_forward, [⟨∗⟩H48, ⟨1, 9⟩L9])

)(
dstAddr[31 : 24] = 10, (ipv4_forward, [⟨∗⟩L48, ⟨10, 20⟩L9])

)(
dstAddr[31 : 24] ̸= 192 ∧ dstAddr[31 : 24] ̸= 10, (drop, [])

)})
Figure E.5: The contract of ipv4_lpm table

The table contracts are essentially the security policies of the tables, where ϕ
determines a subset of table rows that invoke the same action (a) with the same
argument types (τ). Using the labels in τ , and given action arguments v1 and v2, we
define v1∼

τ
v2 as |v1| = |v2| = |τ | and for all i, v1i : τi and v2i : τi, and if lbl(τi) = L

then v1i = v2i . Note that lbl(τi) returns the least upper bound of the labels of
all τi’s slices, hence if there is even one H slice in τi, lbl(τi) would be H . We use
mapping T to associate table names tbl with their contracts.

We say that two mappings E1 and E2 are considered indistinguishable wrt. T , de-
noted as E1∼

T
E2, if for all tables tbl such that (e1, sem1tbl

) = E1(tbl), (e2, sem2tbl
) =

E2(tbl), (e, Conttbl) = T (tbl) then e1 = e2 = e, and for all (ϕ, (a, τ)) ∈ Conttbl, and
for all arbitrary states m1 and m2, such that m1(e) = m2(e) = v and m1(ϕ) ⇔
m2(ϕ), if m1(ϕ) then exists v1, v2 such that sem1tbl

(v) = (a, v1), sem2tbl
(v) = (a, v2),

and v1∼
τ

v2. In other words, T -indistinguishability of E1 and E2 guarantees that
given equal key values, E1 and E2 return the same actions with τ -indistinguishable
arguments v1 and v2 such that these arguments are in bound wrt. their type τ .

Security condition. As overview in Section E.3 the input and output policy
cases are expressed by assigning types to program variables. As such, state types,
specifying security types of program variables are used to formally express input
and output policy cases. Hereafter, we use γi and γo to denote input and output
policy cases, respectively. Using this notation, the input policy, denoted by Γi, is
represented as a set of input policy cases γi. Similarly, the output policy is expressed
as a set of output policy cases γo and denoted by Γo.

Given this intuition, we say two states m1 and m2 are indistinguishable wrt. a policy
case γ if γ ⊢ m1, γ ⊢ m2, and m1∼

γ
m2. Relying on this, we present our definition

of noninterference as follows:

246

ñ Definition E.1 (Noninterference)

A program s is noninterfering wrt. the input and output policies cases γi

and γo, table contracts in T , mappings E1 and E2, and initial states m1
and m2, if the following hold:

• E1∼
T

E2,

• γi ⊢ m1, γi ⊢ m2, and m1∼
γi

m2,

• E1 : m1
s−→ m′

1

then

• there exists a state m′
2 such that E2 : m2

s−→ m′
2,

• if γo ⊢ m′
1, then γo ⊢ m′

2 and m′
1∼

γo

m′
2.

Note that the noninterference definition holds trivially if γo ⊬ m′
1. This is because

at least one of the intervals in γo does not capture the values in m′
1, indicating that

policy case γo does not apply to this specific state.

The existential quantifier over the state m′
2 does not mean that the language is

non-deterministic, in fact if such state exists it is going to be unique. This existential
quantifier guarantees that our security condition is termination sensitive, meaning
that it only applies to cases where the program terminates for both initial states m1
and m2.

� Example E.2
Assume program if y==1 then x=1 else x=x+1, input policy case
γi = {x 7→ ⟨∗⟩H2 , y 7→ ⟨1⟩L3 }, and initial states m1 = {x 7→ 1 0 , y 7→
0 0 1 } and m2 = {x 7→ 0 1 , y 7→ 0 0 1 }. We can see that γi ⊢ m1,
γi ⊢ m2, and m1 ∼

γi

m2. In a scenario where the only initial states
are m1 and m2, executing this program would result in final states
m′

1 = {x 7→ 0 1 , y 7→ 0 0 1 } and m′
2 = {x 7→ 0 1 , y 7→ 0 0 1 }, re-

spectively. Given output policy case γo = [x 7→ ⟨∗⟩L2 , y 7→ ⟨1⟩L3], we say
that this program is noninterfering wrt. γo because γo ⊢ m′

1, γo ⊢ m′
2, and

m′
1∼

γo

m′
2.

We extend the definition of noninterference to input policies Γi and output policies
Γo, requiring the program to be noninterfering for every pair of input and output
policy cases. In our setting, the output policy, which indicates the shape of the
output packets, describes what the attacker observes. As such, it is typically

247

independent of the shape of the input packet and the associated input policy. Thus,
our approach does not directly pair input and output policy cases. Instead, it
ensures that the program is noninterfering for all combinations of input and output
policy cases.

E.6 Security Type System

We introduce a security type system that combines security types and interval
abstractions. Our approach begins with an input policy case and conservatively
propagates labels and intervals of P4 variables. In the following, we assume that
the P4 program is well-typed.

Typing of Expressions

The typing judgment for expressions is γ ⊢ e : τ . Rules for values, variables, and
records are standard and omitted here.

P4 programs use bitvectors to represent either raw packets (e.g. packet_in packet
of line 12) or finite integers (e.g. x of line 8). While there is no distinction between
these two cases at the language level, it is not meaningful to add or multiply two
packets, as it is not extracting a specific byte from an integer representing a time-
to-live value. For this reason, we expect that variables used to marshal records have
multiple slices but are not used in arithmetic operations, while variables used for
integers have one single slice and are not used for sub-bitvector operations. This
allows us to provide a relatively simple semantics of the slice domain, which is
sufficient for many P4 applications.

T-SingleSliceBs
γ ⊢ e1 : ⟨I1⟩ℓ1

i γ ⊢ e2 : ⟨I2⟩ℓ2
i

γ ⊢ e1 ⊕ e2 : ⟨I1 ⊕ I2⟩ℓ1⊔ℓ2
i

γ ⊢ ⊖e1 : ⟨⊖I1⟩ℓ1
i

γ ⊢ e1 ⊗ e2 : ⟨I1 ⊗ I2⟩ℓ1⊔ℓ2
i

T-SingleSliceBs rule allows the reuse of standard interval analysis for binary,
unary, and comparison operations over bitvectors that have only one single slice.
The resulting label is the least upper bound of labels associated with the input
types.

In the slicing rules, sub-bitvector (i.e. e[b : a]) preserves precision only if the slices
of the input are aligned with sub-bitvector’s indexes, otherwise sub-bitvector results
in ⟨∗⟩, representing all possible values. The following lemmas show that interval
and labeling analysis of expressions is sound:

248

T-AlignedSlice
γ ⊢ e : ⟨In⟩ℓn

in
· · ·⟨I1⟩ℓ1

i1

γ ⊢ e[
b∑

j=1
ij :

a∑
j=1

ij] : ⟨Ib⟩ℓb
ib
· · ·⟨Ia⟩ℓa

ia

T-NonAlignedSlice
γ ⊢ e : ⟨In⟩ℓn

in
· · ·⟨I1⟩ℓ1

i1

γ ⊢ e[b : a] : ⟨∗⟩
⊔

ℓij

b−a

« Lemma E.1
Given expression e, state m, and state type γ such that γ ⊢ m, if the
expression is well-typed γ ⊢ e : τ , and evaluates to a value m(e) = v, then:

• v is well-typed wrt. to the interval of type τ (i.e. v : τ).

• for every state m′ such that m∼
γ

m′, if lbl(τ) = L, then m′(e) = v.

Typing of statements

To present the typing rules for statements, we rely on some auxiliary notations and
operations to manipulate state types, which are introduced informally here due to
space constraints. The properties guaranteed by these operations are reported in
Appendix E.4. γ[lval 7→ τ] indicates updating the type of lval, which can be a part
of a variable, in state type γ. γ++γ′ updates γ such that for every variable in the
domain of γ′, the type of that variable in γ is updated to match γ′. refine(γ, e)
returns an overapproximation of γ that satisfy the abstraction of γ and the predicate
e. join(γ1, γ2) returns an overapproximation of γ1, whose labels are at least as
restrictive as γ1 and γ2. These operations tend to overapproximate, potentially
causing a loss of precision in either the interval or the security label, as illustrated
in the following example:

� Example E.3
Let x be mapped to an interval between 2 and 8, or in binary, bitvectors
between 0 0 1 0 and 1 0 0 0 , in γ. That is, γ = {x 7→ ⟨2, 8⟩L4 }. The
following update γ[x[3 : 3] 7→ ⟨0⟩H1] modifies the slice x[3 : 3] and results
in the state type {x 7→ ⟨0⟩H1 ·⟨∗⟩L3 }. Here, lvalue x[2 : 0] loses precision
because after updating x[3 : 3], the binary representation of the interval of
lvalue x[2 : 0] would be between 0 1 0 and 0 0 0 , that is every 3-bit value
except 0 0 1 . Such value set cannot be represented by a single continuous
interval, hence we overapproximate to the complete interval ⟨∗⟩. Similarly,
the operation refine(γ, x[3 : 3] < 1) updates the interval of lvalue x[3 : 3]
which results in {x 7→ ⟨0⟩L1 ·⟨∗⟩L3 } where lvalue x[2 : 0] again loses precision.
On the other hand, an operation such as join(γ, {x 7→ ⟨∗⟩H1 ·⟨∗⟩L3 }) does

249

not modify the intervals of γ, but since the ⟨∗⟩H1 slice overlaps with a slice
of x in γ its label should be raised, which results in γ′ = {x 7→ ⟨2, 8⟩H4 }.

The security typing of statement s uses judgments of the form T, pc, γ ⊢ s : Γ, where
pc is the security label of the current program context, T is a static mapping, and γ
is a state type. We use T to map a parser state name (st) or function name (f) to
their bodies. For functions, T also returns their signatures. Moreover, as described
in Section E.5, we also use T to map externs and tables to their contracts. The
typing judgment concludes with Γ, which is a set of state types. In our type system,
the security typing is not an on-the-fly check that immediately rejects a program
when encountering an untypeable statement. Instead, we proceed with typing the
program and produce a state type for each path and accumulate all of those in
a final set Γ. This is done in order to increase precision, by minimizing the need
to unify, and hence overapproximate, intermediate typings during type derivation.
This is indeed one of the key technical innovations of our type system, as explained
in more detail below. Once the final set Γ is obtained, the state types within Γ are
then verified against the output security policy Γo, ensuring that they respect the
requirements of all the output policy cases γo within it.

In the following rules, we use raise(τ, ℓ) to return a type where each label ℓ′ within τ
has been updated to ℓ′ ⊔ ℓ. We omit the typing rules for assignment and sequential
composition due space constraints. The full list of our typing rules can be found in
Figure E.8 in the Appendix.

T-Cond
γ ⊢ e : τ ℓ = lbl(τ) pc′ = pc ⊔ ℓ

T, pc′, (refine(γ, e)) ⊢ s1 : Γ1 T, pc′, (refine(γ,¬e)) ⊢ s2 : Γ2

T, pc, γ ⊢ if e then s1 else s2 : joinOnHigh(Γ1 ∪ Γ2, ℓ)

T-Cond This rule types the two branches using state types refined with the branch
condition and its negation, which results in the state type sets Γ1 and Γ2, respectively.
The final state type set is a simple union of Γ1 and Γ2.

However, in order to prevent implicit information leaks, if the branch condition is
H , the security labels of Γ1 and Γ2 should be joined. We do this by the auxiliary
function joinOnHigh, defined as follows:

joinOnHigh(Γ, ℓ) =
{

join(Γ) if ℓ = H
Γ otherwise

where the join operator has been lifted to Γ and defined as join(Γ) = {join(γ, Γ) |
γ ∈ Γ}, join(γ, {γ′} ∪ Γ) = join(join(γ, γ′), Γ) and join(γ,∅) = γ.

250

� Example E.4
Consider the conditional statement on line 56 of Program E.1, where
initially γ = {enq_qdepth 7→ ⟨∗⟩H19, hdr.ipv4.ecn 7→ ⟨∗⟩L2 , . . .}. Since the
label of enq_qdepth is H , after the assignment on line 57, hdr.ipv4.ecn
becomes H in Γ1. However, since there is no else branch, s2 is trivially
skip, meaning that hdr.ipv4.ecn remains L in Γ2. Typically, in IFC,
the absence of an update for hdr.ipv4.ecn in the else branch leaks that
the if statement’s condition does not hold. To prevent this, we join the
security labels of all state types if the branch condition is H . Therefore,
in the final state set Γ′, hdr.ipv4.ecn is labeled H .

Even on joining the security labels, T-Cond does not merge the final state types
in order to maintain abstraction precision. To illustrate this consider program
if b then x[0:0]=0 else x[0:0]=1, where the pc and the label of b are both L,
and an initial state type γ = {x 7→ ⟨∗⟩H3 ; b 7→ ⟨∗⟩L1 }. After typing both branches,
the two typing state sets are Γ1 = {{x 7→ ⟨∗⟩H2 ·⟨0⟩L1 }} and Γ2 = {{x 7→ ⟨∗⟩H2 ·⟨1⟩L1 }}.
Performing a union after the conditional preserves the labeling and abstraction
precision of x[0:0], whereas merging them would result in a loss of precision.

The rule for typing parser transitions is similar to T-Cond, it individually types
each state’s body and then joins or unions the final state types based on the label
of pc. This rule can be found in Figure E.8 in the Appendix.

T-EmptyType

T,L, • ⊢ s : Γ

T-EmptyType Refining a state type might lead to an empty abstraction for some
variables. We call these states empty and denote them by •. An empty state
indicates that there is no state m such that • ⊢ m. The rule states that from an
empty state type, any statement can result in any final state type, since there is
no concrete state that matches the initial state type. Notice that Γ can simply be
empty and allow the analysis to prune unsatisfiable paths. This rule applies only
when pc is L. For cases where pc is H , simply pruning the empty states is unsound,
as illustrate by the following example:

� Example E.5

Assume the state type γ = {enq_qdepth 7→ ⟨5⟩H19, hdr.ipv4.ecn 7→
⟨∗⟩L2 , . . .}, upon reaching the conditional statement on line 56 of Pro-
gram E.1. The refinement of the then branch under the condition
enq_qdepth ≥ THRESHOLD (where THRESHOLD is a constant value 10) re-
sults in the empty state • = {enq_qdepth 7→ ⟨⟩H19, . . .}, where ⟨⟩H19 denotes

251

an empty interval. If we prune this empty state type, the final state type
set Γ′ contains only the state types obtained from the else branch (which
is skip). This is unsound because a L-observer would be able see that the
value of hdr.ipv4.ecn has remained unchanged and infer that the H field
enq_qdepth was less than 10.

There is a similar problem of implicit flows in dynamic information flow control,
where simply upgrading a L variable to H in only one of the branches when pc is H
might result in partial information leakage. This is because the variable contains
H data in one execution while it might remain L on an alternative execution.
To overcome this problem, many dynamic IFC methods employ the so-called no-
sensitive-upgrade (NSU) check [62], which terminates the program’s execution
whenever a L variable is updated in a H context. Here, to overcome this problem,
we type all the statements in all branches whenever the pc is H , even when the
state type is empty [36, 132]. For instance, in Example E.5, we type-check the
then branch under an empty state type, and by rule T-Cond the security labels of
the final state types of both branches are joined, resulting in hdr.ipv4.ecn’s label
being H in all of the final state types.

T-Call
γ ⊢ e⃗ : τ⃗ tCall(T, f, pc, τ⃗ , γ,Γ)

T, pc, γ ⊢ f(e⃗) : Γ

T-Call rule types function calls. It individually types the function arguments ei to
obtain their types τi, and passes them to auxiliary function tCall, defined as:

(s, (x, d)) = T (f) γf = {xi 7→ τi} T, pc, (γg, γf) ⊢ s : Γ′

Γ = {(γ′
g, γl)[ei 7→ γ′

f (xi) | isOut(di)] | (γ′
g, γ′

f) ∈ Γ′}

which retrieves the function’s body s and its signature (x, d) from the mapping T .
Creates a new local state type γf by assigning each argument it corresponding type
(i.e. copy-in), and then types the function’s body to obtain the resulting state type
set Γ′. Finally, tCall produces Γ by copying out the out and inout parameters
(identified by the isOut function), which means updating the passed lvalues (i.e. ei)
with the final types of their corresponding parameters (i.e. γ′

f (xi)).

� Example E.6
Assume that at line 44 of Program E.1, the ttl in the state type is mapped
to ⟨1, 10⟩L8 . Calling decrease entails creating a new local state type and
copying in the arguments, which yields γdecrease = {x 7→ ⟨1, 10⟩L8 }. Typing
the function’s body (x = x - 1) results in the state type γ′

decrease = {x 7→
⟨0, 9⟩L8 }. The final Γ′′ is produced by copying out arguments back to the

252

initial state type which would map ttl to ⟨0, 9⟩L8 .

In contrast to standard type systems, we directly type the body of the function,
instead of typing functions separately and in isolation. The main reason is that
the intervals and labels of the types of actual arguments can be different for each
invocation of the function. Notice that the nested analysis of the invoked function
does not hinder termination of our analysis since P4 does not support recursion,
eliminating the need to find a fix point for the types [46].

T-Table
(e,Conttbl) = T (tbl) γ ⊢ ei : τi ℓ =

⊔
i

lbl(τi) pc′ = pc ⊔ ℓ

∀(ϕj , (aj , τ j)) ∈ Conttbl. γj = refine(γ, ϕj) tCall(T, aj , pc
′, τ j , (γg, γl),Γj)

T, pc, γ ⊢ apply tbl : joinOnHigh(∪jΓj , ℓ)

T-Table rule is similar to T-Cond and T-Call. It relies on user-specified contracts
to type the tables. A contract, as introduced in Section E.5, has the form (e, Conttbl),
where Conttbl consists of a set of triples (ϕ, (a, τ)). Each triple specifies a condition
ϕ, under which an action a is executed with arguments of specific types τ . A new
context pc′ is produced by the initial pc with the least upper bound of the labels of
the keys.

For each triple (ϕj , (aj , τ j)), T-Table relies on tCall to type the action aj ’s body
under pc′, similar to T-Call, and accumulates the resulting state types into a set
(i.e. ∪jΓj). Finally, T-Table uses joinOnHigh(∪jΓj , ℓ) to join their labels if ℓ was
H .

� Example E.7
Given the table contract depicted in Figure E.5, assume a state type
γ where pc is L and hdr.ipv4.dstAddr is typed as ⟨192⟩L8 ·⟨168⟩L8 ·⟨∗⟩L16.
According to T-Table, refining γ produces three state types, out of which
only one is not empty: refine(γ, dstAddr[31 : 24] = 192). This refined state
is used to type the action ipv4_forward with arguments [⟨∗⟩H48, ⟨1, 9⟩L9].
The two empty states should be used to type the actions ipv4_forward
(with arguments [⟨∗⟩L48, ⟨10, 20⟩L9]) and drop. However, these states can be
pruned by T-EmptyType, since pc′ is L.

The rule for typing extern calls is similar to T-Call. Just like T-Table, it relies
on user-defined contracts to capture the side effects of calling an extern. This rule
is detailed in Appendix E.3.

253

Soundness

Given initial state types γ1 and γ2, and initial states m1 and m2, we write m1
γ2∼
γ1

m2

to indicate that γ1 ⊢ m1, γ2 ⊢ m2, and m1 ∼
γ1⊔γ2

m2.

The type system guarantees that a well-typed program terminates, and the final
result is well-typed wrt. at least one of the resulting state types.

« Lemma E.2 (Soundness of abstraction and labeling)

Given initial state types γ1 and γ2, and initial states m1 and m2, such that
T, pc, γ1 ⊢ s : Γ1 and T, pc, γ2 ⊢ s : Γ2, and E1∼

T
E2, and m1

γ2∼
γ1

m2 then

there exists m′
1 and m′

2 such that E1 : m1
s−→ m′

1, E2 : m2
s−→ m′

2, γ′
1 ∈ Γ1,

γ′
2 ∈ Γ2, and m′

1
γ′

2∼
γ′

1

m′
2.

Lemma E.2 states that starting from two indistinguishable states wrt. γ1 ⊔ γ2, a
well-typed program results in two indistinguishable states wrt. some final state
types in Γ1 and Γ2 that can also type the resulting states m′

1 and m′
2.

We rely on Theorem E.1 to establish noninterference, that is, if every two states
m1 and m2 that are indistinguishable wrt. any two final state types are also
indistinguishable by the output policy, then the program is noninterfering:

� Theorem E.1 (Noninterference)

Given input policy case γi and output policy Γo, if T, pc, γi ⊢ s : Γ and
for every γa, γb ∈ Γ such that m1

γb∼
γa

m2 it also hold that m1
γo∼
γo

m2 for all
γo ∈ Γo, then s is noninterfering wrt. the input policy case γi and the
output policy Γo.

Theorem E.1 is required to be proved for every possible pair of states. To make
the verification process feasible, we rely on the following lemma to show that this
condition can be verified by simply verifying a relation between the final state types
(Γ) and the output policy (Γo):

« Lemma E.3 (Sufficient condition)

If for every γ1, γ2 ∈ Γ and every γo ∈ Γo such that γ1 ∩ γo ̸= •, it holds
that:

(1) if γ2 ∩ γo ̸= •, then γ1 ⊔ γ2 ⊑ γo,

(2) for every lval either γ2(lval) ⊆ γo(lval) or γ1 ⊔ γ2(lval) = L hold,

254

then for every γ1, γ2 ∈ Γ such that m1
γ2∼
γ1

m2, and every γo ∈ Γo, it holds
that if γo ⊢ m1 then γo ⊢ m2 and m1∼

γo

m2.

where γ2(lval) ⊆ γo(lval) indicates that the interval of lval in γ2 is included in the
interval specified in γo.

Intuitively, Lemma E.3 formalizes that the least upper bound of any pair in the
set of final state types (Γ) should not be more restrictive than the output policy
(e.g. if H information has flown to a variable, that variable should also be H in
the output policy cases) and the abstractions specified in the output policy cases
(i.e. the intervals) are either always satisfied or do not depend on H variables.

Revisiting the basic congestion program

We revisit Program E.1 to illustrate some key aspects of our typing rules. Here, we
only consider the first policy case of the input policy (1) of Section E.2, where the
input packet is IPv4 and it is coming from the internal network.

For the initial state derived from this input policy case, since (1) the parser’s transi-
tions depend on L variables, (2) the type system does not merge state types, and (3)
the type system prunes the unreachable transition to accept from parse_ethernet,
then the parser terminates in a single state type where both hdr.eth and hdr.ipv4
are valid, and their respective headers include the slices, intervals, and labels defined
by the initial state type.

After the parsing stage is finished, the program’s control flow reaches the MyCtrl
control block. Since hdr.ipv4 is valid and pc is L, pruning empty states allows us
to ignore the else branch on line 62. Afterwards, the nested if statement at line
53 entails two possible scenarios. First scenario, when the destination address is in
range 192.168.*.*, as described in Example E.4, the two state types resulting from
the if at line 56 have hdr.ipv4.ecn set to H . As in Example E.7, these state types
satisfy only the first condition of the table’s contract, which results in assigning the
type ⟨1, 9⟩L9 to egress_spec and producing the state types γ1

int and γ2
int.

Second scenario, when the destination address on line 53 does not match 192.168.*.*,
the state type is refined for the else branch, producing one state type under condi-
tion ipv4.dstAddr ≥ 192.169.0.0 and one under ipv4.dstAddr < 192.168.0.0.
For both of these state types, hdr.ipv4.ecn is set to ⟨0⟩L2 by assignment on line
59. Since in this case all branch conditions were L, there is no H field left in the
headers. The first of these two refined state types only satisfies the first condition
of the table contract, resulting in one single (after pruning empty states) final
state type, γ3

int, where the packet has been forwarded to the internal network and
egress_spec is set to ⟨1, 9⟩L9 . The second refined state type however satisfies all the

255

conditions of the table contract, resulting in three final state types γ4
int, γ1

ext, γ1
drop

with egress_spec being set to ⟨1, 9⟩L9 , ⟨10, 20⟩L9 , and ⟨0⟩L9 , respectively. Notice that
among these states, only γ3

int and γ4
int contains a H fields (i.e. ipv4.dstAddr) due

to the first argument returned by the table being ⟨∗⟩H48.

We finally check the sufficient condition for the output policy (2) and its only output
policy case γo, which states that when egress_spec is ⟨10, 20⟩L9 (i.e. the packet
leaves the internal network) all header fields are L. Only state type γ1

ext matches
the output policy case (i.e. ∩γo ̸= •), and this state type satisfies γ1

ext ⊔ γ1
ext ⊑ γo

since all header fields and egress_spec are L in γ1
ext. All other state types (i.e. γ1

int,
γ2

int, γ3
int, γ4

int, and γ1
drop) do not match the output policy condition (i.e. ∩γo = •),

since they do not correspond to packets sent to the external network (i.e. their
egress_spec is not in range ⟨10, 20⟩). Therefore, we conclude that for this this
specific input policy case, Program E.1 is noninterfering wrt. the output policy case
γo.

Our analysis can also detect bugs, such as the one on line 54 of Program E.1. To
illustrate this, assume that the program is buggy and instead of checking the 8 most
significant bits (i.e. [31:24]) of the hdr.ipv4.dstAddr, it checks the least significant
bits (i.e. [7:0]). This means that IPv4 packets with destination address is in range
.168..192 would satisfy the condition of the if statement on line 53. Similar
to the non-buggy program, the if at line 56 would produce two state types with
hdr.ipv4.ecn set to H . These state types satisfy all the conditions of the table
contract. For presentation purposes, let us focus on only one of these state types.
Applying the table on line 61 would produce three final state types γ1

int, γ1
ext, γ1

drop

with egress_spec being set to ⟨1, 9⟩L9 , ⟨10, 20⟩L9 , and ⟨0⟩L9 , respectively. Note that
in all these final state types, hdr.ipv4.ecn is H . When checking the sufficient
condition, state type γ1

ext matches the output policy case (i.e. ∩γo ̸= •) but it does
not satisfy γ1

ext ⊔ γ1
ext ⊑ γo, because the hdr.ipv4.ecn field H in γ1

ext and L γo.
Hence this buggy program will be marked as interfering, highlighting the fact that
some of the packets destined for the external network contain congestion information
and unintentionally leak sensitive information.

The benefit of value- and path-sensitivity of our approach can also be demonstrated
here. For all other input policy cases that describe non-IPv4 packets, the parse_ipv4
state is not going to be visited. A path-insensitive analysis, which merges the results
of the parser transitions, would lose the information about the validity of the
hdr.ip4 header. This would then lead to the rejection of the program as insecure
because an execution where the parse_ipv4 state has not been visited, yet the if
branch on line 52 has been taken, will be considered feasible. Our analysis, on the
other hand, identifies that any execution that has not visited parse_ipv4 results
in an invalid hdr.ip4 header. Consequently, for all such executions, it produces a
final state type where the packet is dropped, and egress_spec is set to ⟨0⟩L9 . This
state type satisfies the sufficient condition, since egress_spec does not intersect
γo(egress_spec) and is L.

256

Table E.1: Evaluation results

Time (ms)

Total Typing Security
Check

Number
of Final

γs

Basic Congestion 5930 966 4794 97
Basic Tunneling 610 157 290 15
Multicast 199 16 23 6
Firewall 4560 1015 3378 44
MRI 7646 523 6957 23

Dataplane Routing 274 109 8 12
In-Network Caching 261 91 14 6
Resource Allocation 256 87 10 9
Network Isolation - Alice 243 27 62 3
Network Isolation - Top 242 23 63 3
Topology 202 40 4 3

E.7 Implementation and Evaluation

To evaluate our approach we developed Tap4s2, a prototype tool which implements
the security type system of Section E.6. Tap4s is developed in Python and uses the
lark parser library [201] to parse P4 programs.

Tap4s takes as input a P4 program, an input policy, and an output policy. Initially,
it parses the P4 program, generates an AST, and relies on this AST and the input
policy γi to determine the initial type of input packet fields and the standard
metadata. Because the input policy is data-dependent, the result of this step can
generate multiple state types (γ1, . . . , γm), one state type for each input interval.
Tap4s uses each of these state types as input for implementing the type inference on
the program. During this process Tap4s occasionally interacts with a user-defined
contract file to retrieve the contracts of the tables and externs. Finally, Tap4s yields
a set of final state types (γ′

1, . . . , γ′
n) which are checked against an output policy,

following the condition in Lemma E.3. If this check is successful the program is
deemed secure wrt. the output policy, otherwise the program is rejected as insecure.

Test suite. To validate our implementation we rely on a functional test suite of 25
programs. These programs are P4 code snippets designed to validate the support
for specific functionalities of our implementation, such as extern calls, refinement,
and table application.

2https://github.com/amir-ahmadian/TAP4S

257

https://github.com/amir-ahmadian/TAP4S

Use cases. We evaluate Tap4s on 5 use cases, representing different real-world
scenarios. The results of this evaluation are summarized in Table E.1. Due to
space constraints, detailed descriptions of these use cases are provided in Appendix
E.1. We also implement and evaluate the use cases from P4BID [192]. These use
cases are described in Appendix E.2, and their corresponding evaluation results
are included in Table E.1. They serve as a baseline for comparing the feasibility
of Tap4s with P4BID. On average, P4BID takes 30 ms to analyze these programs,
whereas Tap4s takes 246 ms. Despite the increased time, this demonstrates that
Tap4s performs the analysis with an acceptable overhead. On the other hand, due
to the data-dependent nature of our use cases and their reliance on P4-specific
features such as slicing and externs, P4BID cannot reliably check these scenarios,
leading to their outright rejection in all cases.

E.8 Related Work

IFC for P4. Our work draws inspiration from P4BID [192], which adapts and
implements a security type system [18] for P4, ensuring that well-typed programs
satisfy noninterference. By contrast, we show that security policies are inherently
data-dependent, thus motivating the need for combining security types with interval-
based abstractions. This is essential enforcing IFC in real-world P4 programs without
code modifications, as demonstrated by our 5 use cases. Moreover, our analysis
handles P4 features such as slicing and externs, while supporting the different stages
of the P4 pipeline, beyond a single control block of the match-action stage.

IFC policy enforcement. Initial attempts at enforcing data-dependent policies
[94, 96, 145, 163, 165] used dynamic information flow control. The programmer
declaratively specifies data-dependent policies and delegates the enforcement to a
security-enhanced runtime, thus separating the policy specification from the code
implementation.

Our approach shares similarities with static enforcement of data-dependent IFC
policies such as dependent information flow types and refinement information flow
types. Dependent information flow types [117] rely on dependent type theory and
propose a dependent security type system, in which the security level of a type may
depend on its runtime value. Eichholz et al. [190] introduced a dependent type
system for the P4 language, called Π4, which ensures properties such as preventing
the forwarding of expired packets and invalid header accesses. Value-dependent
security labels [100] partition the security levels by indexing their labels with values,
resulting in partitions that classify data at a specific level, depending on the value.
Dependent information flow types provide a natural way to express data-centric
policies where the security level of a data structure’s field may depend on values
stored in other fields.

258

Later approaches have focussed on trade-offs between automation and decidability
of the analysis. Liquid types [103, 112] are an expressive yet decidable refinement
type system [182] to statically express and enforce data-dependent information flow
polices. Lifty [176] provides tool support for specifying data-dependent policies and
uses Haskell’s liquid type-checker [112] to verify and repair the program against these
policies. Storm [183] is a web framework that relies on liquid types to build MVC
web applications that can statically enforce data-dependent policies on databases
using liquid types.

Our interval-based security types can be seen as instantiations of refinement types and
dependent types. Our simple interval analysis appears to precisely capture the key
ingredients of P4 programs, while avoiding challenges with more expressive analysis.
By contrast, the compositionality of analysis based on refinement and dependent
types can result in precision loss and is too restrictive for our intended purposes (as
shown in Section E.6), due to merging types of different execution paths. We solve
this challenges by proposing a global path-sensitive analysis that avoids merging
abstract state in conditionals. We show that our simple yet tractable abstraction is
sufficient to enforce the data-dependent policies while precisely modeling P4-specific
constructs such as slicing, extract, and emit.

Other works use abstract interpretation in combination with IFC. De Francesco
and Martini [54] implement information-flow analysis for stack-based languages like
Java. They analyze the instructions an intermediate language by using abstract
interpretation to abstractly execute a program on a domain of security levels.
Their method is flow-sensitive but not path-sensitive. Cortesi and Halder [106]
study information leakage in databases interacting with Hibernate Query Language
(HQL). Their method uses a symbolic domain of positive propositional formulae that
encodes the variable dependencies of database attributes to check information leaks.
Amtoft and Banerjee formulate termination-insensitive information-flow analysis
by combining abstract interpretation and Hoare logic[32]. They also show how
this logic can be extended to form a security type system that is used to encode
noninterference. This work was later extended to handle object-oriented languages
in [42].

Analysis and verification of network properties. Existing works on network
analysis and verification do not focus on information flow properties. Symbolic
execution is widely used for P4 program debugging, enabling tools to explore
execution paths, find bugs, and generate test cases. Vera [155] uses symbolic
execution to explore all possible execution paths in a P4 program, using symbolic
input packets and table entries. Vera catches bugs such as accesses fields of invalid
headers and checking that the egress_spec is zero for dropped packets. Additionally,
it allows users to specify policies, such as; ensuring that the NAT table translates
packets before reaching the output ports, and the NAT drops all packets if its entries
are empty. Recently, Scaver [196] uses symbolic execution to verify forwarding
properties of P4 programs. To address the path explosion problem, they propose

259

multiple pruning strategies to reduce the number of explored paths. ASSERT-
P4 [153] combines symbolic execution with assertion checking to find bugs in P4
programs, for example, that the packets with TTL value of zero are not dropped
and catching invalid fields accesses. Tools like P4Testgen [195] and p4pktgen [154]
use symbolic execution to automatically generate test packets. This approach
supports test-driven development and guarantees the correct handling of packets by
synthesizing table entries for thorough testing of P4 programs.

Abstract interpretation has also been used to verify functional properties such as
packet reachability and isolation. While these properties ensure that packets reach
their intended destinations, they do not address the flow of information within the
network. Alpernas et al. [151] introduce an abstract interpretation algorithm for
networks with stateful middleboxes (such as firewalls and load balancers). Their
method abstracts the order and cardinality of packet on channels, and the correlation
between middleboxes states, allowing for efficient and sound analysis. Beckett et al.
[158] develop ShapeShifter, which uses abstract interpretation to abstract routing
algebras to verify reachability in distributed network control-planes, including objects
such as path vectors and IP addresses and methods such as path lengths, regular
expressions, intervals, and ternary abstractions.

E.9 Conclusion

This paper introduced a novel type system that combines security types with interval
analysis to ensure noninterference in P4 programs. Our approach effectively prevents
information leakages and security violations by statically analyzing data-dependent
flows in the data-plane. The type system is both expressive and precise, minimizing
overapproximation while simplifying policy specification for developers. Additionally,
our type system successfully abstracts complex elements like match-action blocks,
tables, and external functions, providing a robust framework for practical security
verification in programmable networks. Our implementation, Tap4s, demonstrated
the applicability of the security type system on real-world P4 use cases without
losing precision due to overapproximations. Future research includes adding support
for declassification, advanced functionalities such as cryptographic constructs, and
extending the type system to account for side channels.

260

Appendices

Appendix A Use Cases

Basic Tunneling

Our first use case, shown in Program E.2, outlines procedures for handling standard
IPv4 packets and encapsulated tunneling packets. The parser MyParser starts by
extracting the Ethernet header on line 6, and for etherType 0x1212 (tunneled
packet), it transitions to parse_myTunnel state (line 14), extracts the tunnel header,
checks the proto_id field, and transitions to parse_ipv4 state (line 21) if an IPv4
packet is indicated. For etherType 0x0800 (IPv4 packet), it directly transitions
to parse_ipv4 and extracts the IPv4 header. Once the headers are parsed, the
pipeline proceeds to the MyCtrl control block, starting from the apply block on
line 42 which contains two if statements: If only the IPv4 header is valid (line 43),
the ipv4_lpm table is applied which forward or drop the packet based on a longest
prefix match (lpm) on the destination IPv4 address. If the tunnel header is valid
(line 46), the myTunnel_exact table forwards the packet based on an exact match
of the myTunnel header’s dst_id, using the myTunnel_forward action.

Since the header fields of the tunneled packets are not modified while they are
forwarded (Lines 34-36), to keep the source MAC address of the packets within the
internal networks private, the program should not forward tunneled packets to an
external network. The input policy in this use case indicates that if the input packet
the packet is tunneled (i.e. its etherType is 0x1212) then the packet’s srcAddr is
H . The output policy relies on the output port the packet is sent to, and ensures
that “if the egress_spec is between 10-511 then the packet has left the internal
network, therefore all field of the packet’s headers should be L.”

The general behavior of table ipv4_lpm is reflected in its contract as it makes sure
the packets with ipv4 destination address 198.*.*.* are forwarded to the ports
connected to the internal network, while all the other destination addresses are
forwarded to ports connected to the external network.

The contract of table myTunnel_exact plays a crucial role in the security of Pro-
gram E.2. A correct behavior for this table only forwards the tunneled packets to
ports connected to the internal network.

261

Program E.2: Basic tunneling

1 struct headers {
2 ethernet_t eth; myTunnel_t myTunnel; ipv4_t ipv4;
3 }
4 parser MyParser(/* omitted */) {
5 state start { transition parse_ethernet; }
6 state parse_ethernet {
7 packet.extract(hdr.eth);
8 transition select(hdr.eth.etherType) {
9 0x1212: parse_myTunnel;

10 0x0800: parse_ipv4;
11 default: accept;
12 }
13 }
14 state parse_myTunnel {
15 packet.extract(hdr.myTunnel);
16 transition select(hdr.myTunnel.proto_id) {
17 0x0800: parse_ipv4;
18 default: accept;
19 }
20 }
21 state parse_ipv4 {
22 packet.extract(hdr.ipv4);
23 transition accept;
24 }
25 }

26 control MyCtrl(/* omitted */) {
27 action drop()
28 { /* drops the packet */ }
29 action ipv4_forward(bit<48> dstAddr, bit<9> port)
30 { /* basic forward */ }
31 table ipv4_lpm
32 { /* omitted */}
33
34 action myTunnel_forward(bit<19> port) {
35 standard_metadata.egress_spec = port;
36 }
37 table myTunnel_exact {
38 key = {hdr.myTunnel.dst_id: exact;}
39 actions = { myTunnel_forward; drop;}
40 default_action = drop();
41 }
42 apply {
43 if (hdr.ipv4.isValid() && !hdr.myTunnel.isValid()) {
44 ipv4_lpm.apply(); // Process non-tunneled packets
45 }
46 if (hdr.myTunnel.isValid()) {
47 myTunnel_exact.apply(); // Process tunneled packets
48 }
49 }
50 }

262

The evaluation reported in Table E.1 is performed under a contract that reflected this
behavior, which results in DiVerT accepting the program as secure. If this table is
somehow misconfigured and forwards the tunneled packet to any port connected to
the external network, DiVerT can capture this and flag the program as insecure.

Multicast

Our next use case is Program E.3 which is capable of multicasting packets to a group
of ports. Upon receiving a packet, the switch looks up its destination MAC address
dstAddr, if it is destined to any of the hosts connected to the switch, the packet is
forwarded to its destination (line 11), otherwise the switch broadcasts the packet on
ports belonging to a multicast group by setting the standard_metadata.mcast_grp
to 1 (line 9). Figure E.6 illustrates the network schema of this scenario.

Program E.3: Multicast

1 struct headers {
2 ethernet_t ethernet;
3 }
4 control MyCtrl(/* omitted */) {
5 action drop() {
6 mark_to_drop(standard_metadata);
7 }
8 action multicast() {
9 standard_metadata.mcast_grp = 1;

10 }
11 action mac_forward(bit<9> port) {
12 standard_metadata.egress_spec = port;
13 }
14 table mac_lookup {
15 key = { hdr.ethernet.dstAddr : exact; }
16 actions = { multicast; mac_forward; drop; }
17 }
18 apply {
19 if (hdr.ethernet.isValid())
20 mac_lookup.apply();
21 }
22 }

To implement this functionality, the program utilizes the table mac_lookup which
is populated by the control plane, and contains the mac addresses and the port
information needed to forward non-multicast packets.

While the broadcast packets are sent to all of the multicast ports, it is desirable to
ensure the packets that are not supposed to be broadcast are indeed not broadcasted.
Our input security policy in this scenario sets the packets destined to any of the
hosts connected to the switch as H , while labeling the broadcast packets L. The

263

1

2

3

4

Figure E.6: Multicast schema

contract of the table mac_lookup’s needs to capture the essence of this use case, that
is, packets with the dstAddr of any of the hosts need to be forwarded by invoking
the mac_forward action (line 11), and all the other packets need to be broadcast by
invoking the multicast action (line 8). To ensure the program behaves desirably,
the output policy checks that all the packets send to the multicast ports (which
have their mcast_grp set to 1 according to line 9) are L.

As illustrated in Table E.1, under these policies and contracts, Program E.3 is secure.
It results in 6 final state types (γ), and takes approximately 220 milliseconds to
verify the program is policy compliance.

Firewall

This use case models a scenario where the switch is running the firewall Program E.4
which allows it to monitor the connections between an internal and an external
network. The network schema of this scenario is presented in Figure E.7.

After parsing an input packet, the switch applies the ipv4_lpm table (line 26),
which based on the packet’s IPv4 destination address forwards or drops the packet.
Next, it applies the check_ports table, which based on the input port number
(ingress_port) identifies whether the packet is coming from the external or the
internal network. As depicted in Figure E.7 port 4 is connected to the external
network and ports 1− 3 are connected to the hosts of the internal network, therefor
if the standard metadata’s ingress_port was 4, the check_ports table sets the
direction to 1 which indicates the packet is coming from the external network.

The policy of the firewall is that the hosts in the internal network are allowed to
communicate with the outside networks, but the hosts in the external network are
only allowed to ssh to the internal hosts. To this end, for all the packets with
direction 1, the program will drop all the packets whose tcp port (hdr.tcp.srcPort)
is not 22 (line 31).

To enforce such policy, we rely on integrity labels (instead of confidentiality) to
designate which packets are allowed (trusted), and which packets are not. The
input security policy in this scenario sets the packets coming the internal network,

264

Program E.4: Firewall

1 header tcp_t{
2 bit<16> srcPort;
3 // omitted
4 }
5 struct headers {
6 ethernet_t ethernet; ipv4_t ipv4; tcp_t tcp;
7 }
8 control MyCtrl(/* omitted */) {
9 action drop()

10 { /* drops the packet */ }
11 action ipv4_forward(bit<48> dstAddr, bit<9> port)
12 { /* basic forward */ }
13 table ipv4_lpm
14 { /* omitted */}
15
16 action set_direction(bit<1> dir) {
17 direction = dir;
18 }
19 table check_ports {
20 key = { standard_metadata.ingress_port: exact; }
21 actions = { set_direction; NoAction; }
22 }
23
24 apply {
25 if (hdr.ipv4.isValid()) {
26 ipv4_lpm.apply();
27 if (hdr.tcp.isValid()) {
28 check_ports.apply();
29 if (direction == 1) {// Packet is from outside
30 // only allow ssh conncetions from outside
31 if (hdr.tcp.srcPort != 22) { drop(); }
32 }
33 }
34 }
35 }
36 }

identified by their ingress_port as trusted (L), while any packet coming from the
external network (with ingress_port 4) is untrusted (H) except when its TCP
source port srcPort is 22.

The contract of the ipv4_lpm captures the behavior of this table by making sure
the packets with ipv4 destination address 198.*.*.* are forwarded to the ports
connected to the internal network (ports 1 to 3), and all the other destination
addresses are forwarded to port 4. The contract of table check_ports updates
the direction by checking the ingress_port of the incoming packet, setting the
direction to 1 if the ingress_port was 4.

265

External Network

Internal Network

1
2
3

4

Figure E.7: Firewall schema

The output policy checks that all the packets leaving the switch are trusted and L.
Table E.1 depicts the results of DiVerT for this use case. Under these policies and
contracts Program E.3 is deemed secure. DiVerT produces 44 final state types,
and takes approximately 6 seconds to verify the security of the program.

Multi-Hop Route Inspection

Program E.5 implements a simplified version of In-Band Network Telemetry, called
Multi-Hop Route Inspection (MRI). The purpose of MRI is to let the users to track
the path and the length of queues that every packet travels through. To do this,
the P4 program adds an ID and queue length to the header stack of every packet
(line 10). Upon reaching the destination, the sequence of switch IDs shows the path
the packet took, and each ID is followed by the queue length at that switch.

After parsing the packet, the program applies the ipv4_lpm table to forward the
packet based on its IPv4 destination address. Afterwards, in the MyEgress control
block, the swtrace table (line 27), based on the port information specified in the
egress_spec, decides whether to add the queue length data to swtraces header or
not.

While it makes sense to add this information for packets that are traveling within
a local network, similar to the basic congestion example (Program E.1) the id of
the switches and their queue length can give an external adversary information
about the state of the local network. Therefore it is desirable to protect the local
network by making sure that Program E.5 only adds this data to the packets being
forwarded within the local network.

The input policy of this scenario labels the input packet as L and only marks
the deq_qdepth of the standard metadata as H . The contract of the ipv4_lpm
table forwards the packets with ipv4 destination address 198.*.*.* to the ports
connected to the internal network, while all the other destination addresses are
forwarded to ports connected to the external network. If the egress_spec indicates
ports connected to the internal network, the contract of the swtrace table invokes the

266

Program E.5: Multi-Hop Route Inspection

1 header switch_t {
2 switchID_t swid;
3 qdepth_t qdepth;
4 }
5 struct headers {
6 ethernet_t ethernet;
7 ipv4_t ipv4;
8 ipv4_option_t ipv4_option;
9 mri_t mri;

10 switch_t[9] swtraces;
11 }
12 control MyIngress(/* omitted */) {
13 action drop()
14 { /* drops the packet */ }
15 action ipv4_forward(bit<48> dstAddr, bit<9> port)
16 { /* basic forward */ }
17 table ipv4_lpm
18 { /* omitted */}
19 apply {
20 if (hdr.ipv4.isValid()) { ipv4_lpm.apply(); }
21 }
22 }
23 control MyEgress(/* omitted */) {
24 action add_swtrace(switchID_t swid) {
25 // updates the swtraces header
26 }
27 table swtrace {
28 key = { standard_metadata.egress_spec: exact; }
29 actions = { add_swtrace; NoAction;}
30 }
31 apply {
32 if (hdr.mri.isValid()) {
33 swtrace.apply();
34 }
35 }
36 }

add_swtrace action, adding the queue length data to swtraces header, otherwise
NoAction takes place.

The output policy ensures that in all of the packets going to the external network,
identified by their hdr.ipv4.dstAddr being anything other than 198.*.*.*, have
L switch_t header.

Table E.1 depicts the results of type checking this program with DiVerT. It
generates 23 final state types and takes approximately 4 seconds to verify the
security of the program. swtrace table is crucial for the security of this Program
and if it is misconfigured and calls the add_swtrace action on outgoing packets,
the program will be rejected by DiVerT.

267

Appendix B P4BID Use Cases

We implemented the use cases of P4BID [192] in DiVerT to ensure that it can
correctly evaluate all of their use cases and that its verdict is inline with the results
reported in [192]. These use cases and their corresponding policies are simpler than
our own use cases because P4BID does not support data-dependent policies and
hence only labels program variables without taking the value of the packet header
fields into account. The results of this evaluation is depicted in Table E.1.

Dataplane Routing Routing is the process of determining how to send a packet
from its source to its destination. In traditional networks the control plane is
responsible for routing, but recently, Subramanian et al. [187] proposed an approach
to implement the routing in the data plane. Their approach uses pre-loaded
information about the network topology and link failures to perform a breadth-first
search (BFS) and find a path to the destination.

In this scenario we do not care about the details of this BFS search algorithm, but
we want to make sure that the sensitive information about the private network
(such as the number of hops in the network) do not leak to an external network.
Similar to P4BID [192] labeling the number of hops as H will result in the program
being rejected by DiVerT because the forwarding action uses this information to
update the packet’s priority field, which results in an indirect leakage of sensitive
information.

In-Network Caching In order to enable the fast retrieval of popular items, switches
keep track of the frequently requested items in a cache and only query the controller
when an item cannot be found in the cache. Similar to any cache system, the result
of a query is the same regardless of where the item is stored. However, from a
security perspective, an observer can potentially detect variations in item retrieval
time. This timing side-channel can potentially allow an adversary to learn about
the state of the system.

To model the cache in this scenario, we mark the request query as sensitive, because
whether this query is a hit or a miss leaks information about the internal state of the
switch. The variable marking the state of the result in the cache (response.hit)
is not sensitive because it is considered observable by the adversary. Similar to
P4BID [192] this labeling will result in the program being rejected by DiVerT
because a sensitive query can indirectly affect the value of response.hit, resulting
in the leakage of sensitive information.

Resource Allocation This use case models a simple resource allocation program,
where the switch increases the priority of the packets belonging to latency-sensitive
applications. The application ID in the packet’s header will indicate which applica-
tion the packet belongs to. A table will matches on this application ID and sets the
packet’s priority by modifying the priority field of the ipv4 header.

268

The problem is that a malicious client can manipulate the application ID to increase
the priority of their packets. We rely on integrity labels (instead of confidentiality)
to address this issue, that is, the application ID will be labeled as untrusted (H)
and the ipv4 priority field will be labeled as trusted (L). Since the program sets
the priority field based on the value of the application ID, the priority field will
also be labeled untrusted by the type system, which results in the rejection of the
program.

Network Isolation This use case models a private network used by two clients,
Alice and Bob. Each client runs its own P4 program, but the packets sent between
these two clients have a shared header with separate fields for Alice and Bob. In
this scenario we want to make sure that Alice does not touch Bob’s fields, and vice
versa.

The isolation property in this example can be modeled by a four-point lattice with
labels {A, B,⊤,⊥}, where A is the label of Alice’s data, B is for Bob’s data, ⊤ is
the top element confidential to both Alice and Bob, and ⊥ is public. By IFC, data
from level ℓ can flow to ℓ′ if and only if ℓ ⊑ ℓ′.

In this use case, we consider Alice’s program in which she updates the fields belonging
to herself. Additionally, we use label ⊤ to label the telemetry data which can be
updated by Alice’s program, but she cannot leak information from ⊤-labeled data
into her own fields.

Since DiVerT only support simple lattice with two levels, we type check this
program twice, with two policies. First where Alice is H and everything else is L,
and a second time where ⊤ is H and everything else is L. The same process can be
repeated for Bob’s program as well. This program is accepted by DiVerT, and the
results for both cases are reported in Table E.1.

Topology This use case is a P4 program which processes packets as they enters a
local network. The incoming packets refers to a virtual address which needs to be
translated to a physical address as the packet is routed in the local network.

Our security policy dictates that the routing details of this local network should
not leak into fields that are visible when the packet leaves the network. As such,
the program relies on a separate header to store the local information, and as long
as the packet is inside the local network, the switches do not modify the ipv4 and
Ethernet headers, instead, they parse, use, and update this local header with the
routing information.

As explained in P4BID [192], this program has a bug where it incorrectly stores the
local ttl in the ipv4 header instead of the local header. Marking the local fields as
H , DiVerT flags this program as insecure and facilitates the process of catching
and fixing these types of errors.

269

Appendix C Typing Rules

In this section we present the typing rule for the externs:

T-Extern
(γg, γl) ⊢ ei : τi (ContE, (x1, d1), ..., (xn, dn)) = T (f)
γf = {xi 7→ τi} ∀(γi, ϕ, γt) ∈ ContE. (γg, γf) ⊑ γi

Γ′ = {γ′++raise(γt, pc) | (γi, ϕ, γt) ∈ ContE

∧ refine((γg, γf), ϕ) = γ′ ̸= •}
Γ′′ = {(γ′

g, γl)[ei 7→ γ′
f (xi) | isOut(di)] | (γ′

g, γ
′
f) ∈ Γ′}

T, pc, (γg, γl) ⊢ f(e1, ..., en) : Γ′′

T-Extern types the invocation of external functions. It is similar to T-Call with
the main difference that the semantics of external functions are not defined in P4,
therefore, we rely on user-specified contracts to approximate their behavior. An
extern contract is a set of tuples (γi, ϕ, γt), where γi is the input state type, ϕ is a
boolean expression defined on the parameters of the extern, and γt indicates the
state type components updated by the extern function (i.e. its side effects).

γi denotes a contract-defined state type that must be satisfied prior to the invocation
of the extern, and the rule T-Extern ensure that the initial state (γg, γf) is at most
as restrictive as γi. This approach is standard in type systems where functions are
type-checked in isolation using predefined pre- and post-typing environments. For
each (γi, ϕ, γt) tuple in the contract, T-Extern refines the initial state type (γg, γl)
by ϕ yielding γ′, and filters out all γ′s that do not satisfy ϕ (i.e. the refinement
refine((γg, γf), ϕ) is •). This is sound because we assume for all the variables
appeared in ϕ, the least upper bound of their labels within γi is less restrictive than
the lower bound of γt. We raise the label of all elements in the γt to pc to capture
indirect flows arising from updating the state type γ′ in a H context, and then use
use ++ operation to update γ′ with the types in γt. The final state type set Γ′ is
produced by copying out the out and inout parameters from γ′.

Example E.1. In Program E.1, let the contract for mark_to_drop at line 38 be
defined as:

({egress_spec 7→ ⟨∗⟩L9 }, true, {egress_spec 7→ ⟨0⟩L9 })

which indicates that given an input state type {egress_spec 7→ ⟨∗⟩L9 } the extern
always sets the value of egress_spec to zero. Assuming an initial state type
γ = {egress_spec 7→ ⟨7⟩L9 }. Since the condition of the contract is true the
refinement in this state type does not modify γ. This state type will be updated
with the contract’s γt to become {egress_spec 7→ ⟨0⟩L9 } if pc is L, otherwise
{egress_spec 7→ ⟨0⟩H9 }.

270

To guarantee the abstraction soundness of externs, for any input state m to the
externs semantics m′ = semf (m) and the contracts set (γi, ϕ, γt) must satisfy the
following properties:

1. Every input state m must satisfy some condition in the contract set ϕ,
i.e. ∃ϕ .ϕ(m)

2. All modified variables in output state m′ must be in the domain of γt, and
their abstraction types in γt must hold, i.e. {x. m(x) ̸= m′(x)} ⊆ domain(γt),
and for all x ∈ domain(γt) holds m′(x) : γt(x).

Additionally, to guarantee the labeling soundness of externs, the contracts must
satisfy the following properties:

1. Conditions must preserve secrecy with respect to the output state type. For
all variable names {x1, ..., xn} appearing in the contract’s condition ϕ, holds
lbl(γi(x1)) ⊔ ... ⊔ lbl(γi(xn)) ⊑ lb(γt).

2. Extern semantics must preserve low-equivalence. Given any states m1 and
m2, If ϕ(m1) and m1 ∼

γi

m2, then m′
1 = semf (m1), m′

2 = semf (m2), then
the difference between the two output states must be also low equivalent
(m′

1 \m1)∼
γt

(m′
2 \m2).

Appendix D State Type Operations

A type τ ′ is considered an overapproximation of type τ (written as τ ≤ τ ′) iff for
every value v : τ it holds that v : τ ′ and lbl(τ) ⊑ lbl(τ ′). We denote two non-
overlapping lvalues by lval # lval ′, which means if lval is a record lval ′ is not one of
its fields, and if lval is a bitvector lval ′ is not one of its sub-slices.

We present the properties that operators over the state types must guarantee:

• γ[lval 7→ τ] = γ′ indicates updating the type of lval, which can be a part of
a variable, in state type γ. This operator guarantees that γ′ ⊢ lval : τ and
for every lvalue lval ′ # lval such that γ ⊢ lval ′ : τ ′ and γ′ ⊢ lval ′ : τ ′′ then
τ ′ ≤ τ ′′.

• γ++γ′ updates γ such that for every variable in the domain of γ′, the type of
that variable in γ is updated to match γ′.

• refine(γ, e) = γ′ returns an overapproximation of states that satisfy the
abstraction of γ and the predicate e. It guarantees that if γ ⊢ m and e
evaluates to true in m then γ′ ⊢ m and for every lval, if γ ⊢ lval : τ and
γ′ ⊢ lval : τ ′ then lbl(τ) ⊑ lbl(τ ′)

271

• join(γ1, γ2) = γ3 returns an overapproximation of γ1, whose labels are at least
as restrictive as γ1 and γ2. This operator guarantees that if γ1 ⊢ m then
γ3 ⊢ m and for every lval, then lbl(γ1(lval)) ⊔ lbl(γ2(lval)) ⊑ lbl(γ3(lval)).

Appendix E Proofs and Guarantees

We use T ⊢ E to represent the abstraction and labeling soundness guarantees for
externs and tables, and in the following we assume that this condition holds. Note
that the proofs of this section use the full typing rules presented in Figure E.8.

Sufficient Condition Proof

«

Î

Lemma E.3 (Sufficient condition)

If for every γ1, γ2 ∈ Γ and every γo ∈ Γo such that γ1 ∩ γo ̸= •, it holds
that:

(1) if γ2 ∩ γo ̸= •, then γ1 ⊔ γ2 ⊑ γo,

(2) for every lval either γ2(lval) ⊆ γo(lval) or γ1 ⊔ γ2(lval) = L hold,

then for every γ1, γ2 ∈ Γ such that m1
γ2∼
γ1

m2, and every γo ∈ Γo, it holds
that if γo ⊢ m1 then γo ⊢ m2 and m1∼

γo

m2.

Proof. First, we prove γo ⊢ m2. By definition, it is sufficient to prove that for every
lval, m2(lval) : γo(lval).
From the definition of m1

γ2∼
γ1

m2 we know that γ1 ⊢ m1 and γ2 ⊢ m2 hold. Since
γo ⊢ m1 and γ1 ⊢ m1, then trivially γ1 ∩ γo ̸= • holds. From the second hypothesis
of the sufficient condition, two cases are possible.

1. γ2(lval) ⊆ γo(lval). Since γ2 ⊢ m2 hold, then by definition m2(lval) : γ2(lval)
holds, therefore trivially m2(lval) : γo(lval) holds.

2. γ1 ⊔ γ2(lval) = L. Since m1
γ2∼
γ1

m2 then, indeed m1(lval) = m2(lval) holds. By
definition of γo ⊢ m1, we know that m1(lval) : γo(lval) also holds. Therefore,
we can trivially show that m2(lval) : γo(lval).

Second, we prove m1∼
γo

m2. Previously, we showed that γo ⊢ m2 holds, and since
γ2 ⊢ m2, then trivially γ2 ∩ γo ≠ • holds. From the first hypothesis of the sufficient

272

condition, we can show that γ1 ⊔ γ2 ⊑ γo. By definition of m1
γ2∼
γ1

m2, we know that
m1 ∼

γ1⊔γ2
m2 holds. Therefore, trivially m1∼

γo

m2.

Hypothesis for Refinement

e Hypothesis E.1 (Interval typedness - boolean expressions’ refinement)

γ ⊢ e : τ ∧ γ ⊢ m =⇒(
m(e) = true =⇒

(refine(γ, e)) ⊢ m ∧ m(e) = false =⇒

(refine(γ,¬e)) ⊢ m
)

e Hypothesis E.2 (Interval typedness - select expressions’ refinement)

γ ⊢ e : τ ∧ m(e) = v ∧ γ ⊢ m

∧ i = min{i. v = vi ∨ i = n + 1} =⇒
γ1, ..., γn, γn+1 = (refine(γ, e = vi)) =⇒ γi ⊢ m

e Hypothesis E.3 (Interval typedness - externs and tables refinement)

γ ⊢ m ∧ ϕ(m) =⇒ refine(γ, ϕ) ⊢ m

e Hypothesis E.4 (Label typedness - boolean expressions’ refinement)

γ ⊢ e : τ1 ∧ γ ⊢ e : τ2

∧ lbl(τ1) = L ∧ lbl(τ2) = L
∧ m1 ∼

γ1⊔γ2
m2 =⇒(

(refine(γ1, e) = γ′
1 ∧ refine(γ2, e) = γ′

2

∧ m1(e) = true ∧ m2(e) = true =⇒ m1 ∼
γ1′⊔γ2′

m2)

∧
(
refine(γ1,¬e) = γ′

1 ∧ refine(γ2,¬e) = γ′
2

∧ m1(¬e) = true ∧ m2(¬e) = true =⇒

m1 ∼
γ1′⊔γ2′

m2
))

273

e Hypothesis E.5 (Label typedness - select expressions’ refinement)

γ ⊢ e : τ ∧ lbl(τ) = L ∧ m1∼
γ

m2 =⇒(
γ1, ..., γn, γn+1 = refine(γ, e = vi) ∧ m1(e) = v =⇒

∀j ≤ n + 1. m1∼
γj

m2

)

Lemmas

« Lemma E.4 (Expression reduction preserves the type)

γ ⊢ m ∧ γ ⊢ e : τ ∧ m(e) = v =⇒ v : τ

« Lemma E.5 (lvalue updates preserves the type)

γ ⊢ m ∧ v : τ =⇒ γ[lval 7→ τ] ⊢ m[lval 7→ v]

« Lemma E.6 (Expressions have types same as their values)

γ ⊢ m ∧ γ ⊢ e : τ =⇒ ∃v. m(e) = v ∧ v : τ

« Lemma E.7 (Join does not modify the intervals)

γ ⊢ m ∧ γ ∈ Γ1 =⇒
∀Γ2...Γn. ∃γ′ ∈ join(Γ1 ∪ Γ2 ∪ ... ∪ Γn).

γ′ ⊢ m ∧ γ ⊑ γ′

« Lemma E.8 (Expression evaluation of consistent states)

m1 ∼
γ1⊔γ2

m2 ∧ γ1 ⊢ m1 ∧ γ2 ⊢ m2 ∧

γ1 ⊢ e : τ1 ∧ γ2 ⊢ e : τ2 ∧
lbl(τ1) = L ∧ lbl(τ2) = L =⇒

(m1(e) = v ∧ m2(e) = v)

274

« Lemma E.9 (State equivalence preservation)

γ′ ⊑ γ ∧ m1∼
γ′

m2 =⇒ m1∼
γ

m2

« Lemma E.10 (Branch on high - state preservation)

E : m
s−→ m′ ∧ T, H, γ ⊢ s : Γ ∧ γ′ ∈ Γ =⇒

(γ′(lval) = τ ∧ lbl(τ) = L) =⇒
m(lval) = m′(lval)

« Lemma E.11 (Join’s low label implication)

Γ = join(Γ1 ∪ ... ∪ Γn) ∧ γ ∈ Γ ∧
γ(lval) = τ ∧ lbl(τ) = L =⇒

∀γ′ ∈ Γ1, ..., Γn. γ′(lval) = τ ′ ∧ lbl(τ ′) = L

« Lemma E.12 (High program’s final types)

T, H, γ ⊢ s : Γ =⇒ ∀γ′ ∈ Γ. γ ⊑ γ′

« Lemma E.13 (Branch on high - state lemma)

T, H, γ ⊢ s : Γ ∧ γ′ ∈ Γ ∧
γ′(lval) = τ ′ ∧ lbl(τ ′) = L =⇒
∀γ′′γ′′′. T, pc, γ′′ ⊢ s : Γ′ ∧ γ′′′ ∈ Γ′ =⇒(

γ′′(lval) = τ ′′ ∧ γ′′′(lval) = τ ′′′

=⇒ lbl(τ ′′) ⊑ lbl(τ ′′′)
)

« Lemma E.14 (Branch on high is never empty)

T, H, γ ⊢ s : Γ =⇒ Γ ̸= ∅

275

« Lemma E.15 (Low equivalence distribution)

(m1, m′
1) ∼

(γa,γ′
a)⊔(γb,γ′

b
)
(m2, m′

2)⇔

(m1 ∼
γa⊔γb

m2 ∧ m′
1 ∼

γ′
a⊔γ′

b

m′
2)

« Lemma E.16 (Low equivalence update)

m1 ∼
γa⊔γb

m2 ∧ m3 ∼
γc⊔γd

m4 =⇒

m1[lval 7→ m3(e)] ∼
γa[lval 7→γc(e)]⊔γb[lval 7→γd(e)]

m2[lval 7→ m4(e)]

Soundness of Abstraction

� Theorem E.2

∀ s T m γ pc Γ. T, pc, γ ⊢ s : Γ =⇒
T ⊢ E ∧ γ ⊢ m =⇒

∃m′.E : m
s−→ m′ ∧ ∃γ′ ∈ Γ. γ′ ⊢ m′

Proof. In this proof we assume that the program is well typed and does not get
stuck according to HOL4P4 type system. By induction on the typing tree of the
program stmt, i.e. s. Note that, initially γ = (γg, γm) and m = (mg, ml). In the
following proof, we know that γ ⊢ m holds in all subcases.

⋄ Case assignment: Here stmt is lval := e. From assignment typing rule we know:

1. γ ⊢ e : τ

2. τ ′ = raise(τ, pc)

3. γ′ = γ[lval 7→ τ ′]

4. Γ = {γ′}

We need to prove ∃m′.E : m
lval:=e−−−−→ m′ and ∃γ′′ ∈ Γ.γ′′ ⊢ m′. From the assignment

reduction definition, we can rewrite the goal’s conjunctions to:

1. m(e) = v (from assignment reduction)

276

2. ∃m′. m′ = m[lval 7→ v] (from assignment reduction)

3. ∃γ′′ ∈ {γ′}.γ′′ ⊢ m′

Goal 1: we know that the initial variable map is typed using the state type,
i.e. γ ⊢ m from assumptions. Using γ ⊢ m and 1 from typing rule, then we can use
Lemma E.6 to directly infer that the expression’s reduction indeed keeps the type,
i.e. ∃v. m(e) = v ∧ v : τ and this resolves goal 1.

Goal 2: trivial, as we can instantiate m′ to be m[lval 7→ v].

Goal 3: we know that assignment typing rule produces a singleton set from 4 of
typing rule, thus we can instantiate γ′′ to be γ[lval 7→ τ ′], thus allows us to rewrite
the goal to γ[lval 7→ τ ′] ⊢ m[lval 7→ v].

Given γ ⊢ m, this entails (by definition) that γ and m they contain the same
variable name in the domain, and also the values are well-typed, i.e. domain(γ) =
domain(m) ∧ ∀x ∈ domain(m). m(x) : γ(x).

Using Lemma E.4, we know that the assigned value v can be typed with τ , i.e. v : τ .
The assignment typing rule raises the labels using the function raise, however by
definition we know that the abstraction is unaffected, so the interval of τ ′ and τ are
the same, thus we can infer that v : τ ′.

Using Lemma E.5, we can see that the update preserves the type, thus goal proved.

⋄ Case condition: Here stmt is if e then s1 else s2. From conditional typing
rule we know:

1. γ ⊢ e : τ

2. ℓ = lbl(τ)

3. pc′ = pc ⊔ ℓ

4. T, pc′, (refine(γ, e)) ⊢ s1 : Γ1

5. T, pc′, (refine(γ,¬e)) ⊢ s2 : Γ2

6. Γ′ = Γ1 ∪ Γ2

7. Γ′′ =
{

join(Γ′) if ℓ = H
Γ′ otherwise

We need to prove ∃m′.E : m
if e then s1 else s2−−−−−−−−−−−−−→ m′ and ∃γ′′ ∈ Γ′′.γ′′ ⊢ m′.

In the goal, the boolean guard e evaluates to true or false. So we will get two goal
cases with similar proofs. This only solves for e, while case ¬e follows the same
proof strategy. We can rewrite the goal to:

277

1. ∃m′. E : m
s1−→ m′

2. ∃γ′′ ∈ Γ′′.γ′′ ⊢ m′

In this proof, we will get two induction hypotheses for statement: for s1 call it IH1
and for s2 call it IH2.

IH1 is the following (note that IH2 is the same, but instantiated for s2):

∀T m γ pc Γ. T, pc, γ ⊢ s1 : Γ =⇒
T ⊢ E ∧ γ ⊢ m =⇒

∃m′. E : m
s1−→ m′ ∧ ∃γ′ ∈ Γ. γ′ ⊢ m′

We first prove that the set of refined state types using e can still type the staring
concrete memory m. This we can show, because we know initially γ ⊢ m, and we
know that e is typed as a boolean (assumed to be well-typed), and we know that e
reduces to true from the reduction rule, these allow us to infer (refine(γ, e)) ⊢ m
using Hyp E.1.

Now we instantiate the induction hypothesis IH1 using (T, m, refine(γ, e), pc′, Γ1),
to show that exists m′ such that E : m

s1−→ m′, i.e. there indeed exists a transition
to a final configuration in the semantics to m′ (which resolves goal 1). Additionally,
we can show from IH1 that exists γ′ ∈ Γ1 such that γ′ ⊢ m′.

Now we implement cases on the expression’s label ℓ being H or L:

case lbl(τ) = H : we need to prove ∃γ′′ ∈ join {Γ1 ∪ Γ2}.γ′′ ⊢ m′. Then it is easy
to deduct that the goal holds; because we showed that there is a state type
γ′ ∈ Γ1 such that it is a sound abstraction of the final state γ′ ⊢ m′, and we
know that join operation does not change the abstraction, it just modifies the
security label. Hence, indeed there exists a state type γ′′ in join {Γ1 ∪ Γ2}
such that it is also a sound abstraction of final state γ′′ ⊢ m′.

case lbl(τ) = L: we need to prove ∃γ′′ ∈ {Γ1 ∪ Γ2}.γ′′ ⊢ m′, which is trivially true.

For the negation case, use IH2 and follow the same steps.

⋄ Case sequence: Here stmt is s1; s2. From sequence typing rule we know:

1. T, pc, γ ⊢ s1 : Γ1

2. ∀γ1 ∈ Γ1. T, pc, γ1 ⊢ s2 : Γγ1
2

3. Γ′ =
⋃

γ1∈Γ1
Γγ1

2

278

In this proof, we will get two induction hypotheses for statement: for s1 call it IH1
and for s2 call it IH2.
IH1 is (note that IH2 is the same, but instantiated for s2):

∀Tmγ pc Γ. T, pc, γ ⊢ s1 : Γ =⇒
T ⊢ E ∧ γ ⊢ m =⇒

∃m′.E : m
s1−→ m′ ∧ ∃γ′ ∈ Γ.γ′ ⊢ m′

We need to prove ∃m′′. E : m
s1;s2−−−→ m′′ and ∃γ′′ ∈ Γ′. γ′′ ⊢ m′′.

We can rewrite the goal using the definition of sequence case to:

1. E : m
s1−→ m′

2. ∃m′′.E : m′ s2−→ m′′

3. ∃γ′′ ∈ Γ′.γ′′ ⊢ m′′

Goal 1: We can instantiate the IH1 with (T, m, γ, pc, Γ1) to infer that exists m′
1

such that E : m
s1−→ m′

1, and also exists γ′ ∈ Γ1 such that γ′ ⊢ m′
1. Since the

semantics are deterministic, m′
1 and m′ are equivalent, thus it holds E : m

s1−→ m′

and γ′ ⊢ m′.

Goal 2 and 3 : We showed from IH1 that γ′ ⊢ m′, now we can instantiate 2 from
sequence typing rule with γ′. Now we can to instantiate IH2 with (T, m′, γ′, pc, Γγ′

2),
and infer that exists m′

2 such that E : m′ s2−→ m′
2, and also exists γ′′′ ∈ Γγ′

2 such
that γ′′′ ⊢ m′

2. Since the semantics are deterministic, m′
2 and m′′ are equivalent,

thus it holds E : m
s2−→ m′′ and γ′′′ ⊢ m′.

From 3 in sequence typing rule, we know that Γ′ is the union of all resulted state
type sets, such that it can type s2, since we know that γ′′′ ∈ Γγ′

2 will be in Γ′, then
we prove the goal ∃γ′′ ∈ Γ′.γ′′ ⊢ m′′.

⋄ Case function call: Here stmt is f(e1, ..., en). From call typing rule we know
(note that here we explicitly write the global and local state type):

1. (γg, γl) ⊢ ei : τi

2. (s, (x1, d1), ..., (xn, dn)) = (C, F)(f)

3. γf = {xi 7→ τi}

4. (C, F), pc, (γg, γf) ⊢ s : Γ′

5. Γ′′ = {(γ′
g, γl)[ei 7→ γ′

f (xi) | isOut(di)] | (γ′
g, γ′

f) ∈ Γ′}

279

In the following proof, we know that (γg, γl) ⊢ (mg, ml) and (C, F) ⊢ (X, F) hold.
Additionally, we get an induction hypothesis IH for the body of the function s.

∀(C, F) mγ pc Γ. (C, F), pc, γ ⊢ s : Γ =⇒
(C, F) ⊢(X, F) ∧ γ ⊢ m =⇒

∃m′.(X, F) : m
s−→ m′ ∧ ∃γ′ ∈ Γ.γ′ ⊢ m′

We need to prove ∃m′. (X, F) : (mg, ml)
f(e1,...,en)−−−−−−−→ m′ ∧ ∃γ′ ∈ Γ′′. γ′ ⊢ m′

From call reduction rule we can rewrite the goal to:

1. ∃s (x1, d1), ..., (xn, dn). (s, (x1, d1), ..., (xn, dn)) = (X, F)(f)

2. ∃mf . mf = {xi 7→ (mg, ml)(ei)}

3. ∃(m′
g, m′

f). (X, F) : (mg, mf) s−→ (m′
g, m′

f)

4. ∃m′′.m′′ = (m′
g, ml)[ei 7→ m′

f (xi) | isOut(di)]

5. ∃γ′ ∈ Γ′′.γ′ ⊢ m′′

Goal 1: From (C, F) ⊢ (X, F) we know indeed the function’s body and signature
found in the semantics is the same found in the typing rule.

Goal 2: Trivial, the existence can be instantiated with {xi 7→ (mg, ml)(ei)}.

Goal 3: To prove that there exists a state where the body of the function reduces to,
we need to use the IH. Thus, we first need to show that the resulted copy-in map is
also well-typed i.e. γf ⊢ mf , more specifically ∀i. {xi 7→ τi} ⊢ {xi 7→ (mg, ml)(ei)}.
Given that initially the state type can type the state (γg, γl) ⊢ (mg, ml) from
assumptions and given that the expressions ei have a type τi from typing rule 1,
now we can use Lemma E.4 to infer that ∀vi : τi such that vi is the evaluation of
(mg, ml)(ei). This leads us to trivially infer that ∀i. {xi 7→ τi} ⊢ {xi 7→ vi} holds.

Now we can use the IH by instantiating it to ((C, F), (mg, mf), (γg, γf), pc, Γ′) in
order to infer that exists (m′

g, m′
f) such that (X, F) : (mg, mf) s−→ (m′

g, m′
f) and

exists (γ′′
g , γ′′

f) ∈ Γ′ such that (γ′′
g , γ′′

f) ⊢ (m′
g, m′

f).

Goal 4: Trivial, we can instantiate the existence by (m′
g, ml)[ei 7→ m′

f (xi) |
isOut(di)].

Goal 5: The goal is to prove copy-out operation to be well-typed, thus we can
rewrite the goal to ∃γ′ ∈ {(γ′

g, γl)[ei 7→ γ′
f (xi) | isOut(di)] | (γ′

g, γ′
f) ∈ Γ′} such that

γ′ ⊢ (m′
g, ml)[ei 7→ m′

f (xi) | isOut(di)].

We can choose γ′ to be (γ′′
g , γl)[ei 7→ γ′′

f (xi) | isOut(di)].

280

Since we are able to choose a state type that types the final state, we can rewrite
the goal to prove again to be (γ′′

g , γl)[ei 7→ γ′′
f (xi) | isOut(di)] ⊢ (m′

g, ml)[ei 7→
m′

f (xi) | isOut(di)].

First, we know that γl ⊢ ml holds from the assumptions. Also, we showed in
(Goal 3) that (γ′′

g , γ′′
f) ⊢ (m′

g, m′
f), thus trivially γ′′

g ⊢ m′
g and γ′′

f ⊢ m′
f hold.

Thus, we can deduct that (γ′′
g , γl) ⊢ (m′′

g , ml), and m′
f (xi) : γ′′

f (xi), and then
we can use Lemma E.5 to deduct that the update preserves the well-typedness,
i.e. (γ′′

g , γl)[ei 7→ γ′′
f (xi)] ⊢ (m′

g, ml)[ei 7→ m′
f (xi)], which proves the goal.

⋄ Case extern: Here stmt is f(e1, ..., en). From extern typing rule we know (note
that here we explicitly write the global and local state type):

1. (γg, γl) ⊢ ei : τi

2. (ContE, (x1, d1), ..., (xn, dn)) = (C, F)(f)

3. γf = {xi 7→ τi}

4. ∀(γi, ϕ, γt) ∈ ContE. (γg, γl) ⊑ γi

5. Γ′ = {γ′++raise(γt, pc) | (γi, ϕ, γt) ∈ ContE ∧ refine((γg, γf), ϕ) = γ′ ̸= •}

6. Γ′′ = {(γ′
g, γl)[ei 7→ γ′

f (xi) | isOut(di)] | (γ′
g, γ′

f) ∈ Γ′}

In the following proof, we know that (γg, γl) ⊢ (mg, ml) and (C, F) ⊢ (X, F) hold.

We need to prove ∃m′. (X, F) : (mg, ml)
f(e1,...,en)−−−−−−−→ m′ ∧ ∃γ′′ ∈ Γ′′. γ′′ ⊢ m′

From extern reduction rule we can rewrite the goal to:

1. ∃(semf , (x1, d1), ..., (xn, dn)). (semf , (x1, d1), ..., (xn, dn)) = (X, F)(f)

2. ∃mf . mf = {xi 7→ (mg, ml)(ei)}

3. ∃(m′
g, m′

f). (m′
g, m′

f) = semf (mg, mf)

4. ∃m′′.m′′ = (m′
g, ml)[ei 7→ m′

f (xi) | isOut(di)]

5. ∃γ′′ ∈ Γ′′.γ′′ ⊢ m′′

Goal 1: From the environment’s well-typedness (C, F) ⊢ (X, F), we know domain(C)
∩ domain(F) = ∅ and extWT C X holds. This mean that indeed the extern is
defined only in C. Additionally, from well-typedness (C, F) ⊢ (X, F), that if
C(f) = (semf , (x, d)) then X(f) = (ContE , (x, d)), thus indeed exist ContE and
signature (x1, d1), ..., (xn, dn).

281

Goal 2: Trivial, by instantiating mf to be {xi 7→ (mg, ml)(ei)}.

We can here also prove that the resulted copy-in map is also well-typed i.e. γf ⊢ mf ,
more specifically ∀i. {xi 7→ τi} ⊢ {xi 7→ (mg, ml)(ei)}. Given that initially the
typing state types the state (γg, γl) ⊢ (mg, ml) from assumptions and given that
the expressions ei have a type τi from typing rule 1, now we can use Lemma E.4 to
infer that ∀vi : τi such that vi is the evaluation of (mg, ml)(ei). This leads us to
trivially infer that ∀i. {xi 7→ τi} ⊢ {xi 7→ vi} holds.

Goal 3: From (C, F) ⊢ (X, F), we know that extWT C X holds, and from its
definition, we know that indeed exists (γi, ϕ, γt) such that ϕ(mg, mf), this means
that indeed there exists a contract’s predicate satisfied by the values in the initial
concrete input state, i.e. ϕ(mg, mf). This implies, from the definition of extWT C X,
that indeed exists (m′

g, m′
f) such that (m′

g, m′
f) = semf (mg, mf).

Goal 4: Trivial, by instantiating m′′ to (m′
g, ml)[ei 7→ m′

f (xi) | isOut(di)].

Goal 5: We can rewrite the goal to exists γ′′ ∈ {(γ′
g, γl)[ei 7→ γ′

f (xi) | isOut(di)] |
(γ′

g, γ′
f) ∈ Γ′} such that γ′′ ⊢ (m′

g, ml)[ei 7→ m′
f (xi) | isOut(di)].

We can prove this goal by first find a γA ∈ Γ′ such that it types the final states of
the extern’s semantic (m′

g, m′
f). Second, we find the γ′′ ∈ Γ′′ such that it can type

the final state m′′ after copying out the extern.

We previously established γf ⊢ mf (from goal 2), also given that γg ⊢ mg from
assumptions we can trivially (γg, γf) ⊢ (mg, mf). Since we previously showed that
ϕ(mg, mf) (from goal 3), now we can use Hyp E.3 in order to infer that the refined
state refine((γg, γf), ϕ) can also type (mg, mf) also we infer that it is not empty,
i.e. refine((γg, γf), ϕ) ⊢ (mg, mf) and refine((γg, γf), ϕ) ̸= •.

The definition of extWT C X states that γt ⊢ (m′
g, m′

f) holds for the set of variables
that the extern’s semantics has changed i.e. {x. (mg, mf)(x) ̸= (m′

g, m′
f)(x)} ⊆

domain(γt).

Consequently, we can further prove that indeed exists a γA in Γ′ (from 4 in typing
rule of extern) that can type the output of the extern’s semantics (m′

g, m′
f) including

the unchanged variables. Thus, we can make cases on extern’s semantics input and
output as following:

case (mg, mf)(x) = (m′
g, m′

f)(x): This means that variable x not in the domain of
γt, thus it is unchanged, therefore it is typed by the refined state (m′

g, m′
f)(x) :

(refine((γg, γf), ϕ))(x). Trivially, we can also infer that

(m′
g, m′

f)(x) : (refine((γg, γf), ϕ)++raise(γt, pc))(x)

.

282

case (mg, mf)(x) ̸= (m′
g, m′

f)(x): This means that variable x is in the domain of
γt, thus it is changed, and the new type of it is in γt. Therefore, we can
trivially conclude that (mg, mf)(x) : γt(x), Consequently, since we know that
raise does not change the abstraction, and just change labels, we can therefore
conclude that (m′

g, m′
f)(x) : (refine((γg, γf), ϕ)++raise(γt, pc))(x)

These cases show that we can select γA such that γA ∈ Γ′ to be (refine((γg, γf), ϕ)++
raise(γt, pc)), because it can indeed type (m′

g, m′
f). i.e. (refine((γg, γf), ϕ)++ raise(γt, pc)) ⊢

(m′
g, m′

f). For simplicity in the rest of the proof, let us rewrite γA = (γAg
, γAf

),
where γAg

is the global part of the pair (refine((γg, γf), ϕ)++raise(γt, pc)) and γAf

is the local part of the pair. Thus, we can say that γAg ⊢ m′
g and γAf

⊢ m′
f .

Now we need to find γ′′ ∈ Γ′′ such that it types (m′
g, ml)[ei 7→ m′

f (xi) | isOut(di)]
order to prove Goal 5.

Given from assumptions γl ⊢ ml, and we showed that γAg
⊢ m′

g and γAf
⊢ m′

f . In
5 of the typing rules, we pick (γ′

g, γ′
f) such that it is in Γ′ to be (γAg

, γAf
), Now we

conduct cases on the direction of the parameter isOut(di) being out or not.

case ¬isOut(di): Then (γAg , γl) are unchanged, similarly in the semantics (m′
g, ml)

are also unchanged. Thus they can still be typed as (γAg
, γl) ⊢ (m′

g, ml)

case isOut(di): Then (γAg
, γl) are updated with ei 7→ γAf

(x), similarly the seman-
tics state (m′

g, ml) is updated with ei 7→ m′
f (x). Previously we showed that

γAf
⊢ m′

f , this entails by the definition of state typedness m′
f (x) : γAf

(x). This
leads to the point that the modifications of ei’s type in state type (γAg

, γl) and
value in state (m′

g, ml) keeps them well typed. Therefore, (γAg
, γl) ⊢ (m′

g, ml)
holds.

We can finally conclude that goal 5 can be resolved by picking the γ′′ to be (γAg
, γl),

the goal is now proven.

⋄ Case table application: Here stmt is apply tbl. From table typing rule we
know:

1. (e, Conttbl) = (C, F)(tbl)

2. γ ⊢ ei : τi

3. ℓ =
⊔

i lbl(τi)

4. pc′ = pc ⊔ ℓ

5. ∀(ϕj , (aj , τ j)) ∈ Conttbl. (γgj
, γlj

) = refine(γ, ϕj) ∧
(sj , (xj1 , none), ..., (xjn

, none)) = (C, F)(aj) ∧
γaj = {xji 7→ τji} ∧ T, pc′, (γgj , γaj) ⊢ sj : Γj

283

6. Γ′ = ∪j{(γ′
gj

, γlj
)|(γ′

gj
, γ′

aj
) ∈ Γj}

7. Γ′′ =
{

join(Γ′) if ℓ = H
Γ′ otherwise

In the following proof, we know that (γg, γl) ⊢ (mg, ml) and (C, F) ⊢ (X, F) hold.

We need to prove ∃m′. E : m
apply tbl−−−−−→ m′ and ∃γ′′ ∈ Γ′′.γ′′ ⊢ m′.

And from table reduction rule we can rewrite the goal to:

1. ∃e semtbl. (e, semtbl) = (X, F)(tbl)

2. ∃(a, v). semtbl((mg, ml)(e1), ..., (mg, ml)(en)) = (a, v)

3. ∃s (x1, ..., xn). (s, (x1, none), ..., (xn, none)) = E(a)

4. ∃ma. ma = {xi 7→ vi}

5. ∃(mg′ , ma′). E : (mg, ma) s−→ (mg′ , ma′)

6. ∃γ′′ ∈ Γ′′.γ′′ ⊢ (mg′ , ml)

In this proof, we will get an induction hypothesis for action call a(v) (formalized as
a function call), call it IH.

∀(C, F) m γ pc Γ. (C, F), pc, γ ⊢ a(v) : Γ =⇒
(C, F) ⊢(X, F) ∧ γ ⊢ m =⇒

∃m′.(X, F) : m
a(v)−−→ m′ ∧ ∃γ′ ∈ Γ.γ′ ⊢ m′

Goal 1: Trivial, by the well-typedness condition (C, F) ⊢ (X, F), we know that if
the table has a contract (from 1 in typing rule), then indeed there is semantics for
it semtbl and a key list e that matches the one in the table typing rule.

Goal 2: From (C, F) ⊢ (X, F), we can deduct from condition tblWT C X that
indeed exists an action and value list pair (a, v) in the contract Conttbl correlated
to a ϕj(m) that holds.

Goal 3: From (C, F) ⊢ (X, F) we know indeed the actions’s a body and signature
found in the semantics is the same found in the typing rule.

Goal 4: Trivial, by setting ma to be {xi 7→ vi}.

Goal 5: To prove this goal, we need to use IH. And in order to use IH, we must first
show that (γgj

, γaj
) ⊢ (mg, ma) by proving γgj

⊢ mg where (γgj
, γlj

) = refine(γ, ϕj)
and the copied in is well typed γaj ⊢ ma.

284

Prove γgj
⊢ mg: Since initially given that γ ⊢ m i.e. (γg, γl) ⊢ (mg, ml), also we know

from tblWT C X that there is j such that the predicate ϕj is satisfied in (mg, ml)
i.e. ϕj(mg, ml), thus we can use Hyp E.3 to deduct that refine(γ, ϕj) ⊢ (mg, ml),
i.e. we can infer that the refined state type is able to type the initial state. Given 5
in the typing rule, we know that (γgj

, γlj
) = refine(γ, ϕj) thus (γgj

, γlj
) ⊢ (mg, ml),

therefore γgj
⊢ mg holds.

Prove γaj
⊢ ma: This goal can be rewritten as {xi 7→ τi} ⊢ {xi 7→ vi}. The proof is

trivial by WF definition of tables we know that vi : τi, thus the variable xi is well
typed.

Now, we can instantiate IH to using ((C, F), (mg, ma), (γgj
, γaj

), pc′, Γj), so we can
infer that exists m′ such that (X, F) : m

s−→ m′ (thus goal 5 is resolved).

Goal 6: We can also infer from IH that exists γ′ ∈ Γj such that γ′ ⊢ m′. Let
(γ′

gj
, γ′

aj
) = γ′ and (m′

g, m′
a) = m′, thus indeed (γ′

gj
, γ′

aj
) ⊢ (m′

g, m′
a) holds trivially.

Line 6 of the typing rule iterates over each final state type set and collects the
modified global state and the refined local state, thus (γ′

gj
, γlj

) is indeed in Γ′. Since
we proved that γ′

gj
⊢ m′

g holds in the previous step, and also proved γlj
⊢ ml in

goal 5, therefore, (γ′
gj

, γlj
) ⊢ (m′

g, ml).

Line 7 of the typing rule changes the labels but not the abstraction, thus the
abstraction of the state type (γ′

gj
, γlj

) in Γ′ indeed exists in Γ′′ with labels changed
so goal 6 holds.

Soundness of Labeling

� Theorem E.3

∀s T pc m1 m2 m′
1 m′

2 γ1 γ2 Γ1 Γ2 E1 E2.

T, pc, γ1 ⊢ s : Γ1 ∧ T, pc, γ2 ⊢ s : Γ2 =⇒
T ⊢ E1 ∧ T ⊢ E2 ∧ E1∼

T
E2 ∧

γ1 ⊢ m1 ∧ γ2 ⊢ m2 ∧ m1 ∼
γ1⊔γ2

m2 ∧

E1 : m1
s−→ m′

1 ∧ E2 : m2
s−→ m′

2 =⇒(
∃γ′

1 ∈ Γ1 ∧ γ′
2 ∈ Γ2. γ′

1 ⊢ m′
1

∧ γ′
2 ⊢ m′

2 ∧ m′
1 ∼

γ′
1⊔γ′

2

m′
2
)

Proof. In this proof we assume that the program is well typed and does not get

285

stuck according to HOL4P4 type system. by induction on the typing tree of the
program stmt i.e. s. Note that, initially γ = (γg, γm) and m = (mg, ml). In the
following proof, we know that m1 ∼

γ1⊔γ2
m2, we also know that γ1 ⊢ m1 and γ2 ⊢ m2.

⋄ Case assignment: Here stmt is lval := e. From assignment typing rule we know:

1. γ1 ⊢ e : τ1

2. τ ′
1 = raise(τ1, pc)

3. γ′
1 = γ1[lval 7→ τ ′

1]

4. Γ1 = {γ′
1}

5. γ2 ⊢ e : τ2

6. τ ′
2 = raise(τ2, pc)

7. γ′
2 = γ2[lval 7→ τ ′

2]

8. Γ2 = {γ′
2}

And from assignment reduction rule we know:

1. m1(e) = v1

2. m′
1 = m1[lval 7→ v1]

3. m2(e) = v2

4. m′
2 = m2[lval 7→ v2]

Prove ∃γ′
1 ∈ Γ1 ∧ γ′

2 ∈ Γ2. γ′
1 ⊢ m′

1 ∧ γ′
2 ⊢ m′

2 ∧ m′
1 ∼

γ′
1⊔γ′

2

m′
2. Since that

assignment typing rule produces one state type (from 3,4,7,and 8), then from
Soundness of Abstraction, we can infer γ′

1 ⊢ m′
1 and γ′

2 ⊢ m′
2, therefore the

first two conjunctions of the goal holds.

Now, the final remaining goal to prove is that m′
1 ∼

γ′
1⊔γ′

2

m′
2. This entails proving

that all lval ′ in both m′
1 and m′

2 are low equivalent with respect to the least upper
bound of the final state types that types the final states.

Now we do cases on the label of lval ′ being H or L in γ′
1 ⊔ γ′

2.

case label of lval ′ is H : If the label is H , i.e. γ′
1 ⊔ γ′

2 ⊢ lval ′ : τ ∧ lbl(τ) = H , then
the property of labeling soundness holds after the assignment trivially. That’s
because soundness property checks the equality of the state type’s low ranges
only.

286

case label of lval ′ is L: If the label is L, i.e. γ′
1 ⊔ γ′

2 ⊢ lval ′ : τ ∧ lbl(τ) = L, this
implies that in each state type γ′

1 and γ′
2 individually, the typing label of lval ′

is L.
In this section, we conduct a case analysis on possible sub-cases relations
between of lval being assigned and lval ′, thus we will have the following
subcases: lval ′ ⫋ lval, lval ⫋ lval ′, lval ′ = lval, lval ′ ⫅ lval, and lval ⫅ lval ′.

case lval ′ ⫋ lval and lval ⫋ lval ′:
Now for all lval ′ that are not equal to the lval we assign to, or not sub-lval
of it: our goal is to show m′

1(lval ′) = m′
2(lval ′) by demonstrating that

initially m1(lval ′) = m2(lval ′) also holds. We know that the assignment
doesn’t alter those parts of the states. Thus, the semantic update
should keep the values of lval ′ the same, so m1(lval ′) = m′

1(lval ′) and
m2(lval ′) = m′

2(lval ′). Likewise, the typing update should keep the type
of lval ′ unchanged, so γ′

1(lval ′) = γ1(lval ′) and γ′
2(lval ′) = γ2(lval ′). This

indeed mean that the labels of lval ′ were also L in both γ1 and γ2, and
given the assumption that m1 ∼

γ1⊔γ2
m2, thus indeed m1(lval ′) = m2(lval ′).

case lval ′ = lval:
For lval ′ = lval, we know that in γ′

1 ⊔ γ′
2 we type the lval as L, i.e. γ′

1 ⊔
γ′

2(lval) = τ ∧ lbl(τ) = L thus the same property holds in individual state
types γ′

1(lval) = τ ′ ∧ lbl(τ ′) = L and also γ′
2(lval) = τ ′′ ∧ lbl(τ ′′) = L.

We need to prove m′
1(lval) = m′

2(lval). For lval to be L after the update
function in either γ′

1 or γ′
2, it is necessary for the types of the expression

e to be L in both initial state types γ1 in 1 and γ2 in 5 in typing
rules, i.e. (lbl(τ1) = L and lbl(τ2) = L). This condition holds because
otherwise, if the typing labels of e were H , then the goal would be trivially
true (as the update would make lval H in γ′

1 and γ′
2, contradicting the

assumptions). Since the typing label of e is L in 1 and 5 of typing rule,
when reduced to a value in 1 and 3 of the semantics rule, this indicates
that they reduce to the same value v1 = v2 (using Lemma E.8). Since we
update lval in m1 and m2 with the same value such that we produce m′

1
and m′

2 respectively, it follows that m′
1(lval) = m′

2(lval).
case lval ′ ⫅ lval:

For lval ′ ⫅ lval, we know that lval ′ can be a shorter variation of the lval.
The proof is the same as the previous case.

case lval ⫅ lval ′:
For lval ⫅ lval ′, we know that lval can be a shorter variation of the lval ′,
thus the update of lval affects part of lval ′ type while the rest of it stays
unchanged. Therefore, the proof is straightforward by conducing the
same steps of the first two cases.

Given the last four subcases, we can now show that m′
1∼

γ′
m′

2.

287

⋄ Case condition: Here stmt is if e then s1 else s2. From conditional typing
rule we know:

1. γ ⊢ e : τ1

2. ℓ1 = lbl(τ1)

3. pc1 = pc ⊔ ℓ1

4. T, pc1, (refine(γ1, e)) ⊢ s1 : Γ1

5. T, pc1, (refine(γ1,¬e)) ⊢ s2 : Γ2

6. Γ3 =
{

join(Γ1 ∪ Γ2) if ℓ1 = H
Γ1 ∪ Γ2 otherwise

7. γ ⊢ e : τ2

8. ℓ2 = lbl(τ2)

9. pc2 = pc ⊔ ℓ2

10. T, pc2, (refine(γ2, e)) ⊢ s1 : Γ4

11. T, pc2, (refine(γ2,¬e)) ⊢ s2 : Γ5

12. Γ6 =
{

join(Γ4 ∪ Γ5) if ℓ2 = H
Γ4 ∪ Γ5 otherwise

We also know that both initial states are γ1 ⊢ m1 and γ2 ⊢ m2 and also m1 ∼
γ1⊔γ2

m2.
And we know that the conditional statement is executed with m1 and m2 resulting
m′

1 and m′
2 consequently.

In addition to that, we get induction hypothesis for s1 IH1 and s2 IH2 (we only
show IH1):

∀ T pc ma mb m′
a m′

b γa γb Γa Γb Ea Eb.

T, pc, γa ⊢ s1 : Γa ∧ T, pc, γb ⊢ s1 : Γb =⇒
T ⊢ Ea ∧ T ⊢ Eb ∧ Ea∼

T
Eb ∧

γa ⊢ ma ∧ γb ⊢ mb ∧ ma ∼
γa⊔γb

mb ∧

Ea : ma
s1−→ m′

a ∧ Eb : mb
s1−→ m′

b

=⇒(
∃γ′

a ∈ Γa ∧ γ′
b ∈ Γb. γ′

a ⊢ m′
a ∧ γ′

b ⊢ m′
b ∧ m′

a ∼
γ′

a⊔γ′
b

m′
b

)
We start by cases on labels ℓ1 and ℓ2 of e.

288

case ℓ1 = ℓ2 = L: We need to prove that ∃γ′
1 ∈ Γ3 and ∃γ′

2 ∈ Γ6 it holds m′
1 ∼

γ′
1⊔γ′

2

m′
2.

We can directly use Lemma E.8 to infer that e is evaluation is indistinguishable
in the states, and since e is assumed to be typed as boolean, thus we get
two subcases where: m1(e) = true and m2(e) = true , or m1(e) = false and
m2(e) = false.

case m1(e) = true and m2(e) = true: when looking into the reduction rule of
the both if statements in the assumption, we only reduce the first branch
of each. Hence, we have E1 : m1

s1−→ m′
1 and E2 : m2

s1−→ m′
2.

From Hyp E.4, we can show that m1 ∼
(refine(γ1,e))⊔(refine(γ2,e))

m2. Addi-

tionally, we can infer that (refine(γ1, e)) ⊢ m1 and (refine(γ2, e)) ⊢ m2
using Hyp E.1.
Now we can directly instantiate and apply IH1 using the following
(T, pc⊔L, m1, m2, m′

1, m′
2, (refine(γ1, e)), (refine(γ2, e)), Γ1, Γ4, E1, E2) to

infer that the states after executing s1 are low equivalent, i.e. exists
γ′′

1 ∈ Γ1 and exists γ′′
2 ∈ Γ4 such that γ′′

1 ⊢ m′
1 and γ′′

2 ⊢ m′
2 and

m′
1 ∼

γ′′
1 ⊔γ′′

2

m′
2. Since Γ1 ⊆ Γ3 and Γ4 ⊆ Γ6, thus the goal holds.

case m1(e) = false and m2(e) = false same proof as the previous case.

case ℓ2 = H : We initiate the proof by fixing ℓ2 to be H , and the value of e to be
reduced to false, thus it executes s2 (starting from configuration m2, and
yields m′

2, note that if e reduces to true the proof is identical as this case). In
this proof, we refer to these as the second configuration.

Now, consider the following scenario where we start from m1 in the semantics
rule and γ1 in typing rule, we generalize the proof for any boolean expression
ei such that i ranges over true and false, where etrue is e, efalse is ¬e, strue is
the first branch s1, and sfalse is the second branch s2. In this sub-case of the
proof, ℓ1 denotes the label associated ei’s typing label, and let the refinement
of the initial typing scope γ1 to be represented as refine(γ1, ei). Suppose the
executed branch is si, yielding a final set of state types denoted as Γi. In this
proof, we refer to these as the first configuration.

Given the previous generalizations, we can rewrite the assumptions to:

(a) T, ℓ1, (refine(γ1, ei)) ⊢ si : Γi

(b) E1 : m1
si−→ m′

1

(c) T, H , (refine(γ2,¬e)) ⊢ s2 : Γ5

(d) T, H , (refine(γ2, e)) ⊢ s1 : Γ4

(e) E2 : m2
s2−→ m′

2

289

What we aim to prove is the existence of γ′
1 ∈ Γ3 such that γ′

1 ⊢ m′
1. Addition-

ally, we need to establish the existence of γ′
2 ∈ Γ6 where Γ6 = join(Γ4 ∪ Γ5),

such that γ′
2 ⊢ m′

2. Furthermore, we must prove that m′
1 ∼

γ′
1⊔γ′

2

m′
2.

From the Soundness of Abstraction, we know that for the second config-
uration indeed exists γ′′

2 ∈ Γ5 such that it types m′
2 (i.e. γ′′

2 ⊢ m′
2).

Given that γ′′
2 ∈ Γ5 and Γ6 = join(Γ4 ∪ Γ5), we can deduce (by Lemma E.7)

the existence of γ′′
2 ∈ join(Γ4 ∪ Γ5) such that it is more restrictive than γ′′

2 ,
denoted as γ′′

2 ⊑ γ′′
2 . Using the same lemma, we conclude that γ′′

2 ⊢ m′
2. Now

on, we choose γ′′
2 to be used in the proof and resolve the second conjunction

of the goal.
From the Soundness of Abstraction, we know that for the first configura-
tion indeed exists γ′′

i ∈ Γi such that it types m′
1 (i.e. γ′′

i ⊢ m′
1).

In the first configuration, we generalized the proof according to the evaluation
of ei. Consequently, the final state type set Γ3 can be either a union (if ℓ1 = L)
or a join (if ℓ1 = H) of all final state type sets ∀i ≤ 1. Γi resulting from typing
their corresponding si. In either case (union or join), we can establish the
existence of γ′′

i ∈ Γ3 such that γ′′
i ⊑ γ′′

i and indeed γ′′
i ⊢ m′

1. Note that if Γ3
resulted from a join, we infer this using Lemma E.7; otherwise, if it resulted
from a union, it is trivially true. In fact, we can directly choose γ′′

i = γ′′
i when

union the final state types sets.
Next, we proceed to implement cases based on whether an lval’s type label is
H or L.

case (γ′′
i ⊔ γ′′

2 (lval) = τ) ∧ lbl(τ) = H : the goal holds trivially.

case (γ′′
i ⊔ γ′′

2 (lval) = τ) ∧ lbl(τ) = L: this case entails that each state
type individually holds γ′′

i (lval) = τ ′
1 ∧ lbl(τ ′

1) = L and also γ′′
2 (lval) =

τ ′′
2 ∧ lbl(τ ′′

2) = L.

Given that the lval’s type is L in γ′′
2 , and considering γ′′

2 ∈ join(Γ4 ∪ Γ5),
it follows that the lval is also L in any state type within join(Γ4 ∪ Γ5).
Consequently, the lval is L in the state types of both Γ5 and Γ4 (if not
empty) individually before the join operation. Hence, since γ′′

2 ∈ Γ5, it
implies that lval is also L in γ′′

2 expressed as γ′′
2 (lval) = τ ′′′

2 ∧ lbl(τ ′′′
2) = L

(using Lemma E.11). We also know that typing a statement in a H context
in (d) entails that the final Γ4 is not empty (using Lemma E.14), thus
lval’s type label is also L in all the state types in Γ4.
In the second configuration, we type the statement s2 with a H context
in (c), and s2 reduces to m′

2 in (e). Furthermore, from the previous step,
we inferred that the lval’s type is L in γ′′

2 . Hence, we can use Lemma
E.10 to infer that the initial and final states remain unchanged for L
lvalues, which means m2(lval) = m′

2(lval). Then we can use Lemma

290

E.12 to infer that refine(γ2,¬e) ⊑ γ′′
2 , this entails that the lval’s type

label is indeed L in the refined state refine(γ2,¬e). It is easy to see that
γ2 ⊑ refine(γ2,¬e), thus lval’s type is also L in the initial state type γ2,
i.e. γ2(lval) = τ ′

2 ∧ lbl(τ ′
2) = L.

For the first configuration, in this sub-case, we have γ′′
i (lval) = τ ′

1 ∧
lbl(τ ′

1) = L, and γ′′
i ∈ Γ3. We previously showed γ′′

i ∈ Γi and γ′′
i ⊑ γ′′

i ,
where Γi such that is the final state type of typing si according to the
evaluation of ei. Since lval’s typing label is L in γ′′

i in Γ3 and we know that
the state types in γ′′

i are more restrictive than the state types in γ′′
i , we can

conclude that γ′′
i ∈ Γi also types lval as L γ′′

i (lval) = τ ′′
1 ∧ lbl(τ ′′

1) = L.
Previously, we demonstrated that the lval’s typing label is L in all final
state types in Γ4 and Γ5, and we showed that Γ4 is not empty. Conse-
quently, neither s1 nor s2 can modify lval. Considering the assumptions
(a) and (b) (related to the first configuration), where si can be either s1 or
s2, we conclude that the lval remains unchanged there as well. Here, we
can apply Lemma E.13 to deduce that the lval’s typing label in γ′′

i ∈ Γi

are more restrictive than the one we find in the refined state refine(γ1, ei),
thus refine(γ1, ei)(lval) = τ ′

i ∧ lbl(τ ′
i) = L. Now we can apply Lemma

E.10 for any si to show that m1(lval) = m′
1(lval).

Finally, since the typing label of lval in refine(γ1, ei) is L, then trivially we
know that the typing label of lval in γ1 is also L because γ1 ⊑ refine(γ1, ei).
We previously showed that lval’s typing label is L in γ2, thus we now can
show that γ1 ⊔ γ2(lval) = τ ′ ∧ lbl(τ ′) = L. Now, we can deduce that
m1(lval) = m2(lval) from the definition of the assumption m1 ∼

γ1⊔γ2
m2.

Thus, the goal holds.

case ℓ1 = H : when fixing the first configuration, we implement same proof as
previous case.

⋄ Case sequence: Here stmt is s1; s2. From sequence typing rule we know:

1. T, pc, γ1 ⊢ s1 : Γ1

2. ∀γ′
1 ∈ Γ1. T, pc, γ′

1 ⊢ s2 : Γγ′
1

2

3. Γ′ =
⋃

γ′
1∈Γ1

Γγ′
1

2

4. T, pc, γ2 ⊢ s1 : Γ3

5. ∀γ′
2 ∈ Γ3. T, pc, γ′

2 ⊢ s2 : Γγ′
2

4

6. Γ′′ =
⋃

γ′
2∈Γ3

Γγ′
2

4

291

And from sequence reduction rule we know:

1. E1 : m1
s1−→ m′

1

2. E1 : m′
1

s2−→ m′′
1

3. E2 : m2
s1−→ m′

2

4. E2 : m′
2

s2−→ m′′
2

We initially know that : γ1 ⊢ m1, γ2 ⊢ m2, and m1 ∼
γ1⊔γ2

m2.

In addition to that, we get induction hypothesis for s1 IH1 and s2 IH2 (we only
show IH1):

∀ T pc ma mb m′
a m′

b γa γb Γa Γb Ea Eb.

T, pc, γa ⊢ s1 : Γa ∧ T, pc, γb ⊢ s1 : Γb =⇒
T ⊢ Ea ∧ T ⊢ Eb ∧ Ea∼

T
Eb ∧

γa ⊢ ma ∧ γb ⊢ mb ∧ ma ∼
γa⊔γb

mb ∧

Ea : ma
s1−→ m′

a ∧ Eb : mb
s1−→ m′

b

=⇒(
∃γ′

a ∈ Γa ∧ γ′
b ∈ Γb. γ′

a ⊢ m′
a ∧ γ′

b ⊢ m′
b ∧ m′

a ∼
γ′

a⊔γ′
b

m′
b

)
We need to prove there are two state types γ′′

1 ∈ Γ′ and γ′′
2 ∈ Γ′′ such they type the

final states γ′′
1 ⊢ m′′

1 and γ′′
2 ⊢ m′′

2 and indeed m′′
1 ∼

γ′′
1 ⊔γ′′

2

m′′
2 holds.

We start by using IH1, and instantiating it with (T, pc, m1, m2, m′
1, m′

2, γ1, γ2, Γ1, Γ3,
E1, E2) to infer that there exists γ′

1 ∈ Γ1 and γ′
2 ∈ Γ3 such that γ′

1 ⊢ m′
1 ∧ γ′

2 ⊢ m′
2

and also m′
1 ∼

γ′
1⊔γ′

2

m′
2.

Then, in the typing rule, we instantiate 2 with γ′
1 and 5 with γ′

2. Now we can use
IH2, and instantiating it with (T, pc, m′

1, m′
2, m′′

1 , m′′
2 , γ′

1, γ′
2, Γγ′

1
2 , Γγ′

2
4 , E1, E2). From

that we can infer that indeed there exists state types γ′′
1 ∈ Γγ′

1
2 and γ′′

2 ∈ Γγ′
2

4 such
that they type the final states γ′′

1 ⊢ m′′
1 and γ′′

2 ⊢ m′′
2 , where they keep the states

low equivalent as m′′
1 ∼

γ′′
1 ⊔γ′′

2

m′′
2 .

We know that the final set of state type of interest is simply the union of all state
types that can type the second statement in 3 and 6. It is easy to see that since
γ′′

1 ∈ Γγ′
1

2 then γ′′
1 ∈ Γ′. Similarly, γ′′

2 ∈ Γγ′
2

4 then γ′′
2 ∈ Γ′′. Thus, the goal is proven.

⋄ Case function call: Here stmt is f(e1, ..., en). From call typing rule we know
(note that here we explicitly write the global and local state type):

292

1. (γg1, γl1) ⊢ ei : τi1

2. (s, (x1, d1), ..., (xn, dn)) = (C, F)(f)

3. γf1 = {xi 7→ τi1}

4. (C, F), pc, (γg1, γf1) ⊢ s : Γ′
1

5. Γ′′
1 = {(γ′

g1, γl1)[ei 7→ γ′
f1(xi) | isOut(di)] | (γ′

g1, γ′
f1) ∈ Γ′

1}

6. (γg2, γl2) ⊢ ei : τi2

7. γf2 = {xi 7→ τi2}

8. (C, F), pc, (γg2, γf2) ⊢ s : Γ′
2

9. Γ′′
2 = {(γ′

g2, γl2)[ei 7→ γ′
f2(xi) | isOut(di)] | (γ′

g2, γ′
f2) ∈ Γ′

2}

And from call reduction rule we know:

1. (s, (x1, d1), ..., (xn, dn)) = (X1, F)(f)

2. mf1 = {xi 7→ (mg1, ml1)(ei)}

3. (X1, F) : (mg1, mf1) s−→ (m′
g1, m′

f1)

4. m′′
1 = (m′

g1, ml1)[ei 7→ m′
f1(xi) | isOut(di)]

5. (s, (x1, d1), ..., (xn, dn)) = (X2, F)(f)

6. mf2 = {xi 7→ (mg2, ml2)(ei)}

7. (X2, F) : (mg2, mf2) s−→ (m′
g2, m′

f2)

8. m′′
2 = (m′

g2, ml2)[ei 7→ m′
f2(xi) | isOut(di)]

Let m1 = (mg1, ml1), m2 = (mg2, ml2), let γ1 = (γg1, γl1), and γ1 = (γg2, γl2). We
initially know that: γ1 ⊢ m1, γ2 ⊢ m2, and m1 ∼

γ1⊔γ2
m2.

In addition to that, we get induction hypothesis for s IH:

∀ T pc ma mb m′
a m′

b γa γb Γa Γb Ea Eb.

T, pc, γa ⊢ s : Γa ∧ T, pc, γb ⊢ s : Γb =⇒
T ⊢ Ea ∧ T ⊢ Eb ∧ Ea∼

T
Eb ∧

γa ⊢ ma ∧ γb ⊢ mb ∧ ma ∼
γa⊔γb

mb ∧

Ea : ma
s−→ m′

a ∧ Eb : mb
s−→ m′

b

=⇒(
∃γ′

a ∈ Γa ∧ γ′
b ∈ Γb. γ′

a ⊢ m′
a ∧ γ′

b ⊢ m′
b ∧ m′

a ∼
γ′

a⊔γ′
b

m′
b

)
293

We need to prove there are two state types γ′′
1 ∈ Γ′′

1 and γ′′
2 ∈ Γ′′

2 such they type the
final states γ′′

1 ⊢ m′′
1 and γ′′

2 ⊢ m′′
2 and indeed m′′

1 ∼
γ′′

1 ⊔γ′′
2

m′′
2 holds.

First we need to prove that the resulted copy-in map is also well-typed i.e. γf1 ⊢ mf1.
Note that the same proof applies to prove γf2 ⊢ mf2:

Given that initially the typing state types the state (γg1, γl1) ⊢ (mg1, ml1) from
assumptions and given that the expressions ei have a type τi1 from typing rule 1,
now we can use Lemma E.4 to infer that for all vi : τi such that vi is the evaluation
of (mg1, ml1)(ei). This leads us to trivially infer that ∀i. {xi 7→ τi} ⊢ {xi 7→ vi}
holds, thus γf1 ⊢ mf1.

Now we want to show that (mg1, mf1) ∼
(γg1,γf1)⊔(γg2,γf2)

(mg2, mf2). This can be

broken down and rewritten into two goals according to Lemma E.15:

Goal 1. mg1 ∼
γg1⊔γg2

mg2:
We know that the domains of mg1 and ml1 are distinct and do not intersect
(similarly for mg2 and ml2), and given that they are initially low equivalent
with respect to (γg1, γl1) ⊔ (γg2, γl2) as (mg1, ml1) ∼

(γg1,γl1)⊔(γg2,γl2)
(mg2, ml2).

Then we can use Lemma E.15 to show that the goal holds.

Goal 2. mf1 ∼
γf1⊔γf2

mf2:
First we start by rewriting the goal as following:
{xi 7→ (mg1, ml1)(ei)} ∼

{xi 7→(γg1,γl1)(ei)}⊔{xi 7→(γg2,γl2)(ei)}
{xi 7→ (mg2, ml2)(ei)}.

It is easy to see that the empty map is low equivalent as: {} ∼
{}⊔{}

{}. Now we

can use Lemma E.16 to show that the goal holds.

Now we can use IH, and instantiate it with: ((C, F), pc, (mg1, mf1), (mg2, mf2),
(m′

g1, m′
f1), (m′

g2, m′
f2), (γg1, γf1), (γg2, γf2), Γ′

1, Γ′
2, (X1, F), (X2, F)), so that we can

deduct that exists γ′
1 ∈ Γ′

1 such that γ′
1 ⊢ (m′

g1, m′
f1), also exists γ′

2 ∈ Γ′
2 such that

γ′
2 ⊢ (m′

g2, m′
f2). We can also infer that (m′

g1, m′
f1) ∼

γ′
1⊔γ′

2

(m′
g2, m′

f2).

Let γ′
1 = (γ′

g1, γ′
f1) and γ′

2 = (γ′
g2, γ′

f2) then we can also conclude from the previous:

(a) γ′
g1 ⊢ m′

g1

(b) γ′
g2 ⊢ m′

g2

(c) γ′
f1 ⊢ m′

f1

(d) γ′
f2 ⊢ m′

f2

294

(e) m′
g1 ∼

γ′
g1⊔γ′

g2

m′
g2

(f) m′
f1 ∼

γ′
f1⊔γ′

f2

m′
f2

Since the final goal is to prove there are two state types γ′′
1 ∈ Γ′′

1 and γ′′
2 ∈ Γ′′

2 such
they type the final states γ′′

1 ⊢ m′′
1 and γ′′

2 ⊢ m′′
2 and indeed m′′

1 ∼
γ′′

1 ⊔γ′′
2

m′′
2 holds, then

we can select γ′′
1 to be (γ′

g1, γ′
f1), i.e. the copied-out map is (γ′

g1, γl1)[ei 7→ γ′
f1(xi) |

isOut(di)].

Similarly, we can select γ′′
2 to be (γ′

g2, γ′
f2), i.e. the copied-out map is (γ′

g2, γl2)[ei 7→
γ′

f2(xi) | isOut(di)].

Goal 1:

(γ′
g1, γl1)[ei 7→ γ′

f1(xi)] ⊢ (m′
g1, ml1)[ei 7→ m′

f1(xi)]

Since we know γ′
g1 ⊢ m′

g1 ((a) from previous step) and γl1 ⊢ ml1 from
assumptions rewrites, this entails that (γ′

g1, γl1) ⊢ (m′
g1, ml1). We also proved

that γ′
f1 ⊢ m′

f1 ((c) from previous step), thus for all x ∈ domain(γ′
f1) holds

m′
f1(x) : γ′

f1(x). Now we can use Lemma E.5 to show that the goal holds.

Goal 2:

(γ′
g2, γl2)[ei 7→ γ′

f2(xi)] ⊢ (m′
g2, ml2)[ei 7→ m′

f2(xi)]

Same proof as the previous sub goal, using (b) and (d) the previous step, and
the initial assumption γl2 ⊢ ml2.

Goal 3:

(m′
g1, ml1)[ei 7→ m′

f1(xi)]
∼

((γ′
g1,γl1)[ei 7→γ′

f1(xi)])⊔((γ′
g2,γl2)[ei 7→γ′

f2(xi)])

(m′
g2, ml2)[ei 7→ m′

f2(xi)]

We know that m′
g1 ∼

γ′
g1⊔γ′

g2

m′
g2 (from (e) of previous step), we also know that

m′
l1 ∼

γl1⊔γl2
ml2 (from assumptions), now using Lemma E.15 we can combine

them to infer an equivalence before copying out or (no copy-out because there
are not out directed parameters), i.e. :

295

(m′
g1, ml1) ∼

(γ′
g1,γl1)⊔(γ′

g2,γl2)
(m′

g2, ml2).

We previously proved that mf1 ∼
γf1⊔γf2

mf2, now we can prove this goal directly
using Lemma E.16.

⋄ Case extern: Here stmt is f(e1, ..., en). From call typing rule we know (Note
that here we explicitly write the global and local state type):

1. (γg1, γl1) ⊢ ei : τi1

2. (ContE, (x1, d1), ..., (xn, dn)) = (C, F)(f)

3. γf1 = {xi 7→ τi1}

4. ∀(γi, ϕ, γt) ∈ ContE. (γg1, γl1) ⊑ γi

5. Γ′
1 = {γ′

1++raise(γt, pc) | (γi, ϕ, γt) ∈ ContE ∧ refine((γg1, γf1), ϕ) = γ′
1 ≠ •}

6. Γ′′
1 = {(γ′

g, γl1)[ei 7→ γ′
f (xi) | isOut(di)] | (γ′

g, γ′
f) ∈ Γ′

1}

7. (γg2, γl2) ⊢ ei : τi2

8. γf2 = {xi 7→ τi2}

9. ∀(γi, ϕ, γt) ∈ ContE. (γg2, γl2) ⊑ γi

10. Γ′
2 = {γ′

2++raise(γt, pc) | (γi, ϕ, γt) ∈ ContE ∧ refine((γg2, γf2), ϕ) = γ′
2 ≠ •}

11. Γ′′
2 = {(γ′

g, γl2)[ei 7→ γ′
f (xi) | isOut(di)] | (γ′

g, γ′
f) ∈ Γ′

2}

And from extern reduction rule we know:

1. (semf , (x1, d1), ..., (xn, dn)) = (X1, F)(f)

2. mf1 = {xi 7→ (mg1, ml1)(ei)}

3. (m′
g1, m′

f1) = semf (mg1, mf1)

4. m′′
1 = (m′

g1, ml1)[ei 7→ m′
f1(xi) | isOut(di)]

5. (semf , (x1, d1), ..., (xn, dn)) = (X2, F)(f)

6. mf2 = {xi 7→ (mg2, ml2)(ei)}

7. (m′
g2, m′

f2) = semf (mg2, mf2)

8. m′′
2 = (m′

g2, ml2)[ei 7→ m′
f2(xi) | isOut(di)]

296

Let m1 = (mg1, ml1), m2 = (mg2, ml2), let γ1 = (γg1, γl1), and γ1 = (γg2, γl2). We
initially know that : γ1 ⊢ m1, γ2 ⊢ m2, and m1 ∼

γ1⊔γ2
m2.

We need to prove there are two state types γ′′
1 ∈ Γ′′

1 and γ′′
2 ∈ Γ′′

2 such they type the
final states γ′′

1 ⊢ m′′
1 and γ′′

2 ⊢ m′′
2 and indeed m′′

1 ∼
γ′′

1 ⊔γ′′
2

m′′
2 holds.

First we need to prove that the resulted copy-in map is also well-typed i.e. γf1 ⊢ mf1
and γf2 ⊢ mf2: same proof as the function call case.

Now we want to show that (mg1, mf1) ∼
(γg1,γf1)⊔(γg2,γf2)

(mg2, mf2): same proof as

the function call case.

We know from extWT C X1 and extWT C X2 relation in the well-typedness
(X1, F) ⊢ (C, F) and (X2, F) ⊢ (C, F) that indeed there exists an input state type,
condition and output state type i.e. (γi, ϕ, γt) in the contract of the extern such
that the condition satisfies the input state ϕ(mg1, mf1).

From Soundness of Abstraction proof, we know that (γg1, γf1) ⊢ (mg1, mf1).
Using 4 of extern’s typing rule we know that (γg1, γf1) is no more restrictive than
γi, i.e. (γg1, γf1) ⊑ γi holds. Using the same strategy and 9 of extern’s typing rule,
we can also prove (γg2, γf2) ⊑ γi. We can also deduct that (mg1, mf1)∼

γi

(mg2, mf2)
using Lemma E.9.

Let the variables {x1, ..., xn} be the ones used in the condition ϕ. Using the definition
of extern’s well-typedness again, we know that the least upper bound of typing label
of {x1, ..., xn} in γi is no more restrictive that the lower bound of the output state
type γt. The entails that since ϕ holds on m1 (i.e. ϕ(m1))then it indeed holds for
m2 (i.e. ϕ(m2)).

Now we split the proof into two cases:

A. For the changed variables by extern in the state: given 3 and 7 of the extern
reduction rule, and using ϕ(m1) we can use the definition of extern’s well-typedness
again to infer that the variables that are changed by the semantics are a subset of
the domain of γt and low equivalent with respect to γt:

((m′
g1, m′

f1) \ (mg1, mf1))∼
γt

((m′
g2, m′

f2) \ (mg2, mf2))

B. Now for the unchanged variables by extern in the state: it is easy to see that the
refined state refine((γg1, γf1), ϕ) is more restrictive than (γg1, γf1), thus we can say
(γg1, γf1) ⊑ refine((γg1, γf1), ϕ). Now we can use Lemma E.9 to show:

(mg1, mf1) ∼
refine((γg1,γf1),ϕ)⊔refine((γg1,γf1),ϕ)

(mg2, mf2)

This property also holds on the variable names x that are unchanged by the behavior

297

of the extern, i.e. :

(m′
g1, m′

f1) ∼
refine((γg1,γf1),ϕ)⊔refine((γg1,γf1),ϕ)

(m′
g2, m′

f2)

We can rename refine((γg1, γf1), ϕ)++γt to γ3 and refine((γg2, γf2), ϕ)++γt to γ4,
and we can easily infer from A and B that : (m′

g1, m′
f1) ∼

γ3⊔γ4
(m′

g2, m′
f2).

The rest of the proof is the same as the function call case.

⋄ Case table application: Here stmt is apply tbl. From table rule we know:

1. (e, Conttbl) = (C, F)(tbl)

2. γ1 ⊢ ei : τi1

3. ℓ1 =
⊔

i lbl(τi1)

4. pc′
1 = pc ⊔ ℓ1

5. ∀(ϕj , (aj , τ j)) ∈ Conttbl. (γgj
, γlj

) = refine(γ1, ϕj) ∧
(sj , (xj1 , none), ..., (xjn , none)) = (C, F)(aj) ∧
γaj = {xji 7→ τji} ∧ (C, F), pc′

1, (γgj , γaj) ⊢ sj : Γj

6. Γ′
1 = ∪j{(γ′

gj
, γlj

)|(γ′
gj

, γ′
aj

) ∈ Γj}

7. Γ′′
1 =

{
join(Γ′

1) if ℓ1 = H
Γ′

1 otherwise

8. γ2 ⊢ ei : τi2

9. ℓ2 =
⊔

i lbl(τi2)

10. pc′
2 = pc ⊔ ℓ2

11. ∀(ϕk, (ak, τk)) ∈ Conttbl. (γgk
, γlk

) = refine(γ2, ϕk) ∧
(sk, (xk1 , none), ..., (xkn

, none)) = (C, F)(ak) ∧
γak

= {xki
7→ τki

} ∧ (C, F), pc′
2, (γgk

, γak
) ⊢ sk : Γk

12. Γ′
2 = ∪k{(γ′

gk
, γlk

)|(γ′
gk

, γ′
ak

) ∈ Γk}

13. Γ′′
2 =

{
join(Γ′

2) if ℓ2 = H
Γ′

2 otherwise

And from table reduction rule we know:

1. (e, semtbl1) = (X1, F)(tbl)

298

2. semtbl1((mg1, ml1)(e1), ..., (mg1, ml1)(en)) = (a1, v)

3. (s1, (x1, none), ..., (xn, none)) = (X1, F)(a1)

4. ma1 = {xi 7→ vi}

5. (X1, F) : (mg1, ma1) s1−→ (m′
g1, m′

a1)

6. mfinal1 = (m′
g1, ml1)

7. (e′, semtbl2) = (X2, F)(tbl)

8. semtbl2((mg2, ml2)(e′
1), ..., (mg2, ml2)(e′

n)) = (a2, v′)

9. (s2, (x′
2, none), ..., (x′

n, none)) = (X2, F)(a2)

10. ma2 = {x′
i 7→ v′

i}

11. (X2, F) : (mg2, ma2) s2−→ (m′
g2, m′

a2)

12. mfinal2 = (m′
g2, ml2)

In addition to that, we get induction hypothesis for s1 IH1 (similarly for s2 IH2):

∀ T pc ma mb m′
a m′

b γa γb Γa Γb Ea Eb.

T, pc, γa ⊢ s : Γa ∧ T, pc, γb ⊢ s : Γb =⇒
T ⊢ Ea ∧ T ⊢ Eb ∧ Ea∼

T
Eb ∧

γa ⊢ ma ∧ γb ⊢ mb ∧ ma ∼
γa⊔γb

mb ∧

Ea : ma
s1−→ m′

a ∧ Eb : mb
s1−→ m′

b

=⇒(
∃γ′

a ∈ Γa ∧ γ′
b ∈ Γb. γ′

a ⊢ m′
a ∧ γ′

b ⊢ m′
b ∧ m′

a ∼
γ′

a⊔γ′
b

m′
b

)
Let m1 = (mg1, ml1), m2 = (mg2, ml2), let γ1 = (γg1, γl1), and γ2 = (γg2, γl2). We
initially know that : γ1 ⊢ m1, γ2 ⊢ m2, and m1 ∼

γ1⊔γ2
m2.

The final goal is to prove there are two state types γ′′
1 ∈ Γ′′

1 and γ′′
2 ∈ Γ′′

2
such they type the final states γ′′

1 ⊢ (m′
g1, ml1) and γ′′

2 ⊢ (m′
g2, ml2) and indeed

(m′
g1, ml1) ∼

γ′′
1 ⊔γ′′

2

(m′
g2, ml2) holds.

Initially, we prove expression (table keys) found in 1 in reduction rule, with 1 and
7 of typing rule are the same. We use (X1, F) ∼

(C,F)
(X2, F) to show that 1 and 7

in the typing rule have the same expression (i.e. e = e′). Then, using tblWT C X1
and tblWT C X2, we confirm that the expression in rule 1 of the reduction rule

299

matches those in rules 1 and 7 of the typing rule. Therefore, all relevant expressions
are equivalent.

First, we conduct a case analysis on ℓ1 and ℓ2 being equivalent:

case ℓ1 = ℓ2 = L: Given that ℓ1 and ℓ2 are L in 3 and 9 of the typing rule,
respectively, we can conclude that the evaluation of the key expressions e in
states m1 and m2 are identical. This follows directly from Lemma E.8, which
establishes that m1(ei) = m2(ei) for all ei.
By the definition of (X1, F) ∼

(C,F)
(X2, F), we know that for any memory states

m1 and m2, if m1(ei) = m2(ei) for all table’s keys ei, then m1(ϕ)⇔ m2(ϕ).
This implies that the condition for both tables to match is identical. Applying
this definition again, we deduct that the actions a1 and a2 in 2 and 8 of the
reduction rule are identical i.e. a1 = a2 = a, therefore their corresponding
action bodies and signatures must also be the same in (X1, F) and (X2, F),
thus s1 = s2 = s and x = x′. Applying this definition (X1, F) ∼

(C,F)
(X2, F), yet

again, we can also deduct that the action’s values v and v′ are low equivalent
wrt. τ i.e. v∼

τ
v′.

Now we can rewrite the table reduction rule to:

a) (e, semtbl1) = (X1, F)(tbl)
b) semtbl1((mg1, ml1)(e1), ..., (mg1, ml1)(en)) = (a, v)
c) (s, (x1, none), ..., (xn, none)) = (X1, F)(a)
d) ma1 = {xi 7→ vi}

e) (X1, F) : (mg1, ma1) s−→ (m′
g1, m′

a1)
f) mfinal1 = (m′

g1, ml1)
g) (e, semtbl2) = (X2, F)(tbl)
h) semtbl2((mg2, ml2)(e1), ..., (mg2, ml2)(en)) = (a, v′)
i) (s, (x2, none), ..., (xn, none)) = (X2, F)(a)
j) ma2 = {xi 7→ v′

i}

k) (X2, F) : (mg2, ma2) s−→ (m′
g2, m′

a2)
l) mfinal2 = (m′

g2, ml2)

Given (C, F) ⊢ (X1, F) that indeed exists condition ϕj in Conttbl that satisfies
the table input state (mg1, ml1), and also exists a list of types τ such that it
can type that values of the table’s semantics (in 2 of the typing rule) i.e. vi : τi.
Similarly, from (C, F) ⊢ (X2, F), we know that exists ϕk that satisfies the
table input state (mg2, ml2), and exists τ ′ such that v′

i : τ ′
i .

300

We can instantiate 5 from the table rule with (ϕj , (a, τ)), and instantiate 11
with (ϕk, (a, τ ′)).
We need to prove (mg1, ma1) ∼

(γgj
,γaj

)⊔(γgk
,γak

)
(mg2, ma2) using the following

sub-goals:

Goal 1. prove mg1 ∼
γgj

⊔γgk

mg2 and ml1 ∼
γlj

⊔γlk

ml2:

It is easy to see that γ1 ⊑ refine(γ1, ϕj) and γ2 ⊑ refine(γ2, ϕk) trivially
hold, and can be rewritten to γ1 ⊑ (γgj

, γlj
) and γ2 ⊑ (γgk

, γlk
). Since

initially we know that (mg1, ml1) ∼
γ1⊔γ2

(mg2, ml2), therefore using Lemma
E.9 (mg1, ml1) ∼

(γgj
,γlj

)⊔(γgk
,γlk

)
(mg2, ml2). This entails using Lemma

E.15 that mg1 ∼
γgj

⊔γgk

mg2 and also ml1 ∼
γlj

⊔γlk

ml2 hold.

Additionally, note that Hyp E.3 states also that (γgj
, γlj

) can still type
the state (mg1, ml1), i.e. (γgj

, γlj
) ⊢ (mg1, ml1). Similarly, (γgk

, γlk
) ⊢

(mg2, ml2).
Goal 2. prove ma1 ∼

γaj
⊔γak

ma2: From (X1, F) ∼
(C,F)

(X2, F) we know it holds

v∼
τ

v′, note that these are the table’s semantic output (i.e. will be action’s
arguments). Thus, whenever τi is L, then the values of arguments are
equivalent vi = v′

i. This entails that constructing states ma1 = {xi 7→ vi}
and ma2 = {xi 7→ v′

i} must be low equivalent with respect to γaj
= {xi 7→

τi}, i.e. ma1 ∼
γaj

ma2. Similarly, from (X1, F) ∼
(C,F)

(X2, F) and whenever

τ ′
i is L, we can also deduct that γak

= {xi 7→ τ ′
i}, i.e. ma1 ∼

γak

ma2.

Therefore, this entails (using Lemma E.15) that ma1 ∼
γaj

⊔γak

ma2.

From the last two sub-goals, we can use Lemma E.15 to deduct

(mg1, ma1) ∼
(γgj

,γaj
)⊔(γgk

,γak
)
(mg2, ma2)

Now we can use IH and instantiate it with
(
(C, F), pc ⊔ ℓ, (mg1, ma1), (mg2,

ma2), (m′
g1, m′

a1), (m′
g2, m′

a2), (γgj
, γaj

), (γgk
, γak

), Γj , Γk, (X1, F), (X2, F)
)

to
deduct that indeed exist γ1 ∈ Γj and γ2 ∈ Γk such that γ1 ⊢ (m′

g1, m′
a1) and

γ2 ⊢ (m′
g2, m′

a2) and indeed (m′
g1, m′

a1) ∼
γ1⊔γ2

(m′
g2, m′

a2). In the following, let

γ1 = (γ1g
, γ1l

) and γ2 = (γ2g
, γ2l

). We can rewrite the IH results as following:
exist (γ1g , γ1l

) ∈ Γj and (γ2g , γ2l
) ∈ Γk such that (γ1g , γ1l

) ⊢ (m′
g1, m′

a1) and
(γ2g , γ2l

) ⊢ (m′
g2, m′

a2) and indeed (m′
g1, m′

a1) ∼
(γ1g ,γ1l

)⊔(γ2g ,γ2l
)
(m′

g2, m′
a2).

Clearly, from 6 in the typing rule, and we know that Γ′
1 is the union of all the

changed global state types by the action’s body, with the refined starting local

301

state type (γgj
, γlj

) = refine(γ1, ϕj). Thus, we know that indeed (γ1g
, γlj

) ∈ Γ′
1.

Similarly, from 12 in the typing rule, we know that (γ2g , γlk
) ∈ Γ′

2.
We choose (γ1g , γlj) and (γ2g , γlk

) to finish the proof of the goal in this subcase.
Since ℓ1 = ℓ2 and is L in this sub-case, then trivially Γ′′

1 = Γ′
1 in 7 of the typing

rule, and Γ′′
2 = Γ′

2 in 13 of the typing rule. Since we proved that γlj
⊢ ml1 and

γlk
⊢ ml2, therefore (γ1g

, γlj
) ⊢ (m′

g1, ml1) and (γ2g
, γlk

) ⊢ (m′
g2, ml2) hold.

Additionally, using Lemma E.15 (m′
g1, ml1) ∼

(γ1g ,γlj
)⊔(γ2g ,γlk

)
(m′

g2, ml2).

case ℓ1 ̸= ℓ2: This proof is similar to the conditional case. We initiate the proof by
fixing ℓ2 to be H while ℓ1 can be either H or L, thus the evaluation of e in
the states (mg1, ml1) and (mg2, ml2) differs. Consequently, we (possibly) end
up with two different actions and their corresponding arguments (a1, v) and
(a2, v′).
From (C, F) ⊢ (X1, F) we know that indeed exists condition ϕj in Conttbl
that satisfies the table input state (mg1, ml1), and also exists a list of types τ
such that it can type that values of the table’s semantics (in 2 of the typing
rule) i.e. vi : τi. Similarly, from (C, F) ⊢ (X2, F), we know that exists ϕk that
satisfies the table input state (mg2, ml2), and exists τ ′ such that v′

i : τ ′
i .

We can instantiate 5 (we refer to these as the first configuration) from the
table rule with (ϕj , (a1, τ)), and instantiate 11 (we refer to these as the second
configuration) with (ϕk, (a2, τ ′)). Since the actions are different, then we let
s1 be the body of action a1, and s2 be the body of action a2 (we refer to these
as the first configuration).
Using the same steps in the previous sub-case, we know that mg1 ∼

γgj
⊔γgk

mg2

and ml1 ∼
γlj

⊔γlk

ml2.

The final goal is to prove there are two state types γ′′
1 ∈ Γ′′

1 and γ′′
2 ∈ Γ′′

2 such
they type the final states γ′′

1 ⊢ (m′
g1, ml1) and γ′′

2 ⊢ (m′
g2, ml2) and indeed

(m′
g1, ml1) ∼

γ′′
1 ⊔γ′′

2

(m′
g2, ml2) holds.

From the Soundness of Abstraction, we know that for the second con-
figuration indeed exists γ′

2 ∈ Γk such that it types the action’s resulted state
(m′

g2, m′
a2) (i.e. γ′

2 ⊢ (m′
g2, m′

a2)). In the following, let (γ′
g2, γ′

l2) = γ′
2, thus

indeed (γ′
g2, γ′

l2) ⊢ (m′
g2, m′

a2). Given that Γ′
2 in 12 of the typing rule is a union

of all Γi; thus indeed it includes Γk that has the resulted global state type γ′
g2,

and the refined caller’s local state type γlk
while removing the callee’s resulted

local state type γak
. In short, we know that indeed for the second configura-

tion will find (γ′
g2, γlk

) ∈ Γ′
2. Note that in the Soundness of Abstraction

previously we proved that γlk
⊢ ml2, therefore (γ′

g2, γlk
) ⊢ (m′

g2, ml2). Since
ℓ2 is H , then Γ′′

2 = join(Γ′
2), so we can deduce (by Lemma E.7) the existence

of γ′
2 ∈ join(Γ′

2) such that it is more restrictive than γ′
2, denoted as γ′

2 ⊑ γ′
2.

302

Using the same lemma, we conclude that γ′
2 ⊢ (m′

g2, ml2). Now on, we choose
γ′

2 to be used in the proof and resolve the second conjunction of the goal.
From the Soundness of Abstraction, we know that for the first configura-
tion indeed exists γ′

1 ∈ Γj such that it types action’s resulted state (m′
g1, ma1)

(i.e. γ′
1 ⊢ (m′

g1, ma1)). In the first configuration, the final state type set Γ′′
1 can

be either a union (if ℓ1 = L) or a join (if ℓ1 = H) of all final state type sets
and including Γ′

1. In either case (union or join), we can establish the existence
of γ′

1 ∈ Γ′′
1 such that γ′

1 ⊑ γ′
1 and indeed γ′

1 ⊢ (m′
g1, ml1). Note that if Γ′′

1
resulted from a join, we follow the same steps of the (second configuration)
in the previous step; otherwise, if it resulted from a union, it is trivially true.
Thus, the first conjunction of the final goal is proved.
The final goal left to prove is (m′

g1, ml1) ∼
γ′

1⊔γ′
2

(m′
g2, ml2) holds. In the following,

let (γ′
g1, γ′

l1) = γ′
1 and (γ′

g2, γ′
l2) = γ′

2.
Next, we proceed to implement cases based on whether an lval’s type label is
H or L.

case (γ′
1 ⊔ γ′

2(lval) = τ) ∧ lbl(τ) = H : holds trivially.
case (γ′

1 ⊔ γ′
2(lval) = τ) ∧ lbl(τ) = L: this case entails that each state

type individually holds γ′
1(lval) = τ ′

1 ∧ lbl(τ ′
1) = L and also γ′

2(lval) =
τ ′′

2 ∧ lbl(τ ′′
2) = L.

Given that the lval’s type is L in γ′
2, and considering γ′

2 ∈ join(Γ′
2), it

follows that the lval is also L in any state type within (Γ′
2). Consequently,

the lval is L in Γk, thus L in (γ′
g2, γlk

).
In the second configuration, we type the action’s body s2 with a H
context, where s2 reduces to (m′

g2, m′
a2). And since we previously showed

that lval is L in (γ′
g2, γlk

) such that (γ′
g2, γlk

) ⊢ (m′
g2, ml2), then lval is

in m′
g2 or ml2, however not in m′

a2.
Since lval’s type is L in γ′

g2, we can use Lemma E.10 to infer that the
global initial and final states remain unchanged for L lvalues, which
means mg2(lval) = m′

g2(lval). Then we can use Lemma E.12 to infer that
refine(γ2, ϕk) ⊑ (γ′

g2, γ′
l2), this entails that the lval’s type label is indeed L

in the global of refined state γgk
. It is easy to see that γ2 ⊑ refine(γ2, ϕk),

thus (γg2, γl2) ⊑ (γgk
, γlk

), therefore lval’s type is also L in the global
initial state type γg2, i.e. γg2(lval) = τ ′

2 ∧ lbl(τ ′
2) = L.

For the first configuration, in this sub-case, we have γ′
1(lval) = τ ′

1 ∧
lbl(τ ′

1) = L, and γ′
1 ∈ Γ′′

1 . We previously showed γ′
1 ⊑ γ′

1. Since lval’s
typing label is L in γ′

1 and we know that the state types in γ′
1 are more

restrictive than the state types in γ′
1, we can conclude that γ′

1 ∈ Γj also
types lval as L.
Now, we will prove that m′

g1 ∼
γ′

g1⊔γ′
g2

m′
g2 by conducting cases on ℓ1:

303

case If ℓ1 is H :
We can replicate the same exact steps done for the second configura-
tion to deduct mg1(lval) = m′

g1(lval) and (γg1, γl1) ⊑ (γgj , γlj) and
the lval’s type is L in the global initial state type γg1, i.e. γg1(lval) =
τ ′

2 ∧ lbl(τ ′
2) = L.

case If ℓ1 is L:
Previously, we demonstrated that the lval’s typing label is L in
all final state types in all Γi in Γ2. Consequently, none of the
actions’ bodies can modify lval, this is true because all actions in the
first and second semantics and the contracts are identical, therefore
mg1(lval) = m′

g1(lval). Thus, we know that indeed s1 is typed
under a high pc in the second configuration, we conclude that the
lval remains unchanged there as well. Consequently, we can now
apply Lemma E.13 to deduce that the lval’s typing label in the first
configuration γ′

1 ∈ Γj are more restrictive than the one we find in
the refined state refine(γ1, ϕj), and because (γgj

, γlj
) = refine(γ1, ϕj)

then (γgj
, γlj

)(lval) = τ ′
1 ∧ lbl(τ ′

1) = L. Therefore, lval’s type is also
L in the global initial state type γg2, i.e. γg2(lval) = τ ′

2 ∧ lbl(τ ′
2) = L

Then, we need to prove ml1 ∼
γ′

l1⊔γ′
l2

ml2. First, we prove that γ′
l1 = γlj

directly from the definition of join as join(γlj
, γlj

) = γlj
and we know

join(γlj
, γlj

) = γ′
l1 thus γ′

l1 = γlj
holds. Similarly, we know that γ′

l2 = γlk

holds. Since lval is L in γ′
l2 then it is also L in γlk

. And since lval is L
in γ′

l2, then it is also L in γlj
. From the previous subgoal, we proved

ml1 ∼
γlj

⊔γlk

ml2. This is property hold.

Finally, since we proved m′
g1 ∼

γ′
g1⊔γ′

g2

m′
g2 and ml1 ∼

γ′
l1⊔γ′

l2

ml2 now we can

use Lemma E.15 to deduct that (m′
g1, ml1) ∼

γ′
1⊔γ′

2

(m′
g2, ml2) holds.

⋄ Case transition: similar to the conditional statement proof.

304

T-EmptyType

T,L, • ⊢ s : Γ

T-Assign
γ ⊢ e : τ

τ ′ = raise(τ, pc)
γ′ = γ[lval 7→ τ ′]

T, pc, γ ⊢ lval := e : {γ′}

T-Call
γ ⊢ e⃗ : τ⃗

tCall(T, f, pc, τ⃗ , γ,Γ)
T, pc, γ ⊢ f(e⃗) : Γ

T-Seq
T, pc, γ ⊢ s1 : Γ1

∀γ1 ∈ Γ1. T, pc, γ1 ⊢ s2 : Γγ1
2

Γ′ =
⋃

γ1∈Γ1

Γγ1
2

T, pc, γ ⊢ s1; s2 : Γ′

T-Cond
γ ⊢ e : τ

ℓ = lbl(τ) pc′ = pc ⊔ ℓ
T, pc′, (refine(γ, e)) ⊢ s1 : Γ1

T, pc′, (refine(γ,¬e)) ⊢ s2 : Γ2

Γ′ = Γ1 ∪ Γ2 Γ′′ = joinOnHigh(Γ′, ℓ)
T, pc, γ ⊢ if e then s1 else s2 : Γ′′

T-Table
(e,Conttbl) = T (tbl) γ ⊢ ei : τi

ℓ =
⊔

i

lbl(τi) pc′ = pc ⊔ ℓ

∀(ϕj , (aj , τ j)) ∈ Conttbl. γj = refine(γ, ϕj)
tCall(T, aj , pc

′, τ j , (γg, γl),Γj)
T, pc, γ ⊢ apply tbl : joinOnHigh(∪jΓj , ℓ)

T-Trans
γ ⊢ e : τ ℓ = lbl(τ) pc′ = pc ⊔ ℓ

γ′
i = refine(γ, e = vi ∧

∧
j<i

e ̸= vj) T, pc′, γ′
i ⊢ T (sti) : Γi

γ′
d = refine(γ,

∧
i

e ̸= vi) T, pc′, γ′
d ⊢ T (st) : Γd

Γ′ = Γd ∪ (
⋃

i

Γi) Γ′′ = joinOnHigh(Γ′, ℓ)

T, pc, γ ⊢ transition select e {v1 : st1, ..., vn : stn} st : Γ′′

T-Extern
(γg, γl) ⊢ ei : τi

(ContE, (x1, d1), ..., (xn, dn)) = T (f)
γf = {xi 7→ τi}

∀(γi, ϕ, γt) ∈ ContE. (γg, γf) ⊑ γi

Γ′ = {γ′++raise(γt, pc) | (γi, ϕ, γt) ∈ ContE ∧
refine((γg, γf), ϕ) = γ′ ̸= •}

Γ′′ = {(γ′
g, γl)[ei 7→ γ′

f (xi) | isOut(di)] | (γ′
g, γ

′
f) ∈ Γ′}

T, pc, (γg, γl) ⊢ f(e1, ..., en) : Γ′′

Figure E.8: Typing rules of statements

305

306

Bibliography

[1] D Elliot Bell, Leonard J LaPadula, et al. Secure computer systems: Mathe-
matical foundations. Tech. rep. Citeseer, 1973.

[2] Butler W Lampson. “A note on the confinement problem”. In: Communica-
tions of the ACM 16.10 (1973), pp. 613–615.

[3] Jerold Whitmore, Andre Bensoussan, and Paul Green. “Design for Multics
security enhancements”. In: National Institute of Standards and Technology
(US). ESD-TR-74-176. National Institute of Standards and Technology (US).
1973.

[4] Dorothy E Denning. “A lattice model of secure information flow”. In: Com-
munications of the ACM 19.5 (1976), pp. 236–243.

[5] James C King. “Symbolic execution and program testing”. In: Communica-
tions of the ACM 19.7 (1976), pp. 385–394.

[6] Kenneth J Biba et al. “Integrity considerations for secure computer systems”.
In: (1977).

[7] Leslie Lamport. “Proving the correctness of multiprocess programs”. In:
IEEE transactions on software engineering 2 (1977), pp. 125–143.

[8] Joseph A. Goguen and José Meseguer. “Security Policies and Security Models”.
In: S&P. 1982, pp. 11–20.

[9] Danny Dolev and Andrew Yao. “On the security of public key protocols”. In:
IEEE Transactions on information theory 29.2 (1983), pp. 198–208.

[10] United States. Department of Defense. Department of Defense Trusted Com-
puter System Evaluation Criteria. Vol. 83. 1. Department of Defense, 1987.

[11] Norm Hardy. “The Confused Deputy: (or why capabilities might have been
invented)”. In: ACM SIGOPS Operating Systems Review 22.4 (1988), pp. 36–
38.

[12] David FC Brewer and Michael J Nash. “The Chinese Wall Security Policy.”
In: IEEE Symposium on Security and Privacy (S&P). IEEE. 1989, pp. 206–
214.

307

[13] Jaisook Landauer and Timothy Redmond. “A lattice of information”. In:
Proceedings Computer Security Foundations Workshop. IEEE. 1993, pp. 65–
70.

[14] Ravi S Sandhu and Pierangela Samarati. “Access control: principle and
practice”. In: IEEE communications magazine 32.9 (1994), pp. 40–48.

[15] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases.
Addison-Wesley, 1995.

[16] Ronald Fagin et al. Reasoning about knowledge. Cambridge, Mass.: MIT
Press, 1995.

[17] William Murphy and Willy Hereman. “Determination of a position in three
dimensions using trilateration and approximate distances”. In: Department
of Mathematical and Computer Sciences, Colorado School of Mines, Golden,
Colorado, MCS-95 7 (1995), p. 19.

[18] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. “A sound type system
for secure flow analysis”. In: Journal of computer security 4.2-3 (1996),
pp. 167–187.

[19] Andrew C. Myers. “JFlow: Practical Mostly-Static Information Flow Control”.
In: POPL. San Antonio, Texas, USA, 1999, pp. 228–241.

[20] Andrew C Myers and Barbara Liskov. “Protecting privacy using the decen-
tralized label model”. In: ACM Transactions on Software Engineering and
Methodology (TOSEM) 9.4 (2000), pp. 410–442.

[21] I. Kaplansky. Set Theory and Metric Spaces. AMS Chelsea Publishing, 2001.
[22] Heiko Mantel. “Information Flow Control and Applications - Bridging a

Gap”. In: FME. Springer. 2001, pp. 153–172.
[23] Steve Zdancewic and Andrew C Myers. “Robust Declassification.” In: csfw.

Vol. 1. 2001, pp. 15–23.
[24] Steve Zdancewic et al. “Untrusted Hosts and Confidentiality: Secure Program

Partitioning”. In: SOSP’01. 2001, pp. 1–14.
[25] Brian A Davey and Hilary A Priestley. Introduction to lattices and order.

Cambridge University Press, 2002.
[26] Latanya Sweeney. “k-anonymity: A model for protecting privacy”. In: In-

ternational Journal of Uncertainty, Fuzziness and Knowledge-based Systems
10.05 (2002), pp. 557–570.

[27] Steve Zdancewic et al. “Secure Program Partitioning”. In: ACM Trans.
Comput. Syst. (Aug. 2002), pp. 283–328.

[28] Andrei Sabelfeld and Andrew C Myers. “Language-based information-flow
security”. In: IEEE Journal on Selected Areas in Communications 21.1 (2003),
pp. 5–19.

308

[29] Andrei Sabelfeld and Andrew C. Myers. “A Model for Delimited Information
Release”. In: ISSS. Vol. 3233. Springer, 2003, pp. 174–191.

[30] Willem Visser et al. “Model checking programs”. In: Autom. Softw. Eng. 10.2
(2003), pp. 203–232.

[31] Lantian Zheng et al. “Using Replication and Partitioning to Build Secure
Distributed Systems”. In: S&P’03. 2003, p. 236.

[32] Torben Amtoft and Anindya Banerjee. “Information flow analysis in logical
form”. In: International Static Analysis Symposium. Springer. 2004, pp. 100–
115.

[33] Roberto Giacobazzi and Isabella Mastroeni. “Abstract non-interference: Pa-
rameterizing non-interference by abstract interpretation”. In: ACM SIGPLAN
Notices 39.1 (2004), pp. 186–197.

[34] Andrew C Myers, Andrei Sabelfeld, and Steve Zdancewic. “Enforcing robust
declassification”. In: CSF Workshop. IEEE. 2004, pp. 172–186.

[35] Corina S Păsăreanu and Willem Visser. “Verification of Java programs
using symbolic execution and invariant generation”. In: International SPIN
Workshop on Model Checking of Software. Springer. 2004, pp. 164–181.

[36] N. Vachharajani et al. “RIFLE: An Architectural Framework for User-Centric
Information-Flow Security”. In: 37th International Symposium on Microar-
chitecture (MICRO-37’04). 2004, pp. 243–254.

[37] Steve Zdancewic. “Challenges for information-flow security”. In: Proceedings
of the 1st International Workshop on the Programming Language Interference
and Dependence (PLID’04). Vol. 6. 2004.

[38] Elisa Bertino and Ravi Sandhu. “Database security-concepts, approaches,
and challenges”. In: IEEE Transactions on Dependable and Secure Computing
2.1 (2005), pp. 2–19.

[39] Ádám Darvas, Reiner Hähnle, and David Sands. “A theorem proving approach
to analysis of secure information flow”. In: Security in Pervasive Computing:
Second International Conference, SPC 2005, Boppard, Germany, April 6-8,
2005. Proceedings 2. Springer. 2005, pp. 193–209.

[40] Michael Hicks et al. “Dynamic updating of information-flow policies”. In:
Proc. of Foundations of Computer Security Workshop. Vol. 20. 2005.

[41] Peng Li and Steve Zdancewic. “Practical information flow control in web-
based information systems”. In: 18th IEEE Computer Security Foundations
Workshop (CSFW’05). IEEE. 2005, pp. 2–15.

[42] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. “A logic for
information flow in object-oriented programs”. In: ACM SIGPLAN Notices
41.1 (2006), pp. 91–102.

309

[43] Niklas Broberg and David Sands. “Flow locks: Towards a core calculus for
dynamic flow policies”. In: European Symposium on Programming. Springer.
2006, pp. 180–196.

[44] Ezra Cooper et al. “Links: Web Programming without Tiers”. In: FMCO ’06.
Springer-Verlag, 2006, pp. 266–296.

[45] Cynthia Dwork. “Differential privacy”. In: Automata, Languages and Pro-
gramming: 33rd International Colloquium. Springer. 2006, pp. 1–12.

[46] Sebastian Hunt and David Sands. “On flow-sensitive security types”. In:
vol. 41. 1. ACM New York, NY, USA, 2006, pp. 79–90.

[47] Gurvan Le Guernic et al. “Automata-based confidentiality monitoring”. In:
Annual Asian Computing Science Conference. Springer. 2006, pp. 75–89.

[48] Manuel Serrano, Erick Gallesio, and Florian Loitsch. “Hop, A Language for
Programming the Web 2.0”. In: OOPSLA Companion ’06. ACM, 2006.

[49] Nikhil Swamy et al. “Managing policy updates in security-typed languages”.
In: CSF Workshop. IEEE. 2006, 13–pp.

[50] Sebastian Zander, Grenville Armitage, and Philip Branch. “Covert channels
in the IP time to live field”. In: Australian Telecommunication Networks and
Application Conference (ATNAC) 2006. 2006.

[51] A. Askarov and A. Sabelfeld. “Gradual Release: Unifying Declassification,
Encryption and Key Release Policies”. In: S&P. 2007.

[52] Stephen Chong, Krishnaprasad Vikram, Andrew C Myers, et al. “SIF: En-
forcing Confidentiality and Integrity in Web Applications”. In: 16th USENIX
Security Symposium (USENIX Security). USENIX Association, 2007, pp. 1–
16.

[53] Stephen Chong et al. “Secure Web Applications via Automatic Partitioning”.
In: SOSP’07. 2007, pp. 31–44.

[54] Nicoletta De Francesco and Luca Martini. “Instruction-level security analysis
for information flow in stack-based assembly languages”. In: Information and
Computation 205.9 (2007), pp. 1334–1370.

[55] Aslan Askarov et al. “Termination-insensitive noninterference leaks more
than just a bit”. In: ESORICS. Springer. 2008, pp. 333–348.

[56] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. “Expressive
Declassification Policies and Modular Static Enforcement”. In: S&P. 2008,
pp. 339–353.

[57] David Clark and Sebastian Hunt. “Non-interference for deterministic interac-
tive programs”. In: FAST. Springer. 2008, pp. 50–66.

[58] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”. In:
International conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Springer. 2008, pp. 337–340.

310

[59] Nikhil Swamy, Brian J Corcoran, and Michael Hicks. “Fable: A language for
enforcing user-defined security policies”. In: IEEE Symposium on Security
and Privacy (S&P). IEEE. 2008, pp. 369–383.

[60] ARM. Building a Secure System using TrustZone® Technology. 2009.
[61] Aslan Askarov and Andrei Sabelfeld. “Tight enforcement of information-

release policies for dynamic languages”. In: CSF. IEEE. 2009, pp. 43–59.
[62] Thomas H Austin and Cormac Flanagan. “Efficient purely-dynamic informa-

tion flow analysis”. In: Proceedings of the ACM SIGPLAN Fourth Workshop
on Programming Languages and Analysis for Security. 2009, pp. 113–124.

[63] Musard Balliu and Isabella Mastroeni. “A weakest precondition approach to
active attacks analysis”. In: PLAS. 2009, pp. 59–71.

[64] Niklas Broberg and David Sands. “Flow-sensitive semantics for dynamic infor-
mation flow policies”. In: Proceedings of the ACM SIGPLAN Fourth Workshop
on Programming Languages and Analysis for Security. 2009, pp. 101–112.

[65] Brian J Corcoran, Nikhil Swamy, and Michael Hicks. “Cross-tier, label-based
security enforcement for web applications”. In: ACM SIGMOD International
Conference on Management of data. ACM, 2009, pp. 269–282.

[66] Brian J. Corcoran, Nikhil Swamy, and Michael W. Hicks. “Cross-tier, label-
based security enforcement for web applications.” In: SIGMOD. 2009.

[67] Cédric Fournet, Gurvan Le Guernic, and Tamara Rezk. “A Security-Preserving
Compiler for Distributed Programs: From Information-Flow Policies to Cryp-
tographic Mechanisms”. In: CCS’09. 2009, pp. 432–441.

[68] Ana Almeida Matos and Gérard Boudol. “On declassification and the non-
disclosure policy”. In: J. Comput. Secur. 17.5 (2009), pp. 549–597.

[69] A. Sabelfeld and D. Sands. “Declassification: Dimensions and principles”. In:
JCS (2009).

[70] Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. “Predictive black-box
mitigation of timing channels”. In: ACM CCS. 2010.

[71] Musard Balliu and Isabella Mastroeni. “A Weakest Precondition Approach
to Robustness”. In: Trans. Comput. Sci. 10 (2010), pp. 261–297.

[72] Niklas Broberg and David Sands. “Paralocks: role-based information flow
control and beyond”. In: POPL. 2010, pp. 431–444.

[73] Adam Chlipala. “Static Checking of Dynamically-Varying Security Policies in
Database-Backed Applications”. In: 9th USENIX Symposium on Operating
Systems Design and Implementation. USENIX Association, 2010, pp. 105–
118.

[74] Michael R Clarkson and Fred B Schneider. “Hyperproperties”. In: Journal
of Computer Security 18.6 (2010), pp. 1157–1210.

311

[75] Dominique Devriese and Frank Piessens. “Noninterference through secure
multi-execution”. In: 2010 IEEE Symposium on Security and Privacy. IEEE.
2010, pp. 109–124.

[76] Alan Nash, Luc Segoufin, and Victor Vianu. “Views and queries: Determinacy
and rewriting”. In: ACM Transactions on Database Systems (TODS) 35.3
(2010), pp. 1–41.

[77] O. Purdila, L. A. Grijincu, and N. Tapus. “LKL: The Linux Kernel Library”.
In: 9th RoEduNet IEEE International Conference. 2010, pp. 328–333.

[78] Alejandro Russo and Andrei Sabelfeld. “Dynamic vs. static flow-sensitive
security analysis”. In: 2010 23rd IEEE Computer Security Foundations Sym-
posium. IEEE. 2010, pp. 186–199.

[79] Matei Zaharia et al. “Spark: Cluster Computing with Working Sets”. In: Hot
Topics in Cloud Computing. 2010, p. 10.

[80] Aslan Askarov and Andrew C. Myers. “Attacker Control and Impact for
Confidentiality and Integrity”. In: LMCS’11 (2011).

[81] Musard Balliu, Mads Dam, and Gurvan Le Guernic. “Epistemic Temporal
Logic for Information Flow Security”. In: PLAS. 2011.

[82] G. Barthe, P. R. D’Argenio, and T. Rezk. “Secure information flow by
self-composition”. In: MSCS (2011).

[83] Gilles Barthe, Juan Manuel Crespo, and César Kunz. “Relational verification
using product programs”. In: International Symposium on Formal Methods.
Springer. 2011, pp. 200–214.

[84] Gilles Barthe, Pedro R D’argenio, and Tamara Rezk. “Secure information
flow by self-composition”. In: Mathematical Structures in Computer Science
21.6 (2011), pp. 1207–1252.

[85] Sebastian Hunt and David Sands. “From exponential to polynomial-time se-
curity typing via principal types”. In: European Symposium on Programming.
Springer. 2011, pp. 297–316.

[86] Mauro Jaskelioff and Alejandro Russo. “Secure multi-execution in Haskell”.
In: International Andrei Ershov Memorial Conference on Perspectives of
System Informatics. Springer. 2011, pp. 170–178.

[87] Deian Stefan et al. “Flexible dynamic information flow control in Haskell”.
In: SIGPLAN. 2011, pp. 95–106.

[88] Aslan Askarov and Stephen Chong. “Learning is change in knowledge:
Knowledge-based security for dynamic policies”. In: CSF. IEEE. 2012, pp. 308–
322.

[89] Thomas H Austin and Cormac Flanagan. “Multiple facets for dynamic infor-
mation flow”. In: Proceedings of the 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. 2012, pp. 165–178.

312

[90] Musard Balliu, Mads Dam, and Gurvan Le Guernic. “Encover: Symbolic
exploration for information flow security”. In: IEEE 25th Computer Security
Foundations Symposium (CSF). IEEE. 2012, pp. 30–44.

[91] Musard Balliu and Gurvan Le Guernic. ENCoVer. Software release. 2012.
url: http://www.nada.kth.se/~musard/encover.

[92] Willem De Groef et al. “FlowFox: a web browser with flexible and precise
information flow control”. In: Proceedings of the 2012 ACM conference on
Computer and communications security. 2012, pp. 748–759.

[93] Rayna Dimitrova et al. “Model checking information flow in reactive sys-
tems”. In: Verification, Model Checking, and Abstract Interpretation: 13th
International Conference, VMCAI 2012, Philadelphia, PA, USA, January
22-24, 2012. Proceedings 13. Springer. 2012, pp. 169–185.

[94] Daniel B Giffin et al. “Hails: Protecting data privacy in untrusted web
applications”. In: 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12). 2012, pp. 47–60.

[95] Dimiter Milushev, Wim Beck, and Dave Clarke. “Noninterference via symbolic
execution”. In: Formal Techniques for Distributed Systems. Springer, 2012,
pp. 152–168.

[96] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. “A language for
automatically enforcing privacy policies”. In: ACM SIGPLAN Notices 47.1
(2012), pp. 85–96.

[97] Thomas H Austin et al. “Faceted execution of policy-agnostic programs”.
In: Proceedings of the Eighth ACM SIGPLAN workshop on Programming
languages and analysis for security. 2013, pp. 15–26.

[98] Musard Balliu. “A logic for information flow analysis of distributed programs”.
In: NordSec. 2013.

[99] Gabriel M Bender et al. “Fine-grained disclosure control for app ecosystems”.
In: ACM SIGMOD International Conference on Management of Data. ACM,
2013, pp. 869–880.

[100] Luísa Lourenço and Luís Caires. “Information flow analysis for valued-indexed
data security compartments”. In: International Symposium on Trustworthy
Global Computing. Springer. 2013, pp. 180–198.

[101] Frank McKeen et al. “Innovative Instructions and Software Model for Isolated
Execution”. In: HASP ’13. 2013.

[102] Corina S Păsăreanu et al. “Symbolic PathFinder: integrating symbolic execu-
tion with model checking for Java bytecode analysis”. In: Automated Software
Engineering 20 (2013), pp. 391–425.

[103] Niki Vazou, Patrick M Rondon, and Ranjit Jhala. “Abstract refinement
types”. In: European Symposium on Programming. Springer. 2013, pp. 209–
228.

313

http://www.nada.kth.se/~musard/encover

[104] Gabriel Bender, Lucja Kot, and Johannes Gehrke. “Explainable security
for relational databases”. In: ACM SIGMOD International Conference on
Management of data. ACM, 2014, pp. 1411–1422.

[105] Pat Bosshart et al. “P4: Programming protocol-independent packet proces-
sors”. In: ACM SIGCOMM Computer Communication Review 44.3 (2014),
pp. 87–95.

[106] Agostino Cortesi and Raju Halder. “Information-flow analysis of hibernate
query language”. In: Future Data and Security Engineering: First Interna-
tional Conference, FDSE 2014, Ho Chi Minh City, Vietnam, November 19-21,
2014, Proceedings. Springer. 2014, pp. 262–274.

[107] Zakir Durumeric et al. “The matter of heartbleed”. In: Proceedings of the
2014 conference on internet measurement conference. 2014, pp. 475–488.

[108] Intel. Intel Software Guard Extensions Developer Guide. Accessed 2021-05-20.
2014. url: https://software.intel.com/content/dam/develop/public/
us/en/documents/intel-sgx-developer-guide.pdf.

[109] Daniel Schoepe, Daniel Hedin, and Andrei Sabelfeld. “SeLINQ: tracking
information across application-database boundaries”. In: 19th ACM SIG-
PLAN International Conference on Functional Programming. ACM, 2014,
pp. 25–38.

[110] Daniel Schoepe, Daniel Hedin, and Andrei Sabelfeld. “SeLINQ: tracking
information across application-database boundaries”. In: ICFP. 2014.

[111] Gregor Snelting et al. “Checking probabilistic noninterference using JOANA”.
In: it Inf. Technol. 56 (2014), pp. 280–287.

[112] Niki Vazou et al. “Refinement types for Haskell”. In: Proceedings of the 19th
ACM SIGPLAN international conference on Functional programming. 2014,
pp. 269–282.

[113] Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding Applications
from an Untrusted Cloud with Haven”. In: ACM Transactions on Computer
Systems (TOCS) (2015), p. 8.

[114] Niklas Broberg, Bart van Delft, and David Sands. “The anatomy and facets
of dynamic policies”. In: CSF. IEEE. 2015, pp. 122–136.

[115] Adam Chlipala. “Ur/Web: A Simple Model for Programming the Web”. In:
POPL ’15. Association for Computing Machinery, 2015, pp. 153–165. isbn:
9781450333009.

[116] Bart van Delft, Sebastian Hunt, and David Sands. “Very static enforcement
of dynamic policies”. In: International Conference on Principles of Security
and Trust. Springer. 2015, pp. 32–52.

[117] Luísa Lourenço and Luís Caires. “Dependent information flow types”. In:
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. 2015, pp. 317–328.

314

https://software.intel.com/content/dam/develop/public/us/en/documents/intel-sgx-developer-guide.pdf
https://software.intel.com/content/dam/develop/public/us/en/documents/intel-sgx-developer-guide.pdf

[118] Jon Matias et al. “Toward an SDN-enabled NFV architecture”. In: IEEE
Communications Magazine 53.4 (2015), pp. 187–193. doi: 10.1109/MCOM.
2015.7081093.

[119] Rohit Sinha et al. “Moat: Verifying Confidentiality of Enclave Programs”.
In: CCS’15. 2015, pp. 1169–1184.

[120] José Bacelar Almeida et al. “Verifying Constant-Time Implementations”. In:
USENIX Security. 2016.

[121] Sergei Arnautov et al. “SCONE: Secure Linux Containers with Intel SGX”.
In: OSDI’16. 2016, pp. 689–703.

[122] Musard Balliu et al. “Jslinq: Building secure applications across tiers”. In:
6th ACM Conference on Data and Application Security and Privacy. ACM,
2016, pp. 307–318.

[123] Nataliia Bielova and Tamara Rezk. “Spot the difference: Secure multi-
execution and multiple facets”. In: Computer Security–ESORICS 2016: 21st
European Symposium on Research in Computer Security, Heraklion, Greece,
September 26-30, 2016, Proceedings, Part I 21. Springer. 2016, pp. 501–519.

[124] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint
Archive, Report 2016/086. https://eprint.iacr.org/2016/086. 2016.

[125] Victor Costan, Ilia Lebedev, and Srinivas Devadas. “Sanctum: Minimal
Hardware Extensions for Strong Software Isolation”. In: 2016, pp. 857–874.

[126] Anitha Gollamudi and Stephen Chong. “Automatic Enforcement of Expressive
Security Policies Using Enclaves”. In: OOPSLA’16. 2016, pp. 494–513.

[127] Paul Goransson, Chuck Black, and Timothy Culver. Software defined net-
works: a comprehensive approach. Morgan Kaufmann, 2016.

[128] Marco Guarnieri, Srdjan Marinovic, and David Basin. “Strong and provably
secure database access control”. In: IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE. 2016, pp. 163–178.

[129] David Kaplan, Jeremy Powell, and Tom Woller. “AMD Memory Encryption”.
In: (2016).

[130] Rohit Sinha et al. “A Design and Verification Methodology for Secure Isolated
Regions”. In: PLDI’16. 2016, pp. 665–681.

[131] Jean Yang et al. “Precise, dynamic information flow for database-backed
applications”. In: ACM Sigplan Notices 51.6 (2016), pp. 631–647.

[132] Musard Balliu, Daniel Schoepe, and Andrei Sabelfeld. “We Are Family:
Relating Information-Flow Trackers”. In: Computer Security - ESORICS 2017
- 22nd European Symposium on Research in Computer Security, Oslo, Norway,
September 11-15, 2017, Proceedings, Part I. Ed. by Simon N. Foley, Dieter
Gollmann, and Einar Snekkenes. Vol. 10492. Lecture Notes in Computer
Science. 2017, pp. 124–145.

315

https://doi.org/10.1109/MCOM.2015.7081093
https://doi.org/10.1109/MCOM.2015.7081093
https://eprint.iacr.org/2016/086

[133] Niklas Broberg, Bart van Delft, and David Sands. “Paragon - Practical
programming with information flow control”. In: J. Comput. Secur. 25 (2017),
pp. 323–365.

[134] Ethan Cecchetti, Andrew C Myers, and Owen Arden. “Nonmalleable infor-
mation flow control”. In: CCS. 2017, pp. 1875–1891.

[135] Quoc Huy Do, Richard Bubel, and Reiner Hähnle. “Automatic detection
and demonstrator generation for information flow leaks in object-oriented
programs”. In: computers & security 67 (2017), pp. 335–349.

[136] Peixuan Li and Danfeng Zhang. “Towards a Flow- and Path-Sensitive In-
formation Flow Analysis”. In: 30th IEEE Computer Security Foundations
Symposium (CSF). IEEE, 2017, pp. 53–67.

[137] Joshua Lind et al. “Glamdring: Automatic Application Partitioning for Intel
SGX”. In: USENIX ATC’17. 2017, pp. 285–298.

[138] Jed Liu et al. “Fabric: Building open distributed systems securely by con-
struction”. In: Journal of Computer Security (2017), pp. 367–426.

[139] Shen Liu, Gang Tan, and Trent Jaeger. “PtrSplit: Supporting General Pointers
in Automatic Program Partitioning”. In: CCS’17. 2017, pp. 2359–2371.

[140] Aastha Mehta et al. “Qapla: Policy compliance for database-backed sys-
tems”. In: 26th USENIX Security Symposium (USENIX Security). USENIX
Association, 2017, pp. 1463–1479.

[141] Checkpoint Research. EternalBlue: Everything You Need to Know. Accessed:
2024-12-03. 2017. url: https://research.checkpoint.com/2017/eternalblue-
everything-know/.

[142] Shweta Shinde et al. “Panoply: Low-TCB Linux Applications With SGX
Enclaves”. In: NDSS’17. 2017.

[143] R. Silva, P. Barbosa, and A. Brito. “DynSGX: A Privacy Preserving Toolset
for Dinamically Loading Functions into Intel(R) SGX Enclaves”. In: Cloud-
Com’17. 2017, pp. 314–321.

[144] Rohit Sinha. “Secure Computing using Certified Software and Trusted Hard-
ware”. PhD thesis. 2017.

[145] Deian Stefan et al. “Flexible dynamic information flow control in the presence
of exceptions”. In: Journal of Functional Programming 27 (2017), e5.

[146] Pramod Subramanyan et al. “A Formal Foundation for Secure Remote
Execution of Enclaves”. In: CCS’17. 2017, pp. 2435–2450.

[147] Hongliang Tian et al. “SGXKernel: A Library Operating System Optimized
for Intel SGX”. In: Proceedings of the Computing Frontiers Conference. 2017,
pp. 35–44.

[148] Chia-Che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX”. In: USENIX ATC’17.
2017, pp. 645–658.

316

https://research.checkpoint.com/2017/eternalblue-everything-know/
https://research.checkpoint.com/2017/eternalblue-everything-know/

[149] Pascal Weisenburger et al. “Quality-Aware Runtime Adaptation in Complex
Event Processing”. In: Proceedings of the 12th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. 2017, pp. 140–
151.

[150] Abbas Acar et al. “A survey on homomorphic encryption schemes: Theory
and implementation”. In: ACM Computing Surveys (Csur) 51.4 (2018), pp. 1–
35.

[151] Kalev Alpernas et al. “Abstract interpretation of stateful networks”. In: Static
Analysis: 25th International Symposium, SAS 2018, Freiburg, Germany,
August 29–31, 2018, Proceedings 25. Springer. 2018, pp. 86–106.

[152] Andrey Chudnov and David A Naumann. “Assuming you know: Epistemic
semantics of relational annotations for expressive flow policies”. In: CSF.
IEEE. 2018, pp. 189–203.

[153] Lucas Freire et al. “Uncovering bugs in P4 programs with assertion-based
verification”. In: Proceedings of the Symposium on SDN Research. 2018,
pp. 1–7.

[154] Andres Nötzli et al. “P4pktgen: Automated test case generation for P4
programs”. In: Proceedings of the Symposium on SDN Research. 2018, pp. 1–
7.

[155] Radu Stoenescu et al. “Debugging P4 programs with Vera”. In: Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. 2018, pp. 518–532.

[156] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. “Distributed Sys-
tem Development with ScalaLoci”. In: Proc. ACM Program. Lang. 2.OOPSLA
(Oct. 2018). url: https://doi.org/10.1145/3276499.

[157] Musard Balliu, Iulia Bastys, and Andrei Sabelfeld. “Securing IoT Apps”. In:
IEEE Security & Privacy Magazine (2019).

[158] Ryan Beckett et al. “Abstract interpretation of distributed network control
planes”. In: Proceedings of the ACM on Programming Languages 4.POPL
(2019), pp. 1–27.

[159] Thomas Bourgeat et al. “MI6: Secure Enclaves in a Speculative Out-of-Order
Processor”. In: MICRO’52. 2019, pp. 42–56.

[160] Luigi Coppolino et al. “A Comparative Analysis of Emerging Approaches for
Securing Java Software with Intel SGX”. In: Future Generation Computer
Systems (2019), pp. 620–633.

[161] Adrien Ghosn, James R. Larus, and Edouard Bugnion. “Secured Routines:
Language-Based Construction of Trusted Execution Environments”. In:
USENIX ATC’19. 2019, pp. 571–585.

317

https://doi.org/10.1145/3276499

[162] A. Gollamudi, S. Chong, and O. Arden. “Information Flow Control for
Distributed Trusted Execution Environments”. In: CSF’19. 2019, pp. 304–
30414.

[163] Marco Guarnieri et al. “Information-flow control for database-backed applica-
tions”. In: IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE. 2019, pp. 79–94.

[164] Shen Liu et al. “Program-mandering: Quantitative Privilege Separation”. In:
CCS’19. 2019, pp. 1023–1040.

[165] James Parker, Niki Vazou, and Michael Hicks. “LWeb: information flow
security for multi-tier web applications”. In: Proc. ACM Program. Lang.
3.POPL’19 (2019), 75:1–75:30.

[166] Christian Priebe et al. SGX-LKL: Securing the Host OS Interface for Trusted
Execution. 2019.

[167] Huibo Wang et al. “Towards Memory Safe Enclave Programming with Rust-
SGX”. In: CCS’19. 2019, pp. 2333–2350.

[168] Apple. Apple Platform Security. https : / / manuals . info . apple . com /
MANUALS/1000/MA1902/en_US/apple- platform- security- guide.pdf.
Accessed 2021-05-20. 2020.

[169] Juan Camilo Correa Chica, Jenny Cuatindioy Imbachi, and Juan Felipe
Botero Vega. “Security in SDN: A comprehensive survey”. In: Journal of
Network and Computer Applications 159 (2020), p. 102595.

[170] Jianyu Jiang et al. “Uranus: Simple, Efficient SGX Programming and its
Applications”. In: ASIA CCS’20. 2020.

[171] Elisavet Kozyri and Fred B Schneider. “RIF: Reactive information flow
labels”. In: J. Comput. Secur. 28 (2020), pp. 191–228.

[172] Dayeol Lee et al. “Keystone: An Open Framework for Architecting Trusted
Execution Environments”. In: EuroSys’20. 2020.

[173] Yi Lu and Chenyi Zhang. “Nontransitive security types for coarse-grained
information flow control”. In: CSF. IEEE. 2020, pp. 199–213.

[174] Meni Orenbach, Andrew Baumann, and Mark Silberstein. “Autarky: Closing
Controlled Channels with Self-Paging Enclaves”. In: EuroSys’20. 2020.

[175] Sandro Pinto and Cesare Garlati. Multi Zone Security for Arm Cortex-M
Devices. https://hex-five.com/wp-content/uploads/2020/02/Multi-
Zone-Security-White-Paper-20200224.pdf. 2020.

[176] Nadia Polikarpova et al. “Liquid information flow control”. In: Proceedings
of the ACM on Programming Languages 4.ICFP (2020), pp. 1–30.

[177] Youren Shen et al. “Occlum: Secure and Efficient Multitasking Inside a Single
Enclave of Intel SGX”. In: ASPLOS’20. 2020, pp. 955–970.

318

https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://hex-five.com/wp-content/uploads/2020/02/Multi-Zone-Security-White-Paper-20200224.pdf
https://hex-five.com/wp-content/uploads/2020/02/Multi-Zone-Security-White-Paper-20200224.pdf

[178] Chia-Che Tsai et al. “Civet: An Efficient Java Partitioning Framework for
Hardware Enclaves”. In: USENIX Security’20. 2020.

[179] Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. “A Survey of
Multitier Programming”. In: ACM Comput. Surv. (Sept. 2020).

[180] Ryan Doenges et al. “Petr4: formal foundations for P4 data planes”. In:
Proceedings of the ACM on Programming Languages 5.POPL (2021), pp. 1–
32.

[181] Sebastian Hunt and David Sands. “A Quantale of Information”. In: IEEE
34th Computer Security Foundations Symposium (CSF). IEEE. 2021, pp. 1–
15.

[182] Ranjit Jhala, Niki Vazou, et al. “Refinement types: A tutorial”. In: Founda-
tions and Trends® in Programming Languages 6.3–4 (2021), pp. 159–317.

[183] Nico Lehmann et al. “STORM: Refinement types for secure web applica-
tions”. In: 15th USENIX Symposium on Operating Systems Design and
Implementation OSDI 21). 2021, pp. 441–459.

[184] Peixuan Li and Danfeng Zhang. “Towards a General-Purpose Dynamic
Information Flow Policy”. In: arXiv preprint (2021).

[185] Aditya Oak et al. “Language Support for Secure Software Development with
Enclaves”. In: 2021.

[186] Aditya Oak et al. “Language Support for Secure Software Development with
Enclaves”. In: 2021 IEEE 34th Computer Security Foundations Symposium
(CSF). IEEE. 2021, pp. 1–16. doi: 10.1109/CSF51468.2021.00037.

[187] Kausik Subramanian et al. “D2r: Policy-compliant fast reroute”. In: Proceed-
ings of the ACM SIGCOMM Symposium on SDN Research (SOSR). 2021,
pp. 148–161.

[188] Amir M Ahmadian and Musard Balliu. DynCoVer. Software release. Mar.
2022. url: https://github.com/amir-ahmadian/jpf-dyncover.

[189] Kinan Dak Albab et al. “SwitchV: automated SDN switch validation with
P4 models”. In: Proceedings of the ACM SIGCOMM 2022 Conference. 2022,
pp. 365–379.

[190] Matthias Eichholz et al. “Dependently-typed data plane programming”. In:
Proceedings of the ACM on Programming Languages 6.POPL (2022), pp. 1–
28.

[191] Douglas Everson, Long Cheng, and Zhenkai Zhang. “Log4shell: Redefining
the web attack surface”. In: Proc. Workshop Meas., Attacks, Defenses Web
(MADWeb). 2022, pp. 1–8.

[192] Karuna Grewal, Loris D’Antoni, and Justin Hsu. “P4BID: information flow
control in P4”. In: Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 2022,
pp. 46–60.

319

https://doi.org/10.1109/CSF51468.2021.00037
https://github.com/amir-ahmadian/jpf-dyncover

[193] Qichen Wang and Ke Yi. “Conjunctive Queries with Comparisons”. In:
International Conference on Management of Data. ACM, 2022, pp. 108–121.

[194] Amir M. Ahmadian, Matvey Soloviev, and Musard Balliu. DiVerT. Software
release. 2023. url: https://github.com/KTH-LangSec/DiVerT.

[195] Fabian Ruffy et al. “P4Testgen: An Extensible Test Oracle For P4-16”. In:
Proceedings of the ACM SIGCOMM 2023 Conference. 2023, pp. 136–151.

[196] Ying Yao et al. “Scaver: A Scalable Verification System for Programmable
Network”. In: Proceedings of the 2024 SIGCOMM Workshop on Formal
Methods Aided Network Operation. 2024, pp. 14–19.

[197] Anjuna. Anjuna Enterprise Enclaves. https://www.anjuna.io/enterprise-
enclaves. Accessed 2021-05-20.

[198] Fortanix. The Fortanix Runtime Encryption. https : / / fortanix . com /
products/runtime-encryption. Accessed 2021-05-20.

[199] GraalVM. GraalVM Native Image. https://www.graalvm.org/docs/
reference-manual/native-image. Accessed 2021-05-20.

[200] JavaParser. JavaParser. https://javaparser.org. Accessed 2021-08-24.
[201] Lark Parser. url: https://github.com/lark-parser/lark.
[202] Oracle. Java Native Interface. https://docs.oracle.com/javase/8/docs/

technotes/guides/jni. Accessed 2021-05-20.
[203] Oracle. Java Remote Method Invocation - Distributed Computing for Java.

https://www.oracle.com/technetwork/java/javase/tech/index-jsp-
138781.html. Accessed 2021-05-20.

[204] SGX-LKL. SGX-LKL Library OS for Running Linux Applications Inside
of Intel SGX Enclaves. https://github.com/lsds/sgx- lkl. Accessed
2021-05-20.

320

https://github.com/KTH-LangSec/DiVerT
https://www.anjuna.io/enterprise-enclaves
https://www.anjuna.io/enterprise-enclaves
https://fortanix.com/products/runtime-encryption
https://fortanix.com/products/runtime-encryption
https://www.graalvm.org/docs/reference-manual/native-image
https://www.graalvm.org/docs/reference-manual/native-image
https://javaparser.org
https://github.com/lark-parser/lark
https://docs.oracle.com/javase/8/docs/technotes/guides/jni
https://docs.oracle.com/javase/8/docs/technotes/guides/jni
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-138781.html
https://github.com/lsds/sgx-lkl

