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Challenges of Producing Software Bill of 
Materials for Java
Musard Balliu , Benoit Baudry , Sofia Bobadilla , Mathias Ekstedt , Martin Monperrus ,  
Javier Ron , Aman Sharma , Gabriel Skoglund , César Soto-Valero , and 
Martin Wittlinger  | KTH Royal Institute of Technology

Software bills of materials (SBOM) promise to become the backbone of software supply chain hardening. 
We deep-dive into six tools and the SBOMs they produce for complex open source Java projects, revealing 
challenges regarding the accurate production and usage of SBOMS. 

M odern software applications are virtually never 
built entirely in-house. As a matter of fact, they 

reuse many third-party dependencies, which form the 
core of their software supply chain.1 The large num-
ber of dependencies in an application has turned into 
a major challenge for both security and reliability.2 For 
example, to compromise a high-value application, mali-
cious actors can choose to attack a less well-guarded 
dependency of the project.3 Even when there is no 
malicious intent, bugs can propagate through the soft-
ware supply chain and cause breakages in applications.4 
Gathering accurate, up-to-date information about all 
dependencies included in an application is, therefore, of 
vital importance.

Introduction
The software bill of materials (SBOM) has recently 
emerged as a key concept to enable principled engineer-
ing of software supply chains. This takes the well-known 
concept of “bill of materials” for manufacturing physi-
cal goods into the world of software development. The 
purpose of an SBOM is to capture relevant information 

about the internals of a software artifact. First and 
foremost, an SBOM is expected to include a complete 
inventory of all of the third-party dependencies of the 
artifact.

Accurate SBOMs are essential for software sup-
ply chain management,5 vulnerability tracking, build 
tampering detection,6 and high software integrity. For 
example, software developers leverage SBOMs to iden-
tify vulnerable software components in a timely manner. 
This is usually done by matching software component 
versions against vulnerability databases and reporting 
a warning whenever a vulnerable component is part of 
an application. For example, in 2021, a serious vulner-
ability present in the popular Java logging component 
Log4J was discovered. This component was extensively 
used by a large number of open source and proprietary 
projects, and consequently, it was a tedious and costly 
endeavor to identify all impacted projects.7 Had all of 
these Java projects published an SBOM, it would have 
facilitated the precise identification and remediation of 
vulnerable applications.

The software supply chain of modern applica-
tions includes hundreds of components, and to have 
humans producing SBOMs by hand is an unreason-
able, time-consuming, and error-prone task. Yet, the 
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full automation of SBOM production is a process that 
poses several challenges.8 First, the SBOM must elicit 
all direct dependencies, which are explicitly declared 
by the application’s developers in a build configura-
tion file, as well as the indirect dependencies that come 
from the transitive closure of dependencies. Tracking 
down every single dependency that is being used is 
hard when software architectures are formed by deeply 
nested components, some of which are potentially 
resolved at runtime. Identifying the exact version of a 
binary dependency in an SBOM is even harder as this 
requires tracing the binary components back to source 
code repositories. Second, while some package manag-
ers are able to list the dependencies, SBOMs are meant 
to include extra information about the software supply 
chain, such as checksums for all dependencies and data 
about third-party tools used in the build. Finally, the 
SBOM aims at being both human-readable for auditing 
and legal cases, as well as machine-readable for auto-
matic verification. These challenges open an exciting 
area for research and innovation, as witnessed by the 
recent emergence of many SBOM tools supported by 
diverse open source communities, startups, and big tech 
companies alike. From a research perspective, there is 
a crucial need for laying down systematic foundations 
of what SBOMs are, and the challenges related to their 
engineering.

This article presents an in-depth study of SBOM 
producers in the Java ecosystem. Our focus on Java is 
motivated as follows. First, it is one of the top-three lan-
guages in the world by most notable metrics. Second, its 
mature ecosystem of third-party dependencies, mainly 
through Maven, is critical in government services, 
financial services,9 medical infrastructure, and enter-
prise software systems.10 Third, SBOM production is 
intrinsically related to programming language specif-
ics, as it must capture each and every aspect of depen-
dency resolution, compilation, linking, and packaging, 
all being unique for a given software stack.

For our study, we created a curated selection of six 
mature and actively maintained SBOM producers. 
We executed each producer on a set of 26 active open 
source Java projects. We observed significant variations 
in the quality of SBOMs generated by these SBOM 
producers. In particular, they captured a different set 
of dependencies for the same project. Based on fur-
ther manual analysis, we highlight urgent challenges 
and opportunities to consolidate the state-of-the-art of 
SBOM production, in order to support thorough secu-
rity and reliability analyses for software supply chains.

SBOM
In 2021, the United States National Telecommunica-
tions and Information Administration (NTIA) set out 

to identify a minimal set of requirements for SBOMs.11 
These requirements outline which data fields should 
be present, how SBOMs should support automation, 
and which practices and processes should be employed 
when creating, distributing, and using SBOMs. The 
NTIA concluded that three existing formats meet the 
requirements: CycloneDX, Software Package Data 
Exchange (SPDX), and Software Identification.

CycloneDX aims to be a standard for bills of mate-
rials for software, hardware, software as a service, and 
operations. It has a strong security focus, originating 

Listing 1. Excerpt of a CycloneDX 
SBOM for the Java project 
async-http-client
{   “bomFormat”: “CycloneDX”,

“specVersion”: “1.4”,
“metadata”: {
   “timestamp”: “2023-02-20T16:14:42Z”,
 “tools”: [
   { “name”: “CycloneDX Maven plugin”, 
      “version”: “2.7.5”} 
],
“component”: {
  “group”: “org.asynchttpclient”, 
 “name”: “async-http-client-project”,
 “version”: “2.12.3”,
 “hashes”: [ {“alg”: “SHA-512”,
     “content”: “e5435852…7b3e6173”}, 

…] 
 “licenses”: […],
 “externalReferences”: [{
  “url”: “http://github.com/ 
AsyncHttpClient/async-http-client” 
 }
   ],
    “bom-ref”: “pkg:maven/org. 

asynchttpclient/async-http-client 
-project@2.12.3?type=pom” 

   }
}, 
“components”: [
 { “group”: “com.sun.activation”,
  “name”: “jakarta.activation”,
  “version”: “1.2.2”,
   “bom-ref”: “pkg:maven/com.

sun.activation/jakarta.
activation@1.2.2?type=jar”

 } . . . 
], 
“dependencies”: [{
  “ref”: “pkg:maven/org.asynchttpclient/
async-http-client-project@2.12.3?type= 
pom”,
 “dependsOn”: [
  “pkg:maven/com.sun.activation/ 
jakarta.activation@1.2.2?type=jar”
            . . . 
  ]
} . . . ] } 
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from the Open Worldwide Application Security Proj-
ect. In this article, we focus on the CycloneDX standard. 
This choice is motivated by the rapid development of 
the standard, as witnessed by the release of many tools 
for producing CycloneDX SBOMs.

“Listing 1” shows an excerpt of a CycloneDX SBOM 
for the Java component async-http-client. This 
particular example contains three root elements—
metadata, components,  and dependencies— 
following the CycloneDX standard. The metadata ele-
ment records information about the tool which produced 
the SBOM and the project on which the producer was 
executed. The components element is a list that includes 
information about each dependency found in the project. 
Each component’s item may also contain hashes to help 
identify its exact version, which can be used to ensure 
build integrity. The dependencies element is a list that 
records the relationship among all of the previously-listed 
dependencies. In the example, jakarta.activation is 
a direct dependency of the analyzed project.

We remark that “Listing 1” is a simplified SBOM 
for the sake of clarity. In practice, an SBOM will con-
tain much more data. The full CycloneDX SBOM of 
async-http-client describes 109 dependencies 
and provides eight hashes generated through differ-
ent algorithms for each component (https://github.
com/chains-project/SBOM-2023/blob/main/
results-march-2023/async-http-client/cdxgen/bom.
cdxgen.json). Furthermore, the SBOM standard allows 
recording additional elements, such as references to 
external resources (e.g., the issue tracker), vulnerabili-
ties, and code signatures.

Given the importance of Java in enterprise and gov-
ernment IT, the production of Java SBOMs is an active 
area. The critical necessity for grounded and correct 
Java SBOMs is at the core of this article’s significance. In 

what follows, we purposely produce SBOMs for com-
plex multimodule Java applications, which are arche-
typal of enterprise Java software systems.

Methodology to Study SBOM Producers
The core of our study consists in curating and execut-
ing state-of-the-art SBOM production tools on a set of 
mature Java projects. Then, we perform a comparative 
analysis of the SBOMs following the methodology illus-
trated in Figure 1.

SBOM Producers
To curate the list of SBOM producers, we started by 
identifying producers targeting CycloneDX SBOMs for 
Java projects. We scanned through all of the candidates 
from the official CycloneDX tool center and queried 
GitHub with the keyword “SBOM” for projects with at 
least 100 stars. This process yielded 24 producers.

We further selected the producers that meet the fol-
lowing criteria. Each selected producer should: 1. pro-
duce an SBOM containing the dependencies of the 
project; 2. be able to analyze Java projects that build 
with Maven; 3. be open source; and 4. be run as a 
command-line tool and not only as an online tool. The 
last two criteria are essential for automating our experi-
ments and for reproducible science.

Ultimately, this process resulted in a curated set of six SBOM 
producers: Build-Info-Go, CycloneDX-Generator, 
CycloneDX-Maven-Plugin, Depscan, jbom, and Open 
Rewrite, as shown in Table 1. We used all of these produc-
ers’ most recent stable releases as of 5 May 2023.

SBOM Conceptual Framework
After a deep analysis of the considered SBOM produc-
ers, we postulated the following framework of SBOMs 
that we will apply to our experimental results.

Figure 1. Overview of the methodology to study CycloneDX SBOM production for Java.

1) Java Project
Collection

2) SBOM Production 5) Manual Analysis

3) Ground Truth Extraction 4) Computation of
Accuracy Metrics

CycloneDX
SBOMs

Maven
Dependency

Trees
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 ■ Build integrity: SBOMs can contain checksums of soft-
ware components for verifying build integrity, but the 
format of checksums is open.

 ■ Dependency hierarchy: SBOMs can contain either a flat 
list of dependencies or structured trees of dependen-
cies, which impacts subsequent consumption.

 ■ Production step: SBOMs can be computed at different 
stages of the build and deploy lifecycle, and this can 
change the resulting SBOMs significantly.

 ■ Dependency resolution: SBOMs must faithfully capture 
the dependency resolution as it happens in build 
tools, which is often not documented.

Projects Under Study
To compare the quality of SBOMs generated by dif-
ferent producers, we ran them on a dataset of Java 
projects. This dataset is meant to include mature, 
active Java projects that rely on a significant num-
ber of dependencies. A recent work on dependency 
management in Java has curated a list of projects that 
meet these criteria.12 Since our work also involves 
dependency analysis, we decided to reuse their 
dataset of projects. The dataset includes 31 Maven 
projects with stable releases and frequent activ-
ity, indicating the project’s maturity. We excluded 
teavm and moshi as these projects have migrated 
from Maven to using Gradle as the build system, as 
well as auto and subzero since they are not valid 
Maven projects due to the lack of a pom.xml file 
in their root directory. We merged jenkins-core 
and jenkins-cli as a single project jenkins as we 
executed SBOM producers at the root directory of 
the project rather than submodules to avoid depen-
dency resolution errors. This process gave us a set of 
26 popular, actively maintained open source Maven 
projects for our analysis.

Table 2 details the set of analyzed Java projects. 
Each project is identified by the name and commit at 

which we analyzed the project. The projects include 
between 733 and 1.5 million lines of application code 
and are composed of up to 211 Maven modules. They 
have between two and 191 direct dependencies, and 
between one and 582 indirect dependencies.

Protocol to Compare SBOM Producers
Figure 1 illustrates the five main steps of the proto-
col for our experiment. Step 2 in Figure 1 is “SBOM 
Production,” where we run each SBOM producer on 
each project. To support the reproducibility of our 
experiment, we saved the specific git hash of each 
project and ran the SBOM producers in a docker 
container. This SBOM generation procedure is fully 
automated, and it ensures that there are no interac-
tions among the producers as the SBOM production 
for each project is isolated and starts in the same 
state. The repository with our study subjects and the 
experimental pipeline is publicly available (https://
github.com/chains-project/SBOM-2023).

An SBOM captures a rich set of information about 
the software supply chain, including the network of 
direct and indirect dependencies. As part of our study, 
we assessed the accuracy of the dependencies in the 
SBOM with respect to a ground truth. Step 3 in Figure 1  
represents the process of extracting the ground truth. 
We used the complete list of dependencies returned 
by the command tree of the maven-dependency-
plugin@3.4.0. This plugin is an integral part of the 
Maven build system, and it is the most common 
plugin used to perform this single task in the supply 
chain: resolve dependencies. It provides a determin-
istic dependency tree for a specific version of a Maven 
project. Moreover, it has been in production since 
2007 and is being continuously maintained, with the 
latest release as recent as 2023. It is very mature and 
stable, and consequently is the best ground truth for 
our study.

Table 1. Curated set of SBOM producers subject to our study, supporting Java and the CycloneDX standard.

SBOM Producer Version Checksums Hierarchy Reproducibility Production Step Scope

Build-Info-Go 1.9.3 ✓ (3) ✓ ✗ Build (Maven compile phase) ✗ (0)

CycloneDX-Generator 8.4.3 ✓ (8) ✓ ✓ Build (Maven package phase) ✓ (1)

CycloneDX-Maven-Plugin 2.7.8 ✓ (8) ✓ ✓ Build (Maven package phase) ✓ (1)

Depscan 4.1.2 ✓ (8) ✓ ✓ Source (static source code) ✓ (1)

jbom 1.2.1 ✓ (2) ✗ ✗ Analyzed (post maven 
package phase)

✓ (1)

OpenRewrite 4.45.0 ✗ (0) ✓ ✓ Build (Maven package phase) ✓ (2)
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In Maven, a dependency is identified by a name and a 
version number. The name is a combination of its groupId 
and artifactId, separated by a colon, for example, com.
google.guava:guava. We considered two dependen-
cies identical if their name and version match precisely. As 
shown in step 4 in Figure 1, we compared the accuracy of 
SBOMs by computing the precision and recall of depen-
dency lists computed by each producer. The precision is the 
share of dependencies in the SBOM that are correct with 
respect to the ground truth. The recall is the share of cor-
rect dependencies that are in the SBOM.

Note that the ground truth considers all depen-
dencies required for producing a software artifact, 

including test dependencies. While these test depen-
dencies are not included in the deployed software, 
they are relevant in the context of supply chain 
attacks. A malicious test dependency has the potential 
to interact with the build system and introduce mali-
cious code at build time.3 To trace vulnerable or mali-
cious test dependencies, it is important that these are 
included in the SBOM.

The last step of our methodology, step 5 in Figure 1,  
consists of manually analyzing a sample of SBOMs to 
get a concrete grasp of the content of the SBOMs pro-
duced. This provides us with detailed insights about 
the challenges that SBOM producers face to correctly 

Table 2. Descriptive statistics of the analyzed Java projects. 

Project Name kLOC Maven Modules DD ID Total

tika 163 108 186 563 749

alluxio 295 66 143 582 725

jooby 65 54 129 368 497

neo4j 686 124 191 273 464

flink 1,528 211 121 270 391

steady 99 20 78 267 345

para 29 6 82 224 306

jenkins 181 10 99 200 299

accumulo 399 18 121 158 279

selenese-runner-java 21 1 22 114 136

undertow 150 10 28 107 135

handlebars.java 22 11 36 84 120

error-prone 225 10 61 53 114

async-http-client 29 14 40 69 109

couchdb-lucene 3.9 1 25 51 76

mybatis-3 62 1 27 37 64

launch4j-maven-plugin 1.5 1 12 50 62

checkstyle 304 1 22 35 57

orika 43 5 25 30 55

commons-configuration 51 1 33 21 54

spoon 155 1 22 32 54

webcam-capture 19 2 16 35 51

javaparser 181 11 18 33 51

CoreNLP 615 3 23 18 41

jacop 89 1 6 5 11

jHiccup 0.7 1 2 1 3

DD: number of unique direct dependencies; ID: number of unique indirect dependencies; kLOC: number of thousands of lines of 
application code; Maven modules: number of Maven modules; Total: total number of unique dependencies. Rows are ordered with respect 
to the total number of dependencies in the projects.
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retrieve all of the dependencies in an application’s soft-
ware supply chain.

Experimental Results
We followed our protocol and ran six SBOM produc-
tion tools on 26 Java projects. The results provide key 
insights about the tools’ behavior as well as the quality 
of the produced SBOMs.

Producer Insights
Table 1 summarizes the essential features of SBOM pro-
ducers that we have identified, and to what extent these 
features are present in the tools.

Checksum diversity. Table 1 summarizes the number 
of different checksum algorithms that each SBOM pro-
ducer uses. The production of different checksums is use-
ful because it maximizes the likelihood of integrating the 
SBOMs with third-party tools that expect a specific check-
sum. Three producers compute eight types of checksums 
for each dependency jar: CycloneDX-Generator, 
CycloneDX-Maven-Plugin, and Depscan provide 
md5, sha1, sha256, sha512, sha384, sha3-384, sha3-256, 
and sha3-512 for each dependency in the SBOM. One 
producer, OpenRewrite, does not provide any check-
sums, which is considered a serious limitation. Our 
observations help practitioners to select SBOM produc-
ers accordingly.

Dependency hierarchy. An essential feature of SBOM 
producers is eliciting all of the dependencies in the soft-
ware supply chain of an application. Beyond a flat list, 
some analyses—such as vulnerability analysis, debloat-
ing, and installation via package managers—require 
the complete tree of relationships among the different 
components in the chain. The CycloneDX specification 
provides the attribute dependencies to serve this pur-
pose. We note that five of six producers report the hier-
archy among dependencies. However, jbom cannot link 
the dependencies together since it acts after the build 
step where some dependencies cannot be resolved. 
For example, for mybatis-3, com.fasterxml.
jackson.core:jackson-core version 2.13.2 is 
an indirect dependency at the fourth level. The pro-
ducers Build-Info-Go, CycloneDX-Generator, 
CycloneDX-Maven-Plugin, and Depscan report this 
information correctly.

Reproducibility. SBOMs are meant to be reference 
documents, and potentially may become legally bind-
ing. To that extent, one must produce them reliably. 
In that respect, we claim that SBOM production 
should be reproducible. We say an SBOM producer is 

reproducible if it generates strictly identical files con-
tentwise over multiple runs. We excluded metadata, 
such as timestamp. We generated SBOMs twice for 
each producer and found that Build-Info-Go and jbom 
are not reproducible: they do not preserve the order 
of SBOM elements. Moreover, jbom also produces 
different hashes of the components. While this is a 
fixable engineering issue, it highlights the necessity to 
consolidate the maturity of SBOM tooling before it 
can be relied upon in court.

Production step. There are six steps at which an SBOM 
could be produced: design, source, build, analyzed, 
deployed, and runtime (https://www.cisa.gov/sites/
default/files/2023-04/sbom-types-document-508c.
pdf ). The considered SBOM producers do not pro-
duce SBOM at the same step. We report the step 
at which SBOM is produced per the documenta-
tion provided by the developers. Build-Info-Go, 
CycloneDX-Generator, CycloneDX-Maven-Plugin, and 
OpenRewrite produce an SBOM at the build step. 
The build step can further be broken down into more 
steps, as Maven splits a build into multiple phases 
(https://maven.apache.org/guides/introduction/
introduction-to-the-lifecycle.html). Build-Info-Go 
produces an SBOM when the Maven build system is 
compiling. Meanwhile, the other three producers per-
form SBOM production when the artifact, JAR, for 
example, is being generated. This phase is also called 
package in Maven. Depscan produces an SBOM from 
the source files. Finally, jbom produces an SBOM by 
analyzing the final jar file, corresponding to the Cyber-
security and Infrastructure Security Agency (CISA) 
“Analyzed” step.

These different steps are significant regarding the 
production of SBOMs, since the information available 
about the software supply chain varies at these dif-
ferent stages. Indeed, software projects go through a 
build/continuous integration/continuous deployment  
life cycle and, at every point, the information available 
is different.13 For example, before the build phase, an 
SBOM producer cannot know what will be finally 
included in the binary. Similarly, after the build, infor-
mation about some dependencies may be lost because 
the build system has removed redundant or unneces-
sary dependencies.

The CycloneDX standard does not address this 
aspect, and the producers do not clearly document or 
motivate the phase they consider. SBOM producers 
should state the production step at which they collect 
information about the software supply chain to help 
SBOM consumers decide which SBOM is most appro-
priate for their needs.
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Scopes. The CycloneDX JSON specification supports 
an optional scope attribute for each component. This 
attribute can take the values required, optional, 
or excluded, based on the dependency’s behavior 
at runtime. According to the specification (https://
github.com/CycloneDX/specification/blob/1.4/
schema/bom-1.4.xsd\#L514), the required scope 
denotes that the component is required at runtime; 
the optional scope denotes components that “[…] 
are not capable of being called due to them not be 
installed or otherwise accessible by any means.” 
Finally, excluded components “[…] provide the 
ability to document component usage for test and 
other nonruntime purposes.”

We observed significant differences among SBOM  
producers regarding the identification of scopes. As an  
example, org.slf4j:slf4j-api@2.0.1 is a dependency  
of mybatis-3. CycloneDX-Generator, CycloneDX- 
Maven-Plugin, and Depscan report its scope as optional, 
OpenRewrite reports the scope as required, while  
the other producers report no scope at all.

We note that each SBOM producer only uses a subset 
of the allowed scope values. CycloneDX-Generator, 
CycloneDX-Maven-Plugin, and Depscan either 
label components as optional or provide no scope 
value. jbom labels all components as required.  
OpenRewrite marks components as either optional 
or required, and Build-Info-Go does not report 
scope for any component. It is not clear from the docu-
mentation of the producers how these values are com-
puted. Due to the lack of clarity in the standard and the 
absence of ground truth, it is impossible to determine 
which one is correct.

Providing clear information as to how and when in 
the software lifecycle a component is used—the scope 
as we understand the standard—is an important feature 
of an SBOM. However, our results show that no SBOM 
consumer can rely on the scope values produced by 
current SBOM producers.

Dependency Identification Accuracy
Figure 2 shows the accuracy of the considered SBOM 
producers per our ground truth. The x axis is the preci-
sion and the y axis is the recall for each producer. A point 
• represents the accuracy of dependencies captured 
in the SBOM and the isolines represent the standard 
F1-score combining precision and recall. We report 
the average precision and recall of an SBOM producer, 
over all projects. For our experiment, we performed 
156 executions of SBOM producers, which produced 
119 SBOMs and 37 failures. For the latter, SBOMs were 
either empty or contained no dependency because the 
build failed or the producer failed. We excluded these 
data points from our study.

At the bottom left of Figure 2, jbom has the lowest 
precision and recall. Next, OpenRewrite has the highest 
precision of 96%, but with a low recall. Higher up in the 
figure, we find CycloneDX-Maven-Plugin with 92% 
precision and 66% recall; CycloneDX-Generator and 
Depscan perform very similarly. Finally, Build-Info- 
Go is at the top right corner with the best score of detected 
dependencies according to the dataset and ground truth.

We highlight five main reasons why producers fall 
short on creating a fully-accurate SBOM with respect 
to the ground truth: exclusion of test dependencies 
from the SBOM; failure to resolve maven properties 
(https://maven.apache.org/pom.html#Properties); 
failure to correctly resolve the version of a dependency; 
advanced dependency resolution techniques; and the 
project itself is counted as a dependency. We elaborate 
on each of these points below.

SBOM producers like OpenRewrite and CycloneDX 
-Maven-Plugin do not include test dependencies 
by default in the SBOM they produce. This explains 
the low recall of 39% and 66%, respectively. Although 
Build-Info-Go has the highest F1-score, we observe 
that it misses test dependencies for some projects, while 
achieving 100% recall on some other projects, for exam-
ple jenkins, which clearly contains test dependencies.

When a producer does not correctly resolve Maven 
properties, the SBOM cannot be compared to the 
ground truth. For example, jbom reports version 
${guava.version} for com.google.guava:guava, 
instead of 31.0.1-jre, for alluxio. This eventually 
yields a list of dependencies that are not comparable 
with the list of dependencies in the ground truth.

To verify that a dependency is correctly reported, 
the groupId, artifactId, and version must match. 
However, jbom incorrectly retrieves the version for 
some dependencies. For example, it reports version 
0.4 of com.pholser:junit-quickcheck-core for 
CoreNLP, which does not exist in the ground truth. 
OpenRewrite faces similar challenges, reporting ver-
sion 4.1.78.Final for io.netty:netty-handler 
in selenese-runner-java, while the correct version 
is 4.1.79.Final. A major difficulty for retrieving the 
version number occurs when different versions of the 
same library appear as indirect dependencies at differ-
ent locations in the dependency tree. The correct ver-
sion identification must faithfully capture the actual 
resolution embedded in the build system.

Moreover, the resolution of dependencies is affected 
by the different ways SBOM producers use to retrieve 
dependencies. Depscan and CycloneDX-Generator 
perform equally on most projects. For example, they 
both have the same results on selenese-runner-
java. However, Depscan correctly reports a depen-
dency ch.uzh.ifi.seal:changedistiller version 
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0.0.4 for steady while CycloneDX-Generator 
misses it. In this case, Depscan reports a dependency 
that is stored as local jar in the project. This illustrates 
that they both have different methods for resolving 
dependencies. On the other hand, a closer look at the 
architecture of Build-Info-Go shows that it relies 
on the Maven application programming interfaces to 
invoke the build and retrieve deeper information, thus 
producing results that are closer to the ground truth. 
This suggests that SBOM producers benefit from being 
tailored to a language and a build system to plug deeply 
into the build process to obtain correct information.

Finally, we have observed that some SBOMs include 
the source project in the dependency list. This is yet 
another reason why Build-Info-Go falls short of per-
fect alignment with the ground truth. It reports all depen-
dencies for selenese-runner-java, accumulo,  
jenkins,  checkstyle ,  error-prone ,  jooby , 
launch4j-maven-plugin, orika, and mybatis-3, 
but in each of these cases, it incorrectly considers the 
root module as a dependency.

Overall, Figure 2 shows significant differences 
among the accuracy of the SBOMs produced by six 
state-of-the-art producers. These results reveal discrep-
ancies in the list of dependencies in the SBOMs, with 
different dependency versions and missed dependen-
cies. To better illustrate the different accuracy levels, we 
manually analyzed a sample of the SBOMs. To sample 
the files, we used the following criteria: We selected 
SBOMs produced by Build-Info-Go and jbom as 
these producers are at both ends of the accuracy range; 
we analyzed SBOMs for project spoon, as three of the 
authors are maintainers and hence have a deep under-
standing of this project. After applying the previous 
filters, we sampled four SBOM files: two SBOMs with 
the highest and lowest precision on dependencies, pro-
duced by Build-Info-Go and jbom, and two SBOMs 
with the highest and lowest precision on direct depen-
dencies produced. This analysis was conducted by two 
of the authors, both experts in Java programming. In the 
case of discrepancies, they met and discussed to resolve 
them and reach a conclusion.

The ground truth indicates that the single module of 
spoon has 22 direct dependencies and 32 indirect ones 
(see Table 2). The SBOM produced by Build-Info-Go 
correctly contains 23 dependencies, and the only incor-
rect one is the fr.inria.gforge.spoon:spoon-core 
itself. The precision is consequently high, but some 
dependencies are clearly missing. Build-Info-Go 
excludes test dependencies for spoon. On the other 
hand, the SBOM produced by jbom reports 125 depen-
dencies, but only 29 of them are correct. The other 96 
dependencies are the result of failure of jbom to resolve 
Maven properties, versions, or metadata groupId.

The next two case studies come from Build-Info-
Go. First, we inspected the SBOM produced for 
selenese-runner-java, and we found that 
Build-Info-Go fetches all 136 dependencies. It also 
includes the complete dependency tree hierarchy infor-
mation. Such precise information is important and 
makes the SBOM consumable. However, we noticed 
that even a solid producer such as Build-Info-Go 
does not always achieve high precision. For example, 
the SBOM of javaparser includes 14 correct depen-
dencies of 51. The majority of the dependencies the 
producer misses are test-scoped. We observed an incon-
sistent behavior in Build-Info-Go as it sporadically 
includes test dependencies.

The SBOM produced by jbom for async-http-
client contains only two correct dependencies of 
109. On a deeper inspection, we observed that most 
dependencies in the SBOM are identified with wrong 
versions, resulting in poor precision. We analyzed the 
SBOM of mybatis-3 produced by jbom. This SBOM 
includes all the direct dependencies, precisely with cor-
rect version numbers as they were specified. However, 
all indirect dependencies are missed.

Overlap analysis. Figure 3 is a Venn diagram that captures 
the overlap between the SBOMs of CoreNLP generated  
by the six SBOM producers. For each SBOM producer, 
we used the set of true positives dependencies. Inter-
section areas mean producers have the same correct 
dependency in their SBOM. Every SBOM producer has 
a different color for their outline. For example, we use 
yellow for CycloneDX-Generator. The labels indicate 
the number of dependencies in the intersection area 

Figure 2. Mean precision and mean recall of each SBOM 
producer, excluding producer failures. big:  Build-Info-
Go; cdxgen:  CycloneDX-Generator;  cdx-mp: 
CycloneDX-Maven-Plugin;  ds: Depscan; jbom: 
jbom;  or: OpenRewrite 
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and areas without a label are empty (meaning no depen-
dency in common). We have six different intersection 
areas. The largest one is in the middle and shows that 20 
dependencies are correctly identified by every producer. 
The second-largest area indicates that 12 dependencies 
are correctly captured by every producer except jbom. 
For example, jbom misses javax.xml.bind:jaxb-api 
because it either resolves an incorrect version, or it 
resolves some dependencies as null. Two areas have only 
one dependency in the intersection. One intersection 
area contains the producers CycloneDX-Generator, 
CycloneDX-Maven-Plugin, jbom, and Depscan, 
which correctly capture junit:junit:4.13.1, while 
OpenRewrite and Build-Info-Go miss it. OpenRe-
write entirely skips test dependencies by design, and 
Build-Info-Go misses it. The other area is the inter-
section of CycloneDX-Maven-Plugin, CycloneDX- 
Generator, and Depscan that correctly detect org.
hamcrest:hamcrest-core:1.3 in the SBOM. jbom 
misses this dependency because it is included as a jar 
with a relative path in the repository. It only identi-
fies correctly the groupId and artifactId, while the 
version is set to null.

Experimental Limitation
It may be argued that SBOM producers should sim-
ply reuse the ground truth we consider as the basis 
for SBOM production, that is the code of Maven in 
our experiment. However, SBOMs can be extracted at 

multiple steps, per our discussion on production steps 
above. All of these extraction steps are valid and poten-
tially useful depending on the goal and the SBOM con-
sumption. Our ground truth only captures one single 
production step. To that extent, some inaccuracies we 
have reported may be due to the mismatch between the 
ground truth and the targeted production steps of some 
SBOM producers.

Take-Aways
In theory, extracting SBOMs is easy. Our results show 
that in practice, this is not the case. In this section, we 
discuss the benefits of our work for two target audi-
ences, Java developers and standardization committees, 
and reason about the difficulty of confronting theory 
and practice.

Java developers. Our in-depth study shows that 
Build-Info-Go is the best SBOM producer for Java 
developers. The reasons are that: 1. it produces differ-
ent checksums; 2. it supports dependency hierarchies; 
and 3. it achieves the highest precision and recall thanks 
to a tailored integration in Maven. Yet, Build-Info-
Go has room for improvement. First, the precision and 
recall of 94% and 87%, respectively, can be increased, 
with several important fixes. Second, assuming that the 
standard clarifies the matter, it could also provide the 
scope of the dependencies.

Standardization committees. Our study identifies two 
shortcomings in the CycloneDX standard. The speci-
fication needs to require producers to specify the exact 
step at which the SBOM is produced, and it must pre-
cisely define the notion of “scope,” which would help 
both SBOM producers and consumers. We believe that 
the latter is more important as the current state is ambig-
uous for developers, and ambiguity upstream typically 
means incorrectness downstream.

Difficulty. Our study reveals difficulties of different 
nature in producing complete and useful SBOMs. 
The challenges of checksums, tree hierarchy, and 
determinism can all be fixed with additional engi-
neering effort. However, clarifying the meaning of 
production steps and scopes is fundamentally hard 
because it requires the appropriate abstraction over 
multiple build pipelines in different software stacks, 
and this abstraction would require consensus in the 
SBOM community.

Open Challenges
Our experiments revealed a number of challenges for 
the accurate production and the effective consumption 
of SBOMs.

Figure 3. Venn diagram of different SBOM producer 
results. Only the true positives (correctly identified 
dependencies) are compared. Intersection areas mean 
that multiple SBOM producers have overlapping correct 
dependencies. In this project, all producers correctly 
identify a majority of 20 dependencies.
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SBOM and Tooling Dependencies
In our analysis, we observe that the bulk of SBOMs 
consists of collecting accurate dependency trees for 
an application project. Yet, the software supply chain 
of an application is made of many more components. 
For example, the version control system, the test-
ing and build tools, and the infrastructure to deploy 
or distribute the application are key components of 
the supply chain. In recent years we have witnessed 
attacks, such as the Solarwinds incident, which suc-
cessfully compromised a system through these com-
ponents.3 The CycloneDX standard attempts to 
document such information by providing the attri-
bute externalReferences. However, there is cur-
rently scarce support to generate these attributes and 
our study shows that the SBOM producers imple-
ment this partially and with inconsistencies. The 
comprehensive collection and documentation of all 
tools involved in the supply chain is a pressing chal-
lenge to produce SBOMs that are amenable to thor-
ough hardening procedures.

SBOMs for Threat Analysis
In the longer term, the value of SBOMs will increase 
with enabling automatic security analyses. For example, 
one key challenge is to let SBOM producers qualify the 
trust that one can have in the dependencies. This type of 
assessment of the supply chain relates to threat modeling 
and analysis, which is already considered good practice 
for DevOps organizations.14 To guide which properties 
an SBOM should include to support reasoning about 
trust and threats, the attack taxonomy of Ladisa et al.3 
constitutes an excellent starting point. Furthermore, 
the work of Zahan et al.15 proposes concrete metrics 
as warning signs of supply chain vulnerabilities that 
could be mapped to the taxonomy, such as “too many 
maintainers,” which can match the “take over legitimate 
account” as well as the use of installation scripts, which 
relates to the “running a malicious build job” technique.

SBOMs at Runtime
The next challenge will be to bring SBOMs online, as a 
foundation to enforce security requirements at runtime. 
For a given SBOM pertaining to a software application, 
one can develop lightweight dynamic analysis to enforce 
mandatory access control policies. This can be achieved 
by monitoring the usage of dependencies at runtime and 
ensuring that only the dependencies within the SBOM 
are used by the application, thus preventing the entire 
class of vulnerabilities that rely on the dynamic inclusion 
of malicious code and packages. A major challenge for 
such an approach is that it would require accurate static 
information about dependencies, which is a challenging 
endeavor, as we have shown in this article.

SBOMs in Other Software Stacks
The production of SBOMs for other software stacks is 
likely to face similar challenges as those seen for Java. 
We note that some programming ecosystems already 
partially address certain challenges. For instance, eco-
systems, such as npm, Go, and Rust record checksums 
for all publicly available dependencies in autogene-
rated lock files. In theory, the data provided by these 
instruments can already be aggregated and used to 
produce meaningful SBOMs. In the specific case of 
Go, the lock file information can be validated against 
an immutable, verifiable database, providing integrity 
guarantees that can be leveraged in SBOMs. Nonethe-
less, a definitive solution is yet to be established and 
widely used in either of these software stacks.

W e performed a deep dive into the meaning of 
SBOMs and its realization in the Java ecosys-

tem, one of the most commonly used enterprise pro-
gramming languages. Our research findings indicate 
strong interest and vibrant activity in this essential area 
for software supply chain security and reliability. Yet, we 
also revealed that SBOMs today rely on a technical foun-
dation that is unstable. Our empirical insights shed light 
on important weaknesses that require attention, starting 
with incorrect or incomplete dependency lists recov-
ered in SBOMs. These findings call for further work in 
clarifying the SBOM standards, as well for more work 
on improving the quality of SBOM producers’ output. 
Studying SBOM quality for other languages (e.g., Rust) 
and for other SBOM formats (e.g., SPDX) would be 
very valuable for the community. Both academia and 
industry agree that SBOMs promise great benefits; now 
the time is ripe to all work together to unleash their full 
potential.  
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