
2 Month/Month 2023 Copublished by the IEEE Computer and Reliability Societies 1540-7993/23©2023IEEE

Challenges of Producing Software Bill of
Materials for Java
Musard Balliu , Benoit Baudry , Sofia Bobadilla , Mathias Ekstedt , Martin Monperrus ,
Javier Ron , Aman Sharma , Gabriel Skoglund , César Soto-Valero , and
Martin Wittlinger | KTH Royal Institute of Technology

Software bills of materials (SBOM) promise to become the backbone of software supply chain hardening.
We deep-dive into six tools and the SBOMs they produce for complex open source Java projects, revealing
challenges regarding the accurate production and usage of SBOMS.

M odern software applications are virtually never
built entirely in-house. As a matter of fact, they

reuse many third-party dependencies, which form the
core of their software supply chain.1 The large num-
ber of dependencies in an application has turned into
a major challenge for both security and reliability.2 For
example, to compromise a high-value application, mali-
cious actors can choose to attack a less well-guarded
dependency of the project.3 Even when there is no
malicious intent, bugs can propagate through the soft-
ware supply chain and cause breakages in applications.4
Gathering accurate, up-to-date information about all
dependencies included in an application is, therefore, of
vital importance.

Introduction
The software bill of materials (SBOM) has recently
emerged as a key concept to enable principled engineer-
ing of software supply chains. This takes the well-known
concept of “bill of materials” for manufacturing physi-
cal goods into the world of software development. The
purpose of an SBOM is to capture relevant information

about the internals of a software artifact. First and
foremost, an SBOM is expected to include a complete
inventory of all of the third-party dependencies of the
artifact.

Accurate SBOMs are essential for software sup-
ply chain management,5 vulnerability tracking, build
tampering detection,6 and high software integrity. For
example, software developers leverage SBOMs to iden-
tify vulnerable software components in a timely manner.
This is usually done by matching software component
versions against vulnerability databases and reporting
a warning whenever a vulnerable component is part of
an application. For example, in 2021, a serious vulner-
ability present in the popular Java logging component
Log4J was discovered. This component was extensively
used by a large number of open source and proprietary
projects, and consequently, it was a tedious and costly
endeavor to identify all impacted projects.7 Had all of
these Java projects published an SBOM, it would have
facilitated the precise identification and remediation of
vulnerable applications.

The software supply chain of modern applica-
tions includes hundreds of components, and to have
humans producing SBOMs by hand is an unreason-
able, time-consuming, and error-prone task. Yet, the

Digital Object Identifier 10.1109/MSEC.2023.3302956
Date of current version: 29 August 2023

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 01,2023 at 05:07:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6005-5992
https://orcid.org/0000-0002-4015-4640
https://orcid.org/0000-0003-3116-3278
https://orcid.org/0000-0003-3922-9606
https://orcid.org/0000-0003-3505-3383
https://orcid.org/0000-0001-6988-3102
https://orcid.org/0000-0003-2263-7902
https://orcid.org/0009-0008-7070-5950
https://orcid.org/0000-0003-0541-6411
https://orcid.org/0000-0003-2578-6399

www.computer.org/security 3

full automation of SBOM production is a process that
poses several challenges.8 First, the SBOM must elicit
all direct dependencies, which are explicitly declared
by the application’s developers in a build configura-
tion file, as well as the indirect dependencies that come
from the transitive closure of dependencies. Tracking
down every single dependency that is being used is
hard when software architectures are formed by deeply
nested components, some of which are potentially
resolved at runtime. Identifying the exact version of a
binary dependency in an SBOM is even harder as this
requires tracing the binary components back to source
code repositories. Second, while some package manag-
ers are able to list the dependencies, SBOMs are meant
to include extra information about the software supply
chain, such as checksums for all dependencies and data
about third-party tools used in the build. Finally, the
SBOM aims at being both human-readable for auditing
and legal cases, as well as machine-readable for auto-
matic verification. These challenges open an exciting
area for research and innovation, as witnessed by the
recent emergence of many SBOM tools supported by
diverse open source communities, startups, and big tech
companies alike. From a research perspective, there is
a crucial need for laying down systematic foundations
of what SBOMs are, and the challenges related to their
engineering.

This article presents an in-depth study of SBOM
producers in the Java ecosystem. Our focus on Java is
motivated as follows. First, it is one of the top-three lan-
guages in the world by most notable metrics. Second, its
mature ecosystem of third-party dependencies, mainly
through Maven, is critical in government services,
financial services,9 medical infrastructure, and enter-
prise software systems.10 Third, SBOM production is
intrinsically related to programming language specif-
ics, as it must capture each and every aspect of depen-
dency resolution, compilation, linking, and packaging,
all being unique for a given software stack.

For our study, we created a curated selection of six
mature and actively maintained SBOM producers.
We executed each producer on a set of 26 active open
source Java projects. We observed significant variations
in the quality of SBOMs generated by these SBOM
producers. In particular, they captured a different set
of dependencies for the same project. Based on fur-
ther manual analysis, we highlight urgent challenges
and opportunities to consolidate the state-of-the-art of
SBOM production, in order to support thorough secu-
rity and reliability analyses for software supply chains.

SBOM
In 2021, the United States National Telecommunica-
tions and Information Administration (NTIA) set out

to identify a minimal set of requirements for SBOMs.11
These requirements outline which data fields should
be present, how SBOMs should support automation,
and which practices and processes should be employed
when creating, distributing, and using SBOMs. The
NTIA concluded that three existing formats meet the
requirements: CycloneDX, Software Package Data
Exchange (SPDX), and Software Identification.

CycloneDX aims to be a standard for bills of mate-
rials for software, hardware, software as a service, and
operations. It has a strong security focus, originating

Listing 1. Excerpt of a CycloneDX
SBOM for the Java project
async-http-client
{ “bomFormat”: “CycloneDX”,

“specVersion”: “1.4”,
“metadata”: {
 “timestamp”: “2023-02-20T16:14:42Z”,
 “tools”: [
 { “name”: “CycloneDX Maven plugin”,
 “version”: “2.7.5”}
],
“component”: {
 “group”: “org.asynchttpclient”,
 “name”: “async-http-client-project”,
 “version”: “2.12.3”,
 “hashes”: [{“alg”: “SHA-512”,
 “content”: “e5435852…7b3e6173”},

…]
 “licenses”: […],
 “externalReferences”: [{
 “url”: “http://github.com/
AsyncHttpClient/async-http-client”
 }
],
 “bom-ref”: “pkg:maven/org.

asynchttpclient/async-http-client
-project@2.12.3?type=pom”

 }
},
“components”: [
 { “group”: “com.sun.activation”,
 “name”: “jakarta.activation”,
 “version”: “1.2.2”,
 “bom-ref”: “pkg:maven/com.

sun.activation/jakarta.
activation@1.2.2?type=jar”

 } . . .
],
“dependencies”: [{
 “ref”: “pkg:maven/org.asynchttpclient/
async-http-client-project@2.12.3?type=
pom”,
 “dependsOn”: [
 “pkg:maven/com.sun.activation/
jakarta.activation@1.2.2?type=jar”
 . . .
]
} . . .] }

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 01,2023 at 05:07:41 UTC from IEEE Xplore. Restrictions apply.

http://github.com/AsyncHttpClient/async-http-client”
http://github.com/AsyncHttpClient/async-http-client”
mailto:pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom
mailto:pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom
mailto:pkg:maven/org.asynchttpclient/async-http-client-project@2.12.3?type=pom
mailto:pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar
mailto:pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar
mailto:pkg:maven/com.sun.activation/jakarta.activation@1.2.2?type=jar
mailto:async-http-client-project@2.12.3?type=pom
mailto:async-http-client-project@2.12.3?type=pom
mailto:activation@1.2.2?type=jar

4 IEEE Security & Privacy Month/Month 2023

from the Open Worldwide Application Security Proj-
ect. In this article, we focus on the CycloneDX standard.
This choice is motivated by the rapid development of
the standard, as witnessed by the release of many tools
for producing CycloneDX SBOMs.

“Listing 1” shows an excerpt of a CycloneDX SBOM
for the Java component async-http-client. This
particular example contains three root elements—
metadata, components, and dependencies—
following the CycloneDX standard. The metadata ele-
ment records information about the tool which produced
the SBOM and the project on which the producer was
executed. The components element is a list that includes
information about each dependency found in the project.
Each component’s item may also contain hashes to help
identify its exact version, which can be used to ensure
build integrity. The dependencies element is a list that
records the relationship among all of the previously-listed
dependencies. In the example, jakarta.activation is
a direct dependency of the analyzed project.

We remark that “Listing 1” is a simplified SBOM
for the sake of clarity. In practice, an SBOM will con-
tain much more data. The full CycloneDX SBOM of
async-http-client describes 109 dependencies
and provides eight hashes generated through differ-
ent algorithms for each component (https://github.
com/chains-project/SBOM-2023/blob/main/
results-march-2023/async-http-client/cdxgen/bom.
cdxgen.json). Furthermore, the SBOM standard allows
recording additional elements, such as references to
external resources (e.g., the issue tracker), vulnerabili-
ties, and code signatures.

Given the importance of Java in enterprise and gov-
ernment IT, the production of Java SBOMs is an active
area. The critical necessity for grounded and correct
Java SBOMs is at the core of this article’s significance. In

what follows, we purposely produce SBOMs for com-
plex multimodule Java applications, which are arche-
typal of enterprise Java software systems.

Methodology to Study SBOM Producers
The core of our study consists in curating and execut-
ing state-of-the-art SBOM production tools on a set of
mature Java projects. Then, we perform a comparative
analysis of the SBOMs following the methodology illus-
trated in Figure 1.

SBOM Producers
To curate the list of SBOM producers, we started by
identifying producers targeting CycloneDX SBOMs for
Java projects. We scanned through all of the candidates
from the official CycloneDX tool center and queried
GitHub with the keyword “SBOM” for projects with at
least 100 stars. This process yielded 24 producers.

We further selected the producers that meet the fol-
lowing criteria. Each selected producer should: 1. pro-
duce an SBOM containing the dependencies of the
project; 2. be able to analyze Java projects that build
with Maven; 3. be open source; and 4. be run as a
command-line tool and not only as an online tool. The
last two criteria are essential for automating our experi-
ments and for reproducible science.

Ultimately, this process resulted in a curated set of six SBOM
producers: Build-Info-Go, CycloneDX-Generator,
CycloneDX-Maven-Plugin, Depscan, jbom, and Open
Rewrite, as shown in Table 1. We used all of these produc-
ers’ most recent stable releases as of 5 May 2023.

SBOM Conceptual Framework
After a deep analysis of the considered SBOM produc-
ers, we postulated the following framework of SBOMs
that we will apply to our experimental results.

Figure 1. Overview of the methodology to study CycloneDX SBOM production for Java.

1) Java Project
Collection

2) SBOM Production 5) Manual Analysis

3) Ground Truth Extraction 4) Computation of
Accuracy Metrics

CycloneDX
SBOMs

Maven
Dependency

Trees

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 01,2023 at 05:07:41 UTC from IEEE Xplore. Restrictions apply.

https://github.com/chains-project/SBOM-2023/blob/main/results-march-2023/async-http-client/cdxgen/bom.cdxgen.json
https://github.com/chains-project/SBOM-2023/blob/main/results-march-2023/async-http-client/cdxgen/bom.cdxgen.json
https://github.com/chains-project/SBOM-2023/blob/main/results-march-2023/async-http-client/cdxgen/bom.cdxgen.json
https://github.com/chains-project/SBOM-2023/blob/main/results-march-2023/async-http-client/cdxgen/bom.cdxgen.json

www.computer.org/security 5

 ■ Build integrity: SBOMs can contain checksums of soft-
ware components for verifying build integrity, but the
format of checksums is open.

 ■ Dependency hierarchy: SBOMs can contain either a flat
list of dependencies or structured trees of dependen-
cies, which impacts subsequent consumption.

 ■ Production step: SBOMs can be computed at different
stages of the build and deploy lifecycle, and this can
change the resulting SBOMs significantly.

 ■ Dependency resolution: SBOMs must faithfully capture
the dependency resolution as it happens in build
tools, which is often not documented.

Projects Under Study
To compare the quality of SBOMs generated by dif-
ferent producers, we ran them on a dataset of Java
projects. This dataset is meant to include mature,
active Java projects that rely on a significant num-
ber of dependencies. A recent work on dependency
management in Java has curated a list of projects that
meet these criteria.12 Since our work also involves
dependency analysis, we decided to reuse their
dataset of projects. The dataset includes 31 Maven
projects with stable releases and frequent activ-
ity, indicating the project’s maturity. We excluded
teavm and moshi as these projects have migrated
from Maven to using Gradle as the build system, as
well as auto and subzero since they are not valid
Maven projects due to the lack of a pom.xml file
in their root directory. We merged jenkins-core
and jenkins-cli as a single project jenkins as we
executed SBOM producers at the root directory of
the project rather than submodules to avoid depen-
dency resolution errors. This process gave us a set of
26 popular, actively maintained open source Maven
projects for our analysis.

Table 2 details the set of analyzed Java projects.
Each project is identified by the name and commit at

which we analyzed the project. The projects include
between 733 and 1.5 million lines of application code
and are composed of up to 211 Maven modules. They
have between two and 191 direct dependencies, and
between one and 582 indirect dependencies.

Protocol to Compare SBOM Producers
Figure 1 illustrates the five main steps of the proto-
col for our experiment. Step 2 in Figure 1 is “SBOM
Production,” where we run each SBOM producer on
each project. To support the reproducibility of our
experiment, we saved the specific git hash of each
project and ran the SBOM producers in a docker
container. This SBOM generation procedure is fully
automated, and it ensures that there are no interac-
tions among the producers as the SBOM production
for each project is isolated and starts in the same
state. The repository with our study subjects and the
experimental pipeline is publicly available (https://
github.com/chains-project/SBOM-2023).

An SBOM captures a rich set of information about
the software supply chain, including the network of
direct and indirect dependencies. As part of our study,
we assessed the accuracy of the dependencies in the
SBOM with respect to a ground truth. Step 3 in Figure 1
represents the process of extracting the ground truth.
We used the complete list of dependencies returned
by the command tree of the maven-dependency-
plugin@3.4.0. This plugin is an integral part of the
Maven build system, and it is the most common
plugin used to perform this single task in the supply
chain: resolve dependencies. It provides a determin-
istic dependency tree for a specific version of a Maven
project. Moreover, it has been in production since
2007 and is being continuously maintained, with the
latest release as recent as 2023. It is very mature and
stable, and consequently is the best ground truth for
our study.

Table 1. Curated set of SBOM producers subject to our study, supporting Java and the CycloneDX standard.

SBOM Producer Version Checksums Hierarchy Reproducibility Production Step Scope

Build-Info-Go 1.9.3 ✓ (3) ✓ ✗ Build (Maven compile phase) ✗ (0)

CycloneDX-Generator 8.4.3 ✓ (8) ✓ ✓ Build (Maven package phase) ✓ (1)

CycloneDX-Maven-Plugin 2.7.8 ✓ (8) ✓ ✓ Build (Maven package phase) ✓ (1)

Depscan 4.1.2 ✓ (8) ✓ ✓ Source (static source code) ✓ (1)

jbom 1.2.1 ✓ (2) ✗ ✗ Analyzed (post maven
package phase)

✓ (1)

OpenRewrite 4.45.0 ✗ (0) ✓ ✓ Build (Maven package phase) ✓ (2)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 01,2023 at 05:07:41 UTC from IEEE Xplore. Restrictions apply.

https://github.com/chains-project/SBOM-2023
https://github.com/chains-project/SBOM-2023
mailto:maven-dependency-plugin@3.4.0
mailto:maven-dependency-plugin@3.4.0

6 IEEE Security & Privacy Month/Month 2023

In Maven, a dependency is identified by a name and a
version number. The name is a combination of its groupId
and artifactId, separated by a colon, for example, com.
google.guava:guava. We considered two dependen-
cies identical if their name and version match precisely. As
shown in step 4 in Figure 1, we compared the accuracy of
SBOMs by computing the precision and recall of depen-
dency lists computed by each producer. The precision is the
share of dependencies in the SBOM that are correct with
respect to the ground truth. The recall is the share of cor-
rect dependencies that are in the SBOM.

Note that the ground truth considers all depen-
dencies required for producing a software artifact,

including test dependencies. While these test depen-
dencies are not included in the deployed software,
they are relevant in the context of supply chain
attacks. A malicious test dependency has the potential
to interact with the build system and introduce mali-
cious code at build time.3 To trace vulnerable or mali-
cious test dependencies, it is important that these are
included in the SBOM.

The last step of our methodology, step 5 in Figure 1,
consists of manually analyzing a sample of SBOMs to
get a concrete grasp of the content of the SBOMs pro-
duced. This provides us with detailed insights about
the challenges that SBOM producers face to correctly

Table 2. Descriptive statistics of the analyzed Java projects.

Project Name kLOC Maven Modules DD ID Total

tika 163 108 186 563 749

alluxio 295 66 143 582 725

jooby 65 54 129 368 497

neo4j 686 124 191 273 464

flink 1,528 211 121 270 391

steady 99 20 78 267 345

para 29 6 82 224 306

jenkins 181 10 99 200 299

accumulo 399 18 121 158 279

selenese-runner-java 21 1 22 114 136

undertow 150 10 28 107 135

handlebars.java 22 11 36 84 120

error-prone 225 10 61 53 114

async-http-client 29 14 40 69 109

couchdb-lucene 3.9 1 25 51 76

mybatis-3 62 1 27 37 64

launch4j-maven-plugin 1.5 1 12 50 62

checkstyle 304 1 22 35 57

orika 43 5 25 30 55

commons-configuration 51 1 33 21 54

spoon 155 1 22 32 54

webcam-capture 19 2 16 35 51

javaparser 181 11 18 33 51

CoreNLP 615 3 23 18 41

jacop 89 1 6 5 11

jHiccup 0.7 1 2 1 3

DD: number of unique direct dependencies; ID: number of unique indirect dependencies; kLOC: number of thousands of lines of
application code; Maven modules: number of Maven modules; Total: total number of unique dependencies. Rows are ordered with respect
to the total number of dependencies in the projects.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 01,2023 at 05:07:41 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 7

retrieve all of the dependencies in an application’s soft-
ware supply chain.

Experimental Results
We followed our protocol and ran six SBOM produc-
tion tools on 26 Java projects. The results provide key
insights about the tools’ behavior as well as the quality
of the produced SBOMs.

Producer Insights
Table 1 summarizes the essential features of SBOM pro-
ducers that we have identified, and to what extent these
features are present in the tools.

Checksum diversity. Table 1 summarizes the number
of different checksum algorithms that each SBOM pro-
ducer uses. The production of different checksums is use-
ful because it maximizes the likelihood of integrating the
SBOMs with third-party tools that expect a specific check-
sum. Three producers compute eight types of checksums
for each dependency jar: CycloneDX-Generator,
CycloneDX-Maven-Plugin, and Depscan provide
md5, sha1, sha256, sha512, sha384, sha3-384, sha3-256,
and sha3-512 for each dependency in the SBOM. One
producer, OpenRewrite, does not provide any check-
sums, which is considered a serious limitation. Our
observations help practitioners to select SBOM produc-
ers accordingly.

Dependency hierarchy. An essential feature of SBOM
producers is eliciting all of the dependencies in the soft-
ware supply chain of an application. Beyond a flat list,
some analyses—such as vulnerability analysis, debloat-
ing, and installation via package managers—require
the complete tree of relationships among the different
components in the chain. The CycloneDX specification
provides the attribute dependencies to serve this pur-
pose. We note that five of six producers report the hier-
archy among dependencies. However, jbom cannot link
the dependencies together since it acts after the build
step where some dependencies cannot be resolved.
For example, for mybatis-3, com.fasterxml.
jackson.core:jackson-core version 2.13.2 is
an indirect dependency at the fourth level. The pro-
ducers Build-Info-Go, CycloneDX-Generator,
CycloneDX-Maven-Plugin, and Depscan report this
information correctly.

Reproducibility. SBOMs are meant to be reference
documents, and potentially may become legally bind-
ing. To that extent, one must produce them reliably.
In that respect, we claim that SBOM production
should be reproducible. We say an SBOM producer is

reproducible if it generates strictly identical files con-
tentwise over multiple runs. We excluded metadata,
such as timestamp. We generated SBOMs twice for
each producer and found that Build-Info-Go and jbom
are not reproducible: they do not preserve the order
of SBOM elements. Moreover, jbom also produces
different hashes of the components. While this is a
fixable engineering issue, it highlights the necessity to
consolidate the maturity of SBOM tooling before it
can be relied upon in court.

Production step. There are six steps at which an SBOM
could be produced: design, source, build, analyzed,
deployed, and runtime (https://www.cisa.gov/sites/
default/files/2023-04/sbom-types-document-508c.
pdf). The considered SBOM producers do not pro-
duce SBOM at the same step. We report the step
at which SBOM is produced per the documenta-
tion provided by the developers. Build-Info-Go,
CycloneDX-Generator, CycloneDX-Maven-Plugin, and
OpenRewrite produce an SBOM at the build step.
The build step can further be broken down into more
steps, as Maven splits a build into multiple phases
(https://maven.apache.org/guides/introduction/
introduction-to-the-lifecycle.html). Build-Info-Go
produces an SBOM when the Maven build system is
compiling. Meanwhile, the other three producers per-
form SBOM production when the artifact, JAR, for
example, is being generated. This phase is also called
package in Maven. Depscan produces an SBOM from
the source files. Finally, jbom produces an SBOM by
analyzing the final jar file, corresponding to the Cyber-
security and Infrastructure Security Agency (CISA)
“Analyzed” step.

These different steps are significant regarding the
production of SBOMs, since the information available
about the software supply chain varies at these dif-
ferent stages. Indeed, software projects go through a
build/continuous integration/continuous deployment
life cycle and, at every point, the information available
is different.13 For example, before the build phase, an
SBOM producer cannot know what will be finally
included in the binary. Similarly, after the build, infor-
mation about some dependencies may be lost because
the build system has removed redundant or unneces-
sary dependencies.

The CycloneDX standard does not address this
aspect, and the producers do not clearly document or
motivate the phase they consider. SBOM producers
should state the production step at which they collect
information about the software supply chain to help
SBOM consumers decide which SBOM is most appro-
priate for their needs.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 01,2023 at 05:07:41 UTC from IEEE Xplore. Restrictions apply.

https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

8 IEEE Security & Privacy Month/Month 2023

Scopes. The CycloneDX JSON specification supports
an optional scope attribute for each component. This
attribute can take the values required, optional,
or excluded, based on the dependency’s behavior
at runtime. According to the specification (https://
github.com/CycloneDX/specification/blob/1.4/
schema/bom-1.4.xsd\#L514), the required scope
denotes that the component is required at runtime;
the optional scope denotes components that “[…]
are not capable of being called due to them not be
installed or otherwise accessible by any means.”
Finally, excluded components “[…] provide the
ability to document component usage for test and
other nonruntime purposes.”

We observed significant differences among SBOM
producers regarding the identification of scopes. As an
example, org.slf4j:slf4j-api@2.0.1 is a dependency
of mybatis-3. CycloneDX-Generator, CycloneDX-
Maven-Plugin, and Depscan report its scope as optional,
OpenRewrite reports the scope as required, while
the other producers report no scope at all.

We note that each SBOM producer only uses a subset
of the allowed scope values. CycloneDX-Generator,
CycloneDX-Maven-Plugin, and Depscan either
label components as optional or provide no scope
value. jbom labels all components as required.
OpenRewrite marks components as either optional
or required, and Build-Info-Go does not report
scope for any component. It is not clear from the docu-
mentation of the producers how these values are com-
puted. Due to the lack of clarity in the standard and the
absence of ground truth, it is impossible to determine
which one is correct.

Providing clear information as to how and when in
the software lifecycle a component is used—the scope
as we understand the standard—is an important feature
of an SBOM. However, our results show that no SBOM
consumer can rely on the scope values produced by
current SBOM producers.

Dependency Identification Accuracy
Figure 2 shows the accuracy of the considered SBOM
producers per our ground truth. The x axis is the preci-
sion and the y axis is the recall for each producer. A point
• represents the accuracy of dependencies captured
in the SBOM and the isolines represent the standard
F1-score combining precision and recall. We report
the average precision and recall of an SBOM producer,
over all projects. For our experiment, we performed
156 executions of SBOM producers, which produced
119 SBOMs and 37 failures. For the latter, SBOMs were
either empty or contained no dependency because the
build failed or the producer failed. We excluded these
data points from our study.

At the bottom left of Figure 2, jbom has the lowest
precision and recall. Next, OpenRewrite has the highest
precision of 96%, but with a low recall. Higher up in the
figure, we find CycloneDX-Maven-Plugin with 92%
precision and 66% recall; CycloneDX-Generator and
Depscan perform very similarly. Finally, Build-Info-
Go is at the top right corner with the best score of detected
dependencies according to the dataset and ground truth.

We highlight five main reasons why producers fall
short on creating a fully-accurate SBOM with respect
to the ground truth: exclusion of test dependencies
from the SBOM; failure to resolve maven properties
(https://maven.apache.org/pom.html#Properties);
failure to correctly resolve the version of a dependency;
advanced dependency resolution techniques; and the
project itself is counted as a dependency. We elaborate
on each of these points below.

SBOM producers like OpenRewrite and CycloneDX
-Maven-Plugin do not include test dependencies
by default in the SBOM they produce. This explains
the low recall of 39% and 66%, respectively. Although
Build-Info-Go has the highest F1-score, we observe
that it misses test dependencies for some projects, while
achieving 100% recall on some other projects, for exam-
ple jenkins, which clearly contains test dependencies.

When a producer does not correctly resolve Maven
properties, the SBOM cannot be compared to the
ground truth. For example, jbom reports version
${guava.version} for com.google.guava:guava,
instead of 31.0.1-jre, for alluxio. This eventually
yields a list of dependencies that are not comparable
with the list of dependencies in the ground truth.

To verify that a dependency is correctly reported,
the groupId, artifactId, and version must match.
However, jbom incorrectly retrieves the version for
some dependencies. For example, it reports version
0.4 of com.pholser:junit-quickcheck-core for
CoreNLP, which does not exist in the ground truth.
OpenRewrite faces similar challenges, reporting ver-
sion 4.1.78.Final for io.netty:netty-handler
in selenese-runner-java, while the correct version
is 4.1.79.Final. A major difficulty for retrieving the
version number occurs when different versions of the
same library appear as indirect dependencies at differ-
ent locations in the dependency tree. The correct ver-
sion identification must faithfully capture the actual
resolution embedded in the build system.

Moreover, the resolution of dependencies is affected
by the different ways SBOM producers use to retrieve
dependencies. Depscan and CycloneDX-Generator
perform equally on most projects. For example, they
both have the same results on selenese-runner-
java. However, Depscan correctly reports a depen-
dency ch.uzh.ifi.seal:changedistiller version

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 01,2023 at 05:07:41 UTC from IEEE Xplore. Restrictions apply.

https://github.com/CycloneDX/specification/blob/1.4/schema/bom-1.4.xsd\#L514
https://github.com/CycloneDX/specification/blob/1.4/schema/bom-1.4.xsd\#L514
https://github.com/CycloneDX/specification/blob/1.4/schema/bom-1.4.xsd\#L514
mailto:org.slf4j:slf4j-api@2.0.1
https://maven.apache.org/pom.html#Properties);

www.computer.org/security 9

0.0.4 for steady while CycloneDX-Generator
misses it. In this case, Depscan reports a dependency
that is stored as local jar in the project. This illustrates
that they both have different methods for resolving
dependencies. On the other hand, a closer look at the
architecture of Build-Info-Go shows that it relies
on the Maven application programming interfaces to
invoke the build and retrieve deeper information, thus
producing results that are closer to the ground truth.
This suggests that SBOM producers benefit from being
tailored to a language and a build system to plug deeply
into the build process to obtain correct information.

Finally, we have observed that some SBOMs include
the source project in the dependency list. This is yet
another reason why Build-Info-Go falls short of per-
fect alignment with the ground truth. It reports all depen-
dencies for selenese-runner-java, accumulo,
jenkins, checkstyle , error-prone , jooby ,
launch4j-maven-plugin, orika, and mybatis-3,
but in each of these cases, it incorrectly considers the
root module as a dependency.

Overall, Figure 2 shows significant differences
among the accuracy of the SBOMs produced by six
state-of-the-art producers. These results reveal discrep-
ancies in the list of dependencies in the SBOMs, with
different dependency versions and missed dependen-
cies. To better illustrate the different accuracy levels, we
manually analyzed a sample of the SBOMs. To sample
the files, we used the following criteria: We selected
SBOMs produced by Build-Info-Go and jbom as
these producers are at both ends of the accuracy range;
we analyzed SBOMs for project spoon, as three of the
authors are maintainers and hence have a deep under-
standing of this project. After applying the previous
filters, we sampled four SBOM files: two SBOMs with
the highest and lowest precision on dependencies, pro-
duced by Build-Info-Go and jbom, and two SBOMs
with the highest and lowest precision on direct depen-
dencies produced. This analysis was conducted by two
of the authors, both experts in Java programming. In the
case of discrepancies, they met and discussed to resolve
them and reach a conclusion.

The ground truth indicates that the single module of
spoon has 22 direct dependencies and 32 indirect ones
(see Table 2). The SBOM produced by Build-Info-Go
correctly contains 23 dependencies, and the only incor-
rect one is the fr.inria.gforge.spoon:spoon-core
itself. The precision is consequently high, but some
dependencies are clearly missing. Build-Info-Go
excludes test dependencies for spoon. On the other
hand, the SBOM produced by jbom reports 125 depen-
dencies, but only 29 of them are correct. The other 96
dependencies are the result of failure of jbom to resolve
Maven properties, versions, or metadata groupId.

The next two case studies come from Build-Info-
Go. First, we inspected the SBOM produced for
selenese-runner-java, and we found that
Build-Info-Go fetches all 136 dependencies. It also
includes the complete dependency tree hierarchy infor-
mation. Such precise information is important and
makes the SBOM consumable. However, we noticed
that even a solid producer such as Build-Info-Go
does not always achieve high precision. For example,
the SBOM of javaparser includes 14 correct depen-
dencies of 51. The majority of the dependencies the
producer misses are test-scoped. We observed an incon-
sistent behavior in Build-Info-Go as it sporadically
includes test dependencies.

The SBOM produced by jbom for async-http-
client contains only two correct dependencies of
109. On a deeper inspection, we observed that most
dependencies in the SBOM are identified with wrong
versions, resulting in poor precision. We analyzed the
SBOM of mybatis-3 produced by jbom. This SBOM
includes all the direct dependencies, precisely with cor-
rect version numbers as they were specified. However,
all indirect dependencies are missed.

Overlap analysis. Figure 3 is a Venn diagram that captures
the overlap between the SBOMs of CoreNLP generated
by the six SBOM producers. For each SBOM producer,
we used the set of true positives dependencies. Inter-
section areas mean producers have the same correct
dependency in their SBOM. Every SBOM producer has
a different color for their outline. For example, we use
yellow for CycloneDX-Generator. The labels indicate
the number of dependencies in the intersection area

Figure 2. Mean precision and mean recall of each SBOM
producer, excluding producer failures. big: Build-Info-
Go; cdxgen: CycloneDX-Generator; cdx-mp:
CycloneDX-Maven-Plugin; ds: Depscan; jbom:
jbom; or: OpenRewrite

100806040
Precision (%)

jbom

or

cdx-mp

big

ds

200
0

20

40

60

80

100

R
ec

al
l (

%
)

cdxgen

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 01,2023 at 05:07:41 UTC from IEEE Xplore. Restrictions apply.

10 IEEE Security & Privacy Month/Month 2023

and areas without a label are empty (meaning no depen-
dency in common). We have six different intersection
areas. The largest one is in the middle and shows that 20
dependencies are correctly identified by every producer.
The second-largest area indicates that 12 dependencies
are correctly captured by every producer except jbom.
For example, jbom misses javax.xml.bind:jaxb-api
because it either resolves an incorrect version, or it
resolves some dependencies as null. Two areas have only
one dependency in the intersection. One intersection
area contains the producers CycloneDX-Generator,
CycloneDX-Maven-Plugin, jbom, and Depscan,
which correctly capture junit:junit:4.13.1, while
OpenRewrite and Build-Info-Go miss it. OpenRe-
write entirely skips test dependencies by design, and
Build-Info-Go misses it. The other area is the inter-
section of CycloneDX-Maven-Plugin, CycloneDX-
Generator, and Depscan that correctly detect org.
hamcrest:hamcrest-core:1.3 in the SBOM. jbom
misses this dependency because it is included as a jar
with a relative path in the repository. It only identi-
fies correctly the groupId and artifactId, while the
version is set to null.

Experimental Limitation
It may be argued that SBOM producers should sim-
ply reuse the ground truth we consider as the basis
for SBOM production, that is the code of Maven in
our experiment. However, SBOMs can be extracted at

multiple steps, per our discussion on production steps
above. All of these extraction steps are valid and poten-
tially useful depending on the goal and the SBOM con-
sumption. Our ground truth only captures one single
production step. To that extent, some inaccuracies we
have reported may be due to the mismatch between the
ground truth and the targeted production steps of some
SBOM producers.

Take-Aways
In theory, extracting SBOMs is easy. Our results show
that in practice, this is not the case. In this section, we
discuss the benefits of our work for two target audi-
ences, Java developers and standardization committees,
and reason about the difficulty of confronting theory
and practice.

Java developers. Our in-depth study shows that
Build-Info-Go is the best SBOM producer for Java
developers. The reasons are that: 1. it produces differ-
ent checksums; 2. it supports dependency hierarchies;
and 3. it achieves the highest precision and recall thanks
to a tailored integration in Maven. Yet, Build-Info-
Go has room for improvement. First, the precision and
recall of 94% and 87%, respectively, can be increased,
with several important fixes. Second, assuming that the
standard clarifies the matter, it could also provide the
scope of the dependencies.

Standardization committees. Our study identifies two
shortcomings in the CycloneDX standard. The speci-
fication needs to require producers to specify the exact
step at which the SBOM is produced, and it must pre-
cisely define the notion of “scope,” which would help
both SBOM producers and consumers. We believe that
the latter is more important as the current state is ambig-
uous for developers, and ambiguity upstream typically
means incorrectness downstream.

Difficulty. Our study reveals difficulties of different
nature in producing complete and useful SBOMs.
The challenges of checksums, tree hierarchy, and
determinism can all be fixed with additional engi-
neering effort. However, clarifying the meaning of
production steps and scopes is fundamentally hard
because it requires the appropriate abstraction over
multiple build pipelines in different software stacks,
and this abstraction would require consensus in the
SBOM community.

Open Challenges
Our experiments revealed a number of challenges for
the accurate production and the effective consumption
of SBOMs.

Figure 3. Venn diagram of different SBOM producer
results. Only the true positives (correctly identified
dependencies) are compared. Intersection areas mean
that multiple SBOM producers have overlapping correct
dependencies. In this project, all producers correctly
identify a majority of 20 dependencies.

build−info−go

cdxgen

cyclonedx−mp

depscan

jbom

openrewrite

3

1

4

1

12

20

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 01,2023 at 05:07:41 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 11

SBOM and Tooling Dependencies
In our analysis, we observe that the bulk of SBOMs
consists of collecting accurate dependency trees for
an application project. Yet, the software supply chain
of an application is made of many more components.
For example, the version control system, the test-
ing and build tools, and the infrastructure to deploy
or distribute the application are key components of
the supply chain. In recent years we have witnessed
attacks, such as the Solarwinds incident, which suc-
cessfully compromised a system through these com-
ponents.3 The CycloneDX standard attempts to
document such information by providing the attri-
bute externalReferences. However, there is cur-
rently scarce support to generate these attributes and
our study shows that the SBOM producers imple-
ment this partially and with inconsistencies. The
comprehensive collection and documentation of all
tools involved in the supply chain is a pressing chal-
lenge to produce SBOMs that are amenable to thor-
ough hardening procedures.

SBOMs for Threat Analysis
In the longer term, the value of SBOMs will increase
with enabling automatic security analyses. For example,
one key challenge is to let SBOM producers qualify the
trust that one can have in the dependencies. This type of
assessment of the supply chain relates to threat modeling
and analysis, which is already considered good practice
for DevOps organizations.14 To guide which properties
an SBOM should include to support reasoning about
trust and threats, the attack taxonomy of Ladisa et al.3
constitutes an excellent starting point. Furthermore,
the work of Zahan et al.15 proposes concrete metrics
as warning signs of supply chain vulnerabilities that
could be mapped to the taxonomy, such as “too many
maintainers,” which can match the “take over legitimate
account” as well as the use of installation scripts, which
relates to the “running a malicious build job” technique.

SBOMs at Runtime
The next challenge will be to bring SBOMs online, as a
foundation to enforce security requirements at runtime.
For a given SBOM pertaining to a software application,
one can develop lightweight dynamic analysis to enforce
mandatory access control policies. This can be achieved
by monitoring the usage of dependencies at runtime and
ensuring that only the dependencies within the SBOM
are used by the application, thus preventing the entire
class of vulnerabilities that rely on the dynamic inclusion
of malicious code and packages. A major challenge for
such an approach is that it would require accurate static
information about dependencies, which is a challenging
endeavor, as we have shown in this article.

SBOMs in Other Software Stacks
The production of SBOMs for other software stacks is
likely to face similar challenges as those seen for Java.
We note that some programming ecosystems already
partially address certain challenges. For instance, eco-
systems, such as npm, Go, and Rust record checksums
for all publicly available dependencies in autogene-
rated lock files. In theory, the data provided by these
instruments can already be aggregated and used to
produce meaningful SBOMs. In the specific case of
Go, the lock file information can be validated against
an immutable, verifiable database, providing integrity
guarantees that can be leveraged in SBOMs. Nonethe-
less, a definitive solution is yet to be established and
widely used in either of these software stacks.

W e performed a deep dive into the meaning of
SBOMs and its realization in the Java ecosys-

tem, one of the most commonly used enterprise pro-
gramming languages. Our research findings indicate
strong interest and vibrant activity in this essential area
for software supply chain security and reliability. Yet, we
also revealed that SBOMs today rely on a technical foun-
dation that is unstable. Our empirical insights shed light
on important weaknesses that require attention, starting
with incorrect or incomplete dependency lists recov-
ered in SBOMs. These findings call for further work in
clarifying the SBOM standards, as well for more work
on improving the quality of SBOM producers’ output.
Studying SBOM quality for other languages (e.g., Rust)
and for other SBOM formats (e.g., SPDX) would be
very valuable for the community. Both academia and
industry agree that SBOMs promise great benefits; now
the time is ripe to all work together to unleash their full
potential.

Acknowledgment
This work was supported by the Consistent Hardening
and Analysis of Software Supply Chains project funded
by the Swedish Foundation for Strategic Research, the
WebInspector project funded by the Swedish Research
Council, as well as by the Wallenberg Autonomous Sys-
tems and Software Program funded by the Knut and
Alice Wallenberg Foundation.

References
 1. R. Cox, “Surviving software dependencies,” Commun.

ACM, vol. 62, no. 9, pp. 36–43, 2019, doi: 10.1145/
3347446.

 2. A. Gkortzis, D. Feitosa, and D. Spinellis, “Software reuse
cuts both ways: An empirical analysis of its relationship
with security vulnerabilities,” J. Syst. Softw., vol. 172, Feb.
2021, Art. no. 110653, doi: 10.1016/j.jss.2020.110653.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 01,2023 at 05:07:41 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/3347446
http://dx.doi.org/10.1145/3347446
http://dx.doi.org/10.1016/j.jss.2020.110653

12 IEEE Security & Privacy Month/Month 2023

 3. P. Ladisa, H. Plate, M. Martinez, and O. Barais, “SoK: Tax-
onomy of attacks on open-source software supply chains,”
in Proc. IEEE Symp. Secur. Privacy (SP), May 2023, pp.
1509–1526, doi: 10.1109/SP46215.2023.10179304.

 4. C. Rezk, Y. Kamei, and S. Mcintosh, “The ghost com-
mit problem when identifying fix-inducing changes: An
empirical study of apache projects,” IEEE Trans. Softw.
Eng., vol. 48, no. 9, pp. 3297–3309, Sep. 2022, doi:
10.1109/TSE.2021.3087419.

 5. N. Harutyunyan, “Managing your open source supply
chain-why and how?” Computer, vol. 53, no. 6, pp. 77–81,
Jun. 2020, doi: 10.1109/MC.2020.2983530.

 6. K. Nikitin et al., “CHAINIAC: Proactive software-update
transparency via collectively signed skipchains and veri-
fied builds,” in Proc. 26th USENIX Secur. Symp., 2017, pp.
1271–1287.

 7. L. Tal. “The Log4j vulnerability and its impact on
software supply chain security.” Snyk. Accessed:
Mar. 17, 2023. [Online]. Available: https://snyk.
i o / b l o g / l o g 4 j - v u l n e r a b i l i t y - s o f t w a r e - s u p p l y
-chain-security-log4shell/

 8. “Survey of existing SBOM formats and standards,” United
States Department of Commerce – National Telecommuni-
cations and Information Administration, Washington, DC,
USA, 2021. Accessed: Mar. 17, 2023. [Online]. Available:
https://www.ntia.gov/files/ntia/publications/sbom
_formats_survey-version-2021.pdf

 9. C. Soto-Valero, M. Monperrus, and B. Baudry, “The mul-
tibillion dollar software supply chain of Ethereum,” Com-
puter, vol. 55, no. 10, pp. 26–34, Oct. 2022, doi: 10.1109/
MC.2022.3175542.

 10. F. Massacci and I. Pashchenko, “Technical leverage:
Dependencies are a mixed blessing,” IEEE Security Pri-
vacy, vol. 19, no. 3, pp. 58–62, May/Jun. 2021, doi:
10.1109/MSEC.2021.3065627.

 11. “The minimum elements for a software bill of materi-
als,” United States Department of Commerce – National
Telecommunications and Information Administration,
Washington, DC, USA, 2021. Accessed: Mar. 17, 2023.
[Online]. Available: https://www.ntia.gov/report/2021/
minimum-elements-software-bill-materials-sbom

 12. C. Soto-Valero, N. Harrand, M. Monperrus, and B. Baudry,
“A comprehensive study of bloated dependencies in the
Maven ecosystem,” Empirical Softw. Eng., vol. 26, no. 3, pp.
1–44, May 2021, doi: 10.1007/s10664-020-09914-8.

 13. B. Xia, T. Bi, Z. Xing, Q. Lu, and L. Zhu, “An empiri-
cal study on software bill of materials: Where we stand
and the road ahead,” in Proc. 45th Int. Conf. Softw. Eng.
(ICSE), May 2023, pp. 2630–2642, doi: 10.1109/
ICSE48619.2023.00219.

 14. S. Rafi, W. Yu, M. A. Akbar, S. Mahmood, A. Alsanad, and
A. Gumaei, “Readiness model for devops implementation
in software organizations,” J. Softw., Evol. Process, vol. 33,
no. 4, Apr. 2021, Art. no. e2323, doi: 10.1002/smr.2323.

 15. N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C.
Maddila, and L. Williams, “What are weak links in the
npm supply chain?” in Proc. 44th Int. Conf. Softw. Eng.,
Softw. Eng. Pract. (ICSE-SEIP), 2022, pp. 331–340, doi:
10.1145/3510457.3513044.

Musard Balliu is an associate professor at the School of
Electrical Engineering and Computer Science at KTH
Royal Institute of Technology, 114 28 Stockholm,
Sweden. His research interests include computer
security, programming languages, formal methods,
and software engineering. Balliu received a Ph.D. in
computer science from KTH Royal Institute of Tech-
nology, Sweden. Contact him at musard@kth.se.

Benoit Baudry is a professor of software technology at
KTH Royal Institute of Technology, 114 28 Stock-
holm, Sweden. His research interests include software
engineering, focusing on software testing and auto-
matic diversification. Baudry received a Ph.D. from the
University of Rennes. Contact him at baudry@kth.se.

Sofia Bobadilla is a research engineer at the KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden.
Her research interests include bots in software develop-
ment, software reliability, data science, and multimedia
information retrieval. Bobadilla received a B.A. in com-
puter science from the University of Chile, Santiago,
Chile. Contact her at sofbob@kth.se.

Mathias Ekstedt is a professor of industrial information
and control systems at the KTH Royal Institute of
Technology, 114 28 Stockholm, Sweden. His research
interests include the intersection of cybersecurity and
software systems architecture modeling and analysis.
Ekstedt received a Ph.D. from the KTH Royal Insti-
tute of Technology. He is the cofounder and director
of KTH’s Master program in cybersecurity. Contact
him at mekstedt@kth.se.

Martin Monperrus is a professor of software technol-
ogy at the KTH Royal Institute of Technology, 114
28 Stockholm, Sweden. His research interests include
software engineering, with a focus on software reli-
ability. Monperrus received a Ph.D. from the Uni-
versity of Rennes, France. He is a Member of IEEE.
Contact him at monperrus@kth.se.

Javier Ron is a Ph.D. student at the KTH Royal Insti-
tute of Technology, 114 28 Stockholm, Sweden. His
research interests include software dependability and
distributed systems. Ron received an M.Sc. from the
KTH Royal Institute of Technology, Sweden. Contact
him at javierro@kth.se.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 01,2023 at 05:07:41 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TSE.2021.3087419
http://dx.doi.org/10.1109/MC.2020.2983530
https://snyk.io/blog/log4j-vulnerability-software-supply-chain-security-log4shell/
https://snyk.io/blog/log4j-vulnerability-software-supply-chain-security-log4shell/
https://snyk.io/blog/log4j-vulnerability-software-supply-chain-security-log4shell/
https://www.ntia.gov/files/ntia/publications/sbom_formats_survey-version-2021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_formats_survey-version-2021.pdf
http://dx.doi.org/10.1109/MC.2022.3175542
http://dx.doi.org/10.1109/MC.2022.3175542
http://dx.doi.org/10.1109/MSEC.2021.3065627
https://www.ntia.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.gov/report/2021/minimum-elements-software-bill-materials-sbom
http://dx.doi.org/10.1007/s10664-020-09914-8
http://dx.doi.org/10.1002/smr.2323
http://dx.doi.org/10.1145/3510457.3513044
mailto:musard@kth.se
mailto:baudry@kth.se
mailto:sofbob%40kth.se?subject=
mailto:mekstedt%40kth.se?subject=
mailto:monperrus@kth.se
mailto:javierro@kth.se

www.computer.org/security 13

Aman Sharma is a Ph.D. student at the KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden.
His research interests include exploring techniques
to secure software supply chains. Sharma received a
Bachelor of Technology from the Indian Institute of
Technology, Roorkee, India. Contact him at amansha@
kth.se.

Gabriel Skoglund is an M.A. student at the KTH
Royal Institute of Technology, 114 28 Stockholm,
Sweden. His research interests include computer
security and cryptography. Skoglund received a
B.Sc. in computer science from the KTH Royal
Institute of Technology, Sweden. Contact him at
gabsko@kth.se.

César Soto-Valero is a software engineer working in the
financial sector in Stockholm, Sweden. His research
interests include code quality, code evolution, and
blockchain technologies. Soto-Valero received a Ph.D.
from the KTH Royal Institute of Technology. Contact
him at cesarsotovalero@gmail.com.

Martin Wittlinger is a research engineer at the KTH
Royal Institute of Technology, 114 28 Stockholm,
Sweden. His research interests include Java code
analysis, transformation, and build tools. Wit-
tlinger received an M.Sc. in computer science from
Karlsruher Institute of Technology, Karlsruhe,
Germany. Contact him at marwit@kth.se.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on September 01,2023 at 05:07:41 UTC from IEEE Xplore. Restrictions apply.

mailto:amansha@kth.se
mailto:amansha@kth.se
mailto:gabsko@kth.se
mailto:cesarsotovalero@gmail.com
mailto:marwit@kth.se

