
Putting Constructive Alignment to Work:
A Hands-on Experience with a First-Year

Programming Course

Musard Balliu
School of Electrical Engineering and Computer Science

KTH Royal Institute of Technology

Abstract

This report discusses our experience with using Constructive Align-
ment (CA) for developing a Programming course for first-year Com-
puter Science students. Starting from an historical perspective, we
discuss the main challenges and proposed changes towards aligning
different course activities, and evaluate the corresponding outcomes in
terms of student satisfaction and examination results. We also high-
light new challenges and difficulties that we plan to address in the
next run of the course. Based on this experience, we conclude that
CA is an excellent theory for achieving student-oriented learning.

1 Introduction

In this section, we provide a high-level overview of the project. We first de-
scribe the context and identify the main issues, and then present the project
idea and goals.

Background Programming is one of the very first courses which is taught
to first year bachelor students in the Software Engineering and Manage-
ment programme at Gothenburg University. The objective of the course
is to introduce students with programming concepts, with special focus on
object-oriented programming and the Java programming language. The
teaching process consists of class lectures (6 hours/week) and lab sessions
(6 hours/week), while examination is carried out through programming as-
signments and a final written exam. Besides the underlying programming
concepts, the course is very much hands-on, hence practical exercises and

1



learn-by-doing are important aspect of the course. In general, the course
benefits from about 100 students and 10 teaching assistants (TAs).

Historical data The Programming course had been running for a number of
years before we were assigned to teach it for the first time. Both quantitative
and qualitative indicators were not very encouraging, and the previous teach-
ers and the program director were aware of these issues. The pass rate in the
previous instances of the course had been quite low. The course benefited
from very good teaching material and lecture slides, and frontal lectures had
an interesting combination of theory and on-the-fly live programming. The
lab sessions were generally handled by teaching assistants (second/third year
bachelor students) who had taken the course in the previous years. Students
were generally expected to go to the lab sessions, ask questions to the TAs
and work on their programming assignments. The participation of students
in the lab sessions was very low. The programming assignments were graded
offline by the TAs and the feedback was also provided offline. In addition, the
learning outcomes were very ambitious and demanding for the time allocated
to the course (less than two months).

Problem analysis and definition In collaboration with the program direc-
tor and the previous course instructor, we went through a detailed analysis
of the course and identified a number of issues that required immediate in-
tervention. This was done by analyzing previous course evaluations, talking
to students and leveraging the experience of the course responsible.

First and foremost, we realized that the learning outcomes were high
for a very first programming course which was taught for less than two
months. The requirements put high expectations on students’ independent
work, which resulted in a very high workload for the students. Second, the
class was very heterogeneous in terms of prior knowledge and skills. Al-
most half of the students had no prior programming experience and many
of them lacked the mathematical background that is usually required for a
programming course. This had made it quite challenging to determine the
right pace of the course, get accurate feedback and identify possible issues
that could arise during the course. Many students had difficulties with basic
problem solving tasks, which made their learning experience even more chal-
lenging. Third, lectures followed a largely traditional format, which made it
challenging for students to concentrate for the whole 3-hour lecture. Fourth,
we found out that it was necessary for the teacher to always be present in
the lab sessions in order to propose programming exercises and monitor the
progress of the students, in addition to the precious help from the TAs. Since
home assignments were mandatory, students would put most of their effort
to the programming assignments, once they were posted online, and ignored

2



doing the exercises. Finally, the offline grading of the assignments was con-
sidered problematic, as the students had no interaction with the TAs during
the grading process.

Idea in a nutshell This project seeks to provide a better alignment be-
tween different course activities, including lectures, lab sessions and home
assignments, to maximize the fulfillment of learning objectives of the course.
To this end, we investigate different activities that allow students to engage
in interaction with each other and leverage elements of active learning to
achieve the course objectives. As a result, teachers will receive early feed-
back on possible issues with the course and act accordingly to solve them.
The pedagogical idea is based on the theory of constructive alignment, which
provides a principled way of aligning the learning outcomes (what the stu-
dents are supposed to understand, be able to do and be able to relate to at
the end of the course), teaching and learning activities (the different activ-
ities taking place during the course, i.e., lectures, lab sessions, assignments
and examination), and the formal examination.

In a nutshell, we propose the following activities and changes to the
course: (a) work on student motivation and enthusiasm; (b) anonymous
online quizzes to check students’ progress; (c) training of problem solving
capabilities; (d) quick recaps at the beginning of each lecture (e) lab exer-
cises to help students completing the graded home assignments; (f) enforce
work-in-group and student presentations of the home assignments, and (g)
revision of the learning outcomes as to make them more efficient towards
student learning.

Goals The main goal of this project is to apply the theory of constructive
alignment at the letter, providing a student-oriented learning environment
and increasing the qualitative and quantitative indicators of the course. To
this end, we set out to achieve the following goals:

• Enhance students’ experience by introducing elements of active learning

• Help teachers to identify possible issues and get feedback early on

• Provide a better alignment of course activities towards the fulfillment
of learning objectives

• Increase cooperation between peers and train presentation skills

• Make the learning experience more productive, interactive and fun

• Increase the course quality by improving on quantitative and quanti-
tative indicators

3



2 Methods and Results

In this section, we give a brief introduction of the pedagogical theory that we
use in the project, and provide a detailed explanation of how such theory was
implemented for our course. Finally, we conclude by discussing the results.

2.1 Constructive Alignment

Learning theories are systematic conceptual frameworks that explain the how
the students learn, namely how knowledge is absorbed, processed and re-
tained during the learning process. In general, cognitive, emotional, and en-
vironmental influences, as well as prior experience, all play an important role
in how understanding is acquired or changed, and knowledge and skills are re-
tained [9]. Learning theories comprise a number of teaching philosophies that
range from teacher-focused approaches to student-focused approaches [11].
Constructivism preaches that the ability to learn relies to a large extent
on what the learner already knows and understands, and the acquisition of
knowledge should be an individually tailored process of construction. In this
project we investigate the theory of the constructive alignment [3, 4, 2, 12]
as depicted in Figure 1. In essence, CA states that the best way of creating
knowledge is by means of activities that students engage in, rather than by
direct knowledge transfer from the teacher to the student. The role of the
teacher is seen as a facilitator that produces teaching activities and creates
an environment that enables students to engage in deep learning.

To this end, CA provides a aligned system of instruction, a web of consis-
tency, where students are ”forced” to engage in appropriate learning activi-
ties. Figure 1a describes the main components of the theory of constructive
alignment. By putting the student activities on the spotlight, the teacher has
to be clear about the learning objectives and state clearly what the students
should learn. Clear learning objectives should drive teaching and learning
activities, namely activities that encourage students to pursue learning in a
way that is likely to achieve the objectives. Furthermore, clear objectives
should also drive feedback and assessment methods, namely methods that
allow the teacher to assess how well the students have learned and what
feedback needs to be provided. Figure 1b provides a fine-grained represen-
tation of the constructive alignment ingredients which we have fully applied
to designing a programming course.

4



(a) Idea (b) Activities

Figure 1: Constructive Alignment

2.2 Putting Constructive Alignment to Work

The constructive alignment sun in Figure 1b defines the building blocks for
our application of the theory to a concrete scenario: the use of CA for devel-
oping a programming course. An excellent step by step guide on designing a
course for constructive alignment can be found in [12].

2.2.1 Learning Outcome Revision

In constructive alignment, learning outcomes are a key player in defining
course activities, assessment and feedback. They provide a clear statement
of what a student is expected to be able to do at the end of a period of
learning, which can be a course, a session, an assignment or any other activity.
Learning outcomes describe and quantify the minimum achievement, i.e., the
goals, a student needs to demonstrate in order to pass the course [1, 4].

Based on the data from past experience, we decide to revise the learning
outcomes at multiple levels. The course syllabus contained topics that were
considered too advanced for a first year programming course, and for the
short duration of the course itself. Moreover, some of the outcomes over-
lapped with courses running in parallel with our course. The first revision of
the learning outcomes was done at the course level by making them more re-
alistic and reducing overlaps with other courses. This change enabled a new
structure for the entire programme and yielded a new basic course for training
problem solving skills. We propagated the changes to the level of class lec-
tures, exercise sessions and home assignments. Interestingly, the changes did
not affect the final examination as the removed material was never assessed
in the course. This gave us more confidence that the revision was indeed
needed. We also revised the learning outcomes of the exercise sessions and

5



home assignments by essentially aligning the two. This increased students’
participation in the exercise sessions as it would allow them to train their
programming skills and get the required knowledge for solving the home as-
signments. The revision of the intended learning outcome at the course level
is reported in Appendix ??.

2.2.2 Student Profile Analysis

At the beginning of the course, we performed a student profile analysis with
the aim of identifying prior knowledge and expectations, and clarifying what
we expected from the students in order to succeed in the course. Based
on the past experience, we were well aware of the gap in prior knowledge
between students. To this end, we implemented the following changes: (i) We
chose a course book that follows a problem solving approach to introducing
programming concepts. This allowed the students to catch up with the basic
mathematical and logical reasoning that is needed for a programming course.
(ii) We introduced exercises that were aimed at training such skills, both
during the lectures and exercise sessions. (iii) We decided to have regular
meetings with course representatives in order to get feedback about the actual
effects of these changes.

Moreover, a very important factor to success was the motivation and en-
thusiasm of the teacher and TAs in introducing the topics to the students.
Programming is a very important course that affects the entire student ex-
perience at the university, as many other courses depend on it strongly. We
worked hard to motivate the students and make them like programming
from the very beginning. This was done by encouraging and helping students
whenever they experienced failures, and by introducing cool applications that
would get them excited about programming.

Finally, we created a safe and student-friendly learning environment based
on collaboration and inclusion, which encouraged students to ask questions
and be active during the course activities. We did this by having small chats
during the breaks, stimulating interaction and discussion, and, importantly,
setting out the challenge of learning students’ names. This last choice al-
lowed to break up the ice between the students and the teacher, thus getting
everyone aboard towards the common goal: learning how to program.

2.2.3 Content and Resource Revision

The first learning experience at the university level can be intimidating for
many students. To facilitate the first impact, special care was dedicated to
information dissemination. We put additional effort on setting up a simple

6



and well structured course web page, which made it easier for students to
find course-related information. This effort was highly appreciated and ac-
knowledged by many students in the course evaluation. Moreover, the course
benefited from 10 TAs, who participated to the exercise sessions and helped
students with exercises and home assignments. We decided to have a com-
mon email address for the course, accessible to the TAs and the teacher,
where students could send in their questions and get fast feedback. In ad-
dition, TAs leveraged social media like Slack and Facebook to communicate
with the students and answer their questions.

2.2.4 Revision of Activities

To properly map the course activities to the learning outcomes, we intro-
duced several new activities. First, we leveraged elements of active learning
to increase students’ interaction during the class lectures. The main new
activity were anonymous online quizzes through the Kahoot system. We pro-
posed quizzes after the completion of every milestone of the course. Quizzes
provided an interactive and fun environment during the lectures, but more
importantly, they allowed students and the teacher to get a general impres-
sion of the main difficulties, for then trying to explain them better in the
following lectures. Furthermore, we introduced quick recaps at the begin-
ning of each lecture in order to connect everything to the main picture and
present the learning outcomes for the given lecture. Together with live cod-
ing and problem solving sessions, these changes were highly appreciated by
the students. We made large use of the whiteboard to explain several thresh-
old concepts [8, 7] like references, arrays, call by value semantics, static
and instance variables/methods. This turned out to be a crucial choice that
helped students understand the main concepts way even before getting into
the nitty-gritty programming features. We established regular meetings with
the TAs to discuss the set of exercises before each session, and define common
guidelines for the evaluation of programming assignments. We strongly en-
couraged students to work in groups of two, and enforced the requirement of
presenting home assignments to the TAs. This choice increased collaboration
between students and trained their presentation skills.

2.2.5 Medium of Instruction

As mentioned earlier, the course benefited from a large array of instruction
mediums including web platforms, social media, whiteboard, email and inte-
grated development environments for programming, e.g., Eclipse IDE.

7



2.2.6 Assessment and Feedback

We sought a combination of formal and informal assessment methods and
increased the number of feedback channels [5, 10, 6]. During the lectures,
quizzes became an excellent tool both for the students and the teacher to
get feedback about their progress. Furthermore, exercise sessions provided
another channel for feedback exchange. Oftentimes, we organized small infor-
mal competitions between students to solve programming exercises. At the
end of each session, we published sample solutions that would allow students
to compare their solution with ours. The informal nature of such activi-
ties created a great learning environment, without the pressure of formal
examination. We chose the exercises in order to cover the intended learning
outcomes of the given session, but also to help students solving the graded
assignments. This enabled a smooth transition between informal to formal
assessment, thus making the assignment grading an pleasant opportunity for
students to show off their programming capabilities. The group presentation
of the assignments created another feedback channel where students could
improve their presentation skills and get immediate feedback. We did not
change the written exam as we were confident that it was already covering
the majority of the learning outcomes that we wanted to examine. Finally,
we had a revision session to allow students discuss their exam performance
with the teacher.

2.3 Results

After analyzing the student evaluations and the examination results, we
found out that the constructive alignment of the programming course pro-
duced excellent results. 92% of the students evaluated the course as good
and excellent, while 70% of the students managed to pass the course after
the first examination. In the evaluation, we asked specific questions about
the proposed changes and activities and they were highly appreciated by the
large majority of the students (over 85%). Many students felt enthusiastic
about programming and all the activities in the course. Here we report some
comments from the students’ perspective:

• ”The teacher was so caring in the matter of our learning and he was
really focused on the study goals.”

• ”The teacher was always there to answer my questions. The TAs were
very helpful doing a remarkable job (I will bring the idea of having TAs
to my country)!”

8



• ”The teaching was very interactive and easy to follow and keep up with.
Everything was explained at a level fit for both beginners and people
with some experience. It was by far the most fun and fulfilling course
I’ve ever had.”

• ”I simply love the exercise sessions and the assignments! Great way to
keep the engagement levels up and good practice for the exam.”

• ”The Kahoot questionnaires were quite a nice start of the wednesday
lectures as well as a fun way to test the progress. The course structure
was good and should stay relatively the same. ”

• ”Almost everything. The TA sessions. Magic to have all that support -
the best teacher/coach. The ”we love programming” approach is really
inspiring. Very good to have one lecture and repeat it next time.”

On the other hand, we received several excellent suggestions that we will
address for the next run of the course.

• ”The course was going a bit fast so that put us in so much pressure
trying to catch up with everything.”

• ”The kahoot! quizzes! They were a lovely medium, but I’d have loved
a little introduction to the medium prior.”

• ”The format is good. The only issue with some students is that work-
ing in crowded places is not their thing, thus they found another less
crowded room or they skipped the lab altogether, working from home.”

• ”The learning curve should be smoothed out and easier tasks should
be given first and the difficulty then ramped up as time progresses.”

• ”Make a longer period for the course!”

References

[1] Anderson, L.W., Krathwohl, D.R., Airasian, P., Cruikshank, K., Mayer,
R., Pintrich, P., Raths, J., Wittrock, M.: A taxonomy for learning,
teaching and assessing: A revision of bloom’s taxonomy. New York.
Longman Publishing. Artz, AF, & Armour-Thomas, E.(1992). pp. 137–
175 (2001)

[2] Bain, K.: What the best college teachers do. Harvard University Press
(2011)

9



[3] Biggs, J.: What the student does: Teaching for enhanced learning.
Higher education research & development 18(1), 57–75 (1999)

[4] Biggs, J., Tang, C.: Teaching for quality learning at university (society
for research into higher education) (2007)

[5] Gibbs, G.: Using assessment strategically to change the way students
learn. Assessment matters in higher education 41 (1999)

[6] Kember, D.: Action learning and action research: Improving the quality
of teaching and learning. Psychology Press (2000)

[7] Land, R., Cousin, G., Meyer, J.H., Davies, P.: Threshold concepts and
troublesome knowledge (3): implications for course design and eval-
uation. Improving student learning diversity and inclusivity 4, 53–64
(2005)

[8] Meyer, J.H., Land, R.: Threshold concepts and troublesome knowledge.
Overcoming barriers to student understanding: Threshold concepts and
troublesome knowledge pp. 3–18 (2006)

[9] Ormrod, J.E.: Human Learning: Pearson New International Edition.
Pearson Higher Ed (2013)

[10] Sadler, D.R.: Formative assessment and the design of instructional sys-
tems. Instructional science 18(2), 119–144 (1989)

[11] Trigwell, K.: Judging university teaching. International Journal for Aca-
demic Development 6(1), 65–73 (2001)

[12] Weurlander, M.: Designing a course for meaningful learning. A step by
step guide. CME guide (1) (2006)

10


