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Abstract

Hyperproperties specify relations between two or more executions of a program. Many classical security
definitions are stated as hyperproperties. Specification logics like epistemic- and hyper-temporal logics
provide two very different alternatives for specification of such hyperproperties. While epistemic-temporal
logics (like KCTL*) use a knowledge modality to reason about all alternate unnamed paths in a coarse-
grained, hyper-temporal logics (like HyperCTL*) take a more fine-grained approach by allowing explicit
quantification over named paths. Prior work has shown that the two approaches are not equally expressive,
there are examples of formulae expressible in one but not in the other. In this work, we show that is possible
to subsume HyperCTL* in KCTL* with proposition quantification.

1 Introduction

Hyperproperties [2] specify relations between two or more executions of a program. Many classical security
definitions are stated as hyperproperties. Specification logics like epistemic- and hyper-temporal logics provide
two very different alternatives for specification of such hyperproperties. While epistemic-temporal logics (like
KCTL*[1]) use a knowledge modality to reason about all alternate unnamed paths in a coarse-grained manner,
hyper-temporal logics (like HyperCTL* [2]) take a more fine-grained approach by allowing explicit quantification
over named paths. Prior work [1] has shown that the two logics are not equally expressive, as there are formulas
expressible in one but not in the other.

There have been efforts to reconcile this divide by building a more expressive logic with a past-time oper-
ator [1] which subsumes both KCTL* and HyperCTL*. Another line of work [5] took a different approach,
showing that addition of propositional quantification to HyperLTL suffices to subsume KLTL, without the ad-
dition of a past-time operator. However, it [5] says nothing about an embedding in the reverse direction. To the
best of our knowledge, it is still an open question to investigate if epistemic-temporal logics with propositional
quantification can subsume hyper-temporal logics. In this work, we answer this question in affirmative, by
showing an embedding of HyperCTL* into KCTL* with propositional quantification.

2 The two logics: HyperCTL* and KPCTL*

HyperCTL* is an extension of CTL* with an ability to quantify over named paths. Doing so allows you to
express properties defined over multiple executions (aka hyperproperties). The formulas of HyperCTL* are
interpreted over a Kripke structure K1, equipped with a path assignment Π mapping path variables to initial
paths from K, a path variable y which refers to the current path and a positive natural number i which refers
to the current position. The syntax and semantics of HyperCTL* (omitting the semantics of the boolean
connectives) from [1] is described in Figure 1.

Unlike HyperCTL*, KCTL* does not introduce named path quantification, but instead uses a knowledge
modality Ka (indexed with an agent a) to reason about alternate execution paths. The formulas of KCTL* are
interpreted over extended Kripke structure denoted by Λ = (K,Obs) (where an observation map Obs : Agent→
2AP , associates an agent with the set of observable propositions), an initial path π of K and a position i along π.
The syntax and semantics of KCTL* (omitting the semantics of the boolean connectives) under the synchronous
perfect recall setting [4, 3], from [1], is described in Figure 2.

We introduce a modest extension of KCTL* called KPCTL*. KPCTL* has an ability to quantify over
KCTL* propositions. To do define the semantics of KPCTL* we add a mapping Φ of proposition variables to

1K is defined as a tuple < S, S0, E, V >,. S is the set of states, S0 is an initial state, E is a transition relation and V : S → 2AP

is valuation function, where AP is a finite set of atomic propositions.
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φ ::= ⊤ | p[x] | ¬φ | φ ∨ φ | Xφ | φUφ | ∃x.φ

Π, y, i ⊨K p[x] ⇔ p ∈ V (Π(x)(i))
Π, y, i ⊨K Xφ ⇔ Π, y, i+ 1 ⊨K φ
Π, y, i ⊨K φ1Uφ2 ⇔ for some j ≥ i: Π, y, j ⊨K φ2 and Π, y, k ⊨K φ1 for all k ∈ [i, j − 1]
Π, y, i ⊨K ∃x.φ ⇔ Π[x 7→ π′], x, i ⊨K φ for some initial path π′ of K s.t. π′[0, i] = Π(y)[0, i]

Figure 1: Syntax and semantics of HyperCTL* from [1]

φ ::= ⊤ | p | ¬φ | φ ∨ φ | Xφ | φUφ | ∃φ | Kaφ

π, i ⊨Λ p ⇔ p ∈ V (π(i))
π, i ⊨Λ Xφ ⇔ π, i+ 1 ⊨Λ φ
π, i ⊨Λ φ1Uφ2 ⇔ for some j ≥ i: π, j ⊨Λ φ2 and π, k ⊨Λ φ1 for all k ∈ [i, j − 1]
π, i ⊨Λ ∃φ ⇔ π′, i ⊨Λ φ for some initial path π′ s.t.π′[0, i] = π[0, i]
π, i ⊨Λ Kaφ ⇔ for all initial paths π′ of K s.t.

V (π[0, i]) and V (π′[0, i]) are Obsa-equivalent, π
′, i ⊨Λ φ.

Figure 2: Syntax and semantics of KCTL* from [1]

KCTL* propositions. The semantics of proposition variables and proposition quantification is defined as follows
(the remaining cases are directly lifted from the semantics of KCTL* in an expected way):

Φ, π, i ⊨Λ P ⇔ π, i ⊨Λ Φ(P )

Φ, π, i ⊨Λ ∃P.φ ⇔ ∃ψ ∈ KCTL*: Φ[P 7→ ψ], π, i ⊨Λ φ

3 Embedding

Upfront it seems that in HyperCTL* we can define a formula relating valuations only along two named paths,
but there is no mechanism to encode this behaviour in KCTL*, as it does not have an ability to isolate such
named paths. Bozzelli et al. [1] concretise this intuition by describing a counterexample to show that HyperLTL
(and hence HyperCTL*) cannot be embedded in KCTL*2.

In this work, we show that it is possible to embed HyperCTL* into KPCTL*. The key cases of the embedding
are described in Figure 3 (embedding of the boolean connectives is defined inductively in an expected way). The
embedding uses a derived full-knowledge modality K+ to represent the idea of “knowing everything”. It is used
for considering all paths identical to that of the current path, and can be seen as a specialisation of the knowledge
modality whose observations are modelled using an identity map. Dually, the embedding also uses a derived
zero-knowledge modality K− to represent the idea of “knowing nothing”. It is used for considering all paths of the
same length as the current path, and can seen as a specialisation of the knowledge modality whose observations
are modelled using a constant map. The key idea of our embedding is to use the characteristic formula to identify
a unique path over which the translated HyperCTL* formula should hold. A characteristic formula for a path,
φ, is the strongest formula that is true at every point of that path and nowhere else. Formally, a characteristic
formula φ is defined using the predicate CHAR, CHAR(φ) ≜ FGφ ∧ ∀ψ. (FGψ) ⇒ K−((FGφ) ⇒ FGψ), where
F (eventually) and G (always) are the standard CTL* modalities. The first conjunct ensures that φ is true
everywhere along the path, and the second conjunct characterises its strength (required to uniquely identify a
path).

JXφK ≜ XJφK
Jφ1Uφ2K ≜ Jφ1KUJφ2K
J∃x.φK ≜ ∃Px.¬K+¬(CHAR(Px) ∧ JφK)
Jp[x]K ≜ K−(FGPx ⇒ p)

Figure 3: Embedding of HyperCTL* into KPCTL* (key cases)

The embedding (J·K) can be used to show that the model checking problem for HyperCTL* can be reduced
to the model checking problem for KPCTL* by converting a HyperCTL* model into a KPCTL* model, and a
HyperCTL* formula into a KPCTL* formula while preserving validity under the translated model. Both the
model and formula conversion are computationally bounded.

Theorem 3.1. Given a HyperCTL* model K in which all runs have characteristic formulae in KCTL*, we
can construct a KPCTL* model Λ(K) in polynomial time that has the same runs, such that there is a function

2[1] also provides a counterexample to refute an embedding of KCTL* into HyperCTL*.

2



J·K that maps formulae of HyperCTL* to formulae of KPCTL*, is computable in linear time and satisfies that
⊨K φ iff ⊨Λ(K) JφK.

Interestingly, our embedding only uses the the linear time fragment of KPCTL*, understanding the full
expressiveness of KPCTL* is an interesting direction of future work.
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Appendix

Theorem 3.2. Given a HyperCTL model K in which all runs have characteristic formulae in KCTL*, we can
construct a KPCTL* model Λ(K) in polynomial time that has the same runs, such that there is a function
J·K that maps formulae of HyperCTL to formulae of KPCTL*, is computable in linear time and satisfies that
⊨K φ iff ⊨Λ(K) JφK.

Proof. The goal is to show that we can simulate path bindings in the context Π of HyperCTL* by binding
characteristic formulae of paths in the formula context Φ. We use existential quantification over formulae in
KPCTL* to pick out and bind characteristic formulae of paths sharing the prefix at the current point, which we
will access using a specially prepared knowledge relation. Finally, to evaluate propositions at paths, we prepare
another knowledge relation that lets us access all other paths in the model, and use the bound characteristic
formula to pick out a particular one from among them.

We define the KPCTL* model Λ(K) by introducing two observation maps: Obs+, which is the identity map
(“observes everything”) and thus satisfies Obs+(V (π[0, i])) = Obs+(V (π′[0, i])) iff π[0, i] = π′[0, i], and Obs−,
which is a constant map (“observes nothing”) and thus satisfies Obs−(V (π[0, i])) = Obs−(V (π′[0, i])) for all
π, π′. We write the associated modalities as K+ and K− respectively. It is not hard to verify that with an
appropriate representation, these two observation maps can be defined in polynomial time in the size of K.

The translation JφK is defined inductively on the structure of φ. For most constructors, we pass directly to
the subformulae, e.g. JXφK ≜ XJφK. The exceptional cases are the following:

• J∃x.φK ≜ ∃Px.¬K+¬(CHAR(Px) ∧ JφK), where CHAR(ψ) ≜ FGψ ∧ ∀φ. (FGφ) ⇒ K−((FGψ) ⇒ FGφ) is a
formula that is true iff FGψ is a characteristic formula for the current path.

• Jp[x]K ≜ K−(FGPx ⇒ p).

We note that this is linear-time.

Claim. CHAR(ψ) is true iff FGψ is a characteristic formula for the current path.

Proof of claim. Suppose FGψ is false somewhere on the current path π. Then it’s easily checked that FGψ
is false everywhere on the current path, and hence the first conjunct fails. Suppose instead FGψ is also true
somewhere (and hence everywhere) on some path π′ ̸= π. Then the second conjunct fails with φ being the actual
characteristic formula for φ: we have FGφ, but K−((FGψ) ⇒ FGφ) requires in particular that (FGψ) ⇒ FGφ at
the corresponding world in π′, where however by assumption FGψ but not FGφ. ✓

Let X be the map from (maps from path variables to paths) to (maps from proposition variables to propo-
sitions) that, given Π, yields a map that maps Px to a characteristic formula of Π(x) for all x ∈ domΠ. We can
now prove by induction on the structure of φ that X(Π), π, i ⊨Λ(K) JφK iff Π, π, i ⊨K φ.
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• For all φ where JφK just passes to subformulae, this is immediate by comparing semantics.

• For φ = p[x], observe that X(Π), π, i ⊨ K−(FGPx ⇒ p) iff at all π′ where FGPx, we have p ∈ V (π′(i));
the unique π′ where FGPx is Π(x) by definition of X and characteristic formulae, so this is true iff
p ∈ V (Π(x)(i)), which is ⇔ Π, π, i ⊨K p[x].

• For φ = ∃x.ψ, observe that X(Π), π, i ⊨ ∃Px.¬K+¬(CHAR(Px) ∧ JφK) iff there exists a ψ and a path
π′ accessed by K+ such that ψ is the characteristic formula of π′ (according to Claim) and X(Π)[Px 7→
ψ], π′, i ⊨Λ(K) JφK. By I.H., definition of K+ and existence of characteristic formulae, this is true iff there
exists a path π′ such that π[0, i] = π′[0, i] and Π[x 7→ π′], π′, i ⊨K φ, which according to HyperCTL*
semantics holds iff Π, π, i ⊨K ∃x. φ.

This concludes the proof, as in particular X(∅) = ∅ and hence ∅, π, iΛ(K)JφK iff ∅, π, i ⊨K φ.
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