
Logics for Information Flow Security:
From Specification to Verification

MUSARD BALLIU

Doctoral Thesis in Computer Science
Stockholm, Sweden 2014

TRITA-CSC-A-2014:13
ISSN-1653-5723
ISRN KTH/CSC/A–14/13–SE
ISBN 978-91-7595-259-8

KTH CSC TCS
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie doktorsexamen i datalogi fre-
dagen den 3 oktober 2014 klockan 14.00 i Kollegiesalen, Kungl Tekniska Högskolan,
Brinellvägen 8, Stockholm.

© Musard Balliu, October 2014

Tryck: E-print

iii

Abstract

Software is becoming increasingly ubiquitous and today we find software
running everywhere. There is software driving our favorite game application
or inside the web portal we use to read the morning news, and when we book
a vacation. Being so commonplace, software has become an easy target to
compromise maliciously or at best to get it wrong. In fact, recent trends and
highly-publicized attacks suggest that vulnerable software is at the root of
many security attacks.

Information flow security is the research field that studies methods and
techniques to provide strong security guarantees against software security
attacks and vulnerabilities. The goal of an information flow analysis is to
rigorously check how sensitive information is used by the software application
and ensure that this information does not escape the boundaries of the appli-
cation, unless it is properly granted permission to do so by the security policy
at hand. This process can be challenging as it first requires to determine
what the applications security policy is and then to provide a mechanism to
enforce that policy against the software application. In this thesis we address
the problem of (information flow) policy specification and policy enforcement
by leveraging formal methods, in particular logics and language-based analysis
and verification techniques.

The thesis contributes to the state of the art of information flow security
in several directions, both theoretical and practical. On the policy specifica-
tion side, we provide a framework to reason about information flow security
conditions using the notion of knowledge. This is accompanied by logics that
can be used to express the security policies precisely in a syntactical manner.
Also, we study the interplay between confidentiality and integrity to enforce
security in presence of active attacks. On the verification side, we provide sev-
eral symbolic algorithms to effectively check whether an application adheres
to the associated security policy. To achieve this, we propose techniques based
on symbolic execution and first-order reasoning (SMT solving) to first extract
a model of the target application and then verify it against the policy. On
the practical side, we provide tool support by automating our techniques and
thereby making it possible to verify programs written in Java or ARM ma-
chine code. Besides the expected limitations, our case studies show that the
tools can be used to verify the security of several realistic scenarios.

More specifically, the thesis consists of two parts and six chapters. We
start with an introduction giving an overview of the research problems and
the results of the thesis. Then we move to the specification part which relies
on knowledge-based reasoning and epistemic logics to specify state-based and
trace-based information flow conditions and on the weakest precondition cal-
culus to certify security in presence of active attacks. The second part of the
thesis addresses the problem of verification of the security policies introduced
in the first part. We use symbolic execution and SMT solving techniques to
enable model checking of the security properties. In particular, we imple-
ment a tool that verifies noninterference and declassification policies for Java
programs. Finally, we conclude with relational verification of low level code,
which is also supported by a tool.

iv

Sammanfattning

Programvara har blivit mer och mer närvarande i samhället, och vi hittar den idag i
stort sett överallt. Program driver våra favoritspel och körs av webbportalen där vi läser
morgonnyheterna eller bokar vår semester. Den stora spridningen gör att program blir
en enkel måltavla för uppsåtligt utnyttjande, eller, i bästa fall, ofta beter sig felaktigt.
Trender och omskrivna incidenter pekar på att sårbarheter i program utgör ingången till
många attacker på datorsystem.

Informationsflödessäkerhet är ett forskningsfält som studerar metoder och tekniker
som ger starka garantier mot förekomsten av attackvägar och sårbarheter. Målet med
en informationsflödesanalys är att rigoröst följa hur känslig information används av ett
program, och att säkerställa att informationen inte läcker utanför fastställda ramar om
så inte har medgetts av en given säkerhetspolicy. Den här processen kan vara utmanan-
de, eftersom den först kräver att ett programs säkerhetspolicy fastställs och sedan att en
mekanism tillhandahålls som säkerställer att policyn följs i programmet. I den här avhand-
lingen addresserar vi problemet att specificera en (informationsflödes) policy och se till att
den efterföljs genom att använda formella metoder, speciellt logiker och språkorienterad
analys, samt verifikationstekniker.

Avhandlingen bidrar till att föra forskningen inom informationsflödessäkerhet framåt
på flera sätt, både teoretiska och praktiska. På policyspecifikationssidan tillhandahåller vi
ett ramverk som möjliggör resonemang om informationssäkerhetsvillkor i termer av kun-
skapsteoretiska begrepp. Ramverket åtföljs av logiker som kan användas för att uttrycka
precisa säkerhetspolicys syntaktiskt. Vi undersöker också samspelet mellan konfidenti-
alitet och integritet för att garantera säkerhet när aktiva attacker kan förekomma. På
verifikationssidan tillhandahåller vi flera symboliska algoritmer för att effektivt kontrolle-
ra huruvida ett programs beteende är inom ramarna för en associerad säkerhetspolicy. Vår
ansats är att använda tekniker baserade på symbolisk exekvering och första ordningens
slutledning (SMT-lösning) för att först extrahera en modell av målprogrammet och sedan
verifiera modellen mot policyn. På den praktiska sidan tillhandahåller vi verktygsstöd ge-
nom att automatisera vår ansats och därmed möjliggöra verifikation av program skrivna
i Java eller maskinkod för ARM-processorer. Förutom de förväntade begränsningarna, vi-
sar våra fallstudier att verktygen kan användas för att verifiera säkerhet i flera realistiska
scenarier.

Mer specifikt består avhandlingen av två delar och sex kapitel. Vi inleder med en in-
troduktion som ger en överblick av forskningsproblemen och resultaten i avhandlingen. Vi
går sedan vidare till en specifikationsdel, som utgår från kunskapsteoretiska begrepp och
epistemiska logiker för att möjliggöra specifikation av tillståndsbaserade och spårbasera-
de informationsflödesvillkor, och från en kalkyl för svagaste förvillkor för att möjliggöra
certifiering av säkerhet när aktiva attacker kan förekomma. Den andra delen av avhand-
lingen adresserar problemet med verifiering av säkerhetspolicys som introduceras i den
första delen. Vi använder symbolisk exekvering och SMT-lösningstekniker för att möjlig-
göra modellprovning av säkerhetsegenskaper. Specifikt implementerar vi ett verktyg som
verifierar störningsfrånvaro och avklassifieringspolicys för Java-program. Vi avslutar med
beskriva relationell verifiering av lågnivåkod, som också stöds i ett verktyg.

v

Acknowledgements

It has been a long journey with many ups and downs, but here I am at the end.
I would like to take this opportunity to thank all those people who contributed to
the completion of this thesis.

I am truly thankful to my advisor Mads Dam for his excellent guidance, patience
and caring. He always allowed me to pursue my research interests, teaching me new
things and providing a stimulating environment for doing research. I am grateful to
Mads also for many personal advices when I moved to Sweden and for the wonderful
sailing trips in the archipelago. Mads, you have been, and will continue to be, a
role model for me.

I consider myself lucky to have collaborated and coauthored papers with bright
researchers such as Mads Dam, Gurvan Le Guernic, Roberto Guanciale and Isabella
Mastroeni. They have all been a great source of inspiration for my research.

I would like to thank everybody, present and past members, of the TCS depart-
ment at KTH. It has been a great pleasure to share a dynamic working environment
with you. Special thanks are due to Andreas, Björn, Cenny, Dilian, Douglas, Emma,
Gurvan, Hamed, Karl, Lukáš, Ola, Oliver, Pedro, Roberto, Sangxia, Shahram,
Siavash, Stefan and Torbjörn many discussions, activities and beers. Earlier drafts
of the thesis have benefited useful feedback from Mads Dam, Dilian Gurov, Roberto
Guanciale, Elton Kasmi, Michael Minock and Karl Palmskog. Thanks for your help.

I am grateful to Andrei Sabelfeld and to the Language-based Security group at
Chalmers for considering me, as Andrei put it, a brother PhD student from the
sister university of KTH. Special thanks go to Andrei for the many activities we
have enjoyed together.

My PhD work has benefited a lot from discussions with Steve Chong, Roberto
Giacobazzi, Gurvan Le Guernic, Roberto Guanciale, Dilian Gurov, Johan Håstad,
Isabella Mastroeni, Alejandro Russo, Andrei Sabelfeld, Dave Sands, Fausto Spoto,
Ola Svensson and Luca Viganò. Further thanks go to my grading committee mem-
bers David Naumann, Dave Clarke, Bernd Finkbeiner and Marieke Huisman for
accepting to evaluate my work and providing useful feedback.

Life in Stockholm has been rewarding, lots of fun and many friendships. I
will never forget the nights out with Kristaps Dzonsons, Pedro Gomes and Dilian
Gurov. Dilian, thanks for being a good friend and for always believing in me as a
researcher. Kristaps, Pedro, I know I can always count on you.

Special thanks go to Ledio Koshi, Ferdinand Laci and their families for being a
constant support and always making me feel home. This experience wouldn’t have
been the same without my Albanian friends, Alban and Dorian. Thank you guys
for the wonderful time, the dream goes on. Alban, you are the best friend I could
wish for, I learned from you more than you can imagine.

My greatest gratitude goes for my Mom and Dad for their constant encourage-
ment, support and unconditional love. Words are not enough to thank Besa for
what she has gone through just to be with me. Thank you for loving me and being
so close, despite the distance. Luv u!

Contents

Contents vi

1 Introduction 1
1.1 Information Security: Policy, Mechanism, Adversary 3
1.2 Information Flow Control to the Rescue 6

1.2.1 Language-based Information Flow Security 8
1.2.2 Information Flow Channels 10
1.2.3 Information Release Policies 14
1.2.4 Enforcement: Static vs. Dynamic 15

1.3 State of the Art and Beyond . 16
1.3.1 Historical Background . 16
1.3.2 Recent Developments . 18
1.3.3 Research Problems and Results at a Glance 21

1.4 Thesis Results . 23
1.4.1 A Simple Worked-Out Formalization 24
1.4.2 Thesis Overview . 30

1.5 Concluding Remarks . 39

I Specification 43

2 Epistemic Temporal Logic for Information Flow Security 45
2.1 Introduction . 45
2.2 Computational Model . 47
2.3 Linear Time Epistemic Logic . 49

2.3.1 Relation to Standard Models of Knowledge 51
2.4 Noninterference . 52
2.5 Declassification: What . 54
2.6 Declassification: Where . 60
2.7 Declassification: When . 63
2.8 Conclusion and Future Work . 66

3 A Logic for Information Flow Analysis of Distributed Programs 69

vi

CONTENTS vii

3.1 Introduction . 69
3.2 Security Model . 72
3.3 Policies via Examples . 76
3.4 Equivalences . 79
3.5 A logic for Information Flow . 83

3.5.1 Knowledge in Multi-agent Systems 83
3.5.2 Temporal Epistemic Logic with Past 84

3.6 Related Work and Conclusions . 86

4 A Weakest Precondition Approach to Robustness 89
4.1 Introduction . 90
4.2 Abstract Interpretation: An Informal Introduction 93
4.3 Security Background . 93

4.3.1 Noninterference and Declassification 94
4.3.2 Robust Declassification . 94
4.3.3 Weakest Liberal Precondition Semantics 95
4.3.4 Certifying Declassification . 96
4.3.5 Decentralized Label Model and Decentralized Robustness . . 98

4.4 Maximal Release by Active Attackers 99
4.4.1 Observing Input-Output . 99
4.4.2 Observing Program Traces 101

4.5 Enforcing Robustness . 104
4.5.1 Robustness by Wlp . 105
4.5.2 An Algorithmic Approach to Robustness 111
4.5.3 Robustness on Program Traces 112
4.5.4 Wlp vs Security Type System 115

4.6 Relative Robustness . 117
4.6.1 Relative vs Decentralized Robustness 118

4.7 Applications . 120
4.7.1 Secure API Attack . 121
4.7.2 Cross Site Scripting Attack 123

4.8 Related Work . 125
4.9 Conclusions . 126

II Verification 129

5 ENCoVer: Symbolic Exploration for Information Flow Security 131
5.1 Introduction . 131
5.2 Preliminaries . 133

5.2.1 Computational Model . 134
5.2.2 Interpreted Systems . 134
5.2.3 Epistemic Propositional Logic 135
5.2.4 Noninterference and Declassification 136

viii CONTENTS

5.3 Program Analysis by Concolic Testing 138
5.3.1 Formal Correctness . 142

5.4 Epistemic Model Checking . 145
5.4.1 Encoding a SOT as an Interpreted System 145
5.4.2 A New Model Checking Algorithm 148

5.5 Implementation . 150
5.5.1 Case study . 151
5.5.2 Application of ENCoVer to the TR case study 152

5.6 Evaluation . 154
5.6.1 Efficiency . 154

5.7 Related Work . 156
5.8 Conclusion . 157

6 Automating Information Flow Analysis of Low Level Code 159
6.1 Introduction . 159
6.2 Threat Model and Security . 162
6.3 Machine Model . 164
6.4 Unary Symbolic Analysis . 165
6.5 Relational Symbolic Analysis . 167

6.5.1 Symbolic Observation Trees 167
6.5.2 Relational Analysis . 169
6.5.3 Instantiation . 172
6.5.4 Invariants . 173

6.6 Prototype Implementation . 175
6.7 Case Studies . 176

6.7.1 Case Study 1: Send syscall 176
6.7.2 Case Study 2: UART device driver 177
6.7.3 Case Study 3: Modular exponentiation 178

6.8 Discussion and Related Work . 179
6.9 Conclusions . 182

Bibliography 183

Chapter 1

Introduction

For better or worse, the advent of the Information Age has certainly marked a new
revolutionary era of humankind. This is best reflected in the way our everyday life
strongly depends on information and communication technologies (ICT). Modern
buzzwords such as e-government, e-business or e-health have made their way into
our common language to refer to any government, business or healthcare process
that is conducted in a digital form via the Internet. In many directions, this in-
creasing connectivity using computers and networks has provided more goods and
improved people’s lives. But as usual, there is no free lunch, it all comes at a price
[22, 170, 140, 109].

In April 2014 a security firm called Codenomicon and a Google researcher inde-
pendently discovered a security flaw, dubbed Heartbleed, in an open-source crypto-
graphic software library (OpenSSL) that is used by an estimated two-thirds of web
servers [4, 5]. OpenSSL is behind many secure communication routines over the
Internet and Heartbleed can be exploited easily to leak encryption keys, passwords,
email and financial data, and seriously compromise the security of everyone who
has access to a network. Heartbleed results from improper input validation, known
as buffer over-read, an attack where the software reads more data than it should
be allowed to. Figure 1.1 depicts a normal scenario and an attack scenario to ex-
ploit the bug [13]. A normal “Heartbeat” request would require a client to send a
message, consisting of a payload, typically a text string (e.g. blah), along with the
payload’s length (e.g. 4). The server then must send the exact same payload back
to the client. However, the client, either accidentally or maliciously, can make a
request consisting of the same payload as in the normal scenario (e.g. blah), but
with a bigger payload’s length (e.g. 40004). As a result, the message returned
consists of the payload, followed by whatever else happened to be in the allocated
memory, potentially sensitive information.

The estimated cost of Heartbleed is 500 million dollars as a starting point [3].
Even worse, after decades of research and experience in computer security, many
experts argue that most of the existing tools would have failed to discover the bug

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Heartbleed bug explanation

[221]. Unbelievable! Heartbleed, one of the most dangerous security bugs ever, calls
for serious reflection by everyone, in research and industry.

The increase of the number of software security threats over the years might
seem surprising at first. Nevertheless, there are good reasons to believe that, unless
the approach to security becomes more formal and systematic, this trend will con-
tinue. First and foremost, the technological shift from the old mainframe, where
many people shared one computer, to the personal computer where everyone has his
own computer, is now transitioning, through distributed computing, towards the
ubiquitous computing model where lots of computers will share each of us. This
increasing dependence on the Internet, which originally was not designed with se-
curity in mind, and the unavoidable need to exchange and share information make
it easy to distribute malicious code and give rise to new attack vectors. Moreover,
modern information systems are tremendously complex and heterogeneous, and, as
US President’s IT Advisory Committee put it [143], we simply do not know how to
design and test software systems with millions of lines of code in the same way that
we can verify whether a bridge or an airplane is safe [150]. For instance, the An-
droid operating system consists of 12 million lines of code including 3 million lines
of XML, 2.8 million lines of C, 2.1 million lines of Java, and 1.75 million lines of
C++ [12]. Not to mention that today software is extensible and evolves frequently.
Many desirable features require embedding code from potentially untrusted parties
and allowing dynamic software updates across different execution platforms. It is
clear that we have to live with these trends and devise new methods and techniques
that allow both trusted and untrusted software to share the same space, without
compromising security. To achieve this goal, we need to define precisely what se-
curity policies to enforce in the system and what mechanisms to use for enforcing
these policies. This thesis addresses these issues and provides solutions for both.

The remainder of this chapter is organized as follows. Section 1.1 gives an
overview of information security requirements, with emphasis on how these re-

1.1. INFORMATION SECURITY: POLICY, MECHANISM, ADVERSARY 3

quirements can be approached in a formal manner. It also motivates why the
existing solutions are not satisfactory. Section 1.2 introduces information flow se-
curity which is the main topic of this thesis. It discusses the general context and
various solutions and complications that may arise. Section 1.3 focuses on the state
of the art, including some historical background and recent developments. It then
gives a quick taste of the research problems and the solutions proposed in the the-
sis. Section 1.4 starts with a formal background on the overall specification and
verification approach, it goes on to describe briefly each of the included papers, and
concludes with a statement of the author’s contributions and final remarks.

1.1 Information Security: Policy, Mechanism, Adversary

Broadly speaking, information security requirements, or security policies, focus on
confidentiality, integrity and availability of information, often referred to as CIA
requirements [209]. Confidentiality policies assure that sensitive information is not
made available to unauthorized users by restricting who is able to learn the private
information. Integrity policies assure that information is not changed by unautho-
rized users by restricting who is able to create and modify the trusted information.
Availability policies assure that systems work promptly and services are not denied
to authorized users. In general, security requirements consist of an amalgamation
of CIA requirements, as shown in Fig. 1.2. For example, the Heartbleed security
bug described in Fig. 1.1 is due to a missing bounds check (integrity violation)
which is used to exploit a buffer over-read and, as a consequence, to learn sensitive
data (confidentiality violation).

Availability
Co

nfi
de
nt
ial
ity

Integrity

Figure 1.2: CIA Information Security Requirements

A security mechanism consists of a set of methods and techniques which are
used to verify and enforce the information security requirements of a system. Tra-
ditionally, the mechanisms deployed to secure computer systems comprise various
forms of access control and cryptographic techniques. Access control is a way of
limiting access to resources or information only to authorized users. For instance,

4 CHAPTER 1. INTRODUCTION

a user who uploads a picture to a social network may use access control to specify
that only his friends are allowed to view the picture. The evolution of access con-
trol policies is a good example showing that, as systems become more and more
open, the resulting increase of distrust between principals is accompanied by more
complex and fine-grained policies. Indeed, in the early days software would run on
single-user machines with direct console access free to do anything; later, with the
advent of multi-user machines, per-user access control was enforced to accommo-
date multiple users. Next, privileges were gradually introduced at process level to
reflect the fact that not all processes could be trusted equally, even when executing
on behalf of the same user. For instance, an Apache Web Server typically starts
up the main server process, httpd, as root and then spawns new httpd processes
that run as low privilege to handle the Web requests [136]. More recently, richer
forms of access control, for instance sandboxing [124], were introduced to constrain
untrusted parts of the same program, e.g. third-party code, to execute in isolation
with restricted access permissions. And this is not the end of the story. What about
all those phone apps that ask for network and storage permissions? The security
mechanisms and the security policies we study in this thesis provide even stronger
security guarantees, which, as we shall see, are needed to properly secure modern
applications.

The adequacy of a security mechanism with respect to a security policy is
strongly dependent on the adversary model. This model defines who we are pro-
tecting against in terms of the capabilities of the adversary. For instance, in net-
work security the Dolev-Yao adversary model considers an active intruder with full
network control (i.e., one who intercepts, reads and modifies the network traffic),
unable to break cryptography [105]. Real world protocols, however, show that real-
istic adversaries can compromise session keys or randomness, hence computational
models of adversaries that limit the full trust in cryptographic primitives have been
considered to cope with these issues. Similarly, access control tacitly assumes that
the adversary can not tamper with the enforcement mechanism itself, otherwise the
security will be broken. Ideally, we would like to prove our systems secure against
the most powerful adversaries, however in many cases this is neither needed nor
possible. The real challenge is then to determine the right level of the adversary
model, the security policy and the security mechanism that make it “the most
difficult” to break security. In general this process may require a more elaborate
analysis of both technical and non-technical aspects, for instance risk assessment,
usability, social engineering or laws in force. However, as a chain is only as strong
as its weakest link, our analysis caters for security at the application level, which is
what attackers target the most nowadays. Fig. 1.3 illustrates the basic ingredients
needed to define the security analysis requirements. In this thesis we formalize each
of these components using rigorous mathematical and logical methods, which allow
us to precisely define what security means for a given system.

It is well known that standard security mechanisms such as access control, cryp-
tography or firewalls fall short in preventing modern malware from affecting com-
puting systems [197, 219]. The fundamental reason is that these mechanisms only

1.1. INFORMATION SECURITY: POLICY, MECHANISM, ADVERSARY 5

Security Mechanism Adversary Model

System Model Security Policy

Secure Insecure

Figure 1.3: Security Analysis Requirements

constrain the access to the information, i.e. what data one can read or write, and
do not control how this information is used by the computation, for instance where
the information is allowed to flow. Namely, once access to a piece of information
is granted, there is nothing preventing it from being propagated through error or
malice to an untrusted site. Recent trends show that these kind of scenarios, where
trusted and untrusted programs need to share the same execution environment
and access sensitive data, arise in many applications. Examples can be found in a
browser, where code from different providers needs to be integrated on the same
web page, giving rise to a variety of code injection attacks [140]. Or, in a smart-
phone where apps written by potentially untrusted developers are used by millions
of users, giving rise to different security and privacy issues [231, 117, 83]. Or, in
the huge codebase of an OS where different types of low level bugs, e.g. buffer
overflows, can be exploited to inject viruses, trojans and the like [17, 111].

To better illustrate this point, consider a user, Besa, who travels a lot and very
often needs to book a hotel. Besa decides to install an app, BookHotel, which
will help her to book a room at the nearest hotel at a reasonable price. Among
other permissions, the app requires access to the network (to communicate with
the bank), access to the location (to find the nearest hotel) and access to the credit
card number (to finalize the booking). To function correctly, the app must have
access to all such permissions. However, Besa would like her credit card number to
only be sent to the bank and not to the app developers or to Google. Nor does she
want her current location to be disclosed to the hotel website. Unfortunately, this
type of security policies can not be enforced by access control as they regard the
way the information is propagated and used by the app program.

In all these scenarios, the root cause of the security problem is the flow of sensi-
tive/untrusted information to/from unauthorized agents in the system. Studies and
statistics show that the majority of security failures are due to security violations
at the application level [10, 140]. This calls for new security mechanisms that track

6 CHAPTER 1. INTRODUCTION

information flow dependencies in the executing program and ensure that they do
not violate the security policy. In the security literature, this approach is known as
information flow security [122]. Information flow security applies the well-known
principle of end-to-end design to certify and build trustworthy systems. In partic-
ular, it can provide end-to-end security guarantees by means of a formal analysis
or other validation techniques, showing that the system as a whole enforces the se-
curity requirements of its users. In the example above, an information flow policy
would state that the credit card number is only given to the hotel website, while
the location information is only used by Google. Information flow control (IFC)
constitutes a very promising countermeasure against the proliferation of security
attacks that go beyond access control, by ensuring strong and provable security
guarantees of the underlying system. However, IFC necessitates an analysis of the
target system as a whole, which poses both theoretical and practical challenges
[226, 197]. Addressing some of these challenges is the main topic of this thesis.

1.2 Information Flow Control to the Rescue

The ultimate goal of information flow control is to establish confidentiality and in-
tegrity properties of code executing on real computers. For confidentiality, sensitive
information must be prevented from flowing to public destinations, and dually, for
integrity, untrusted information must be prevented from affecting, or flowing to,
trusted destinations. Availability is usually ignored by information flow analysis as
it is can be studied using other methods.

A rigorous information flow security analysis requires to follow the recipe in
Fig. 1.3 and answer the fundamental question:

What constitutes a secure system?

A possible answer can be given by leveraging formal methods and using mathe-
matical constructions to state the information flow properties of the system. For
instance, the system model can be represented as a state transformer, which pro-
duces a set of executions, also called behaviors. The security policy is then defined
as a property that needs to be entailed by the system model. The adversary, i.e.
the attacker, is normally assumed to be able to partially observe system behaviors,
for instance by observing part of the execution state or other system events. In
addition, the system model is considered public knowledge.

Broadly, an information flow security policy is defined on a mutli-level secu-
rity lattice [99], which provides a security classification, or labeling, of the data1.
Fig. 1.4 illustrates three security lattices for confidentiality, integrity and a combi-
nation of the two. The confidentiality lattice in Fig. 1.4a labels the data as high,
i.e. secret, or low, i.e. public, and the attacker can be assumed to observe the
data labeled as low. Similarly, the integrity lattice in Fig. 1.4b labels the data as

1Depending on the context, the term data may refer to users, processes, program states or
any other events of interest.

1.2. INFORMATION FLOW CONTROL TO THE RESCUE 7

trusted or untrusted and the attacker can be assumed to control the data labeled as
untrusted. The structure of the security lattice determines the set of allowed and
disallowed flows of information. In particular, the direction of the arrows in Fig. 1.4
indicates the allowed flows of information. This relation is later enforced by the
security mechanism to ensure that the information contained in the high data is not
being leaked through the low data. For integrity, this implies that the information
originating from untrusted data does not affect the trusted data. A more complex
lattice, shown in Fig. 1.4c, allows to label the data with a confidentiality level and
an integrity level.

Secret

Public
(a) Confidentiality

Untrusted

Trusted
(b) Integrity

Secret
Untrusted

Secret
Trusted

Public
Untrusted

Public
Trusted

(c) Product Lattice

Figure 1.4: Security Lattices

Fig. 1.5 depicts a system model, where the source nodes denote high security
data and the sink nodes denote low security data. As the system model is public
knowledge, the attacker knows that all four executions are possible and can observe
the low security data once the execution has reached a sink node.

π1 : h1 l1

π2 : h2 l1

π3 : h3 l2

π4 : h4 l2

Figure 1.5: A System Model

The semantic (or extensional) security condition is then introduced to determine
whether the system model adheres to the security policy. The semantic security
condition is important as it defines the baseline against which the correctness of
the security mechanism can be validated. In general, the shape of semantic security

8 CHAPTER 1. INTRODUCTION

condition depends on the power of the attacker, i.e. on the observations she is as-
sumed to be able to make, and on the information that needs to be protected. This
gives rise to different types of conditions which target different flavors of security
policies and system models. Noninterference is probably the most well-known se-
mantic security condition in the information flow literature [122]. Noninterference,
as depicted in Fig. 1.6, states that the high/untrusted inputs of the system should
not affect the low/trusted outputs of the system. For confidentiality, this means
that for any pair of executions, starting from the same low inputs, the resulting
final states contain the same low outputs, regardless of the high inputs. As an
example, consider the system model in Fig. 1.5, where hi :s are high inputs and li :s
are low outputs. The model does not satisfy the noninterference condition. If we
consider the pair of executions (π2, π3) (they start with the same low inputs, since
there are none), the resulting public outputs are different, namely (l1, l2). In fact,
an attacker who knows the system model and observes the output l1 (resp. l2)
will be able to learn that the secret input was either h1 or h2 (resp. either h3 or
h4). These kinds of covert information flows are ruled out by IFC. Other informa-
tion flow security conditions, which we discuss later in the thesis, account for more
expressive security policies and computational models addressing issues related to
compositionality, concurrency or tractability [35].

System

H input

L input

H output

L output

Figure 1.6: Noninterference Condition

The security mechanism embodies methods and techniques for verification and
enforcement of the information flow properties, ranging from syntactic to semantic
and from static to dynamic approaches. In particular, the semantic security condi-
tion is needed to formally prove soundness (only secure system models are accepted
by the mechanism) and precision (what secure systems are incorrectly ruled out due
to mechanism incompleteness) of a given security mechanism. This connection is
important as it ensures that the mechanism actually guarantees the security policy
in the sense of the semantic security condition.

1.2.1 Language-based Information Flow Security
Information flow security, as presented in the previous subsection, is an interesting
conceptual model which can be used to reason about expressive security properties
of system models. However, systems are more complex than the abstract mod-
els considered so far. Typically, they consist of software programs written in a

1.2. INFORMATION FLOW CONTROL TO THE RESCUE 9

programming language with a well-defined syntax and a formal semantics, that
can be executed on real computers. Language-based (information flow) security
is the research area that combines programming languages and computer security
techniques to certify information flow properties of software systems [197]. In par-
ticular, one can leverage existing program analysis and verification techniques to
formally analyze and enforce the security requirements of the program as a whole.
This is desirable since it is the program code which is ultimately run on the exe-
cution platform, hence it becomes crucial to prove that the security requirements
are explicitly supported by the program implementation and that the enforcement
mechanism provably certifies this. The Heartbleed bug in Fig. 1.1 is again an exam-
ple of how an implementation error can seriously compromise security, despite the
fact that abstract models, e.g. the design, of the SSL protocol has been extensively
verified as flawless.

It is worth pointing out that complete security is an unrealistic and unachievable
goal and language-based security alone is insufficient to prevent lower level attacks
from breaking into the hardware, measuring power consumption or exploiting other
architecture-dependent features such as caches and pipelines. Indeed, a complete
security analysis would require pervasive formal verification of both software and
hardware, including compilers, linkers, operating systems and other components.
This is infeasible in first place due to computability and complexity reasons. Nev-
ertheless, as mentioned earlier, statistics [10] show that the majority of security
attacks occur at the software level, hence language-based approaches can signif-
icantly contribute to eliminate these attacks and increase our confidence on the
software we run on our machines [147, 155].

Schneider et al. [204] argue that language-based security techniques are now
needed to implement the classical security principle of least privilege. The principle
of least privilege states that each agent should be accorded the minimum access
necessary to accomplish its task throughout the execution. The shift from coarse-
grained per-user access control policies to fine-grained per-application information
flow policies requires a departure from traditional OS-like enforcement towards
novel approaches that instantiate this principle. In particular, an information flow
policy can characterize the secure behaviors of the application, hence define the
least privileges needed by that application to function securely. For instance, an
information flow policy would constrain the BookHotel app mentioned earlier to
only send the credit card number to the hotel website and the location information
to Google, and thus define the least privileges of the application.

The baseline for language-based security is the program code, provided in terms
of source code, bytecode or even machine code. The attacker is now assumed to
know the program code and to observe or modify the runtime behavior through pre-
defined communication primitives. The communication primitives, depending on
the program under consideration, can be shared program variables, API methods,
channels, CPU registers, memory locations or other. The primitives are associ-
ated with security labels and in general involve a security lattice [99], as shown in
Fig. 1.4.

10 CHAPTER 1. INTRODUCTION

The knowledge of the program code, the low and/or untrusted primitives and
the execution context may give rise to mechanisms that either maliciously or un-
intentionally transfer sensitive information to the attacker. These mechanisms are
referred to as information flow channels. In this thesis we leverage language-based
techniques to enforce information flow policies with respect to information flow
channels, which we describe below.

1.2.2 Information Flow Channels
Information flow channels may arise for several reasons in many applications. What
makes these channels potentially dangerous and their verification challenging is the
knowledge of the execution context, which may allow an attacker to combine this
knowledge with the public data released by the program and learn sensitive infor-
mation. As an extreme example, consider a conference management system (CMS)
used in the scientific community to review submissions to conferences. Suppose
that the CMS sends a notification email to each of the authors when the paper
decision has been made. If the paper is accepted, the system sends to the authors
another email with additional information. Then, anyone who observes the email
traffic can see those emails being sent and learn whether an author got the paper
accepted or not2. In this subsection, we give an overview of the types of chan-
nels that may be exploited by attackers with different capabilities or that may be
introduced unintentionally by the programmers.

The easiest way to leak sensitive information is by directly transmitting high
data to low data, known as explicit flows. For instance, a program can embed
the code snippet send:=pwd, which directly assigns a high variable pwd containing
a password to a low variable send, which is later used to send information over
the network. The knowledge of the program code can be used to reveal sensitive
information through the control structure of the program, known as implicit flows
[100]. The program in Fig. 1.7 contains no explicit flows, however a positive pass-
word value is indirectly copied to the public variable send. Hence, an attacker who
knows the program code and observes the final value of variable send, can reveal
the entire password. The reader may have noticed that the information leakage is
exponential in the size of the secret pwd and thus unrealistic for big-size secrets.
However, using standard techniques, the implicit flows can be magnified by loops
and turn a one-bit leak into an n-bit leak in polynomial time in the size of the
secret, cf. [195]. The main goal in these examples is to give a flavor of the different
types of channels in a simple manner.

A more powerful attacker, which is able to inject code in a program, can give
rise to an injection flow. Again, consider the code snippet tmp:=0;[•];send:=tmp,
which only contains low security variables, and thus it is secure if [•] is replaced
with skip . However, an attacker able to inject tmp:=pwd at [•] can reveal the

2This channel was recently experienced by the thesis author, who luckily received two such
emails. On a side note, the previous sentence leaks information in the context of this thesis. We
challenge the reader to find out what.

1.2. INFORMATION FLOW CONTROL TO THE RESCUE 11

send:=0;
while (pwd>0) {

send++; pwd--;
}

Figure 1.7: Implicit Flow

password through variable send, as it can be observed from the resulting program
tmp:=0;tmp:=pwd;send:=tmp. These channels may arise in web scenarios where
code from different providers may be included in the same web page, for instance
using the Javascript language.

More complex information flow channels may arise when high security data af-
fect the timing behavior of the program [16]. A typical example of leakage through
a (external) timing channel is the modular exponentiation routine used in crypto-
graphic algorithms such as RSA [148]. Consider the program in Fig. 1.8 where all

res:=1;
for (i:=0; i<k.length; i++) {

if (k[i]) {tmp := res*M mod n;}
else {tmp := res;}
res := tmp*tmp;

}

Figure 1.8: External Timing in Modular Exponentiation M k mod n

variables are high. An attacker who is able to measure the running time of this
program can still leak the entire secret key k, essentially, by exploiting the fact that
the instructions in the conditional branch take different amounts of time to execute,
which depends on the value of the secret bit k[i] at position i. Other channels
include the termination behavior of the program or the resource exhaustion which,
if dependent on high data, may result in secret information leakage.

The transparency offered by high level programming languages hides many im-
plementation details which may be exploited by attackers with knowledge of low
level details such as caches, pipelines, CPU models or even power consumption [15].
Language-based techniques often operate based on a semantics of the programming
language, which ignores such implementation details. As a result, a program which
is proved secure at the source code level may by insecure with respect to attackers
that observe features not covered by the programming language semantics. Con-
sider for instance the program in Fig. 1.9, where sec, sec1, sec2 are high security
variables and pub, pub1, pub2 are low security variables. The program would be

12 CHAPTER 1. INTRODUCTION

considered secure with respect to an attacker who has access to the final value of
low variables and can count the number of assignments performed at the source
code level. In fact, the program never assigns to low variables and always executes
the same number of instructions. However, depending on the truth value of the

if (sec) {sec1 := pub1;}
else {sec2 := pub2;}
pub := pub1;

Figure 1.9: Cache leakage

boolean variable sec, the execution time of this program may vary. Indeed, if sec
is true, the last assignment can take less time as the value of pub1 is already in the
data cache. If sec is false, the program may have to load both pub1 and pub2 from
the memory, which takes longer time. Similar examples may use instruction caches,
pipelines or other architecture dependent details. A possible solution to this issue
is to explicitly model all these implementation details at the language semantics
level, which comes at the price of a much harder verification process.

More complex computational models include concurrent and distributed sys-
tems, which give rise to additional information flow channels. The nondeterminism
inherent in these models can be exploited by attackers in several ways to leak sen-
sitive information. For instance, in a multithreaded setting, the timing behavior
may affect, through the scheduler, the execution order of low events and introduce
internal timing channels [193]. Consider the multithreaded program in Fig. 1.10
where l and h, respectively, denote low and high shared variables, || denotes the
parallel composition and delay(t) delays execution of the program for the amount
of time specified by t. Both threads are secure in isolation. However, under reason-

if (h) {delay(100);}
else {delay(1);} || l:=2
l := 1;

Figure 1.10: Internal timing leakage

able schedulers, the assignment l:=1 will execute last if the secret h is true. Similar
channels can be encoded into the stochastic behavior of the system and are known
as probabilistic channels.

The very nature of concurrency requires reactive/interactive models. In a clas-
sical client-server communication scheme, an untrusted client may exchange several
messages with the server and the sequence of such messages can encode sensitive
information. Consequently, the security condition must cater for more fine-grained

1.2. INFORMATION FLOW CONTROL TO THE RESCUE 13

channels concerning occurrences/non-occurrences of sensitive events or even the way
low events are interleaved with high events. The simple program, inH(x);outL(1),
which inputs a value on a high channel and always outputs 1 on a low channel, can
leak sensitive information. Indeed, the event on low channel signals that some mes-
sage was input on high channel. This can be sufficient for an attacker to disclose
sensitive information in some contexts, for instance whether a user visits a medical
web site. The program in Fig. 1.11 presents an information channel through the
observation of the sequence of low events. The program reads a secret number,

in(H, secret);
i:=0; max := Max;
while (i<= max) {
if (i == secret) out(L1, "Found");
else out(L2, "Trying...");
i++;
}

Figure 1.11: Trace leakage

known to be a non-negative integer in the range 0 to Max, from high channel H, and
loops Max+1 iterations outputting the string Trying... on low channel L2 for Max
times and the string Found on low channel L1 once. An attacker who observes the
outputs on low channels synchronously can reveal the entire password by counting
the number of Trying... messages received on channel L2 prior to receiving the
messages Found on channel L1. However, if outputs are not necessarily observed
in the order they are produced, the attacker can not in general establish such a
relation, hence the program may in some contexts be considered secure.

Information flow conditions for reactive/interactive systems can sometimes be
expressed over streams of inputs and outputs [57, 182]. The system can be in-
terpreted as a (nondeterministic) transformer between input streams and output
streams, and security is then defined as a property of the transformer over the
streams. When possible, this allows a sort of reduction to relational, i.e. initial
state-final state, noninterference, as program inputs can be read upfront and pro-
gram outputs can be produced upon termination. For deterministic programs this
is indeed the case, as shown in [80]. However, programs that make nondeterministic
choices and expose these choices to high users can leak information through user
strategies.

The program in Fig. 1.12, from [224], nondeterministically chooses 0 or 1 and
sends the value to a high user on channel H2. The high user inputs a value on
channel H1 and the XOR of the two values is sent to a low user on channel L. The
low user can observe either 0 or 1, independently of the high value input on H1,
hence the program seems secure. Suppose now the high user is a spy who wants

14 CHAPTER 1. INTRODUCTION

x:= 0||1;
out(H2, x);
in(H1, y);
out(L, (x XOR y));

Figure 1.12: Leakage Through User Strategies

to transmit a secret bit z to the low user. The spy can then input (z XOR x) on
channel H1 and, from the identity (x XOR z XOR x) = z, the low user will receive
the exact value of the secret z.

Which information flow channels are a security concern depends on the partic-
ular context and on the power of the attacker. The existing security conditions can
be categorized with respect to three parameters: the computational model (batch
job, reactive, interactive), the attackers’ power (initial-final state, traces, timing,
termination) and the sensitive information they protect (initial high state, occur-
rences of high events, sequences of high events). In this thesis, we study policies
and techniques that apply to several of the information flow channels described in
this subsection.

1.2.3 Information Release Policies
The primary goal of a computing system is to offer a range of functionalities and
features to the users to perform certain tasks. However, functionality and security
in general can be two conflicting requirements. The more functionality a system
provides, the less information is maintained secure. The complete separation be-
tween high and low computation assumed by the noninterference condition is not
always met by practical applications. For instance, a simple authentication routine
that implements a password checking program reveals whether the input password
(low) equals the correct password (high) and thus the noninterference condition
fails. Similarly, for integrity, an untrusted input can safely be considered trustwor-
thy after a sanitize function has been applied. Again, the noninterference condition
is violated due to the flow of information from untrusted input to some trusted
output. As a result, controlled release of secret information and controlled upgrade
of untrusted information, is a crucial requirement for information flow control to
be useful [202, 26]. In the security literature, this deliberate release of secret infor-
mation is known as declassification, and, dually, for integrity, as endorsement. In
the examples above, one would like to declassify the password checking result and
to endorse the sanitized input. Information erasure is another related notion which
can be described as an increase of information security by erasing the sensitive
data [76]. For instance, a web shopping application must erase the users’ credit
card numbers once the transaction has gone through.

All these notions are necessary to model a common requirement of information

1.2. INFORMATION FLOW CONTROL TO THE RESCUE 15

security, namely that the security of information changes with time. As an ex-
ample, consider the information system of any organization that involves multiple
users with different security clearances, for instance an e-government online system.
The system should provide access to public documents to all citizens accessing the
system. When a document is classified as public, this information should be re-
leased to the citizens, which is a declassification requirement. Then, when a citizen
starts working for the government, she becomes a registered user and, depending
on the department she is assigned to, more information is made available. The
security of the information can increase or decrease over time. For instance, if the
employee gets promoted or moves to another department she should get access to
new information and lose access to the old. Similarly, if the employee leaves the
system as a result of getting fired, it should not be possible to access the internal
information. The dynamic nature of security policies has been recognized by dif-
ferent researchers as a crucial property an enforcement mechanism should take into
account. Existing security models study different aspects of information release in-
cluding what information is released, who performs the information release, where
the information is released and when the information release can take place [202].
A unified framework that embodies all these dimensions has been considered an
open issue, and a solution is proposed in this thesis.

1.2.4 Enforcement: Static vs. Dynamic
The literature has two main approaches to information flow control: static enforce-
ment and dynamic enforcement. From the beginning information flow research has
been “riding the roller coaster” between static and dynamic mechanisms [199]. The
static analysis approach is appealing as it allows to verify and certify the informa-
tion security requirements at compile time, and thus avoids the runtime overhead.
Security type systems are by no means the most used approach for static analy-
sis. They mainly impose Denning’s approach [100] by assigning security labels to
program data, e.g. variables, fields, and enforcing separation between high and
low computation, essentially by maintaining the invariant that no low computation
occurs in a high context. To get a flavor of how a security type system works,
consider an excerpt of typing rules from [197], as shown in Fig. 1.13.

` exp : public

[public] ` l := exp

` exp : public [public] ` C1 [public] ` C2

[public] ` if exp then C1 else C2

Figure 1.13: Security Type System

Suppose each program variable is assigned a security label according to the
security lattice in Fig. 1.4a. As a result, the security type system must prevent
flows of information from secret variables to public variables. The rule on the left

16 CHAPTER 1. INTRODUCTION

considers typing of an assignment statement. Basically, it says that an assignment
to a public variable (we assume l is public) is allowed only if all variables in exp
are public. The judgment [public] ` C means that the program C is typable in
the security context public. The security context is mainly needed to track implicit
flows. The rule on the right says that a conditional statement is typable in a public
security context only if the branch condition exp and the sub commands C1, C2
are typable in a public security context. For instance, if variable h has security
type secret , the type system would reject the program if h then l := 0 else l :=
1 since h can not be typed in a public context. Similarly, the explicit flow in
l := h is prevented by the first rule. Security type systems are desirable due to
their simplicity and the efficiency of type checking. However, many systems have
complicated security policies which can not always be enforced by type systems.
For example, the secure program if h then l := 1 else l := 1 would incorrectly be
ruled out by the type system above.

Dynamic techniques make use of the program runtime information to perform
information flow analysis. Another program, often called a security monitor, super-
vises the execution of the target program and checks at runtime that no security
policy violation occurs. Broadly, the monitor enforces the invariant that no as-
signment from high to low variables occurs either explicitly or implicitly through
program control structures. If a violation occurs the monitor can take several coun-
termeasures, for instance it can decide to terminate the execution of the program
[153]. Dynamic enforcement of information flow is particularly useful for highly
dynamic languages, typically used on the web, for instance Javascript, where the
content is often unknown until runtime. Besides the runtime overhead, dynamic
monitoring can not always enforce noninterference policies as it is well known that
noninterference is a hyperproperty, and thus it can not be enforced by looking at one
execution at a time [164]. As a result, dynamic enforcement techniques typically
rely on static processing to increase precision, as we discuss later [153].

1.3 State of the Art and Beyond

In this section we give an overview of the state of the art in information flow security
and define some research problems. We start with a quick historical background
of the seminal ideas that led to the IFC as a research area, then we discuss recent
challenges that the community has gone through and finally conclude with our
research problems giving a taste of the contributions made by this thesis to solve
them.

1.3.1 Historical Background

The realization of the importance of formal security models dates back to the early
seventies when several research projects in this area were funded by the US Depart-
ment of Defense. Problems with providing strong security guarantees, both at the

1.3. STATE OF THE ART AND BEYOND 17

design and the implementation level, have led to the need to develop new mathe-
matical methods to prove that the design satisfies predefined security requirements
and that the subsequent implementation faithfully conforms to the design.

Noteworthy, the model developed by Bell and La Padula [55] in 1973 aimed
at providing a formal basis for confidentiality using access control policies. In a
nutshell, subjects and objects are assigned to security classes which form a hierar-
chy of security levels. This gives rise to a multilevel security requirement, which
essentially ensures that a subject at a higher level does not convey information to
a subject at a lower level. The requirement is formalized in terms of the No read
up policy, stating that a subject can only read an object of less or equal security
level, and the No write down policy, stating that a subject can only write an object
of greater or equal security level. Moreover, the model can be enriched with some
form of discretionary access control where a subject can grant permissions to an-
other subject to access some object. The Bell-La Padula model has influenced the
design and implementation of the first security-aware operation systems, such as
Multics [222]. However, the model is known to have several limitations, above all
the presence of information flow channels and the difficulty to cope with integrity
requirements [209]. To overcome some of these limitations, other formal security
models have been proposed, including the Biba [56] and Clark-Wilson [82] integrity
models, and the Chinese Wall model [59], which incorporates both confidentiality
and integrity.

The work by Denning and Denning [100] can be considered as the successor
of the Bell-La Padula model for information flow security. The authors introduce
a lattice of security levels for policy specification and, at the same time, observe
that static program analysis can be a good solution to the confinement problem
introduced earlier by Lampson [151]. For dynamic information flow, the work by
Fenton [113] is arguably considered the seminal contribution in the area. Fenton
describes an abstract machine enriched with security labels, called data marks,
which decorate the storage locations and the program counter in order to prevent
illegal information flows.

Semantic models of information flow have been developed in parallel with the
static and dynamic enforcement mechanisms mentioned above. Informal attempts
to information flow models start with the confinement problem [151], which defines
covert channels as mechanisms for unintentional transfer of confidential information
in computer programs. In fact, confinement requires that systems do not leak
confidential data, even partially. This idea was later formalized by Cohen [86, 87],
who introduced the notions of strong and selective dependency, quite close to what
today is known as noninterference and declassification. Noninterference, introduced
by Goguen and Meseguer [122], formally defines the intuition that one group of users
does not noninterfere with another group of users, if what the former group does
has no effect on what the latter can see. Noninterference can safely be considered
as the most studied semantic security condition in information flow security.

Both lines of work, the semantic conditions and the enforcement mechanisms,
were significant steps towards formalizing a secure system as defined in Sect. 1.2.

18 CHAPTER 1. INTRODUCTION

What was missing was a formal justification, i.e. a soundness argument, that would
relate the two and thus provably show that the enforcement mechanism indeed en-
sures the semantic security condition. This relation was given by Volpano and Smith
[218] who showed that the security type systems guarantee the noninterference se-
curity condition. Later works, this thesis included, elaborate on these seminal ideas
and attempt to push the boundary in terms of theoretical foundations, verification
techniques and practical tools with information flow guarantees.

1.3.2 Recent Developments

Information flow control, and its branch of language-based security, is now a well-
established research area. Over the past four decades, a vast number of methods
and techniques have been developed to specify and verify the end-to-end security
requirements provided by information flow control. Although everyone seems to
agree on the usefulness of information flow policies, there still exists a debate about
its practical adoption in production systems. Living at the confluence of program-
ming languages and security, IFC inherits, in addition to its own challenges, also
known issues and limitations from both areas. On the other hand, information
disclosures, Heartbleed being the last of a large and growing list, appear frequently
in today’s software and current security solutions are all but satisfactory. In short,
information flow control is definitely a pressing problem we should work on and
find new better solutions.

Remarkable progress has been made in advancing the state of the art in terms
of theoretical foundations and practical enforcement. Here we quickly survey on
the main challenges addressed by researchers over the past years.

Relaxing Secure Information. The noninterference condition, as pointed
out earlier, is not well suited for some systems. As a result, a lot of research ef-
fort has been dedicated to the modeling of controlled release of secret information.
Noteworthy, several notions such as gradual release [28], admissibility [120], ab-
stract noninterference [119], delimited release [198], trusted declassification [134],
noninterference until [75], relaxed noninterference [156] and many others, have been
introduced to account for allowed flows of information. A less studied notion, infor-
mation flow integrity, has also addressed issues of controlled information upgrade,
known as information endorsement [176, 40, 26]. Other related notions include in-
formation erasure and more generally dynamic security policies, which have been
considered in [76, 60, 24, 35]. A recent survey proposes a classification of different
approaches to information release [202].

Expressiveness and Concurrency. The nondeterministic and probabilis-
tic nature of concurrent and distributed computations gives rise to information
flow channels which are otherwise ignored by the noninterference condition. For in-
stance, the information channels described in Fig. 1.10-1.12 are typical of these mod-
els. Consequently, alternative security conditions have been proposed to cope with
more the complex channels arising in these execution contexts. In the literature,
these are known as possibilistic security conditions. For instance, nondeducibility

1.3. STATE OF THE ART AND BEYOND 19

on strategies [224] can be used to rule out covert channels similar to the one in
Fig. 1.12. Frameworks that aim at unifying the possibilistic security conditions
have also been proposed, including the selective interleaving functions by McLean
[164], the modular assembly kit by Mantel [159] and process algebra classifications
by Focardi and Gorrieri [114]. Other security models which address information
flow for concurrent and multithreaded programs are the PER model by Sabelfeld
and Sands [200], the equational security condition by Leino and Joshi [142], low
determinism [192, 166], and several bisimulation-like conditions [207, 91, 58, 200].
Various attempts have been made to express these conditions using logics of knowl-
edge [128, 125, 35], mu-calculus [138, 169] or other non conventional logics tailored
to information flow properties [19, 104, 84].

Attack Models. The pervasive nature of information flow channels enables
different attacker models. The observation power of these attackers determines the
type of information flow channels to protect against. For instance, the capability of
an attacker to observe program (non)termination has given rise to notions of ter-
mination sensitive and termination insensitive attacker models [25, 144]. Similarly,
an attacker can exploit the timing behavior of the program which may depend on
a secret and thus reveal information [230, 131, 16]. Another line of work, known
as quantitative information flow, studies information-theoretic bounds of the secret
information released by an application [81]. As opposed to this, qualitative infor-
mation flow focuses on properties of secret information. Also, complexity-theoretic
approaches have been proposed to reason about polynomial time attackers using
computational notions of indistinguishability [152] or probabilistic programming
languages [186, 77].

Security Labeling. An important prerequisite of applying information flow
control is the security classification or labeling of information sources and sinks.
In the simplest setting, this labeling is taken for a two point security lattice as in
Fig. 1.4, where information originating from high sources is disallowed to flow to
low sinks. For example, a game application reading the list of phone contacts, la-
beled as high, should be disallowed to send this information to an untrusted server,
labeled as low. However, in some cases the security labeling can be challenging
to define, in particular for low level code [36]. More complex applications, such a
distributed and concurrent programs, may involve principals with different secu-
rity requirements which mutually distrust one another. Consequently, the security
lattice needs to be finer to reflect the security relationships between each pair of
principles. Noteworthy, Myers and Liskov [175] introduced the decentralized labeled
model (DLM) which allows to express such security policies, also in the presence
of declassification, for mutually distrusting principles that can explicitly transfer
ownership. Several authors have studied security policies using DLM, including
[74, 60, 41].

IFC Integration. Information flow control alone would not be sufficient to
provide security in an end-to-end fashion. The main reason is that system-wide
security crosses the boundaries of single applications and requires interaction with
other systems whose security is provided by other means, such as encryption or

20 CHAPTER 1. INTRODUCTION

access control. Hence, it becomes vital to integrate information flow techniques and
other security techniques in a secure manner. An important line of work addresses
the problem of secure composition by integrating encryption, access control or other
security mechanisms in a unified framework [43, 177, 28, 216, 115].

IFC Enforcement. The actual enforcement of information flow policies is
probably the Achilles’ heel in information flow research. Clearly, one can come up
with fancy semantic security conditions able to express all sorts of security poli-
cies; however, this would be of limited use if an enforcement mechanism can not
accept or reject applications that satisfy or violate these policies, respectively. In
fact, one of the drawbacks of current enforcement mechanisms are the constraints
they impose on the way programs are written, therefore putting the burden on
the programmer and making their use limited. Security type systems have domi-
nated the static verification approaches to information flow [218, 197]. For systems
with complicated security policies researchers have proposed more precise verifi-
cation methods including flow-sensitive security types [139], dependent types[177],
abstract interpretation [119, 149], relational logics [52, 51, 20], model checking and
symbolic execution [37, 178, 104, 36] or theorem proving [97]. Which verification
method to use, is application and policy dependent and requires to find the right
trade-off between verification effort and policy expressiveness.

Dynamic information flow analysis has been successfully applied to web security,
where code and data are not always known before runtime. Much progress has been
made to improve the precision of dynamic analysis and thus be able to accept more
secure programs [153, 30, 130]. Recent work discusses the trade offs with static
analysis and shows that, in some cases, dynamic approaches can be as precise as
security type systems [199, 194]. Being a hyperproperty [85], noninterference can
not always be enforced by monitoring one execution at a time [153]. To overcome
this limitation, researchers have proposed combinations of dynamic and static anal-
ysis, known as hybrid analysis [153, 29, 79, 78]. More recently, a technique known
as secure multi-execution, has been introduced to enforce dynamically noninterfer-
ence in a language independent way. The core idea of secure multi-execution is
to execute as many copies of the program as the number of security levels and
ensure that the lower security copies are run before the higher ones, in a carefully
synchronized manner [101].

It is worth noting that a significant line of work uses taint tracking to test
programs for confidentiality and integrity bugs. Broadly, untrusted sources can be
tagged as tainted and, by propagating the taint value during program execution,
one can ensure that no tainted value can modify a trusted sink. The big advantage
of this technique is scalability. In fact, it has been successfully applied to check for
security bugs in low level code [180, 179] and Smartphone apps [110, 94]. However,
taint tracking sacrifices soundness for scalability and it can not directly be used for
verification; for instance, implicit flows can not be handled by taint analysis.

Pervasive IFC. Information flow control, both static and dynamic, has been
extensively applied to the entire software stack, including the application level
[197], the systems level [173, 229, 108] or lower levels such as bytecode [37, 53]

1.3. STATE OF THE ART AND BEYOND 21

machine code [36, 49] and hardware [32, 214]. Noteworthy, recent developments in
virtualization technologies advocate thin software layers, for instance hypervisors
and separation kernels, which allow different users and systems to share hardware
resources [232]. Being relatively small-sized, provable information flow security of
these layers is feasible, as shown by several projects, for example the seL4 OS kernel
[147] or the PROSPER separation kernel [92, 36].

IFC Tools. Several practical tools for programming with information flow
control have been implemented for the mainstream languages. The JIF compiler
developed at Cornell was the very first tool to provide information flow support for
JAVA programs. JIF uses security type systems to statically enforce information
flow policies expressed in the DLM model [7]. Flow Caml is an extension of the
Objective Caml language with a type system enforcing information flow policies
[1]. Other tools with information flow support include Paragon [11] which applies
security type systems, JOANA which uses program dependence graphs [8] and
ENCoVer which is based on dynamic symbolic execution [39], all targeting JAVA
programs. On the dynamic enforcement side, most tools target web languages,
mainly JavaScript. In particular, JSFlow [9] and FlowSafe [2] perform dynamic
information flow tracking for Javascript code in the browser, while FlowFox [6] is
based on the secure multi-execution approach.

1.3.3 Research Problems and Results at a Glance

In this subsection we discuss several research problems in the area of language-based
information flow security with particular emphasis to those tackled in the rest of this
thesis. Over the past years, the need for strong fine-grained semantic-based security
guarantees provided by IFC has been contrasted by the difficult integration with
existing security practices and infrastructures, which, together with a demanding
verification process, has mainly received the attention of researchers, and has yet
to be fully adopted by the industry.

The underlying reason of this limited adaption is simple: reasoning about se-
curity requirements in an end-to-end fashion is a hard problem. Besides the fun-
damental limitations of undecidability and computational complexity, information
flow policies concern properties over sets of executions, i.e. hyperproperties, and
traditional reasoning and verification techniques can not be applied as is. Devising
semantic frameworks which are expressive enough to characterize the desired poli-
cies, yet amenable to efficient verification, is an open issue. Moreover, as mentioned
previously, security requirements are subject to dynamic changes and a controlled
release of secret data is necessary at different points of the program execution. To
address this problem, in the second chapter we propose a logic, called temporal epis-
temic logic which allows to reason about noninterference and declassification and,
at the same time, to unify the different dimensions of information release in a single
framework. Reasoning about information flow policies in terms of the attacker’s
knowledge is simple and intuitive, and it provides a precise syntactical characteriza-
tion of the security policy, which can be verified using the techniques developed in

22 CHAPTER 1. INTRODUCTION

this thesis. Intuitively, the insecure program out(pwd) can be ruled out as follows:
prior to program execution the attacker’s knowledge is that the password pwd can
be any string. After the execution, knowing the program code, the attacker can
narrow down his uncertainty and learn that the password is exactly the string that
he observes. As a result, this increase of knowledge, i.e. decrease of uncertainty,
can be used to consider the program insecure.

Language-based security has been dominated by the state-based notions of in-
formation flow. However, more abstract information flow conditions have been
proposed for other computational models, including trace-based conditions and pro-
cess algebras, or more traditional interactive and reactive programming languages.
These conditions rely on properties of their target systems and they are specialized
to solve technical problems such as compositionality, asynchrony and verification.
As a result, they turn out to be overly complicated and it is often unclear what
security property they actually enforce. Reasoning about knowledge is quite useful
for characterizing the security of these systems as well. In the third chapter, we
propose a knowledge-based framework for reasoning about trace-based information
flow conditions. The security model brings out what events on channels an ob-
server can see and what observations on events are to be protected. This allows
a very general treatment of secret information and declassification, both as high
level input and output events, and as relationships between events, say ordering,
multiplicity, and interleaving. Again, a syntactical characterization using temporal
epistemic logic has been studied.

Another challenge in information flow security is the interplay between confiden-
tiality and integrity, which may give rise to security violations similar to Heartbleed.
We address this problem in the fourth chapter where the goal is to enforce confi-
dentiality in presence of active attacks. This notion is known as robustness and it
requires that an active attacker, who can insert code at certain program points, is
unable to learn more information than a passive attacker, who can merely observe
the public state of the program. The problem is realistic in different settings such
as secure program partitioning [228], where a possibly corrupted server can compro-
mise the security of the entire system, or in languages as Javascript, where possibly
untrusted code can be received over the network and integrated in the system, for
instance by means of the tricky eval construct [181]. We address this problem in
the context of the abstract interpretation framework [89], using the weakest pre-
condition calculus. Among other results, we devise sufficient conditions to ensure
robustness with respect to active attacks.

In the second part of the thesis, we return to the pressing problem of enforce-
ment of information flow policies and propose different algorithms for precise static
verification of trace-based information flow conditions. Precise verification of infor-
mation flow over program traces is challenging since in general trace properties do
not compose, thus a global analysis of the system may be required in the worst case.
Several logics for information flow properties have been proposed. Rarely, however,
have they been automated for mainstream programming languages as we do in
this thesis. In particular, we leverage the recent advances in automated theorem

1.4. THESIS RESULTS 23

proving and propose symbolic verification algorithms to combat the state explosion
problem [141]. As expected, our methods may still suffer from scalability issues,
however they are able to analyze programs with complex information flows which
appear in many real applications. We show by means of several case studies that
programs taken from practical scenarios are well within the reach of our tools.

In the fifth chapter we use symbolic execution to extract a model of the program
runtime behavior and subsequently verify it against the target security policies,
expressed in epistemic logic, by means of an epistemic model checker. Alternatively,
the model checking problem is transformed into a first order logic formula, which
only contains existential quantifiers, thereby an SMT solver is used to perform
the verification efficiently. In the sixth chapter we propose a novel approach to
relational verification of information flow for low level code. Low level verification
is quite challenging due to the highly optimized nature of the code and the absence
of structured control flow. In addition, low level features such as symbolic jumps,
symbolic memory or usual side effects can significantly complicate the verification
process. Again, we approach this problem by using symbolic execution techniques
to propagate the relational verification conditions and then discharge them using
first-order reasoning.

Another challenge in information flow research is the integration of language-
based security techniques with realistic programming languages, together with prac-
tical tool support that can be easily used by the programmers. This thesis puts a
step forward also in this direction. We have implemented a tool prototype, EN-
CoVer, as an extension of Java PathFinder [184], a software model checker for
Java bytecode developed at NASA. ENCoVer performs information flow analysis
of Java programs in a push-button fashion and allows the programmer to externally
specify the security requirements, thus separating the program text from the policy.
Several case studies show the capabilities and the limitations of ENCoVer. Simi-
larly, we have implemented an automated tool that integrates with SMT solvers to
automate the verification task of machine code. The tool transforms ARMv7 bina-
ries [23] into an intermediate, architecture-independent format extending the BAP
toolset [62]. The tool has been successfully used to show the absence of information
flow channels on a separation kernel system call handler, which mixes hand-written
assembly with gcc-optimized output, a UART device driver and a crypto service
modular exponentiation routine [36].

1.4 Thesis Results

In this section we give a short overview of the papers included in this thesis, together
with a statement of the author’s contributions. We start with a gentle description
of the basic concepts needed to understand the thesis results, and then go on to
describe the actual results. The thesis consists of five papers, some of which have
been minimally revised to improve the overall presentation and to include additional
proofs.

24 CHAPTER 1. INTRODUCTION

1.4.1 A Simple Worked-Out Formalization
In this subsection we elucidate the overall specification and verification approach
by means of a formalization and a simple running example. To this end, we first
introduce a fragment of an imperative language, including syntax and operational
semantics, and show how the language is used to reason about the noninterference
condition. Then we conclude with a logic and a symbolic verification method which
are used to specify and verify noninterference, respectively. All these steps are ac-
companied by the running example.

Computational Model. We study a simple imperative language extended
with a synchronous output statement that, over the course of a computation, causes
information to be leaked to an observer. Besides the output statement “out(e)”, the
features of the language are commonplace: assignments, conditionals, a primitive
data type of values belonging to a finite set Val. Loops are excluded to avoid
clutter. The grammar of the language is given in Fig. 1.14. Programs are ranged
over by P , identifiers by x , values by v , and expressions by e.

P ::= skip | out(e) | x :=e | P ; P

| if e then P else P

Figure 1.14: A Simple Imperative Language

(e, σ) −→ v ∈ Val
(out(e), σ) v→ (skip, σ)

(e, σ) −→ v ∈ Val
(x := e, σ)→ (skip, σ[x 7→ v])

(P0, σ) (α)→ (P ′0, σ
′)

(P0; P1, σ) (α)→ (P ′0; P1, σ
′) (skip; P1, σ)→ (P1, σ)

(b, σ) −→ true

(if b then P0 else P1, σ)→ (P0, σ)

(b, σ) −→ false

(if b then P0 else P1, σ)→ (P1, σ)

Figure 1.15: Small Step Operational Semantics

A store is a finite map σ : x 7→ v , and σ(e) is the value of e in store σ. An
execution state is a pair (P , σ). The execution of a program generates observable
actions (or events) belonging to Act and ranged over by α (Act = Val). The

1.4. THESIS RESULTS 25

transition relation (P , σ) α−→ (P ′, σ′), or (P , σ) −→ (P ′, σ′), states that by taking
one execution step in the execution state (P , σ) the execution generates the visible
event α, if it is present, and the new execution state is (P ′, σ′). We write (P , σ) (α)−−→
(P ′, σ′) where α is optional. The small step operational semantics of the language
is shown in Fig. 1.15. An execution is a finite sequence of execution states.

π = (P0, σ0) (α0)−−−→ · · · (αn−1)−−−−→ (Pn , σn) (1.1)

We write len(π) for the length (number of transitions) of the execution π. An
execution point, or simply point, is a pair (π, i) where 0 ≤ i ≤ len(π). We write
σ(π, i) or σi for the store at point (π, i). The power of the attacker is modeled by
providing a function trace mapping execution points to traces that represent what
the attacker has been able to observe so far. A trace τ is a sequence of actions. We
use the function trace such that trace(π, i) is the sequence of events αj such that
0 ≤ j < i and αj exists. We write trace(π) for trace(π, len(π)). For instance, the
trace of the execution (1.1) is: (α0)(α1) · · · (αn−1). This definition corresponds to
the so called perfect recall attacker [112], i.e. having memory of past observations.
A (program) modelM is then defined as the set of all executions originating from
some designated set of initial states, for instance of the shape (P0, σ0) where P0 is
a fixed initial program.

Example 1.4.1 (Running Example) Program P consists of two conditional state-
ments over a boolean identifier h and it always outputs 0 or 1.

P ::=
[

if h then out(0) else skip;
if ¬h then out(1) else skip

The program model M contains exactly two executions, π0 and π1, starting with
initial stores σ0(h) = true and σ1(h) = false, respectively. Therefore, trace(π0) = 0
and trace(π1) = 1.

Knowledge and Security. We can use the program models as defined above
to reason about information flow properties using the notion of knowledge. In this
discussion we focus on noninterference which we have already stated informally.
Noninterference can be defined on a two-level security lattice (recall Fig. 1.4) and
it requires that no information about initial values of high identifiers can escape
the program through the output statement. Again, to avoid clutter, we assume the
store consists of high identifiers only. For instance, the identifier h in the running
example is labeled as high security.

Following the recipe in Fig. 1.3, we define the various ingredients as follows. The
system model is the program model M, which is public knowledge. The security
policy and the attacker model consist of the pair A = (O,P), where O defines the
attacker’s power and P defines what information to protect. In our setting, O is
the trace function and P is the set of program identifiers (since we assumed they

26 CHAPTER 1. INTRODUCTION

are all labeled as high). The knowledge of an attacker who knows the program
model M and observes the output actions is then defined with respect to a point
(π, i) as follows.

K(π, i ,A) = {σ(π′, 0) | π′ ∈M∧ trace(π, i) = trace(π′, i ′)} (1.2)

where 0 ≤ i ′ ≤ len(π′). Intuitively, K(π, i ,A) represents the set of initial
(secret) stores that the attacker holds for possible based on its observations up to
point (π, i). Namely, an attacker who observes trace(π, i) can not tell apart which of
the executions starting from an initial store in K(π, i ,A) is the one that is actually
executing. The security condition ensures that for each execution point (π, i + 1),
the attacker’s knowledge is not greater3 than its knowledge at the previous point
(π, i).

For all π ∈M, K(π, i ,A) ⊆ K(π, i + 1,A), where 0 ≤ i < len(π) (1.3)

We exercise the above security condition on the running example.

Example 1.4.2 Let P1 ::= if ¬h then out(1) else skip. Then the program text
in Example 1.4.1 has the following model (using the rules in Fig. 1.15).

M ::=
{

π0 = (P , σ0)→ (out(0); P1, σ0) 0→ (skip; P1, σ0)→ (P1, σ0)→ (skip, σ0)
π1 = (P , σ1)→ (skip; P1, σ1)→ (P1, σ1)→ (out(1), σ1) 1→ (skip, σ1)

By definition (1.2), we can compute K(π0, 2,A) = {σ0, σ1} and K(π0, 3,A) = {σ0}.
As a result, the security condition (1.3) is violated, i.e. K(π0, 2,A) 6⊆ K(π0, 3,A).
Indeed, after the attacker observes the output value 0, she can refine her knowledge
and learn that σ1 is not a possible initial store. Hence, the program is deemed
insecure.

A Logic for Information Flow. We now propose to use a fragment of
temporal epistemic logic to express the security condition in (1.3) in a syntactical
manner. The language of formulas φ, ψ in temporal epistemic logic is given as
follows:

φ, ψ ::= initx (e) | φ ∧ ψ | ¬φ | Kφ | Gφ

The language contains atomic propositions initx (e) expressing that the value x in
the initial state is identical to the value of e in the current state. The purpose
of the initial state predicate initx (e) is to capture what is known “now” of the
initial store. The operator K is the epistemic knowledge operator. Kφ holds if
φ holds in any state equivalent to the current state. The “always” operator Gφ
meaning that φ holds in any future state. Various connectives are definable in
the language including standard derived boolean operators such as implication →,
universal quantification over the finite set of values ∀x . φ =

∧
v∈Val φ[v/x] or the

3Please recall that the smaller the set K, the greater is the attacker’s knowledge.

1.4. THESIS RESULTS 27

epistemic possibility operator Lφ = ¬K (¬φ) meaning that φ holds for at least one
epistemically equivalent state. We use these as syntactic sugar. Satisfaction relative
to program modelM is defined asM |= φ iff for all π ∈ M, (π, 0) |= φ. Here we
report the formal definition of the satisfaction relation at an execution point (π, i)
for selected logic operators.

(π, i) |= initx (e) iff σ(π, 0)(x) = σ(π, i)(e)
(π, i) |= Gφ iff for all i ′ ≥ i , (π, i ′) |= φ

(π, i) |= Kφ iff for all (π′, i ′) s.t. trace(π, i) = trace(π′, i ′), (π′, i ′) |= φ

(π, i) |= Lφ iff there exists (π′, i ′) s.t. trace(π, i) = trace(π′, i ′), (π′, i ′) |= φ

Let h1, · · · , hn be the set of program identifiers (all labeled as high security).
Then we can express the security condition (1.3) in the logic.

M |= ∀v1, · · · ,∀vn G L(inith1(v1) ∧ · · · ∧ inithn
(vn)) (1.4)

By definition of the satisfaction relation, the formula (1.4) can be interpreted as
follows. Consider the execution point (π, 0) for some π ∈ M. Then, along any
execution point (π, i) of execution π (cf. G operator), there exists an execution
point (π′, i ′) with the same trace as (π, i) (cf. L operator), which can originate
from any value initially assigned to the program identifiers (cf. (inith1(v1) ∧ · · · ∧
inithn

(vn)) condition). The following example illustrates this point.

Example 1.4.3 We apply the logical characterization (1.4) to the model in Exam-
ple 1.4.2. This requires to check whetherM |= ∀v G L(inith(v)) holds. Namely,

M |= G L(inith(true)) ∧ G L(inith(false))

In particular, it must be the case that (π0, 3) |= L(inith(false)). From Example
1.4.2, π1 is the only execution where inith(false) holds and trace(π1) = 1. However,
trace(π0, 3) = 0, hence a contradiction. As expected, the formula is not true in the
model.

A Symbolic Verification Method. We have seen how reasoning about
knowledge can be used to capture the noninterference condition and how the rea-
soning can be expressed syntactically using temporal epistemic logic. Now we
address the verification problem and present a symbolic method to check whether
an epistemic formula of the shape as in (1.4) holds of a program as presented in
Fig. 1.14.

The main idea is to reason about the behavior of a program by means of forward
symbolic analysis. The analysis allows us to build a logical formula, which captures
multiple program executions, and leverage first-order reasoning to statically prove
program properties. The analysis is based on the symbolic semantics, as shown
in Fig. 1.16, which is very similar to the concrete semantics. The program is

28 CHAPTER 1. INTRODUCTION

(e,∆) −→ es

(out(e), φ,∆) (φ,es)→ (skip, φ,∆)

(e,∆) −→ es

(x := e, φ,∆)→ (skip, φ,∆[x 7→ es])

(P0, φ,∆) (α)→ (P ′0, φ
′,∆′)

(P0; P1, φ,∆) (α)→ (P ′0; P1, φ
′,∆′)

(b,∆) −→ bs , φ′ = (φ ∧ bs), φ′ consistent
(if b then P0 else P1, φ,∆)→ (P0, φ

′,∆)

(skip; P1, φ,∆)→ (P1, φ,∆)

(b,∆) −→ bs , φ′ = (φ ∧ bs), ¬φ′ consistent
(if b then P0 else P1, φ,∆)→ (P1,¬φ′,∆)

Figure 1.16: Symbolic Semantics

executed on symbolic inputs and, consequently, the state is also symbolic. Initially,
program identifiers are mapped to fresh variables. We use es to range over symbolic
expressions, which are build over these initial variables and constants using the
standard machinery. A symbolic state is a tuple (P , φ,∆), where P is the program
text, φ is the path condition and ∆ is the symbolic store, mapping identifiers to
symbolic expressions. A path condition φ is a symbolic boolean expression built
over the initial variables and constrains the set of concrete initial states that execute
the path. For instance, the symbolic state (P , (l + k ≥ 0),∆[l 7→ k + 1]) denotes
the program text P , the path condition (l + k ≥ 0) and the symbolic store ∆,
which maps the program identifier l to the symbolic expression k + 1. The rules in
Fig. 1.16 can be used to extract a symbolic program model which only contains the
information needed to verify the security property. We call such model a symbolic
output tree (SOT). Broadly, a symbolic algorithm does the following in a loop until
all program paths are explored: it starts with symbolic values for input identifiers
and executes the program symbolically by applying the rules in Fig. 1.16. When
a conditional statement is reached, the consistency of the resulting path condition
is checked in order to make sure that the path is reachable. When an output
statement is reached, the corresponding output expression is also evaluated in the
symbolic state. The symbolic output tree represents conditions on initial inputs
that direct the program to an output statement. This is done by saving the path
conditions and the output expressions for all reachable output statements. Fig. 1.17
shows the symbolic output tree derived from the symbolic analysis of the program
in Example 1.4.1.

The symbolic output tree S and the noninterference formula are combined into
a quantifier-free formula, which can be later verified with an SMT (Satisfiability
Modulo Theory) solver. Let N (S) denote the set of the tree nodes, and φn and

1.4. THESIS RESULTS 29

Start

out(0)

(h=true)

out(1)

(h=false)

End End

Figure 1.17: Symbolic Output Tree

On the path condition and the output expression at node n, respectively. Then the
program is noninterfering iff the following quantifier-free formula is unsatisfiable.∨

n∈N (S)

(φn ∧ (
∧

m∈N (S)

¬(φ′m ∧ On = O′m))) (1.5)

The primed version ψ′ of a formula ψ is a renaming of all free variables x in ψ with
x′. Intuitively, if the formula in (1.5) is unsatisfiable, then it is impossible to find a
pair of (high) initial stores that lead to two different output sequences, and this is
exactly the noninterference condition.

Example 1.4.4 We apply the condition (1.5) to check whether the symbolic output
tree in Fig. 1.17 satisfies noninterference, i.e. the formula is unsatisfiable. Let
φ0 := (h = true), O0 := 0 and φ1 := (h = false), O1 := 1, then∨

n∈{0,1}

(φn ∧ (
∧

m∈{0,1}

¬(φ′m ∧ On = O′m)))

For n = 0, one of the disjuncts has the following shape,

(h = true) ∧ (¬((h′ = true) ∧ 0 = 0)) ∧ (¬((h′ = false) ∧ 0 = 1))

The above formula is satisfiable for h 7→ true and h′ 7→ false. Hence the disjunc-
tion is satisfiable and the program is interfering as expected.

The program in Example 1.4.1 would have been rejected by a security type
system as well, for instance using the rules in Fig. 1.13. To further appreciate the
advantages of our approach, the reader is encouraged to go back to the beginning
of this subsection and apply the same analysis to the following secure program.

P ′ ::=
[

if h then out(0) else skip;
if ¬h then out(0) else skip

30 CHAPTER 1. INTRODUCTION

1.4.2 Thesis Overview

In the first part of the thesis we show how the epistemic logics can be used to
express information flow concepts in language-based and event-based systems and
conclude with an algorithmic approach to check program robustness in presence of
active attacks. In the second part of the thesis we address the verification problem
of information flow security policies including symbolic algorithms and practical
tools. The approach is based on model checking and automatic theorem proving
techniques to verify a piece of code with respect to a given security policy. We now
give a short overview of each paper included in the thesis followed by a statement
of the author’s contribution.

Epistemic Temporal Logic for Information Flow Security

A common feature in much recent work on information flow analysis has been the
appeal to the concept of knowledge as a fundamental mechanism to bring out what
security property is being enforced (the “revealed” knowledge) and compare it with
the knowledge allowed by the policy. This appeal to knowledge, typically as equiv-
alence relations on initial states (or partial equivalence relations [201]), has been
important to produce clear, reference conditions on which soundness arguments
can be based. Knowledge, as it happens, is at the root of an entire branch of logic,
namely the logic of knowledge, or epistemic logic [112]. In this paper we show that
the epistemic logic account of knowledge is compatible with the knowledge notion
which has emerged within language-based security, and can have a valuable role to
play for policy specification.

Temporal epistemic logic is a well-established framework which can be used
in distributed systems to reason about knowledge and how it evolves over time.
Temporal epistemic logic adds epistemic connectives K and L to familiar temporal
connectives such as G (always) and U (until). Those epistemic connectives, as
formalized in the previous subsection, relate agents local state to the possible global
states that are consistent with the agents local observations. Thus, as an example,
the property φ = G(C → ∀v . L(h=v)) expresses that whenever some condition C
holds then, as far as the attacker can tell, any value of h is possible (and so the
value of h is unknown and not released to the attacker).

In this study we apply temporal epistemic logic to standard sequential imper-
ative programs [223] augmented with a public output statement, in order to allow
a program to ”gradually release“ [28] information. The program model is turned
into a model for temporal epistemic logic in the style of interpreted systems [112].
This is done by defining a perfect recall epistemic accessibility relation using the
simple and intuitive idea that two execution states should be regarded as being
epistemically the same if they have been reached by identical traces of publicly
observable output, i.e. such that an observer cannot tell the two states apart. In
particular, if there exists an execution sequence producing a trace τ and ending in
a state refuting property φ then the attacker is forced to hold ¬φ for possible.

1.4. THESIS RESULTS 31

Our main objective with this paper is to show that temporal epistemic logic is an
interesting and natural device with which to express information flow policies. We
show this by demonstrating how various state-based security conditions related to
noninterference [122, 123] (absence of “bad” information flows) and declassification
[202] (intended release of information) can be characterized using the logic.

Statement of Contribution. This paper is published in the Proceedings of the
ACM SIGPLAN 6th Workshop on Programming Languages and Analysis for Se-
curity (PLAS 2011). The paper is coauthored with Mads Dam and Gurvan Le
Guernic. Initially, Mads proposed to use epistemic logic for information flow prop-
erties. Then we all contributed equally to the technical development and the paper
writing. I wrote most of the formal proofs.

A Logic for Information Flow Analysis of Distributed Programs

Information flow security policies, if successfully enforced or verified, prevent differ-
ent types of confidentiality and integrity attacks. However, most work on language-
based security models of information flow assumes synchronous or relational com-
munication [100, 197, 182]. Although these models are important in many settings,
they are not obviously well suited for distributed programs where communication is
interactive/reactive, nondeterministic and mostly asynchronous, lossy or unordered.
The result is that programs that are considered insecure in one model may be se-
cure in another, and vice versa. The following scenario illustrates the need for
security conditions that go beyond the traditional initial-state final-state account
of noninterference.

An online auction is a distributed system consisting of an auctioneer A and
several bidders Bi competing for items Ik . Such systems are complex and usually
involve both message passing and shared memory. For example, the auctioneer may
receive messages from bidders who want to participate in the auction and associate
a dedicated thread to each request. Then, depending on the auction protocol, each
thread may read and write to a private shared array containing bids for all bidders
and items. Several information flow policies may be worth enforcing in this scenario.

P1 : The authentication code (pwd) of bidder Bi is always (G) secret wrt. any
bidder Bj . In logic: G¬KBj

(pwdBi
= v).

P2 : The sequence of bids of bidder Bi remains secret wrt. all bidders Bj until
(W) the auction is closed. In logic: LBj

(secArray = v) W aClosed .

P3 : Only the first 3 bids of bidder Bi are considered secret wrt. any bidder Bj

until the auction is closed. In logic: LBj
(φ(bi

1, b
i
2, b

i
3)) W aClosed .

P4 : Any bid of bidder B3 remains secret wrt. a colluding attack of B1 and B2. In
logic: GLB1,B2(b3 = v).

32 CHAPTER 1. INTRODUCTION

P5 : The system may nondeterministically select a subset of bids from the private
array, compute the maximum and promote an item I ∗ to the winner B∗. The
output of this process may be considered secret wrt. any bidder Bj 6= B∗. In
logic: G¬KBj

(out(B∗, I ∗)).

As illustrated above, the auction system poses several challenges that need to
be addressed to enforce the security policies. First, the system is inherently non-
deterministic, hence the need for possibilistic notions of information flow security.
Second, distributed programs are usually interactive/reactive, which requires pro-
tection of sequences of (input or output) events as opposed to classical relational
models where the input is read in the beginning of execution. Third, security
policies are usually dynamic and involve controlled release of secret information.
Finally, in distributed settings attackers may collude and share their observations
to disclose secret information.

In this paper we model systems in a trace-based setting where an execution trace
is a sequence of events on channels. Security properties are expressed in terms of
epistemic conditions over system traces. Noteworthy, the security model brings out
what events O on channels an observer can see and what observations on events P
should be protected. Then the system is secure if the knowledge about events in P
of an observer who makes observations in O, at any point in the execution trace,
is in accordance with the security policy at that point. Namely, the observer is
unable to learn more information than what is allowed at a given point while mov-
ing to a successive point of the same trace and possibly making a new observation.
This model fits well with current knowledge-based approaches to information flow
security and, by being explicit about the information that needs to be protected,
it allows a very general treatment of secret information, both as high level input
and output events, and as relationships between events, say ordering, multiplicity,
and interleaving. We show that several possibilistic conditions such as separability,
generalized noninterference, nondeducibility, nondeducibility on outputs and nond-
educibility on strategies are accurately reflected in the epistemic setting. Moreover,
we present a linear time epistemic logic, with past time operators, which allows us
to syntactically characterize security properties. The logic can be used as specifi-
cation language for expressing possibilistic information flow policies. This enables
modeling of the intricate and precise policies described in the example and, at the
same time, ensures separation between the actual code and the policy.

Statement of Contribution. This paper is an extended version of the work
published in the Proceedings of the 18th Nordic Conference on Secure IT Systems
(NordSec 2013). This is my own paper, however Mads had an advisory role in all
stages of this work.

1.4. THESIS RESULTS 33

A Weakest Precondition Approach to Robustness
In this paper we study the interaction between integrity and confidentiality, and
show how low integrity, i.e. attacker-controlled, code can compromise the program
confidentiality and enable the attacker to learn more information than it is allowed
to. According to OWASP (Open Web Application Security Project) [10], the most
common security attacks are due code injections, which modify the intended pro-
gram semantics and unduly send sensitive data to the attacker. In language-based
security, this problem is known as robust declassification [227] and it usually arises
whenever the program code explicitly downgrades sensitive information or upgrades
untrusted information. For confidentiality, the goal is prevent untrusted code from
influencing the decision to declassify secret data and thus reveal more information
than intended. More generally, a program is robust if an active attacker, who sends
untrusted code to the program, is unable to learn more sensitive information than
a passive attacker who can only observe the public outputs of the program. For
example, the Javascript code snippet in Fig. 1.18 can be used by the attacker to
send the user’s cookie to a web server under her control.

/* initialisation of the cookie by the server */
var cookie = document.cookie;
var dut;
if (dut == undefined) {dut = "";}
while(i<cookie.length) {

switch(cookie[i]) {
case ’a’: dut += ’a’; break;
case ’b’: dut += ’b’; break;
... }

}
/** dut now contains a copy of cookie;

when the user clicks on the image, dut is sent
to the web server under the attacker’s control

*/
document.images[0].src = "http://badsite/cookie?" + dut;

Figure 1.18: An XSS vulnerability.

We approach this problem by analyzing attackers that can observe the in-
put/output (I/O) behavior of programs and that, from these observations, can
make some kind of reverse engineering in order to derive the secret information that
could have possibly produced the observations. This idea of backward analysis for
noninterference and declassification is studied in the context of abstract interpreta-
tion framework [42]. The ingredients of this method are: the initial declassification

34 CHAPTER 1. INTRODUCTION

policy modeled as an abstraction of private input domain and the weakest liberal
precondition semantics of the program, characterizing the backward analysis (i.e.,
from outputs to inputs) and the attacker’s observational power. The certification
process starts with a possible public observation and computes the weakest liberal
precondition of the program and the observation. By definition, the weakest pre-
condition semantics provides the greatest set of possible input states leading to the
given output observation. In other words, it characterizes the greatest collection
of input states, and in particular of private inputs, that an attacker can identify
starting from the given observation. In this way, the attacker can restrict the range
of private inputs inside this collection and possibly reveal secret information. The
analysis of the code in Fig. 1.18 will produce the following result (assuming that
the variable cookie is labeled as high security and the variable dut is labeled as low
security).

[•]
{cookie + dut = res}

while(i < cookie.length){
switch(cookie[i]){
case ′a ′ : dut+ =′ a ′; break ;
case ′b′ : dut+ =′ b′; break ;

...}}
{dut = res}

The resulting formula shows that confidentiality of cookie is violated since there
is an implicit flow towards the public variable dut . Consequently, this is the sensitive
information disclosed by a passive attacker whenever dut is initialized with the
empty string.

Nevertheless, if the variable dut is labeled as low integrity, an active attacker
can insert malicious code and thus leak additional confidential information. For
instance, if the attacker is interested in the history object, she can loop over the
elements of the object and reveal through variable dut all the web pages the client
has had access to. The code in Fig. 1.19 can be a possible malicious injection at [•]
point in the example.

<script language="JavaScript">
var dut = "";
for (i=0; i<history.length; i++){

dut = dut + history.previous;
}
</script>

Figure 1.19: Malicious code exploiting XSS vulnerability.

As a result, the program clearly violates the robustness condition. In this work,

1.4. THESIS RESULTS 35

our objective is to formalize the analysis also in presence of active attackers. We
consider the model of active attackers which can transform program semantics by
inserting untrusted code in fixed program points [•] (holes), known by the pro-
grammer. We then show that the weakest precondition calculus can be used to
characterize the revealed information, and therefore to discover program vulnera-
bilities. The analysis is thus used to certify program robustness. Since the possible
active attacks can be infinitely many, we explore them symbolically and provide
sufficient conditions that guarantee robustness independently of the attack. Ini-
tially we study robustness for I/O attackers, i.e., attackers that can only observe
the I/O program behavior, and afterwards we extend the method to attackers able
to observe intermediate states, i.e., the trace semantics of the program. In some
restricted contexts, for example where the activity of the attacker is limited by the
environment, the standard notion of robustness may become too strong. To deal
with these situations we introduce a weakening of robustness, i.e., relative robust-
ness, which restricts the set of active attackers that we are checking robustness for.
We conclude with various interesting applications where the approach can be useful
in order to capture confidential information leakages.

Statement of Contribution. This is a journal paper published in the Transac-
tions on Computational Science X: Special Issue on Security in Computing, Part
I (TCS 2010). The paper is coauthored with Isabella Mastroeni. I was responsi-
ble for most of the technical results, proofs and paper writing, while Isabella had
an important advisory role. An earlier version of this paper is published in the
Proceedings of the ACM SIGPLAN 4th Workshop on Programming Languages and
Analysis for Security (PLAS 2009).

ENCoVer: Symbolic Exploration for Information Flow Security
Epistemic logic, the logic of knowledge, provides a clean and intuitive tool for
modeling different information flow policies, including noninterference and many
variants of declassification, as in a number of recent works [38, 128, 28, 45]. The
knowledge of an attacker that is in possession of the program text and has a partial
view of program executions, e.g. by receiving some outputs, can be defined as a
partition of the set of secret inputs that determines the observed outputs. This
partition corresponds to the properties of secret inputs disclosed by the program.
The desired security policy, e.g. some noninterference or declassification property,
gives rise to another partition of secret inputs, the property of secret inputs allowed
to flow to the observer. Comparing these two partitions determines whether the
program meets the security policy. In epistemic logic, the observer’s knowledge is
expressed in terms of knowledge operator Kφ, meaning that the observer knows
property φ i.e. φ is true in all states that are possible given the observer’s current
state [38, 112]. Intuitively, Kφ holds for all formulas φ that induce a partition
which is less discriminating (included into) than the one induced by the observed
outputs.

36 CHAPTER 1. INTRODUCTION

Many verification techniques have been proposed for checking information flow
properties, including static and dynamic analysis [197]. Security type systems
[218, 139] is the dominant technique, but other techniques have been explored
as well, including dependency analysis [14], program logics [45], abstract interpre-
tations [119], axiomatic approaches [21], program slicing [220] and so on. Most
verification approaches for noninterference-like policies, type systems in particular,
enforce noninterference by separating the secret and public computations, and as
a consequence any interaction between the secret and public computations, even a
benign or corrective one, deems the program as insecure. This increases the number
of false positives and limits applicability. Other techniques are based on semanti-
cal reasoning and are often computationally expensive or even undecidable. The
verification approach proposed in this paper is exclusively tailored to end-to-end
verification of noninterference and declassification by means of off-the-shelf epis-
temic model checkers and SMT solvers. Thereby, the approach is both sound and
relatively complete with respect to verification in the underlying program model.

In this paper, concolic execution, a mix of concrete and symbolic execution, is
used to extract a bounded model of program runtime behavior [121, 146]. This
model is subsequently verified against the target security properties, expressed in
epistemic logic, by means of an epistemic model checker. Due to the size of the input
data domain epistemic model checking can, however, be extremely inefficient or even
infeasible. To address this, an alternative approach is proposed whereby the model
checking problem is transformed to a first order logic formula. Due to the shape
of epistemic formulas for noninterference and declassification, the transformation
produces a formula which only contains existential quantifiers, thereby an SMT
solver can be used to perform the checking efficiently.

We have implemented the verification approach described above in a tool pro-
totype, ENCoVer [39], as reported in Fig. 1.20. The prototype is an extension of
Java PathFinder [184], a software model checker developed at NASA. ENCoVer
takes as input a program written in Java and a security policy and generates a sym-
bolic output tree, which encodes conditions on program inputs that produce output
observations. The symbolic output tree is used in two ways. First, it is combined
with the security policy to generate an SMT formula which is subsequently verified
with Z3, a state-of-art SMT solver [98] and, secondly, as an alternative, it is used to
generate an input file for the epistemic model checker MCMAS [157]. The perfor-
mance of ENCoVer is evaluated on a main case study involving multiple parties
accessing a joint store of tax records, as well as on several smaller, but delicate,
examples.

Statement of Contribution. This paper is published in the Proceedings of the
25th IEEE Computer Security Foundations Symposium (CSF 2012). The paper
is coauthored with Mads Dam and Gurvan Le Guernic. All authors contributed
equally to the technical development and the paper writing. Gurvan was the driving
force behind ENCoVer, although we both contributed to the tool implementation

1.4. THESIS RESULTS 37

ENCoVer

Java PathFinder
(core + symbc)

jpf-encover

Z3

Java source Policy

SOTMCMAS model

MCMAS
YES or NO

(+ counterexample)

Figure 1.20: ENCoVer Architecture

and the case studies. The formal proofs in the paper were written by myself.

Automating Information Flow Analysis of Low Level Code
The ultimate goal of information flow analysis is to establish confidentiality and
integrity properties of real code executing on commodity CPUs. In the literature,
normally this problem is addressed at the source code level. There it may be more
forgiving to ignore messy low-level problems, e.g. regarding timing, complex control
flow, or hardware specifics. Also, one may appeal to special compilers that avoid
difficult optimizations, or work around machine features such as caching, instruction
reordering, concurrency, I/O, interrupts, bus contention and so on, that are difficult
to handle in a precise manner.

Sometimes, however, source level analysis is less suitable. This is certainly
the case when dealing with third-party code, but it applies in other cases too, for
instance, for heavily optimized or obfuscated code, and for kernel handler routines
that manipulate security sensitive peripherals such as privileged processor registers,
MMUs, and bus and interrupt controllers.

The literature has two “standard” approaches to information flow control (IFC)
for low-level languages: static and dynamic verification techniques [197]. Neither
of these schools are very helpful, though, when it comes to the problem we have set
out to study: Information flow analysis for low level code on commodity proces-
sors. In this domain, existing static approaches are too imprecise due to lightweight
(data/flow/path/timing-insensitive) analysis, while dynamic approaches suffer from
the well known problem of label creep and introduce undesired runtime overhead.

38 CHAPTER 1. INTRODUCTION

Figure 1.21: Verification process

Security testing-like techniques provide impressive results in terms of scalability,
however, they are in general unsound and can not directly be used for full verifica-
tion [180, 31].

In this paper we propose to directly verify relational information flow properties
at machine code level, leveraging as much as possible recent progress on low-level
code analysis tools such as BAP [62]. Code for our target machine, ARMv7 assem-
bly, is first lifted to a machine-independent intermediary form, BIL, using the BAP
tool. This process uses a lifter that is produced from the Cambridge HOL4 model
of ARMv7 [135]. This allows the reuse and extension of BAPs program verification
back end to symbolically execute the resulting BIL code.

Fig. 1.21 depicts the workflow of the verification process. We first perform unary
analysis (Alg. 1) and then verify relational properties by propagating relational
preconditions through each of a pair of related programs until a pair of observation
points are reached, that need to be matched, in order for the relational property
to hold (Alg. 2). These observation points are memory write events, to locations
that are statically determined to be observable by some external observer, because
of multithreading, or memory-mapped I/O, or for some other reason. Matching is
done by SMT solving using STP [118], on formulas that tend to grow huge, but
generally rely only on linear arithmetic, uninterpreted functions, and arrays, and
so are not too costly to check. Special care is needed for memory accesses which
introduce quantifier alternation, hence we propose an instantiation technique which
ensures the resulting formulas are quantifier free.

Three distinguishing features make our information flow analysis both useful
and challenging: loop invariants, timing and traces. Loops are handled using (rela-
tional) invariants/widening. We point out that relational invariants are, probably
counter-intuitively, simpler than state invariants as in many cases they do not re-
quire proving functional correctness of the loop. Our case studies show that the
invariants we provide are conjunctions of linear equalities, which can be generated
automatically [206]. Timing is particularly critical. The timing information is in-
cluded in the symbolic state and propagated with the other constraints. The model
used here scales to functional cost models, i.e. models where the timing cost can be
calculated as function of the input instruction, independent of the history. This is
evidently realistic only for simple processor architectures such as ARM Cortex-M

1.5. CONCLUDING REMARKS 39

(but we note that a vast number of such processors are in use today in critical
control applications). Richer and tractable timing models that can take into ac-
count also features like caches and instruction pipelines are, however, currently not
available at ISA level. Finally, the trace-based analysis broadens the number of
target applications handled by our technique, including preemptive environments
and scheduling.

In general the approach will suffer from scalability problems, for instance due
to path explosion, and due to the generally complex and detailed machine state.
However, our primary application is separation kernel handler verification, and
this domain is generally characterized by critical machine code fragments that are
rather small (generally under 1K instructions per handler), but also tricky. The case
studies reported in this paper are based on syscall handlers and device drivers of
slightly more than 250 lines of ARMv7 assembly, produced by a mix of hand-crafted
assembly and GCC-optimized C.

Statement of Contribution. This paper is accepted and will appear in the
Proceedings of the 21st ACM Conference on Computer and Communication Security
(CCS 2014). The paper is coauthored with Mads Dam and Roberto Guanciale.
Mads and I initially developed the idea of automating relational verification for low
level code. We all contributed equally to the technical development and the paper
writing. The tool prototype was developed by myself.

1.5 Concluding Remarks

This thesis contributes to the state of the art both in terms of theoretical foun-
dations and practical developments. The use of the logic of knowledge captures
in a very clean way the epistemic underpinnings inherent in the information flow
security conditions, as described in Chapter 2 and Chapter 3. Moreover, the deli-
cate intermingle of confidentiality and integrity, as addressed in Chapter 4, results
fundamental in securing modern applications and our techniques move a step for-
ward in that direction. The verification methods proposed in the last two chapters
are tailored to information flow properties and, as a result, they provide a precise
enforcement of the security conditions. Namely, whenever the verification process
terminates, it will either certify the program as secure or report a violation which
is a real bug. On the practical side, the algorithms and the tools presented in
Chapter 5 and Chapter 6 show that information flow analysis is not only necessary
and useful, but also possible for real applications, ranging from Java programs to
low level ARMv7 assembly.

There are a few issues that need to be addressed before the techniques studied in
this thesis get adopted in software production systems. As usual, the migration to
new technologies comprises both technical and non-technical challenges which very
often limit the use of these technologies. First and foremost, current programming
practices mostly consider security as a posteriori task and rarely embed the security

40 CHAPTER 1. INTRODUCTION

requirements in all phases of the software development process. Changing this trend
is quite challenging as a security-aware software development process would require
a mindset shift for all the stakeholders involved in the process, including software
architects, programmers, analysts and even the end-users. This leads to additional
costs and efforts which can certainly pay off in the long run, however not everyone
is willing to take on these expenses. On the other hand, software bugs are at the
root of many security failures and ad-hoc security patches only increase the overall
complexity and can make the software more error-prone. Therefore, the adoption
of systematic methods for security analysis and certification can provide strong
formal guarantees and thus significantly reduce the space of possible attacks. The
achievement of this goal may require to bridge the usual gap between research and
industry, which we hope it will happen in the future.

Moreover, the appealing end-to-end security assurance provided by IFC comes at
the price of security policies which, at least compared to traditional access control,
are not very simple and may require reasoning about the whole system. This leads
to a computationally expensive verification process which sometimes may not give a
satisfactory answer or it may constrain the way a program is written at best. From
the theory perspective we can arguably say that IFC stands on a solid ground,
although some challenges, as discussed in Sect. 1.3.2, still remain. More needs
to be done in terms of practical tools that help the developers to program with
information flow control. Below we discuss a few open issues regarding the work
presented in this thesis and propose several directions that can be taken to tackle
these problems in the future.

Tools and Case Studies. The tools developed in this thesis are research proto-
types used to support the theoretical results. More engineering work would certainly
improve the efficiency of the tools and allow them to scale to larger case studies.
The verification algorithms rely heavily on symbolic execution and SMT solving
and, as a result, known limitations of these methods apply to our tools as well. For
instance, ENCoVer, being an extension of JPF, is currently limited to the class
of programs that SPF (the symbolic extension of JPF) can handle and the class
of expressions the SMT solver (Z3) can solve. In principle SPF can execute any
Java bytecode, however in practice SPF is limited by missing implementations for
some native libraries (such as java.io and java.net), a few bugs (such as NullPointer
exceptions being reported as NoSuchMethod exceptions), and the state space ex-
plosion problem (specially for multithreaded programs with loose synchronization
constraints). Similarly, the ARMv7 information flow analysis tool extends the CMU
Binary Analysis Platform (BAP) to implement the symbolic algorithms and uses
the STP solver to verify the resulting constraints. In the future, we expect the class
of programs handled by our tools to grow due to the active development of JPF and
BAP as well as the advances in the state of the art SMT solvers. We also believe
that the tool development process should be accompanied by realistic case studies
and benchmarks which bring out what types of program analysis and verifications

1.5. CONCLUDING REMARKS 41

are needed. The case studies considered in this thesis move a step in this direction,
however much more can and should be done.

Abstraction. The algorithms presented in the thesis are tailored to precise ver-
ification of information flow properties. As a result, the verification process turns
out to be computationally expensive and sometimes even infeasible. For instance,
program loops, which appear in many real applications, are either ignored (by
bounding the number of loop iterations cf. ENCoVer) or loop invariants are
provided manually by the programmer (cf. the ARMv7 tool). The case studies
show that (relational) loop invariants tend to be simple, which makes it possible to
generate, and likely also verify, automatically in the future.

Moreover, some applications may not always need a precise information flow
analysis, at least not for the whole program. Sound approximate analysis, for
instance type systems or predicate abstraction, have been successfully applied to
combat the state explosion problem. An interesting line of future work is to combine
these lightweight analysis, e.g. a security type system, with our techniques in order
to get the best of both approaches, namely increase scalability while maintaining
precision.

Refinement. It is well-known that information flow properties are properties of
sets of executions, i.e. hyperproperties, and in general such properties are not
preserved under refinement. Hence, adding and removing executions as a result
of approximations can make the analysis unsound or imprecise. The condition of
observational determinism used in Chapter 6 is known to be preserved under re-
finement, however, in presence of nondeterminism, it turns out to rule out useful
programs. An interesting direction of future work is to relax observational deter-
minism and study weaker conditions that preserve the information flow properties
under refinements. This is important as it would enable techniques for stepwise
development of software with information flow security guarantees.

Usability. The use of epistemic logics for policy specification requires the pro-
grammer to know about these logics in order to write the security policies. This
may intimidate programmers that are not experts in logics. Much work can be
done to improve the usability of the tools. For instance, we can use high level for-
malisms, e.g. diagrams, to intuitively describe the meaning of the logic connectives
and provide templates for security policy specifications using these folmalisms. In
addition, the integration with existing development environments (IDE:s), compre-
hensive error reports and documentation can certainly help the programmers and
increase usability.

Composition and Decomposition. The knowledge-based security conditions
studied in Chapter 2 and Chapter 3 are stated as global conditions over system

42 CHAPTER 1. INTRODUCTION

models. While this characterization may be needed in the worst case, some appli-
cations allow to decompose the system model and the security policy, and thus make
the verification of the epistemic properties easier. In particular, one can leverage
properties of the target systems, say asynchrony or message order, and decompose
the analysis over simpler systems and properties.

Compositionality is also a desirable feature to increase scalability. We can anno-
tate the program with local knowledge-based specifications and later combine these
specifications to entail some global knowledge-based specification. For information
flow security, this approach would enable a compositional security analysis of the
target application by combining components which are shown to be secure locally.

Robustness. In Chapter 4 we present an algorithmic approach to program ro-
bustness using the weakest precondition calculus. The analysis is fully static and
it requires a well-defined language semantics to be applied. The static nature of
this approach paddles against the dynamic nature of our target languages, for in-
stance Javascript. Hence, a combination of static and dynamic security checks
may be needed during the implementation phase of this work. Moreover, effective
algorithms and tool support are also left out as future work.

Part I

Specification

43

Chapter 2

Epistemic Temporal Logic for
Information Flow Security

Musard Balliu and Mads Dam and Gurvan Le Guernic

Abstract

Temporal epistemic logic is a well-established framework for expressing
agents knowledge and how it evolves over time. Within language-based secu-
rity these are central issues, for instance in the context of declassification. We
propose to bring these two areas together. The paper presents a computa-
tional model and an epistemic temporal logic used to reason about knowledge
acquired by observing program outputs. This approach is shown to elegantly
capture standard notions of noninterference and declassification in the liter-
ature as well as information flow properties where sensitive and public data
intermingle in delicate ways.

2.1 Introduction

Information flow analysis and language-based security has been a hot topic for well
over ten years now. A large array of specification and validation techniques have
been proposed, involving security properties (multi-level security, mandatory access
control), semantical modeling techniques (trace conditions, simulations and bisimu-
lations/unwinding conditions), and analysis and enforcement techniques (type sys-
tems, dependency analyses of various forms). A critique that may be leveled at
much of the past work, our own included, is that it has not always managed to sep-
arate concerns very clearly. In particular, constraints in specification techniques,
programming language features, and details and limitations in the enforcement/-
analysis mechanisms have been interdependent in such a way that it has often been

45

46
CHAPTER 2. EPISTEMIC TEMPORAL LOGIC FOR INFORMATION FLOW

SECURITY

unclear exactly what properties are enforced and how the various approaches relate
to each other. Also, as pointed out by several authors [44, 191], the policy speci-
fication mechanisms have often been interwoven with the object (the program) on
which the policy is to be enforced in a manner that makes it hard to separate policy
concerns from enforcement concerns.

A common feature in much recent work on information flow analysis, cf. [28, 44,
191], has been the appeal to the concept of knowledge as a fundamental mechanism
to bring out what security/confidentiality property is being enforced (the “revealed"
knowledge) and compare it with the knowledge allowed by the policy. This appeal to
knowledge, typically as equivalence relations on initial states (or partial equivalence
relations [201]), has been important to produce clear, external reference conditions
on which e.g. soundness arguments can be based. Knowledge, as it happens, is at
the root of an entire branch of logic, namely the logic of knowledge, or epistemic
logic. In this paper we aim to show that the epistemic logic account of knowledge
is compatible with the knowledge notion which has emerged within language-based
security, and can have a valuable role to play for policy specification.

Temporal epistemic logic is a well-established framework [112] which can be
used in distributed systems to reason about knowledge and how it evolves over time.
Temporal epistemic logic adds epistemic connectives K and L to familiar temporal
connectives such as G (always) and U (until). Those epistemic connectives relate
agents local state to the possible global states that are consistent with the agents
local observations. The property Kφ expresses that an agent A observing a program
“knows" φ in the sense that φ holds in all states that are possible given A’s past
observations. Dually, Lφ expresses that some observationally equivalent state exists
for which φ holds. Thus, as an example, the property φ = G(C → ∀v . L(h=v))
expresses that whenever some condition C holds then, as far as the attacker can
tell, any value of h is possible (and so the value of h is unknown and not released
to the attacker).

In this study we apply temporal epistemic logic to standard sequential while
programs augmented with a public output statement, in order to allow a program
to "gradually release" [28] information concerning its initial state. The program
model is turned into a model for temporal epistemic logic in the style of interpreted
systems [112]. This is done by defining an S5 perfect recall epistemic accessibility
relation using the simple and intuitive idea that two execution states should be
regarded as being epistemically the same if they have been reached by identical
traces of publicly observable output, i.e. such that an observer cannot tell the two
states apart. In particular, if there exists an execution sequence producing a trace
τ and ending in a state refuting property φ then the attacker is forced to hold ¬φ
for possible.

Our main objective with this paper is to show that temporal epistemic logic is
an interesting and natural device with which to express information flow policies for
imperative programs. We show this partly by example, and partly by demonstrating
how various state-based security conditions related to noninterference [122, 123]
(absence of “bad” information flows) and declassification [202] (intended release of

2.2. COMPUTATIONAL MODEL 47

information) can be characterized using the logic.
We are not the first to apply epistemic logic in the context of computer security.

The concrete link between language-based security and temporal epistemic logic
which we point out in this paper appears, however, to be new. BAN logic [68] and
successors use epistemic concepts to model agents changing knowledge and belief
in security protocols. BAN logic, however, suffered from a lack of an intuitively
acceptable semantics (the problem of logical omniscience), something that has only
been remedied recently [88]. Post-BAN work in security protocol verification has
to a large extent focused on Dolev-Yao types of direct knowledge extraction. This
approach works well for many concrete protocols, but it is not adequate to capture
the types of indirect channels of high importance in language-based security. For
formal analysis of distributed protocols and multi-agent systems, epistemic logic
and various extensions have extensive histories [112]. Much recent work in the
area has focused on model checking [187, 116]. Applications of epistemic concepts
have been made in process calculi such as the applied π-calculus [73] and CCS
[161] and to model protocols for instance in the area of electronic voting [54]. A
precursor of our approach is Askarov and Sabelfeld’s gradual release model [28]
where attackers knowledge is modeled as equivalence relations on initial states.
In the paper we look into this relationship in more detail and show how gradual
release and a number of other possibilistic state-based security conditions can be
characterized using temporal epistemic logic.

In Section 2.2 we set up the underlying computational model. Section 2.3 in-
troduces the syntax and semantics of linear time temporal epistemic logic on these
models, and shows how the model relates to the standard interpreted systems model
[112]. We then turn to various well known security conditions from the literature,
including noninterference and different flavors of declassification along the dimen-
sions considered by [202] in Sect. 2.4 to 2.7. We finally point out some open issues
and directions for future work.

2.2 Computational Model

In this section we set up our language’s basic computational model. We study a
simple while language extended with a synchronous output statement that, over the
course of a computation, causes information to be leaked to an observer. Besides the
output statement “out(e)”, the features of our while language are commonplace:
assignments, conditionals, while loops, a primitive data type of values belonging to
a finite set Val. The grammar of the language is given in Fig.2.1. Programs are
ranged over by P , identifiers by x , values by v , and expressions by e.

A store is a finite map σ : x 7→ v , and σ(e) is the value of e in store σ. An
execution state is a pair (P , σ). The execution of a program generates observable
actions (or events) belonging to Act and ranged over by α (Act = {out(v) | v ∈
Val}). The transition relation (P , σ) α−→ (P ′, σ′), or (P , σ) −→ (P ′, σ′), states that
by taking one execution step in the execution state (P , σ) the execution generates

48
CHAPTER 2. EPISTEMIC TEMPORAL LOGIC FOR INFORMATION FLOW

SECURITY

P ::= skip | out(e) | x :=e | P1 ; P2

| if e then P else P | while e do P

Figure 2.1: Programming language grammar

the visible event α, if it is present, and the new execution state is (P ′, σ′). We write
(P , σ) (α)−−→ (P ′, σ′) where α is optional.

Definition 2.2.1 (Execution)
An execution is a finite or infinite sequence of execution states.

π = (P0, σ0) (α0)−−−→ · · · (αn−1)−−−−→ (Pn , σn) (αn)−−−→ · · · (2.1)

The execution π is maximal if π is a prefix of the execution π′ only if π = π′.

We write len(π) for the length (number of transitions) of the execution π. An
execution point, or simply point, is a pair (π, i) where 0 ≤ i ≤ len(π). An execution
point (π, i) represents the state of the execution π after i steps. We write trunc(π, i)
for the prefix of π up to, and including, execution state (Pi , σi), the i th execution
state of π. We extend the notations as follows: π(i) = (Pi , σi), P(π, i) = Pi and
σ(π, i) = σi .

In our model, the power of the attacker is modeled by providing a function trace
mapping execution points to traces that represent what the attacker has been able
to observe so far. In particular, trace(π, i) can span from the truncation function
trunc(π, i) for the strongest attacker able to see all the internal computation, to the
function returning the last event generated for a weak memory-less attacker. For
the standard noninterference attacker able to observe a set of identifiers X during
the execution, trace is the function returning the sequence of stores σj (0 ≤ j ≤ i)
restricted to the domain X and where identical consecutive stores are collapsed.
In the remaining of this paper, we use the function trace given in Def. 2.2.2. This
definition corresponds to the perfect recall attacker, i.e. only able to observe outputs
and having memory of past observations.

Definition 2.2.2 (Trace)
A trace τ is an element of Act∗. trace(π, i) is the sequence of events αj such that
0 ≤ j < i and αj exists. The definition of trace is trivially extended to executions,
such that trace(π) = trace(π, len(π))

The trace of the execution (2.1) is: (α0)(α1) · · · (αn) · · ·
A model M is a set of maximal executions. Normally we take as a model the

set of all maximal executions originating from some designated set of initial states,
for instance of the shape (P0, σ0) where P0 is a fixed initial program. We write

2.3. LINEAR TIME EPISTEMIC LOGIC 49

M(P) for the set of all maximal executions started at all initial states (P , σ0) for
all initial value stores σ0. An epoch is a set of points reachable by observing a given
trace, i.e. M is implicit,

epoch(τ,M) = {(π, i) | π ∈M, 0 ≤ i ≤ len(π), trace(π, i) = τ}

The epoch of a trace τ precisely captures the knowledge obtained by observing τ
(in the present possibilistic setting, and ignoring lower level features induced by
compilers and run-time systems). For instance, if all points (π, i) ∈ epoch(τ,M)
have the property that the store at that point assigns to x a value between 3 and
5, say, then this fact is known to the observer once she has observed the trace τ .
In other words, epoch induce a relations of "equivalent knowledge". Indeed, epochs
induce on points a standard epistemic S5 modal accessibility relation ∼ by the
condition:

(π, i) ∼ (π′, i ′)
⇔ (π, i) ∈ epoch(τ,M) implies (π′, i ′) ∈ epoch(τ,M)
⇔ trace(π, i) = trace(π′, i ′)

2.3 Linear Time Epistemic Logic

Reflecting the temporal and epistemic structure of models, we propose to use tem-
poral epistemic logic to express dynamic information flow properties of programs.
Many such logics have been considered in the literature [112]. Here we propose to
work with a standard, very general and expressive logic in the family of temporal
epistemic logics, namely the linear time temporal epistemic logic KL1 without the
Next operator, in this paper referred to as LKU .

Definition 2.3.1 (Syntax of LKU)
The language LKU of formulas φ, ψ in linear time temporal epistemic logic is given
as follows:

φ, ψ ::= e1 = e2 | initx (e) | φ ∧ ψ | ¬φ | Kφ | φUψ

Besides boolean identities (e1 = e2), the language contains additional atomic propo-
sitions initx (e) expressing that the value x in the initial state is identical to the
value of e in the current state. The operator K is the epistemic knowledge operator.
Kφ holds if φ holds in any state equivalent to the current state. In our setting, two
states are considered equivalent if the same sequence of outputs has been generated
before reaching them. The operator U is the standard (strong) until operator. The
formula φUψ holds if ψ holds in a future state and φ holds until reaching that
state.

Various connectives are definable in LKU including standard derived boolean
operators such as ∨ and →, the truth constants tt and ff , universal ∀x and exis-
tential ∃x quantifiers over the finite set of values, the epistemic possibility operator

50
CHAPTER 2. EPISTEMIC TEMPORAL LOGIC FOR INFORMATION FLOW

SECURITY

Lφ meaning that φ holds for at least one epistemically equivalent state, the future
operator Fφ requiring φ to eventually hold in the future, the “always" operator
Gφ meaning that φ holds in any future state, and the weak until φWψ which does
not require ψ to eventually hold. In the remainder of the paper, we use the above
connectives as syntactic sugar with the following definitions.

Definition 2.3.2 (Syntactic sugar ∀, ∃, L, F , G and W)
∀x . φ =

∧
v∈Val

φ[v/x] ∃x . φ =
∨

v∈Val
φ[v/x]

Lφ = ¬K (¬φ) Fφ = ttUφ Gφ = ¬(F¬φ)

φWψ = (φUψ) ∨Gφ

Since there is no input statement in the programming language, the only way
for secrets to enter a computation is through the initial state. This, and also the
lack of past-time temporal connectives which would in a more general setting of
reactive programs be a natural device to record past inputs, explains the purpose
of the initial state predicate initx (e) which plays a critical role in capturing what
is known "now" of the initial store. It has to be noted that if e is independent
from the current state then, as the initial value of x does not change over time,
the majority of temporal variations of initx (e) do not change its semantics as long
as the computation has not terminated yet (initx (e) = F initx (e) = Ginitx (e) =
φU initx (e)).

Noteworthy, also, is that outputs are not reflected in the syntax of the logic by
corresponding operators or constants. The reason is that output events are of no
intrinsic interest to us; they are relevant only in terms of their effect on observer
knowledge, of which states are considered equivalent with regard to operators K
and L.

Definition 2.3.3 (Satisfaction)
Fig. 2.2 defines the satisfaction relation M, (π, i) |= φ between points in a model
M and formulas. If the modelM is clear from the context, we write (π, i) |= φ or
π, i |= φ forM, (π, i) |= φ. Satisfaction relative to modelM or program P is:

M |= φ iff ∀π ∈M, M, (π, 0) |= φ

P |= φ iff M(P) |= φ

In terms of epochs the formula Kφ expresses that φ holds for all points in the
current epoch; and, dually, Lφ expresses that φ holds for at least one point in the
current epoch, or in other words, that the observer is unable to rule out ¬φ on the
basis of the outputs received so far.

Example 2.3.1 (Basic example) If the point (π, i) satisfies the formula G(x =
5) then, in all future execution points of π, variable x has value 5. If (π, i) satisfies

2.3. LINEAR TIME EPISTEMIC LOGIC 51

M, (π, i) |= e1 = e2 iff σ(π, i)(e1) = σ(π, i)(e2)
M, (π, i) |= initx (e) iff σ(π, 0)(x) = σ(π, i)(e)
M, (π, i) |= φ ∧ ψ iff (π, i) |= φ and (π, i) |= ψ

M, (π, i) |= ¬φ iff (π, i) 6|= φ

M, (π, i) |= Kφ iff ∀π′ ∈M,∀(π′, i ′) ∈ π′ such that
trace(π, i) = trace(π′, i ′), (π′, i ′) |= φ

M, (π, i) |= φUψ iff ∃j : i ≤ j ≤ len(π) such that
(π, j) |= ψ and ∀k : i ≤ k < j , (π, k) |= φ

Figure 2.2: Formulas satisfaction at execution point

the formula F (Kφ) then there exists a point (π, j) (with j ≥ i) for which φ holds
for all points (π′, j ′) (including (π, j)) having the same trace as (π, j) (trace(π, j) =
trace(π′, j ′), i.e. execution π′ after j ′ steps has generated the same output sequence
as execution π after j steps). Combining both previous formulas, if (π, i) satisfies
the formula FKG(x = 5) then there exists a trace τ of a future point (π, i) for which
x equals 5 in every future point of any point having trace τ .

Example 2.3.2 (It is always possible to lose) At the program level, if the for-
mula GLF (lost = tt) for program P then, for all potential traces τ of P , there
exists an execution of P which at one point has generated the trace τ and for which
lost will be equal to tt at some point in the future. In other words, if the initial
state of an execution of P is unknown, whatever output sequence is observed, it is
impossible to rule out the fact that losing in the future is still possible.

Example 2.3.3 (Eventually, the initial value is deducible) Still at the pro-
gram level, if ∃v . FK initx (v) holds for program P then for all executions π of P
there exists a value v and a point (π, i) which generates a trace τ for which, for any
execution π′ of P , all points (π′, i ′) generating the same trace τ (including (π, i))
are such that the initial value of x is v . In other words, any execution of P will, at
some point, have generated an output sequence from which it is possible to deduce
the initial value of x .

2.3.1 Relation to Standard Models of Knowledge
Kripke structures are commonly used to give semantics to modal logics, and hence
by extension to epistemic logics as well [112]. A Kripke structure (for a single
agent) is a triple (S , T ,K) where S is a set of states, T is a valuation assigning to
each atomic proposition a predicate on S , and K is a binary accessibility relation
on states such that (s1, s2) ∈ K if from the observations made by the observer while

52
CHAPTER 2. EPISTEMIC TEMPORAL LOGIC FOR INFORMATION FLOW

SECURITY

in state s1, it is equally possible to be in state s2. For a given modelM, let SM be
the set of all the execution points (π, i) of the executions π of M; let TM be the
function taking each atomic proposition of the shape “e1 = e2” or “initx (e)” to the
set of points for which the proposition holds according to Def. 2.3.3; and finally, let
KM be the binary relation ∼ defined at the end of Sect. 2.2. Then (SM, TM,KM)
is a Kripke structure for which the standard definitions of the knowledge operators
have the same semantics as the one provided in Def. 2.3.3.

Interpreted systems are a refinement of Kripke structures used to define the
semantics of epistemic logics [112, 187] in terms of multi-agent systems. Roughly,
an interpreted system is a pair (R, T), where R is a set of runs r as functions from
time to global states. A global state is a tuple composed of an environment state
and one state for every agent in the system. Similarly as in the case of Kripke
structures, T is a function stating if a state formula holds on a given global state.
For a given model M, let RM be the set of runs rπ such that π ∈ M and r(i) is
the pair composed of the environment state trunc(π, i) with actions removed and
the agent/attacker state trace(π, i). Let T be defined for formulas of the shape
“e1 = e2” or “initx (e)” according to Def. 2.3.3, as a predicate on global states. The
semantics of the knowledge operators provided in Def. 2.3.3 is equivalent to their
standard semantics over the interpreted system (RM, TM).

2.4 Noninterference

We now discuss how the logic applies to information flow security properties,
adapted to the present setting of output-only imperative programs. We first con-
sider the concept of noninterference [122]. In a language-based setting and consid-
ering a two-level security lattice only, noninterference in a relational (initial-final
state) setting requires that no information about initial values of high identifiers
(which we want to protect) can flow to final values of low identifiers (which the
attacker can observe). This condition is easily adapted to the present setting of
output-only programs by instead prohibiting high flow to the public outputs.

Write σ1 ≈~x σ2 if the two stores σ1 and σ2 are equivalent with regard to a set
of identifiers ~x , i.e. ∀x ∈ ~x . σ1(x) = σ2(x). Fix now a set of low identifiers ~l , and
let ~h be its complement, the high identifiers.

Definition 2.4.1 (ONI)
A program P satisfies output-only noninterference iff:

∀π1, π2 ∈M(P). σ(π1, 0) ≈~l σ(π2, 0)⇒ trace(π1) = trace(π2)

Intuitively, the definition states that there is no information flowing from ~h to the
attacker if for any maximal execution having trace τ , all maximal executions started
with the same values for ~l produce the same trace. In other words, all initial secret
values (~h) might have given rise to the output sequence that an attacker is observing.
It is worth noting that this definition subsumes standard noninterference. Indeed,

2.4. NONINTERFERENCE 53

we only need to modify program P by outputting the values of low identifiers (~l)
whenever they are observable. Termination sensitivity can also be added by a final
dummy output. We now show how ONI can be encoded in our epistemic framework.

Definition 2.4.2 (ESP)

ESP def= ∀~v . (init~l(~v)→ ∀~u. L(init~l(~v) ∧ init~h(~u)))

The formula ESP is satisfied at a given execution point if every initial secret is
possible among the execution points having the same trace and initial public values.
In our epistemic framework, we claim that a program does not reveal any secret
if all its execution points satisfy ESP, i.e. every initial secret is possible for every
trace and public inputs generating such trace.

Definition 2.4.3 (AK)
A program P satisfies absence of knowledge iff:

P |= G(ESP)

We first give some examples to show how the logic applies to programs wrt. stan-
dard noninterference and afterwards prove the equivalence of the above definitions.

Example 2.4.1 Let P ::= x := y ; out(y) be a program over booleans with x ∈
~h, y ∈~l . Then P satisfies ONI since the initial value of y never changes. We show
that P satisfies AK. Consider a model M associated with program P where the
store is a pair (x , y). Then

M ::=

π1 = (tt, tt)→ (tt, tt) tt→ (tt, tt)
π3 = (tt,ff)→ (ff ,ff) ff→ (ff ,ff)
π2 = (ff ,ff)→ (ff ,ff) ff→ (ff ,ff)
π4 = (ff , tt)→ (tt, tt) tt→ (tt, tt)

One can verify, by case analysis, that M |= G(ESP). Consider for instance π4.
Then v = tt and π4, i |= inity(v) holds for all 0 ≤ i ≤ 2. We show that π4, i |=
∀u.L(inity(v) ∧ initx (u)) for all i . For i ∈ {0, 1}, trace(π4, i) = ε, so we can find
(π1, 0) and (π2, 0) if u = tt and u = ff , respectively. If i = 2 and u = tt, then
(π1, 2) has the same trace and initial value; otherwise, if u = ff , we pick (π4, 2).
Similarly, the condition holds for other cases.
Let now P ::= x := y ; out(y) with x ∈ ~l , y ∈ ~h. Then, P falsifies ONI since
we output the secret value y to public output. We show for model M that M 6|=
G ∀v .(initx (v)→ ∀u.L(initx (v) ∧ inity(u))) i.e. ∃π.∃i .∃v .initx (v) ∧ ∃u.∀π′.
∀i ′.trace(π, i) = trace(π′, i ′) then π′, i ′ 6|= (initx (v) ∧ inity(u))). In particular, π3
is a counterexample. Set v = tt and u = tt; the only executions having the same
trace as π3 are π2 and π3. However, σ(π2, 0)(x) = ff 6= v and σ(π3, 0)(y) = ff 6= u.

54
CHAPTER 2. EPISTEMIC TEMPORAL LOGIC FOR INFORMATION FLOW

SECURITY

Lemma 2.4.1 (Initial values stability) For all vectors of values ~v and identi-
fiers ~x :

π, 0 |= init~x (~v) implies ∀(π, i) ∈ π : π, i |= init~x (~v)
Proof. Immediate. By definition of satisfaction relation π, i |= init~x (~v) iff
σ(π, 0)(~x) = ~v . 2

Proposition 2.4.1 (Equivalence of ONI and AK) For all programs P :

P |= ONI iff P |= AK

Proof. (⇒) Assume P satisfies ONI. By definition, given π1, then for all π2.
σ(π1, 0) ≈~l σ(π2, 0), trace(π1) = trace(π2). In particular any two equal traces have
equal prefix traces of same length. We show that π ∈ M. π, 0 |= G ∀~v .(init~l(~v)→
∀~u.L(init~l(~v) ∧ init~h(~u))). Pick any π ∈ M and ~v ∈ Val ; then we show for all
0 ≤ i ≤ len(π). π, i |= (init~l(v) → ∀~u.L(init~l(v) ∧ init~h(~u))). Namely, assume
π, i |= init~l(~v) then for any ~u ∈ Val there exists π′, i ′. trace(π, i) = trace(π′, i ′) ∧
(π′, 0) |= init~l(~v)∧init~h(~u). Let nowMa ⊆M be such that ∀π ∈Ma . σ(π, 0)(l) =
a. Then M =

⋃
a∈ValMa . By ONI condition, for all π ∈ Ma . trace(π) = τ

for some trace τ and any initial ~h. Then, using Lemma 2.4.1 and chopping off
execution π we get the result for all (π, i). The same argument can be used for any
Ma , so we are done.
(⇐) Suppose now ∀π ∈ M. π, 0 |= G ∀~v .(init~l(v) → ∀~u.L(init~l(v) ∧ init~h(~u))).
We show ONI holds. By hypothesis, pick π ∈M with σ(π, 0)(l) = v , then we show
that for all π′ such that σ(π′, 0)(l) = v , trace(π) = trace(π′). By hypothesis, given
π, in particular it is always possible to find π′ with same initial values ~v , for any ~u
having the same trace. 2

Example 2.4.2 Let P be a program manipulating two private variables h1, h2 over
boolean domain.

P ::= if h1 then out(¬h2) else out(h2)

The program is not secure since it reveals whether the secrets are equal or not i.e.
h1 = h2. In fact, for all input states where h1 = h2 i.e. (tt, tt), (ff ,ff), P outputs
ff , otherwise it outputs tt and this is captured by Def. 2.4.3.

On the other hand, we will see in the following section that if one agrees to declas-
sifies φ := h1 = h2 then Def. 2.5.3 will deem the program secure.

2.5 Declassification: What

Noninterference guarantees an end-to-end confidentiality policy, namely as soon as
a program conveys 1 bit of secret information, it is ruled out by the condition. In

2.5. DECLASSIFICATION: WHAT 55

real applications this policy turns out to be restrictive, as in many scenarios partial
information leakage is considered admissible. Declassification policies handle those
acceptable, or even desired, information leakages [202]. For example, a customer
may be allowed to access a scientific article (secret data) once she has paid the
registration fee to some on line provider. In this case, an intentional release of
secret information is needed. Declassification has been recognized as one of the
main challenges in information flow security [197]. The main concern is to prove
that declassification is safe and the attacker is unable to compromise the release
mechanism and disclose more sensitive information than stated in the policy. Many
authors have addressed the problem from different points [87, 198, 160, 28, 50, 41].
In particular, in [202], the authors present a classification of different flavors of
declassification. In this section and the following ones, we show how our temporal
epistemic framework captures in an elegant way those dimensions.

One way of modeling declassification is by means of a predicate φ over initial
values which expresses the property one intends to declassify. In that case, one has
to make sure that states having the same property φ can not be distinguished by
the attacker. This idea originates from selective dependency [87] and corresponds to
the What dimension [202]. In particular, the programmer should specify a global
declassification policy φ and the enforcement mechanism has to ensure that no
information other than what is specified in the policy can be disclosed by the
attacker. For example, the information system of a company can release the average
salary of an employee, but it shouldn’t be possible to reveal, for instance, the salary
of a certain employee. Let σ1 ≈φ σ2 denote equivalent states according to the
declassification policy φ i.e. σ1(φ) = σ2(φ).

Definition 2.5.1 (NID)
Let φ be a global declassification policy. A program P satisfies noninterference
modulo declassification φ iff:

∀π1, π2 ∈M(P). (σ(π1, 0) ≈~l σ(π2, 0) ∧ σ(π1, 0) ≈φ σ(π2, 0))
⇒ trace(π1) = trace(π2)

The definition of NID specifies that any initial state having the same public values
and agreeing on φ should produce the same output trace.

Let us now see how global declassification policies can be expressed in our model.
We first introduce the formula ESPM. An execution point satisfies ESPM(Φ) where
Φ is a set of declassification policies iff, among the other execution points having the
same trace and initial public values, every initial secret agreeing on Φ is possible.

56
CHAPTER 2. EPISTEMIC TEMPORAL LOGIC FOR INFORMATION FLOW

SECURITY

Definition 2.5.2 (ESPM)

ESPM(Φ) def= ∀~v1. ∀~u1. init~l(~v1) ∧ init~h(~u1)→

∀~u2. (
∧
φ∈Φ

φ(~v1, ~u1) = φ(~v1, ~u2))→

L(init~l(~v1) ∧ init~h(~u2))

Proposition 2.5.1 (Equivalence of ESP and ESPM(∅)) For all execution points
(π, i):

(π, i) |= ESP iff (π, i) |= ESPM(∅)

Proof. This proposition follows directly from the fact that if Φ is empty then∧
φ∈Φ is vacuously true and init~h(~u1) holds for at least one vector of values ~u1. 2

Proposition 2.5.2 (Monotonicity of ESPM) For all execution points (π, i) and
sets of declassifications Φ and Ψ:

(π, i) |= ESPM(Φ) implies (π, i) |= ESPM(Φ ∪Ψ)

Proof. This proposition follows trivially from the second implication in the for-
mula of ESPM. Whenever the left part of the implication

∧
φ∈Φ∪Ψ holds then

∧
φ∈Φ

also holds; and the right part of the implication is the same in both cases, so if the
L formula holds with Φ it still holds with Φ ∪Ψ. 2

Corollary 2.5.1 (ESP subsumes ESPM) For all execution points (π, i) and sets
of declassifications Φ:

(π, i) |= ESP implies (π, i) |= ESPM(Φ)

Proof. This is a direct corollary of Prop. 2.5.1 and 2.5.2. 2

Definition 2.5.3 (AKD)
Let φ be a global declassification policy. A program P satisfies absence of knowledge
modulo declassification φ iff:

P |= G(ESPM({φ}))

Figure 2.3 illustrates the intuition behind our security condition. The graphic
presents the knowledge about initial secrets that an attacker gains by observing a
certain trace τ = o1o2o3 as function of time elapsed from the beginning of computa-
tion. The black solid line shows the evolution of attacker knowledge at each output
point and in particular how it can possibly increase in each epoch. Initially the

2.5. DECLASSIFICATION: WHAT 57

Knowledge

Time

Secure

Insecure

o1 o2 o3

φ

Figure 2.3: Knowledge and Declassification

attacker has knowledge about public identifiers. On the other hand the red dotted
line shows the global declassification policy represented by a predicate φ. As long
as the solid line remains below the dotted line the declassification is safe, namely
the attacker knowledge is smaller than the information released intentionally prior
to program execution. In this case, one can see that after the second observation
point o2 the attacker learns more than the policy allows, thus the program becomes
insecure.

Proposition 2.5.3 (Equivalence of NID and AKD) For all programs P :

P |= NID iff P |= AKD

Proof. The proof is similar to the one for Prop. 2.4.1. 2

It is worth noting that if the declassification policy states “No secret information
can be leaked”, then the property becomes φ = tt and AKD will correspond to AK.
We illustrate the above condition by means of an example.

Example 2.5.1 Consider the program P with h ∈ ~h.

P ::= if (h = 0) then out(1) else out(2)

One can spot an implicit flow due to dependence on a conditional on secret h. LetM
be a model of P . To falsify Def. 2.4.3, pick π such that σ(π, 0)(l) = σ(π, 0)(h) = 0.

58
CHAPTER 2. EPISTEMIC TEMPORAL LOGIC FOR INFORMATION FLOW

SECURITY

Then, pick π′ such that σ(π′, 0)(l) = 0 and σ(π′, 0)(h) 6= 0. It is easy to see that
trace(π) 6= trace(π′). Suppose now we declassify the zeroness of h i.e. φ := (h = 0).
All executions originating from h = 0 produce the same trace i.e. output 1. On
the other hand, all executions originating from ¬φ := (h 6= 0) also produce the
same trace, i.e. output 2. Hence, the program is secure. It is worth to noting
how Def. 2.5.3 rules out programs that reveal more than what is allowed by the
declassification policy. Suppose we want to declassify the sign of identifier h, namely
φ := (h ≥ 0). Then, P becomes insecure since the attacker is now able to distinguish
between values having the same property φ. In particular let h1 = 0 and h2 = 1,
so φ(h1) = φ(h2). In that case P outputs 1 and 2, respectively, so it is deemed
insecure.

Abstract Non-Interference Abstract Non-Interference (ANI) is an abstract in-
terpretation based approach for modeling and certifying information flow properties
[119]. This framework characterizes different qualitative aspects related to global
declassification policies and attacker observational power. In particular, using the
notion of abstract domain, the authors give an extensional model of what an at-
tacker is allowed to see of public data (attacker power) and of what she is allowed
to disclose of secret data (declassification). For example, let P be a program with
l ∈~l , h ∈ ~h.

P ::= if (h ≥ 0) then l := 2l ∗ h else l := 2l ∗ h + 1

Clearly, there is an direct flow to public identifier l which conveys the value of
secret h. However, if one is interested in releasing only the sign of secret identifier
h in input and considers a weaker attacker who is able to observe only the parity
of identifier l in output then P will be secure. Indeed, fix the initial value of low
identifier l and consider initial values of h in input having the same sign, say h < 0.
It can be easily seen that the final value of l will have the same parity; in this case it
will correspond to an odd value. This definition is called Narrow ANI via allowing
[163]. Let η, φ, ρ be the abstract domains for public input, declassified private input
and public output, respectively.

Definition 2.5.4 (NANI)
A program P satisfies Narrow ANI, (η)P(φ ⇒ ρ), iff:

∀l1, l2 ∈~l ,∀h1, h2 ∈ ~h : η(l1) = η(l2) ∧ φ(h1) = φ(h2)
⇒ ρ([[P]](h1, l1)) = ρ([[P]](h2, l2))

Basically it states that for any initial public values having property η and for any
private initial values having property φ, the result of the computation has property
ρ over public outputs. In particular the previous example corresponds to checking
(Id)P(Sign ⇒ Par).
There is a nice relation between NANI and our epistemic framework. One can

2.5. DECLASSIFICATION: WHAT 59

look at the abstractions over public input domain and public output domain as
abstractions over channels receiving and releasing these values, respectively. More
concretely, suppose one wants to check NANI for (η)P(φ ⇒ ρ). In order to model
the attacker power in output we can use the output actions out(e) and check the
following formula wrt. a modelM of the program P ; out(ρ(l)). Given a pair (~u, ~v)
we denote by fst and snd , respectively, the first and the second component of such
a pair.

Definition 2.5.5 (AAK)
A program P satisfies abstract absence of knowledge w.r.t. abstractions ρ, η and
φ iff:

P ; out(ρ(~l)) |= G(ESPM({η ◦ fst , φ ◦ snd}))

On the other hand, the public input abstraction η deserves some explanation.
It can happen that Def. 2.5.5 fails because the attacker is able to distinguish two
input states having the same property η. Consider a model M of the program
P ::= l := 2l ∗ h2; out(Sign(l)) where η = Par and φ = Id. Let π be a maximal ex-
ecution originating from initial state σ such that σ(π, 0)(l) = 2 and σ(π, 0)(h) = 1.
Then one can find another maximal execution π′ such that σ(π′, 0)(l) = −2 and
σ(π′, 0)(h) = 1. Clearly Par(σ(π, 0)(l)) = Par(σ(π′, 0)(l)) and φ = tt, while the
sign of the outputs are different i.e. Sign(4) 6= Sign(−4). In [119] this is called
deceptive flow, since it only depends on variations of public inputs. However, if one
interprets the public input abstraction η as secret knowledge that should not be
controlled or disclosed to the attacker then it is reasonable to rule out the program
above. Indeed, here the attacker is disclosing a property stronger than Par since
she observes variations of the sign for inputs of even parity.
We now show the equivalence of these definitions and postpone a further investiga-
tion of relation to abstract non-interference as future work.

Proposition 2.5.4 (Equivalence of NANI and AAK) For all programs P :

P |= NANI iff P |= AAK

Proof. It is enough to observe that the abstract domain ρ in NANI can be con-
sidered as a predicate over public output states. In that case the output action in
AAK models the same property. 2

We conclude this section by discussing an interesting example.

Example 2.5.2 Let P be a program that manipulates a secret variable h ∈ ~h,
initially known to range over non-negative numbers up to some constant max . We

60
CHAPTER 2. EPISTEMIC TEMPORAL LOGIC FOR INFORMATION FLOW

SECURITY

express this fact by a declassification policy φ = 0 ≤ h ≤ max . Then P is secure
since it outputs the same sequence of numbers in every run.

P ::=

 x := 0;
while (x < h) do out(x); x + +;
while (x < max) do out(x); x + +;

Program P satisfies Def 2.5.3. Too see this, consider a model M of P , a maximal
execution π originating from σ0 = (max0, x0, h0) and any point i . 0 ≤ i ≤ len(π).
Assume φ(h0) holds, then for all values hi such that φ(hi), it is possible to find an
execution π′ originating from (max0, x0, hi) and a point i ′ such that trace(π, i) =
trace(π′, i ′). In fact, all executions produce a increasing trace of numbers of length
at most max0. If φ(h0) does not hold then all executions produce the empty trace.

2.6 Declassification: Where

Another well-studied form of declassification regards where in the system sensitive
information can be released. In our framework, the only way to leak secret informa-
tion is by means of output operations. In particular, any flow of information from
a high identifier h to a low identifier l is perfectly fine as long as secret data is not
being output. It is irrelevant at which point of a certain epoch the declassification
occurs. For this reason, assume that declassification takes place together with the
output actions. We model the release points in the code by special boolean flags re
initially false and once set to true the program can release the value of expression
e. Moreover, the flag can no more be updated once it is set to true. Assume we are
given a set of release points interspersed in the program, say Rp = {re1 , · · · , ren},
and the corresponding release expressions R = {e1, · · · , en} then the goal is to
check whether program P leaks more information that what the programmer has
already allowed to be disclosed by means of the release points encountered so far.
It is worth recalling that our model intends to protect the initial value of secret
data, not the current ones. This objective is in line with most other work on non-
interference. Let P(R) be the power set of R and Ē be the complement of E in R.
The formula expressing the absence of attacker knowledge is given next.

Definition 2.6.1 (AKR)
Let {re1 , · · · , ren} be the boolean variables, initially false, serving as flags for the
release policy R. A program P satisfies absence of knowledge modulo release R iff:

P |= G
∨

E∈P(R)

(
ESPM(E) ∧

∧
ei∈E

rei ∧
∧
ej∈Ē

¬rej

)
Note that the conditions above are mutually exclusive with respect to release points,
namely given π and i , only one formula in the disjunction holds and that corre-
sponds to the one with release points set to true in execution trunc(π, i).

2.6. DECLASSIFICATION: WHERE 61

Example 2.6.1 Consider program P with h1, h2 ∈ ~h and l ∈~l .

l := h1; rh1 := tt; out(l); l := h2; rh2 := tt; out(l);

Stores are vectors (l , h1, h2) and ~h is the high store (h1, h2). Intuitively P is secure
since the value of a secret is always declassified before being output. Pick π ∈
M(P). We show that Def. 2.6.1 holds for (π, 0). Initially E = ∅ is the only
candidate such that

∧
ei∈E rei∧

∧
ej∈Ē ¬rej . It remains to prove that π, 0 |= ESPM(∅).

This trivially holds until the first release point as the trace of any execution up to
this point is empty and any execution generates an empty trace at some point.
Then, we move on to (π, 2) which is the first execution point after setting the first
release flag. At this point, ESPM({h1}) is required to hold. For the same reason
as above, ESPM(∅) holds and by Prop. 2.5.2 ESPM({h1}) also holds. The trace
of (π, 3) is “h1", where h1 is the initial value of h1, and ESPM({h1}) is still the
formula required to hold. Among all the execution points whose trace is h1 and
whose execution has started with the same initial values for l and h1, there is at
least one point whose execution has started with h2 = h2 for any h2. Hence, (π, 3)
satisfies ESPM({h1}). Similarly, (π, 4) |= ESPM({h1}), (π, 5) |= ESPM({h1, h2})
and (π, 6) |= ESPM({h1, h2}). Hence, P satisfies AKR.

We now show how Def. 2.6.1 relates to a similar security condition called gradual
release [28]. Although gradual release considers a slightly different computational
model, the basic idea is that the attacker knowledge is constant between release
points. In the same spirit, we compute the attacker knowledge for a given trace
and compare it with the information released over that trace. In particular, if the
attacker knowledge is greater than what has been declassified so far, there is an
insecure leakage. Given a program P , an initial store σ0 and a trace τ originating
from that store, we define the knowledge over the trace K(P , σ0, τ) as the set of
initial stores that could have led to that trace.

K(P , σ0, τ) = {σ(π, 0) | ∃(π, i) : σ(π, 0) ≈~l σ0 ∧ trace(π, i) = τ}

As pointed out by Askarov and Sabelfeld [28], this set corresponds to the uncer-
tainty of an attacker observing trace τ .

When reaching a point whose trace is τ and execution started in σ0, a certain
number of release point rφ have been executed. Let Dσ0,τ be the set of common
release points that have been executed when reaching any point whose trace is τ and
execution started in σ0 and Φσ0,τ = {φ | rφ ∈ Dσ0,τ}. Moreover, let R(P , σ0, τ) be
the maximum knowledge authorized, or minimum uncertainty required, at a point
whose trace is τ for an execution started with the value store σ0.

R(P , σ0, τ) = {σ | σ ≈~l σ0 ∧
∧

φ∈Φσ0,τ

σ0(φ) = σ(φ)}

Then, a program is secure if the information disclosed by observing a given trace
is less than the information released over that trace; or if the required uncertainty
is a subset of the attacker uncertainty.

62
CHAPTER 2. EPISTEMIC TEMPORAL LOGIC FOR INFORMATION FLOW

SECURITY

Definition 2.6.2 (ER)
A program P satisfies epistemic release iff:

∀σ0, τ : R(P , σ0, τ) ⊆ K(P , σ0, τ)

Example 2.6.2 Consider the program in Example 2.6.1 over a boolean domain and
(l , h1, h2) a triple corresponding to a store. Take σ0(l) = tt. Then, for the empty
trace ε, we have K(P , σ0, ε) = R(P , σ0, ε) = {(tt,_,_)}. Now we pick τ = tt and
K(P , σ0, tt) = R(P , σ0, tt) = {(tt, tt,_)} since we release h1. Proceeding in this
way it is easy to prove that P satisfies ER. Suppose that we don’t release h1 at the
first output. Then we have R(P , σ0, tt) = {(tt,_,_)} which is clearly not contained
in K(P , σ0, tt).

Proposition 2.6.1 (Equivalence of AKR and ER) For all programs P :

P |= AKR iff P |= ER

Proof. (⇒) Assume P |= AKR. Let π ∈M(P). We show that for all prefixes τ of
trace(π),R(P , σ(π, 0), τ) ⊆ K(P , σ(π, 0), τ). Consider (π, i) such that trace(π, i) =
τ and release points rφ1 , · · · , rφk

being active. By Def. 2.6.1, π, i |= ESPM(E) where
E = {φ1, · · · , φk}. Basically, it says that for all (π′, 0) such that σ(π, 0) ≈~l σ(π′, 0)
and

∧
φ∈E σ(π, 0)(φ) = σ(π′, 0)(φ) (i.e. (π′, 0) ∈ R(P , σ0, τ)), there exists (π′, i ′)

such that trace(π′, i ′) = τ (i.e. (π′, 0) ∈ K(P , σ0, τ)). This is exactly ER.
(⇐) Assume P |= ER, we show that P |= AKR. Pick any π ∈M(P) and (π, i) ∈ π.
Let σ0 = σ(π, 0), τ = trace(π, i) and E = {φ1, · · · , φk} the set of release whose flag
has been set. By Def. 2.6.1, AKR requires only ESPM(E) to hold at (π, i). By
hypothesis and Def. 2.6.2, R(M, σ0, τ) ⊆ K(M, σ0, τ); therefore, for all π′ such
that σ0 ≈~l σ(π′, 0) and

∧
φ∈Φσ0,τ

σ0(φ) = σ(π′, 0)(φ), there exists (π′, i ′) such that
trace(π′, i ′) = τ . As Dσ0,τ ⊆ E, it implies ESPM(E). 2

Figure 2.4 explains the epistemic release wrt. the attacker knowledge. As be-
fore, the graphic corresponds to the knowledge about initial secrets that program
semantics releases by means of the output trace τ = o1o2o3. The black solid line
shows how the knowledge can possibly increase in each output point by disclosing
information about the secrets. The red dotted line shows the secret information
declassified in each epoch by release points ri . Since the dotted line remains above
the solid line, the attacker knowledge is less than what the programmer releases by
means of these points. Hence the program will satisfy the security condition.

Example 2.6.3 Consider a program P (variation of [156]) with secret , x , y ∈ ~h
and in, l ∈ ~l . P allows a local release point rφ with declassification policy φ =
hash(h) mod 264 = in i.e. private variable secret can only be leaked comparing the

2.7. DECLASSIFICATION: WHEN 63

�� �������� ����

Knowledge

Time

Secure

Insecure

r1 o1 r2 r3 o2 r4 o3

Figure 2.4: Knowledge and Release

least 64 bits of his hashed value to public input variable y.

P ::=

 x := hash(h); y = x mod 264;
if y = in then l := 0 else l := 1;
rφ; out(l);

Applying Def. 2.6.1, one can see that for any fixed initial value of identifiers in, l ,
for all initial values h having property φ the output value is 1 and all initial h
having property ¬φ the output value is 2. However, if we append to P the following
lines of code (where z ∈~l), it becomes insecure.

P ′ ::= P ; z := x mod 3; out(z)

Indeed, pick h1, h2 satisfying φ and hash(h1) mod 3 6= hash(h2) mod 3, then it
violates the release policy.

2.7 Declassification: When

The last dimension of declassification addressed in this paper is the “when” dimen-
sion [202]. Following an approach similar to the one of Chong and Myers [75], a
temporal declassification is a pair (φC , φD) composed of a declassified property φD
and a time predicate φC which specifies when to declassify φD . During any execu-
tion, as soon as φC holds, outsiders are allowed to learn φD now and in the future.

64
CHAPTER 2. EPISTEMIC TEMPORAL LOGIC FOR INFORMATION FLOW

SECURITY

Let Φ be a set of temporal declassifications, ΦC denotes the set of time predicates of
Φ (ΦC = {φC | (φC , φD) ∈ Φ}) and ΦD denotes the set of declassified properties of
Φ. It has to be noted that there are two types of temporal declassifications. If φC
applies to values which are constant during the execution (such as the initial value
of a given variable) or are expressed using init in our model, (φC , φD) describes for
which executions an information can be output. A policy stating that a salary can
be output only if it is lower than a given constant is an example of such an inter-
execution temporal declassification. On the other hand, if φC applies to variables
whose value vary during the execution then (φC , φD) describes after which event
an information can be leaked. An intra-execution temporal declassification is for
example a policy stating that an information can be provided only after it has been
paid for.

Following the standard definitions of NI (Def. 2.4.1) and NID (Def. 2.5.1),
Def. 2.7.1 formally defines noninterference modulo temporal declassifications. It
states that at any point (π1, i1) of any execution π1, for any execution π2 started
with the same initial public values (σ(π1, 0) ≈~l σ(π2, 0)) and agreeing on declassi-
fications (σ(π1, 0) ≈ψD σ(π2, 0)) activated so far (∃j : 0 ≤ j ≤ i1 ∧ σ(π1, j)(φC)),
there should exists a point (π2, i2) which has the same trace as (π1, i1).

Definition 2.7.1 (NITD)
Let Φ be a a set of temporal declassifications, i.e. a set of pairs (φCi , φDi). A
program P satisfies noninterference modulo temporal declassifications Φ iff:

∀π1, π2 ∈M(P),∀(π1, i1) ∈ π1 :
σ(π1, 0) ≈~l σ(π2, 0) ∧∧
(φC ,φD)∈Φ

{ (
∃j : 0 ≤ j ≤ i1 ∧ σ(π1, j)φC

)
⇒ σ(π1, 0) ≈φD σ(π2, 0)

⇒ ∃i2, trace(π1, i1) = trace(π2, i2)

In our framework, this complex predicate can be naturally expressed using once
again the ESPM formula. Definition 2.7.2 provides the complete epistemic temporal
formula that has to hold in order for a program P to satisfy absence of knowledge
modulo temporal declassifications Φ.

Definition 2.7.2 (AKTD)
Let Φ be a set of temporal declassifications. A program P satisfies absence of
knowledge modulo temporal declassifications Φ iff:

P |=
∧

Ψ∈P(Φ)

 ESPM(ΨD)W

 ∨
φ∈(Φ\Ψ)C

φ

For any subset of declassification policies Ψ ⊆ Φ, noninterference modulo declas-

sifications ΨD (ESPM(ΨD)) has to hold until the condition φC of an information not

2.7. DECLASSIFICATION: WHEN 65

declassified by ΨD holds (φD /∈ ΨD). In particular, noninterference (ESPM(∅) by
Prop. 2.5.1) has to hold until the first information is declassified. Generally, if ΨC

is the set of all declassification conditions which have been triggered so far, nonin-
terference modulo ΨD and all superset of ΨD has to hold (∀ΨD

2 : ESPM(ΨD ∪ΨD
2)).

However, by Prop. 2.5.2, noninterference modulo ΨD subsumes noninterference
modulo any superset of ΨD , and is therefore the real policy enforced when the set
of conditions triggered so far is ΨC .

Proposition 2.7.1 (Equivalence of NITD and AKTD)
For all programs P :

P |= NITD iff P |= AKTD
Proof. Let Φ(π,i) ⊆ Φ be the set of all temporal declassifications (φC , φD) which
have been triggered at execution point (π, i) (∃j : 0 ≤ j ≤ i ∧ σ(π, j)φC).
(⇒) For all execution points (π1, i1) and initial stores σ0

2 which have the same
public values as the initial store of (π1, i1) (σ(π1, 0) ≈~l σ

0
2) and agree on ΦD

(π,i)
(σ(π1, 0) ≈ΦD

(π,i)
σ0

2), there exists an execution π2 started in the initial state σ0
2

which has the same trace as (π1, i1) at some point (π2, i2). This follows from
Def. 2.7.1, the fact that for all φC not in ΦC

(π,i) there is no execution point preceding
or equal to (π1, i1) such that φC holds, and σ1 ≈ΦD

(π,i)
σ2 implies σ1 ≈φD σ2 for all

φD in ΦD
(π,i).

The above statement corresponds to: ESPM(ΦD
(π1,i1)) holds for all point (π1, i1)

(Def. 2.5.2). All the rest of the proof follows from it. First showing that for
any subset Ψ of Φ and execution point, either ESPM(Ψ) holds (1) or there ex-
ists φ ∈ (Φ \Ψ) such that φ holds in the current execution point or a preceding one
(2). Then, AKTD is proved by contradiction. If AKTD does not hold then there
exists a subset Ψ of Φ and an execution point (π, i) such that ESPM(Ψ) does not
hold at (π, i), which would contradict (1), and no φ ∈ (Φ \Ψ) is such that φ holds
in (π, i) or a preceding point, which would contradict (2).
For any Ψ, Prop. 2.5.2 implies that ESPM(ΦD

(π1,i1) ∪ Ψ) holds at (π1, i1). Hence,
for any Ψ ⊇ ΦD

(π1,i1), (1) holds, and a fortiori (1) or (2). For any Ψ ∈ P(Φ) not
superset of Φ(π1,i1), there exists φ ∈ Φ(π1,i1) \Ψ) such that φ belongs to Φ \Ψ and
holds at (π1, i1) or a preceding state. Hence, for any Ψ 6⊇ ΦD

(π1,i1), (2) holds, and a
fortiori (1) or (2). Therefore, NITD⇒ AKTD.
(⇒) The proof follows in the reverse order the same equivalence relations as above;
relying on the fact that for any point (π1, i1) ESPM(ΦD

(π,i)) has to hold. 2

Example 2.7.1 Let P , whose code is provided below, be a program that outputs a
data after payment of its cost .

while paid < cost do {paid := paid + note} ;
if cost > max then out("ok") else out(paid) ;
out(data)

66
CHAPTER 2. EPISTEMIC TEMPORAL LOGIC FOR INFORMATION FLOW

SECURITY

Initial value stores (paid ,note,max , cost , data) are of the shape (0, n, m, c, d) where
n, m, c and d are integers. The intended security policy is that the initial values
of paid , note and max are public and everything else should be kept secret, ex-
cept for the cost which can be revealed only if it is not greater than max (note
that if cost is not lower than max then the final value of paid must not be re-
vealed either) and data which can be output after payment. In our framework, this
policy is formalized by paid ,note,max ∈ ~l and Φ = {(tt , cost > max), (cost ≤
max , cost), (paid ≥ cost , data)}. The first declassification of cost > max may seem
unnecessary, however in order to reveal the cost only if cost ≤ max it is required
to declassify cost > max . Possible traces of P are: “” while still paying, “ok”
and “ok d” if c > m, otherwise “x” and “x d” where x = n × dc ÷ ne. Obvi-
ously, any execution point of P before the first output satisfies noninterference and
ESPM(Ψ) for all Ψ (Prop. 2.5.1). However, as the time predicate of cost > max
is tt , AKTD never requires ESPM(∅) to be satisfied. Only ESPM({cost > max})
is required to be satisfied at the beginning of the execution if c > m, otherwise
ESPM({cost > max , cost}) which is equivalent to ESPM({cost}) as max contains
a public data (any executions started with the same public data and cost have to
agree on cost > max). After the loop, payment has been made and paid ≥ cost
implies that AKTD only requires ESPM({cost > max , data}) to be satisfied if
c > m, and otherwise ESPM({cost > max , cost , data}) which is equivalent to
ESPM({cost , data}). If c > m then next traces are “ok” and “ok d”. For any
initial value store differing only on cost but such that cost > max , there exist an
execution point whose trace is “ok” and another for “ok d”. For executions where
c ≤ m and after the loop, AKTD only requires that executions started with the same
initial value store can generate the same trace. Hence, P satisfies AKTD.

2.8 Conclusion and Future Work

We have pointed out a strong connection between temporal epistemic logic and
several security conditions studied in the area of language-based security, including
(state-based) noninterference and various flavors of declassification. We claim that
temporal epistemic logic appears to be a well suited logical framework to express
and study information flow policies. There have been other attempts at building
such general frameworks in the past, including McLean’s selective interleaving func-
tions [167] and Mantel’s modular assembly kit [159]. These approaches are quite
different, and focus more on the modular construction of security properties than
their extensional properties. Other notable attempts include Banerjee, Naumann
and coauthors work on information flow logics (cf. [44] involving various specialized
constructs to constrain data flow and dependencies between variables. An inter-
esting feature of the epistemic account of information flow is that indirect flows
are handled completely indirectly: it is never necessary to explicitly talk about
variables on different executions being in agreement, or depending on each other;
information flow is fully captured in terms of the effects of these dependencies on

2.8. CONCLUSION AND FUTURE WORK 67

agents knowledge.
Our approach is not yet general enough to handle general trace-based conditions.

This paper considers programs with output events only, whereas most work on
trace-based security conditions address traces consisting of both output and input
events. There is no problem in principle to extend our approach to programs with
both inputs and outputs, e.g. the interactive programs considered by Bohannon
et al [57]. Extending the study in this direction to better understand the role and
limits of temporal epistemic definability in security modeling is an important line
of inquiry for future work.

The reader will have noticed that we actually use only a very small fragment of
the logic we set out to study. For instance, we only use the epistemic possibility
operator L and never its dual K (epistemic necessity, knowledge), and never use
nesting of epistemic connectives. The former is due to our focus on confidentiality
rather than integrity properties. Temporal epistemic logic in its standard form
may be richer than needed for the application domain; computational or proof-
theoretical gains may be made by considering sparser languages. Related to this
is the general problem of tractability, and if the temporal epistemic setting can be
used to develop techniques for more precise information flow analysis.

Acknowledgements. This work was partially supported by the EU-funded
FP7-project HATS (grant № 231620).

Chapter 3

A Logic for Information Flow
Analysis of Distributed Programs

Musard Balliu

Abstract

Securing communication in large scale distributed systems is an open
problem. When multiple principals exchange sensitive information over a
network, security and privacy issues arise immediately. For instance, in an
online auction system we may want to ensure that no bidder knows the bids
of any other bidder before the auction is closed. Such systems are typically
interactive/reactive and communication is mostly asynchronous, lossy or un-
ordered. Language-based security provides language mechanisms for enforc-
ing end-to-end security. However, with few exceptions, previous research has
mainly focused on relational or synchronous models, which are generally not
suitable for distributed systems.

This paper proposes a general knowledge-based account of possibilistic
security from a language perspective and shows how existing trace-based con-
ditions fit in. A syntactic characterization of these conditions, given by an
epistemic temporal logic, shows that existing model checking tools can be
used to enforce security.

3.1 Introduction

The emergence of ubiquitous computing paradigm makes software security more
and more a real concern. Web browsers, smartphones, clouds are only few ex-
amples where untrusted and partially trusted code is regularly executed alongside
applications processing personal sensitive data. In addition, current trends in com-
puting such as code mobility and platform independence make the situation even

69

70
CHAPTER 3. A LOGIC FOR INFORMATION FLOW ANALYSIS OF

DISTRIBUTED PROGRAMS

worse. Attackers can then exploit vulnerabilities and deduce information about
sensitive data by observing the behavior of malicious, or simply buggy, programs.

Information flow security policies [122], if successfully enforced or verified, pre-
vent different types of confidentiality and integrity attacks. Language-based secu-
rity provides end-to-end guarantees by means of programming language techniques.
However, most work on language-based security models of information flow assumes
synchronous or relational communication [100, 197, 182]. Although these models are
important in many settings, they are not obviously well suited for distributed pro-
grams where communication is interactive/reactive, nondeterministic and mostly
asynchronous, lossy or unordered. The result is that programs that are considered
insecure in one model may be secure in another, and vice versa.

Moreover, information flow policies are hard to verify in practice. The majority
of static analyses for information flow security use standard methods such as se-
curity type systems [218, 197]. These analyses are efficient and attempt to ensure
a strict separation, up to declassification and endorsement, between the sensitive
part of the computation and the observable part of the computation. Obviously,
if both parts are separated, it is impossible to learn anything about the sensitive
data by observing the public data. Despite their efficiency, these methods lack the
precision needed to handle programs where public and sensitive information are
securely interwoven. Few works [38, 37, 128], at least in the setting of software
security, attempt to deduce what is learned by observing the public effects of the
computation, and then verify that the acquired knowledge does not break a given
information flow policy toward sensitive data.

Motivating Example An online auction is a distributed system consisting of
an auctioneer A and several bidders Bi competing for items Ik . Such systems
are complex and usually involve both message passing and shared memory. For
example, the auctioneer may receive messages from bidders who want to participate
in the auction and associate a dedicated thread to each request. Then, depending
on the auction protocol, each thread may read and write to a private shared array
containing bids for all bidders and items. Several information flow policies may be
worth enforcing in this scenario1.

P1 : The authentication code (pwd) of bidder Bi is always (G) secret wrt. any
bidder Bj . In logic: G¬KBj

(pwdBi
= v).

P2 : The sequence of bids of bidder Bi remains secret wrt. all bidders Bj until
(W) the auction is closed. In logic: LBj

(secArray = v) W aClosed .

P3 : Only the first 3 bids of bidder Bi are considered secret wrt. any bidder Bj

until the auction is closed. In logic: LBj (φ(bi
1, b

i
2, b

i
3)) W aClosed .

P4 : Any bid of bidder B3 remains secret wrt. a colluding attack of B1 and B2. In
logic: GLB1,B2(b3 = v).

1The reader can already get the flavor of the logic used for security specifications.

3.1. INTRODUCTION 71

P5 : The system may nondeterministically select a subset of bids from the private
array, compute the maximum and promote an item I ∗ to the winner B∗. The
output of this process may be considered secret wrt. any bidder Bj 6= B∗. In
logic: G¬KBj

(out(B∗, I ∗)).

As illustrated above, several issues should be handled to enforce the security
policies of such systems. First, they are inherently nondeterministic, hence possi-
bilistic notions of information flow security are needed. Second, distributed pro-
grams are usually interactive/reactive, which requires protection of sequences of
(input or output) events as opposed to classical relational models where the input
is read in the beginning of execution. Third, security policies are usually dynamic
and involve controlled release of secret information. Finally, in distributed settings
attackers may collude and share their observations to disclose secret information.

In this paper we model distributed systems in a trace-based setting where an ex-
ecution trace is a sequence of events on channels. Security properties are expressed
in terms of knowledge-based (epistemic) conditions over system traces. The security
model brings out what events O on channels an observer can see and what observa-
tions on events P should be protected. Then the system is secure if the knowledge
about events in P of an observer who makes observations in O, at any point in the
execution trace, is in accordance with the security policy at that point. Namely,
the observer is unable to learn more information than what is allowed at a given
point while moving to a successive point of the same trace and possibly making
a new observation. This model fits well with current knowledge-based approaches
to information flow security [28, 38, 24], and, inspired by work of Guttman and
Nadel [127], by being explicit about the information that needs to be protected,
it allows a very general treatment of secret information, both as high level input
and output events, and as relationships between events, say ordering, multiplicity,
and interleaving. We show that several possibilistic conditions such as Separabil-
ity, Generalized Noninterference, Nondeducibility, Nondeducibility on Outputs and
Nondeducibility on Strategies are accurately reflected in the epistemic setting.

Then we turn to the verification problem and present a linear time epistemic
logic, with past time operators, which allows us to syntactically characterize se-
curity properties. The logic can be used as specification language for expressing
possibilistic information flow policies. This enables modeling of the intricate and
precise policies described in the motivating example and, at the same time, en-
sures separation between the actual code and the policy. Recent advances software
model checking and automated theorem proving show that verification of temporal
epistemic properties for distributed systems is feasible [141]. Our tool, ENCoVer
[39], an extension of Java Pathfinder [184], can verify information flow policies for
interactive sequential programs. However, scalability and complexity of verification
are issues that we postpone to future work.

72
CHAPTER 3. A LOGIC FOR INFORMATION FLOW ANALYSIS OF

DISTRIBUTED PROGRAMS

3.2 Security Model

Program Model A modelM is a set of finite or infinite traces induced by the
program semantics. A trace τ is a sequence of actions relevant to the analysis. For
instance, it can be messages sent over channels, read/write operations to shared
memory, logical time ticks and so on. We write |τ | for the length (number of
actions) of the trace τ . Whenever |τ | = ∞, the trace has infinite length. A point
is a pair (τ, i), where τ is a trace and 0 ≤ i ≤ |τ |. The function trace maps trace
points to the prefix of the trace up to that point, namely trace(τ , i) denotes the
sequence of actions αj , where 0 ≤ j < i . In our setting, the actions belong to a set
Act = {out(c, v), in(c, v) | v ∈ Val, c ∈ Chan} ∪ {ε}, where Val is the domain
of values and in(c, v) (resp. out(c, v)) denotes the input (output) of value v on
channel c ∈ Chan. The silent action is ε. We write τ1 • τ2 for concatenation of two
traces and τ • α for concatenation of trace τ with action α. The empty trace is ε
and trace interleaving n(τ1, τ2) is a set of traces coinductively defined as expected.
The set inclusion is denoted as � and τ(i) is the i -th action of trace τ . The
projection of a trace τ on a set of actions A ⊆ Act is defined as the subsequence
of actions from A and denoted as τ↓A. Models can be enriched with structure by
defining particular relations. In particular, given a poset (S ,v), an upper closure
operator (for short uco) is a function ρ : S → S such that (a)∀s ∈ S . s v ρ(s),
(b)∀s1, s2 ∈ S . s1 v s2 ⇒ ρ(s1) v ρ(s2), (c)∀s ∈ S . ρ(s) = ρ(ρ(s)).

Security Policy We are mainly concerned with protecting confidentiality of ac-
tions on channels, hence we assume a set of security levels L for confidentiality and a
relation v over L. Moreover, we consider two observers (potentially sets of agents),
one of security level H and the other of security level L, which interact with the
system by providing inputs and receiving outputs on channels of the same security
level. Each agent has different clearance represented by a poset (L,v) of two ele-
ments L = {H, L} with L v H. A partial function S : Chan ⇀ L, mapping channels
to security levels, determines the set of channels accessible to each observer. Then
the security policy is defined as a pair Pol = (O,P) where O is the set of channels
that an observer can control and P is the set of channels to be protected. Usually
we define O = {c ∈ Chan | S(c) = L} and P = {c ∈ Chan | S(c) = H}. The fact
that S is partially defined allows us to model channels which are invisible to the
observer, yet not subject to protection.

Security Condition The security condition determines when a modelM is se-
cure with respect to a security policy (O,P). Here we define security in terms of
the knowledge of an observer who knows the system specification2 and interacts
through channels in O. The security condition prevents the observer from learn-
ing information about (properties of) interactions through channels in P. First we

2In a language-based security setting the attacker is usually assumed to have complete knowl-
edge of the program code.

3.2. SECURITY MODEL 73

define the observer knowledge at point (τ, i) as

K(τ, i ,O) = {τ ′ | τ ′ ∈M∧ (τ ′, i ′) =↓O (τ, i) ∧ |i − i ′| ≤ t}

where t is a synchrony parameter of the observer, 0 ≤ i ′ ≤ |τ | and (τ ′, i ′) =↓O
(τ, i) if the projection of (τ, i) and (τ ′, i ′) on actions in O is the same, namely,
(τ ′, i ′)↓O = (τ, i)↓O. Intuitively, K(τ, i ,O) represents the set of traces that the
observer considers possible based on its observations up to point (τ, i) and having
synchrony parameter t . In particular, in a synchronous system t = 0, i.e. the
observer knows the exact logical time. An asynchronous system can similarly be
modeled by t =∞. Models of semi-synchronous systems, where the observer knows
the time approximately, can also be expressed. Then we define projection of trace
τ on a set of channels C, where e(c, v) denotes an event on channel c.

τ↓C ::=

ε if τ = ε
e(c, v) :: τ ′↓C if c ∈ C and τ = e(c, v) • τ ′
τ ′↓C if c 6∈ C and τ = e(c, v) • τ ′

Notice that we leave the meaning of the :: operator undefined. By default we
interpret :: as concatenation, however it need not be, as we will see when discussing
different security policies.

At this point we have all ingredients to present the knowledge-based security
condition. The intuition is simple: given a modelM and a security policy Pol =
(O,P), the condition ensures that for each point i + 1 of trace τ , the observer’s
knowledge about actions in P is not greater than its knowledge at the previous
point i .

Definition 3.2.1 (Knowledge-based Security) Let M be a model and Pol =
(O,P) a security policy. ThenM is secure wrt. Pol if for all τ ∈M, 0 ≤ i < |τ |

K(τ, i ,O)↓P � K(τ, i + 1,O)↓P

We illustrate the main idea behind the security condition with an example.

Example 3.2.1 Consider a program P ::= in(c1, x);out(c2, x) which receives a
boolean value on input channel c1 and sends it on output channel c2. The modelMP

of P consists of two traces τ1 = in(c1, true) • out(c2, true) and τ2 = in(c1, false) •
out(c2, false). The goal is to check whether MP satisfies the policy Pol = (O,P),
where O = {c2} and P = {c1}. Namely, we check if agent L, the attacker, who
knowsMP and observes values on channel c2, can deduce information about activity
of agent H on channel c1. We identify agent L with O and agent H with P. Then,
applying Def. 3.2.2, we obtain (k ∈ {1, 2}):

• K(τk , 0, L)↓H = K(τk , 1, L)↓H = {in(c1, true), in(c1, false)}

• K(τ1, 2, L)↓H = {in(c1, true)} and K(τ2, 2, L)↓H = {in(c1, false)}

74
CHAPTER 3. A LOGIC FOR INFORMATION FLOW ANALYSIS OF

DISTRIBUTED PROGRAMS

The program is insecure since K(τ1, 1, L)↓H 6� K(τ1, 2, L)↓H. Namely, when the at-
tacker observes out(c2, true), he refines his knowledge about secret actions from
{in(c1, true), in(c1, false)} to {in(c1, true)} and deduces that value true was input
on channel c1 by agent H.

The security condition in Def. 3.2.1 can be relaxed to deal with different forms
of dynamic policies [202, 24]. A release (or declassification) policy R(τ, i ,P) at
point (τ, i) is a property of P, i.e., subset ofM↓P , representing the knowledge that
the observer is allowed to learn at that point. Consequently, a program is secure if
the attacker’s knowledge and the released knowledge at point (τ, i) is not greater
than the attacker’s knowledge at point (τ, i + 1).

Definition 3.2.2 (Security wrt. Release) LetM be a model with security pol-
icy Pol = (O,P) and release policy R(τ, i ,P). Then M is secure wrt. Pol and
R(τ, i ,P) if for all τ ∈M, 0 ≤ i < |τ |

K(τ, i ,O)↓P ∩R(τ, i ,P) � K(τ, i + 1,O)↓P

If no action from P is released, R(τ, i ,P) = M↓P and Def. 3.2.1 and Def. 3.2.2
coincide. Reconsider Ex. 3.2.1 with release policy R(τ1, 1, H) = {in(c1, true)} and
R(τ2, 1, H) = {in(c1, false)}. Then P is secure as K(τ1, 1, L)↓H ∩ {in(c1, true)} �
K(τ1, 2, L)↓H and K(τ2, 1, L)↓H ∩ {in(c1, false)} � K(τ2, 2, L)↓H.

In a distributed setting, different agents may form coalitions and share obser-
vations in order to disclose secret information about other agents. The following
definition gives a security condition in presence of colluding attacks.

Definition 3.2.3 (Security wrt. Collusion) LetM be a model and two agents
a1, a2 observing, resp., O1,O2. ThenM secure wrt. a colluding attack on P ifM
is secure wrt. policy (O1 ∪ O2,P).

Example 3.2.2 Let P be a program with c1 ∈ P, c2 ∈ O1 and c3 ∈ O2. P is secure
wrt. policies Pol1 = (O1,P) and Pol2 = (O2,P), but insecure wrt. a colluding
attack, i.e., the policy Pol = (O1 ∪ O2,P).

P ::=

 in(c1, x)
if x then out(c2, 0)||out(c3, 1)
else out(c2, 0);out(c3, 1)

To see this, consider the program modelMP = {in(c1, 1) • out(c2, 0) • out(c3, 1),
in(c1, 1)•out(c3, 1)•out(c2, 0), in(c1, 0)•out(c2, 0)•out(c3, 1)} where the secret on
c1 is binary and || denotes the nondeterministic choice. If an agent merely observes
the value received on his channel, there is nothing he can tell about the secret bit on
c1. However, if they collude, the observation of low sequence out(c3, 1) •out(c2, 0)
reveals that the secret bit was 1.

3.2. SECURITY MODEL 75

Trace-based Conditions We next introduce several possibilistic information
flow conditions from the literature and briefly discuss the flavor of each. The reason
is two-fold; first to identify which aspects of security they enforce and, second, to
show how these aspects can be captured by the knowledge-based conditions. We
denote projection of trace τ on a set A as τA (instead of τ↓A) to distinguish from
the knowledge-based condition.

Separability was first introduced by McLean [164]. The goal is to ensure a
logical separation between secret and public computations in both directions.

Definition 3.2.4 (Sep) A modelM satisfies separability if

∀τ, τ ′ ∈M,∀τ∗ ∈ n(τL, τ
′
H), τ∗ ∈M

A version of separability for synchronous systems has been proposed in [128].

Definition 3.2.5 (SSep) A modelM satisfies synchronous separability if

∀τ, τ ′ ∈M, ∃τ∗ ∈M. τ∗L = τL and τ∗H = τ ′H

Generalized noninterference is a relaxation of separability and it ensures that low
computation is independent of the sequence of high inputs HI [164].

Definition 3.2.6 (GNI) ModelM satisfies generalized noninterference if

∀τ, τ ′ ∈M,∀τ∗ ∈ n(τL, τ
′
HI), ∃τ ′′ ∈M, τ∗ = τ ′′L∪HI

Moreover, GNI prevents the low user from deducing information about both occur-
rences and non occurrences of high inputs. Nondeducibility, introduced by Suther-
land [211], considers the system as a set of possible worlds W and defines security in
terms of (information) functions f and g , such that for all w1,w2 ∈W , there exists
w3 ∈ W and f (w1) = f (w3) and g(w2) = g(w3). If one interprets f as computing
the sequence of high input events and g as computing the sequence of low events,
then nondeducibility can be defined as follows.

Definition 3.2.7 (ND) A modelM satisfies nondeducibility if

∀τ, τ ′ ∈M, ∃τ∗ ∈M. τ∗HI = τHI and τ∗L = τ ′L

One drawback of GNI and ND is that they are not adequate for systems that
need to protect high output events or generate secrets internally. To solve this
issue Guttman and Nadel introduced nondeducibility on outputs which prevents
deductions of high events [127] and allows information flowing from low user inputs,
here LI, to high outputs.

Definition 3.2.8 (NDO) A modelM satisfies nondeducibility on outputs if

∀τ, τ ′ ∈M, τLI = τ ′LI, ∃τ∗ ∈M. τ∗H∪LI = τH∪LI and τ∗L = τ ′L

76
CHAPTER 3. A LOGIC FOR INFORMATION FLOW ANALYSIS OF

DISTRIBUTED PROGRAMS

On the other hand, ND and GNI are too weak to ensure security for systems that
exploit internal nondeterminism to transmit secrets through strategies implemented
by high users [224]. A strategy is a function from sequences of high inputs and high
outputs to values in a domain. A high user can use a strategy to compute the
next input value on a high channel, as a function of the history of high values, and
transmit information to a low user.

Definition 3.2.9 (NDS) LetM be a model and s1, s2 :M→ Val two high strate-
gies. ThenM satisfies nondeducibility on strategies if

∀τ, τ ′ ∈M, s1(τL) = s2(τ ′L)⇒ τL = τ ′L

Most of the trace-based conditions assume either synchronous or asynchronous
models. However, in language-based security, the knowledge of program code can
give partial information about the order of events on high and low channels,and yet
the program can be considered secure. We illustrate this fact with an example.

Example 3.2.3 Consider program P where {c1, c2} ∈ P and {c3} ∈ O.

in(c1, secret);out(c2, secret);out(c3, "Done")

The program receives a secret input from a high agent, writes to a file of the same
agent and notifies the low agent that the operation is completed. In an asynchronous
model, the secret is first received on c1 and it is sent on c2 or c3 in any order. Hence
M consists of the following traces:

in(c1, vi) • out(c2, vi) • out(c3, "Done"), in(c1, vi) • out(c3, "Done") • out(c2, vi)

It can be easily checked that M does not satisfy Sep and GNI, since the system is
not closed under interleavings between H and L events. On the other hand, it seems
reasonable to accept P as secure. The knowledge-based condition in Def. 3.2.1
acceptsM wrt. policy (O,P) as do ND and NDO.

This example raises the question of what security policy a condition is enforcing
and how these conditions can be interpreted in a unified framework.

3.3 Policies via Examples

We now introduce, by means of examples, different security policies using the epis-
temic security conditions. The set of channels in P and the set of channels in O
are, resp., identified with H and L. Moreover, we redefine the semantics of the ::
operator to handle different policies. We always define :: as concatenation when
projecting on channels in O. This reflects the assumption of perfect recall attacker
with unbounded memory. Furthermore, given the set of high channels in P, we
write Set(H) or just H to define :: as set union and Mul(H) to define :: as multi-
set union. Finally, Seq(H) defines :: as concatenation, while Seq(H ⊥) defines :: as

3.3. POLICIES VIA EXAMPLES 77

concatenation and replaces events in L with the special symbol ⊥. For example,
(L,Mul(H)) defines a policy which protects the multiplicity of high actions wrt. an
attacker that observes actions in O. Likewise, the policy (L,Seq(H ⊥)) prevents the
attacker from deducing information about interleavings of high actions in P with
low actions in O. Whenever the action type is unimportant, we write l1, l2, · · · for
actions in L and h1, h2, · · · for actions in H. In the examples, traces are numbered
as τ1, τ2, · · · following the order they appear inM.

The first point we want to make is what happens in relational models of in-
formation flow where inputs are read in the beginning of program execution. All
direct and implicit flows from high channels to low channels are captured by the
security policy (L, H).

Example 3.3.1 Let a modelM consist of two tracesM = {h1•h2•l1, h1•h3•l2}.
Is M secure wrt. policy Pol = (L, H)? Intuitively, the answer should be negative
as an attacker can associate h2 with observation l1 and h3 with observation l2.
Applying Def. 3.2.1, with 0 ≤ i ≤ 2, we obtain

• K(τ1, i , L)↓H = K(τ2, i , L)↓H = {h1, h2, h3}

• K(τ1, 3, L)↓H = {h1 • h2 • l1}↓H = {h1, h2}

• K(τ2, 3, L)↓H = {h1 • h3 • l2}↓H = {h1, h3}

The program is insecure as K(τ1, 2, L)↓H 6� K(τ1, 3, L)↓H, i.e., {h1, h2, h3} 6� {h1, h2}.
Using the same policy, another modelM′ = {h1 • l1, h2 • l1} is secure.

Example 3.3.2 Consider now M = {h1 • h1 • l1, h1 • l2} wrt. security policy
Pol = (L, H). Applying Def. 3.2.1, the model is secure. However, there may be
cases where M is considered insecure. For instance, a low user L may only be
interested in knowing when exactly the system is logging his actions, so that an
attack can be performed stealthy. To capture these cases it is enough to consider a
policy Pol1 = (L,Mul(H)) or Pol2 = (L,Seq(H)). Let i ∈ {0, 1}, then

• K(τ1, i , L)↓Seq(H) = K(τ2, i , L)↓Seq(H) = {h1 • h1, h1}

• K(τ1, 2, L)↓Seq(H) = {h1 • h1, h1}

• K(τ2, 2, L)↓Seq(H) = {h1 • l2}↓Seq(H) = {h1}

• K(τ1, 3, L)↓Seq(H) = {h1 • h1}

Clearly, K(τ2, 1, L)↓Seq(H) 6� K(τ2, 2, L)↓Seq(H) as {h1 • h1, h1} 6� {h1}.

It is worth noting that protecting H and Mul(H) is of little interest for reactive sys-
tems that may receive inputs on the high channels in different order. The following
program is considered secure wrt. both (L, H) and (L,Mul(H)).

P ::=

 b := true || false
if b then in(c′, x);out(c, 1); in(c′′, y);out(c, 3)
else in(c′′, y);out(c, 2); in(c′, x);out(c, 4)

78
CHAPTER 3. A LOGIC FOR INFORMATION FLOW ANALYSIS OF

DISTRIBUTED PROGRAMS

Indeed, if c′ and c′′ are high channels and c is a low channel, then MP =
{h1 • l1 • h2 • l3, h2 • l2 • h1 • l4} is secure wrt. the above policies. However, when
an attacker observes l1 he knows h1, i.e. that the first high input was received on
channel c′, and similarly, when an attacker observes l3 he knows h2, i.e. that first
high input was was received on channel c′′. Hence, the policy (L,Seq(H)) is needed
to rule out this program.

Example 3.3.3 LetM = {h1 •h2 • l1, h1 • l2 •h2} be a program model. M is secure
wrt. policies in previous examples since the sequence of high actions is the same
for both traces. However, an attacker observing l1 knows that h1 • h2 has occurred,
while this is not ensured if he observes l2. Similar security issues may arise in
scenarios discussed in [127]. To capture such flows, we consider a stronger policy
(L,Seq(H ⊥)) which protects the interleavings between high actions and occurrences
of low actions. Let i ∈ {0, 1}, thenM is insecure

• K(τ1, i , L)↓Seq(H⊥) = K(τ2, i , L)↓Seq(H⊥) = K(τ1, 2, L)↓Seq(H⊥)
= {h1 • h2• ⊥, h1• ⊥ •h2}

• K(τ1, 3, L)↓Seq(H⊥) = {h1 • h2 • l1}↓Seq(H⊥) = {h1 • h2• ⊥}

• K(τ2, 2, L)↓Seq(H⊥) = K(τ2, 3, L)↓Seq(H⊥) = {h1• ⊥ •h2}

K(τ2, 1, L)↓Seq(H⊥) 6� K(τ2, 2, L)↓Seq(H⊥) i.e. {h1 • h2• ⊥, h1• ⊥ •h2} 6� {h1• ⊥ •h2}

Dynamic Policies and Declassification The security condition in Def. 3.2.1
is too strong to be useful in scenarios where high actions are released intentionally.
This is typically the case of dynamic policies where information can be downgraded
or upgraded with time.

Example 3.3.4 Let M = {h1 • l1 • h2 • l2, h1 • l3 • h3 • l4} be a model with two
traces. M is insecure as the attacker can distinguish h2 from h3 after observing,
respectively, l2 and l4. This is captured by the policy (L, H).

• K(τi , 0, L)↓H = K(τi , 1, L)↓H = {h1, h2, h3}

• K(τ1, 2, L)↓H = K(τ1, 3, L)↓H = K(τ1, 4, L)↓H = {h1, h2}

• K(τ2, 2, L)↓H = K(τ2, 3, L)↓H = K(τ2, 4, L)↓H = {h1, h3}

It is clear that K(τ1, 1, L)↓H 6� K(τ1, 2, L)↓H as {h1, h2, h3} 6� {h1, h2}. However if we
declassify {h2} and {h3}, resp., at points (t1, i) and (t2, i), for 1 ≤ i ≤ 4 then the
system is secure.

• K(τ1, i , L)↓H ∩ {h2} � K(τ1, i + 1, L)↓H

• K(τ2, i , L)↓H ∩ {h3} � K(τ2, i + 1, L)↓H

3.4. EQUIVALENCES 79

Security in Synchronous Systems Many definitions of information flow se-
curity have been given for synchronous systems. Such systems are represented as
state machines that execute in rounds based on some logical notion of system clock.
A synchronous state is a tuple (HI, HO, LI, LO) of high inputs, high outputs, low in-
puts and low outputs and not all state components are required to be present in all
rounds. To handle synchronous systems, we fix an ordering of actions for each state
and apply Def. 3.2.1 with synchrony parameter t = 0. In particular a synchronous
state (H, L) of high and low actions is mapped to an asynchronous one where high
actions precede low actions.

Example 3.3.5 Consider a model of synchronous tracesM = {(h1, ε)•(ε, l1), (ε, l1)•
(h1, ε)}. The model is insecure wrt. (L, H) as the attacker can observe the time and
can deduce whether a high action has occurred. Applying the transformation, we
obtainM′ = {h1 • ε • ε • l1, ε • l1 • h1 • ε}, which is still insecure (for t = 0).

Similarly,M = {(h1, l1) • (h2, l2), (h2, l2) • (h1, l1)} is insecure wrt. (L, H) since
the attacker can distinguish between h1 and h2. As above, the modelM′ = {h1 • l1 •
h2 • l2, h2 • l2 • h1 • l1} does not satisfy Def. 3.2.1.

3.4 Equivalences

In this section we show equivalences between knowledge-based conditions and trace-
based conditions from Sect. 3.2. The first proposition shows that Sep for asyn-
chronous systems is equivalent to knowledge-based condition with security policy
Pol = (L,Seq(H)).

Proposition 3.4.1 LetM be the model of an asynchronous program and closed un-
der interleavings of τL and τ ′H. ThenM satisfies Sep iffM is secure wrt. (L,Seq(H)).

Proof. We show that M satisfies Sep iff for all traces τ ∈ M, 0 ≤ i < |τ |,
K(τ, i , L)Seq(H) ⊆ K(τ, i + 1, L)Seq(H).

(⇒) SupposeM satisfies Sep. By definition ∀τ1, τ2 ∈M and ∀τ∗ ∈ n(τ1L, τ2H),
τ∗ ∈ M. We show that for all τ ∈ M, for all 0 ≤ i < |τ |, K(τ, i , L)↓Seq(H) ⊆
K(τ, i + 1, L)↓Seq(H). Consider a sequence s∗ such that s∗ ∈ K(τ, i , L)↓Seq(H) and
show that s∗ ∈ K(τ, i + 1, L)↓Seq(H). Let τ∗ ∈ M be such that τ∗↓Seq(H) = s∗ and
(τ∗, j) =↓L (τ, i) and 0 ≤ j < |τ∗|. We look for a trace τ ′ ∈M with τ ′n(H) = s∗ and
(τ, i + 1) =↓L (τ, j ′), for some j ′. If event τ(i + 1) ∈ H, we pick τ∗ and conclude the
proof. Otherwise, τ(i + 1) ∈ L. Since Sep holds, it is possible to interleave the low
sequence of events up to point (τ, i + 1) with s∗ and obtain a trace τ ′′ ∈ M such
that s∗ ∈ K(τ, i + 1, L)↓Seq(H) and (τ, i + 1) =↓L (τ ′′, j ′′), for some j ′′.

(⇐) Let M be secure wrt. policy Pol = (L,Seq(H)). By definition, ∀τ ∈
M, 0 ≤ i < |τ |, K(τ, i , L)↓Seq(H) ⊆ K(τ, i + 1, L)↓Seq(H). We show that ∀τ1, τ2 ∈ M
and ∀τ∗ ∈ n(τ1L, τ2H), τ∗ ∈M. First notice that K(τ, 0, L) =M and by transitivity
of � (set inclusion) it holds thatM↓Seq(H) � K(τ, |τ |, L)↓Seq(H) for all τ ∈ M. This
only allows to protect sequences of high events, present in the initial model M.

80
CHAPTER 3. A LOGIC FOR INFORMATION FLOW ANALYSIS OF

DISTRIBUTED PROGRAMS

As explained in [128], assuming a strong form of asynchrony, i.e., closure under
interleavings, implies the claim immediately. 2

At this point the reader may wonder if a stronger policy such as (L,Seq(H ⊥))
can avoid the assumption of closure under interleavings. The example shows that
this is not the case. The main reason is that while separability allows observers to
make deductions about future or past occurrences of actions, this is not possible
for the policy (L,Seq(H ⊥)), which protects all interleavings. On the other hand,
ifM lacks some interleavings between sequences of high and low actions and this
doesn’t affect the initial knowledge of the observer, then the system is considered
secure, whilst Sep can still break.

Example 3.4.1 The modelM = {h1•h2•l1•l2, h1•h2•l1•l3} does not satisfy Sep,
but it is secure wrt. the policy (L,Seq(H ⊥)) as the observer knows, from knowledge
of the initial model, all interleavings, i.e, {h1 • h2• ⊥ • ⊥}. On the other hand, if
M = {h1 • l1, l1 • h1, h1 • l2 • l3, l2 • h1 • l3, l2 • l3 • h1} and Pol = (L,Seq(H ⊥)),
then Sep holds. However the epistemic condition does not hold since the sequence
h1• ⊥ • ⊥ is not possible after observing l1.

The next proposition shows that security wrt. policy Pol1 = (L,Seq(H)) is equiva-
lent to security wrt. Pol2 = (H,Seq(L)).

Proposition 3.4.2 A model M is secure wrt. (L,Seq(H)) iff M is secure wrt.
(H,Seq(L)).

Proof. We show that for all points (τ, i), K(τ, i , L)Seq(H) ⊆ K(τ, i + 1, L)Seq(H) iff
K(τ, i , H)Seq(L) ⊆ K(τ, i + 1, H)Seq(L) .

(⇒) Consider s∗ ∈ K(τ, i , H)Seq(L), we show that s∗ ∈ K(τ, i + 1, H)Seq(L). Let
τ∗ ∈ M such that τ∗↓L = s∗ and (τ∗, j) =↓H (τ, i). If there exists τ ′ ∈ M such that
τ ′L = s∗ and (τ ′, j ′) =↓H (τ, i + 1) we are done. If the event τ(i + 1) ∈ L, then we
are also done since τ∗ is the required trace. Otherwise, τ(i + 1) ∈ H. But then τ ′
must exists, since otherwise there would exist a sequence of high events s with prefix
(τ, i +1)H, i.e., the sequence of high events up point (τ, i +1), which is possible for τ↓L
and impossible for τ∗↓L. But then the assumption K(τ, i , L)Seq(H) ⊆ K(τ, i +1, L)Seq(H)
is false and τ ′ must exist. The other direction is similar. 2

The next proposition shows the equivalence between Sep and its epistemic sibling
in a synchronous setting.

Proposition 3.4.3 Let M be the model of a synchronous program. Then M sat-
isfies SSep iffM is secure wrt. (L,Seq(H)).

Proof. We show thatM satisfies SSep iff ∀τ ∈M, 0 ≤ i < |τ |, K(τ, i , L)↓Seq(H) ⊆
K(τ, i +1, L)↓Seq(H). Due to the synchrony assumption, the observer knows the time,
hence the knowledge at point (τ, i) is defined as K(τ, i , L) = {τ ′|(τ, i) =↓L (τ ′, i)}
since t = 0.

3.4. EQUIVALENCES 81

(⇒) Suppose M satisfies SSep. By definition ∀τ1, τ2 ∈ M, ∃τ∗ ∈ M such
that τ∗ =↓L τ1 and τ∗ =↓H τ2. We show that for all (τ, i), K(τ, i , L)↓Seq(H) ⊆
K(τ, i + 1, L)↓Seq(H). By synchrony assumption, for all points i , (τ∗, i) =↓L (τ1, i)
and (τ∗, i) =↓H (τ2, i). Then the claim follows immediately.
(⇐) Suppose nowM is secure wrt. Pol = (L,Seq(H)). By definition for all (τ, i),
K(τ, i , L)↓Seq(H) ⊆ K(τ, i + 1, L)↓Seq(H). We show that for all τ1, τ2 ∈ M, there is
a τ∗ ∈ M with τ∗ =↓L τ1 and τ∗ =↓H τ2. By assumption and transitivity of set
inclusion, K(τ, 0, L)↓Seq(H) =M↓Seq(H) can be interleaved with all low traces inM,
sinceM↓Seq(H) � K(τ, |τ |, L)↓Seq(H). Then the claim follows.

2

It is worth noting that, differently from [128], no additional property on model
M is needed to show the equivalence in Prop. 3.4.3. The main reason is that our
work considers traces of both finite and infinite length, hence no property as limit
closure is required.

Proposition 3.4.4 Let M be closed under interleavings of τL and τ ′HI. Then M
satisfies GNI iffM is secure wrt. (L,Seq(HI)).

Proof. Similar to Prop. 3.4.1. 2

Proposition 3.4.5 A modelM satisfies ND iffM is secure wrt. (L,Seq(HI)).

Proof. Similar to Prop. 3.4.4, but no closure under interleavings is assumed. 2

Proposition 3.4.6 If a modelM is secure wrt. (L,Seq(H)) thenM satisfies NDS.

Proof. Suppose towards contradiction that s1 and s2 are two strategies such that
there exist τ, τ ′ ∈ M with s1(τL) = s2(τ ′L) and τL 6= τ ′L. This implies that there
exists a sequence of high events, say τH, which is not possible when observing low
sequence τ ′L. But this would violate the epistemic condition which guarantees that
any H sequences of model is possible for any L observation. Hence, the claim follows.
2

The following example shows that the security condition is strong enough to
capture information flows through high user strategies.

Example 3.4.2 Consider program P from [224] where a high user transmits a bit
z to a low user by sending z⊗x as input on high channel. Let c1 ∈ O and c2, c3 ∈ P.
Then what the low user receives is the exact value of secret z .

P ::= x := 0||1; out(c3, x); in(c2, y); out(c1, x ⊗ y)

It can be checked that MP is secure wrt. (L,Seq(HI)), i.e. ND, and insecure wrt.
(L,Seq(H)). Hence, P does not satisfy NDS.

82
CHAPTER 3. A LOGIC FOR INFORMATION FLOW ANALYSIS OF

DISTRIBUTED PROGRAMS

The following propositions show that the epistemic conditions can be seen as clo-
sures over a poset where the ordering relation is given by the security policy. This
gives a systematic characterization of security conditions wrt. what is protected
and how powerful an attacker is.

Proposition 3.4.7 The security policies Pol = (O,P) are closures over a poset
(℘(E∗),�), where E∗ is any sequence of events. In particular, (L, H) v (L,Mul(H)) v
(L,Seq(H)) v (L,Seq(H ⊥)).

Proof. Let M be a model and (℘(M),�) a poset ordered by subset inclusion.
Then each policy can be associated with an uco over ℘(M). Consider a non empty
set S ∈ ℘(M). Then for all above policies Pol = (O,P), we define ρPol(S) =M if
there exist τ, τ ′ ∈ S and τ↓O is different from τ ′↓O. Moreover, ρ(∅) = ∅. Otherwise,
for all subsets S having the same O observations, we define ρPol(S) =

⋃
τ∈S{τ ′ ∈

M|τ =↓P τ ′}. It can be easily proved that ρPol is an uco. Finally, the order
relation, ρ1 v ρ2 iff for all S , ρ1(S) ⊇ ρ2(S), determines the ordering between
closures, i.e. policies. 2

Proposition 3.4.8 Let M be a model and Pol1 = (O1,P1), Pol2 = (O2,P2) be
security policies. If Pol1 v Pol2, i.e., O1 v O2 and P1 v P2, then M is secure
wrt. Pol2 ifM is secure wrt. Pol1.

Proof. Follows from definition of closures in Prop. 3.4.7. 2

We conclude this section by showing equivalence between nondeducibility on
outputs and its epistemic peer condition. The main advantage of NDO is that it
allows information flow from low user input channels to high output channels and,
at the same time it protects sequences of high actions interleaved with low inputs.
To express such requirements, we make use of the release policy which allows a low
user to declassify information about sequences of low user inputs and high actions,
i.e., Seq(LI + H), given the low input sequence LI of the current trace, namely,
R(τ, i , LI) = {τ∗ ∈M|τ =LI τ

∗}. The other low inputs, system inputs in [127], are
modeled as internal nondeterminism.

Proposition 3.4.9 Consider a program modelM. ThenM satisfies NDO iff
∀τ, i , K(τ, i , L)↓Seq(LI+H) ∩R(τ, i , LI)↓Seq(LI+H) � K(τ, i + 1, L)↓Seq(LI+H).

Proof. (⇒) SupposeM satisfies NDO. Then, for all τ, τ ′ ∈M such that τLI = τ ′LI
there exists τ∗ ∈ M and τ∗H+LI = τH+LI and τ∗L = τ ′L. Consider a point (τ, i)
and a sequence s∗ of Seq(LI + H) events with s∗ ∈ K(τ, i , L)↓Seq(LI+H) and s∗ ∈
R(τ, i , LI)↓Seq(LI+H), we show that s∗ ∈ K(τ, i + 1, L)↓Seq(LI+H). By assumption,
there exists τ∗ ∈ M such that τ∗↓Seq(LI+H) = s∗, (τ∗, j) =↓L (τ, i) for some j , and
τ∗ =↓LI τ . We show there exists τ ′ ∈ M such that τ ′↓Seq(LI+H) and (τ ′, j ′) =↓L
(τ, i + 1). If τ(i + 1) 6∈ L we are done, since τ∗ would do. Otherwise τ(i + 1) is a

3.5. A LOGIC FOR INFORMATION FLOW 83

low event and NDO enforces existence on τ ′ such that τ ′ =↓L τ . In particular, for
all k there exists k ′, (τ, k) =↓L (τ ′, k ′), hence (τ, i + 1) =↓L (τ ′, j) and τ ′ exist. (⇐)
Suppose the epistemic condition holds. The for all τ ∈ M, K(τ, 0, L)↓Seq(LI+H) ∩
R(τ, 0, LI)↓Seq(LI+H) � K(τ, |τ |, L)↓Seq(LI+H) which implies NDO immediately. 2

The following example from [165], shows that our condition handles correctly
information from LI to HO. The key point here is the use of release policy to break
the symmetry inherent in nondeducibility-like conditions.

Example 3.4.3 Consider P with low channels c1, c3 and high channels c2, c4.

P ::= in(c1, x);out(c2, x);out(c3, x); in(c4, y)

If in(c1, x) is a low user input, the program can be considered secure as nothing
about high actions is revealed. However, if in(c1, x) is a system input, then the
value is incorrectly transmitted to the low user through out(c3, x). The security
condition captures both cases.

3.5 A logic for Information Flow

In this section we express the security conditions in Sect. 3.2 in terms of a logic of
knowledge and time. We consider the framework of multi-agent systems [112] and
extend the logic presented in [38] to reason about possibilistic security conditions.

3.5.1 Knowledge in Multi-agent Systems

The framework of multi-agent systems allows reasoning about knowledge and time
in a distributed system where different agents (users, processes) interact with each
other. The system consists of a set of agents Ag = {ai}ki=1 which have local state
Li at a given point in time. A special agent E , with local state LE , models the
environment where the distributed system runs. The global state consists of a
tuple of local states, i.e., G = (LE ,L1, · · · ,Lk). A run is a sequence of global
states over discrete time. An interpreted system [112] is a pair I = (R,Π) of runs
R and interpretation function Π over a set Φ of atomic propositions. Program
models can be associated with interpreted systems. Given a point (τ, i), then LE =
(trace(τ, i)). The local state of an agent a who observes O is La = (trace(τ, i)↓O).
Then, the global state of a system with k agents who observe O1, · · · ,Ok is G =
((trace(τ, i)), (trace(τ, i)↓O1), · · · , (trace(τ, i)↓Ok

)). The atomic propositions in Φ
describe basic facts about the model. In our context, the facts refer to actions on
channels. The interpretation function Π(p)(G) assigns a truth value to all p ∈ Φ.
To define knowledge, an interpreted system I = (R,Π) is associated with a Kripke
structure MI = (G ,Π, {Ki}ki=1) where G and Π are as before and Ki is a binary
relation over G . In particular, Ki(G) = {G ′|G ∼i G ′}, where G ∼i G ′ if Li is the
same in both states.

84
CHAPTER 3. A LOGIC FOR INFORMATION FLOW ANALYSIS OF

DISTRIBUTED PROGRAMS

3.5.2 Temporal Epistemic Logic with Past
We now present a logic with temporal and epistemic operators to reason about
security properties in a syntactical manner. Let Φ = {in(c, v),out(c′, v ′)|c, c′ ∈
Chan and v , v ′ ∈ Val} be the set of atomic propositions. We consider a language
containing Φ and closed off under conjunction, negation, knowledge operators Ka ,
temporal operators Next X and Until U and past time operators Initially I , Pre-
vious Y and Since S . Let p ∈ Φ,

Definition 3.5.1 (Syntax of LKU)
The language LKU of formulas φ, ψ in linear time temporal epistemic logic with
past is given as follows:

φ, ψ ::= p | φ ∧ ψ | ¬φ | Kaφ | Xφ | φUψ | Iφ | Y φ | φSψ

The operator Ka is the epistemic knowledge operator. Kaφ holds if φ holds in any
point equivalent to the current point of agent a. The formula φUψ holds if ψ holds
in a future point and φ holds until reaching that point. Dually, the formula φSψ
holds if ψ was true once in the past and φ has been true ever since. Iφ holds if φ is
true initially, while Xφ (Y φ) hold if φ is true at the next (previous) point. Various
connectives are definable in LKU including boolean operators such as ∨ and→, the
truth constants tt and ff , the epistemic possibility operator Laφ meaning that φ
holds for at least one epistemically equivalent point, the future (past) operator Fφ
(Oφ) requiring φ to eventually hold in the future (past), the always (historically)
operator Gφ (Hφ) meaning that φ holds in any future (past) state, and the weak
until φWψ which does not require ψ to eventually hold. Finally, the operator KG is
the group knowledge operator, the formula KGφ holds if the combined knowledge of
G members implies φ. The logic is sufficiently expressive to specify all information
flow policies in Sect. 3.1.

Definition 3.5.2 (Satisfaction) Fig. 3.1 defines the satisfaction relationM, (τ , i) |=
φ between points in a model M and LKU formulas. In particular, satisfaction rel-
ative to modelM is defined asM |= φ iff ∀τ ∈M, M, (τ , 0) |= φ.

At this point we have all ingredients to characterize the security condition in
Sect. 3.2 by means of LKU formulas. First notice that the set K(τ, i ,O) represents
all traces that an observer O considers possible at point (τ, i), which corresponds
to the uncertainty of the observer at that point. Given a policy Pol = (O,P) and
a formula φ specifying properties of P, we show that φ is possible at any point
(τ, i) by means of the operator Laφ. To avoid complications due to observations
at the limit, we assume that the models are limit closed. Namely, all properties
of P can be captured by finitely many observations in O. The view of agent a
(group G) observing Oa (OG =

⋃
a∈G Oa) is defined as tracea(τ, i) = trace(τ, i)↓O

(traceG(τ, i) = trace(τ, i)↓OG). Then the following theorem relates the semantic
conditions to the syntactical ones.

3.5. A LOGIC FOR INFORMATION FLOW 85

M, (τ , i) |= p iff τ(i) = p

M, (τ , i) |= φ ∧ ψ iff (τ , i) |= φ and (τ , i) |= ψ

M, (τ , i) |= ¬φ iff (τ , i) 6|= φ

M, (τ , i) |= Xφ iff i + 1 ≤ len(π) and (τ , i + 1) |= φ

M, (τ , i) |= φUψ iff ∃j : i ≤ j ≤ len(τ) such that (τ , j) |= ψ

and ∀k : i ≤ k < j , (τ , k) |= φ

M, (τ , i) |= Iφ iff (τ , 0) |= φ

M, (τ , i) |= Y φ iff i − 1 ≥ 0 and (τ , i − 1) |= φ

M, (τ , i) |= φSψ iff ∃j : 0 ≤ j ≤ i such that (τ , j) |= ψ

and ∀k : j < k ≤ i , (τ , k) |= φ

M, (τ , i) |= Kaφ iff ∀τ ′ ∈M,∀(τ ′, i ′) ∈ τ ′ such that
tracea(τ , i) = tracea(τ ′, i ′), (τ ′, i ′) |= φ

Figure 3.1: Satisfaction at trace points

Theorem 3.5.1 Consider a model M and a security policy Pol = (O,P). Let
also φ1, · · · , φn be a set of LKU formulas encoding information to be protected, i.e.
M↓P . ThenM is secure wrt. Pol iffM |=

∧n
i=1 GLaφi .

Proof. We show that for all τ ∈ M and 0 ≤ i < |τ |, K(τ, i ,O)↓P � K(τ, i +
1,O)↓P iff for all τ ∈M, (τ, 0) |=

∧n
i=1 GLaφi .

(⇒) Consider a formula φi which encodes an element in P. Following the rules
in Fig. 3.1, we show that (τ, i) |= Laφi . By assumption, M↓P � K(τ, i ,O)↓P for
all (τ, i), and in particular φi . Then, there exists τ ′ ∈ K(τ, i ,O) and τ ′↓P = φi .
Hence, there exists (τ ′, i ′) =↓O (τ, i) and τ ′↓P = φi , which implies (τ ′, i ′) |= φi and,
consequently, (τ, i) |= Laφi .

(⇐) Conversely, suppose thatM |= GLaφi , for all φi which encodesM↓P . Then
for all (τ, i), τ, i |= Laφi . Namely, there exists (τ ′, i ′) such that (τ, i) =↓O (τ ′, i ′)
and (τ ′, i ′) |= φi , for all φi . Consequently, for all (τ, i),M↓P � K(τ, i ,O)↓P . This
implies that K(τ, i ,O)↓P � K(τ, i + 1,O)↓P . 2

Finally it remains to show that the logic can be used describe different protection
policies, as defined in Sect. 3.3. In particular, each element inM↓P can be encoded
using the logic in Fig. 3.1. Let p ∈ Φ, then we define auxiliary formulas: Occ(p) =
(O p ∨ F p) meaning that p eventually holds at a (past or future) point, SV (c) =∨

v∈Val e(c, v) meaning that an action has happened on channel c, Occ(p, i) =
O (I tt ∧ F (p ∧ X F (p ∧ X F (p ∧ · · ·))) meaning that p is true in at least
i different points in the current trace and a happens-before formula HB(p, q) =
O (¬qU (p ∧F q))∨F (¬qU (p ∧F q)) meaning that p holds before q at some point

86
CHAPTER 3. A LOGIC FOR INFORMATION FLOW ANALYSIS OF

DISTRIBUTED PROGRAMS

in the current trace. Moreover, auxiliary formulas can be combined to express facts
φ that occur infinitely many times by using the formula Inf (φ) = G Fφ.

Proposition 3.5.1 Consider a model M and a policy Pol = (O,P). Then the
following variants of P can be encoded in LKU ,

• Set(H): M |=
∧n

i=1 GLaOcc(ei(ci , vi)), where ci ∈ P

• Mul(H): M |=
∧n

i=1 GLaOcc(ei(ci , vi), ki), where ci ∈ P and ki is the multi-
plicity of ei

• Seq(H): M |= La

∧k
j=2 HB(ej−1, ej) for all high sequences φi

• Seq(H ⊥) iff M |= GLa

∧k
j=2 HB(pj−1, pj), for all sequences φi such that

pj = SV (c) if ej (c, v) = pj and c ∈ O, or pj = ej (c, v) if c ∈ P

Proof. Direct check on satisfaction relation in Fig. 3.1. 2

3.6 Related Work and Conclusions

We are not the first to examine connection between trace-based and knowledge-
based information flow properties. A closely related work is that of Halpern and
O’Neill [128], who also consider formal definitions of secrecy in multiagent systems.
They show how SEP and GNI fit in the epistemic framework, both in synchronous
and asynchronous setting. In particular, they define knowledge as a set of points
that an agent considers possible based on his local state. By contrast, this paper
defines knowledge as the set of global traces that an agent considers possible based
on his local observations. This allows us to give security conditions which are closer
to what is used in language-based security [27, 24, 37]. Furthermore, the logic we
present here captures directly the security properties of traces.

Recently, knowledge-based conditions for information flow have been popular
in language-based security. Several works [182, 29] explore epistemic conditions for
relational and interactive models, although in a synchronous setting only. Different
issues related to declassification [38] and attack models [24] have been considered
using epistemic security conditions. In [196] Sabelfeld and Mantel discuss informa-
tion flow security for distributed programs and point out finer-grained sources of
leaks due to encryption, environment totality and timing. All these subtle flows
can be accurately captured by the security condition presented here.

The majority of verification techniques for information flow properties rely on
security type systems, as in [218]. However, several model checking approaches,
which were recently proposed [19, 104], define fragments of logics for which verifi-
cation is feasible. An interesting future direction would be to devise fragments of
LKU for which model checking has low complexity.

3.6. RELATED WORK AND CONCLUSIONS 87

In conclusion, we have discussed several possibilistic information flow conditions
and showed how knowledge-based account can be used to specify these conditions,
both semantically and syntactically. The advantage of using epistemic logic is that
it can accurately express complex policies and provide a clear separation between
the code and the security annotations. However, complexity of verification can be
very high for large programs. Different remedies to this issue require further inves-
tigation. First, abstraction techniques at the program level can be used to obtain
smaller models which can be easy to verify. Second, distributed system properties,
such as asynchrony, order preservation or lossiness can be used to decompose the
epistemic formulas into simpler ones, which are easier to verify. Finally, a hybrid
verification which combines type checking and model checking is another path that
deserves further exploration.

Acknowledgements. Thanks to Mads Dam for many valuable discussions.
This work was supported by SSF-funded project PROSPER (№ RIT10-0069).

Chapter 4

A Weakest Precondition Approach
to Robustness

Musard Balliu and Isabella Mastroeni

Abstract

With the increasing complexity of information management computer sys-
tems, security becomes a real concern. E-government, web-based financial
transactions or military and health care information systems are only a few
examples where large amount of information resides on different hosts dis-
tributed worldwide. It is clear that any disclosure or corruption of sensitive
information in these contexts may result fatal. Information flow control con-
stitutes an appealing and promising technology to protect both data confiden-
tiality and data integrity. The certification of the security degree of a program
that runs in untrusted environments still remains an open problem in the area
of language-based security. Robustness asserts that an active attacker, who
can modify the program code in some fixed program points, is unable to dis-
close more sensitive information than a passive attacker, who merely observes
the public data. In this paper, we extend a method recently proposed for
checking declassified noninterference in presence of passive attackers only, in
order to check robustness by means of the weakest precondition semantics.
The weakest precondition semantics simulates the kind of analysis that can
be performed by an attacker, i.e. from public output towards private input.
The choice of the semantics allows us to distinguish between different types
of attack models and thus characterize the security of programs in different
scenarios. Our results can be used to address confidentiality and integrity of
software running in untrusted environments where different agents can dis-
trust one another. For instance, a web server can be attacked in order to steal
a session cookie or to hijack clients to a fake web page.

89

90
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

4.1 Introduction

Security is an enabling technology, hence security means power. For example, the
correct functionality and coordination of large scale organizations, e-government
and web services in general relies on the confidentiality and the integrity of the
data exchanged between different participating agents. Nowadays, distributed and
service-oriented architectures are the first business alternative to the old fashioned
client-server architectures. According to OWASP (Open Web Application Security
Project) [10], the most critical security failures are due to application level attacks
such as SQL injection or XSS (Cross Site Scripting). Moreover, current and future
trends in software engineering prognosticate mobile code technology (multi appli-
cation smart cards, software for embedded systems), extensibility and platform
independence. It is worth noting that all these features, almost unavoidable, be-
come real opportunities for the attackers to exploit system bugs in order to disclose
and/or corrupt valuable information. This makes it easier to distribute worms or
viruses that run everywhere or to embed malicious code that exploits vulnerabilities
in a web server.

In many scenarios, different agents, each having their own security policy and
probably not trusting each other, have to cooperate to achieve a certain goal, for
example electing the winner in an online auction. It can happen that the host used
for the computation violates security by either leaking information itself or causing
other hosts to leak information [228, 74]. In a cryptographic context, secure multi-
party computation [225] aims at computing a function between different agents,
each knowing a secret they don’t want to reveal to the other participating agents.
This are all examples where the attacker can possibly be part of the system and,
by taking the control of some host, she may reveal the private data of the other
participating hosts. As a result, it is both useful and necessary to address issues
regarding the confidential information disclosed by an attacker that controls part of
the system. This can be done by characterizing the possible harm caused when some
condition is verified or by stating sufficient conditions that guarantee robustness.
Application level verification, which combines programming languages and static
analysis, has different tools to tackle this problem [227, 74].

Secure information flow concerns the problem of protecting private information
from an untrusted observer. This problem is indeed actual each time a program,
manipulating both sensitive and public information, is executed in an untrusted
environment. In this case, security is usually enforced by means of noninterference
policies [122], stating that private information must not affect the observable public
information. In the noninterference context, variables have a confidentiality level,
usually public/low and private/high, and any variation of the private input should
not affect the public output. This holds when considering attackers that can only
observe the I/O behavior of the program and that, from these observations, can
make some kind of reverse engineering to derive the private information that the
program may leak.

Our starting idea is that of finding the program vulnerabilities by simulating

4.1. INTRODUCTION 91

the possible reasoning that an attacker can perform on the program. Indeed, the
attacker can use the output observation in order to derive, backwards, the (even par-
tial) private input information. This is the idea of the backward analysis recently
proposed in [42] for declassified noninterference, where declassification is modeled
by means of abstract domains [89]. The ingredients of this method are: the initial
declassification policy modeled as an abstraction of the private input domain and
the weakest (liberal) precondition semantics (Wlp) of program [103, 102], charac-
terizing the backward analysis (i.e. from outputs to inputs) and the simulation of
the attacker’s observational activity. The certification process consists in consider-
ing a possible (public) output observation and computing the Wlp of the program
starting from this observation. By definition, the weakest precondition semantics
provides the greatest set of possible input states leading to the given output obser-
vation. In other words, it characterizes the greatest collection of input states, and
in particular of private inputs, that an attacker can identify starting from the given
observation. In this way, the attacker can restrict the range of private inputs inside
this collection, which may correspond to a release of private information. Moreover,
the fact that we compute the weakest precondition for the given observation, pro-
vides a characterisation of the maximal information released by that observation, in
the lattice of abstract interpretations. Namely, starting from the results provided
by the analysis, we construct an abstract domain, representing the private abstract
property that is released, which corresponds to the most concrete property released
by the program [42].

Our aim is to use these ideas also in presence of active attackers, namely at-
tackers that can both observe and modify the program semantics. We consider
the model of active attackers proposed in [176], where the attacker can transform
the program semantics simply by inserting malicious code in fixed program points
(holes), known by the programmer. We show that, also in presence of this kind of
attacker, the Wlp computation can be used to characterize the disclosed informa-
tion, and therefore to spot program vulnerabilities. This characterisation can be
interpreted from two opposite points of view: the attacker and the program ad-
ministrator. The attacker can be any malicious agent trying to disclose confidential
information about the system; the administrator wants to know whether the system
releases private information due to particular inputs.

As mentioned earlier, an important security property concerning active attack-
ers, and related to the disclosed information, is robustness [227]. Robustness “mea-
sures” the security degree of the program wrt. an active attacker by certifying that
active attacker cannot disclose more information than what a passive attacker (a
simple observer) can do. We propose to use the Wlp analysis to certify program
robustness. The first idea we consider is to compute the maximal information dis-
closed both for passive attackers [42] and for active attackers, and then compare the
results in the lattice of abstract interpretations: if there exists at least one active
attacker disclosing more than the passive one, the program fails to be robust. The
problem with this technique is that it requires a program analysis for each attack.
This means that it becomes unfeasible when dealing with an infinite number of

92
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

possible active attacks. To overcome this problem, we need an analysis indepen-
dent of the code of the particular active attack. For this reason, we leverage the
weakest precondition computation and provide a sufficient condition that guaran-
tees robustness independently of the attack. In particular we provide a condition
that has to hold before each hole, for preventing the attacker to be successful. We
initially study this condition for I/O attackers, i.e. attackers that can only observe
the public I/O program behavior, and then extend it to attackers able to observe
also intermediate states, i.e. the trace semantics of the program. Finally, we note
that, in some restricted contexts, for example where the activity of the attacker
is limited by the environment, the standard notion of robustness may become too
strong. For dealing with these situations we introduce a weakening of robustness,
i.e. relative robustness, where we restrict the set of active attackers that we are
checking robustness for.

There are various interesting applications where our approach can be used to
analyse confidential information flows. Here we present two case studies concerning
API security and XSS attacks and apply the Wlp analysis to check robustness. The
first case study considers the security of an API used to verify the password inserted
in an ATM cash machine. The adversary is able to reveal the entire password by
tampering with low integrity data prior to the API function call [70]. The second
example concerns a web attack using Javascript. As we will see, a naive control of
code integrity can reveal the entire session cookie to the attacker [179, 79]. The
robustness analysis we propose is sufficient to reveal the attacks in both examples.

Roadmap. The rest of the paper is organized as follows. In Section 4.2 we
give a general overview of abstract interpretation, which constitutes the underlying
framework that we use to compare the information. In Section 4.3 we present
the security background needed to understand our approach. In particular we
recall notions of noninterference, robustness, declassification, decentralized label
model and decentralized robustness. In Section 4.4 we compute (qualitatively)
the maximal private information disclosed by an active attacker. In particular,
Section 4.4.1 introduces the problem of computing the maximal release by an active
attacker for I/O (denotational) semantics. Section 4.4.2 extends the analysis to an
attacker observing the program traces. In Section 4.5 we discuss several conditions
to enforce robustness, which is our main contribution. Section 4.5.1 presents the
static analysis approach based on weakest preconditions to enforce robustness for
I/O semantics; Section 4.5.3 extends these results for trace semantics; In Section
4.5.4 we compare our method with type-based approaches. Section 4.6 introduces
relative robustness which deals with restricted classes of attacks; in Section 4.6.1
we interpret decentralized robustness in our model. In Section 4.7 we exercise our
approach in the context of real applications and explain how it captures the security
properties we are interested in. Section 4.8 presents the related work. We conclude
with Section 4.9 by discussing the current state of art and new directions for future
work. This is an extended and revised version of [40].

4.2. ABSTRACT INTERPRETATION: AN INFORMAL INTRODUCTION 93

4.2 Abstract Interpretation: An Informal Introduction

We use the standard framework of abstract interpretation [89, 90] for modeling
properties. For example, instead of computing on integers we might compute on
more abstract properties, such as the sign {+,−, 0} or the parity {even, odd}.
Consider the program sum(x , y) = x + y , then it is abstractly interpreted as sum∗:
sum∗(+,+) = +, sum∗(−,−) = −, but sum∗(+,−) = “I don’t know” since we are
not able to determine the sign of the sum of a negative number with a posi-
tive one (modeled by the fact that the result can be any value). Analogously,
sum∗(even, even) = even, sum∗(odd, odd) = even and sum∗(even, odd) = odd.
More formally, given a concrete domain C we may chose to describe the abstractions
of C as upper closure operators. An upper closure operator (uco for short) ρ : C →
C on a poset C is monotone, idempotent, and extensive: ∀x ∈ C . x ≤C ρ(x). The
upper closure operator is the function that maps the concrete values with their ab-
stract properties, namely with the best possible approximation of the concrete value
in the abstract domain. For example, the operator Sign : ℘(Z)→ ℘(Z), on the pow-
erset of integers, associates each set of integers S with its sign: Sign(∅) =“none”,
Sign(S) = + if ∀n ∈ S . x > 0, Sign(0) = 0, Sign(S) = − if ∀n ∈ S . n < 0 and
Sign(S) = “I don’t know” otherwise. The property names “none”, +,0,− and “I
don’t know” are the names of the following sets in ℘(Z): ∅,

{
n ∈ Z

∣∣ n > 0
}
, {0},{

n ∈ Z
∣∣ n < 0

}
and Z. Namely the abstract elements, in general, correspond

to the set of values with the property they represent. Analogously, we can define
an operator Par : ℘(Z) → ℘(Z) associating each set of integers with its parity.
Par(∅) = “none” = ∅, Par(S) = even =

{
n ∈ Z

∣∣ n is even
}

if ∀n ∈ S . n is
even, Par(S) = odd =

{
n ∈ Z

∣∣ n is odd
}

if ∀n ∈ S . n is odd and Par(S) =
“I don’t know” = Z otherwise. Formally, closure operators ρ are uniquely deter-
mined by the set of their fix-points ρ(C), for instance Sign = {Z, > 0, < 0, 0,∅}.
Abstract domains on the complete lattice 〈C ,≤,∨,∧,>,⊥〉 form a complete lattice,
formally denoted 〈uco(C),v,t,u, λx .>, λx . x 〉, where ρ v η means that ρ is more
concrete than η, namely it is more precise, uiρi is the greatest lower bound taking
the most abstract domain containing all the ρi , tiρi is the least upper bound tak-
ing the most concrete domain contained in all the ρi , λx . > is the most abstract
domain unable to distinguish concrete elements, the identity on C , λx . x , i.e. the
concrete domain, is the most concrete abstract domain.

4.3 Security Background

Information flow models of confidentiality, also called noninterference models [122],
are widely studied in the literature [197]. Generally they consider the denotational
semantics of a program P , denoted as JPK and all program variables, in addi-
tion to their base type (e.g. int, float), have a security type that varies between
private/high (H) and public/low (L). In this paper we consider only terminating
computations. Hence, there are basically two ways the program can release private

94
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

information by the observation of the public outputs: due to an explicit flow corre-
sponding to a direct assignment of a private variable to a public variable and due
to an implicit flow corresponding to control structures of the program, such as the
conditional if or the while loop [197].

4.3.1 Noninterference and Declassification
A program satisfies (standard) noninterference if for all variations of the private
input data there is no variation of the public output data. More formally, given a
set of program states Σ, namely a set of functions mapping program variables to
values V, we represent a state as a tuple (~h,~l), where the first component denotes
the value of the private variables and the second component denotes the value of
the public variables. Let P be a program, then P satisfies standard noninterference
if

∀l ∈ VL,∀h1, h2 ∈ VH.JPK(h1, l)L = JPK(h2, l)L

where v ∈ VT, T ∈ {H, L}, denotes the fact that v is a possible value of a variable
with security type T and (h, l)L = l . Declassified noninterference considers a prop-
erty on private inputs which can be observed [87, 42]. Consider a predicate φ on
VH, a program P satisfies declassified noninterference if

∀l ∈ VL,∀h1, h2 ∈ VH.
φ(h1) = φ(h2) ⇒ JPK(h1, l)L = JPK(h2, l)L

4.3.2 Robust Declassification
In language-based settings, active attackers are known for their ability to control,
i.e. observe and modify, part of the information used by the program. Security
levels form a lattice which ordering specifies the relation between different security
levels. Each program variable has two security types that model, respectively,
the confidentiality level and the integrity level. In our context, all variables have
only two security levels; L stands for low, public, modifiable and H stands for high,
private, unmodifiable. Moreover, we assume, for each variable x , the existence of
two functions, C(x) (confidentiality level) which shows whether the variable x is
observable or not and I(x) (integrity level) which shows whether the variable x is
modifiable or not. Henceforth each variable can have four possible security types,
i.e. LL, LH, HL, HH. For example, if the variable x has type LL then x can be both
observed and modified by the attacker, if the variable x has type HL then x can be
modified by the attacker, but it cannot be observed, and so on.

The programs are written according to the syntax of a simple while language.
In order to allow semantic transformations during the computation, we consider
the hole construct, denoted by [•], which models the program locations where an
attacker can insert code [176].

c ::= skip | x := e | c1; c2 | if e then c1 else c2 |
while e do c | [•]

4.3. SECURITY BACKGROUND 95

where e ::= v ∈ V | x | e1 op e2. The low integrity code, which can be inserted in
holes, models the untrusted code assumed under the control of the attacker. Let
P [~•] denote a program with holes and ~a (a vector of fixed attacks for each program
hole) an attack, then P [~a] denotes the program under the control of that attack.
A fair attack is a program respecting the following syntax [176]:

a ::= skip | x := e | a1; a2 | if e then a1 else a2 |
while e do a

where all variables in e and x have security type LL. This means that fair attacks
can only use program variables that are both observable and modifiable.

An important notion when dealing with active attackers is robustness [227].
Informally, a program is said to be robust when no active attacker, who controls
the code in the holes, can disclose more information about the private inputs than
what can be disclosed by a passive attacker, who merely observes the program’s I/O.
Note that, by using this attacker definition, it is possible to translate robustness
into a language-based setting. Indeed, a program satisfies robust declassification
if for all attacks ~a, whenever the program P [~a] can not distinguish the program
behavior on the low memory, no other attack code ~a ′ can distinguish the program
behavior on the low memory [176]. We formally recall the notion of robustness, for
terminating programs, in presence of fair attacks [176].

∀h1, h2 ∈ VH,∀l ∈ VL,∀~a, ~a ′ active fair attack :
JP [~a]K(h1, l)L = JP [~a]K(h2, l)L ⇒ JP [~a ′]K(h1, l)L = JP [~a ′K(h2, l)L

Namely, a program is robust if any active (fair) attacker can disclose at most the
same information (property of private inputs) as a passive attacker can disclose.
Since a passive attacker can only observe public variables, a passive attacker is the
same as the active attacker where ~a = ~skip.

4.3.3 Weakest Liberal Precondition Semantics
In this section we briefly present the weakest liberal precondition semantics, which
constitutes our basic instrument for performing static analysis. Given a program
c and a predicate Φ, Wlp(c,Φ) corresponds to the greatest set of input states σ
such that if (c, σ) terminates in a final state σ′, then σ′ satisfies the predicate
Φ [132, 126]. In our case, these predicates are quantifier-free first order formulas
which are transformed by the Wlp semantics. Below, we present the rules of the
semantics.

• Wlp(skip,Φ) = Φ

• Wlp(x := e,Φ) = Φ[e/x]

• Wlp(c1; c2,Φ) = Wlp(c1,Wlp(c2,Φ))

• Wlp(if e then c1 else c2,Φ) = (e ∧Wlp(c1,Φ)) ∨ (¬e ∧Wlp(c2,Φ))

96
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

• Wlp(while e do c,Φ) =
∨n

i=0 Wlpi(while e do c,Φ)
where given (C def= while B do C1){

Wlp0(C ,Φ) def= ¬B ∧ Φ
Wlpi+1(C ,Φ) def= Wlp(if B then C1 else skip,Wlpi(C ,Φ))

Most of the above rules are easy to read. For instance, the Wlp of the conditional
statement, given a postcondition Φ, is the disjunction of conjunctions of Wlp of each
branch and the boolean condition of the guard. The Wlp of the loop statement may
require the computation of some invariant condition. There exist several techniques
to compute program invariants [154], but in this paper we don’t consider them.
The automatic generation of such invariants is is an interesting future direction we
plan to explore more in detail. Unlike the weakest precondition semantics, Wlp
determines a partial verification condition, meaning that only if the program does
terminate the post-condition Φ is required to hold. In any case, for the purposes
of this paper, we only consider in terminating programs, so we can establish the
weakest liberal precondition in a finite number of iterations.

4.3.4 Certifying Declassification
In this section, we introduce a technique recently proposed for certifying declassi-
fication policies [42, 162] in presence of passive attackers. The method performs a
backward analysis, computing the weakest precondition semantics starting from an
output observation, in order to derive the maximal information that an attacker can
disclose from that output observation. We use abstract interpretation for modeling
the declassified properties.

Certifying declassification. In [42, 162] the authors present a method to com-
pute the maximal private input information disclosed by a passive attacker. They
consider only terminating computations, which means that the logical language
does not have expressiveness limits [223]. The method has two main characteris-
tics: it is a static analysis, and it performs a backward analysis from the observed
outputs towards the inputs to protect. The first aspect is important since we would
like to certify programs without executing them, the latter is important because
noninterference aims at protecting the program’s private input, while the attacker
can only observe the public output. Both these characteristics are embedded in
the weakest liberal precondition semantics of the program. Starting from a given
output observation the Wlp semantics computes, by definition, the greatest set of
input states leading to that observation. This allows us to calculate the private
input information released by observing the public variables in output. This in-
formation corresponds exactly to the maximal private information disclosed by the
program semantics. In this way, we are statically simulating the kind of analysis
an attacker can perform in order to obtain the initial values of (or initial relations
among) private variables. The revealed information can be modeled by a first order

4.3. SECURITY BACKGROUND 97

predicate; the set of program states computed by the Wlp semantics is the one that
satisfies this predicate. To be as general as possible, we consider the public observa-
tions parametric on symbolic values which are represented by logical variables. We
denote as ~l = ~n the parametric value of each low confidentiality program variable.
For instance, the formula (l = n) means that the program variable l has symbolic
value n. For a given program, the public output observation can be expressed as
a first order formula that is the conjunction of all low confidentiality variables, i.e.
variables with security types LL or LH.

Φ0
def= {l1 = n1 ∧ l2 = n2 ∧ · · · ∧ lk = nk} =

k∧
i=1

(li = ni)

where ∀li . C(li) = L. Without loss of generality, we assume this formula to be
in a disjunctive normal form, namely a disjunction of conjunctions. We define
the set of free variables of a logical formula Φ, denoted as FV(Φ), as the set of
free program variables occurring in Φ. Moreover, we assume the formula is in a
normal form, where all redundancies and subsumed subformulas are removed by
some simplification routine. For instance, let (l > 1 ∧ l > 0) be a logical formula.
We can simply write (l > 1) since it subsumes the fact that l > 0. From now on
we assume all logical formulas are in this normal form. For instance, consider the
program P with h1, h2 : HH and l : LL.

P
def= if (h1 = h2) then l := 0; else l := 1;

Then, Wlp(P , l = n) = {(h1 = h2 ∧ n = 0) ∨ (h1 6= h2 ∧ n = 1)} after some
simplification. If we observe l = 0 as the public output, all we can deduce about
private inputs h1, h2 is that h1 = h2. Otherwise, if we observe l = 1, we can conclude
that h1 6= h2.

In [42, 162] this technique is formally justified by considering an abstract do-
main completeness-based [89] model of declassified noninterference. Here we avoid
the formal details, and we simply show where and how we use abstract inter-
pretation. Note that, usually the Wlp semantics is applied to specific output
states in order to derive the greatest set of input states leading to those output
states. The analysis starts from the state ~l = ~n, which is indeed an abstract state,
namely a state where the private variables can have any value, while the public
variables ~l have a specific symbolic value ~n. This corresponds to the abstraction
H ∈ uco(℘(V)) [42] modeling the fact that the attacker is unable to observe the pri-
vate data. Formally, it associates with a generic output state 〈h, l〉 the abstract state
〈VH, l〉 =

{
〈h ′, l〉

∣∣ h ′ ∈ VH
}
. As far as the input is concerned, an abstract prop-

erty is described as the set of all concrete values satisfying that property. Hence,
since the Wlp semantics characterises the set of input states, and in particular of
private inputs, then this set can be uniquely modeled as an abstract domain, i.e.
the abstract property released by the program. Consider, for instance, the trivial
program fragment P as above. According to the observed output value, which is ei-
ther l = 0 or l = 1, we can discriminate the set of input states {〈h1, h2, l〉 | h1 = h2}

98
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

and {〈h1, h2, l〉 | h1 6= h2}. This characterisation can be uniquely modeled by the
abstract domain1

φ = {>, {〈h1, h2, l〉 | h1 = h2}, {〈h1, h2, l〉 | h1 6= h2},∅}

Hence, if we declassify φ, the program is secure since the private information re-
leased by the program is the same as the private information that is declassified.
While if, as in standard noninterference, nothing is declassified, which is modeled
by the declassification policy φ′ = λx . >2, then φ v φ′, namely the policy is vio-
lated since the information released by the program is more (concrete) than what
is allowed by the declassification policy.

4.3.5 Decentralized Label Model and Decentralized Robustness
The decentralized label model (DLM) was proposed as a fine-grained model to en-
force end-to-end security policies for systems with mutual distrust and decentralized
authorities that want to share data with each other [175]. Basically, every agent
in the system defines and controls his own security policy and states which data,
under his ownership, is visible (declassified) to the other agents in the system. The
system itself must ensure that security policies are not circumvented and that they
satisfy security requirements of all agents. More precisely, DLM consists of two
basic ingredients: the principals, which security policies should be enforced in the
model and the labels, which constitute the mean to enforce the security policies.
Principals can be users, processes, groups, roles possibly related by an acts-for re-
lation to allow the delegation of the authorities between principals. For instance,
if a principal P acts-for a principal Q , formally P � Q , it means that P has all
privileges of Q . Labels are data annotations that express the security policy the
owner sets on his data. In particular, if some data are annotated by the label owner:
reader, the policy on that data defines the owner and the set of principals that can
read the data. Security labels form a security lattice where the higher an element
is in the lattice, the more restrictive are the security requirements of the data it
labels. Moreover, the decentralized label model supports a declassification mech-
anism and allows to express policies regarding both confidentiality and integrity.
The model is used to perform static analysis based on security type systems to
enforce information flow policies.

Decentralized robustness is an approach proposed to enforce the robustness
condition in the DLM model [74]. In particular, the fact that principals do not
trust each other means that each principal can be a potential attacker. Therefore,
robustness is analyzed relatively to a pair of principals: one fixes the point of view of
the analysis, the other is the potential attacker. In particular, the former fixes which
data he believes the latter can read and/or write. More formally, decentralized

1The elements > and ∅ are necessary for obtaining an abstract domain.
2Since ∀x , y we have φ′(x) = φ′(y), declassified noninterference with φ′ corresponds to stan-

dard noninterference.

4.4. MAXIMAL RELEASE BY ACTIVE ATTACKERS 99

robustness is defined wrt. a pair of principals p and q , with power 〈Rp→q ,Wp←q〉,
where Rp→q allows to characterise the data p believes that q can read, while Wp←q

allows to characterise the data p believes that q can modify. A system is robust wrt.
all the attackers if it is robust with respect to all the pairs p, q of principals. In [74],
the authors use security type systems to enforce robustness against all attackers in
a simple while language with holes and explicit declassification. Basically, the type
system allows the holes to be placed in low confidentiality contexts and it prevents
attackers to influence the (explicit) declassification decision and the data to be
declassified [176]. Once the attacker’s point of view is fixed, a safe hole insertion
rule defines the admissible holes for the attacker together with the variables he can
modify and/or observe of the program.

4.4 Maximal Release by Active Attackers

The notion of robustness, as defined in Sect. 4.3, implicitly concerns the confidential
information released by the program. Therefore, if we are able to measure the
maximal release (the most concrete private property) in presence of active attacks,
then we can compare it with the private information disclosed by a passive attacker
and conclude about program robustness. In this section we compute (when possible)
the maximal private information disclosed by an active attacker.

The active attack model we use here is more powerful than the one defined in
Sect. 4.3.2, i.e. the fair attack. The attacker is now allowed to manipulate variables
of security type HL, i.e. variables that the attacker cannot observe but can use.
Indeed, HL is the type of those variables whose name is visible, i.e. usable by the
attacker in his code, but whose value is not observable. In the following the active
attacks are programs (without holes) such that, for all variables x occurring in the
attacker’s code, I(x) = L. We call them unfair attacks. Unfair attacks are more
general than fair attacks because they can modify variables of security type LL and
HL. As an example, consider a user that wants to change his password. He can
access a variable (the password) he can write but can not read (blind writing), i.e.
of type HL. Now we want to compute the maximal information released in presence
of unfair attacks.

4.4.1 Observing Input-Output
It is clear that, in order to certify the security degree of a program, also in presence
of active attacks, it is important to compute what is the maximal private informa-
tion released by the program. Such information can also help the programmer to
understand what happens in the worst case, namely when an active attacker inserts
the most harmful unfair code. Moreover, if we compute the most concrete property
of private input data released by program semantics for all active attacks, we can
compare it with the private information disclosed by a passive attacker and then
conclude about program robustness. In this section, we consider the denotational
semantics, namely input/output semantics. Hence, the program points where the

100
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

attacker can observe the low confidentiality data are the public program inputs and
the public program outputs. Note that, since the active attacker can insert code
(fair or unfair) in the holes, he can change the program semantics and, consequently,
the property of the confidential information released by the program can be differ-
ent in presence of different active attacks. Moreover, the number of possible unfair
attacks may be infinite, thus, it becomes hard to compute the private information
disclosed by all of them. It turns out to be impossible to characterise the maxi-
mal information released to attackers that modify the program semantics, because
different attacks obtain different private properties which may be incomparable if
there are infinitely many such attacks.

This problem is overcome when we consider a finite number of attackers, for
instance a finite class of attacks for which we want to certify our program. In
this case, we can compute the maximal information disclosed by each attack and,
afterwards, we can consider the greatest lower bound (in the lattice of abstract
domains) which characterizes the maximal information released to the fixed class
of attacks. We introduce an example to illustrate this problem.

Example 4.4.1 Consider the program P ::= l := h; [•]; with variables h : HH, l : LL
and k : HL. Then the following attacks are possible:

• Wlp
(
l := h; [skip], {l = n}

)
={h = n}

• Wlp
(
l := h; [l := k], {l = n}

)
={k = n}

• Wlp
(
l := h; [l := l + k], {l = n}

)
={h + k = n}

For all cases the attacker discloses different information about confidential data.
In particular, in the first case the attacker obtains the exact value of variable h, in
the second he obtains the exact value of variable k and in the third case he obtains
a relation (the sum) between h and k . Note that if all active attacks were only
those considered above, we could compute the greatest lower bound (glb for short)
of private information disclosed by all of them. In this example the glb corresponds
to the identity value of confidential variables h and k .

However, as shown in the previous example, we can compute the private information
disclosed by an attacker who fixes his attack and then check if that particular attack
compromises the program robustness. To this end, we just have to use the method
introduced in [42] and verify that the method described in Sect. 4.3.4 holds for the
transformed program.

The previous example shows that, even for a finite number of attackers, we
have to perform one Wlp analysis for each attack. In the following, we propose
a method which performs only one analysis to deal with a (possibly infinite) set
of active attacks. We follow the idea proposed in [42], where, in order to avoid
an analysis for each possible output observation, the authors perform the analysis
parametrically on the symbolic output observation l = n. In particular, an attack,
being an imperative program, is just a function manipulating low integrity variables,

4.4. MAXIMAL RELEASE BY ACTIVE ATTACKERS 101

i.e., LL and HL variables. Hence, we propose a Wlp computation parametric on the
expressions f (~l) which can be assigned by the active attacker to the low integrity
variables ~l , which we call an attack schema (in line with a program schema [96]).
In other words, the attacker can assign to all low integrity variables an expression
which can possibly depend on all the other low integrity variables. For instance,
given a program where the low integrity variables are l and k , all possible unfair
attacks can only use the variables l and k , namely l := f (l , k) and k = g(l , k),
where f , g are expressions that can contain the variables l , k free.

The confidential information released by the parametric computations can be
useful both the programmer and the attacker. Indeed, looking at the resulting
formula which may contain f as parameter, the former can detect vulnerabilities
about the confidential information released by the program, while the latter can
exploit such vulnerabilities to build the most harmful attack and disclose as much
as possible of the private input data. We introduce an example that shows the
above method.

Example 4.4.2 Consider the program in Ex. 4.4.1. The only low integrity vari-
ables are l : LL and k : HL. According to the method described above we have to re-
place all possible unfair attacks in [•] with the attack schema 〈l , k〉 := 〈f (l , k), g(l , k)〉.
The initial formula is Φ0 = {l = n} because l is the only program variable s.t.
C(l) = L. Thus, the Wlp calculation yields the following formula:

{f (h, k) = n}
l := h;

{f (l , k) = n}
[〈l , k〉 := 〈f (l , k), g(l , k)〉;]

{l = n}

The final formula (f (h, k) = n) contains information about high the confidentiality
variables h and k . Thus, by fixing the unfair attacks as we did in the previous
example, we can obtain information about symbolic values of h, k or any relation
between them.

It is worth pointing out that attack schemes capture fairly well the idea of classes
of attacks which have a similar semantic effect (up to stuttering) on confidential
information disclosed by an active attacker. We conjecture a close relationship
between attack schemes and program schemes [96] and postpone their investigation
as part of our future work.

4.4.2 Observing Program Traces
So far we have computed the maximal private information disclosed by an active
attacker which tampers with low integrity data in predefined program points (holes)
and observes the public input and the public output of the target program. In
particular, the attacker can not observe the low confidentiality data in intermediate

102
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

program points, e.g. program traces. This condition is unrealistic in scenarios where
the attacker can control a compromised machine. Indeed, nothing prevents him to
analyze the low confidentiality data at the points he inserts low integrity code
and thus to reveal private information before the overall computation terminates.
This man-in-the-middle kind of attack requires to extend the analysis and consider
intermediate program points as possible channels of information leakage. In many
practical applications, it is common to have scenarios where a bunch of threads are
running concurrently together with a malicious thread which reads the content of
shared variables and dumps them in output each time that thread is scheduled to
run.

In [162] the authors point out that the semantic model constitutes an important
dimension for program security, the where dimension [202], which influences both
the observation policy and the declassification policy. It seems obvious that an
attacker who observes low confidentiality variables in intermediate program points
can disclose more information than an attacker that observes only I/O behavior
of the program. In this section, we aim to characterise the maximal information
released by a program in presence of unfair attacks. In general, we can fix the set of
program points where the attacker can observe the low confidentiality variables (say
O) and we can denote by H the set of program points where there is a hole, namely
where the attacker can insert the malicious code. Moreover, we assume that the
attacker can observe the low confidentiality variables for all program points in H,
namelyH ⊆ O. In order to compute the maximal release of confidential information,
an attacker can combine, at each observation point, the public information he can
observe at that point together with the information he can derive by computing
Wlp from the output to that observation point [162]. For instance, with the trace
semantics, an attacker can observe the low confidentiality data at all intermediate
program point. We first introduce an example that presents this technique for
passive attackers.

Example 4.4.3 Consider the program P with variables l1, l2 : LL and h1, h2 : HH.

P ::=
[

h1 := h2; h2 := h2 mod 2;
l1 := h2; h2 := h1; l2 := h2; l2 := l1;

We want to compute the private information disclosed by an attacker that observes
the program traces. As for standard noninterference, the goal is to protect the
private inputs h1 and h2. In order to make only one iteration on the program,
even when dealing with traces, the idea is to combine the Wlp semantics computed
at each observable point of execution, together with the observation of public data
made at the particular observation point. We denote in square brackets the value
observed at the program point under consideration. The Wlp calculation yields the
following result.

4.4. MAXIMAL RELEASE BY ACTIVE ATTACKERS 103

{h2 mod 2 = m ∧ h2 = n ∧ l2 = p ∧ l1 = q}
h1 := h2;

{h2 mod 2 = m ∧ h1 = n ∧ l2 = p ∧ l1 = q}
h2 := h2 mod 2;

{h2 = m ∧ h1 = n ∧ l2 = p ∧ [l1 = q]}
l1 := h2;

{l1 = m ∧ h1 = n ∧ l2 = p}
h2 := h1;

{l1 = m ∧ h2 = n ∧ [l2 = p]}
l2 := h2;

{l1 = m ∧ [l2 = n]}
l2 := l1;

{l1 = l2 = m}

For instance the information disclosed by the assignment l2 := l1 is the combination
of Wlp calculation (l1 = m) and attacker’s observation at the same point ([l2 = n]).
The attacker is able to deduce the exact value of h2. The example shows that this
attacker is more powerful than the one who observes the input-output behavior; in
fact, the latter can only distinguish the parity of variable h2. This is made clear by
the fact that the value of h2’s parity (m) is the value derived by the output, while
the value of h2 (n) is the value observed during the computation.

We recall that our goal is to compute the maximal private information release
in presence of unfair attacks. The problem is similar to the one described in the
previous section. Unfair attacks, by definition, manipulate (modify and use) both
variables of type LL and HL. Although the attacker can observe the low confiden-
tiality variables in presence of program holes, still he can not observe the variables
of type HL. As a result, different unfair attacks can cause different information to
be released, as it happens with attackers observing only the I/O behavior, and in
general there can be an infinite number of these attacks. However, if we fix the
unfair attack we can use the method described above and compute the maximal
release for that particular attack.

Things change when we consider only fair attacks, i.e. manipulating only LL
variables. The following proposition shows that we can capture all possible fair
attacks with constant assignments ~l := ~c to variables of type LL.

Proposition 4.4.1 Let P [~•] be a program with holes and H ⊆ O. Then, all fair
attacks can be written as ~l := ~n, where l : LL.

Proof. In general, all fair attacks have the shape ~l := f (~l). Moreover, H ⊆ O
hence the attacker can observe at least the program points where there is a hole.
Thus, all the formal parameters of expression f (~l) are known. As a result, we
conclude that ~l := ~n. 2

104
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

Now we are able to measure the maximal private information disclosed by an
active attacker. Indeed, we can use the approach of Ex. 4.4.3 and whenever we
reach a program hole, we substitute it by the assignment ~l := ~c, parametric on
symbolic constant values ~c. The following example elucidates the method.

Example 4.4.4 Consider the program P and the variables h : HH and l : LL. Let
also O be the set of all program points.

P ::= l := 0; [•]; if (h > 0) then skip else l := 0;

In presence of passive attackers, P does not release any information about the
private variable h. Indeed, the output value of the public variable l is always 0.
An active attacker, who can observe each program point and inject fair attacks, can
disclose the following private information:

{((h > 0 ∧ c = m) ∨ (h ≤ 0 ∧m = 0)) ∧ c = n ∧ p = 0}
l := 0;

{((h > 0 ∧ c = m) ∨ (h ≤ 0 ∧m = 0)) ∧ c = n ∧ [l = p]}
[l := c;]

{((h > 0 ∧ l = m) ∨ (h ≤ 0 ∧m = 0)) ∧ [l = n]}
if (h > 0) then skip else l := 0;

{l = m}

Thus, the active attacker is able to disclose whether the variable h is positive or
not. Hence, this is the maximal private information disclosed by an attacker who
observes program traces and injects fair code in the program holes.

4.5 Enforcing Robustness

In this section we want to understand, by static program analysis, under which
conditions an active attacker that transforms program semantics is unable to dis-
close more private information than a passive attacker, who merely observes the
public data. The idea is to consider the Wlp semantics and find sufficient conditions
which guarantee the program robustness. We first introduce a method to check for
programs that are robust in presence of active attacks.

We know [42] that declassified noninterference is a completeness problem in
abstract interpretation theory and there exist systematic methods to enforce this
notion. Let P [~•] be a program with holes and Φ a first order formula that models
the declassification policy. In order to check robustness for the program P [~•], we
must check the corresponding completeness problem for each possible attack a, as
introduced in Sect. 4.3.4, where P [~a] is program P under the attack ~a. The goal is
to characterise those situations where the semantic transformation induced by the
active attack does not generate incompleteness. If there is at least one attack a
such that the program releases more confidential information than what is released
by the policy, then the program is not robust. The following example shows the

4.5. ENFORCING ROBUSTNESS 105

ability of active attackers to disclose more confidential information than passive
attackers.

Example 4.5.1 Consider the program P with h : HH, l : LL.

P ::= l := 0; [•] if (h > 0) then (l := 1) else (l := l + 1);

Suppose the declassification policy is >, i.e. nothing can be released. In presence
of a passive attacker (the hole substituted by skip) P satisfies the security policy,
namely noninterference, because public output is always 1. The Wlp semantics
formalizes this fact.

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = 1)} = {n = 1}
l := 0;

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = l + 1)}
if (h > 0) then (l := 1) else (l := l + 1);

{l = n}

Suppose now an active attacker inserts the code l := 1. In this case the Wlp
semantics shows that the attacker is able to distinguish positive values of the private
variable h from non positive ones. Using the Wlp calculation parametric on public
output {l = n} we have the following result.

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = 2)}
l := 0;

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = 2)}
[l := 1;]

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = l + 1)}

The final formula shows that the attacker is able to distinguish values of h greater
than 0 from values less or equal than 0 by observing, respectively, the values 1 or
2 of the public variable l . We can conclude that program P is not robust and, as a
result, the active attackers are indeed more powerful than the passive ones.

If we had a method to compute the maximal private information release in pres-
ence of unfair attacks, then we could check the program robustness by comparing it
with the information disclosed by a passive attacker. Unfortunately, in the previous
section, we have seen that it is not possible to compute the maximal information
released for all possible attacks, as there can be infinitely many. Hence, we should
look for methods to check program robustness without computing the maximal
information release.

4.5.1 Robustness by Wlp
In this section we first distinguish between active attacks with different capabilities
and, afterwards, we present and prove the correctness of our approach to certify

106
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

robust programs. The proof is organised as follows: we start with a lemma that
applies to sequential programs with one hole only, then we give a a theorem that
generalizes the lemma to sequential programs with more holes and conclude with
another theorem that applies the robustness condition to all terminating while
programs.

We first make some considerations about the logical formulas and the set of
program states they represent. The free variables of the output observation formula
Φ0 correspond to the set of low confidentiality variables LL and LH, namely

FV(Φ0) = {x ∈ Var(Φ0)|C(x) = L}.

If a low confidentiality variable does not occur free at some program point, it means
that the variable was previously, wrt. backward analysis of Wlp, substituted by
an expression that does not contain that variable. This means that, the variable
can have any value in that program point. From the viewpoint of the information
flow, even if the variable contains some confidential information at that point, this
information is irrelevant to the analysis, because subsequently the variable is going
to be overwritten and therefore the private information it contains will never be
revealed by the public outputs.

Our aim is to generalise the most powerful active attacks and study their impact
on program robustness. As a first try, we can represent all active attacks by a
constant assignment to low integrity variables. Recall that the attacker observes
only the input/output value of low confidentiality variables, i.e. LL and LH variables.
Then the following example shows that this is not sufficient and there exist more
powerful attacks that disclose more private information and thus break robustness.

Example 4.5.2 Consider the program P with variables l : LL, k : LL, h : HH and a
declassification policy that allows nothing to be released about the private variables.

P ::=

 k := h; [•];
if (l = 0) then (l := 0; k := 0)

else (l := 1; k := 1);

First notice that P does not release private information in presence of a passive
attacker. Indeed, the assignment of h to k is subsequently overwritten by the con-
stants 0 or 1 and it only depends on the variation of public input l . If it was possible
to represent all active attacks by the constant assignments then P would be robust.
In fact, if the attacker assigns constants c1 and c2, respectively, to variables l and
k , the Wlp calculation deems the program robust.

{(c1 = 0 ∧m = 0 ∧ n = 0) ∨ (c1 6= 0 ∧m = 1 ∧ n = 1)}
k := h;

[l := c1; k := c2;]
{(l = 0 ∧m = 0 ∧ n = 0) ∨ (l 6= 0 ∧m = 1 ∧ n = 1)}
if (l = 0) then (l := 0; k := 0) else (l := 1; k := 1);

{l = m ∧ k = n}

4.5. ENFORCING ROBUSTNESS 107

The final formula shows that the program satisfies noninterference. But if we assign
to the low integrity variables an expression depending on the other low integrity
variables, then we obtain a more powerful attack, which makes P not robust. For
instance, the assignment a ::= l := k ; allows the attacker to distinguish the zeroness
of private variable h.

{(h = 0 ∧m = 0 ∧ n = 0) ∨ (h 6= 0 ∧m = 1 ∧ n = 1)}
k := h;

{(k = 0 ∧m = 0 ∧ n = 0) ∨ (k 6= 0 ∧m = 1 ∧ n = 1)}
[l := k ;]

{(l = 0 ∧m = 0 ∧ n = 0) ∨ (l 6= 0 ∧m = 1 ∧ n = 1)}

Definitely, program P is not robust and therefore we cannot reduce active attacks
to a constant assignment to the low integrity variables.

In general, an active attack is a piece of code that uses low integrity variables,
namely a function on low integrity variables. If we assign a constant value to the
low integrity variables then we may erase the high confidentiality information that
these variables may have accumulated before reaching the program point or we can
ignore the fact that another variable, which may contain private information, can
be assigned to our variable, as shown in Ex. 4.5.2.

We use the ideas to introduce a sufficient condition which ensures program
robustness. Recall that the observed public output is formally represented as a
first order formula, Φ0, which corresponds to the conjunction of program variables
x such that C(x) = L, and it is parametric on the observed public output ni , namely

Φ0 =
k∧

i=1
(li = ni) and ∀i .C(li) = L

We first describe a sufficient condition for programs where the holes are not
nested in the control structures of the program. This is obtained in two steps, the
lemma shows the result for programs with only one hole, while the first theorem
extends this result to programs with an arbitrary number of holes. Afterwards,
we show how the approach can be extended in order to characterise robustness
also for programs where the holes occur in arbitrary places in the program. We
denote by •i the i -th hole in P and by Pi the portion of code in P after the hole •i
where all the following holes (•j , with j ∈ H, j > i) are replaced with skip. Then
Φi = Wlp(Pi ,Φ0) is the formula corresponding to the execution of subprogram Pi .

Lemma 4.5.1 Let P = P2; [•]; P1 be a program (P1 without holes, possibly empty).
Let Φ = Wlp(P1,Φ0). Then P is robust wrt. unfair attacks if ∀v ∈ FV(Φ).I(v) =
H.

Proof. We prove this theorem by induction on the attacks structure and on the
size of its derivation. In particular, we prove that for any attack a, Wlp(a,Φ) = Φ,

108
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

namely the formula Φ does not change, hence from the semantic point of view, the
attack behaves like skip, namely like a passive attacker. Note that here we consider
unfair attacks, hence the attacker can use both LL and HL variables.

• a ::= skip: The initial formula Φ does not change, namely Wlp(skip,Φ) = Φ,
and the attacker acts as a passive one.

• a ::= l := e: By definition of active attack we have I(l) = L and by hypoth-
esis variable l does not occur free in Φ. Applying the Wlp definition for
assignment, we have Wlp(l := e,Φ) = Φ[e/l] = Φ.

• a ::= c1; c2: By inductive hypothesis we have Wlp(c1,Φ) = Wlp(c2,Φ) = Φ,
being attacks of smaller size. The Wlp definition for sequential composition
states that Wlp(c1; c2,Φ) = Wlp(c1,Wlp(c2,Φ)) = Φ

• a := if B then c1 else c2: By inductive hypothesis (applied to an attack of
smaller size) we have Wlp(c1,Φ) = Wlp(c2,Φ) = Φ. Applying the definition
of Wlp for the conditional construct Wlp(if B then c1 else c2,Φ) = (B ∧
Wlp(c1,Φ)) ∨ (¬B ∧Wlp(c2,Φ)) = (B ∧ Φ) ∨ (¬B ∧ Φ) = Φ.

• a ::= while B do c: By hypothesis we consider terminating programs, so
the while loop halts in a finite number of iterations. Applying the inductive
hypothesis to the command c we have Wlp(c,Φ) = Φ, so each iteration the
formula does not change. Moreover, if the guard is false the formula remains
unchanged too. Applying Wlp rule for the while loop and the inductive
hypothesis we have:
Wlp(while B do c,Φ) = (¬B ∧ Φ) ∨ (B ∧ Φ) ∨ · · · ∨ (B ∧ Φ) ∨ (B ∧ Φ) = Φ

2

Theorem 4.5.1 Let P [~•] be a program. Then we say that P is robust wrt. unfair
attacks if ∀i ∈ H.∀v ∈ FV(Φi). I(v) = H.

Proof. Suppose P has n holes:

P ≡ P ′n+1; [•n]; P ′n . . .P
′
2; [•1]; P ′1

Let us define the following programs for 1 ≤ i ≤ n + 1

Pi
def=
{

P ′1 if i = 1
P ′iPi−1 otherwise

Namely Pi is the portion of code in P after the hole •i where all the following
holes (•j , with j ∈ H, j > i) are replaced with skip. We prove by induction on n
that ∀1 ≤ i ≤ n. P ′i+1; [•i]; P ′i ; [•i−1]; . . . ; [•1]; P ′1 is robust wrt. unfair attacks. By
proving this fact, we prove the thesis since for i = n we obtain exactly P .

4.5. ENFORCING ROBUSTNESS 109

Base: Consider the first hole from the end of the program P , i.e. P ′2; [•1]; P ′1. Then
by Lemma 4.5.1 we have that P ′2; [•1]; P ′1 is robust, being P ′1 without holes
by construction. This implies that any active attacker can disclose the same
information as the passive (skip) attacker can do, hence •1 can be replaced
with skip, namely P ′2[•1]P ′1 can be substituted by P2 in P without changing
the robustness property of P .

Inductive step: Suppose, by inductive hypothesis, P ′i ; [•i−1]; P ′i−1; . . . ; P ′2; [•1]; P ′1
is robust. This means that, exactly as for the base of the induction, the holes
are useless for the attacker, therefore we can substitute all the •j with skip
obtaining a program (from the robustness point of view) equivalent to Pi .
Hence, P ′i+1; [•i]; P ′i ; [•i−1]; . . . ; [•1]; P ′1 ≡ P ′i+1; [•i]; Pi , and the robustness of
the last program holds by Lemma 4.5.1, being Pi without holes by construc-
tion.

In this way we prove that P ≡ P ′n+1; [•n]; Pn is robust. 2

In other words, the fact that a low integrity variable is not free in the formula im-
plies that the information in the corresponding program point can not be exploited
to reveal confidential information. In this case we can say that a generic active
attacker is not stronger than a passive one. Before showing what happens for the
control structures, let us introduce an example that illustrates Theorem 4.5.1.

Example 4.5.3 We check robustness for the program P with variables l : LL, h : HH
and k : HL.

P ::=
[

l := h + l ; [•]; l := 1; k := h;
while (h > 0) do (l := l − 1; l := h);

Analysing P from the hole [•] to the end we have:

{(h ≤ 0 ∧ n = 1) ∨ (h > 0 ∧ n = 0)}
l := 1; k := h;

{(h ≤ 0 ∧ l = n) ∨ (h > 0 ∧ n = 0)}
while (h > 0) do (l := l − 1; l := h);

{l = n}

The formula Φ = (h ≤ 0 ∧ n = 1) ∨ (h > 0 ∧ n = 0) meets the conditions of
Theorem 4.5.1. We can conclude the program P is robust. Intuitively, even though
the value of private input h flows to the public variable l (l := l + h), this relation
is immediately lost when we assign the constant 1 (l := 1) after the hole.

The following example shows that Theorem 4.5.1 is just a sufficient condition,
namely there exists a robust program that violates the conditions of the theorem.
This is because Theorem 4.5.1 is a local condition wrt. robustness, however one
may need to analyze the entire program to have the information about the revealed
confidential information.

110
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

Example 4.5.4 Consider the program

P ::=
[

l := h; l := 1; [•];
while (h = 0) do (h := 1; l := 0);

where h : HH and l : LL. The precondition of the while is:

Wlp (while (h = 0) do (h := 1; l := 0), {l = n}) =
{(h = 0 ∧ n = 0) ∨ (h 6= 0 ∧ l = n)}

This formula does not satisfy the conditions of Theorem 4.5.1, since it contains a
free occurrence of a low integrity variable, namely l = n. However, we can see that
program P is robust. No modification of the public variable l contains information
about the private variable h because the guard of the while loop depends exclu-
sively on the private variables. Every terminating attack modifies the subformula
{l = a} and influences the final value of the observed public output. Moreover, the
private information obtained by the assignment l := h is erased by the successive
assignment l := 1. So the only confidential information released by P concerns the
zeroness of h, the same as for the passive attacker. This means that P is robust and
Theorem 4.5.1 is a sufficient and not necessary condition for checking robustness.

We now show how Theorem 4.5.1 applies to programs where the hole occurs in
a conditional or in a loop. As the following theorem shows, in these cases we need
to apply recursively Theorem 4.5.1 to the formula corresponding to each branch.
It is worth noting that the loop can be unfolded a finite number of times until
we reach the invariant formula (see the Wlp rule for while in Sect. 4.3.3), as the
computations are terminating.

Theorem 4.5.2 Let Pc [~•] ≡ if B then P1[~•] else P2[~•] and Pw [~•] ≡ while B do P [~•]
be a program with holes and a first order formula Φ. Then,

• Pc [~•] is robust wrt. unfair attacks iff P1[~•] and P2[~•] are robust wrt. unfair
attacks and post-condition Φ.

• Pw [~•] is robust wrt. unfair attacks iff P [~•] is robust wrt. unfair attacks and
post-conditions Wlpi(Pw [~•],Φ)

Proof. We do induction on the structure of P1[~•]; the other case is symmetric.
If P1[~•] straight line program with holes (as in the hypothesis of Theorem 4.5.1),
we apply the theorem to check robustness. Otherwise, P1[~•] is a conditional and it
trivially holds from the induction hypothesis.
In the case of a loop we need to apply the recursive computation as described in
Sect. 4.3.3. If P [~•] is a straight line program we apply Theorem 4.5.1 as before and
check, at each step of the Wlp computation whether low integrity variables occur
in the formula, when we reach the hole. Note that the occurrence of the loop guard
B in the formula makes sure that the active attacker never influences the variables

4.5. ENFORCING ROBUSTNESS 111

of B . In this way, we are sure that if the condition is verified the formula remains
unchanged for all active attacks. Otherwise, if P [~•] is a loop or a conditional we
apply the induction hypothesis and we are done. 2

The result above shows how to treat situations where the construct [•] may be
placed in an arbitrary depth inside an if conditional or a while loop. The following
example describes this situation.

Example 4.5.5 Consider the program P

P ::=

 k := h mod 3;
if (h mod 2 = 0) then[•]; l := 0; k := l ;

else l := 1;

where h : HH, l : LL and k : LL. Applying the weakest liberal precondition rules to
the initial formula {l = m ∧ k = n} we have:{

(h mod 2 = 0 ∧m = 0 ∧ n = 0)∨
(h mod 2 6= 0 ∧m = 1 ∧ k = n)

}
if (h mod 2 = 0) then [•]; l := 0; k := l ; else l := 1;

{l = m ∧ k = n}

The subformula corresponding to the then branch (which contains the hole [•])
satisfies the conditions of Theorem 4.5.1, therefore P is robust. Every attack at
this point manipulates the variables l , k which are immediately substituted by the
constant 0 and therefore lose all the private information that have accumulated.

Note that the theorems enforce the invariant stating that the first order for-
mula determined by the active attack does not change, compared to the formula
determined by the passive attack. In particular, Theorem 4.5.1 proves the security
condition, while Theorem 4.5.2 models the fact that such condition should be ap-
plied recursively in case of conditionals and loops. In the next section we present
an algorithmic approach that puts all the pieces together.

4.5.2 An Algorithmic Approach to Robustness
In this section we present our approach algorithmically in order to make clear
how the above theorems apply to terminating while programs. In particular,
Robust(P [~•],Φ,S) is the main procedure that takes as input a program with holes
P [~•], a first order formula Φ and a set of low integrity variables S and, if it returns
a formula, the program is robust and this formula corresponds to the private infor-
mation disclosed to both passive and active attackers, otherwise (if it returns false)
we don’t know whether the program is robust or not. The procedure Check(Φ,S)
corresponds to the security condition, namely, it returns true if no low integrity
variables in S occur in Φ as well. Moreover, we assume that we have a procedure

112
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

that transforms a first order formula in the normal form to reduce the false alarms
during the analysis. The algorithm runs recursively over the syntactical structure
of the while program (with holes) and, at each step it applies the rules of Wlp se-
mantics, as described in Sect. 4.3.3. The procedure Compute(while B do c,Φ,S)
checks whether the formula remains unchanged for the while loop. In particular,
this corresponds to the unfolding of the loop, with a finite number of conditionals
and then applies a finite number of times Theorem 4.5.2.

Robust(P [~•],Φ,S) :

case(P [~•]) :

[•] : Check(Φ,S)
skip : Φ
x := e : Φ[e/x]
P1[~•]; P2[~•] : Φ′ := Robust(P2[~•],Φ,S)

Robust(P1[~•],Φ′,S)
if B then P1[~•] else P2[~•] : (B ∧ Robust(P1[~•],Φ,S))∨

(¬B ∧ Robust(P2[~•],Φ,S))
while B do P1[~•] : Compute(while B do P1[~•],Φ,S)

Check(Φ,S) :

 Normalize the formula Φ
if FV(Φ) ∩ S = ∅ return true
otherwise return false

Compute(while B do c,Φ,S) :

Φi+1 := ¬B ∧ Φ
result := Φi+1
do

Φi := Φi+1
Φi+1 := Robust(if B then c else skip,Φi ,S)
result∨ := Φi+1

while Φi 6= Φi+1

4.5.3 Robustness on Program Traces
In this section, we want to find local conditions that imply robustness in presence
of active attackers that observe the trace semantics of the program. In other words,
we want to find the analogous of Theorem 4.5.1 when dealing with trace semantics.
Note that, in this case, the problem becomes quite different because the attacker is
still able to modify low integrity variables, however he can also observe low confi-
dentiality variables at the holes. The main problem is that the attacker can assign
variables of type HL to variables of type LL, observe the corresponding trace and
immediately disclose the value of HL variables. Hence, it becomes necessary to anal-
yse the global program behavior in order to check robustness for all possible unfair

4.5. ENFORCING ROBUSTNESS 113

attacks. On the other hand, if we consider fair attacks, i.e., attacks that manip-
ulate only LL variables, the attacker’s capability to observe program points where
the hole occurs allows us to reduce all possible attacks to constant assignments to
variables of type LL.

By using the method introduced in [162], illustrated for active attackers in
Sect. 4.4.2, we are now able to state a sufficient condition of robustness in presence
of fair attacks for the trace semantics. The idea is that an attacker can combine
the public information he observes at a program point with the information he can
deduce by computing the Wlp from the output to that program point. Moreover,
the attacker can manipulate program semantics by inserting fair attacks in the
holes. If the formula resulting from Wlp semantics of the subprogram after the
hole does not contain free variables of type LL then we can conclude that the
program is robust. The following example shows a robustness condition similar to
Theorem 4.5.1.

Example 4.5.6 Consider the program P and variables l : LH, k : LL and h1, h2, h3 :
HH:

P ::= k := h1 + h2; [•]; k := h3 mod 2; l := h3; l := k ;

A passive attacker who observes all program points discloses the following private
information.

{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ h1 + h2 = q}
k := h1 + h2;

[skip;]
{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ [k = q]}

k := h3 mod 2;
{k = m ∧ h3 = n ∧ [l = p]}

l := h3;
{k = m ∧ [l = n]}

l := k ;
{l = k = m}

Hence, a passive attacker reveals the value of variable h3 and the sum of variables h1
and h2. Note that no fair attack (in our case manipulating k) can do better, since
the subformula corresponding to the information disclosed by the attacker does not
contain the variable k : LL free. Thus, no constant assignment influences the private
information released. Indeed, if we compute the information disclosed in presence
of a fair attack the final formula is the same.

{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ h1 + h2 = r}
k := h1 + h2;

{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ q = d1 ∧ [k = r]}
[k := d1;]

{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ [k = q]}

114
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

Note that, it is useless to consider the observed value of LL variable before the hole
because the attacker knows exactly what fair attack he is going to inject.

Now we can introduce a sufficient condition to check robustness for trace seman-
tics. Basically, the idea is to extend Theorem 4.5.1 to traces. We have first to note
that in Theorem 4.5.1 we deal with unfair attackers, which can use also variables
of type HL. In the trace semantics this may be a problem whenever attackers can
observe low confidentiality data in at least one point where they can inject their
code, i.e. if H∩O 6= ∅. In particular what may happen is that the attacker can use
variables of type HL and observe the result immediately after, possibly disclosing
the value of these variables. This clearly means that the program is not robust as
the following example shows.

Example 4.5.7 Consider the program

P := l := k mod 2; [•]; if (h = 0) then l := 0 else l := 1;

where l : LL, k : HL and h : HH. We want to check robustness in presence of unfair
attackers who observe each program point. A passive attacker discloses the zeroness
of variable h and the parity of variable k . The information released at the hole is
then computed as follows.

{(h = 0 ∧ n = 0) ∨ (h 6= 0 ∧ n = 1)}
if (h = 0) then l := 0 else l := 1;

{l = n}

This formula satisfies the conditions of Prop. 4.5.1: no low integrity variable occurs
free in the formula. However, if we use the unfair attack (e.g., l := k), we can see
that the program releases the exact value of the private variable k .{

((h = 0 ∧ n = 0) ∨ (h 6= 0 ∧ n = 1))∧
k = p ∧ k mod 2 = q

}
l := k mod 2;

{((h = 0 ∧ n = 0) ∨ (h 6= 0 ∧ n = 1)) ∧ k = p ∧ [l = q]}
[l := k ;]

{((h = 0 ∧ n = 0) ∨ (h 6= 0 ∧ n = 1)) ∧ [l = p]}

We conclude that program P is not robust (wrt. unfair attacks) even though the
conditions of Theorem 4.5.1 are satisfied.

The following proposition determines a sufficient condition to check robustness for
program traces, depending on the relation between the hole points H and observ-
able points O. In particular, if the attackers observe low confidentiality data in
at least one hole point, i.e. H ∩ O 6= ∅, then we can check robustness only wrt.
the fair attacks, otherwise we can consider general unfair attacks. In fact, when
H ∩O = ∅ the attacker cannot combine his capabilities of observing low confiden-
tiality variables and of modifying low integrity variables, and thus can not violate
robustness.

4.5. ENFORCING ROBUSTNESS 115

Proposition 4.5.1 Consider P [~•] and Φi = Wlp(Pi ,Φ0) (where Pi is obtained as
in Theorem 4.5.1). Then we have that:

1. If H∩O 6= ∅ then P is robust wrt. fair attacks if ∀i ∈ H.∀v ∈ FV(Φi).I(v) =
H.

2. If H∩O = ∅ then P is robust wrt. unfair attacks if ∀i ∈ H.∀v ∈ FV(Φi).I(v) =
H.

Proof. Consider the program P . First note that the difference between observing
I/O semantics and trace semantics consists in the fact that the attacker make more
observations during the computation. Hence, we can define an enriched weakest
precondition function: Wlp′(c, φ) def= Wlp(c, φ ∧ φ′), where φ′ = true if the corre-
sponding program point is not in O, φ′ is the observable property otherwise. At
this point, by using Wlp′ instead of Wlp we can apply Theorem 4.5.1 with the
following restrictions:

1. If H ∩O 6= ∅ then the attacker can use variables of type HL and observe the
result at the same time, disclosing the HL variables and violating robustness.
In particular, if the program has l : LL and k : HL, then the attacker can
always insert the code l := k , and by observing the result can directly know
the value of k violating confidentiality and, obviously, robustness. This is not
a problem for fair attackers, since these attackers can not use variables of type
HL.

2. If H∩O = ∅ then the unfair attacker can not observe the result of the added
code and therefore robustness can again hold, at least when the sufficient
condition of Theorem 4.5.1 is satisfied.

2

4.5.4 Wlp vs Security Type System
In [176] the authors define the notion of robustness in presence of active attackers
and enforce it by using a security type system. The active attacker can replace the
holes by fair attacks. The key result of the article states that typable programs sat-
isfy robust declassification. Thus, a program satisfies robustness whenever the holes
are not placed into high confidentiality contexts. This is achieved by introducing a
security environment and a program counter pc which traces the security context
and avoids implicit flows. The following typing rule captures the cases where the
construct [•] is admissible.

C(pc) ∈ LC

Γ,pc ` •
Let A be the attacker’s code, then LC

def= {l |C(l) v C(A)}, namely LC is the set
of variables whose confidentiality level is not greater than attacker’s confidentiality

116
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

level. Hence, an active attacker that manipulates these variables does not obtain
more confidential information. The type system is imprecise with respect to stan-
dard noninterference since it rules out all programs containing low assignments
under high guards or any sub-command with an explicit assignment from a high
variable to a low variable. Basically, the type system accepts programs that asso-
ciate low with low, high with high and do not use high expressions on guards of
conditionals or loops. This corresponds to a trace-based characterization of nonin-
terference where the attacker can observe the low variables at each program point.
If we ignore the explicit declassification construct (declassify(e)) and consider only
programs with holes, the typing rule requires the hole to occur in a low confiden-
tiality security context. Namely the program is robust if there is no interaction
between high and low, neither explicit nor implicit. For explicit declassification,
the rule requires that the declassification occurs in a low confidentiality and a high
integrity program context, namely the guard of a conditional or a loop is allowed
to use only variables of security type LH. Moreover, only high integrity variables
can be declassified, i.e. only declassification from variables of security type HH to
variables of security type LH is allowed. Putting all together, the type system ap-
proach would accept programs that never branch on a secret value (unless each
branch assigns only to high) and admit explicit flow (from high to low) in certain
program points because of declassification.

Our approach, in particular Theorem 4.5.2, captures exactly those situations
where the hole occurs in some confidentiality context (possibly high) and, never-
theless, the fair attack does not succeed, namely where there are no low integrity
variables in the corresponding first order formula. If our condition holds, we are
more precise to capture the main goal of robustness, i.e. that an active attacker
does not disclose more private information than a passive one, as we perform a
flow sensitive analysis. Indeed, if the target program has some intended global
interference (the what dimension in [202]), the type system is unable to capture
it (as it only considers the where dimension in [202]), while our approach charac-
terizes robustness with respect to a program and a global declassification policy.
Moreover, our method deals with more powerful active attacks, the unfair attacks,
which can manipulate code that contains variables with security type LL and HL.
However, both these approaches study program robustness as a local condition and
therefore can not provide a complete characterisation of robustness: Theorem 4.5.2
provides only a sufficient condition and the type system is not complete. We can
say that, when it can be applied, our semantic-based method is more precise, in the
sense that it generates less false alarms, than the type-based one. As an example,
consider the program P ::= [•]; if h > 0 then l := 0 else l := 0 where h : HH and
l : LL. Our method certifies this program as robust since, there are no low integrity
variables in the formula corresponding to the Wlp semantics of the if statement.
If we try to type check this program using the rules in [176] we notice that the
environment before hole is of high confidentiality. Thus, this program is deemed
not robust.
We have to note that our approach, if compared with the type-based one, loses

4.6. RELATIVE ROBUSTNESS 117

effectiveness in order to keep precision, i.e. in order to reduce false alarms. Indeed,
in the future, in order to make our certification approach systematic, we may have
to weaken the semantic precision.

4.6 Relative Robustness

So far, we have provided only sufficient conditions to enforce robust programs. The
problem is that an active attacker transforms the program semantics and these
transformations can be infinitely many or of infinitely many kinds. This may be
an issue, first of all because it becomes hard to compute the private information
released by all the active attacks (as underlined in Sect. 4.4), but also because, in
some restricted contexts, robustness can be too strong a requirement.

In this section, we consider a restricted class of active attacks and check robust-
ness wrt. these attacks. Then, the goal is to check whether the program releases
more private information than a passive attacker, for a class of active attacks. Thus,
we define a relaxed notion of robustness, called relative robustness.

Definition 4.6.1 Let P [~•] be a program and A a set of attacks. The program is
relatively robust iff for all ~a ∈ A, then P [~a] does not release more confidential
information than P [

−−→
skip].

Recall that we model the information disclosed by the attacker by first order
formulas, which we interpret by means of the abstract domains in the lattice of
abstract interpretations, as explained in Sect. 4.3.4. In particular, if an attacker a1
discloses more private information than an attacker a2, it means that the abstract
domain modeling the private property revealed by a1 is contained in the abstract
domain modeling the private property revealed by a2.

In order to check relative robustness we can start by computing the confidential
information disclosed by all attacks, then calculate the greatest lower bound of
this information and finally compare it with the confidential information disclosed
by a passive attacker. As a result, given a program and a set of attacks we can
statically certify the security degree of that program wrt. a finite class of attacks.
A programmer who wants to certify program robustness in presence of a fixed class
of attacks, will have to declassify at least the glb of the private information disclosed
by all these attacks.

Consider Ex. 4.4.1. We pointed out that different active attacks can disclose
different properties of the private information, for this reason the program P was
not robust. Now, consider a restriction of the possible active attacks, for example,
consider the fair attacks only. This implies that the attacker can use only the
variable l and thus derive information only about the private variable h. But
the program P already releases through l the exact value of h and consequently
no attack involving variable l can disclose more private information. Thus, we
conclude that program P satisfies relative robustness wrt. the class of fair attacks.

118
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

We can now extend Theorem 4.5.1 to cope with relative robustness. Recall
that this theorem provides a sufficient condition for robustness requiring that the
formulas before each hole do not contain any low integrity variable. We weaken this
sufficient condition by requiring that the formulas before each hole do not contain
any of the variables modifiable and usable by the attacks in A. In particular,
both Prop. 4.6.1 and Prop. 4.6.2 can be easily extended to programs with more
holes occurring at different depths, exactly the same way as we did when proving
Theorem 4.5.1 from Lemma 4.5.1 and Theorem 4.5.2 from Theorem 4.5.1. The
next proposition is a rewriting of Lemma 4.5.1 for relative robustness.

Proposition 4.6.1 Let P = P2; [•]; P1 be a program (where P1 is without holes).
Let Φ = Wlp(P1,Φ0). P is relatively robust wrt. unfair attacks in A if ∀a ∈
A.Var(a) ∩ FV(Φ) = ∅.

Proof. Note that the variables used by the active attacker do not occur free in Φ
as the intersection is empty (by hypothesis). By Lemma 4.5.1 program P is then
robust. 2

It is worth noting that we can use this result also for deriving the class of
harmless active attackers starting from the semantics of the program. Indeed, we
can certify that a program is relatively robust wrt. all the active attacks that use
low integrity variables which are not free in the formulas representing the private
information disclosed before reaching the corresponding hole.

4.6.1 Relative vs Decentralized Robustness
In this section, we show that, in some respects, relative robustness is a more general
notion compared to decentralized robustness. The reason is similar to what dis-
cussed in Sect. 4.5.4. In a nutshell, we can observe that, once the pair of principals
is fixed, the data security levels are also fixed, hence we know which variables are
readable and/or modifiable by the attacker q from the point of view of a principal
p. We denote by Cp→q the confidentiality levels and by Ip←q the integrity levels for
the DLM model. Then, for each variable x , Ip←q(x) = L if p believes that q can
modify x , Ip←q(x) = H otherwise. In particular, given a program and a security
policy in the DLM fashion, we compute the set of readers and writers for each pair
of principals p, q , as done in [74], and then check robustness for each pair using
Proposition 4.6.1. This leads to the following generalisation of relative robustness
for the DLM model.

Proposition 4.6.2 Let P = P2; [•]; P1 be a program (where P1 is without holes).
Let Φ = Wlp(P1,Φ0). P satisfies decentralized robustness wrt. principals p, q if we
have that

{
x
∣∣ Ip←q(x) = L

}
∩ FV(Φ) = ∅.

Proof. Given a pair of principals (p, q) we compute the set of readers and
writers as for decentralized robustness. Consequently, we have a static labeling of

4.6. RELATIVE ROBUSTNESS 119

the program data wrt. confidentiality and integrity. At this point we can apply
Lemma 4.5.1 since by assumption no low integrity variable which occurs free in Φ
is used by the active attack. Moreover, this holds for all pairs of principals, hence
the claim is true. 2

This characterization is suitable for client-side languages, for instance Javascript,
as it allows to control injection attacks or dynamically loaded third-party code. Sup-
pose we have a web page that accepts advertising adds from different sources with
different security requirements and we want to check whether it leaks private infor-
mation to a malicious attacker. Moreover, suppose that the web page has different
trust relations with the domains providing the adds and this is specified in the se-
curity policy. Given this information, one can analyze the DOM (Document Object
Model) tree and classify each attribute as sensitive and non sensitive with respect
to a possible attacker [158]. For example, the session cookie may be an attribute to
protect wrt. all attackers, while the history object may be public to some trusted
domains and private to others. At this point we can apply weakest precondition
analysis to the web server at the program point where it sends information to any
public channel such as the output on web page or the reply information sent as
response to a client request. The program holes are the program points where the
server receives adds from different clients. Analyzing the formula corresponding to
the sensitive information disclosed before embedding the adds, for instance using
the eval() function in Javascript, we can identify the harmless low integrity vari-
ables and certify security modulo (relative to) the programs that manipulate these
variables.

Example 4.6.1 Consider the following Javascript-like code (a modified version of
the example in [79]). Lines 3-6 correspond to an add received from a third party to
be displayed on the web page. The web site contains a simple function login() which
authenticates the users by verifying the username and the password inserted in a
form. The function is executed whenever the user clicks on a button (lines 7-16).
The function initSettings corresponds to the output channel of the web page and it
identifies the server used to authenticate the user, i.e. to send the username and
the password.

1. <script type="javascript">
// 2: initialization of the output server

2. initSettings("mysite.com/login.php", 1.0);
// 3-4-5: definition of the add

3. <div id="AdNode">
4. <script src="adserver.com/display.js">
5. </div>
6. eval(src)
7. var login = function() {
8. var pwd = document.nodes.PasswordTextBox.value;

120
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

9. var user = document.nodes.UsernameTextBox.value;
11. var params = "u=" + user + "&p=" + pwd;

//12: sends the parameters (params) to baseUrl
12. post(document.settings.baseUrl, params);}
14. </script>

//15-16:login interface
15. <text id="UsernameTextBox"> <text id="PasswordTextBox">
16. <button id="ButtonLogin" onclick="login()">

Now, suppose the ad’s code is located at the hole and the public output is the web
page together with the result (out : LL) of post in line 12. The formal parameters of
function initSettings (defining the variable baseUrl : LL) have low integrity, hence
a malicious add could overwrite the parameters and redirect the high confidential-
ity part of the output of the post (login and password, i.e. user, pwd: HH) to the
attacker’s site. We show how our approach allows to identify these security flaws.
First, we compute the weakest precondition of the function login() and obtain the
following formula:

[•]
{baseUrl + user + pwd = a}

var pwd = document .nodes.PasswordTextBox .value;
var user = document .nodes.UsernameTextBox .value;

var params = ”u = ” + user + ”&p = ” + pwd ;
{baseUrl + params = a}

post(document .settings.baseUrl , params)
{out = a}

From the resulting formula we can see that the private information (username
and password) is related to the low confidentiality variable baseUrl and therefore
the program is not secure. Moreover, the program is not even robust since the
variable baseUrl has low integrity and it occurs free before the hole. In particular,
a malicious add could send this information to a malicious website and obtain the
username and the password. However, the program is robust relative to those fair
attacks which are not allowed to manipulate the low integrity variable baseUrl. For
decentralized robustness, this corresponds to say that the program is robust wrt. all
the pairs (p, q) such that p does not believe that q can write the low integrity variable
baseUrl.

4.7 Applications

In this section we present two applications and our approach to capture the security
violations. The first example is a secure API function widely used to perform the
PIN verification in banks and it is taken from [70]. The attacker is able to modify
the low integrity variables and reveal the entire PIN by exploiting an implicit flow
in the API. The second example concerns a web application which accepts third

4.7. APPLICATIONS 121

party code and is vulnerable to Cross Site Scripting attacks (XSS) [179]. The
attacker tries to steal a session cookie and hijack the user to an evil website. In
both examples our analysis is sufficient to spot the security violations.

4.7.1 Secure API Attack
This example concerns the use of secure API to authenticate and authorize a user
to access an ATM cash machine. The user inserts the credit card and the PIN code
in the machine. The PIN code gets encrypted and travels along the network until
it reaches the issuing bank. At this point, a verifying API is executed to validate
the trial PIN inserted at the cash machine against the real user PIN. The verifying
API, called PIN_V, is the one exploited by the attacker to reveal the real PIN.
The real PIN is derived from a PIN derivation key pdk and the public data offset,
vdata, dectab, while the trial PIN comes encrypted with the key k . The two keys,
pdk and k are pre-loaded in the Hardware Security Modules (HSM) of the bank
server and never travel the network. Here is the description of the API, PIN_V.

PIN_V(EPB, len, offset, vdata,dectab) {
x1 := enc_pdk(vdata);
x2 := left(len, x1);
x3 := decimalize(dectab, x2);
x4 := sum_mod10(x3, offset);
x5 := dec_k(len, EPB);
if(x4 == x5) then return ("PIN correct");

else return ("PIN wrong");
}

where:

• len is the length of real PIN obtained by the encryption of the validation data
vdata (a kind of user profile) with the PIN derivation key pdk (x1), taking the
len hexadecimal digits (x2), decimalising through dectab (x3), and digit-wise
summing modulo 10 the offset (x4).

• EPB (Encrypted PIN Block) is the ciphertext containing the trial password
encrypted with the key k . The trial PIN is recovered by decrypting EPB with
the key k .

The above snippet of code is insecure and there is an attack which discloses the
entire PIN just by modifying the low integrity variables offset and dectab (of type
LL), and observing the low confidentiality output, namely the I/O behavior of the
API method [70].

Example 4.7.1 Let len = 4, offset = 4732, x1 = A47295FDE32A48B1 and
dectab = 9753108642543210 which is a substitution function encoding the map-
ping 0 → 9, 1 → 7, · · · ,F → 0. Moreover, let EPB = enck (9897), where 9897 is

122
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

the correct PIN. With these parameters PIN_V returns PIN correct.
Indeed, consider x2 = left(4,A47295FDE32A48B1) = A472, and consider x3 =
decimalize(dectab,A472) = 5165 and x4 = sum_mod10(5165, 4732) = 9897 which
is the same as the trial PIN.

The attacker first chooses dectab1 = 9753118642543211 where the two 0’s have
been replaced by 1’s. In this way the attacker discovers whether 0 appears in x3.
Invoking the API with input dectab1 we obtain the same intermediate and final
values, since decimalize(dectab1,A472) = decimalize(dectab,A472) = 5165. This
means that 0 does not appear in x3.

The attacker proceeds by replacing the 1 in dectab by a 2. Then if dectab2 =
9753208642543220, the attacker obtains that decimalize(dectab2,A472) = 5265 6=
decimalize(dectab,A472) = 5165, showing the presence of the value in x3. Then,
x4 = sum_mod10(5265, 4732) = 9997 instead of 9897 returning PIN wrong.

Now, the attacker knows that the digit 1, occurs in x3 for sure. In order to
discover the position and the multiplicity, the attacker varies the offset so that it
compensates for the modification of dectab. In particular, the attacker decrements
each offset digit by 1 until it finds the digit that forces the API to return PIN correct.
For this instance, the possible variations of the offset are: 3732, 4632, 4722, 4731 and
the one that succeeds is the offset 4632. Hence, the attacker learns that the second
digit of x3 is 1. Given that the offset is public, he derives the second digit of the
user’s PIN as 1 + 7mod10, where 7 is the second digit of the initial offset. By
iterating this procedure the attacker learns the entire value of PIN.

We now show how weakest precondition approach captures the security viola-
tions in the API. Consider the final formula corresponding to the weakest precon-
dition of the API. Clearly, the program is not secure since the public output (the
comparison between the real and the trial password) clearly depends on the high
confidentiality variable which contains the real password. Also for robustness, we
can note that the sufficient condition is not satisfied since there are low integrity
variables, for instance dectab and offset, which occur free before the hole (supposed
to be placed at the input of the API). Indeed, exactly those are the variables used
by the attacker for disclosing the PIN.

The security issue can be fixed by using a MAC (Message Authentication Code)
security primitive, as proposed in [70]. MACs are used to ensure the integrity of the
information received from an untrusted source and they prevent any modification
of the data before the API call. Semantically, this means that the variables dectab
and offset can be modified only by the authorized agents. In our approach, the
use of a MAC primitive can be modeled by assigning a security level LH to the
variables dectab and offset, i.e. by considering them as high integrity. In this way,
the problem is now solved since the weakest precondition approach yields a formula
where only the high integrity variables occur free. Hence the robustness condition
is satisfied.

4.7. APPLICATIONS 123

(sum_mod10(decimalize(dectab, left(len, encpdk(vdata))), offset) = deck (len,EPB)

∧a = 1)∨
(sum_mod10(decimalize(dectab, left(len, encpdk(vdata))), offset) 6= deck (len,EPB)

∧a = 0)

x1 := encpdk(vdata);{

(summod10(decimalize(dectab, left(len, x1)), offset) = deck (len,EPB) ∧ a = 1)∨
(summod10(decimalize(dectab, left(len, x1)), offset) 6= deck (len,EPB) ∧ a = 0)

}
x2 := left(len, x1);{

(sum_mod10(decimalize(dectab, x2), offset) = deck (len,EPB) ∧ a = 1)∨
(sum_mod10(decimalize(dectab, x2), offset) 6= deck (len,EPB) ∧ a = 0)

}
x3 := decimalize(dectab, x2);{

(sum_mod10(x3, offset) = deck (len,EPB) ∧ a = 1)∨
(sum_mod10(x3, offset) 6= deck (len,EPB) ∧ a = 0)

}
x4 := sum_mod10(x3, offset);

{(x4 = deck (len,EPB) ∧ a = 1) ∨ (x4 6= deck (len,EPB) ∧ a = 0)}
x5 := deck (len,EPB);

{(x4 = x5 ∧ a = 1) ∨ (x4 6= x5 ∧ a = 0)}
if (x4 == x5) then (return 1) else (return 0)

{l = a}

4.7.2 Cross Site Scripting Attack
Javascript is a very flexible dynamic object-based scripting language running in
almost all modern web browsers. The language allows to transfer, parse and run
code sent over the network between different web-based applications. While very
useful and programmer-friendly, this flexibility comes at a great price since the
underlying applications may become vulnerable to code injection attacks. These
attacks circumvent the security enforcement mechanism of the browser, namely the
same-origin policy which prevents a document or script loaded from one origin
from getting or setting properties of a document from another origin [158]. Indeed,
when the browser receives code from a compromised web page, the code is executed
in the context of the website hosting it, therefore, the same-origin policy allows
this operation. Afterwards, the malicious code can establish a connection to the
attacker’s server and transfer sensitive information, a session cookie for instance.
The following example shows that language-based security techniques can be used
to prevent these kind of attacks.

Suppose a user visits an untrusted web site in order to download a picture and
an attacker that has inserted his own malicious Javascript code (Fig. 4.1). This code
is executing on the client’s browser [179], as described in the following simplified
version. The Javascript code snippet in Fig. 4.1 can be used by the attacker to
send a user cookie3 to a web server under the attacker’s control.

3A cookie is a text string stored by a user’s web browser. A cookie consists of one or more

124
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

/* initialisation of the cookie by the server */
var cookie = document.cookie;
var dut;
if (dut == undefined) {dut = "";}
while(i<cookie.length) {

switch(cookie[i]) {
case ’a’: dut += ’a’; break;
case ’b’: dut += ’b’; break;
... }

}
/** dut now contains a copy of cookie;

when the user clicks on the image, dut is sent
to the web server under the attacker’s control

*/
document.images[0].src = "http://badsite/cookie?" + dut;

Figure 4.1: Code creating an XSS vulnerability.

One can easily see that the variable dut contains a copy of the user’s cookie. This
attack circumvents same-origin policy in client browser as it is correctly received
after a request to the server where the attacker has previously injected the malicious
code. Now we apply our analysis to the above Javascript snippet. Suppose that
the variable cookie has security type HL and the variable dut has security type LL.
Also, suppose we rewrite the switch-case statement as a sequence of if-then-else
statements and assign to the field cookie.length the security type LL.

[•]
{cookie + dut = res}

while(i < cookie.length){
switch(cookie[i]){
case ′a ′ : dut+ =′ a ′; break ;
case ′b′ : dut+ =′ b′; break ;

...}}
{dut = res}

By observing the final formula we can notice that the confidentiality is violated
since there is a (implicit) flow of information from private variable cookie towards
the public variable dut. However, this is the same as the sensitive information
disclosed by a passive attacker when the variable dut is initialised with the empty

name-value pairs containing bits of information, sent as an HTTP header by a web server to a web
browser (client) and then sent back unchanged by the browser each time it accesses that server.
It can be used, for example, for authentication.

4.8. RELATED WORK 125

string. Nevertheless, since dut occurs free before the hole, an (active) attacker can
exploit dut and learn other confidential information from the user. For instance, the
attacker may be interested in several properties (attributes) of the history object4

(with security type HL). In this case, an active attack can loop over the elements of
the history object and use the variable dut to reveal all the web pages that the client
has had access to. As an example, consider the injection of the code in Fig. 4.2.

<script language="JavaScript">
var dut = "";
for (i=0; i<history.length; i++){

dut = dut + history.previous;
}
</script>

Figure 4.2: Malicious code exploiting the XSS vulnerability.

The program violates the robustness condition since the attacker can exploit
the low integrity variable dut, which occurs free in the formula before the hole, and
disclose more confidential information. Moreover the attacker can exploit this vul-
nerability by inserting the code in Fig. 4.2 right before the malicious code (Fig. 4.1)
in the untrusted web page, and learn both the history and the cookie contents. In
general, our approach can be seen as a theoretical model for the existing techniques
used to protect the code from XSS attacks [179].

4.8 Related Work

In language-based security, robustness has been addressed by Zdancewic et al. [227,
176]. These papers study a trace-based account of robustness and enforce it using a
flow-insensitive type system. The theory is developed on a simple while language, as
we do in this paper, moreover, they add to the language a declassification statement
which is used to downgrade the security type of the variables at fixed program points
(the where dimension in [202]). As a result, a program is robust if an active attacker
is unable to manipulate the program semantics and force the program to declassify
more information than a passive attacker does. The security type system enforces
both noninterference and robustness, hence a program is ruled out if neither of the
two security properties hold. On the other hand, our semantic approach is different
as we model global declassification policies (the what dimension in [202]). Moreover,
we provide a cleaner characterization of robustness. Namely, the program is robust
whenever an active attacker is unable disclose more private information than a
passive attacker, although the program under the passive attack does not satisfy

4The history object allows to navigate through the history of websites that a browser has
visited.

126
CHAPTER 4. A WEAKEST PRECONDITION APPROACH TO

ROBUSTNESS

noninterference. Other differences between the two approaches were discussed in
Sect. 4.5.4.

The idea of considering the weakest liberal precondition semantics for static
certification of program security is borrowed from [162]. The authors define declas-
sified noninterference as a completeness problem in abstract interpretation where
the semantic function corresponds to the Wlp semantics. However the paper con-
siders only passive attackers. Moreover, the idea of computing Wlp wrt. first order
formulas is novel.

Decentralized robustness [74] expresses program robustness in the context of the
decentralized label model and uses a security type system to enforce it statically.
In this paper we showed that decentralized robustness can be modeled using our
notion of relative robustness, as discussed in Sect. 4.6.1.

Language-based techniques for security are increasingly being applied to client-
side web languages such as Javascript to prevent web attacks [79, 179]. They usually
combine static and dynamic analysis to enforce information flow properties such as
noninterference. Our idea of putting robustness in the context of Javascript, to the
best of our knowledge, is novel and it can be considered as a security model for the
language. In particular, the security type HL can be assigned the code injected by
an attacker, who may know that a certain variable name exists (a variable password
for instance), but doesn’t know its value.

4.9 Conclusions

In this paper, we addressed an important notion in the area of language-based
security, namely robustness. Robustness applies to programs that run in environ-
ment with untrusted components. This fact is modeled by fixed program points,
called holes, where an attacker can insert the untrusted code. Then, the program
is robust if an active attacker does not disclose more private information than a
passive one. Different active attacks can release different properties of the private
data. As the total number of attacks may be infinite, it is impossible to find the
most harmful attack for a given program. Therefore, we have provided sufficient
conditions that enforce robustness wrt. unfair attacks (using LL and HL variables).
Moreover, we have considered robustness in two different semantic models, the I/O
and the trace semantics. We also introduced the notion of relative robustness which
is a relaxation of robustness to deal with restricted classes of attacks. Finally, we
analysed two case studies: the security API function for PIN verification and the
code vulnerable to XSS attacks.

The analysis we performed in this paper results very interesting both from the
theoretical and the practical point of view. The semantic condition of robustness
addresses the problem of systematic transformations of programs that preserve
interesting extensional properties, robustness for instance. The abstract interpre-
tation framework can be used to reason about these security properties. On the
other hand, the approach can be a good remedy to the lack of precise static analysis

4.9. CONCLUSIONS 127

for more complex applications.
However, this line of work opens up new challenges and much more remains

to be done. First, we need to implement the algorithm for static certification of
robust programs. That is, given a program we need to effectively (and automat-
ically) compute whether the program is robust. It would also be interesting to
characterize the classes of attacks that have the same effect on the disclosure of
private information, namely that disclose the same property of private inputs. In
this way, we can hope to find a finite number of these attack classes. Second, this
work can be generalised to deal with abstract active attackers. Namely, as it hap-
pens for abstract noninterference, one can consider attackers modifying properties
of low integrity data. Third, we plan to extend our approach to different attacker
models such as concurrent attackers or attackers able to erase parts of the program
code. Off we go.

Part II

Verification

129

Chapter 5

ENCoVer: Symbolic Exploration
for Information Flow Security

Musard Balliu and Mads Dam and Gurvan Le Guernic

Abstract

We address the problem of program verification for information flow poli-
cies by means of symbolic execution and model checking. Noninterference-
like security policies are formalized using epistemic logic. We show how the
policies can be accurately verified using a combination of concolic testing
and SMT solving. As we demonstrate, many scenarios considered tricky in
the literature can be solved precisely using the proposed approach. This is
confirmed by experiments performed with ENCoVer, a tool based on Java
PathFinder and Z3, which we have developed for epistemic noninterference
concolic verification.

5.1 Introduction

Information flow security concerns the problem of determining and controlling the
nature of information flowing to and from different components of a system. For
confidentiality, sensitive information must be prevented from flowing to public des-
tinations, and dually, for integrity, untrusted information must be prevented from
affecting, or flowing to, data that needs to be protected. In the possibilistic setting
studied here the key property used to model (absence of) information flow is non-
interference [122]. Noninterference ensures that the view of an unlicensed observer
of the program executions is unaffected by the secret inputs. In a language-based
setting, this implies that any two executions having the same public inputs, and
possibly different private inputs, produce the same public outputs. Vanilla noninter-
ference turns out to be over-restrictive for many applications, therefore, a controlled

131

132
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

release of private information is usually necessary [197]. This operation is known as
declassification or downgrading and can be modeled by means of a predicate φ over
initial private inputs. The idea originates from selective dependency of Cohen [87]
and requires that all executions started with initial inputs that satisfy φ, should
produce the same public observations.

Epistemic logic, the logic of knowledge, provides a clean and intuitive tool for
modeling different information flow policies, including noninterference and many
variants of declassification, as showed in a number of recent works [38, 128, 28, 45].
The knowledge of an attacker that is in possession of the program text and has
partial view of program executions, e.g. by receiving some outputs, can be defined
as a partition of the set of secret inputs that determines the observed outputs. This
partition corresponds to the properties of secret inputs disclosed by the program.
The desired security policy, e.g. some noninterference or declassification property,
gives rise to another partition of secret inputs, the property of secret inputs allowed
to flow to the observer. Comparing these two partitions determines whether the
program meets the security policy. In epistemic logic, the observer’s knowledge is
expressed in terms of knowledge operator Kφ, meaning that the observer knows
property φ i.e. φ is true in all states that are possible given the observer’s current
state [38, 112]. Intuitively, Kφ holds for all formulas φ that induce a partition
which is less discriminating (included into) than the one induced by the observed
outputs.

Many verification techniques have been proposed for checking information flow
properties, including static and dynamic analyses [197]. Security type systems
[218, 139] is the dominant technique, but other techniques have been explored as
well, including dependency analysis [14], program logics [45], abstract interpre-
tations [119], axiomatic approaches [21], program slicing [220] and so on. Most
verification approaches for noninterference-like policies, type systems in particular,
enforce noninterference by separating the secret and public computations, and as
a consequence any interaction between the secret and public computations, even
a benign or corrective one, deems the program as insecure. This increases the
number of false positives and limits applicability. Other techniques are based on
semantical reasoning and are often computationally expensive or even undecidable.
The verification approach proposed in this paper is exclusively tailored to end-
to-end verification of noninterference and declassification by means of off-the-shelf
epistemic model checkers and SMT solvers. Thereby, the approach is both sound
and complete with respect to verification in the underlying (bounded) program
model. Other works on model checking-based verification of security properties are
considered in a later section [71, 19, 128, 215].

In this paper, concolic testing, a mix of concrete and symbolic execution, is used
to extract a bounded model of program runtime behavior [121, 146, 205, 185]. This
model is subsequently verified against the target security properties, expressed in
epistemic logic, by means of an epistemic model checker. Due to the size of the input
data domain epistemic model checking can, however, be extremely inefficient or even
infeasible. To address this, an alternative approach is proposed whereby the model

5.2. PRELIMINARIES 133

checking problem is transformed to a first order logic formula. Due to the shape
of epistemic formulas for noninterference and declassification, the transformation
produces a formula which only contains existential quantifiers, thereby an SMT
solver can be used to perform the checking efficiently.

We have implemented the verification approach described above in a tool pro-
totype, ENCoVer. The prototype is an extension of Java PathFinder, a software
model checker developed at NASA [184]. ENCoVer takes as input a program
written in Java and a security policy and generates a symbolic output tree, which
encodes conditions on program inputs that produce output observations. The sym-
bolic output tree is used in two ways. First, it is combined with the security policy
to generate an SMT formula which is subsequently verified with Z3, a state-of-art
SMT solver [98] and, secondly, as an alternative, it is used to generate an input file
for the epistemic model checker MCMAS [157]. The performance of ENCoVer is
evaluated on a main case study involving multiple parties accessing a joint store of
tax records, as well as on several smaller, but delicate, examples.
In summary, the main contributions of the paper are

• A framework for concolic verification of information flow properties based on
epistemic logic

• A symbolic model checking algorithm for noninterference-like policies

• Formal correctness proofs of the model transformations involved

• A tool prototype, ENCoVer, implementing the verification techniques

• Evaluation of the ENCoVer tool on a non-trivial case study

The paper starts by presenting the background context (Sect. 5.2) — including
the computational model, the epistemic logic and the security properties of inter-
est — needed to expose the concolic testing based algorithm used to extract the
program model which is presented with the associated proofs in Sect. 5.3. Infor-
mation flow related epistemic formulas can be verified on this model using either
an epistemic model checker (Sect. 5.4.1) or an SMT solver (Sect. 5.4.2). This ap-
proach has been implemented in a prototype, ENCoVer, and applied to a case
study (Sect. 5.5) whose evaluation results are presented in Sect. 5.6. Related work
is addressed before concluding in Sect. 5.8.

5.2 Preliminaries

In this section we introduce the computational model based on labelled state tran-
sition systems, and an epistemic logic which is used to specify security properties
over the computational model. A more detailed discussion of the information flow
properties that can be characterized by this logic can be found in [38].

134
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

5.2.1 Computational Model
A labelled transition system STS = (S,Act, T ,S0) consists of a set of states σ ∈
S, resp. actions α ∈ Act, a labelled transition relation T ⊆ S × Act × S, and
a set of initial states S0 ⊆ S. The set of actions contains a neutral element ε
representing inaction. Other elements of Act are assumed to be observable, and
represent interactions with the environment, for instance as inputs or outputs. The
transition relation σ α−→ σ′ states that by taking one execution step in state σ ∈ S
the execution generates the action α ∈ Act and the new state is σ′ ∈ S. We write
σ −→ σ′ for σ ε−→ σ′. An execution is a finite sequence of execution states

π = σ0
α0−→ σ1

α1−→ · · · αn−1−−−→ σn (5.1)

where σ0 ∈ S0 and σi
αi−→ σi+1 ∈ T for all 0 ≤ i < n. The length, len(π), of π is n.

An execution point is a pair (π, i) where 0 ≤ i ≤ len(π). The i ’th execution state
is σ(π, i) = σi . We write trunc(π, i) for the prefix of π up to and including σi .

The observable part of the system is modeled by a function trace mapping
executions to sequences of observations.

Definition 5.2.1 (Trace) A trace τ is sequence of observable actions. For π as
in (5.1), the trace of π up to point i : 0 ≤ i ≤ n is the sequence trace(π, i) of
actions αj where 0 ≤ j < i and αj 6= ε.

We write trace(π) for trace(π, len(π)).
In a more general setting, trace(π, i) can span from the truncation function

trunc(π, i) for the strongest observer able to see all the internal computation, to
the function returning the last action generated for a weak memoryless observer.
In the remainder of this paper, we use the function trace given in Def. 5.2.1. This
definition corresponds to the perfect recall observer, i.e. only able to observe actions
and having full memory of past observations.

Finally, a modelMSTS (or simplyM) is a set of executions induced by a state
transition system STS . Normally we take as a model the set of all executions
originating from some set of initial states S0.

5.2.2 Interpreted Systems
The computational model can be associated with an interpreted system [112]. In
our two agent case, an interpreted system consists of an environment agent E and
an agent under observation A, which interact over the course of a computation.
Each agent i can be in local state Li and perform action ACTi . A protocol Pi ⊆
Li × ACTi selects actions depending on the current local state and an evolution
function ti ⊆ Li ×ACT ×Li describes how agent i moves to a new state depending
on a joint action ACT = ×iACTi performed by system agents. The product of
evolution and protocol functions determine how the system changes its global state.
In particular, a global state is the product of agent’s local states, g = (LE ,LA).

5.2. PRELIMINARIES 135

Agent A has a local state LA = trace(π, i) that records the sequence of actions that
have occurred when the environment E was in state LE = trunc(π, i). A global
state g = (LA,LE) describes the system at a given point in time. In our case, as we
will see in Sect. 5.4, agent A performs no actions, while agent E emits observable
actions. An execution π induces a sequence of global states, called runs r , such that
for all execution points π, i , r(π, i) = (trace(π, i), trunc(π, i)). The initial state set
I0 is a subset of global states G , where g0 ∈ I0 and g0 = (ε, trunc(π, 0)) for some
π ∈ M. Finally an evaluation function V : G → ℘(AP) defines, for every global
state g ∈ G , the subset of atomic propositions V (g) ∈ ℘(AP) holding in g .

Definition 5.2.2 (Interpreted System) An interpreted system I over two agents
Ag = {E ,A}, a set of atomic propositions AP and a non empty initial state I0 is
a tuple

I = 〈{Li}i∈Ag , {ACTi}i∈Ag , {Pi}i∈Ag , {ti}i∈Ag , I0,V 〉

To define knowledge, we associate an interpreted system I with a Kripke structure
MI = (G ,V ,KA) where G and V are defined as before and KA is a binary relation
over G . In particular, KA defines the indistinguishability relation for agent A, which
is an equivalence relation among global states from the point of view A. Two global
states g1, g2 ∈ KA are indistinguishable iff they define the same trace τ . Next we
introduce a logic where a formula φ is known to agent A at global state g if that φ
is true for all global states in the KA relation with g .

5.2.3 Epistemic Propositional Logic
We now present a very simple logic that will be used to reason about properties
in the model described previously. Let Val be a domain of values c, Ide a finite
set of (program) identifiers x , and u, v range over first order variables. Arithmetic
and boolean expressions use values, identifiers and variables along with some set of
arithmetic and boolean operators, left unspecified for now. The language LKU of
epistemic first-order formulas φ, ψ is:

φ, ψ ::= b | ∀u.φ | φ→ ψ | ¬φ | Kφ

The logic contains primitive predicates b over identifiers x and first order variables
u. Program identifiers are interpreted in the initial state and first order variables
are rigid i.e. independent of the state. The formula ∀u.φ universally quantifies over
rigid variables. The operator K is the epistemic knowledge operator. A formula
Kφ holds in an execution point iff φ holds in any execution point epistemically
equivalent to the current one, i.e. φ is true in all execution points having the
same trace as current execution point. Various connectives are definable in LKU

including the epistemic possibility operator Lφ = ¬(K (¬φ)) meaning that φ holds
in at least one epistemically equivalent execution point.
The semantics is given in terms of satisfaction relation M, π, i |= φ at execution
points (π, i) inM. If the modelM is clear from the context we write π, i |= φ for

136
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

M, π, i |= φ. An execution π satisfies a formula φ, π |= φ, if for all 0 ≤ i ≤ len(π),
π, i |= φ. A modelM satisfies formula φ,M |= φ, iff for all π ∈M, π |= φ. In the
remainder of this paper we take as model the set of executions generated by some
program P as detailed in Sect. 5.3. A state is a finite map σ : x 7→ c, and σ(e)
denotes the value of formula or expression e in state σ. The observable actions are
output values belonging to Act = {out(c) | c ∈ Val}. Below we report a few cases
of satisfaction relation. Other cases work as expected [38].

• π, i |= b iff σ(π, 0)(b)

• π, i |= ∀u.φ iff for all c ∈ Val π, i |= φ[u 7→ c]

• π, i |= Kφ iff for all execution points π′, i ′
such that trace(π, i) = trace(π′, i ′), π′, i ′ |= φ

• π, i |= Lφ iff there exists an execution point π′, i ′
such that trace(π, i) = trace(π′, i ′) and π′, i ′ |= φ

It is worth noting that the satisfaction relation over primitive predicates only con-
siders the initial value of identifiers. The reason is that we are interested in verifying
properties that depend only on the initial assignment to program identifiers.

Example 5.2.1 Let M be the model of program P with input identifier h. The
initial value of h should remain secret to the observer who knows the program text
and can see the program outputs. Let b(h) be a primitive predicate over identifier
h.

1. M |= ¬K (b(h)): Model M satisfies the formula iff for all execution points
(π, i), the observer can not tell whether b(h) holds. Namely, for all points
that are epistemically possible, there exists at least one, say π′, i ′, such that
trace(π, i) = trace(π′, i ′) and π′, i ′ 6|= b(h). Hence the system keeps property
b(h) secret, which is known as opacity [66].

2. M |= L(b(h))∧L(¬b(h)): ModelM satisfies the formula iff for all execution
points (π, i), both b(h) and its negation are possible i.e. there exist π′, i ′, π′′, i ′′
where trace(π, i) = trace(π′, i ′) = trace(π′′, i ′′) and π′, i ′ |= b(h) and π′′, i ′′ |=
¬b(h). Hence the observer is unable to deduce any information about the
property (or its negation) by looking at the sequences of outputs. This security
property is known as secrecy [128].

5.2.4 Noninterference and Declassification
The absence of illegal information flows in a system is usually expressed as a nonin-
terference security condition [122]. In a possibilistic setting with a two-level security
lattice only, noninterference requires that high/secret input values do not influence
low/public output values. In this paper high inputs correspond to the initial values
of secret identifiers and low outputs correspond to the traces defined in Section

5.2. PRELIMINARIES 137

5.2.1. We write σ1 ≈~x σ2 if two states σ1 and σ2 are equivalent with regard to a set
of identifiers ~x , i.e. ∀x ∈ ~x . σ1(x) = σ2(x). Consider now a set of low identifiers ~l ,
whose initial value is known a priori, and a set of high identifiers ~h. A program P
satisfies noninterference (NI) iff for any two executions starting with equal initial
values for ~l the following condition holds.

∀π1, π2 ∈MP . σ(π1, 0) ≈~l σ(π2, 0)⇒ trace(π1) = trace(π2)

NI can be characterized using the epistemic logic LKU . A program P satisfies ab-
sence of knowledge (AK) if its associated model MP satisfies the following formula.

MP |= ∀~v . ~l = ~v → ∀~u. L(~l = ~v ∧ ~h = ~u)

That is, any initial high input must be possible among the executions having the
same trace and the same initial low inputs.

Noninterference turns out to be an over-restrictive policy for many applications.
A controlled release of secret information is necessary in many real software appli-
cations. This feature is known as declassification or downgrading and remains a
challenge in information flow security [197]. One way of modeling declassification
is by means of a predicate φ, over initial values, which expresses the property to
declassify. Then the security condition states that all secret inputs having the same
property φ should not be distinguished by the external observer. Let σ1 ≈φ σ2 de-
note equivalent states according to the declassification policy φ i.e. σ1(φ) = σ2(φ).
A program P satisfies noninterference modulo declassification (NID) φ if:

∀π1, π2 ∈MP . (σ(π1, 0) ≈~l σ(π2, 0) ∧ σ(π1, 0) ≈φ σ(π2, 0))
⇒ trace(π1) = trace(π2)

The definition of NID specifies that any initial state having the same low input
values and agreeing on φ should produce the same output trace. Let φ be the
declassification policy. A program P satisfies absence of knowledge modulo declas-
sification (AKD) φ if:

MP |= ∀~v1, ~u1.(~l = ~v1 ∧ ~h = ~u1)→

∀~u2.(φ(~v1, ~u1)↔ φ(~v1, ~u2))→ L(~l = ~v1 ∧ ~h = ~u2)

The semantical definition NID is proved to be equivalent to its epistemic char-
acterization AKD in [38]. The following example will walk us through presenting
the verification approach in the subsequent sections of the paper.

Example 5.2.2 Consider the program P with high identifier secret ranging over
non-negative integers up to a fixed constant max .

P ::=

i := 0;
if (secret < 0) then secret = 0;
if(secret > max) then secret = max ;
while (i < secret) do out(i + +);
while (secret < max) do out(secret + +);

138
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

Clearly P is noninterfering since it outputs (statement out) the same sequence of
numbers for any choice of secret , yet the example is tricky to verify for most ap-
proaches in the literature, and it illustrates well the complications regarding mixed
data and control flow our approach needs to handle. Too see that P is nonin-
terfering, consider the model M of P and the corresponding AK formula φ =
∀u.L(secret = u). We show that M |= φ. Let π ∈ M be an execution originat-
ing from state σ(π, 0) = (max0, i0, secret0) and 0 ≤ j ≤ len(π). For all values c
such that secret = c, there exist π′, j ′ originating from state σ(π′, 0) = (max0, i0, c)
such that trace(π, j) = trace(π′, j ′). In fact, all executions output the sequence of
non-negative integers up to max0.

5.3 Program Analysis by Concolic Testing

In this section we present the formal underpinnings of the approach we use for
extracting the program model and checking formulas in LKU . The main idea is to
start from the flow graph of the source program, extract, by means of concrete and
symbolic execution (concolic testing), an abstract model, and then use an epistemic
model checker or an SMT solver to verify formulas over this model.

We impose some constraints to make the construction tractable. First we assume
that all inputs from the external environment are read at the start of program
execution. This restriction rules out reactive programs that receive external inputs
during execution. However, provided the original program can be transformed,
one can anticipate reading inputs in the beginning of execution in many cases.
Secondly, we assume a bounded model of runtime behavior, hence programs always
terminate, loops can be unfolded, method calls or exception handlers can be inlined
in the main method body and so on. This allows to present source programs in the
form of execution trees defined as follows.

Definition 5.3.1 (Basic Block, BB) A basic block is a portion of sequential
code (without jumps) of the following type:

• Simple Basic Block (SBB): A sequence of assignments b1; b2 · · · bn

• Output Basic Block (OBB): A single output expression out(exp), for some
expression exp

Definition 5.3.2 (Execution Tree, ET) An execution tree is a directed labelled
tree T = (B ,E ,C ,L,Start) such that

• B is a set of nodes n labelled by basic blocks B(n)

• E ⊆ B × B is a set of control flow edges

• C is a set of branch conditions, boolean expressions over program identifiers

• L : E 7→ C is a mapping from edges to branch conditions

5.3. PROGRAM ANALYSIS BY CONCOLIC TESTING 139

• Start ∈ B is the root node

For convenience we extend T with a special node End, in order to make terminal
states explicit in the construction. To this end we require that

∨
{L(n,n ′) | n ′ ∈ B}

is a tautology for each node n ∈ B − {End}, something which is easily achieved.
This allows attention to be restricted to executions that start at the Start node,
follows the ET control structure in the obvious way, and end at the End node. For
deterministic programs each initial state σ0 determines a unique such execution π
with σ(π, 0) = σ0. In general a fixed initial state can determine a set of executions
due to different thread schedulers as well as possible internal nondeterminism.

Definition 5.3.3 (ET path) Given an execution tree T , a path Π is a sequence of
consecutive basic blocks from the node Start to the node End, connected by labelled
edges in E . The set Paths(T) is the set of all paths in T . The length, len(Π), is
the number of basic blocks in Π.

Definition 5.3.4 (ET model) A model of an ET T is the set of all executions
of T beginning in initial state σ0 and following a path Π ∈ Paths(T).

Example 5.3.1 The execution tree corresponding to the program in Example 5.2.2
is shown in Fig. 5.1. Here, for compactness, we depict the ET as a graph, the tree
representation is easily derived by unfolding the loops.

Execution trees are analyzed using concolic testing to produce an abstract version
called a symbolic output tree. Concolic testing is a software verification technique
that combines executions on concrete and symbolic values [121, 205, 185]. A con-
crete execution is a normal run of the program from an initial input state. In
symbolic execution unknown input is represented as symbolic values and the out-
put is computed as a function of these values [146]. Consequently, the program
state is also symbolic and it includes expressions over symbolic values of program
identifiers.

States in the symbolic output trees are associated with a path condition which
represents a boolean predicate on initial inputs and defines the constraints these
inputs must satisfy so that a concrete execution follows that path. Symbolic execu-
tion can be viewed as a predicate transformer semantics that represents programs
as relations between logical formulas and it is tightly related to strongest postcon-
dition computations [223].

A concolic testing algorithm does the following in a loop until all ET paths
are explored: it starts with concrete and symbolic values for input variables and
executes the program concolically by collecting at each step path conditions. These
conditions are later used to generate, by means of a constraint solver, a new input
that explores a different path. When an output statement is reached, the corre-
sponding output expression is also evaluated in the symbolic state. The symbolic
output tree represents conditions on initial inputs that direct the program to an
output statement. This is done by saving the path conditions and the output
expressions for all reachable basic blocks.

140
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

i++

secret++End

out(i)

out(secret)

max = 2
i = 0

secret = 0 secret = max

skip

Start

skip

skip

secret<0 secret>max

i≥secret

secret<max

0≤secret≤max

i<secret

secret≥max

Figure 5.1: Execution Tree (represented as a graph due to lack of space)

Definition 5.3.5 (SOT) A Symbolic Output Tree is an ET which only contains
output basic blocks.

The following algorithm describes how the symbolic execution part of the anal-
ysis extracts the SOT from the ET. The concrete executions are not reported in
the algorithm as they do not directly participate in the construction of the SOT.
Algorithm 1 uses the procedure DFSVisit to visit the ET and build the SOT on
the fly. The input is an initial ET T and the output is the corresponding SOT
S. The algorithm creates an SOT S containing a Start and an End node (line 1)
and then calls the procedure DFSVisit with input parameters the initial nodes of
T and S, the symbolic state Sym generated by function InitSym (a map from in-
put identifiers in T to symbolic values), and the path condition Pc (initially set
to true), respectively (line 2). Moreover CurrT.Children are the immediate succes-
sors of node CurrT, SAT(Pc) checks whether formula Pc is satisfiable, Eval(EF,
Sym) evaluates an expression or a formula EF in the symbolic state Sym, Add(A,
a) adds a node a to a set A, and finally SP(B.Stat, Sym) computes the strongest
postcondition for the sequence of statements in B.Stat and Sym.

The algorithm visits all basic blocks in the tree. If the basic block is a simple

5.3. PROGRAM ANALYSIS BY CONCOLIC TESTING 141

Algorithm 1 ET to SOT

INPUT: ET T
OUTPUT: SOT S
1. S := new SOT()
2. Call DFSVisit(T.Start, S.Start, InitSym, true)

DFSVisit(ET node CurrT, SOT node CurrS,
Symbolic state Sym, Path condition Pc)

1. For B in CurrT.Children
2. Pc := Eval(L(CurrT, B), Sym) ∧ Pc
3. If SAT(Pc)
4. If B is OBB
5. SotN := new OBB(Eval(B.Out, Sym))
6. Add(CurrS.Children, SotN)
7. L(CurrS, SotN) := Pc
8. CurrS := SotN
9. Else If B is SBB
10. Sym := SP(B.Stat, Sym)
11. Else
12. Add(CurrS.Children, S.End)
13. DFSVisit(B, CurrS, Sym, Pc)

basic block, the algorithm updates the symbolic state by computing the strongest
postconditions (line 10). If the basic block is an output basic block, it evaluates
the output expression in the current symbolic state and saves the result in a new
SOT node (line 5), connects the nodes with an edge labelled by current Pc and
updates the current node (line 6-8). Otherwise, an End node has been reached,
hence, the current node is connected (line 12). An SMT solver is used to determine
whether the conjunction of the path condition with the edge condition evaluated
in the symbolic state is satisfiable (line 2-3). If this is the case, then there exist
inputs that can explore that path, thus the algorithm continues with the analysis of
the basic block (line 4-13). Otherwise, if the formula is unsatisfiable, the path will
never be taken, so the algorithm backtracks and explores another edge condition
(line 1). The analysis continues until all reachable basic blocks have been explored
and the corresponding symbolic output tree has been constructed. The symbolic
states are saved at each step of the analysis, hence it is possible to restore the right
one during the backtracking phase of the algorithm.

Example 5.3.2 Figure 5.2 shows the symbolic output tree generated by Alg. 1 on
execution tree in Fig. 5.1. Let Sym = [secret 7→ α] and Pc := true be the initial
symbolic state and path condition, respectively. Suppose Alg. 1 chooses to analyse

142
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

first the path depicted in bold arrows in Fig. 5.1. The first SBB is reached and the
local variables max and i are added to Sym1 = [secret 7→ α, i 7→ 0,max 7→ 2], while
Pc remains unchanged as the edge condition, i.e. true, evaluated in Sym1 is the
same. The next two basic blocks only update the path condition to Pc1 := (0 ≤ α ≤
max ∧ i ≥ α) since skip has no effect on the symbolic state. Afterwards the path
condition becomes Pc2 := (0 ≤ α ≤ max ∧ i ≥ α ∧ Eval((secret < max),Sym1))
which evaluates to (α = 0). The corresponding OBB statement, out(secret), is
then evaluated in Sym1 and a new OBB is added to SOT with output expression
Eval(secret ,Sym1) = α. The next SBB produces Sym2 := Sym1[secret 7→ α + 1],
as SP(secret + +,Sym1) = Sym1[secret 7→ Sym1(secret) + 1]. The path condition
remains unchanged as the edge condition was the constant true. The DFS analysis
enters the loop one more iteration, creates the OBB node with Eval(secret ,Sym2) =
α+ 1 and yields Sym3 := Sym2[secret 7→ α+ 2] and Pc2 := (α = 0). At this point
the condition (α = 0 ∧ α + 2 ≥ max) becomes true and the algorithm starts the
backtracking phase. The bold path in Fig. 5.2 corresponds the path created by the
DFS analysis explained here.

End

Start

out(0)

out(1)

out(0)

out(1)

out(0)

out(1)out(secret)

out(secret)

out(secret+1)

secret<0

secret>2

secret=1secret=2

0<secret≤2 secret=0

secret>0secret=0

secret<0

Figure 5.2: Symbolic Output Tree

5.3.1 Formal Correctness

We now move to proving correctness of the approach and showing that the abstrac-
tion generated by the SOT is complete with respect to the formulas in LKU . As we
show in Lemma 5.3.1 this boils down to proving the equivalence between pre-traces
generated by the ET and executions generated by the SOT.

Definition 5.3.6 (ET execution) Let C be a boolean expression over identifiers
and T an ET. Then Exec(C ,T) is the set of all executions π in T where σ(π, 0) |=
C . We abbreviate Exec(true,T) as Exec(T).

5.3. PROGRAM ANALYSIS BY CONCOLIC TESTING 143

Definition 5.3.7 (ET pre-trace) Let π be an execution in an ET T where π =
σ0

α0−→ σ1
α1−→ σ2

α2−→ · · · αn−−→ σn . Then a pre-trace is the execution

ptrace(π) = σ0
αi0−−→ σ0

αi1−−→ σ0
αi2−−→ · · ·

αik−−→ σ0

where αij 6= ε and trace(π) = trace(ptrace(π)). Moreover, ptrace(C ,T) is the set of
pre-traces of Exec(C ,T). Similarly ptrace(T) is the set of pre-traces of Exec(T).

A trace consists of the sequence of outputs in the pre-trace and many pre-traces
can correspond to the same trace. A pre-trace can be viewed as an execution,
hence satisfiability and validity of a formula over ptrace(E) is defined as for the
executions. Since the formulas in logic LKU concern initial input values only, one
can prove the following lemma.

Lemma 5.3.1 Let π be an execution in a modelM and ptrace(π) the pre-trace in
the corresponding pre-trace model ptrace(M). Then, for all formula φ in LKU

M, π |= φ⇔ ptrace(M), ptrace(π) |= φ

Proof. Induction on structure of formula φ. Suppose φ = Kφ′: We get π |= φ
iff for all π′ such that trace(π) = trace(π′), π′ |= φ′. But, by induction hypothesis,
we know ptrace(π′) |= φ′, hence we’re done. Suppose φ = b: Then π |= b iff
σ(π, 0) |= b. But also ptrace(π) |= b iff σ(π, 0) |= b. Other cases are equally trivial
and the other direction holds as the logic is closed under negation. 2

An SOT is an ET, therefore the executions are defined in the same manner. One
can easily show that all executions generated by SOT are pre-traces. The next
step is to prove that an ET and the corresponding SOT define the same set of
pre-traces. Then, one can prove properties expressed in LKU in the SOT model,
which by Lemma 5.3.1 will hold in the original ET model.

Lemma 5.3.2 Let σ0 be a concrete program state and Sym a symbolic state. Then,
for all SBBs B∗ there exist σ, σ′ and Sym ′ such that

Eval(Sym, σ0) = σ ∧ (B∗, σ)→ σ′∧
SP(B∗,Sym) = Sym ′ ⇒ Eval(Sym ′, σ0) = σ′

Lemma 5.3.3 Let C ,Pc be two boolean expressions on program identifiers, σ0, σ
two concrete states and Sym a symbolic state. Then,

Eval(Sym, σ0) = σ ∧ σ0 |= Pc ∧ σ |= C

⇒ σ0 |= Pc ∧ Eval(C ,Sym)

Lemma 5.3.4 Let π be an ET execution and B∗ the SBB between states σi and
σj as in the execution.

π = σ0
α0−→ · · ·σi

ε−→ · · · ε−→ σj · · ·
αn−1−−−→ σn

Then ptrace(π) = ptrace(π′) where π′ = σ0
α0−→ · · ·σi

ε−→ σj · · ·
αn−1−−−→ σn .

144
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

Lemmas 5.3.2 and 5.3.3 state that the path condition and the symbolic state com-
puted by Alg. 1 represent the set of initial states that lead to the program point
they are associated with. If σ is a state obtained by evaluating a symbolic state
Sym in a state σ0 that satisfies the path condition Pc, then there exists a con-
crete program execution starting from σ0 and reaching state σ. On the other hand
Lemma 5.3.4 shows that the program instructions in an SBB can be considered as
executed atomically since they will produce the same pre-trace anyway.

Theorem 5.3.1 (ET-SOT pre-trace equivalence) Let T be an ET and S the
corresponding SOT generated by Alg. 1. Then,

ptrace(T) = Exec(S)

Proof. [Proof Sketch] We prove inclusion in both directions using previous Lem-
mas.
(⇒) We show that ptrace(T) ⊆ Exec(S) by induction on the length i of an ET
execution using Algorithm 1. This can be reduced to induction on length i ′ of
executions π′ derived from π ∈ Exec(T) as in Lemma 5.3.4. Intuitively executions
π′ have the same length as the path in the ET which they correspond to. Let the
resulting model be Exec(T ′) and Cl(Exec(T ′)) its prefix closure. Then we show
that for all π′ ∈ Cl(Exec(T ′)), there exists an (prefix) execution π∗ ∈ Cl(Exec(S))
and ptrace(π′) = π∗. This is done by proving that there exist nodes NT in the ET,
NS in SOT, Sym and Pc such that (a) π′ is an execution from Start to NT (b) π∗
is an execution from Start to NS (c) Algorithm 1 calls DFSVisit(NT , NS , Sym, Pc)
and (d) ptrace(π) = π∗ and σ(π, len(π)) = Eval(Sym, σ(π, 0)) and σ(π, 0)(Pc).
Base case: (i = 0) Let π′ ∈ Cl(Exec(T)) and len(π′) = 0, then π′ = σ0 by defini-
tion. Algorithm 1 starts with a symbolic state (InitSym in line 2) when it first cre-
ates the SOT node. Hence, any π∗ ∈ Cl(Exec(S)) with σ(π∗, 0) = σ0 will do. More-
over, DFSVisit(Start, Start, InitSym, true) is initially called with NT = Start, NS =
Start and π = π∗ = σ0 is such an execution. In particular, ptrace(π) = π∗ = σ0,
σ(π, len(π)) = Eval(Sym, σ(π, 0)) = σ0 and σ(π, 0)(Pc) = σ(π, 0)(true) which triv-
ially holds.
Induction: We prove that for all π ∈ Cl(Exec(T)) with len(π) = k , there exists
π∗ ∈ Cl(Exec(S)) and all conditions (a-d) hold. By induction hypothesis, conditions
(a-d) hold for the prefix execution of length k − 1 of π, say π′ ∈ Cl(Exec(T)). Let
π′∗ be the corresponding SOT execution and Algorithm 1 has called DFSVisit(N ′T ,
N ′S , Sym ′, Pc′). Then, ptrace(π′) = π′∗, σ(π′, len(π′)) = Eval(Sym ′, σ(π′, 0))
and σ(π′, 0)(Pc′) holds. Let now C be the boolean expression associated with
the edge from N ′T to NT and σ(π′, 0)(C), otherwise we are done. There are
two possible cases. First suppose NT is an OBB (with out(e)) that outputs
v = σ(π, len(π))(e). Since an output action is performed, both execution state
and symbolic state remain unchanged, hence σ(π, len(π)) = Eval(Sym, σ(π, 0))
and Pc = Pc′ ∧Eval(C ,Sym ′). Then, by Lemma 5.3.3 also σ(π, 0)(Pc) holds. The
output value is v since Eval(Eval(e,Sym), σ(π, 0)) = Eval(e, σ(π, len(π))) = v .

5.4. EPISTEMIC MODEL CHECKING 145

Otherwise, NT is an SBB. By applying Lemma 5.3.2 and 5.3.3, similarly it can be
shown that the path condition and the symbolic state are computed correctly.
(⇐) We prove that ptrace(T) ⊇ Exec(S) if for all executions π∗ ∈ Exec(S) there
exists π ∈ Exec(T) and π∗ = ptrace(π). The induction hypothesis works as previ-
ously. The only difference is that a single transition in SOT can correspond to an
arbitrary but finite number of SBBs followed by one OBB in the ET. In that case
the claim is proved by applying Lemma 5.3.2 and 5.3.3 repeatedly. 2

5.4 Epistemic Model Checking

In this section we consider the model checking problem of formulas in LKU over
a SOT model. There exist different off-the-shelf model checkers [157, 116] for the
logic of knowledge and time. Traditionally, their main application domains are dis-
tributed systems and protocol verification. Section 5.4.1 explores the use of epis-
temic model checking for software verification by encoding a SOT model and LKU

formula into an MCMAS model. As shown by our experiments, the performance
is inversely proportional to the inputs domain size. Section 5.4.2 introduces a new
model checking algorithm which is tailored to the verification of noninterference
and declassification policies. The algorithm transforms a SOT and a policy for-
mula into an existentially quantified FOL formula which can be checked efficiently
by an SMT solver.

5.4.1 Encoding a SOT as an Interpreted System

MCMAS is an epistemic model checker which can be used to model a multiagent
system and reason about its epistemic and temporal properties [157]. Any SOT
can be encoded into an interpreted system model, similar to Def. 5.2.2, on which
MCMAS can be used to prove information flow properties. The encoding simply
transforms the SOT in an MCMAS model with perfect recall where the Environ-
ment agent simulates “internal” executions in the SOT model, while an Attacker
agent collects the observable traces generated during those SOT executions. An
internal variable of the Environment agent, state, records the current node of the
SOT execution. For all SOT node n, the Environment agent’s protocol can emit
an action “go to n” only if state corresponds to a predecessor of n and the path
condition associated with n holds. The associated evolution function sets state to n
and assigns the output expression of n to a variable, out , observable by the Attacker
agent. In order to model a perfect recall attacker, the Attacker agent possesses a
variable for each “depth” level in the SOT, obsLi . At every step s, the Attacker
agent copies the content of the out variable into its obsLs variable, and updates its
state in order to copy next into obsLs+1.

Any SOT can be systematically transformed to an interpreted system by fol-
lowing Template 1 where the SOT has n nodes, m inputs, d max depth, where

146
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

Template 1 SOT to MCMAS model

Environment agent
Obsvars: out
Vars: in1, . . . , inm , state: {init, s1, . . . , sn}
Actions: start, gos1, . . . , gosn
Protocol:

...
Pci and state = spred(i): {gosi}
...

Evolution:
...
out = ei and state = si if {gosi}
...

Attacker agent
Vars: lev, obsL1, . . . , obsLd

Actions: none
Protocol: none
Evolution:

(lev = lev + 1) if lev = 0
...
(lev = lev + 1) and obsLl = out if lev = l
...

Initial state
state = init and lev = 0

Formula
AG(

∧
secret,v !K(Attacker,!(secret = v))

5.4. EPISTEMIC MODEL CHECKING 147

pred(i) is a predecessor of node i , Pci and ei are the path condition and output
expression associated with node i , secret is any secret to be protected and v any
value this secret can take. The correctness of such transformation is then stated by
the following theorem.

Theorem 5.4.1 (SOT-IS equivalence) Let SOT be a symbolic output graph and
IS the associated interpreted system derived by the previous construction. Then,

M(SOT) =M(IS)

Performance Analysis A number of experiments have been performed and re-
ported in the last column of Fig. 5.5. The SOT generated for each use case (de-
scribed in Sect. 5.5) has been encoded as an input to the MCMAS model checker
[157] by the transformation presented above. The evaluation results show a strong
correlation between the domain size of the input variables and the running time
of the model checker. The numbers refer to the running time (in seconds) of MC-
MAS, where the domain of integer variables is the interval [−50, 50]. Most of the
mediun-size examples fail even for small domains due to the huge size of the epis-
temic formula that we verify. Moreover, our experiments show that also for simple
formulas the running time increases with the domain size.

0 1 2 3 4 5 6
·104

0

1,000

2,000

3,000

4,000

Domain Size

T
im

e
(in

se
c)

voidSecretTest
getSign

Figure 5.3: Running Time vs Domain Size

The graph in Fig. 5.3 (abscissa in multiple of 104) represents the MCMAS
running time as a function of the input domain size for two simple examples. In
both cases MCMAS verifies a simple epistemic formula which is true in one example
(voidSecretTest) and is false in the other (getSign). Beside the steep increase of

148
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

running time with domain size, one can also note that proving a formula which is
true in a model requires more time than disproving a similar formula is false in a
model of roughly same size.

5.4.2 A New Model Checking Algorithm
It is known that model checking via BDDs works well when the size of the domain
is relatively small [67]. In software model checking domain size can be large or
even infinite, therefore model checking can be problematic, as confirmed by our
experiments. To face this problem, we present a new algorithm that reduces the
epistemic model checking over SOT models to SMT solving of a formula which only
contains variables in existential form. While in general the transformation to exis-
tential form is not possible for every formula, this can be done for the information
flow properties we are interested in verifying.
Given a formula φ and a model M associated with an SOT S , we define a transfor-
mation T (S , φ) and prove that φ holds in M iff T (S , φ) is valid. We then derive
the noninterference-like formulas which can be verified by an SMT solver.
In what follows ~On is the tuple of output expressions encountered on an SOT path,
from node Start to node n. We write ~On = ~On′ to denote the component-wise
equality between tuple expressions and, N (S) to denote the nodes of an SOT S .

Definition 5.4.1 (T (S , φ)) Given an SOT S and a formula φ in LKU , T (S , φ)
is defined as:

T (S , φ) =
∧

n∈N (S)

∀~x (Pcn ⇒ T (S ,n, φ))

where T (S ,n, φ) is defined as

• T (S ,n, b) = b

• T (S ,n,¬φ) = ¬T (S ,n, φ)

• T (S ,n, φ1 → φ2) = T (S ,n, φ1)→ T (S ,n, φ2)

• T (S ,n,∀~u.φ) = ∀~u.T (S ,n, φ)

• T (S ,n,Kφ) =
∧

n′∈N (S) ∀~x ′. ([Pcn′]′ ⇒
~On = [~On′]′ ⇒ [T (S ,n ′, φ)]′)

where [F]′ = F [~x 7→ ~x ′] is a renaming of all free variables ~x in F with ~x ′.

The intuition behind the transformation T (S , φ) is that each node in N (S) rep-
resents an epistemic state in which both the path condition and the sequence of
output expressions up to that node are true (atomic propositions in Def. 5.2.2).
Consequently, if a formula φ is weaker, i.e. implied, than the atomic propositions
for all nodes, φ is true in the SOT model.

5.4. EPISTEMIC MODEL CHECKING 149

Proposition 5.4.1 Let S be an SOT and M (S) the corresponding model. Then
for all formula φ

M (S) |= φ ⇔ |= T (S , φ)

Proof. [Proof Sketch] Let Π be a path in S , with Start and End node removed, and
the sequence of pairs (Pc1, e1) ⇒ · · · ⇒ (Pck , ek) occurring in Π. Then the model
M (S) = {π | ∃Π ∈ Paths(S). len(π) = len(Π)∧∀i . σ(π, i) |= Pci∧αi = σ(π, i)(ei)}.
(⇒) We show, by structural induction on φ, for all π, i ∈ M (S), that if π, i |= φ
then Pci ⇒ T (S , i , φ) is valid. Suppose φ = Kφ′. By definition of satisfaction,
for all π′, i ′ ∈ M (S), if trace(π, i) = trace(π′, i ′) then π′, i ′ |= φ′. We then show
∀~x (Pci ⇒

∧
i′∈N (S) ∀~x ′. ([Pci′]′ ⇒ ~Oi = [~Oi′]′ ⇒ [T (S , i ′, φ′)]′))(∗∗) holds, which

follows from definition of M (S) and induction hypothesis. Other cases are easy.
(⇐) Let φ be a formula and assume T (S , φ) holds. We show that M (S) |= φ.
Suppose φ = Kφ′. Then (∗∗) is true. Consider the tuples of values ~c∗, ~O∗ such
that Pc(~c∗) and ~Oi(~c∗) = ~O∗ and a state σ∗ with identifier values from ~c∗. In
particular, σ∗ |= Pci and σ∗(~Oi) = ~O∗. Again by assumption consider ~c1

∗ where
[Pci′]′(~c∗1) and [~Oi′]′(~c∗1) = ~O∗, hence the state σ∗1 mapping identifiers to values ~c∗1
implies σ∗1 |= [Pci′]′ and σ∗([~Oi′]′) = ~O∗. By hypothesis and these facts the claim
follows. 2

We can now safely use transformation T for noninterference-like formulas.

Corollary 5.4.1 Let S be an SOT associated with program P and AK the non-
interference formula. Then, P(~l , ~h), program P with high identifiers ~h and low
identifiers ~l is noninterfering iff the following formula is unsatisfiable.

∃~l , ~h, ~h ′.
∨

n∈N (S)

(Pcn(~l , ~h) ∧ (
∧

n′∈N (S)

¬(Pcn′(~l , ~h ′) ∧ ~On(~l , ~h) = ~On′(~l , ~h ′))))

Proof. Applying transformation T to the negation of AK , defined in Sect. 5.2.4,
and substituting ~l =~l ′ and ~h = ~u, proves the claim. Indeed, AK :=
∀~v , ~u.((~l = ~v)⇒ L(~l = ~v ∧~h = ~u)), then T (S ,AK) =

∧
n∈N (S) ∀~l , ~h. (Pcn(~l , ~h)⇒

T (S ,n,AK)) =
∧

n∈N (S) ∀~l , ~h. (Pcn(~l , ~h)⇒ ∀~v , ~u. (~l = ~v ⇒ ¬
∧

n′∈N (S) ∀~l ′, ~h ′.
(Pcn′(~l ′, ~h ′)⇒ On(~l , ~h) = On′(~l ′, ~h ′)⇒ ¬(~l ′ = ~v ∧ ~h ′ = ~u)))).
Then the negation of the last formula is true if

∨
n∈N (S) ∃~l , ~h. (Pcn(~l , ~h)∧∃~v , ~u. (~l =

~v ∧
∧

n′∈N (S) ∀~l ′, ~h ′. ¬(Pcn′(~l ′, ~h ′) ∧ On(~l , ~h) = On′(~l ′, ~h ′) ∧ (~l ′ = ~v ∧ ~h ′ = ~u))))
which holds iff the formula is satisfiable for ~l = ~l ′ and ~h = ~u. Finally we perform
these substitutions in the formula and derive the claim. 2

In case of a declassification policy φ(~l , ~h) one can similarly apply transformation
T and obtain a formula T (AK)∧φ(~l , ~h). We now apply the algorithm in Corollary
5.4.1 to our running example.

Example 5.4.1 Consider the SOT S in Fig. 5.2 corresponding to the program
in Example 5.2.2 which we explained to be noninterfering. This means that the

150
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

following formula must be unsatisfiable.

∃secret , secret ′.
∨

n∈N (S)

(Pcn(secret) ∧ (
∧

n′∈N (S)

¬(Pcn′(secret ′) ∧ ~On(secret ′) = ~On′(secret ′)))

Consider a node n ∈ N (S), say the one on top left, where Pc1 = (0 < secret ≤ 2)
and O = 0. Then the formula is satisfiable if there exists a value of secret where
Pc(secret) holds, for instance secret = 1, and a value of secret ′ that falsifies, for all
nodes, the path conditions or the equality between output expressions. We only do
the check for nodes at the same level of n, otherwise the output sequences will never
be equal. Moreover, nodes at the same level have equal outputs, hence the formula
can only be falsified (hence the condition satisfied) by a value of secret ′ that sets to
false all path conditions at that level. But since some of the conditions are pairwise
disjoint, this will never be the case. Consequently the formula is unsatisfiable for
node n. The check for other nodes can be done similarly and prove that P is
noninterfering.

5.5 Implementation

The theory presented above has been implemented in a prototype called ENCoVer
[39]. For the extraction of the symbolic output tree (SOT) from Java bytecode, EN-
CoVer relies on Symbolic PathFinder (SPF) [145], an extension of Java PathFinder
[217]. SPF exercises all possible execution paths of the analyzed program by means
of concolic testing [146]. During this phase, SPF computes and maintains sym-
bolic expressions representative of the current path condition and of the value of
every variable for the current path under test. Whenever a statement rendering a
value “observable” is executed, ENCoVer creates a new node in the SOT under
generation using the symbolic expressions corresponding to this observable value
and the current path condition. After this first phase corresponding to the SOT
generation, ENCoVer converts the SOT into an interference formula (f) with free
variables. This formula, with its free variables existentially quantified, is the nega-
tion of the noninterference formula applied to the program analyzed, as described
in Section 5.4. Any assignment to the free variables that renders the formula f true
is a counterexample proving that the program is not noninterfering. Finally, EN-
CoVer feeds the formula f to a satisfiability modulo theory (SMT) solver (Z3 [98]
in the current implementation). If the SMT solver answers that the formula is
unsatisfiable, then the analyzed program is deemed noninterfering. Otherwise the
program is declared interfering, and the assignment provided by the SMT solver
is returned as a counterexample of the noninterference behavior of the analyzed
program.

ENCoVer has been implemented in Java as an extension of Java PathFinder
(JPF). The extension by itself has 86 classes/interfaces and 6 KLOC as computed

5.5. IMPLEMENTATION 151

by CLOC [95], and 161 KLOC including the required parts of SPF. The class of
programs that the current implementation of ENCoVer can handle is indirectly
limited by the class of programs SPF (JPF core and its symbc extension) can handle
and the class of expressions Z3 can solve. There is no intrinsic limitation induced by
the specifics of ENCoVer itself. Theoretically SPF can execute any Java bytecode,
however in practice SPF is limited by missing implementations for some native
libraries (such as java.io and java.net), a few bugs (such as NullPointer exceptions
being reported as NoSuchMethod exceptions), and of course state space explosion
(particularly when dealing with multithreaded programs with loose synchronization
constraints). In the current implementation (due to the way SPF handles booleans,
and differences between SPF expressions and Z3 expressions that requires typing in
order to translate from one to the other), ENCoVer is limited to the manipulation
of integer expressions as described by the Core and Ints theories of the SMT-LIB
standard [48]. Z3 can solve a fair number of formulas based on those expressions
[65, 47]. In the future, the class of programs handled by ENCoVer should grow
due to continuous development on SPF and Z3.

5.5.1 Case study

As a main case study, ENCoVer has been applied to the security-oriented case
study of the HATS project [129]. This case study, Tax Record (TR), simulates the
interactions between a server handling tax records, tax payers, tax checker entities,
and a charity. Tax payers can dedicate part of their payments to a charity. To every
tax payer is associated a tax record which is initialized with her incomes, and to
every tax record is associated a tax checker. The tax payer can query the amount
of taxes due, and perform a payment indicating how much is to be given to the
charity. After each payment, the associated tax checker verifies that the cumulated
payments cover the sum of the taxes due and the charity donation. If that is the
case, the tax record is frozen and no further modification can be made. Once all the
tax records have been frozen, the server informs the charity of the sum of money
given by the tax payers.

The Java implementation has 8 classes/interfaces (as shown in Fig 5.4) and
267 LOC. There is one class for each of the two “types of object” (TaxServer and
TaxRecord, ranged over by O) and each of three “types of principal” (TaxPayer,
TaxChecker and Charity, ranged over by P). The three interfaces (TaxServer4charity,
TaxRecord4taxPayer and TaxRecord4taxChecker, ranged over by O4P) describe
the actions/queries that principals of type P can perform on objects of type O .
The implementations of TaxPayer, TaxChecker and Charity describe the intended
processes those principals should follow. However, “bad” principals of type P could
perform different actions on objects of type O , but only using methods listed in in-
terface O4P and implemented in O . Two taxation schemes have been implemented.
The tax rate is either fixed (F%) and computed by a simple multiplication, or vari-
able over “slices” of income and computed in a while loop by cumulating the taxes
for each slice of the income where the nth slice of 10 K$ is taxed (n ×V)%.

152
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

taxPayer
1

taxRecord
1

*
checker 1

1

server1

1*
taxRecords

TaxRecord

<<interface>>
TaxRecord4taxPayer

getTaxes(): int
getAmountPayed(): int
payTaxes(don:int, amnt:int)

<<interface>>
TaxRecord4taxChecker

verifyPayment(): int
freeze(): int

TaxPayer

TaxChecker

checkTaxes(tr:TaxRecord4taxChecker): int
Charity

<<interface>>
TaxServer4charity

getCharity(): int

TaxServer

Figure 5.4: Class diagram of the Tax Record case study

From a security point of view, one property to verify is whether a given tax
payer is able to deduce any information about the income, payments and donation
of other tax payers by triggering and observing the result of actions specified in
TaxRecord4taxPayer. Similarly, the tax checker is only allowed to know if the
cumulated payments are equal to or higher than the sum of the taxes and donation
of a tax record, and, if that is the case, to know the amount of overpayment. Finally,
the charity should not be able to learn anything except the cumulated amount of
donations.

5.5.2 Application of ENCoVer to the TR case study
The HATS’ case study is intrinsically an interactive program whose behavior mainly
depends on the actions of the tax payers. In order to extract the SOT from the
program, Symbolic PathFinder (SPF), which relies on a concolic testing approach
[185], executes the program to be verified. This requires to provide an additional
executable program simulating the behavior of the different participants involved
in an execution of this interactive program. Three different scenarios have been
examined. The first scenario (smpl), involves a single tax payer (Alice) which
queries for her amount of taxes and pays that exact amount without making any
donation. The only input in this scenario is the income of Alice. The second
scenario (oneP) involves the same tax payer initially performing a first payment
and donation, then, if she has under-payed, queries for her amount of taxes and
pay what remains, including the donation. The inputs are Alice’s income, donation
and first payment. It is to be noted that donation can be zero, which is equivalent
to not making a donation. The last scenario (twoP) involves two tax payers, Alice

5.5. IMPLEMENTATION 153

and Others, representing all the other tax payers. Both act as Alice in the second
scenario. There are 6 inputs: incomes, donations and first payments of Alice and
Others.

For every scenario and taxation scheme, ENCoVer is used multiple times to
verify the noninterfering behavior of the program with regard to the 3 different
principals (Alice, tax checker and charity, ranged over by P) under different poli-
cies regarding values that have to be protected from those principals. Each analysis
involves a different configuration of ENCoVer. Among other parameters such as
input domains, there are 3 main parameters to configure: the input values (or ex-
pressions) known by P at the beginning (the low values in the theory), the input
expressions that should be kept secret from P (the high values), and finally the
events and associated values that are observable by P . This last parameter is con-
figured by providing an expression with wild-cards specifying which method calls
are observable by P and which parameter or return value P will observe. In the case
of the tax checker, resp. charity, the configuration of this parameter indicates that
the return value of any method in TaxRecord4taxChecker, resp. TaxServer4charity,
is observable. In the case of Alice, specifying that the return value of any method in
TaxRecord4taxPayer is observable would not allow ENCoVer from distinguishing
between observations made by Alice and Others. Therefore, the SOT would contain
observations made by both, instead of the observations made by Alice only. How-
ever, the expression specifying observable events may include some runtime values
of method call parameters. To specify the events observable by Alice, a method
obs(String, int), taking as parameter a tax payer name and another value, is
coded with an empty body. The observable expression is set to *.obs("Alice", O)
and, in any method m specified in TaxRecord4taxPayer, a call to this obs method
is inserted with parameters the name of the tax payer for this tax record and the
value to be returned by m (obs(this.taxpayerName, res)).

Figure 5.5 contains the evaluation results. The remainder of this section focuses
on the noninterference analysis results for the Tax Record case study in column
4 (ENCoVer:NI) of Figure 5.5. The relevant tests are named S -P -R, where S
indicates the scenario, P is the principal for which the program is verified, and
finally R specifies taxation scheme, Fixed or Variable. For the smpl scenario, all
configurations are found noninterfering. The only input is the income of Alice,
which is known by Alice and has no relation to the values observed by charity (0,
as there is no donation in this scenario) and taxChecker (0, as Alice pays directly
the exact amount of taxes due). For the oneP scenario, the inputs are the income,
donation and first payment of Alice known by Alice and hidden from charity and
taxChecker. Obviously, this scenario is noninterfering from Alice’s point of view,
but not from the point of view of charity as the only donation is Alice’s. For the
principal taxChecker, many different configurations have been tested: In the tax-
Checker1 case, the declassification policy is “income×F%+ donation > payment”,
and for taxChecker2 it is “income × F% + donation − payment”. ENCoVer finds
the configuration interfering for taxChecker1 and noninterfering for taxChecker2,
as expected. Indeed, the value declassified in the taxChecker1 case, resp. tax-

154
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

Checker2 case, is a lower bound, resp. upper bound, of the value revealed to the tax
checker in the fixed tax rate variant. The exact value revealed to taxChecker in the
specification of TaxRecord is “if income ×F% + donation > payment then −1 else
payment−(income×F%+donation)”. The configuration taxChecker3 corresponds
exactly to the declassification of this formula. For the variable tax rate case, the
expression computing the taxes ((

∑N
n=1 n×V %×slice)+((N +1)×V %×(income

mod slice)) where the nth slice is taxed (n × V)% and N = income ÷ slice is the
number of full slices) can be declassified to the taxChecker by rewriting

∑N
n=1 n

as ((N + 1) × N /2). This declassification corresponds to the configuration tax-
Checker4. The case of the twoP scenario, is similar to the previous case for Alice
and taxChecker. However, this time there are two different donations, one from
Alice and one from Others. By declassifying “donationAlice + donationOthers” to
charity, ENCoVer concludes that charity does not learn more than is allowed. In
conclusion, apart from potential efficiency problems that are addressed in the next
section, the ENCoVer prototype behaves as expected and can handle the majority
of configurations of the tax record scenarios.

5.6 Evaluation

ENCoVer has been used to verify multiple test programs. Figure 5.5 contains data
for some of the tests. The first test program, empty, is used as a base reference for
normalizing the number of instructions executed by JPF. The two tests getSign
and voidSecretTest are used to verify the correctness of the answer returned by
ENCoVer. The program getSign takes a secret h as input and returns -1, resp.
0 or 1, if h is negative, resp. zero or strictly positive. This program is obviously
interfering. The program voidSecretTest tests if its secret input h is equal to 0,
and returns h if it is true, 0 otherwise. As this program always returns 0, it is
noninterfering.

The “double while” running example used previously corresponds to the tests
named whileLoops-X , where X is the maximum number of loops (2 in the case
of the running example). The same specification (2 consecutive iterative struc-
tures whose total number of iterations is X) has been implemented using recursive
method calls instead of while statements. However, as the results are similar to the
double while implementation, they are not reported in Fig. 5.5. The other lines
correspond to different configurations for the use case described in the previous
section.

5.6.1 Efficiency

Two test cases caused the ENCoVer tool to fail completely: twoP-charity-V and
twoP-taxChecker4-V. The analysis of the logs reveals that ENCoVer runs out
of memory while generating the interference formula, consisting of a large num-
ber of identical subformula objects. We believe this problem can be remedied by

5.6. EVALUATION 155

TEST JPF ENCoVer
States Inst NI Timing (in ms) SOT Fml MC

O (in s) E G S N D W V A I
empty 1 0 Y .4 9 3 4 0 0 0 0 0 0 .0
getSign 13 48 N .6 115 2 36 3 1 3 2 34 68 .1
voidSecretTest 3 18 Y .5 88 2 18 2 1 2 2 11 22 .1
whileLoops-2 23 181 Y .6 137 7 53 9 2 5 2 219 454 .2
whileLoops-30 1059 6873 Y 143.0 1795 8980 131662 555 30 33 2 579371 4150614 488
whileLoops-40 1809 11543 ? 2595.2 2415 48867 - 940 40 43 2 1680161 15359218 -
smpl-Alice-F 5 877 Y .6 173 3 8 3 3 1 2 17 62 .4
smpl-Alice-V 1067 19382 Y 3.3 1528 249 1054 63 3 21 2 18777 103926 2.3
smpl-charity-F 5 877 Y .6 179 3 8 1 1 1 2 8 26 .9
smpl-charity-V 1067 19382 Y 2.5 1470 86 576 21 1 21 2 5968 31098 .1
smpl-taxChecker-F 5 877 Y .6 167 3 8 1 1 1 2 8 36 .1
smpl-taxChecker-V 1067 19382 Y 2.7 1452 88 724 21 1 21 2 5968 37650 .1
oneP-Alice-F 13 1353 Y 2.3 1900 6 12 5 4 2 6 42 236 14.4
oneP-Alice-V 2185 32604 Y 6.9 3659 240 2546 87 4 24 6 29114 179100 -
oneP-charity-F 13 1353 N 2.3 1861 4 42 2 1 2 6 28 107 -
oneP-charity-V 2185 32604 N 4.7 3517 96 637 24 1 24 6 7916 42957 -
oneP-taxChecker1-F 13 1353 N 2.3 1872 4 27 3 2 2 6 32 154 -
oneP-taxChecker2-F 13 1353 Y 2.4 1895 4 25 3 2 2 6 32 154 -
oneP-taxChecker3-F 13 1353 Y 2.3 1844 4 24 3 2 2 6 32 164 -
oneP-taxChecker4-V 2185 32604 Y 128.9 3632 129 124709 45 2 24 6 14500 84462 -
twoP-Alice-F 37 3578 Y 6.3 5820 6 26 5 4 2 12 57 266 -
twoP-Alice-V 54601 824013 ? 2541.3 2537857 293 - 87 4 24 12 29129 179130 -
twoP-charity-F 37 3578 Y 6.5 5962 10 45 4 1 4 12 107 588 -
twoP-charity-V - - ? - - - - - - - - - - -
twoP-taxChecker3-F 37 3578 Y 6.6 5852 12 250 9 4 3 12 159 1134 -
twoP-taxChecker4-V - - ? - - - - - - - - - - -

• JPF

– States: number of states encountered during concolic execution
– Inst: total number of instructions executed (normalized such that the value for the

empty test is 0 rather than 2926)

• ENCoVer

– NI: Y iff ENCoVer concludes that the program is noninterfering
– Timing: given in ms (O: overall in s; E: model extraction (JPF+symbc); G: inter-

ference formula generation; S: interference formula satisfiability checking)
– SOT: information related to the SOT (N: number of nodes; D: depth of the SOT

(correspond to the longest possible sequence of outputs); W: width of the SOT
(corresponds to the maximum number of nodes at any level))

– Fml: information related to the interference formula (V: number of distinct vari-
ables; A: number of atomic formulas; I: number of instances of variables or con-
stants)

– MC: timing in s for MCMAS model checker (independent additional execution on
the generated model; not included in the overall time taken by ENCoVer when
using SMT resolution)

Figure 5.5: Evaluation results

156
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

subformula sharing. As a side effect, once the interference formula is composed of
references to a smaller number of unique subformulas, it will be possible to feed
it in incremental steps to Z3. It is expected that this will allow Z3 to handle
cases where it runs out of memory while trying to satisfy the interference formula.
This is indeed what prevents Z3 to conclude for the test cases whileLoops-40 and
twoP-Alice-V.

The test case whileLoops-30 shows that ENCoVer can handle programs with
nontrivial SOT’s. Symbolic PathFinder (SPF) extracted more than 500 different
SOT nodes. A single execution of whileLoops-30 outputs 30 different values, for
which there exists 33 different potential output expressions depending on the path
followed for at least one of those values. As suggested by the tax record use case,
many “real” programs are likely to produce smaller SOT’s with less diverse output
expressions. It is noteworthy that for whileLoops-30, Z3 needs only a little more
than 2 minutes to conclude that the interference formula is unsatisfiable.

The results for the tax record study show that the extraction of the output
behavioral model can be quite time consuming especially when the number of paths
explodes, mainly due to while loops.

ENCoVer’s memory handling can be improved. However, the results demon-
strate that the approach proposed in this paper can be used to verify complex
information flow policies on non-trivial programs with complex, control-dependent
information flow.

5.7 Related Work

The most closely related work is that of Cerny and Alur [71] which presents an
automated analysis of conditional confidentiality for Java midlet methods. A prop-
erty f is conditionally confidential (CC) wrt. to property g if for every execution r
for which property g holds another execution r ′ exists with the same observation
as r but such that r and r ′ disagree on f . This condition is expressed as a formula
over program identifiers involving existential and universal quantifiers. To check
the formula over- and under- approximations of reachable states are computed for
every program location and universal quantification is carefully set to take place
over a bounded domain. A tool called CONAN is developed for analyzing CC of
Java midlet methods. We strongly believe that CC can be expressed in epistemic
logic by the formula (g ⇒ (Lf ∧ L¬f)), where, intuitively, g is a property known
by the observer and f is the property to protect. In our case the corresponding
formulas will involve existential quantifiers only and they can be immediately fed
to an SMT solver. Moreover, the noninterference-like properties we are verifying
are much stronger than CC, and we expect to handle the weaker properties as well.
On the tools side, ENCoVer performs global analysis for Java programs and is
fully automatic. It would be interesting to further investigate how an extension of
the epistemic logic considered here relates to CTL ≈, which can express CC [19]
properties.

5.8. CONCLUSION 157

Halpern and O’Neill [128] introduce a framework for reasoning about secrecy
requirements in multiagent systems. They show how the interpreted systems for-
malism [112] can be used to express in a clean way different trace-based information
flow properties both for synchronous and asynchronous systems. Nondeterminism
and probability are also considered. The definition of secrecy is based on an ab-
stract model, the run-and-systems model, which is different from the primary con-
cern of this paper, language-based security. Moreover, they do not consider the
verification problem. Another security notion, related to secrecy, is that of opacity
[66, 107], which models the ability of a system to keep some critical information
secret. The verification techniques presented in this paper can also be applied to
opacity. Askarov and Sabelfeld introduce the gradual release model [28, 29] where
attackers knowledge is modeled as equivalence relations on input states. A verifica-
tion technique based on security type systems and monitors is used to verify gradual
release for a while language with inputs and and outputs. Other language-based
approaches have been used to characterize the attackers power or the declassified
information, by means of partial equivalence relations [201] or abstract interpreta-
tions [119]. We believe [38] that our epistemic framework can nicely capture these
approaches and move a step closer to their verification.

5.8 Conclusion

In this paper we have considered the verification problem for noninterference and
declassification policies expressed as formulas in epistemic logic. We have used
concolic testing (a mix of concrete and symbolic execution) to obtain an abstract
model of the original program such that the verification problem for the epistemic
logic is brought within scope of current SMT solvers. This is done by reducing the
problem of verification of noninterference and declassification into the satisfiability
of a formula that contains variables in existential form only. As showed by the case
studies our approach is quite elegant and able to handle tricky cases of information
flow, even for programs of non-trivial size. The ENCoVer prototype performs a
precise sensitive global analysis and relies on a clear separation between security
policy and program text. ENCoVer indicates that recent advances in SMT solving
can be combined with symbolic techniques to reduce false alarms and scale up to
real software for the case of information flow analysis. Moreover we have showed
how to transform the model generated by concolic testing as an interpreted system,
which can be subsequently used to for epistemic model checking.

Limitations and Future Work Many limitations of the approach we put for-
ward are due to constraints imposed by the tools used for implementation. On the
other hand, the class of programs we can certify automatically is still of interest,
as shown by the experiments.

Assuming that inputs are read at the start of program execution rules out a
class of reactive programs that receive inputs during the execution [57, 182]. One

158
CHAPTER 5. ENCOVER: SYMBOLIC EXPLORATION FOR

INFORMATION FLOW SECURITY

way to overcome this restriction is to rewrite the original program to an equivalent
one that reads all inputs prior to execution start and uses them as needed. This
can be done for the class of interactive deterministic programs [80]. In particular,
one can rewrite the original program by replacing internal inputs with a dummy
output operation and introducing a fresh variable which is read in the beginning
of execution. A more general account of interactive programs must take attacker
strategies into account [182].

Another limitation is that our tool only supports a bounded model of runtime
behavior. Automatic invariant generation techniques may be integrated with EN-
CoVer to speed up the analysis and overcome this limitation.

A further issue concerns the background arithmetic theories that the SMT solver
is able to handle. Currently Z3 works well with linear arithmetics, while non lin-
ear constraints are not handled [98]. Consequently, it becomes crucial to apply
abstraction techniques, e.g. predicate abstraction [34], when the path conditions
represent as non-linear constraints. Moreover performing modular verification at
level of Java methods, would improve performance at cost of losing the precision
that global analysis provides. We plan to address these techniques in the future.

Acknowledgements. The authors would like to thank the anonymous review-
ers, as well as the participants to the Åre workshop, for their helpful comments.
This work was partially supported by the EU-funded FP7-project HATS (grant №
231620).

Chapter 6

Automating Information Flow
Analysis of Low Level Code

Musard Balliu and Mads Dam and Roberto Guanciale

Abstract

Low level code is challenging: It lacks structure, it uses jumps and sym-
bolic addresses, the control flow is often highly optimized, and registers and
memory locations may be reused in ways that make typing extremely chal-
lenging. Information flow properties create additional complications: They
are hyperproperties relating multiple executions, and the possibility of inter-
rupts and concurrency, and use of devices and features like memory-mapped
I/O requires a departure from the usual initial-state final-state account of
noninterference. In this work we propose a novel approach to relational ver-
ification for machine code. Verification goals are expressed as equivalence of
traces decorated with observation points. Relational verification conditions
are propagated between observation points using symbolic execution, and dis-
charged using first-order reasoning. We have implemented an automated tool
that integrates with SMT solvers to automate the verification task. The tool
transforms ARMv7 binaries into an intermediate, architecture-independent
format using the BAP toolset by means of a verified translator. We demon-
strate the capabilities of the tool on a separation kernel system call handler,
which mixes hand-written assembly with gcc-optimized output, a UART de-
vice driver and a crypto service modular exponentiation routine.

6.1 Introduction

The ultimate goal of information flow analysis is to establish confidentiality and
integrity properties of real code executing on commodity CPUs. In the literature,

159

160
CHAPTER 6. AUTOMATING INFORMATION FLOW ANALYSIS OF LOW

LEVEL CODE

normally this problem is addressed at the source code level. There it may be more
forgiving to ignore messy low level problems, e.g. regarding timing, complex control
flow, or hardware specifics. Also, one may appeal to special compilers that avoid
difficult optimizations, or work around machine features such as caching, instruction
reordering, concurrency, I/O, interrupts, bus contention and so on, that are difficult
to handle in a precise manner.

Sometimes, however, source level analysis is less suitable. This is certainly
the case when dealing with third-party code, but it applies in other cases too, for
instance, for heavily optimized or obfuscated code, and for kernel handler routines
that manipulate security sensitive peripherals such as privileged processor registers,
MMUs, and bus and interrupt controllers.

The literature has two “standard” approaches to information flow control (IFC)
for low level languages: (a) For static verification, most authors, cf. [168, 53], have
attempted to reimpose typing and high level structure at the assembly or byte code
level, in order to reuse standard type-based techniques for high level languages.
For instance, [168], uses this approach for typed assembly language, and [53] takes
a related approach to Java bytecode. (b) Most work, however, has focused on
dynamic techniques, often using some combination with static analysis to generate
labels, or tags, to help minimize the dynamic overhead, cf. [61, 137, 210, 153, 32].
For instance, [32] proposes a machine architecture with hardware-supported tag
propagation to support dynamic information flow tracking.

Neither of these schools are very helpful, though, when it comes to the problem
we have set out to study: Information flow analysis for low level code on com-
modity processors. In this domain, existing static approaches are too imprecise
due to lightweight (data/flow/path/timing-insensitive) analysis, while dynamic ap-
proaches suffer from the well known problem of label creep and introduce undesired
runtime overhead [197]. Security testing-like techniques [180, 31], which we discuss
later, provide impressive results in terms of scalability, however, they are in general
unsound and can not directly be used for full verification.

Instead we propose to directly verify relational (i.e. information flow) properties
at machine code level, leveraging as much as possible recent progress on low level
code analysis tools such as BAP [62], McVeto [213], Vine/BitBlaze [208]. Code for
our target machine, ARMv7, is first lifted to a machine-independent intermediary
form, BIL, using the BAP tool [62]. This process uses a lifter that is produced from
the Cambridge HOL4 model of ARMv7 [135]. This allows the reuse and extension of
BAPs program verification back end to symbolically execute the resulting BIL code.
We use this to first perform unary analysis and then verify relational properties by
propagating relational preconditions through each of a pair of related programs
until a pair of observation points are reached, that need to be matched, in order
for the relational property to hold. These observation points are memory write
events, to locations that are statically determined to be observable by some external
agent, because of multithreading, or memory-mapped I/O, or for some other reason.
Matching is done by SMT solving using STP [118], on formulas that tend to grow
huge, but generally rely only on linear arithmetic, uninterpreted functions, and

6.1. INTRODUCTION 161

arrays, and so are not too costly to check. Special care is needed for memory
accesses which introduce quantifier alternation, hence we propose an instantiation
technique which ensures the resulting formulas are quantifier free.

Three distinguishing features make our information flow analysis both useful and
challenging: loop invariants, timing and traces. Loops are handled using (relational)
invariants/widening. We point out that relational invariants can be significantly
simpler than state invariants as they may not require proving functional correctness
of the loop. Our case studies show that the invariants we provide are conjunctions
of linear equalities, which, as shown in recent work [206], can be generated auto-
matically. Timing is particularly critical. The timing information is included in the
symbolic state and propagated with the other constraints. The model used here
scales to functional cost models, i.e. models where the timing cost can be calculated
as function of the input instruction, independent of the history. This is evidently
realistic only for simple processor architectures such as ARM Cortex-M (but we
note that a vast number of such processors are in use today in critical control ap-
plications). Richer and tractable timing models that can take into account also
features like caches and instruction pipelines are, however, currently not available
at ISA level, and we leave this for future work. Finally, the trace-based analysis
broadens the number of target applications handled by our technique, including
preemptive environments and scheduling.

We are the first to admit that the approach will suffer from scalability prob-
lems, for instance due to path explosion, and due to the generally complex and
detailed machine state. However, our primary application is separation kernel han-
dler verification, and this domain is generally characterized by critical machine code
fragments that are rather small (generally under 1K instructions per handler), but
also tricky. The case studies reported in this paper are based on syscall handlers
and device drivers of slightly more than 250 lines of ARMv7, produced by a mix of
hand-crafted assembly and GCC-optimized C.

Overall, this paper makes both theoretical and practical contributions. On the
theoretical side, we present a novel approach for formal relational machine code
verification, with focus on information flow security properties. The combination
of unary and relational analysis makes our approach appealing for precise security
analysis of machine code. We provide a new angle with the inclusion of timing
information into the state and with the invariant handling which ensures a nice
compositional property over traces. On the practical side, we present the first
automated toolset for information flow analysis of ARMv7 binaries. We exercise the
tool on non-trivial case studies including separation kernel syscalls, device drivers
and crypto routines. For a more thorough discussion of related work, please refer
to Sect. 6.8.

162
CHAPTER 6. AUTOMATING INFORMATION FLOW ANALYSIS OF LOW

LEVEL CODE

6.2 Threat Model and Security

In our target applications, trusted and untrusted agents share and control parts
of the system memory. Our goal is to ensure that the only information channels
connecting agents to each other are the intended ones. These intended channels
can be shared buffers, network connections, or specific communication devices such
as the message sending syscall handler considered later in the case study. They can
also be memory-mapped devices connecting agents to the external world such as a
UART device. In the special case where channels form the usual security lattice, the
goal reduces to classical Goguen-Meseguer information flow [122], which requires
the state of the untrusted program be unaffected by the state of the trusted one.

We use the ARMv7 program in Fig. 6.1 to elucidate our threat model. The
program loads a memory pointer from the address 2048 into the register R3. Subse-
quently, the memory referenced by the pointer is updated three times. The program
always terminates with the following effect on the system state: (i) the memory
pointer is loaded into the register R3, (ii) the registers R1 and R2 are updated to
zero (lines 0x110 and 0x118), (iii) the “zero flag” Z is enabled (the instruction at
line 0x110 contains the S suffix, thus overriding Z according to the result of the
executed arithmetic operation [23]) and (iv) zero is written (line 0x114) into the
memory referenced by the pointer.

0x0f4 MOV R2, #0
0x0f8 LDR R3, [PC+#0x700] //2048
0x0fc STR R2, [R3]
0x100 LDR R1, [PC+#0x2f8] //1024
0x104 ADDS R1, R1, R2
0x108 MOVEQ R2, #1
0x10c STR R2, [R3]
0x110 MOVS R2, #0
0x114 STR R2, [R3]
0x118 MOV R1, #0

Figure 6.1: ARMv7 Program

Assume that the system memory from address 0 to 2047 contains the state of
a trusted agent and that the remaining part of the memory contains the state of
an untrusted agent. If an observing agent is not able to access its own memory
while the program is executed, then the above program can be considered secure,
since after termination the state of the untrusted agent is unaffected by the state
of the trusted one. However, in several scenarios this requirement is not satisfied:
(i) the observer controls a device that is mapped to a memory area that belongs
to the untrusted agent, (ii) the code is interrupted and scheduled in a preemptive
environment, (iii) memory stores have side effects, or (iv) the code is executed in a
multi-core setting.

6.2. THREAT MODEL AND SECURITY 163

In all these cases, a departure from the usual initial-state final-state account
of noninterference is required. In particular, all updates to the untrusted memory
(e.g. lines 0x0fc, 0x10c and 0x114) can be monitored by the attacker and reveal
secret information. Hence our example program can not be considered secure. In
fact, depending on the content of the memory of the trusted agent, the assembly
fragment can have the following executions:

1) If the memory at address 1024 is zero (line 0x100) then (i) the instruction
0x104 enables the flag Z, (ii) the instruction 0x108 updates the register R2 to 1, (iii)
thus the address referenced by the pointer is updated three times, with the values
0, 1 and 0, respectively.

2) Otherwise (i) the instruction 0x104 disables the flag Z, (ii) the instruction
0x108 has no effect, (iii) thus the memory referenced by the pointer is updated
three times, always with the value zero.

Consequently, an attacker capable of observing the relevant memory state will
in one case see the referenced memory location flicker, and in another case not. The
security condition must prevent this phenomenon.

In this paper we work with observational determinism [166], defined as follows.
Assume a set of configurations C and a transition relation→ ⊆ C×C . An execution
is a maximal finite or infinite sequence

π = C0 → · · · → Cn → · · · (6.1)

of configurations related by the transition relation. The initial configuration of
π in (6.1) is C0. A transition may give rise to an observation obs. In our case,
observations are timed writes to observer readable memory. An observation trace,
or just trace, trc(π), of π extracts from π the sequence of observations produced by
π. The traces π1 and π2 are then trace equivalent, if trc(π1) = trc(π2).

Since we assume a concept of observer readable memory, it makes sense to define
the relation C ≡ C ′ by requiring that the observer readable memory of C and C ′

are the same. This is the familiar notion of observational, or low configuration
(state) equivalence. We can then proceed to define observational determinism.

Definition 6.2.1 (Observational Determinism) A set P of executions π is ob-
servational deterministic, if for any pair of executions π1, π2 ∈ P with initial con-
figurations C1 and C2, respectively, if C1 ≡ C2 then π1 and π2 are trace equivalent.

Observational determinism works well for a class of nondeterministic programs,
and it is preserved under refinement [166]. In particular it avoids the quantifier
alternation in bisimulation-oriented unwinding conditions. To be accurate, obser-
vational determinism presupposes that all nondeterminism can be relegated to the
initial state. This is true in our case. However, observational determinism is less
suitable when alternation is essential, for instance in the case of strategic reasoning.

164
CHAPTER 6. AUTOMATING INFORMATION FLOW ANALYSIS OF LOW

LEVEL CODE

6.3 Machine Model

For the theory development we consider deterministic programs written in a simple
machine language (SiML) with the following instruction syntax

ι ::= reg := exp | cjmp(exp, exp, exp) | assert(exp)
| assume(exp) | store(exp, exp) | halt

exp ::= load(exp) | bop(exp, exp) | reg | PC
| uop(exp) | v

There are registers reg ∈ Reg , the program counter PC and values v∈Val that
are, for simplicity, taken as primitive. Instructions include register assignments,
memory stores, conditional jumps, assertions, assumptions, and halt. Expressions
include unary and binary operations on constants, register lookups, and memory
loads.

A SiML program is evaluated in the context of a register state ∆ : Reg 7→ Val, a
program counter pc ∈ Val and a memory state µ : Val 7→ Val. We assume a SiML
programs be non-self modifying, thus instructions are stored in a separate instruc-
tion memory Π : Val 7→ ι which is usually addressed via the program counter. The
instruction memory is a total function and we assume that for each possible address
v outside the executable part of the memory Π(v) = assert(0). A configuration
C is either a tuple (Π,∆, µ, pc, t) of instruction memory, register state, data mem-
ory, program counter and current execution time t ∈ N, or an error configuration
⊥, used to handle failing asserts. The transition relation has the shape C → C ′

where C 6=⊥. SiML is a subset of the BAP Intermediate Language (BIL), which
is used for lifting the ARMv7 binaries. We refer to [63] for a complete definition
of the operational semantics of BIL. Instructions and expressions are evaluated in
the context of a configuration. For instance, the assignment reg := exp assigns to
register reg the value of exp, the conditional jump cjmp(e1, e2, e3) transfers control
to e2 if e1 is true (non-zero), otherwise to e3. The assert(b) statement termi-
nates the program abnormally if b is false, otherwise it has no effect on the state,
the store(e1, e2) stores the value of e2 at memory location e1 and the expression
load(e1) loads the value at location e1. We distinguish between normal and ab-
normal executions. A normal execution, if it ever terminates, executes halt as the
last instruction. Otherwise the execution is abnormal and terminates in the error
configuration ⊥. The length of π is len(π), the i -th configuration of π is π(i),
ι(π, i) = Π(pci), pc(π, i) = pci , and t(π, i) = ti . A modelM consists of the set of
executions π induced by some set of initial configurations C0.

Our target applications require reasoning about the execution time of the pro-
gram. The timing behavior is highly architecture-dependent and is in general very
difficult to capture accurately. In this paper we work with a functional time model
τ : ι → N which assigns a fixed parameter-dependent cost to each instruction.
That is if we have (Π,∆, µ, pc, t) → (Π,∆′, µ′, pc′, t ′) then t ′ = t + τ(Π(pc)). For
instance, the execution time of a load instruction will depend on the number of

6.4. UNARY SYMBOLIC ANALYSIS 165

bytes to load from the memory. Under these assumptions, the execution time is
history-independent and the timing model is deterministic.

6.4 Unary Symbolic Analysis

We reason about the behavior of a program by means of forward symbolic analysis.
The analysis allows us to build a logical formula, which corresponds to multiple
program executions, and leverage first-order reasoning to statically prove program
properties. The program is executed on symbolic inputs and, consequently, the
state is also symbolic. Initially, registers are mapped to fresh variables, the memory
is a variable representing an uninterpreted function and the program counter is a
constant. We use exps and es to range over symbolic expressions, which are built
over these initial variables and constants using the standard machinery and have
either type memory or type value. In particular, if exps is a memory expression
and exps

1 and exps
2 are expressions of type value, then exps(exps

1) is an expression
of type value representing the lookup of exps

1 in exps , and exps [exps
1 7→ exps

2] is a
memory expression representing the corresponding update.

A symbolic state is a tuple Σs = (∆s , µs , pc), where ∆s maps registers to
symbolic expressions, µs is a symbolic memory expression and pc is the concrete
value representing the program counter. A symbolic configuration C s is a tuple
(Π,∆s , µs , φ, pc, t), which extends a symbolic state with a path predicate φ, the
instruction memory Π and the execution time t . The path predicate φ, also path
condition, is a symbolic boolean expression built over the initial variables and con-
strains the set of concrete initial states that execute the path. Usually, the path
condition of the initial configuration entails the program preconditions.

Forward symbolic semantics is given by the transition rules on symbolic config-
urations depicted in Fig. 6.2. Here, we use ∆s , µs ` exp ⇓ exps to represent the
symbolic evaluation of an expression exp in the context (∆s , µs). For instance, if
∆s , µs ` exp ⇓ exps then ∆s , µs ` load(exp) ⇓ µs(exps). Notice that, since we
assume non-self modifying code, we omit the constant instruction memory Π from
the rules and the time is increased independently of the processor state. The cjmp
rules evaluate the jump target in the current symbolic state and then update the
program counter and the path condition depending on whether the jump condi-
tion is satisfiable. The jump target can be a symbolic expression which requires
to resolve all possible targets in the current context. This can be addressed by
enumerating all concrete jump targets that are consistent with the path condition,
for example using a decision procedure that returns all satisfying assignments of
the formula φ′ in state Σs . Another complication arises when considering memory
load and store operations. Memory addresses can be symbolic as reported in the
rules for load and store instructions. This would require to evaluate the sym-
bolic expression in the context of a symbolic state and a path predicate φ, and
then compute all concrete addresses as for the cjmp rules. This process can in
general be infeasible due to the huge amount of possible concrete addresses at a

166
CHAPTER 6. AUTOMATING INFORMATION FLOW ANALYSIS OF LOW

LEVEL CODE

Π(pc) = cjmp(e1, e2, e3) ∆s , µs ` e1 ⇓ es
1 φ′ = (φ ∧ es

1 6= 0)
∆s , µs ` e2 ⇓ pcs φ′ ∧ (pcs = pc′) consistent

(∆s , µs , φ, pc, t) → (∆s , µs , φ′, pc′, t ′)

Π(pc) = (reg := e) ∆s , µs ` e ⇓ es

(∆s , µs , φ, pc, t) → (∆s [reg 7→ es], µs , pc + 1, t ′)

Π(pc) = store(e1, e2) ∆s , µs ` e1 ⇓ es
1 ∆s , µs ` e2 ⇓ es

2

(∆s , µs , φ, pc, t) → (∆, µs [es
1 7→ es

2], φ, pc + 1, t ′)

Π(pc) = assume(e) ∆s , µs ` e ⇓ es φ′ = (φ ∧ es 6= 0)

(∆s , µs , φ, pc, t) → (∆s , µs , φ′, pc + 1, t ′)

Π(pc) = cjmp(e1, e2, e3) ∆s , µs ` e1 ⇓ es
1 φ′ = (φ ∧ es

1 = 0)
∆s , µs ` e3 ⇓ pcs φ′ ∧ (pcs = pc′) consistent

(∆s , µs , φ, pc.t) → (∆s , µs , φ′, pc′, t ′)

Π(pc) = assert(e) ∆s , µs ` e ⇓ es |= (φ ⇒ es 6= 0)

(∆s , µs , φ, pc.t) → (∆s , µs , φ, pc + 1, t ′)

Π(pc) = assert(e) ∆s , µs ` e ⇓ es 6|= (φ ⇒ es = 0)

(∆s , µs , φ, pc, t) →⊥

Figure 6.2: Symbolic Semantics of Instructions, where t ′ = t + τ(Π(pc))

given point, most of which will be irrelevant to the final analysis. The solution we
adopt in Fig. 6.2 is to propagate the symbolic expression and postpone the address
resolution when needed. The assert rules use a first order oracle to decide the va-
lidity of the asserted expression, while the assume rule propagates the constraint
as expected. Another problem that arises with the proof system is the possible
nontermination due to unbounded loops, which we tackle by providing invariants,
as discussed later.

The correctness of forward symbolic execution can be justified in terms of the
strongest postcondition transformer [103]. We start with a SiML program Π and
a property vector F , both having the same length. The property vector assigns
to each program location l a formula Fl , which represents a property of execu-
tions reaching l . The strongest postcondition vector sp(Π,F) consists of entries
sp(Π,F)l representing the pointwise strongest, i.e. smallest, condition which guar-
antees that, when property Fj holds in the prestate and control passes from in-

6.5. RELATIONAL SYMBOLIC ANALYSIS 167

struction j to l , then sp(Π,F)l holds in the poststate. The construction uses the
iterator spstep(ι, φ, j , l) which handles the case of control transfers from j , with φ
holding at j , to l , with ι the instruction being executed. The sp function is point-
wise monotone, and hence, using standard techniques, the largest cumulative fixed
point Flim satisfying Flim = sp(Π,Flim) v Finit can be obtained from an initial
property vector Finit . The iterative computation is evidently not guaranteed to
terminate, but, by choosing the Finit vector in an intelligent way and providing
invariants, it is in fact possible to compute sp(Finit) in many concrete situations
[93], even for programs with convoluted control flow.

6.5 Relational Symbolic Analysis

We now turn to the relational analysis for proving information flow properties
defined in the previous sections. The main idea is to perform forward symbolic
execution on a pair of programs and verify the information flow relation at each
observation point.

6.5.1 Symbolic Observation Trees

The threat model assumes the attacker has access to part of the memory, can ob-
serve any store on his memory addresses and count the time elapsed up to the
point where an observation occurs. The symbolic analysis accounts for the obser-
vation points, which are represented as symbolic constraints. We use a predicate
PO to define the range of the observable memory addresses. For instance, in Ex-
ample 6.1, the untrusted agent has assigned memory addresses higher than 2K, i.e.,
PO(v) = v ≥ 2048, hence an explicit enumeration is quite expensive. Tracking
dependencies on observable memory is tricky because the store instructions can be
symbolic and thus potentially write to both observable and unobservable addresses.
Therefore it is necessary to distinguish between observable stores, which affect the
attackers state and unobservable stores, which do not affect the attackers state. We
solve the issue by forking the symbolic execution engine each time we consider a
store instruction. As reported in Fig. 6.3, we first evaluate address exp1 and expres-
sion exp2 in the symbolic context, and then distinguish between stores at observable
addresses and stores at unobservable addresses. The predicate PO partitions the
symbolic execution into one branch where the store is always observable and one
where the store is always unobservable. This process is important to guarantee the
correctness of the entire approach.

The first rule captures the paths where the store instruction only affects ob-
servable addresses and thus is relevant for the subsequent security analysis. The
second rule captures the paths where the store instruction affects the unobservable
addresses, hence the analysis proceeds normally. The first rule is used to extract a
symbolic observation tuple.

168
CHAPTER 6. AUTOMATING INFORMATION FLOW ANALYSIS OF LOW

LEVEL CODE

Π(pc) = store(exp1, exp2) ∆s , µs ` exp1 ⇓ exps
1 ∆s , µs ` exp2 ⇓ exps

2

(∆s , µs , φ, pc, t) → (∆, µs [exps
1 7→ exps

2], (φ ∧ PO(exps
1)), pc + 1, t + τ(Π(pc)))

Π(pc) = store(exp1, exp2) ∆s , µs ` exp1 ⇓ exps
1 ∆s , µs ` exp2 ⇓ exps

2

(∆s , µs , φ, pc, t) → (∆, µs [exps
1 7→ exps

2], (φ ∧ ¬PO(exps
1)), pc + 1, t + τ(Π(pc)))

Figure 6.3: Observable and Unobservable Stores

Definition 6.5.1 (Symbolic observation) Consider a
symbolic configuration C s = (Π,∆s , µs , φ, pc, t) such that Π(pc) = store(exp1, exp2).
Then a symbolic observation is the tuple obs = (φ, exps

1, exps
2, t) obtained after ap-

plying the first rule in Fig. 6.3.

Intuitively, a symbolic observation captures how the concrete executions, starting
from initial states that satisfy φ, affect the observable memory when they reach
control point pc. This is done by recording the execution timestamp t and the
possible values (exps

2) stored in each observable address (exps
1).

Alg. 2 tracks all symbolic observations occurring in the program by building
a symbolic observation tree for a starting configuration C s

0 and a range predicate
PO . We use fse to represent all configurations produced in one step by the unary
analysis described in Sect. 6.4. In particular, we assume that for store instructions,
the first element of the output of fse corresponds to the first rule in Fig. 6.3 (which
uses PO). The procedure evaluates program instructions one by one and creates a
tree node each time it reaches an observable store (line 10). The algorithm starts
with the tree root T.Start, the observation range predicate PO and the worklist
containing the initial configuration C s

0 . For each statement, the algorithm updates
the symbolic states by calling fse (line 7 and 17). We discard all symbolic states that
have a non feasible path (line 5). When considering a store (line 6-13), the symbolic
execution applies the rules in Fig. 6.3 and potentially produces an observable state
C s

o and an unobservable state C s
u . If C s

o is feasible, (line 9), the algorithm creates
a new node containing the symbolic observation and attaches it to the current tree
node. Subsequent observations will be attached to the freshly created node. If a
halt statement is reached (line 14-15), the current branch is terminated, else the
worklist is updated with all symbolic states obtained by executing the non-store
instruction (line 16-19).

We prove correctness of Alg. 2 only for bounded programs and discuss gen-
eralizations in Sect. 6.5.4. In a nutshell, we show that the tree produced by the
algorithm contains all the information needed to verify the security of the original
program Π. The symbolic observation tree T contains the observation traces in-
duced by the model of Π. Given a concrete initial configuration C0, the trace is
extracted by considering a path in T (the node sequence from Start to End) such
that C0 satisfies all path predicates and the observation trace is obtained by the

6.5. RELATIONAL SYMBOLIC ANALYSIS 169

Algorithm 2 Program to Symbolic Observation Tree

INPUT: Predicate PO , C s
0

OUTPUT: Tree T
1. W := [(C s

0 , createNode(Start))]
2. While W 6= ∅
3. pop (C s ,T) from W
4. (Π,∆s , µs , φ, pc, t) := C s

5. If φ is satisfiable
6. If Π(pc) == store(e1, e2)
7. (C s

o ,C
s
u) := fse(C s ,PO)

8. (Π,∆s
o , µ

s
o , φo , pco , to) := C s

o

9. If φo is satisfiable
10. TreeN := createNode(obs(φo , (∆s , µs ` e1),

(∆s , µs ` e2), to))
11. push TreeN to T.children
12. push (C s

o ,TreeN) to W
13. push (C s

u ,T) to W
14. Else If Π(pc) == halt
15. push createNode(End) to T.children
16. Else
17. for C s

1 ∈ fse(C s ,PO)
18. push (C s

1 ,T) to W

evaluation of symbolic observations in C0, for each node along the path.

Theorem 6.5.1 Consider a SiML program Π and the corresponding symbolic ob-
servation tree T . Then, the set of observation traces of the model MΠ of Π and
the set of observation traces of T are the same.

6.5.2 Relational Analysis
Relational analysis relates two symbolic observations by means of a relation Ψ
which we call a connector. A connector Ψ is a predicate over free variables of the
symbolic observation pair. In our setting, the connector Ψ forces the equality of
initial observable parts of the memory. Moreover, the connector can cope with
declassification policies with no additional effort [38]. Indeed, one can refine the
initial state indistinguishability relation in Def. 6.2.1 and Ψ, accordingly, to express
the declassification policy.

Definition 6.5.2 (Relational Validity) Consider obs1 = (φ1, e
s
1,1, e

s
1,2, t1) and

obs2 = (φ2, e
s
2,1, e

s
2,2, t2), two symbolic observations, and a connector Ψ. The triple

170
CHAPTER 6. AUTOMATING INFORMATION FLOW ANALYSIS OF LOW

LEVEL CODE

(obs1, obs2,Ψ) is relationally valid if

R := (Ψ ∧ φ1 ∧ φ2 ∧ PO(es
1,1) ∧ PO(es

2,1))⇒
(es

1,1 = es
2,1 ∧ es

1,2 = es
2,2 ∧ t1 = t2) is valid

Relational validity is a key property for enforcing the security condition over traces.
It basically states that a pair of symbolic observations is secure if for any execution
pair which initially agrees on observable memory (enforced by the connector Ψ) and
reaches the observable program points (enforced by the path conditions φ1, φ2), if
the stores are performed on observable memory (enforced by PO(es

1,1),PO(es
2,1)),

then they write the same values (es
1,2 = es

2,2) at the same observable addresses
(es

1,1 = es
2,1) at the same time (t1 = t2). This implies that the observable memory

is not affected by changes on the secret memory, hence the program is secure wrt.
that observation pair.

Relational symbolic analysis on symbolic trees is described in Alg. 3. The al-
gorithm takes as input a tree T , a copy T ′ with all variables renamed and a
connector Ψ which defines the relation between variables, in the usual style of self-
composition [51]. It then calls the procedure ValidityCheck which visits the tree
per levels and checks relational validity for each observation pair (the Cartesian
product on sets of nodes T (l) and T ′(l) in line 1-2). It is worth noting that the
End node is considered as a special observation, which corresponds to normal ter-
mination. A first order oracle is used to determine the validity of the condition R.
If R is not valid, the oracle returns a counterexample. This corresponds to a pair
of concrete initial states giving rise to a pair of concrete executions that falsify the
security condition, i.e. a security attack. Otherwise, if all pairs are valid for all
levels, then the program is secure.

Theorem 6.5.2 (Tree Security) Let T be a symbolic observation tree and MT

the set of observation traces associated with T . Then MT is observational deter-
ministic if Alg. 3 returns Valid in line 6.

Theorem 6.5.3 (Security) Let Π be an SiML program and T the symbolic ob-
servation tree obtained by running Alg. 2 on Π . Let also Alg. 3 return Valid on
input T and connector Ψ. ThenMΠ is observational deterministic if Alg. 3 returns
Valid in line 6.

Example 6.5.1 We demonstrate our approach using the program in Fig. 6.1 and
omit the equivalent SiML program. Suppose all memory addresses higher than 2KB
are observable by the attacker. That is PO(v) = (v ≥ 2048). Algorithm 2 yields
the symbolic observation tree depicted in Fig. 6.4. Each root-leaf path represents
observation traces of the program. The first branch is introduced by the line 7 of
the algorithm: the left path is taken if the address updated by instruction 0x0fc is
observable, otherwise the right path is taken. The second branch is introduced by
the conditional instruction 0x108, which updates the register R2 only if the content

6.5. RELATIONAL SYMBOLIC ANALYSIS 171

Algorithm 3 Relational Verification on SOTs

INPUT: Symbolic Tree pair T, T’, Connector Ψ
OUTPUT: Secure or Insecure + Attack
1. level := l
2. Call ValidityCheck(T(l), T’(l), Ψ)

ValidityCheck(T(l), T’(l), Ψ)
1. For all (TreeN, TreeN’) in T(l) × T’(l)
2. ((φ1, e

s
1,1, e

s
1,2, t1), (φ2, e

s
2,1, e

s
2,2, t2)) :=

(TreeN.obs, TreeN’.obs)
3. A := Valid(Ψ ∧ φ1 ∧ φ2 ∧ PO(es

1,1) ∧ PO(es
2,1))⇒

(es
1,1 = es

2,1 ∧ es
1,2 = es

2,2 ∧ t1 = t2))
4. If Invalid(A) return Insecure, A
5. ValidityCheck(T(l+1), T’(l+1), Ψ)
6. return Valid

of the memory at the address 1024 is zero (since the instruction contains the EQ
suffix).

Figure 6.4: Symbolic Observation Trees

Suppose Alg. 2 has started with an initial symbolic configuration that bounds the
i-th register to the fresh variable Ri and the memory to the fresh variable M . The
observations introduced by the instruction 0x10c are obs2 and obs4 according to the
branch taken by the conditional instruction 0x108:

obs2 = ((M (R3) ≥ 2048 ∧M (1024) = 0),M (R3), 1)

172
CHAPTER 6. AUTOMATING INFORMATION FLOW ANALYSIS OF LOW

LEVEL CODE

obs4 = ((M (R3) ≥ 2048 ∧M (1024) 6= 0),M (R3), 0)

Algorithm 3 takes the symbolic tree T and a copy T ′ with all variables in sym-
bolic observations renamed, say obs ′i , and the connector Ψ. Assuming that the
registers R1 and R3 do not contain secret information, then Ψ := R1 = R1’ ∧ R3 =
R3’ ∧ (∀v .PO(v) ⇒ M (v) = M ′(v)). The symbolic tree has four levels (excluding
the root) and the Cartesian product leads to 16 cases to be considered (i.e. four for
each level).

We consider the second level of the tree and the corresponding observations
obs2 and obs4 and obs ′2 and obs ′4 as depicted in Fig. 6.4. In particular, R2,2 =
(Ψ, obs2, obs ′2) is relationally valid, while R2,4 = (Ψ, obs2, obs ′4) is not. For in-
stance, if R3 = R3’ = 2048, M (2048) = M ′(2048) = 2052, M (1024) = 0 and
M ′(1024) = 1 then R2,4 is false. In fact, the program writes into the observable
address 2052 different values depending on the content of the secret memory address
1024.

6.5.3 Instantiation

Relational validity requires proving the validity of the following predicate R =
(Ψ ∧ φ1 ∧ φ2 ∧ PO(es

1,1) ∧ PO(es
2,1))⇒

(es
1,1 = es

2,1 ∧ es
1,2 = es

2,2 ∧ t1 = t2) where the free variables can include the variables
used to represent the initial registers and memories (we write Ri , R′i , M and M ′

for registers and memories respectively). A connector Ψ is the predicate that forces
the (relational) equality of initial observable parts of the memory and the equality
of registers that do not contain secret information, that is Ψ := R1 = R′1 ∧ · · · ∧
(∀v .PO(v)⇒ M (v) = M ′(v)). The resulting formula is clearly not quantifier free,
hence it may result difficult for automatic theorem provers. This mainly depends
on the observable predicate PO which defines the range of observable addresses.
If the range is small, one can simply enumerate the addresses and introduce the
constraint Ψ =

∧
v∈PO (v)(M (v) = M ′(v)). Since this range can be up to 232

concrete addresses (i.e. 4GB), we extract from R all expressions that correspond
to memory accesses, M (e), and instantiate e for v in Ψ. This is recursively repeated
for e and for all expressions in R. Clearly, the number of such expressions can be
huge, but still bounded by the number of memory accesses in the program code.

We illustrate the instantiation process with an example. Let the R predicate
to contain the expression M (M (R1) + M (R2)), then the instantiation includes the
constraints (i) PO(R1) ⇒ M (R1) = M ′(R1), (ii) PO(R2) ⇒ M (R2) = M ′(R2)
and (iii) PO(M (R1) + M (R2)) ⇒ M (M (R1) + M (R2)) = M ′(M (R1) + M (R2)).
Namely, for all expressions in R which represent memory accesses, we generate a
constraint stating that if the address is observable, then the initial memory values
are the same. The constraints we generate are sufficient to conclude about relational
validity.

6.5. RELATIONAL SYMBOLIC ANALYSIS 173

6.5.4 Invariants

The approach presented so far may not terminate due to the unbounded loops that
might occur in the program. We handle this issue by decorating program loops with
loop invariants [93]. Let ΠLoop be the program slice corresponding to the loop and
let the loop be uniquely identified by a pair (pci , pce). We remove all back edges to
cut the loop, namely the edge from pce to pci and apply the transformations from
[46], which allow to cut the loop in a sound manner.

Proving invariants in this fashion is not sufficient for relational analysis. The
main reason is that the approach only accounts for state invariants and fails to
capture the number of observations that might be produced in each loop iteration.
Therefore, a naive application of invariants in Alg. 3 would be unsound. Moreover,
state invariants may require proving functional correctness of the loop. In fact, if
a variable is updated in the loop body and later it contributes to an observation,
the invariant must be sufficiently strong to identify the exact value of the variable.
This may not be needed for proving security, therefore we use relational invariants
which are in general simpler.

We propose a modification of Alg. 2 and Alg. 3, which is correct for programs
with natural loops [46] (no jumps escaping the loop body). The main idea is to
enforce relational invariants during the analysis of Alg. 3 and ensure that the loop
pair is executed the same number of times. This requires to prove that not only
the invariant but also the equivalence of the branch condition pair is preserved at
each iteration. We first modify Alg. 2 to create a tree TLoop , which consists of
the symbolic observation tree of the loop body, the branch condition B annotating
the root node and the symbolic configurations C s annotating the leaf nodes. The
tree TLoop is uniquely identified and represents an approximated model of traces
of ΠLoop . Similarly, non-loop trees are extended with the corresponding symbolic
configurations annotating their leaf nodes. As a result, we obtain a tree which can
be a normal tree, i.e. labeled with symbolic observations and symbolic states on
leaf nodes or a loop tree, which in addition contains the branch condition labeling
the root node. At this point, it is possible to generalize Alg. 3 to handle loops
by means of relational invariants Ψ. To illustrate this, consider a program P :=
P1; (while B do P2;)P3 and the corresponding trees T := T1; T2; T3 obtained as
described above. Let T , T ′ be the input tree pair to Alg. 3, Ψ1 be the initial
connector, and Ψ2 the relational invariant of the loop tree T2. As for traditional
invariant verification, we first check that the (relational) invariant Ψ2 holds before
the loop entry, i.e. Ψ1 ∧ C s

1 ∧ C
′s
1 ⇒ Ψ2, and it is preserved by the loop body, i.e.

Ψ2 ∧C s
2 ∧C

′s
2 ⇒ Ψ′2. This is done using the symbolic configurations C s

i , C
′s
i from

the leaves of the observation trees Ti ,T
′
i , where Ψ′i denotes the connector after the

execution of the pair (Ti ,T
′
i). In addition, we enforce that Ψ1 ∧C s

1 ∧C
′s
1 ⇒ (B ⇔

B ′) and Ψ2 ∧ C s
2 ∧ C

′s
2 ⇒ (B ⇔ B ′) to ensure that the loops are executed the

same number of times. Finally, Alg. 3 can be applied to the symbolic observation
trees (T1,T

′
1), (T2,T

′
2) and (T3,T

′
3), using the connectors Ψ1, (Ψ2 ∧ B ∧ B ′) and

(Ψ2 ∧ ¬B ∧ ¬B ′), respectively. Two different cases can be encountered during

174
CHAPTER 6. AUTOMATING INFORMATION FLOW ANALYSIS OF LOW

LEVEL CODE

a run of Alg. 3. If a pair of normal nodes is reached, the relational validity is
checked as before. If a pair of a loop node and a normal node is reached, they must
be inconsistent. These conditions make our approach compositional with respect
to observation traces. The process is repeated recursively for all pairs of nodes
and, if successfully verified, it guarantees the security condition in Def. 6.2.1. The
following example illustrates the relational verification of the UART driver routine
of a separation kernel. For sake of clarity, here we reason at the C level and describe
the case study more in detail later.

Example 6.5.2 This code snippet transforms a 32 bit integer n into a hexadeci-
mal number and, at each iteration, notifies the UART by updating three observable
addresses (line 8-10).

void printf_hex(uint32_t n) {
1. int h, i = 32 / 4 - 1;
2. do {
3. h = (n >> 28); n <<= 4;
4. if(h < 10) h += ’0’;
5. else h += ’A’ - 10;
6. usart_registers *usart0 = USART0_BASE;
7. while(usart0->tcr != 0){ ; }
8. buffer_out[0] = h;
9. usart0->tpr = (uint32_t)buffer_out;
10. usart0->tcr = 1;
11. }while(i--); }

The internal loop, which we discuss later, implements a polling routine on regis-
ter tcr, which is externally modified whenever the UART is ready to receive the next
digit. Let Ψ1 = (n = n’) be the initial connector relation and Ψ2 = (n = n’∧i = i’)
be the relational invariant of the external loop. The connector Ψ1 holds of line 1
by the assumption that n is low. Moreover no observations occur, hence the first
part is secure. The connector Ψ2 holds of the external loop (lines 11-2) since the
value of h written at the low address buffer_out[0] only depends on n, which is
low, while the next two observations are fixed constants. The loop iterates the same
number of times since the value of i is preserved by the relational invariant Ψ2.
Finally, the initial connector (n = n’) and the symbolic state pair at the loop entry
(i = i’ = 7) trivially entail Ψ2. Observe that if n were a secret location , then
Ψ2 = true, and the verification would fail. Indeed, it is possible an execution pair
goes through lines 4 and 5, and writes different values in buffer_out[0].

It is worth noting that the proposed verification approach ensures termination-
sensitive noninterference, even for time-insensitive attacker models. We didn’t find
the security condition restrictive in our case studies. However, for loops without
observations, one can relax the requirement on equal number of loop iterations and
ensure termination-insensitive noninterference.

6.6. PROTOTYPE IMPLEMENTATION 175

Figure 6.5: Verification process

6.6 Prototype Implementation

We implemented the relational analysis as a new back-end for the CMU Binary
Analysis Platform framework [62]. The analogies between the BAP Intermediate
Language (BIL) and SiML make the implementation of the prototype tool easier
after enforcing minor syntactical constraints over the input programs. For instance,
we do not allow multiple write accesses from a single instruction (i.e. each BIL
instruction that writes in the memory always updates 4 bytes). Implementing
the analysis as a new BAP back-end provided us several additional benefits: (i)
the resulting prototype tool is architecture independent, (ii) there exists a verified
transformer from ARMv7 assembly to BIL [93] and (iii) we can take benefit of the
existing exporters to SMT solvers. We had to reimplement the symbolic execution
engine of BAP v0.7 in order to handle our case studies. Variable substitution and
conditional jumps constitute the main sources of exponential blowup and thus need
special care. Fig. 6.5 depicts the workflow of the verification process. We start from
GCC compiled machine code and lift it to the BIL language. The resulting BIL
program is transformed into a single static assignment form (SSA) to enable efficient
symbolic analysis and avoid the expensive substitution operation. In addition,
several simplification and constant propagation routines have been implemented to
further speed up the analysis. Loop invariants are currently provided manually
and symbolic jumps are resolved statically. This phase produces the symbolic
observation tree as described in Alg. 2. Subsequently, the relational analysis module
generates quantifier-free formulas for a given pair of symbolic observation trees and
a connector relation, as described in Alg. 3. Finally, using existing BAP exporters,
the formulas are sent to the STP solver [118], which either validates the security
property or provides a counterexample which violates the policy.

In the worst case, the size of observation tree can be exponential due to the
well-known path explosion problem. We leverage standard optimizations such as
expression substitution and constant propagation to reduce the tree size when pos-
sible. In addition, one can make use of the CFG to further control the exponential
blow-up.

176
CHAPTER 6. AUTOMATING INFORMATION FLOW ANALYSIS OF LOW

LEVEL CODE

Software ARM BIL Tool SMT Mem SOT Sec
(LOC) (LOC) (Sec) (Sec) (Byte) (Nodes) (Y/N)

send syscall 80 1017 220 17 599M 31 Y
sender

send syscall 80 1017 220 16 599M 31 Y
receiver

send syscall 80 753 27 16 77M 31 N
sender 1

send syscall 80 1015 215 18 599M 31 N
sender 2

UART print char 13 100 1 1 85K 3 Y
UART print hex 32 305 5 1 29 M 7 Y
UART print bin 30 286 2 1 30M 7 Y
Exp. timing 19 151 1 1 319K 8 Y
Exp. timing 19 160 1 1 463K 7 N

Table 6.1: Experimental results

However, scalability issues are expected when fully verifying machine code. Con-
sider symbolic jumps or symbolic memory. A bug-finding tool would simply con-
cretize the symbols and continue the analysis. For verification one has to resolve all
possible concretizations or carry the symbolic constraints throughout the analysis.

6.7 Case Studies

The tool has been used to verify several programs. In all cases, the analysis has
been performed directly on the ARMv7-A machine code produced by the GCC
compiler. The benchmark of these experiments is summarized in Table 6.1. Among
other statistics we report the memory footprints and the number of SOT nodes to
get an understanding of how big a piece of code we can currently check. Here, we
summarize three case studies: (i) the IPC syscall of a separation kernel, (ii) a UART
device driver and (iii) a modular exponentiation routine used by crypto services.
The case studies are taken from real software. Our experience shows that small
programs (order of 1000s instructions) are perfectly reasonable in high assurance
contexts, and well within the reach of our tool with some standard engineering.

6.7.1 Case Study 1: Send syscall

The target separation kernel is a low level execution platform for ARMv7. The
kernel implements minimal functionalities and consists of 1028 machine code in-
structions, mixing hand written assembly with GCC optimized output. The kernel
must execute the partitions in isolation and control the communication appropri-

6.7. CASE STUDIES 177

ately. Each partition is allowed to access a non-overlapping part of the system
resources: (a) a contiguous part of the physical memory, that contains the parti-
tion’s executable and data, (b) the logical message box, stored in the kernel memory
and, (c) the virtual registers, which are stored in the kernel memory while the par-
tition is suspended, and are stored in the standard registers while the partition is
active.

The IPC mechanism is provided by the “send” syscall; first the active partition
(the sender) stores the message in the register R1 and raises a software interrupt,
then the kernel handler stores the message in the message box of the receiver and
restores the sender. While executing, the kernel backs up the sender’s CPU state
into its own memory and restores it when the syscall terminates. To appropriately
control the communication, the kernel must ensure that: (1) the sender infers no
information about the receiver and (2) the receiver only infers the content of sender’s
register R1 (the delivered message) and nothing more.

The above requirements have been verified by executing the relational analysis
of the “send” syscall twice; considering observable the resources allocated to either
the sender and the receiver. The resources allocated to the observing agent directly
drive the definition of the connector relation (consisting in 30 lines of statements).
Moreover, to take into account the designed declassification, the initial connector
guarantees that the value of R1 is equal in the two initial configurations. In the other
experiments, we have modified the preconditions to test the tool with non-secure
versions of the send syscall.

The absence of loop in the syscall freed us from defining the corresponding
invariants. We also took benefit from the existing results obtained by a previous
verification of functional correctness of the kernel: (i) the resolution of indirect
jumps, (ii) the identification of data structures invariants and (iii) the analysis of
constant parts of the memory.

These results reduced the set of reachable code of the syscall to 80 instructions
(which corresponds to reducing the BIL code from 10K lines to 1017 lines) and pro-
vided us the necessary handler precondition (consisting of 400 lines of statements).

6.7.2 Case Study 2: UART device driver

The UART (Universal asynchronous receiver/transmitter) is a hardware device
for communication over a serial interface. The driver is implemented in C and
resembles the functionality of the well known printf. We limit our verification to
the low level interface of the driver. Example 6.5.2 provides the C code that sends
to the UART a 32 bit integer in the form of an hexadecimal number. The function
contains two loops: the outer loop computes the eight hexadecimal digits of the
number, the nested loop polls on the device register tcr before writing the current
digit to the UART.

The function binary code consists of 32 instructions, that are lifted to 305 BIL
lines. Initially the parameter n is represented by the register R0 and the outer loop
uses the register R4 and R5 to store the variable n and i, respectively. Since the

178
CHAPTER 6. AUTOMATING INFORMATION FLOW ANALYSIS OF LOW

LEVEL CODE

UART delivers the written characters to the external world, we consider observable
the UART registers (64 bytes starting from USART0_BASE) and the DMA buffer (32
bytes starting from buffer_out). Moreover, since the input “must be sent” to the
UART, we consider non secret the initial value of R0.

We first verified the nested loop. This fragment polls on the device register
tcr, which is updated externally by the device driver. To emulate this external
effect on the system memory, we inline the behavior of the device in the loop body.
At each iteration a shadow variable tcrWait (which models an oracle knowing the
number of iterations needed by the UART to receive a message) is decremented
and tcr is resetted if the tcrWait value is zero. The given relational invariant
tcrWait=tcrWait’ states that the oracle provides the same answer in both exe-
cutions. The tool automatically checks that the relational invariant is preserved
and that the loop conditions are equivalent in both configurations. Notice that the
nested loop does not produce observations, thus its verification is required only to
guarantee termination sensitive noninterference.

Next we verify the outer loop. The relational invariant, R4=R4’ & R5=R5’ &
tcrWait=tcrWait’, states that the values of n, i and the oracle answer are con-
sistent in both configurations. The tool automatically checks that the relational
invariant is preserved, the loop conditions are equivalent, the nested loop invari-
ant is satisfied and the relational validity of the three observations (the update
of the output buffer and the two UART registers). The relational verification is
significantly simpler than the functional (total-)correctness of the loop; the rela-
tional invariant does not need to relate the values of n and i, the value of h is not
constrained and no variant is needed.

The last verification step must ensure that starting from the initial connector
Ψ, the condition of the outer loop is equivalent in both configurations and that the
outer invariant is established. The initial connector Ψ simply relates the integer sent
to the UART (the initial value of R0) and the content of the observable memory.
The tool spotted that without further preconditions the code is not secure: before
using the registers R3, R4 and R5 to represent the local variables, the function
pushes their initial (secret) values on the stack. This yields an non (relationally)
valid observation if the stack pointer is unconstrained.

6.7.3 Case Study 3: Modular exponentiation

The modular exponentiation routine is a simplified version of the case studies
in [171]. The authors provide two programs with the same functionality. The
insecure version branches on the secret boolean variable i, while the secure version
computes the results independent of the branch condition, stores them in an array
A, and returns A[i]. We point out that it is critical to verify this code at the
machine level, as the compiler can perform optimizations that break the security.

We assume the attacker can only observe the execution time of the two routines.
The elapse of time is modeled by a shadow variable, which is incremented for each
instruction, following the functional time model described earlier. The tool detects

6.8. DISCUSSION AND RELATED WORK 179

the control-flow side channel of the non-secure routine and validates the secure
one, even if we do not require program counter equivalence between every pair of
possible configuration.

6.8 Discussion and Related Work

Formal Verification of Low Level Code. Related kernel information flow
verification efforts have been reported recently by several authors. For instance,
[174] showed a noninterference property of the seL4 microkernel, essentially reduc-
ing to show absence of information flow from the scheduler to the next scheduled
thread state. Similarly, [92] established system-level information flow security of a
simple hypervisor at the level of ARMv7 assembly, by proving a trace equivalence
property with respect to an ideal model that reflects the isolation properties that
are desired of the hypervisor. Other machine code verification work includes the
work by Heitmeyer et al. [133] and a series of works on the INTEGRITY kernel
[190]. All these works use interactive theorem proving (ITP) techniques to establish
the desired security property and consequently require serious manual effort. By
contrast, this paper shows that automatic verification of small kernel routines is
possible with less effort. Formal verification of device drivers has been applied to
serial interfaces such as UART and USB devices. These works focus on functional
correctness and ignore information flow properties. Moreover, the verification task
is performed at C level [18, 172] or uses ITP [106].

Relational Verification. Relational program verification has been used to
prove non-functional properties such as compiler optimization correctness [51], pro-
gram equivalence [188, 183] and information flow security [52, 37, 149]. Neither
addresses verification at the machine level. Barthe et al. [52] introduce self-
composition as a method for checking 2-safety properties, including information
flow. A related paper [51] presents product programs as a mean for reducing rela-
tional verification to classical functional verification. Several authors have studied
algorithms for constructing and verifying over/under approximations of product
programs automatically using typing [212], abstract interpretation [149, 183] and
symbolic execution [37, 188, 206]. This work differs in several aspects. First, prior
works do not consider timing channels and trace-based observations, giving rise to
weaker security guarantees and simpler computational models. Second, we combine
unary and relational analysis to avoid the expensive construction of the product pro-
gram and reuse previously computed results. The unary analysis extracts necessary
program dependences, while the relational one performs the verification. Breadth
first search algorithms enable the alternation of these steps and allow efficient ver-
ification on the fly. As our case studies show, machine code verification requires
flow and path sensitive techniques due to register reuse and complex data/control
flow. Hence, compared to [149, 183], our techniques is more precise. Third, our
approach addresses additional complications due to the lack of support for data
structures. For instance, the secret state cannot be tied to program variables, and

180
CHAPTER 6. AUTOMATING INFORMATION FLOW ANALYSIS OF LOW

LEVEL CODE

it may depend on complex pointer arithmetic. Consequently, it is unknown a pri-
ori whether an instruction accesses a secret or public memory location. Recently,
Caselden et al. [69] presented a way to recover a hybrid information flow/control
flow graph using trace based analysis of machine code. This graph is used to find
paths that trigger a given vulnerability condition. We find this work relevant and
believe that their ideas can be applied to our setting and speed up the symbolic
execution. However, the technique requires structural knowledge which one may
not always have and ignores timing channels.

Timing. Eliminating timing channels by purely software approaches is diffi-
cult due to architecture dependent features such as caches, pipelines and more[15].
However, the timing constraints generated by our analysis can be used as a soft-
ware contract to be enforced by hardware features. Our execution time model is
history-independent and deterministic. We can not precisely represent the effect
of caches and pipeline data dependencies. However, we can verify absence of side
channels for simple architectures (e.g. ARM Cortex-M) or under the assumption
that the attacker is not able to access to information that are affected by the wall-
clock. Moreover, symbolic analysis provides memory access patterns which can be
later validated wrt. a given architecture model. The model is similar to [131],
which considers timing analysis for JavaCard-like bytecode. Molnar et al. [171]
introduce the notion of PC-security which can avoid control flow side channels for
crypto operations. Their security model can be easily accommodated in our work.
Several authors propose mitigation [230] and padding [16] techniques to address
timing channels. The results produced by our analysis are complementary to mit-
igation and padding. Indeed, they can be combined with mitigation to reduce the
leakage bandwidth or to enable the required padding. We point out that worst
case execution time is insufficient to verify that the execution time is independent
of the secret, although it can remove information flows using mitigation. Finally,
our model is suitable for systems where the external scheduler is instruction-based.

Loop Invariants. Finding loop invariants is definitely the most time consum-
ing verification task and, for tricky examples, this is inherited by our works as well.
However, relational invariants are in general simpler than functional invariants. We
only need to enforce that the loop pair has the same low memory effects, without
saying what these effects are. Recent work considers automatic generation of rela-
tional loop invariants for machine code using data driven techniques [206]. After
executing the programs a certain number of times, concrete memory and register
values are used to determine linear equality relationships between variables. Our
approach can be used to check if the inferred invariants are sufficient to enforce
equivalence for traces. The fact that we consider traces makes automatic invariant
generation harder since traces do not compose in general. In [203], Saxena et al.
introduce loop-extended symbolic execution which relates number of iterations of
different program loops. This can be used to make our trace analysis more precise,
although it was not needed in our case studies.

Security Analysis For Machine Code. Security analysis for machine code
is a well studied research area [33]. The majority of works focus on bug finding

6.8. DISCUSSION AND RELATED WORK 181

techniques for malware analysis, vulnerability checking, automatic exploit gener-
ation and more [180, 31, 72, 64]. Typically, they use typing, taint analysis or
lightweight symbolic execution to ensure good path coverage and still maintain
scalability. Other works take a more formal approach to machine code verification
[189]. All these approaches fail to capture the information flows considered in this
paper. Our focus is on full verification of small kernel handlers and device drivers.
We admit that scalability remains an issue for larger programs and the techniques
used by cited works can improve our tool.

Information Flow Analysis. Information flow has been pervasively applied
to software security using static and dynamic verification techniques [197, 153].
If applicable, security type systems (TS) would be very efficient. Unfortunately,
none of our case studies can be handled with TSs, at least not without significant
modification. There are several case where a TS approach would fail: (i) Low
observations are memory writes of shape M [Ri] = exp, hence dataflow analysis is
needed to determine the values of Ri to know which address is updated. (ii)TSs
don’t support low memory writes under high branches. (iii)Our case studies use
preconditions that guarantee certain invariants (describing the execution context).
Data/control flow analysis is needed to determine the observations enabled in those
contexts. (iv)Since traces do not compose in general, a global analysis through
the symbolic trees is needed. (v)Unreachable or semantically secure code is also
problematic for TSs. (vi)Declassification can be challenging and the timing analysis
may require the TS to perform symbolic computation.

The verification approach for trace-based information flow analysis of ARMv7
machine code is novel. We leverage symbolic execution to reduce relational verifi-
cation to automatic theorem proving of quantifier-free formulas. We are not aware
of any tool that performs full verification of information flows for machine code.

Self-Modifying Code. Our analysis requires the code to be non self-modifying.
For programs executed in user space this property is usually enforced at run-time by
the underlying OS, for instance by configuring as non-writable the virtual memory
containing the program code. On the other hand, privileged code can dynamically
change its behavior by writing into its instruction memory, changing the copro-
cessor registers that control the MMU or updating the page tables. Considering
these events as observable enables our analysis to verify that privileged code is
non self-modifying. This can be done by checking that the corresponding symbolic
observation tree is empty. It also enables the use of relational analysis for low
level code that does not reconfigure the memory layout, but it accesses protected
memory areas in privileged mode (e.g. the send syscall accesses the message boxes
stored in the kernel memory) or performs privileged instructions (e.g. the syscall
accesses the ARM banked registers to back up and restore the CPU context of the
interrupted partition).

182
CHAPTER 6. AUTOMATING INFORMATION FLOW ANALYSIS OF LOW

LEVEL CODE

6.9 Conclusions

We presented a novel approach to relational verification for machine code. A dis-
tinguishing feature of our proposal is the ability to precisely verify information
flow properties in the presence of features like a preemptive execution environment
and memory mapped devices. We have implemented a tool and verified several
real world case studies, including separation kernel routines and device drivers.
This shows that information flow analysis for security critical routines is not only
important, but also feasible.

There are several challenges we leave out as future work. The technique intro-
duced in Alg. 1 can be combined with a security type system to automatically infer
and refine types. This would improve the relational analysis by using Alg. 2 only
when the typing fails. Timing is particularly critical to apply our approach to real
processor architecture. We also are confident that, due to their simplicity, relational
invariant generation can be automated. Other future plans include engineering the
tool and improving on symbolic execution.

Acknowledgments

The authors thank the anonymous reviewers for valuable comments. This work is
supported by framework grant “IT 2010” from the Swedish Foundation for Strategic
Research.

Bibliography

[1] Flow caml. http://www.normalesup.org/~simonet/soft/flowcaml/. Ac-
cessed: 2014-08-12.

[2] Flowsafe: Information flow security for the browser. https://wiki.mozilla.
org/FlowSafe. Accessed: 2014-08-12.

[3] Heartbleed ssl flaw’s true cost will take time
to tally. http://www.eweek.com/security/
heartbleed-ssl-flaws-true-cost-will-take-time-to-tally.html.
Accessed: 2014-08-06.

[4] Heartbleed website. http://heartbleed.com/. Accessed: 2014-08-06.

[5] Heartbleed wikipedia. http://en.wikipedia.org/wiki/Heartbleed. Ac-
cessed: 2014-08-06.

[6] Information flow control for the web. https://distrinet.cs.kuleuven.be/
software/FlowFox/. Accessed: 2014-08-12.

[7] Jif: Java + information flow. http://www.cs.cornell.edu/jif/. Accessed:
2014-08-12.

[8] Joana (java object-sensitive analysis) - information flow control framework
for java. http://pp.ipd.kit.edu/projects/joana/. Accessed: 2014-08-12.

[9] Jsflow. http://chalmerslbs.bitbucket.org/jsflow/. Accessed: 2014-08-
12.

[10] The open web application security project. https://www.owasp.org/index.
php/Main_Page. Accessed: 2014-08-07.

[11] Programming with paragon. http://paragon.nowplea.se/. Accessed: 2014-
08-12.

[12] Xda-developers:android. http://forum.xda-developers.com/wiki/
XDA-Developers:Android. Accessed: 2014-08-06.

183

184 BIBLIOGRAPHY

[13] Simplified heartbleed explanation. http://commons.wikimedia.org/wiki/
File:Simplified_Heartbleed_explanation.svg#mediaviewer/File:
Simplified_Heartbleed_explanation.svg, August 2014. Inkscape. Li-
censed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia
Commons.

[14] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A Core Calculus of De-
pendency. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’99, pages 147–160. ACM
Press, 1999.

[15] Onur Aciiçmez and Çetin Kaya Koç. Microarchitectural attacks and counter-
measures. In Cryptographic Engineering, pages 475–504. 2009.

[16] Johan Agat. Transforming out timing leaks. In Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’00, pages 40–53. ACM, 2000.

[17] Pieter Agten, Nick Nikiforakis, Raoul Strackx, Willem De Groef, and Frank
Piessens. Recent developments in low-level software security. In Lecture Notes
in Computer Science, pages 1–16. Springer, 2012.

[18] Eyad Alkassar, Mark A. Hillebrand, Steffen Knapp, Rostislav Rusev, and
Sergey Tverdyshev. Formal device and programming model for a serial inter-
face. In VERIFY, 2007.

[19] Rajeev Alur, Pavol Cerný, and Swarat Chaudhuri. Model checking on trees
with path equivalences. In Proceedings of the 13th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’ 07, pages 664–678. Springer-Verlag, 2007.

[20] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for in-
formation flow in object-oriented programs. In Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’06, pages 91–102. ACM, 2006.

[21] G.R. Andrews and R. P. Reitman. An axiomatic approach to information flow
in programs. ACM Transactions on Programming Languages and Systems, 2
(1):56–76, 1980.

[22] Ajit Appari and M Eric Johnson. Information security and privacy in health-
care: current state of research. International Journal of Internet and Enter-
prise Management, 6(4):279, 2010.

[23] ARMv7-A architecture reference manual. http://infocenter.arm.
com/help/index.jsp?topic=/com.arm.doc.ddi0406c. URL http://
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c.

BIBLIOGRAPHY 185

[24] Aslan Askarov and Stephen Chong. Learning is change in knowledge:
Knowledge-based security for dynamic policies. In Proceedings of the 25th
IEEE Computer Security Foundations Symposium, CSF ’12.

[25] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands.
Termination-insensitive noninterference leaks more than just a bit. In 13th
European Symposium on Research in Computer Security, ESORICS 2008,
pages 333–348. Springer, 2008.

[26] Aslan Askarov and Andrew Myers. A semantic framework for declassification
and endorsement. In Proceedings of the 19th European Conference on Pro-
gramming Languages and Systems, ESOP’10, pages 64–84. Springer-Verlag,
2010.

[27] Aslan Askarov and Andrew C. Myers. Attacker control and impact for con-
fidentiality and integrity. Logical Methods in Computer Science, 7(3), 2011.

[28] Aslan Askarov and Andrei Sabelfeld. Gradual release: Unifying declassifica-
tion, encryption and key release policies. In IEEE Symposium on Security
and Privacy, SP ’07.

[29] Aslan Askarov and Andrei Sabelfeld. Tight enforcement of information-
release policies for dynamic languages. In Proceedings of the 22nd IEEE
Computer Security Foundations Symposium, CSF ’09.

[30] Thomas H. Austin and Cormac Flanagan. Permissive dynamic information
flow analysis. In Proceedings of the 5th ACM SIGPLAN Workshop on Pro-
gramming Languages and Analysis for Security, PLAS ’10, pages 3:1–3:12.
ACM, 2010.

[31] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley.
Aeg: Automatic exploit generation. In In Proceeding of the Network and
Distributed System Security Symposium, NDSS ’11, 2011.

[32] Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine De-
mange, Cătălin Hriţcu, David Pichardie, Benjamin C. Pierce, Randy Pollack,
and Andrew Tolmach. A verified information-flow architecture. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’14, pages 165–178. ACM, 2014.

[33] Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you see is not what
you execute. ACM Transactions on Programming Languages and Systems, 32
(6):23:1–23:84, 2010.

[34] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani.
Automatic predicate abstraction of c programs. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Language Design and Imple-
mentation, PLDI ’01, pages 203–213. ACM, 2001.

186 BIBLIOGRAPHY

[35] Musard Balliu. A logic for information flow analysis of distributed programs.
In Proceedings of the 18th Nordic Conference, NordSec ’13.

[36] Musard Balliu, Mads Dam, and Roberto Guanciale. Automating Information
Flow Analysis of Low Level Code. In Proceedings of the 2012 ACM conference
on Computer and Communications Security, CCS ’14, 2014. To appear.

[37] Musard Balliu, Mads Dam, and Gurvan Le Guernic. ENCoVer: Symbolic
Exploration for Information Flow Security. In Proceedings of the 25th IEEE
Computer Security Foundations Symposium, CSF ’12, pages 30–44. IEEE,
June 2012.

[38] Musard Balliu, Mads Dam, and Gurvan Le Guernic. Epistemic Temporal
Logic for Information Flow Security. In Proceedings of the 2009 Workshop on
Programming Languages and Analysis for Security, PLAS ’09, pages 6:1–6:12.
ACM, 2011.

[39] Musard Balliu and Gurvan Le Guernic. ENCoVer, June 2012. URL http:
//www.nada.kth.se/~musard/encover. Software release.

[40] Musard Balliu and Isabella Mastroeni. A Weakest Precondition Approach to
Active Attacks Analysis. In Proceedings of the 2009 Workshop on Program-
ming Languages and Analysis for Security, PLAS ’09, pages 59–71. ACM,
2009.

[41] Musard Balliu and Isabella Mastroeni. A Weakest Precondition Approach to
Robustness. Transactions on Computational Science X, 10:261–297, 2010.

[42] Anindya Banerjee, Roberto Giacobazzi, and Isabella Mastroeni. What you
lose is what you leak: Information leakage in declassification policies. In Pro-
ceedings of the 23th International Symposium on Mathematical Foundations
of Programming Semantics, volume 1514 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2007.

[43] Anindya Banerjee and David A. Naumann. Stack-based access control and
secure information flow. Journal of Functional Programming, pages 131–177,
2005.

[44] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Expressive
declassification policies and modular static enforcement. In IEEE Symposium
on Security and Privacy, SP ’08.

[45] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Expressive De-
classification Policies and Modular Static Enforcement. In IEEE Symposium
on Security and Privacy, SP ’08, pages 339–353. IEEE, 2008.

BIBLIOGRAPHY 187

[46] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured
programs. In Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, PASTE ’05, pages 82–
87. ACM, 2005.

[47] Clark Barrett, Aaron Stump, and Cesare Tinelli. SMT-LIB Logics (Version
2), 2011. URL http://goedel.cs.uiowa.edu/smtlib/logics.html.

[48] Clark Barrett, Aaron Stump, and Cesare Tinelli. SMT-LIB Theories (Version
2)", 2011. URL http://goedel.cs.uiowa.edu/smtlib/theories.html.

[49] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Luna, and David
Pichardie. System-level non-interference for constant-time cryptography.
2015. To appear.

[50] Gilles Barthe, Salvador Cavadini, and Tamara Rezk. Tractable enforcement
of declassification policies. In Proceedings of the 21st IEEE Computer Security
Foundations Symposium, CSF ’08.

[51] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational verification
using product programs. In Proceedings of the 17th International Conference
on Formal Methods, FM ’11, pages 200–214. Springer-Verlag, 2011.

[52] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information
flow by self-composition. Mathematical Structures in Computer Science, 21
(6), 2011.

[53] Gilles Barthe, David Pichardie, and Tamara Rezk. A certified lightweight
non-interference java bytecode verifier. In Proceedings of the 16th European
Conference on Programming, ESOP’07, pages 125–140. Springer-Verlag, 2007.

[54] A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based modelling of
voting protocols. In Proceedings of the 11th conference on Theoretical aspects
of rationality and knowledge, TARK ’07, pages 62–71. ACM, 2007.

[55] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical
foundations and model. Technical Report M74-244, MITRE Corp., Badford,
MA, 1973.

[56] K. J. Biba. Integrity considerations for secure computer systems. Technical
Report EDS-TR-76-372, USAF Electronic System Division, Badford, MA,
1977.

[57] Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjöberg, Stephanie Weirich,
and Steve Zdancewic. Reactive noninterference. In Proceedings of the 2009
ACM conference on Computer and Communications Security, CCS ’09, pages
79–90. ACM Press, 2009.

188 BIBLIOGRAPHY

[58] Gérard Boudol and Ilaria Castellani. Noninterference for concurrent programs
and thread systems. Theoretical Computer Science, 281(1):109–130, 2002.

[59] David FC Brewer and Michael J Nash. The chinese wall security policy. In
IEEE Symposium on Security and Privacy, SP ’89.

[60] Niklas Broberg and David Sands. Paralocks: Role-based information flow
control and beyond. In Proceedings of the 37th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’10,
pages 431–444. ACM, 2010.

[61] Jeremy Brown and Thomas F Knight Jr. A minimal trusted computing base
for dynamically ensuring secure information flow. 2001.

[62] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz.
Bap: A binary analysis platform. In Computer Aided Verification, CAV ’11,
2011.

[63] David Brumley, Ivan Jager, Edward J. Schwartz, and Spencer Whitman. The
bap handbook. October 2013. URL http://bap.ece.cmu.edu/doc/bap.pdf.

[64] David Brumley, Hao Wang, Somesh Jha, and Dawn Xiaodong Song. Creating
vulnerability signatures using weakest preconditions. In Proceedings of the
20th IEEE Computer Security Foundations Symposium, CSF ’07.

[65] Roberto Bruttomesso, Morgan Deters, and Alberto Griggio. Main Track
Results of the Satisfiability Modulo Theories Competition (SMT-COMP),
2011. URL http://www.smtexec.org/exec/?jobs=856.

[66] Jeremy Bryans, Maciej Koutny, Laurent Mazaré, and Peter Y. A. Ryan. Opac-
ity generalised to transition systems. In International Workshop on Formal
Aspects in Security and Trust, FAST ’05.

[67] Tevfik Bultan. BDD vs. Constraint-Based Model Checking: An Experimen-
tal Evaluation for Asynchronous Concurrent systems. In Proceedings of the
6th International Conference on Tools and Algorithms for Construction and
Analysis of Systems, TACAS ’00, pages 441–455. Springer, 2000.

[68] Michael Burrows, Martín Abadi, and Roger M. Needham. A logic of authen-
tication. ACM Transactions on Computer Systems, 8(1):18–36, 1990.

[69] Dan Caselden, Alex Bazhanyuk, Mathias Payer, Stephen McCamant, and
Dawn Song. Hi-cfg: Construction by binary analysis and application to at-
tack polymorphism. In 19th European Symposium on Research in Computer
Security, ESORICS 2013, pages 164–181. Springer-Verlag, 2013.

BIBLIOGRAPHY 189

[70] Matteo Centenaro, Riccardo Focardi, Flaminia L. Luccio, and Graham Steel.
Type-based analysis of pin processing apis. In 14th European Symposium
on Research in Computer Security, ESORICS 2008, pages 53–68. Springer-
Verlag, 2009.

[71] Pavol Cerný and Rajeev Alur. Automated analysis of java methods for con-
fidentiality. In Computer Aided Verification, CAV ’09.

[72] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley.
Unleashing mayhem on binary code. In IEEE Symposium on Security and
Privacy, SP ’12.

[73] Rohit Chadha, Stéphanie Delaune, and Steve Kremer. Epistemic logic for
the applied pi calculus. In Formal Techniques for Distributed Systems, vol-
ume 5522 of Lecture Notes in Computer Science, pages 182–197. Springer
Berlin/Heidelberg, 2009.

[74] Stephen Chong and Andrew C. Myers. Decentralized robustness. In Proceed-
ings of the 19th IEEE Workshop on Computer Security Foundations, CSFW
’06, pages 242–256. IEEE.

[75] Stephen Chong and Andrew C. Myers. Security policies for downgrading. In
Proceedings of the 2004 ACM conference on Computer and Communications
Security, CCS ’04, pages 198–209. ACM, 2004.

[76] Stephen Chong and Andrew C. Myers. Language-based information erasure.
In Proceedings of the 18th IEEE Workshop on Computer Security Founda-
tions, CSFW ’05, pages 241–254. IEEE, 2005.

[77] Tom Chothia, Yusuke Kawamoto, Chris Novakovic, and David Parker. Prob-
abilistic point-to-point information leakage. In Proceedings of the 26th IEEE
Computer Security Foundations Symposium, CSF ’13, pages 193–205. IEEE,
2013.

[78] Andrey Chudnov, George Kuan, and David Naumann. Information flow mon-
itoring as abstract interpretation for relational logic. In Proceedings of the
27th IEEE Computer Security Foundations Symposium, CSF ’14. IEEE, July
2014. To appear.

[79] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged
information flow for javascript. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’09,
pages 50–62. ACM, 2009.

[80] David Clark and Sebastian Hunt. Non-interference for deterministic interac-
tive programs. In International Workshop on Formal Aspects in Security and
Trust, FAST ’08.

190 BIBLIOGRAPHY

[81] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative analysis
of the leakage of confidential data. Electronic Notes in Theoretical Computer
Science, 59:238–251, 2002.

[82] David D Clark and David RWilson. A comparison of commercial and military
computer security policies. In IEEE Symposium on Security and Privacy, SP
’87.

[83] Jack Clark. Many android apps reveal user data. ZD-
Net website, September30 2010. http://www.zdnet.com/news/
many-android-apps-reveal-user-data/470361.

[84] Michael R Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K Micin-
ski, Markus N Rabe, and César Sánchez. Temporal logics for hyperproperties.
In Principles of Security and Trust, POST ’14.

[85] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of
Computer Security, 18(6):1157–1210, 2010.

[86] E. S. Cohen. Information transmission in computational systems. ACM
SIGOPS Operating System Review, 11(5):133–139, 1977.

[87] E. S. Cohen. Information Transmission in Sequential Programs. Journal of
Foundations of Secure Computation, pages 297–335, 1978.

[88] Mika Cohen and Mads Dam. A complete axiomatization of knowledge and
cryptography. In IEEE Symposium on Logic in Computer Science, LICS ’07.

[89] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’77, pages 238–252. ACM
Press, 1977.

[90] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’79, pages 269–282. ACM,
1979.

[91] Mads Dam. Decidability and proof systems for language-based noninterfer-
ence relations. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’06, pages 67–78.
ACM Press, 2006.

[92] Mads Dam, Roberto Guanciale, Narges Khakpour, Hamed Nemati, and
Oliver Schwarz. Formal verification of information flow security for a sim-
ple arm-based separation kernel. In Proceedings of the 2013 ACM conference
on Computer and Communications Security, CCS ’13, pages 223–234. ACM,
2013.

BIBLIOGRAPHY 191

[93] Mads Dam, Roberto Guanciale, and Hamed Nemati. Machine code veri-
fication of a tiny arm hypervisor. In Proceedings of the 3rd International
Workshop on Trustworthy Embedded Devices, TrustED ’13, pages 3–12. ACM,
2013.

[94] Mads Dam, Gurvan Le Guernic, and Andreas Lundblad. Treedroid: A tree
automaton based approach to enforcing data processing policies. In Proceed-
ings of the 2012 ACM conference on Computer and Communications Security,
CCS ’12, pages 894–905. ACM, 2012.

[95] Al Danial. CLOC: Count lines of code. http://cloc.sourceforge.net,
2011. version 1.55.

[96] S. Danicic, M. Harman, R. Hierons, J. Howroyd, and M. Laurence. In Pro-
ceedings of the 1st International Workshop on the Programming Language
Interference and Dependence, PLID 2004.

[97] Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving ap-
proach to analysis of secure information flow. In Proceedings of the Second
International Conference on Security in Pervasive Computing, SPC ’05, pages
193–209. Springer-Verlag, 2005.

[98] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. Tools
and Algorithms for the Construction and Analysis of Systems, pages 337–340,
2008.

[99] D. E. Denning. A lattice model of secure information flow. Communications
of the ACM, 19(5):236–242, 1976.

[100] D. E. Denning and P. Denning. Certification of programs for secure informa-
tion flow. Communications of the ACM, 20(7):504–513, 1977.

[101] Dominique Devriese and Frank Piessens. Noninterference through secure
multi-execution. In IEEE Symposium on Security and Privacy, SP ’10, pages
109–124. IEEE, 2010.

[102] E. W. Dijkstra. A Discipline of programming. Prentice-Hall, 1976.

[103] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of The ACM, 18(8):453–457, 1975.

[104] Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N. Rabe, and
Helmut Seidl. Model checking information flow in reactive systems. In Pro-
ceedings of the 13th International Conference on Verification, Model Check-
ing, and Abstract Interpretation, VMCAI ’12, pages 169–185. Springer-Verlag,
2012.

192 BIBLIOGRAPHY

[105] Danny Dolev and Andrew C. Yao. On the security of public key protocols.
Technical report, Stanford University, Stanford, CA, USA, 1981.

[106] Jianjun Duan and John Regehr. Correctness proofs for device drivers in
embedded systems. In Proceedings of the 5th International Conference on
Systems Software Verification, SSV’10, pages 5–5. USENIX Association, 2010.

[107] Jérémy Dubreil. Opacity and Abstractions. In Proceedings of the First In-
ternational Workshop on Abstractions for Petri Nets and Other Models of
Concurrency, APNOC ’09.

[108] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris.
Labels and event processes in the asbestos operating system. In Proceedings
of the Twentieth ACM Symposium on Operating Systems Principles, SOSP
’05, pages 17–30. ACM, 2005.

[109] William Enck. A study of android application security. 2011.

[110] William Enck, Peter Gilbert, Byung-gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones. In Pro-
ceedings of the USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI’10, pages 1–6. USENIX Association, 2010.

[111] Ulfar Erlingsson, Yves Younan, and Frank Piessens. Low-level software secu-
rity by example. In Handbook of Information and Communication Security.
Springer, 2010.

[112] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Rea-
soning about knowledge. MIT Press, Cambridge, Mass., 1995.

[113] Jeffrey Stewart Fenton. Memoryless subsystems. The Computer Journal, 17
(2):143–147, 1974.

[114] R. Focardi and R. Gorrieri. A classification of security properties for process
algebras. Journal of Computer security, 3(1):5–33, 1995.

[115] Cédric Fournet, Gurvan Le Guernic, and Tamara Rezk. A Security-Preserving
Compiler for Distributed Programs. In Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security, CCS ’09, pages 432–441.
ACM, 2009.

[116] Peter Gammie and Ron van der Meyden. MCK: Model Checking the Logic
of Knowledge. In Computer Aided Verification, CAV ’04.

[117] Priya Ganapati. Study shows some android apps leak user data without clear
notifications. WIRED website, September30 2010. http://www.wired.com/
gadgetlab/2010/09/data-collection-android/.

BIBLIOGRAPHY 193

[118] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In Computer Aided Verification, CAV ’07, pages 519–531. Springer,
2007.

[119] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameteriz-
ing non-interference by abstract interpretation. In Proceedings of the 31st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’04, pages 186–197. ACM, 2004.

[120] Pablo Giambiagi and Mads Dam. On the secure implementation of security
protocols. Science of Computer Programming, 50(1-3):73–99, 2004.

[121] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’05, pages 213–
223. ACM, 2005.

[122] J. A. Goguen and J. Meseguer. Security policies and security models. In
IEEE Symposium on Security and Privacy, SP ’82, pages 11–20. IEEE, 1982.

[123] Joseph A. Goguen and José Meseguer. Unwinding and inference control.
In IEEE Symposium on Security and Privacy, SP ’84, pages 75–86. IEEE
Computer Society, 1984.

[124] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure
environment for untrusted helper applications confining the wily hacker. In
Proceedings of the 6th Conference on USENIX Security Symposium, SSYM
’96. USENIX Association, 1996.

[125] James W. Gray, III and Paul F. Syverson. A logical approach to multilevel
security of probabilistic systems. Distributed Computing, 11(2):73–90, 1998.

[126] David Gries. The Science of Programming. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1st edition, 1987.

[127] Joshua D. Guttman and Mark E. Nadel. What needs securing. In Proceedings
of the 1st IEEE Workshop on Computer Security Foundations, CSFW ’88.

[128] Joseph Y. Halpern and Kevin R. O’Neill. Secrecy in multiagent systems. ACM
Transactions on Information and System Security, 12(1):5:1–5:47, 2008.

[129] HATS project (FP7-231620). Deliverable D4.1: Report on Security, 2012.
Chapter 2.

[130] Daniel Hedin and Andrei Sabelfeld. Information-flow security for a core of
javascript. In Proceedings of the 25th IEEE Computer Security Foundations
Symposium, CSF ’12, pages 3–18. IEEE, 2012.

194 BIBLIOGRAPHY

[131] Daniel Hedin and David Sands. Timing aware information flow security for a
javacard-like bytecode. Electronic Notes Theoretical Computer Science, 141
(1):163–182, 2005.

[132] Eric C.R. Hehner. The Logic of Programming. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1984.

[133] Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John
Mclean. Formal specification and verification of data separation in a sep-
aration kernel for an embedded system. In Proceedings of the 2006 ACM
conference on Computer and Communications Security, CCS ’06, pages 346–
355. ACM, 2006.

[134] Boniface Hicks, Dave King, Patrick McDaniel, and Michael Hicks. Trusted de-
classification:: High-level policy for a security-typed language. In Proceedings
of the 2006 Workshop on Programming Languages and Analysis for Security,
PLAS ’06, pages 65–74. ACM, 2006.

[135] HOL4. http://hol.sourceforge.net/. URL http://hol.sourceforge.
net/.

[136] Michael Howard and David E. Leblanc. Writing Secure Code. Microsoft Press,
Redmond, WA, USA, 2nd edition, 2002. ISBN 0735617228.

[137] Catalin Hritcu, Michael Greenberg, Ben Karel, Benjamin C. Pierce, and Greg
Morrisett. All your ifcexception are belong to us. In IEEE Symposium on
Security and Privacy, SP ’13.

[138] Marieke Huisman, Pratik Worah, and Kim Sunesen. A temporal logic char-
acterisation of observational determinism. In Proceedings of the 19th IEEE
Workshop on Computer Security Foundations, CSFW ’06. IEEE, 2006.

[139] Sebastian Hunt and David Sands. On flow-sensitive security types. In Pro-
ceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’06, pages 79–90. ACM, 2006.

[140] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. An em-
pirical study of privacy-violating information flows in JavaScript Web ap-
plications. In Proceedings of the 2010 ACM conference on Computer and
Communications Security, CCS ’10, pages 270–83. ACM Press, 2010.

[141] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Com-
puting Surveys, 41(4), 2009.

[142] Rajeev Joshi and K. Rustan M. Leino. A semantic approach to secure infor-
mation flow. Science of Computer Programming, 37(1-3):113–138, 2000.

BIBLIOGRAPHY 195

[143] Bill Joy and Ken Kennedy. Information technology research: Investing in our
future. President’s Information Technology Advisory Committee, February
1999.

[144] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing-and
termination-sensitive secure information flow: Exploring a new approach. In
IEEE Symposium on Security and Privacy, SP ’11.

[145] Sarfraz Khurshid, Corina Pasareanu, and Willem Visser. Generalized sym-
bolic execution for model checking and testing. In Tools and Algorithms
for the Construction and Analysis of Systems, TACAS ’03, pages 553–568.
Springer Berlin / Heidelberg, 2003.

[146] James C. King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, 1976.

[147] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4:
Formal verification of an os kernel. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, SOSP ’09, pages 207–220.
ACM, 2009.

[148] P. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. Crypto ’96, pages 104–113, 1996.

[149] Máté Kovács, Helmut Seidl, and Bernd Finkbeiner. Relational abstract in-
terpretation for the verification of 2-hypersafety properties. In Proceedings of
the 2013 ACM conference on Computer and Communications Security, CCS
’13, pages 211–222. ACM, 2013.

[150] Dexter Kozen. Language-based security. In Proceedings of the 24th Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS
’99, pages 284–298. Springer-Verlag, 1999.

[151] B. Lampson. A note on the confinement problem. In Communications of the
ACM, pages 613–615, New York, 1973. ACM-Press.

[152] Peeter Laud. Semantics and program analysis of computationally secure in-
formation flow. Programming Languages and Systems, pages 77–91, 2001.

[153] Gurvan Le Guernic. Confidentiality Enforcement Using Dynamic Information
Flow Analyses. PhD thesis, Kansas State University, 2007.

[154] K. Rustan M. Leino. Efficient weakest preconditions. Information Processing
Letters, 93(6):281–288, 2005.

196 BIBLIOGRAPHY

[155] Xavier Leroy. Formal verification of a realistic compiler. Communications of
the ACM, 52(7):107–115, 2009.

[156] Peng Li and Steve Zdancewic. Downgrading policies and relaxed noninter-
ference. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’05, pages 158–170. ACM,
2005.

[157] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: A Model
Checker for the Verification of Multi-Agent Systems. In Computer Aided
Verification, CAV ’09, pages 682–688. Springer Berlin / Heidelberg, 2009.

[158] Ingo Lutkebohle. Same origin policy for javascript. URL https://
developer.mozilla.org/En/Same_origin_policy_for_JavaScript.

[159] Heiko Mantel. The framework of selective interleaving functions and the
modular assembly kit. In Proceedings of the 2005 ACM Workshop on Formal
Methods in Security Engineering, FMSE ’05, pages 53–62. ACM, 2005.

[160] Heiko Mantel and David Sands. Controlled declassification based on intran-
sitive noninterference. In Asian Symposium on Programming Languages and
Systems, APLAS ’04.

[161] Radu Mardare and Corrado Priami. Decidable extensions of hennessy-milner
logic. In Formal Techniques for Networked and Distributed Systems, volume
4229 of FORTE ’06, pages 196–211. Springer Berlin / Heidelberg, 2006.

[162] I. Mastroeni and A. Banerjee. Modelling declassification policies using ab-
stract domain completeness. Technical Report RR 61/2008, Department of
Computer Science, University of Verona, 2008.

[163] Isabella Mastroeni. On the role of abstract non-interference in language-
based security. In Asian Symposium on Programming Languages and Systems,
APLAS ’05, pages 418–433. Springer-Verlag, 2005.

[164] John Mclean. A general theory of composition for trace sets closed under
selective interleaving functions. In IEEE Symposium on Security and Privacy,
SP ’94.

[165] John McLean. Security models and information flow. In IEEE Symposium
on Security and Privacy, SP ’90.

[166] John McLean. Proving noninterference and functional correctness using
traces. Journal of Computer Security, 1(1):37–58, 1992.

[167] John McLean. A general theory of composition for a class of “possibilistic”
properties. IEEE Transactions on Software Engineering, 22(1):53–67, 1996.

BIBLIOGRAPHY 197

[168] Ricardo Medel, Adriana B. Compagnoni, and Eduardo Bonelli. A typed
assembly language for non-interference. In ICTCS, pages 360–374, 2005.

[169] Dimiter Milushev and Dave Clarke. Incremental hyperproperty model check-
ing via games. In Proceedings of the 18th Nordic Conference, NordSec ’13.

[170] Vebjorn Moen, Andre N. Klingsheim, Kent Inge Fagerland Simonsen, and
Kjell Jorgen Hole. Vulnerabilities in e-governments. International Journal
Electronic Security and Digital Forensics, 1(1):89–100, 2007.

[171] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The
program counter security model: Automatic detection and removal of control-
flow side channel attacks. In Proceedings of the 8th International Conference
on Information Security and Cryptology, ICISC’05, pages 156–168. Springer-
Verlag, 2006.

[172] David Monniaux. Verification of device drivers and intelligent controllers: A
case study. In Proceedings of the 7th ACM/IEEE International Conference
on Embedded Software, EMSOFT ’07, pages 30–36. ACM, 2007.

[173] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy
Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. seL4: From
general purpose to a proof of information flow enforcement. In IEEE Sympo-
sium on Security and Privacy, SP ’13, pages 415–429. IEEE, 2013.

[174] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, and Gerwin
Klein. Noninterference for operating system kernels. In Proceedings of the
Second International Conference on Certified Programs and Proofs, CPP ’12,
pages 126–142. Springer-Verlag, 2012.

[175] Andrew C. Myers and Barbara Liskov. Protecting privacy using the de-
centralized label model. ACM Transactions on Software Engineering and
Methodology, 9:410–442, 2000.

[176] Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust
declassification. In Proceedings of the 17th IEEE Workshop on Computer
Security Foundations, CSFW ’04. IEEE, 2004.

[177] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Dependent type
theory for verification of information flow and access control policies. ACM
Transactions on Programming Languages and Systems, pages 6:1–6:41, 2013.

[178] David A Naumann. From coupling relations to mated invariants for checking
information flow. In 11th European Symposium on Research in Computer
Security, ESORICS 2006, pages 279–296. Springer, 2006.

[179] Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and
Giovanni Vigna.

198 BIBLIOGRAPHY

[180] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for auto-
matic detection, analysis, and signaturegeneration of exploits on commodity
software. In In Proceeding of the Network and Distributed System Security
Symposium, NDSS ’05, 2005.

[181] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna.
You are what you include: Large-scale evaluation of remote javascript inclu-
sions. In Proceedings of the 2012 ACM conference on Computer and Com-
munications Security, CCS ’12, pages 736–747. ACM, 2012.

[182] Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. Information-flow
security for interactive programs. In Proceedings of the 19th IEEE Workshop
on Computer Security Foundations, CSFW ’06, pages 190–201. IEEE, 2006.

[183] Nimrod Partush and Eran Yahav. Abstract semantic differencing for nu-
merical programs. In Proceedings of the 20th International Static Analysis
Symposium, SAS ’13.

[184] Corina S. Pasareanu and Neha Rungta. Symbolic pathfinder: Symbolic ex-
ecution of java bytecode. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE ’10, pages 179–180.
ACM, 2010.

[185] Corina S. Pasareanu, Neha Rungta, and Willem Visser. Symbolic execution
with mixed concrete-symbolic solving. In Proceedings of the 2011 Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’11, pages 34–44.
ACM, 2011.

[186] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Approximate
non-interference. Journal of Computer Security, 12:37–81, 2004.

[187] Franco Raimondi and Alessio Lomuscio. Automatic verification of multi-agent
systems by model checking via ordered binary decision diagrams. Journal of
Applied Logic, 5(2):235–251, 2007.

[188] David A. Ramos and Dawson R. Engler. Practical, low-effort equivalence
verification of real code. In Computer Aided Verification, CAV ’11, pages
669–685. Springer, 2011.

[189] Thomas W. Reps, Junghee Lim, Aditya V. Thakur, Gogul Balakrishnan, and
Akash Lal. There’s plenty of room at the bottom: Analyzing and verify-
ing machine code. In Computer Aided Verification, CAV ’10, pages 41–56.
Springer, 2010.

[190] Raymond J. Richards. Modeling and security analysis of a commercial real-
time operating system kernel. In Design and Verification of Microprocessor
Systems for High-Assurance Applications, pages 301–322. Springer US, 2010.

BIBLIOGRAPHY 199

[191] Bruno P. S. Rocha, Sruthi Bandhakavi, Jerry den Hartog, William H. Wins-
borough, and Sandro Etalle. Towards static flow-based declassification for
legacy and untrusted programs. In IEEE Symposium on Security and Pri-
vacy, SP ’10.

[192] A William Roscoe. Csp and determinism in security modelling. In IEEE
Symposium on Security and Privacy, SP ’95.

[193] Alejandro Russo, John Hughes, David Naumann, and Andrei Sabelfeld. Clos-
ing internal timing channels by transformation. In Proceedings of the 11th
Asian Computing Science Conference on Advances in Computer Science: Se-
cure Software and Related Issues, ASIAN’06, pages 120–135. Springer, 2007.

[194] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive secu-
rity analysis. In Proceedings of the 23rd IEEE Computer Security Foundations
Symposium, CSF ’10, pages 186–199. IEEE, 2010.

[195] Alejandro Russo, Andrei Sabelfeld, and Li Keqin. Implicit flows in malicious
and nonmalicious code. In Proceedings of the 2009 Marktoberdorf Summer
School.

[196] Andrei Sabelfeld and Heiko Mantel. Securing communication in a concurrent
language. In Proceedings of the 9th International Static Analysis Symposium,
SAS ’02.

[197] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. IEEE IEEE Journal on Selected Areas in Communications, 21(1):
5–19, 2003.

[198] Andrei Sabelfeld and Andrew C. Myers. A model for delimited information
release. In Proceedings of the International Symposium on Software Security,
ISSS ’03, pages 174–191. Springer-Verlag, 2004.

[199] Andrei Sabelfeld and Alejandro Russo. From dynamic to static and back:
Riding the roller coaster of information-flow control research. In Proceedings
of the 7th International Andrei Ershov Memorial Conference on Perspectives
of Systems Informatics, PSI ’09, pages 352–365. Springer, 2010.

[200] Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-
threaded programs. In Proceedings of the 13th IEEE Workshop on Computer
Security Foundations, CSFW ’00, pages 200–214. IEEE, 2000.

[201] Andrei Sabelfeld and David Sands. A per model of secure information flow in
sequential programs. Higher-Order and Symbolic Computation, 14(1):59–91,
2001.

[202] Andrei Sabelfeld and David Sands. Declassification: Dimensions and princi-
ples. Journal of Computer Security, 17(5):517–548, 2007.

200 BIBLIOGRAPHY

[203] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song.
Loop-extended symbolic execution on binary programs. In Proceedings of
the Eighteenth International Symposium on Software Testing and Analysis,
ISSTA ’09, pages 225–236. ACM, 2009.

[204] Fred B. Schneider, J. Gregory Morrisett, and Robert Harper. A language-
based approach to security. In Informatics - 10 Years Back. 10 Years Ahead,
pages 86–101. Springer-Verlag, 2001.

[205] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing
engine for c. In Proceedings of the 10th European Software Engineering Con-
ference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE-13, pages 263–272. ACM,
2005.

[206] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. Data-
driven equivalence checking. In Proceedings of the 2013 ACM SIGPLAN In-
ternational Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’13, pages 391–406. ACM, 2013.

[207] Geoffrey Smith. Probabilistic noninterference through weak probabilistic
bisimulation. In Proceedings of the 16th IEEE Workshop on Computer Secu-
rity Foundations, CSFW ’06, pages 3–13. IEEE, 2006.

[208] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager,
Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and
Prateek Saxena. BitBlaze: A new approach to computer security via binary
analysis. In Proceedings of the 4th International Conference on Information
Systems Security. Keynote invited paper, Hyderabad, India, 2008.

[209] William Stallings and Lawrie Brown. Computer Security: Principles and
Practice. Prentice Hall Press, Upper Saddle River, NJ, USA, 1st edition,
2007.

[210] G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas. Secure
program execution via dynamic information flow tracking. In ACM SIGOPS
Operating Systems Review, volume 38, pages 85–96. ACM, 2004.

[211] David Sutherland. A model of information. In 9th National Computer Security
Conference, 1986.

[212] Tachio Terauchi and Alexander Aiken. Secure information flow as a safety
problem. In Proceedings of the 12th International Static Analysis Symposium,
SAS ’05.

[213] Aditya V. Thakur, Junghee Lim, Akash Lal, Amanda Burton, Evan Driscoll,
Matt Elder, Tycho Andersen, and Thomas W. Reps. Directed proof gen-
eration for machine code. In Computer Aided Verification, CAV ’10, pages
288–305. Springer, 2010.

BIBLIOGRAPHY 201

[214] Mohit Tiwari, Hassan MG Wassel, Bita Mazloom, Shashidhar Mysore, Fred-
eric T Chong, and Timothy Sherwood. Complete information flow tracking
from the gates up. In Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS XIV, pages 109–120. ACM, 2009.

[215] Ron van der Meyden and Chenyi Zhang. Algorithmic verification of nonin-
terference properties. Electronic Notes in Theoretical Computer Science, 168:
61–75, 2007.

[216] Jeffrey A Vaughan and Steve Zdancewic. A cryptographic decentralized label
model. In IEEE Symposium on Security and Privacy, SP ’07, pages 192–206.
IEEE, 2007.

[217] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio
Lerda. Model checking programs. Automated Software Engineering, 10:203–
232, 2003.

[218] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system
for secure flow analysis. Journal of Computer Security, 4(2-3):167–187, 1996.

[219] Dennis M. Volpano. Safety versus secrecy. In Proceedings of the 6th Inter-
national Symposium on Static Analysis, SAS ’99, pages 303–311. Springer-
Verlag, 1999.

[220] Daniel Wasserrab, Denis Lohner, and Gregor Snelting. On PDG-Based Non-
interference and its Modular Proof. In Proceedings of the 2009 Workshop on
Programming Languages and Analysis for Security, PLAS ’09, pages 31–44.
ACM, 2009.

[221] David A. Wheeler. How to prevent the next heartbleed. http://www.
dwheeler.com/essays/heartbleed.html. Accessed: 2014-08-06.

[222] Jerold Whitmore, Andre Bensoussan, Paul Green, Douglas Hunt, and Andrew
Kobziar. Design for multics security enhancements. Technical report, DTIC
Document, 1973.

[223] Glynn Winskel. The Formal Semantics of Programming Languages: An In-
troduction. MIT press, Cambridge, Mass., 1993.

[224] J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic
systems. In IEEE Symposium on Security and Privacy, SP ’90, 1990.

[225] Andrew C. Yao. Protocols for secure computations. In Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, SFCS ’82,
pages 160–164. IEEE, 1982.

202 BIBLIOGRAPHY

[226] Steve Zdancewic. Challenges for information-flow security. In Proceedings of
the 1st International Workshop on the Programming Language Interference
and Dependence, PLID 2004.

[227] Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proceed-
ings of the 14th IEEE Workshop on Computer Security Foundations, CSFW
’01, pages 5–. IEEE, 2001.

[228] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. My-
ers. Untrusted hosts and confidentiality: Secure program partitioning. In
Proceedings of the Eighteenth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’01, pages 1–14. ACM, 2001.

[229] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
Making information flow explicit in histar. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume 7,
OSDI ’06, pages 19–19. USENIX Association, 2006.

[230] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based con-
trol and mitigation of timing channels. In Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI ’12, pages 99–110. ACM, 2012.

[231] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization
and evolution. In IEEE Symposium on Security and Privacy, SP ’12, pages
95–109. IEEE, 2012.

[232] Zongwei Zhou, Miao Yu, and Virgil D. Gligor. Dancing with giants: Wimpy
kernels for on-demand isolated i/o. In IEEE Symposium on Security and
Privacy, SP ’14, pages 308–323. IEEE, 2014.

