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Abstract—Computation over sensitive data requires that the
computation function is secure and trusted. Existing approaches
either do not enforce formal verification, require the user to verify
the proof, or lack secure attestation guarantees. In addition,
neither addresses the issue of having users once again inspect
the application after upgrading the code running in the enclave.

We propose an approach that uses a formal specification
to guarantee that the behavior of the computation function
conforms to the desired functionality. By combining automated
verification with attestation on a trusted execution environment,
we ensure that only conformant applications are executed. At
the same time, we allow updates of the computation function
without changing the attestation response, as long as the formal
specification still holds. We implement and evaluate the system
on several functions; our results show an average overhead of
only 50 %. Finally, we demonstrate the validity of the system
using a real-world application, Dafny-EVM.

I. INTRODUCTION

Outsourcing computations to a cloud environment requires
trust in the remote computation, because such services in
general, lack support for attested computation. There is no
way to get any guarantees on how the data is managed, and
one must trust the provider and that the service only does what
it is supposed to.

Smart contracts [39]] can provide some guarantees because
their transactions are publicly visible on a blockchain [43]]
and thus open to inspection. However, the public nature of
blockchain data makes smart contracts a poor fit for the
computation of sensitive data; furthermore, smart contracts
cannot be directly upgraded.

In general, there are two ways of performing confidential
computations in the cloud: 1) using homomorphic encryption
and 2) using a Trusted Execution Environment (TEE) [36].
Since the former suffers from high computational overhead [L1],
the only way to practically achieve confidential computation
in the cloud is by means of a TEE. In addition, many cloud
services manage confidential data from multiple users [7],
[8]. To ascertain the desired functionality, each user must
individually verify the code running in the TEE, which can
be cumbersome. If the implementation ever changes, even just
slightly, each user must again perform this verification process.
Thus, classical settings for multi-user computation based on
TEEs suffer from the following drawbacks:

1) Trust in provenance rather than properties.

Rather than trust a specific entity, by verifying a signed
commit or similar, one should trust that certain proper-
ties of the code are true.
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2) Validation of code or proofs rather than (automated)
verification of properties, and

3) No support for upgrades.
Every time the code changes in a TEE, each user must
once again verify the upgraded application.

To provide a solution for these problems, we present TRU-
VALT (TRUst and VALidation system in a TEE), a framework
to enforce verification of functions running inside an enclave.
TRUVALT solves the three shortcomings above by (1) using
design by contract [25] to agree upon a specification of
properties rather than trusting a specific entity, (2) using the
automated verifier Dafny to enforce these properties, and (3)
treating the implementation as data to allow changes in the
implementation as long as the specification of properties still
holds.

In the classical setting, when several users should decide to
allow their data in a multi-user computation, all users start by
inspecting the code to be executed and checking the integrity
of the software, typically by comparing it to a cryptographic
hash value. One of the users then deploys this code to the
TEE, by means of remote attestation, all of the other users
can verify that the same code previously inspected is the one
running in the TEE. This setup could be cumbersome, and
each user must validate the benign intent of the code and also
verify its correctness (or delegate this task to a trusted party).

Our contributions address these limitations: We address the
first fundamental limitation by applying formal verification
rather than relying on the provenance of software (with meth-
ods like software bill of materials [44]]) or manual code audits.
By using an automated formal verification tool, for example
Dafny, the code can be formally verified to be correct in terms
of a given specification. Each user can run Dafny on their copy
of the code, hence the manual work of verifying correctness
has decreased. However, without providing verification as a
service, every user must run Dafny on their own machine.

The second limitation is addressed by ensuring that only
verified code is executed. We achieve this by running Dafny
inside the TEE, taking advantage of its attestation to ascertain
that all code is verified. Each user now only has to validate
the specifications enforced by Dafny, as well as that the Dafny
binary included in the TEE is the same as the official version.
Assuming that the specifications for each Dafny function are
well-written, it is no longer necessary to manually inspect the
implementation, only the specification. Users can be assured



that Dafny will only allow for implementations that adhere to
the specifications.

The third contribution allows for automated upgrades. Nor-
mally, attestation in a TEE is tied to the executed code, so the
hash value changes with each upgrade. In our method, we keep
only the specifications as code and treat the implementation as
data. With this method, it suffices to know what the code does
without knowing how it does it. In the previous setting, when
the implementation changes, even very slightly, each user must
again inspect the source code to verify that what has changed
does not change the functionality (or requirements) in an
unwanted way. Since we treat the code as data, we can upgrade
the application running inside the TEE without changing its
initial state and hash, as long as the implementation still
adheres to the specification.

By keeping the properties fixed, the validation of the proper-
ties does not have to be repeated. Furthermore, our framework
allows code to be verified without making the implementation
available. We also think that we are the first to run a verifier
in a TEE.

With TRUVALT, users do not need their own TEE/verifier
infrastructure, as our process ensures that only successfully
verified code is used.

Our contributions in this paper are the following:

1) The verification is anchored with properties that express
the requirements.

2) By using Dafny, the verification is automated and at-
tested by means of the TEE’s attestation functionality.

3) By treating code as data, we allow for implementation
upgrades.

Existing works [33]], [21] do not prove the correctness of
the system, and the users cannot be sure what computations
are carried out. Others [45]], [[18]] use formal methods to reason
about certain aspects of the application before it is deployed
in the enclave and cannot easily be upgraded without users
being involved.

This paper builds on previous work [9], where we presented
a method for securely computing arbitrary aggregations on
confidential data in a multi-user setting. In this work, we
improve on this by allowing for upgrades to the code without
requiring every user to manually inspect the new version.

The rest of the paper is organized as follows: in Section
we introduce some background concepts, and in Section [[IT| we
present the overall architecture. In section we go through
how the system is used as well as how the framework is
implemented, and in Section [V]we analyze the security model.
Section |VI| presents our experiments while Section |VII| covers
the details of our different use cases. In Sections and [X]
we discuss related and future work, and Section concludes.

II. BACKGROUND

A. Trusted Execution Environments

A trusted execution environment or enclave is a tamper-
resistant hardware-assisted platform that protects data at use
from an untrusted host. Common examples of such systems are

Intel SGX[} ARM TrustZone|and AMD SEVF} An application
is deployed and executed on the specified hardware, and the
computations are isolated from the host computer. The data is
protected from the environment and application on the host,
as all data that passes between the host and the enclave is
encrypted and can only be decrypted by the enclave.

In this paper, we use Intel SGX on an Azure cloud envi-
ronment, but our solution is not limited to a specific type of
TEE.

1) Remote attestation: It ensures that the expected appli-
cation is running on the expected hardware. This process
provides a proof that contains the hash of the initial state of
the currently loaded application on the TEE.

The attestation is done in two steps: first the enclave regis-
ters itself with a trusted provider in the cloud and proves its
identity by a cryptographic proof using the hardware-encoded
key. In the case of SGX, this is done towards Intel’s attestation
service. Second, a client requests the proof of what application
is currently running in the enclave. The TEE generates a signed
message containing the hash of the application’s initial state.
The client can verify the signature using Intel’s attestation
servers and compare the hash with the expected application.
This assumes that the client that performs the attestation has
access to either the binary or the source code. In the latter case,
the source code must be written and compiled in a reproducible
way.

2) Seals: They provide the possibility for an application
that runs on a secure enclave to securely store runtime states.
This data is stored on the untrusted host, but is encrypted with
a key derived from the enclave. There are, in general, two
ways to derive this key: either by only using the enclave’s
own hardware key or by combining this key with the initial
state of the enclave. In the first case, any application running
on the same TEE has access to the sealed data, while in the
second case, only the specific application that seals the data
can read it. Further, we assume that the key is derived in such
a way that only the exact same application that sealed the data
has access to it. Note that any seal created by an application
does not modify its initial state, and hence is independent from
the attestation process.

3) Gramine: Gramine is a library OS with the purpose of
porting and running unmodified code inside a TEE.

Trusted execution environments use their own separate
API for communication and execution. On top of this, some
functionality is not allowed inside the enclave for security
reasons. For example, an application running in an enclave
should not be allowed to write plain data to the untrusted host
environment or to print information to the standard output,
since this can leak confidential information to the host. In
general, this means that an application that is to be executed
inside a trusted enclave must be developed specifically for this
environment.

Uhttps://www.intel.com/content/www/us/en/developer/tools/
software- guard-extensions/overview.html

“https://www.arm.com/technologies/trustzone-for-cortex-a

3https://www.amd.com/en/developer/sev.html
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Fig. 1: The static initial state of TRUVALT. Main handles
the communication to the outside, as well as connecting the
other functionalities. Both the specifications and the verifier
are included in the build and can be verified during attestation.

With Gramine, one can write an application as usual and
then run it on an enclave using Gramine as a wrapper for
the specific API functions. For example, when running a plain
Python program that writes some data to disk, Gramine will
automatically seal this data so that only the TEE can access
it. Yet, no modifications have to be made to the Python code.
This makes it possible to secure already written applications
by running them in a TEE when the host is untrusted.

B. Dafny

Dafny is a software for automatically proving functional
properties of code. It is written in its own “verification-aware
programming language”E]

The developer defines specifications for functions, and
Dafny verifies whether these hold for the implementation.
For this, Dafny uses the Z3 theorem prover In addition to
verifying conformance to the specification, Dafny can transpile
and compile to code in several target languages, which will
also adhere to the same specification. At the time of writing,
Dafny provides support for C#, Java, JavaScript, Go, and
Python.

III. ARCHITECTURE
A. TRUVALT framework

Figure [1| shows three different parts of the framework; Main
Application, Function Specifications, and Verifier. All these
parts belong to the initial state of the TEE and hence are
part of the attestation process. Hence, if any of these parts
is changed, this will be noticed when attesting the TEE. For
different applications, parts of the framework are modified.
For example, the use of different verifiers might need the main
application to be changed, the same for the function specifica-
tions. For a specific application, the function specifications are
tailored for that purpose and can not be modified later without

4https://dafny.org/
Shttps://github.com/Z3Prover/z3

changing the hash of the framework. For the remainder of this
paper, we will assume that the framework has been tailored
for a specific application, and neither the Main, Verifier, or
Function specifications will be changed. We also assume that
all these parts have been developed in a reproducible way and
can be inspected and compiled by any user (or trusted expert)
who aspires to use the system.

1) Main: The glue that holds the different parts of the
framework together. It exposes a communication API used
to trigger different functionalities, such as attestation and
deployment of upgradable code, as well as the execution of
functions. For example, it could include one endpoint for
attestation and secret sharing, one endpoint to deploy a new
implementation corresponding to some present specification
(which also would trigger the verification by running Dafny
on the code), and one endpoint to trigger the computation.
The key aspect of Main is that it enforces the verification of
deployed functions.

2) Verifier: Without loss of generality, we choose Dafny as
our automated verifier. Dafny is open source, does not need
any interaction to verify the given code, and can transpile to
a number of languages that can then be evaluated inside the
TEE. For more complex projects, more advanced verifiers may
be needed, but the general principles of this paper should still
be valid.

When deploying the TEE, the Dafny binary is included in
the build process, hence the exact version used has to stay the
same. This makes it possible during attestation to verify which
version of Dafny is used and hence check if the verifier has
any known vulnerabilities or limitations.

3) Function Specifications: The specifications are written
in Dafny syntax and can consist of anything that is supported
by the Dafny language. This includes ensure statements
(post-conditions) and helper functions that can be used to
verify certain properties. The specifications are part of the
initial state of the framework and cannot be changed without
changing the hash during the attestation. These specifications
manage what the implementation is supposed to do, hence
they need to be inspected by the users to make sure that the
expected functionality is correctly specified.

B. Parties

1) Developer: This party is responsible for setting up the
environment, deploying the binary on the TEE, as well as mak-
ing the function specifications available for inspection by any
potential user. This party later on deploys the implementations
for the upgradable functions, as well as potential upgrades
during the application’s lifetime.

2) User: This party verifies the source code of the frame-
work. That is, the user makes sure that the verification is
enforced on the unknown implementations and that the func-
tion specifications are correct. Since the framework can be
compiled in a reproducible way, the user can generate the
hash of the framework and later compare this with the hash
from the attestation procedure.
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C. Upgradable functions

Each function consists of two parts: the specification and the
implementation. The specification defines the API of the func-
tions. That is, the input arguments that the function requires,
as well as the returned type. In addition, each specification
specifies the pre- and post-conditions and potential helper
functions. The implementation is the actual code that defines
how the pre- and post-conditions are fulfilled.

The specification is part of the static aspect of the TEE ap-
plication, while the implementation is loaded during runtime.
The complete function is then created by merging the two
parts to form a complete Dafny code file.

Dafny then verifies that the conditions hold and, only if they
do, transpiles to code that can be compiled and executed in
the TEE. Transpilation is the Dafny process that converts the
Dafny code files into equivalent files in another language, in
our case, Python. If other target languages are used, such as
Java, the transpiled code is also compiled to an executable.

Listing [T] shows an example specification of the Fibonacci
functiorﬂ The specification defines a helper function fib
that is used by the post-condition and specifies what kind of
arguments this function takes. Listing [2| shows the actual im-
plementation. The specification is merged with the implemen-
tation during runtime; the latter can change without notifying
the user. However, only implementations that conform to the
specification are accepted.

Listing 1: Fibonacci specification

1 function fib(n: nat): nat {
2 if n == 0 then O
3 else if n == 1 then 1
4 else fib(n - 1) + fib(n - 2) }
5 method ComputeFib(n: nat) returns (b: nat)
6 ensures b == fib(n)
7 { // Implementation body }
Listing 2: Fibonacci implementation
1 var i := 1;
2 var a := 0;
3 var b := 1;
4 while i < n
5 invariant 0 < i <= n
6 invariant a == fib(i - 1)
7 invariant b == fib (i)
8 {
9 a, b :=Db, a + b;
10 i =1+ 1;
11 }

IV. IMPLEMENTATION AND USAGE

Our tool first merges the specification with the implemen-
tation and passes the result to the verifier. If the verification
is successful, the code is then transpiled for later use.

Figure [2] visualizes the general workflow of TRUVALT. It
is divided into two main parts: a) The deployment of the
upgradable verified code (Figure [2a) to be executed on the
users’ data, and b) the verification and code generation of the
deployed code (Figure 2b). When any user triggers a verified

SExample taken from the Dafny tutorial:
OnlineTutorial/guide.html
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(b) The annotated (merged) function is verified by Dafny. If the
verification passes, Dafny transpiles the code and stores it encrypted
on disk as a sealed file. If verification fails, the implementation is
rejected.

Fig. 2: TRUVALT: Deployment, verification, code generation.

function, the function is loaded from the seal and evaluated
on the input data.

A. Deployment and initial verification

The Developer deploys the framework in a TEE-equipped
cloud environment. This includes the Main part, as well as the
Verifier and the Function specifications. We here assume that
these have been inspected by potential users and are trusted.
The attestation property of the TEE further ensures that each
user can be sure that it is actually TRUVALT that is running.

Note that in this stage, the seal is empty and the aggregation
functions are just specifications without any means of being
executed.
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B. Deployment of upgradable functions

When the initial deployment is done, the Developer sends
the implementations of the upgradable functions to the en-
clave. In a production environment, the received implemen-
tation should be properly sanitized before the Dafny files
are generated. This process should take care of any illegal
characters and statements that a malicious developer might
include. This is considered orthogonal to our work, and in our
implementation, the input is assumed to have been sanitized.

The implementation is merged with the previously deployed
pre- and post-conditions and combined into a complete Dafny
code file. The enclave then executes Dafny on the deployed
code file for verification of the post-conditions. If the verifica-
tion succeeds, Dafny then transpiles these files to code that is
stored as seals in the enclave. These seals are encrypted by the
enclave and can only be decrypted by the enclave itself. Hence,
the data can not be accessed by the host, and any modification
would corrupt the files. In the case where verification fails,
no transpilation occurs, and the functions cannot be executed.
At the same time, they are persistent, so if the TEE is shut
down for some reason, it can still use the previously generated
implementations at the next startup without running the verifier
again.

C. Upgrading functions

The upgrade process is identical to the initial deployment
process in practice. The developer sends a new implementation
that will form a Dafny code file and be verified by Dafny. If
the verification succeeds, Dafny will generate new code for
this function, and the new implementation will replace the
previous version. If the verification fails, no new code will be
generated, and the previous implementation will continue to
be active.

D. Execution of upgradable functions

When a user sends data to the enclave to use the functions,
the enclave loads the code generated by Dafny from the seal.
Only if Dafny has verified the code as correct in terms of
predefined pre- and post-conditions will this code exist. Since
it is encrypted, only the enclave itself has the ability to read
the data, and no other party would be able to modify the code
without breaking it. This means that the code that is evaluated
on the users’ data will be correct in terms of the pre- and
post-conditions that were initially deployed with the enclave.

E. Proof-of-concept implementation

A proof of concept of the proposed system was implemented
using a virtual machine in Microsoft Azure’s confidential
computing environment. The specifications of the VM can be
seen in Table [l

The TEE application is developed in Python and deployed
as a TEE application by using Gramine, which makes it fairly
easy to run unmodified code inside a TEE running on Intel
SGX. The source code is available as an open-source projectﬂ

7https://github.com/marbirg/trust_and_verify_upgradable_trusted_functions

TABLE I: System properties for SGX-enabled VM running on
Microsoft Azure Cloud.

Property Value

OS/Kernel Linux SGX 5.4.0-1104-azure
#110~18.04.1-Ubuntu SMP
x86_64 GNU/Linux

CPU Intel(R) Xeon(R) E-2288G CPU @
3.70GHz

Size Standard DC2ds v3

vCPUs 2

RAM 16 GiB

Python version | 3.10.12

Dafny version | 4.6.0.0

F. Dafny pre- and post-conditions

Dafny provides the requires statement that can be used
by the prover for assumptions, e.g., an input array is not
null and has a length greater than 0. Unfortunately, these
prerequisites are not enforced in the exported code, hence a
requirement such as requires input_array.Length
>= 200 would not be respected. Such enforcements must be
written in terms of ensures statements.

In Listing [3] we show such an example in a count
function. The function is supposed to count the number of
occurrences in an input array a and return it as a multiset
c. In addition to ensuring that the input is of a specific size,
it also requires that no count can be less than a predefined
number, in this case, 10. Note that these conditions might not
be enough for confidentiality, depending on the type of data
and application, but more such conditions can easily be added
for other properties, such as the number of unique input values
or non-zero values.

Hence, in the examples that we provide, the only conditions
that will be enforced and verified by Dafny are the ensures
statements.

Listing 3: Ensuring at least 200 number of participants and
at least 10 entries per count. Otherwise an empty set will be
returned.

method EnsuresArraylLength(a: array<int>) returns
(c:multiset<int>)
2 requires a != null && a.Length>0
3 ensures (a.Length<200 && |c|==0) || a.Length >=
200
4 ensures forall i :: 0 <= i < a.Length ==>
cla[i]] >= 10 || lcl==

V. SECURITY ANALYSIS
A. Attacker model

We assume that the service provider of the host environment
is not untrusted in its core, i.e. this entity is not assumed
to manipulate the firmware of the trusted enclave, or use
hardware-based side channels to extract decryption keys, for
example. What we do assume is that the host environment can
be compromised by a malicious actor. Since this actor does
not have physical access to the hosting machine, side-channel
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TABLE II: Result from verification of Dafny files from Dafny-
Bench repository. Time is given in seconds.

Files Analyzed: 771
Successfully verified: 747 (96.9%)
Mean time in enclave: 168.43
Mean time outside enclave: 2.26
Overhead: ca 75x
Geometric mean in enclave: 174.14
Geometric mean outside enclave: 1.92
Overhead: ca 90x

attacks or firmware manipulation are out of scope. The system
does not protect against rollback attacks on the seals, but such
attacks cannot affect the core functionality of the system.

The Developer is assumed to be untrusted and might try
to create implementations that change the functionality of the
system.

B. Rollback attacks

All data that is stored persistently on the system is stored
encrypted in so-called seals. These encrypted files can be
accessed by the host system, but not read due to encryption.
The encryption key is derived from the TEE and the initial
application state. Hence, the seal is not readable from any
other TEE or any other application running on the same TEE.
However, it is possible for the host system to store a copy of
the seal, and at a later point in time, replace a newer version
of the code with an older one.

Protection against rollback attacks is not possible with a
single system, but there are works [24] that show that by
combining several trusted platforms, it is possible to detect
such attacks as long as all platforms are not acting maliciously.
Such mechanisms could easily be added to our system and are
considered orthogonal.

In our system, a rollback attack would still have a limited
effect on the confidentiality of sensitive data. Such an attack
would only affect the performance of the system, assuming
that the newer version was optimized in some way, but it would
not affect the general functionality of the system. This is the
case since every version of the code that is stored as a seal
has been verified by Dafny first. Hence, the old rolled-back
code would still be verified according to the specification and
fulfill the same properties.

VI. CONTROLLED EXPERIMENTS

We verify the correctness and performance of our frame-
work with controlled experiments. These experiments consist
of ensuring that Dafny can be reliably used as a verification
tool running inside a secure enclave, as well as comparing the
performance overhead of running it directly on the host system
versus in the enclave.

A. Dafny verification

To confirm that Dafny running inside the enclave handles a
variety of different code implementations, we use the datasetﬂ
from DafnyBench [23]. We have used the files that they refer to
as ground_truth, which consists of a total of 782 Dafny source
files. Of these, some cannot be verified with our version of
Dafny. The remaining 771 files are each sent to be verified
in the enclave. Dafny running in the enclave successfully
verifies 747 files. We send each file as a JSON object to the
main application using an HTTP POST request. The verifier
returns a response that indicates success or failure. The time
between sending the data and retrieving the result is recorded
for each Dafny file. Since all network communication occurs
on the same host, we believe the additional time for sending
and receiving the data is negligible, and the recorded time
is assumed to be the verification time. It should be noted
that in this setting, Dafny only verifies that the files are
correct according to the specified pre- and post-conditions.
No transpilation or compilation is done.

We compare the time for verification with running the same
service outside the enclave. The result is shown in Table [l As
one can see, it takes ca. 90x longer time to do the verification
inside the enclave. This is due to the large amount of memory
needed for the verification, which indicates that the enclave
must cache data at the host. This operation is time-consuming,
since cached data moving in and out of the enclave has to be
decrypted and encrypted, respectively. In a practical setting,
the verification is only done during deployment and upgrades,
which should not happen very frequently; hence, we argue that
this overhead is acceptable.

B. Micro benchmark

From the files taken from DafnyBench, we select a few
examples to compare the runtime overhead of transpiled code.
The selected samples consist of computing a sum of an array
of integers, a basic find function, binary search, merge sort,
and bubble sort. The files are first verified by Dafny to be
correct and then transpiled to Python code. The Python code
is then evaluated by triggering a specific endpoint in the web
server. In the request, we submit the data that is supposed to
be used as an input argument to the generated Python code.
This experiment is carried out by running the service both
inside the enclave and outside of it.

We evaluate each function 1000 times and record the
computation time. The result can be seen in Table We
have a geometric mean overhead of only 50 %, which we
believe is acceptable in regard to the increased security and
confidentiality aspects given by the secure enclave.

For most functions, an array of random integer values has
been generated and supplied to the functions. In the cases of
Find and BinarySearch, an integer that exists in the array
has also been supplied. For BinarySearch, the supplied
integer array is sorted.

8https://github.com/sun-wendy/DafnyBench?tab=readme-ov-file
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TABLE III: Compared evaluation time [ms] for code inside
and outside of the enclave, as well as the geometric mean

Enclave Non-enclave Overhead
SumArray Meap 3.52 2.27 1.55
Median 3.33 2.16 1.54
Find Meap 3.04 1.99 1.53
Median 2.88 1.92 1.50
BinarySearch Mear} 2.82 1.83 1.54
Median 2.62 1.72 1.52
MergeSort Meap 50.84 33.41 1.52
Median 49.94 32.70 1.53
Mean 833.92 565.10 1.48
Bubblesort — \ ian  833.24 564.69 1.48
Geometric 16.34 10.82 1.51

mean:

Listing 4: Ensuring correctness of sorting algorithm

predicate Sorted(q: seg<int>) {

forall i,J :: 0 <= 1 <= j < |qg]
}

method Sort (a: array?<int>)

requires a!=null

decreases a.Length

ensures Sorted(b[..])

ensures multiset (b[..])==multiset (al.

ensures b.Length == a.Length

==> q[i] <= q[J]

returns (b: array<int>)

-1)

C. Upgrading functions

To verify that the functionality of Dafny is as expected,
even when running in the TEE, we test this by sending
two versions of known working implementations for different
sorting algorithms. In Listing [] the specification for the
sorting function is defined. To verify that this specification
works for different sorting implementations, the system was
initially deployed with an implementation of the Bubble
Sort Algorithm. Upon deployment, Dafny verified that the
implementation was correct according to the specification and
generated the equivalent Python code. The generated code was
triggered by sending an array of randomly generated integers,
and the resulting array was verified to be correctly sorted. After
this stage, the client deployed another sorting implementation,
now using the Merge Sort algorithm. Dafny correctly verified
that this implementation was also correct according to the
same specification, and the generated Python code was again
tested in the same manner.

D. Rejecting an implementation

To verify that Dafny indeed rejects implementations that
do not adhere to the specification, even when running in the
TEE, we modified a piece of code to be slightly incorrect with
respect to the specification. In Listing [5} the specification for
the Voting function is specified. The original implementation
of this function can be seen in Listing [6]

To create a incorrect version of the implementation,
we change line 11 from if b[y]l>a.Length/2 to
if blyl>=a.Length/2 (notice the change of > to >=).
This is a very small change and might come from a simple
development error, but now the specification does not hold.

2 ensures count==-1 ||

OO0 WNBAWN—

We saw in our experiments that Dafny correctly rejects the
new implementation and does not generate any new Python
code. Hence, if the function were to be triggered again, the
old (and correct) code would be executed.

Listing 5: Ensuring correctnes of majority voting

method Count_votes (a:array<int>) returns
(count:int, value:int)
count>a.Length/2;

ensures count==-1 || count==multiset(al[..]) [value];

Listing 6: Implementation of Voting function
{

var b :=multiset(al.
var keys := (
count:=-1;
value:=-1;
var c := keys;
while ( c != {} )
decreases c;
invariant count==-1 |
invariant count==-1 |
count==multiset (a

1)

set keys | keys in al[..] );

| count>a.Length/2
|

[..]) [value]

var y :| y in c;
if bly]>a.Length/2 {
count:=b[y];
value:=y;
16 }
c:=c-{y};
}
19 1}

E. Threats to validity

Dafny can transpile to several languages other than those
we have evaluated. It is possible that transpiling to another
language, especially one that needs compilation, would affect
the overhead when deploying and upgrading functions. In
addition, it is also possible that another language runtime
overhead might differ for other runtime environments, such
as CLR or Java.

The experiments have been performed in a controlled en-
vironment on a few different Dafny implementations. More
complex setups that might require more memory use might
affect the outcome negatively. Such issues could be solved by
using an enclave with more memory, but this has not been
tested. A larger enclave could have a positive effect on the
overhead since less data would need to be cached on the host
environment, but this has not been evaluated.

VII. USE CASES

To demonstrate the applicability and scalability of our
approach, we show a couple of use cases with more complex
requirements and implementations.

A. Use cases

To set the system in a realistic setting, we present several
potential use cases for this setup. These use cases perform
computations with data that can be considered confidential.
Hence, the system can be trusted if it is possible to verify
that it does not leak sensitive information beyond the result of
the computation and that crucial functionality is verified to be



correct. In addition, these are examples that it is reasonable
to believe will need to be upgraded during the lifetime of the
application.

1) Confidential Taxi Monitoring: In this setting, different
taxi companies monitor their individual taxi cars in the same
city. To be able to get a view of where there is a need for
sending taxi cars, and where there might be too many, each
company would like to compute the total number of taxi cars
in certain zones in the city, but neither taxi company wants to
reveal the position of their taxi cars to any other company.

In our implementation, the count mechanism is defined by
the specification in Listing [/} and mandates that enough taxis
have to be part of the computation, as well as that at least a
threshold of taxis must be in each position to get the value.
Each taxi reports its real-time position at some time interval,
and the taxi companies can then query how many taxi cars
there are in certain zones of the city. If too few cars are in a
specific zone, the zone is reported to have O cars.

must explicitly agree on this requirement. For the aggregation,
a sorting function has been developed in Dafny, and the main
application uses this verified code generated by Dafny to sort
an array containing all included users’ data. The median is
then computed by the main application using the sorted array.

The specification of the sorting function can be seen in
Listing [4] There are many different sorting algorithms avail-
able, and they differ depending on how one expects the values
in the array to be distributed, or if one wants to optimize
for speed or memory. At the same time, it can be fairly
hard to inspect a sorting algorithm manually and verify its
correctness. By contrast, it is arguably simpler to inspect the
post-conditions of a sorting algorithm, which can be done
with little technical competence. Our system makes it easy to
verify the correctness of the sorting algorithm, without even
looking at the implementation, while at the same time, the
implementation can easily be changed if the developer decides
that another implementation is more suitable.

Listing 7: Ensuring number of taxis is at least 100 entries per B Ethereum Virtual Machine in Dafity

count

1 method CountTaxis (i:int, a: returns

(c:int)

array<int>)

2 requires a != null
3 requires a.Length>0
4 ensures c>100 || c==

2) Majority Voting: For safety-critical operations, such as
healthcare and aviation, several redundant sensors are used
for each critical property to detect sensor failures. In avionics,
the requirement for safety sets very high standards for the
possibility of several sensors failing simultaneously. A voting
system is used to determine the actual value based on the
measurement of each sensor. It is crucial that this system is
correct, and by leveraging the power of formal verification, one
can be certain that the implementation fulfills the requirements.
Using a TEE in this setting reduces the risk of tampering with
the software, and one can verify that the conditions for the
software will hold, even if the implementation changes.

In our implementation, the voting system allows sensors
to asynchronously report data using a secure channel to the
TEE. After a certain time, this data is sent to a function that
is specified by a function specification that ensures how the
output will be constructed. In our example, the input consists
of an array containing the value reported from each sensor.
The voting function will report the winning value as long as
more than half of the sensors report the same value; otherwise,
—1 will be reported, indicating an error. The specification for
this implementation can be seen in Listing [5]

3) Smart Health Aggregation: In this setting, we assume
that users store potentially confidential data encrypted in the
cloud for availability and backup. The users still want to
compute statistics on the population to be able to compare
themselves to the rest of the users.

For example, users can upload the time that they run 5 km
and then request the median value for all users who have done
the same. Only users who have provided their decryption key
to the enclave can be included in the computation, so each user

The GitHub project Daf ny—EVIVE] aims to create a formal
specification of the Ethereum Virtual Machinﬂ The project
is actively maintained, is ranked #2 on GitHub based on the
number of stars on Dafny projects, and consists of 6900 lines
of Dafny source code.

Ethereum is one of the most popular platforms to run smart
contracts and one of the most popular cryptocurrencies. Hence,
it is of great importance that the virtual machines that act as
nodes in the network are correct.

We successfully used Dafny to verify the source code of
Dafny-EVM inside the enclave. In addition, we transpile the
code to Java and compile and bundle the project into a jar-file,
also inside the enclave.

By moving Dafny-EVM inside the TEE, without any mod-
ification of the source code, we can provide secure attestation
of the verification, transpilation, and build process. We can
hence transfer the integrity guarantees given by the TEE, to
any user that wants a formally verified version of the EVM,
with no need to verify and build the project themselves. The
final binary would be retrieved directly from the TEE and
enable a sort of attested formal verification and build as a
service.

Smart contracts can be a way to perform a trusted com-
putation in the sense that the implementation can compute
over many users’ data, but cannot be changed once deployed.
Much work has gone into verifying the semantics of smart
contracts [3], [19], but less attention has been paid to the
correctness of the EVM, which executes the smart contracts
themselves.

Dafny-EVM consists of source code written in Dafny. After
a successful verification, these files are transpiled to Java
code, which is then compiled and packed as a jar file. The
final binary is subsequently formally proven to adhere to

9https://github.com/Consensys/evm-dafny/tree/master
1Uhttps://ethereum.org/en/developers/docs/evm/
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the contracts’ specification in the Dafny code. The resulting
bytecode can then be compared to other EVM implementations
on byte level, and hence be reasoned about formally. If the
bytecode is identical, they should adhere to the same proof.

1) Challenges building in the TEE: Gramine aspires to run
unmodified applications inside a trusted enclave, but some
aspects are more complex to get to work than others, and
some aspects are not implemented by GramineEr] for different
reasons. Because of this, the build instructions for this project
could not be executed without modification.

a) Gradle: The project uses Gradle as a build system,
which is not made to run in an isolated system. Some issues
in getting Gradle to run inside the enclave were due to limited
(internal) network communication. Relevant ioctl calls must be
explicitly allowed in the Gramine manifest file. In addition,
the Gradle process used all of the available memory until it
crashed the enclave, something that we did not observe when
running it on the host system. Our best guess is that Gradle
spawns separate processes, which are allocated much more
memory than necessary because of how Gramine allocates
memory.

The functions of the Gradle configuration flags are not
always obvious. For example, Gradle accepts an ——offline
flag, which could be assumed to mean that it will not try to
pull dependencies from online sources. This is though only
a best effort promise. If it is missing some dependency, it
will still try to fetch this from online sources without asking.
We observed a similar behavior with the ——no-daemon flag.
Despite the name, this does not mean that it is running without
daemons, it just means that the daemons will be stopped when
the build is completed.

b) Debugging TEE applications in Gramine: Debugging
inside the enclave is problematic since the applications, by
their nature, are isolated from the host. The best strategy is to
enable more fine-grained logging in Gramine.

To determine the root cause of the error when running
Gradle inside the enclave, we increased the log level to
trace. This level prints a very large amount of information,
and can be difficult to analyze in the prompt.

To reduce the noise in the logs, we instead determined the
commands that Gradle ran by increasing its log level. By
manual inspection of these logs, we extracted the commands
that Gradle executed during the build. We then ran each com-
mand individually in the enclave without Gradle. This made
it possible to pinpoint what fails and when. The verification
process was completed successfully, and so was both the
transpilation and the compilation process. The build failed
when the jar command was used to bundle the compiled class
files, since jar uses the system call copy_file_range,
which is not implemented in Gramine. This is only possible
to notice if using log level all or trace.

¢) Building a jar in Gramine: The jar binary is used
to package compiled Java class files into a bundle that can be

https://gramine.readthedocs.io/en/stable/devel/features.html ?highlight=
system%?20calls

run independently (on a system equipped with the Java Virtual
Machine). The binary takes as argument the path where the
class files are located, and a (non-mandatory) path where to
store the jar bundle. It then creates the file in a temporary
location, after which it moves the bundle to the specified
path. To optimize this, the system call copy_file_rangeis
used. This command moves the file in the file system without
moving any data on disk. Unfortunately, this system command
is not implemented in Gramine. However, if the output path
argument to the jar command is omitted, the binary instead
writes the output to stdout. In this case, it is possible to pipe
this data to the desired file location and hence build a jar
bundle inside the enclave.

This workaround is unfortunately not possible to use when
using Dafny to build the jar file, since Dafny mandates the
use of an output file when calling the jar command. Because
of this, we were not able to execute the supplied tests in the
repository. To do this, a change needs to be made in the Dafny
API, to allow the user to supply a flag or similar to make the
jar binary pipe the output to a file rather than using the non-
supported system call. We believe that this should be a minor
change, but it is out of scope for this paper.

2) Our contribution: By using an existing project on
GitHub that is highly ranked compared to other Dafny projects,
we have shown that our framework is feasible for real applica-
tions. We were able to both verify and build the project inside
the secure enclave using Dafny and Java. We noted limitations
in Gramine that prevent us from using parts of Dafny as one
would on the host system, but presented a workaround that
still allows us to build the jar package inside the enclave. We
have shown how to debug the application inside the enclave,
which can be beneficial for future work.

VIII. RELATED WORK

To the best of our knowledge, our work is the first to use
unmodified off-the-shelf verification tools inside the enclave
to enforce properties of both correctness and security. In this
section, we will discuss related works in the areas of Proof
carrying code, Smart Contracts, TEE-backed analysis, and
Software verification.

A. Proof carrying code

Verification of code before execution is not new. The idea of
Proof carrying code [31], [32] introduces the idea of including
a proof with the code that can be checked by the user before
execution. This makes it possible to verify certain properties of
the program. The proof can verify security-related properties,
but not necessarily show correctness.

The challenge at the time was that the creation of the
proof was not automated and hence very time consuming [31].
We believe that advances in automated provers now make it
possible to state relevant properties without the burden of a
full proof, although writing a strong specification remains a
challenge.
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B. Smart contracts

The issue of not being able to change trusted code has
mainly arisen in the context of smart contracts, where the
proxy pattern has been proposed as a workaround [[11]. In this
setting, the proxy contract is static, but uses other contracts for
computation, and these contracts can be changed. Obviously,
if allowing the contracts to be upgraded arbitrarily, the security
and confidentiality model would fall. Antonino et al. [5],
[4] propose a system with a trusted deployer that verifies
that certain properties of the contract hold after upgrade. By
using pre- and post-conditions that are verified, if a contract
violates these properties, transactions will fail and revert.
Smart contracts still have the limitation of large computational
overhead when aggregating on large amounts of data, and are
generally not the best choice for use with confidential data,
because all transactions are stored publicly on the blockchain.

C. TEE-backed analytics

TEEs have been adopted in many different settings to
enhance security and transparency for the users. This paper
builds on previous work by Birgersson et al. [8]], [9]], which
aims at computing arbitrary aggregations on confidential data
in a multi-user setting. Islam et al. [15] present a secure and
confidential solution for a Trigger-Action platform. The rules
are encrypted, as well as data from triggers, and can only
be evaluated inside a trusted enclave. In the work of Ayoade
et al. [6], blockchain technology is used as a tamper-proof
system for managing access control in an IoT environment,
while a TEE is used for secure storage. Walnut [37] takes
the security of a Trigger-Action platform even further, and
combines homomorphic encryption with multiple TEEs to
enhance security. Gremaud et al. [14]] and Moazen et al. [27]]
present architectures for deploying Trigger-Action platforms
on untrusted hosts by using TEEs. Neither of these works
focuses on a multi-user setting, and neither addresses the issue
of upgrading already deployed code.

Other works [26], [2]], [LO], [42] propose sandboxing tech-
niques to isolate and mediate communication between applica-
tions and with the host environment. The focus on TRUVALT
is instead to give guarantees to data owners that a specific
computation will be carried out, without the need to trust the
host environment.

TEEs have also been used to protect the device itself [35],
[L7]. For a more comprehensive list of methods to use trusted
execution environments to protect devices in a cloud/fog
environment, we refer to the literature review by Valadares
et al. [40].

Machine learning applications are another setting where
TEEs are used. Both FLATEE [28]] and Chen et al. [[12] use
TEEs in federated learning schemes to replace homomorphic
encryption while preserving integrity and protecting against
data poisoning attacks.

In these settings, the users are not aware of the details of
the application and are not responsible for attestation; hence
it is not an issue to upgrade the code as it is when the same
instance should be transparent for all users. Our work differs in

this regard as we transfer the integrity guarantees given by the
TEE to the user. Because we separate the properties of the code
from the implementation, we are still able to perform upgrades
as long as the properties are fulfilled. At the same time, the
users do not need any extra capabilities or do any extra work,
since the verifier of these properties is run inside the enclave.
Users hence need to inspect less code; only properties and not
the implementation.

D. Software verification

There are still many challenges in the area of software
verification. The authors of [38], [29] reason about both
computational contracts as well as effectful computational
contracts. Fordés [[13] proposes a method for identifying ’trust
zones’ in Erlang source code, as well as detecting potential
vulnerabilities by static analysis. These works are considered
orthogonal to ours.

The use of formal verification tools in the context of TEEs
is itself nothing new. Kumar Jangid et al. [[18] use Tamarin to
reason about state continuity for enclave applications, some-
thing that is orthogonal to our work. Zhang at al. [45] present
a framework for detecting data leakage in ML applications.
The framework is used on the code before it is deployed and
is hence a tool for the developers rather than a guarantee for
the users.

Liu at al. [21]] decompile deployed functions and verifies
policies similar to proof carrying code, but focus on memory
corruption. Hence, previous work on verification and TEEs is
about reasoning about code in the enclave, but does not run
verification tools inside the enclave. More similar to our work
is DuetSGX [30], [33], which is a framework to automatically
verify that an application is differentially private, but it does
not verify correctness. This is, hence, rather an interesting
functionality to add to our work for increased privacy.

IX. CONCLUSION

We have presented TRUVALT, a framework for automat-
ically and formally verifying code running inside a TEE.
The framework consists of formal specifications of functions,
a formal verification tool, and a Main part that provides a
communication API and binds all parts together. The TEE
is leveraged for integrity and transparency, while a formal
verification tool, Dafny, is automatically enforcing function
specifications without the need to reveal the implementation.
We have successfully used the tool to verify 747 Dafny files
found online. We have evaluated the tool by running it both
inside and outside a secure enclave. The verification time in
the enclave shows an overhead of 90, but since code is only
verified during initial deployment and upgrades, something
that should happen fairly infrequently, it is acceptable. In addi-
tion, we have evaluated the framework on a micro-benchmark,
which shows an overhead of only about 50%, which is
considered acceptable because of the increased security and
correctness guarantees that come with the framework. Finally,
we verified that the framework is suitable for a real-world
application by running the verification procedure as well as



the transpilation and compilation of a popular GitHub project,
Dafny-EVM.

TRUVALT makes it possible to seamlessly upgrade code
running in a TEE, without changing the attestation hash, while
still providing guarantees that the initial contract with the users
is still intact. Our work fulfills a strong need for verification
combined with upgradability. We expect recent improvements
in automated proof technology to give rise to stronger speci-
fications and thus trustworthy automated upgrades.

X. FUTURE WORK

The current system does not protect against rollback attacks.
This is in general, no issue since all previous versions of the
functions have been verified, but for integrity purposes of the
application, such protection would still be valuable. Dafny is a
good verifier in terms of proving correctness for an application,
but is fairly limited. It has, for example, no capability for
randomness. To add focus on privacy on top of correctness
when upgrading code, something similar to DuetSGX [30],
[33] would be an interesting continuation. Extensions of Dafny
to provide information flow analysis have been suggested [34],
but unfortunately, that implementation depended on an old
version of C#, but such additions to Dafny would make our
system even more versatile.

Dafny is just one verification technique, and others would
be interesting to incorporate and evaluate in a similar setting.
Notable examples would be Liquid Haskell [41]], [22], Veri-
Fast [16] and Cog/Spoq [20].
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