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Abstract—Information flow control and dynamic policies is
a difficult relationship yet to be fully understood. While
dynamic policies are a natural choice in many real-world
applications that downgrade and upgrade the sensitivity of
information, understanding the meaning of security in this
setting is challenging. In this paper we revisit the knowledge-
based security conditions to reinstate a simple and intuitive
security condition for dynamic policies: A program is secure
if at any point during the execution the attacker’s knowledge
is in accordance with the active security policy at that
execution point. Our key observation is the new notion of
policy consistency to prevent policy changes whenever an
attacker is already in possession of the information that the
new policy intends to protect. We use this notion to study
a range of realistic attackers including the perfect recall
attacker, bounded attackers, and forgetful attackers, and
their relationship. Importantly, our new security condition
provides a clean connection between the dynamic policy and
the underlying attacker model independently of the specific
use case. We illustrate this by considering the different facets
of dynamic policies in our framework.

On the verification side, we design and implement
DYNCOVER, a tool for checking dynamic information-flow
policies for Java programs via symbolic execution and SMT
solving. Our verification operates by first extracting a graph
of program dependencies and then visiting the graph to
check dynamic policies for a range of attackers. We eval-
uate the effectiveness and efficiency of DYNCOVER on a
benchmark of use cases from the literature and designed by
ourselves, as well as the case study of a social network. The
results show that DYNCOVER can analyze small but intricate
programs indicating that it can help verify security-critical
parts of Java applications. We release DYNCOVER publicly
to support open science and encourage researchers to explore
the topic further.

1. Introduction

Information flow control provides an appealing se-
curity framework for reasoning about dependencies be-
tween information sources and information sinks, and
for ensuring that these dependencies adhere to desirable
security policies. In a language-based setting, this security
framework has the following ingredients: (1) an execution
model which is given by the execution semantics of a
program; (2) an attacker model specifying the observation
power of an attacker over the attacker-visible sources and
sinks; (3) a security policy specifying, for each execu-
tion point, the permitted information flows from sources
to sinks, disallowing information flows from secret/high
sources to public/low sinks; (4) a security condition (or

security property) capturing a program’s security with
respect to an execution model, an attacker model, and a
security policy. A classical security condition is nonin-
terference requiring that any two executions starting with
equal values on public sources yield equal values on public
sinks [1].

A common trait in much recent work on informa-
tion flow control has been the appeal to attacker-centric
security conditions based on the concept of knowledge
as a fundamental mechanism to bring out what secu-
rity property is being sought and compare it with the
knowledge permitted by the security policy [2], [3], [4].
Arguably, this appeal to knowledge, usually as equivalence
relations on initial states, has produced clear and intuitive
security conditions able to accommodate various notions
of information downgrading (declassification) on which
soundness arguments for enforcement mechanisms, e.g.,
security type systems, can be based [5], [6], [7]. In a
nutshell, knowledge-based security conditions capture an
intuitive requirement: A program is secure with respect
to a security policy if at any point during the program’s
execution, the attacker’s knowledge is not greater than the
knowledge permitted by the active security policy at that
execution point.

While this simple and elegant condition is well-
understood for static multilevel security policies that only
downgrade the sensitivity of information, it does not ap-
propriately capture the security requirements of systems
that change their security policies dynamically, thus both
downgrading and upgrading the sensitivity of information
in response to security-sensitive events. This is not sat-
isfactory because dynamic policies are a natural choice
for many real-world applications, e.g., healthcare systems,
social networks, database systems, where access to infor-
mation may be granted or revoked to different principals in
accordance with their specific role at a given moment [8],
[9], [10], [11]. Existing works address the challenge of
dynamic policies by proposing security conditions that
capture specific facets of a targeted use case [12], [13], [2],
[14], [15], [16], [8], [9]. Broberg et al. [11] systematize
existing research on dynamic policies illuminating the
different facets exhibited by existing security conditions.

In this paper we revisit the state-of-the-art of secu-
rity conditions for dynamic policies to reinstate attacker-
centric knowledge-based conditions. Our starting point is
the work of Askarov and Chong [8] which proposes a gen-
eral framework for weakening of the attackers’ observa-
tion power to accommodate dynamic policies. We further
revise and develop this framework targeting three types of
realistic attackers: (1) perfect recall attackers recalling all
observations on public sinks; (2) bounded memory attack-
ers recalling a bounded number of observations on public



sinks; and (3) forgetful attackers recalling observations on
public sinks up to a security policy change. While the first
two attackers are standard, the third attacker, as we will
see, is useful in settings where the release of knowledge is
transient and it is limited to the event of a security policy
change. For example, the event of changing the database
policy to revoke access on a table to user A may reflect
the security requirement that user A should no longer read
data from that table, independently of whether or not user
A accessed the table before the policy change.

Our key observation is the notion of policy consistency
to reflect the observation power of an attacker and thus
prevent a policy change whenever the attacker is already in
possession of the information that the new policy intends
to protect. For example, under the model of a perfect
recall attacker, a policy change that revokes access to a
resource that the attacker has already observed (possibly
at a past time when access to that resource was granted to
the attacker) should result in an inconsistent policy, since
it violates the assumption on the perfect recall attacker.
Unfortunately, existing works assume that policy changes
are always consistent, which has often resulted in ad hoc
and unintuitive security conditions. This simple but funda-
mental insight allows us to reestablish clear and intuitive
attacker-centric knowledge-based conditions for dynamic
policies. More importantly, the new security conditions are
in line with the above-mentioned ingredients required by
a security framework and they provide a clean separation
between policy concerns and enforcement concerns. A
policy designer can instantiate our framework in accor-
dance with the security requirements for the use case at
hand, by specifying the most suitable attacker model. We
validate our framework by revisiting the facets of dynamic
policies by Broberg et al. [11]. Moreover, in contrast
to Askarov and Chong [8], we prove that, in absence
of inconsistent policy changes, a perfect recall attacker
is indeed stronger than a bounded memory attacker and
a forgetful attacker. Finally, we discuss policy updates
whenever inconsistencies are detected.

Our second contribution is the design and implementa-
tion of algorithms for verifying dynamic information-flow
policies via symbolic execution and SMT solving. Our
verification method operates by first extracting program
dependencies and then using these dependencies to check
dynamic policies for a range of attackers including perfect
recall, bounded memory, and forgetful attackers. The ver-
ification algorithms adapt and extend existing approaches
for checking noninterference via automated theorem prov-
ing [17], [18] and self composition [19] to the setting
of dynamic policies, including the detection and repair
of inconsistent policy changes. We implement [20] an
open-source prototype for Java programs and evaluate the
effectiveness and efficiency on a collection of benchmark
from the literature and designed by ourselves, as well
as the case study of a social network. The results show
that DYNCOVER can analyze small but intricate programs
indicating that it can help verify security-critical parts of
Java applications.

In summary the paper offers these contributions:

• We revisit the state-of-the-art security conditions
for dynamic policies and reinstate clear and intu-
itive knowledge-based conditions based on the ob-

servation power of the attacker (Section 2 and 4).
• We show how our new framework can be used

to capture the different facets of dynamic policies
proposed in the literature (Section 5).

• We design verification algorithms based on sym-
bolic execution and SMT solving to check the
security of Java programs for a range of attacker
models, as well as to detect inconsistent policies
(Section 6).

• We implement DYNCOVER [20] and evaluate the
efficiency and effectiveness on a collection of
benchmarks and the case study of a social network
(Section 7).

2. Problem Setting and Solution Overview

This section gives an informal overview of dynamic
policies discussing the challenges, pointing out limitations
of existing solutions, and arguing for revised knowledge-
based security conditions. The key question is: What is a
suitable security condition for dynamic policies?

To provide a common ground for comparing the dif-
ferent approaches, we borrow the notation and examples
from Askarov and Chong [8] and Broberg et al. [11]. We
write A→ B (A 6→ B) to denote a security policy allow-
ing (disallowing) information flows from security level A
to security level B. We assume that no information flows
between different security levels are allowed initially. For
simplicity, the name of a program variable (e.g., movie)
will match the security level of the variable (e.g., Movie).

We write ki and pi to denote the attacker’s knowledge
and the active security policy at program location i, re-
spectively. By default, we assume that attackers are perfect
recall, remembering any information they observe during
a program’s execution. A popular security condition [3],
[4], [10], which is used in systems that handle only
declassification of information, is given by equation (1)
requiring that at any location i the attacker’s knowledge ki
is smaller1 than the policy knowledge (i.e., the knowledge
allowed by the security policy) pi.

pi ⊆ ki (1)

Consider the scenario in Program 1 where user Alice
purchases a time-limited subscription on a streaming ser-
vice to watch a movie. After the subscription ends, the
security policy changes, however Alice still attempts to
watch movie.

One could argue that this program should be consid-
ered insecure because Alice watches movie when she no
longer has a subscription. Here, the release of knowledge
is considered transient and it should satisfy the active
security policy at every program location. Hence, despite
being perfect recall, Alice should not be able to watch
movie at a time this is disallowed by the policy (line 4).
In fact, equation (1) holds in line 2 since Alice watches
the movie and the policy allows her to watch movie, i.e.,
hence p2 ⊆ k2 since {movie} ⊆ {movie}. However, in
line 4 we have that p4 6⊆ k4 since All 6⊆ {movie}, where
All denotes the set of all possible movies. Hence, the
program is correctly rejected by the security condition (1).

1In this notation, knowledge corresponds to uncertainty, hence the
bigger the set, the smaller the knowledge (see Section 4).



1 Movie→ Alice

2 Alice.watch(movie)
3 Movie 6→ Alice

4 Alice.watch(movie)

Program 1

1 Movie→ Alice

2 Alice.watch(movie)
3 Movie 6→ Alice

4 Alice.watch("NoSubscription!")

Program 2

1 Alice→ Eve

2 Bob→ Eve

3 outputEve((Alice.salary + Bob.salary) / 2)
4 Alice 6→ Eve

5 outputEve(Bob.salary)

Program 3

Consider now Program 2, a variation of Program 1,
displaying the message NoSubscription! after the sec-
ond policy change. This program is also rejected by con-
dition (1) since p4 6⊆ k4, i.e., All 6⊆ {movie}, even though
the NoSubscription! message does not leak anything.

To address this case, Askarov and Chong [8] identify
the power of perfect recall attacker as a key issue and
present a security condition that accounts for weaker
attackers. Their security condition requires that the at-
tacker’s change in knowledge should be allowed by the
active policy, thus at any program location i + 1 the
attacker’s knowledge ki+1 should be smaller than the
attacker’s prior knowledge and the policy knowledge at
location i:

pi ∩ ki ⊆ ki+1 (2)

Condition (2) now accepts Program 2 as secure since
p3 ∩ k3 ⊆ k4, i.e., All ∩ {movie} ⊆ {movie}. However,
surprisingly condition (2) also accepts Program 1 since
p3 ∩ k3 ⊆ k4, i.e., All ∩ {movie} ⊆ {movie}. The
root of the issue here is that perfect recall attacker is too
powerful and can remember any observations made in the
past, e.g., in line 2. To overcome this issue, Askarov and
Chong only consider condition (2) for weaker attackers
with bounded memory. For example, a bounded memory
attacker that remembers only the last observation would
now reject Program 1 since the second observation of
movie in line 4 reveals new information to a bounded
memory attacker. In fact, now p3 ∩ k3 ⊆ k4 since
All∩All 6⊆ {movie}. Similarly, Program 2 is secure since
a bounded attacker learns nothing about movie by observ-
ing the message NoSubscription!, namely p3∩k3 ⊆ k4
since All∩All ⊆ All. Condition (1) treats these programs
similarly for a bounded memory attacker.

A key question arises at this point: How does a pol-
icy designer choose the right attacker model, and hence
security condition, for their setting? While in principle
there may always exist a bounded memory attacker that
accommodates specific use cases as above, it is unclear
what such attacker model should be. Askarov and Chong
answer this question by requiring that condition (2) holds
for all attackers, including perfect recall and bounded
memory attackers. This is important because it enables
compositional reasoning and facilitates enforcement by a
security type system, however, security for all attackers
can be too restrictive in settings where, e.g, only the
perfect recall or a bounded memory attacker is realistic.
In fact, Broberg et al. [11] discuss use cases where the
same program can be considered either secure or insecure
under different attacker models.

More importantly, condition (2) permits any policy
changes although these changes may contradict the as-
sumptions about the attacker. Consider Program 3 han-
dling information about users’ salaries. Initially, both
Alice and Bob allow Eve to learn their salaries, however,

the program displays only the average salary to Eve. Then
Alice decides that her salary should no longer be visible
to Eve and the program displays Bob’s salary.

Let As and Bs be the salary of Alice and Bob,
respectively. Under a perfect recall attacker, Program 3
satisfies condition (2). Indeed Eve can combine the av-
erage salary (line 2) and Bob’s salary to learn Alice’s
salary, hence k5 = {(As,Bs)}. Therefore, p4 ∩ k4 ⊆ k5
since {All×Bs}∩ {(a, b) | (a+ b)/2 = (As+Bs)/2} =
{(As,Bs)} ⊆ {(As,Bs)}. The program is also accepted
for a bounded memory attacker that remembers only the
last output.

Under the perfect recall attacker, we argue that Pro-
gram 3 should not be accepted. The mere definition of
perfect recall assumes that the attacker remembers any
observations and can use these observations to infer in-
formation about the salaries of Alice and Bob. The real
problem lies in the change of the policy in line 4. Because
Eve’s knowledge in line 3 reveals some information about
Alice’s salary (and Eve has perfect recall) the policy
change in line 4 is inconsistent, trying to revoke access
to a resource, i.e., Alice’s salary, that Eve has already
some information about. Hence, the policy change in line
4 should be disallowed in the case of a perfect recall
attacker. A similar argument applies to Program 1 and
Program 2 under the perfect recall attacker. The reader
may find this surprising, especially for Program 2, but,
again, the attacker has perfect recall, hence they remember
the observation of movie in line 2. Therefore, restricting
access to the attacker to some information they already
have is meaningless and should be prevented by the se-
curity condition. In fact, by considering the intersection
of the knowledge and policy (pi ∩ ki), condition (2)
effectively enforces condition (1) under a different policy
p = pi ∩ ki. This leads us to proposing a new (class of)
conditions which is parameterized by an attacker A:

pAi ⊆ kAi (3)

In contrast to condition 1, condition 3 makes the role
of the attacker explicit in the definitions of knowledge
and policy, as well as considers the consistency of a
security policy. We instantiate the security condition (3) to
characterize three attacker models: perfect recall, bounded
memory, and forgetful. For the perfect recall attacker, our
security condition corresponds to equation (1), ensuring
that policy changes are consistent at any program location
i. For a bounded memory attacker, the condition captures
a weaker attacker which remembers observations up to a
predefined bound m, extending the weaker attackers of
Askarov and Chong [8] with policy consistency checks.
Finally, the forgetful attacker captures scenarios in which
the release of knowledge is transient and limited to the
event of a policy change, thus ensuring that the attacker
forgets (or resets) their knowledge whenever there is a



policy change. This attacker model allows: (1) Reject
Program 1 since Alice attempts to (re-)watch the movies
at a time this is prevented by the active policy; (2) Accept
Program 2 (Program 3) since Alice (Eve) does not learn
any information about movie (Alice’s salary) at any
time this is prevented by the active policy.

3. Language Design

We present a simple imperative language with ex-
tended commands for policy change and outputs. We
assume that outputs are performed on channels associated
with security labels X,Y, ` ∈ L.

Syntax Figure 1 presents the syntax of our language.
Expression e consists of program variables x, values v,
and binary operations ⊕. For simplicity, we restrict values
to only integers n. Most of the commands are standard
with the exception of output and setPolicy. Output
command output`(e) evaluates expression e to some
value v and then outputs v on channel `. Command
setPolicy(p) sets the current security policy to p.

Semantics Figure 2 presents the operational semantics
of the language. A configuration is a tuple 〈c, σ, p〉 consist-
ing of a command c, a store σ mapping variables to values
(i.e., σ = V ars → V al), and a policy p that represents
the current active security policy. We use judgments of the
form 〈c, σ, p〉 α−→ 〈c′, σ′, p′〉 to denote that configuration
〈c, σ, p〉 can take a single step to configuration 〈c′, σ′, p′〉
and optionally emit an event α ∈ Ev.

Events Ev include o(v, `) to denote the output of value
v on channel `, np(p′) to denote the activation of new
policy p′, or ε to indicate that no event was emitted.

We write σ(e) = v to indicate that expression e
evaluates to value v in store σ. We write σ[x 7→ v] to
denote a new store that maps variable x to value v and
otherwise behaves the same as σ. Most of the semantic
rules are standard. Command setPolicy(p′) modifies a
configuration to activate policy p′ and emits the new pol-
icy event np(p′). Output command output`(e) evaluates
e to value v, and emits the event o(v, `).

A trace t ∈ Ev∗ is a (possibly empty) sequence of
events. We write | t | for the length of trace t and t1.t2
for concatenation of traces t1 and t2. We define projection
of an event α to channel `, written α�`, as: α�`= α if
α = o(v, `), otherwise α�`= ε. We lift projection to traces
as: (α.t′)�`= α�` .t′�` if t = α.t′, otherwise t�`= ε.

We write 〈c, σ, p〉 t
=⇒ 〈c′, σ′, p′〉 if 〈c, σ, p〉 takes one

or more steps to reach configuration 〈c′, σ′, p′〉 while
producing the trace t. We write 〈c, σ, p〉 t

=⇒n〈c′, σ′, p′〉 to
denote n execution steps and omit the final configuration
whenever it is irrelevant, as in 〈c, σ, p〉 t

=⇒ . An execu-
tion point i denotes a configuration (ci, σi, pi) such that
〈c0, σ0, p0〉

t
=⇒i〈ci, σi, pi〉.

4. Security Framework

In this section, we present knowledge-based and
attacker-centric security conditions for a range of rele-
vant attackers and explore their differences. As discussed
informally in Section 2, the security condition has the
form pAi ⊆ kAi , meaning that in every step of the pro-
gram’s execution, the active security policy should be

the upper bound of the attacker’s knowledge. We in-
stantiate this condition for different attacker models to
consider security-relevant events such as policy changes
and attacker-visible program outputs.

4.1. Security Polices

We consider a multi-user setting where a program
c handles data on behalf of different users which are
identified by security labels ` ∈ L. For simplicity, we
assume that the users’ data is read upfront and resides in
the initial store of the computation. Section 4.4 presents
an extension to programs with arbitrary inputs.

A security policy p is a list of flows of the form `1 →
`2 and is used to define what an observer at a specific
security label `2 is allowed to learn about the initial values
with label `1. We assign security labels to the variables
and use function Γ which is a mapping from variables to
security labels (i.e., V ars 7→ `). For simplicity, the name
of a program variable (e.g., x) will match its security label
(e.g., X), and we write X → A to denote that an observer
at channel with label A can learn values with label X (i.e.,
X can flow to A). Throughout this paper, we use pinit as
a predefined initial policy from which all programs start
their execution. It is a simple reflexive policy that only
allows a security label to flow to a corresponding channel
with the same label (i.e., X → X). We use X → A to
add new non-reflexive flows to the list of allowed policies,
and X 6→ A to revert (disallow) such a flow.

A security policy induces an equivalence relation over
stores. Intuitively, for the flow X → A, two stores are
related to each other by an equivalence relation for an
observer on channel A if they have identical values for
variables with security label X . Formally:

σ ≡pA σ
′ iff ∀x ∈ V ar : Γ(x) = X and X → A ∈ p.

σ(x) = σ′(x)

We write [σ]pA for the set of stores in the same
equivalence class as σ with respect to a policy p and
an observer A. If σ ≡A σ′ (i.e., σ′ ∈ [σ]pA), then an
observer on channel A cannot distinguish between stores
σ and σ′. Henceforth, we call such an observer the attacker
and fix its label to A. Observe that more fine-grained
policies can be defined in the expected manner by refining
the definition of [σ]pA, e.g., by mapping each label to an
equivalence relation on program stores as defined by the
policy p [10], [21]. We discuss fine-grained policies in
Section 6.

In line with existing work on dynamic policies [8],
[10], [21], we assume that policy changes are not ob-
servable externally, e.g., to an attacker A. In our multi-
user setting, policy changes result from internal events
of the underlying system itself, e.g., restricting access
to a service, and these operations are typically carried
out by the system administrator. This assumption applies
to real-world scenarios where a user does not directly
control their access rights, while the policies governing
these access rights are introduced to the system by an
administrator. Nevertheless, our framework can be easily
extended to accommodate observable policy changes by
considering such events similar to program outputs.



V alues v ::= n
Expressions e ::= v | x | e1 ⊕ e2
Commands c ::= skip | x := e | c1; c2 | if e then c1 else c2

| while e do c | output`(e) | setPolicy(p)

Figure 1: Language Syntax

1 setPolicy(X → A);
2 outputA(1);
3 setPolicy(X 6→ A);
4 outputA(x);

Program 4

SKIP
〈skip; c, σ, p〉 ε−→ 〈c, σ, p〉

ASSIGN
σ(e) = v

〈x := e, σ, p〉 ε−→ 〈skip, σ[x 7→ v], p〉
SEQ

〈c1, σ, p〉
α−→ 〈c′1, σ′, p′〉

〈c1; c2, σ, p〉
α−→ 〈c′1; c2, σ′, p′〉

IF-ELSE-T
σ(e) 6= 0

〈if e then c1 else c2, σ, p〉
ε−→ 〈c1, σ, p〉

IF-ELSE-F
σ(e) = 0

〈if e then c1 else c2, σ, p〉
ε−→ 〈c2, σ, p〉

WHILE
〈while e do c, σ, p〉 ε−→ 〈if e then (while e do c) else skip, σ, p〉

OUTPUT
σ(e) = v

〈output`(e), σ, p〉
o(v,`)−−−−→ 〈skip, σ, p〉

SET-POLICY

〈setPolicy(p′), σ, p〉 np(p′)−−−−→ 〈skip, σ, p′〉

Figure 2: Semantics

4.2. Security Conditions and Attacker Models

Our main focus is on the confidentiality of data, hence
we consider a (logically omniscient) passive attacker that
knows the program’s source code and wants to deduce
sensitive information about the initial store values. Our
goal is to identify security conditions for dynamic policies
by investigating the relationship between the attacker’s
knowledge and the policy knowledge for a range of at-
tackers.

We present our knowledge-based security conditions
for perfect recall and forgetful attackers. For space rea-
sons, we refer the reader to Appendix D for similar results
on bounded memory attackers.

4.2.1. Perfect Recall Attacker. We model this attacker’s
knowledge of the initial store σ as a set k, which includes
all of the possible stores that can produce the same
observable trace. We assume the attacker with security
level A is passively observing all outputs on channel with
label A. When a command such as outputA(v) executes,
the attacker sees this output and learns the value v. We
define attacker’s knowledge as:

Definition 1 (Perfect Recall Attacker Knowledge at Point
i). Given program c with initial store σ, and initial policy
pinit, which produces trace t after i execution steps, i.e.,
〈c, σ, pinit〉

t
=⇒i, the knowledge of a perfect recall attacker

that observes program outputs on channel A is defined as:

ki(c, σ, pinit, A) = {σ′ | 〈c, σ′, pinit〉
t′
=⇒j ∧ t�A= t′�A}

Intuitively, ki(c, σ, pinit, A) is the set of initial stores
that the attacker at channel A believes are possible when
observing the trace t�A at execution point i. Thus, the
larger the knowledge set, the less certain the attacker is
of the actual values in σ.

The Perfect Recall attacker has unlimited memory and
can remember all outputs on channel A. This attacker is
the most powerful attacker, because once they observe
an output value they will never forget it, hence, a policy
can no longer restrict the knowledge resulting from the
attacker’s past observations. Arguably, in presence of such
an attacker, programs like 3 should be rejected, because,

as mentioned earlier, we cannot make the attacker forget
what they already know. Therefore, it is not reasonable to
issue a new policy that prevents this attacker from learning
information which they already know.

With this intuition in mind, we need to ensure that any
policy update is consistent with the current knowledge of
the perfect recall attacker:

Definition 2 (Policy Consistency). For all execution
points i, and security policies pi such that

〈c, σ, pinit〉
t

=⇒i−1〈setPolicy(pi); ci, σi−1, pi−1〉
np(pi)−−−−→ 〈ci, σi−1, pi〉

we say policy pi is consistent with the current
attacker knowledge ki−1(c, σ, pinit, A) if [σ]piA ⊆
ki−1(c, σ, pinit, A).

A security policy induces an equivalence relation over
all possible stores, and [σ]piA is a set of stores in the
same equivalence class as initial store σ. Since by Def-
inition 1 attacker knowledge ki−1(c, σ, pinit, A) is also
a set of initial stores, it is straightforward to check
[σ]piA ⊆ ki−1(c, σ, pinit, A).

For example in Program 4, the new policy X 6→ A
in line 3 is consistent, because the attacker does not learn
anything about x by observing the output in line 2, hence
the new policy that disallows learning x is consistent.
However, under this new policy, Program 4 should be
rejected, because the output of x in line 4 happens at
a time when the policy does not allow it. We follow this
intuition to define security.

Definition 3 (Observation Security). For all execution
points i such that

〈c, σ, pinit〉
t

=⇒i−1〈outputA(e); ci, σi−1, pi−1〉
α−→ 〈ci, σi, pi〉

program c is secure if [σ]piA ⊆ ki(c, σ, pinit, A).

This definition ensures that, whenever an output on
channel A happens, the attacker’s knowledge at that point
is allowed by the current policy. In other words, the policy



places an upper bound on the attacker’s knowledge2, and
if the knowledge does not exceeds that limit, the program
is secure.

Definition 4 (Security Condition for Perfect Recall). A
program c is secure under the perfect recall attacker if
Definitions 2 and 3 hold.

We deliberately separate Definitions 2 and 3 to dis-
tinguish between policy consistency checks and security
checks. A failed policy consistency check means that there
is a mismatch between the attacker’s power and the new
policy. Therefore, a policy inconsistency can be repaired
with a new policy that takes into account the attacker’s
knowledge. On the other hand, a failure of observation
security (Definition 3) cannot be repaired and it implies
that the program is insecure.

4.2.2. Forgetful Attacker. We now consider an attacker
that resets its knowledge after a policy change. This is spe-
cially useful for real-world applications where the release
of information is not permanent and should be consistent
with the active security policy at the time of the release.
Program 1 in Section 2 is an example of the usefulness
of this attacker model. Intuitively, a policy change at an
execution point i means that, from the point i onward,
the new policy should govern the release of information
and any past knowledge should be ignored. The term
“forgetful attacker” may not exactly reflect a real world
attacker that suddenly forgets everything after a policy
change. It is an artifact of modeling scenarios in which
a policy change enforces a new condition on information
release, independently of what an attacker may already
know as result of past observations. For example, an
employee may have accessed a company’s information
(and even stored it externally), however, no access to
the same information should be allowed when they leave
the company. This setting requires ignoring the attacker’s
knowledge prior to the policy change, essentially resulting
in a forgetful attacker. We first discuss some examples
illuminating the subtleties of forgetful attackers and then
present our security condition.

Consider Program 5 as an example. When the execu-
tion reaches the setPolicy command in line 5, there are
two possible traces that the attacker could have observed:
t1 = y.1 and t2 = y, both leaking the value of y. One may
think that trace t1 leaks the sign of x but this is not the
case. Because the attacker’s knowledge is derived through
observations and the policy changes are not observable,
the attacker cannot tell which if statement has produced
the output 1 of trace t1. Therefore, these traces reveal
nothing about x, and at the time of policy change, the
attacker only knows y as stipulated by the policy in line
1. The new policy now prevents the attacker from learning
y again, hence no outputs after the policy change should
leak y. In fact, all executions after the policy change will
output the values 1 and 2. Note that even though the output
1 on line 7 happens after the policy change, it still cannot
leak the sign of x, therefore, Program 5 is secure.

Program 6 is similar except that it outputs the value
of y at lines 4 and 7. In this case, if the execution did not

2Observe that the attacker’s knowledge, in contrast to the policy
knowledge, is precise, and it is not an upper bound.

take the first if statement, the attacker observes the trace
t = 1 which leaks nothing about x or y, thus at the time of
policy change the attacker forgets nothing. However, when
y is outputted in line 7, the attacker learns this value and
because this is not allowed by the policy, the program is
insecure.

Programs can leak through the progress of compu-
tation e.g., when the number of outputs depends on in-
formation that is disallowed by the policy [22]. It is our
intuition that forgetful attackers should not forget these
progress leaks. Once the length of a trace, i.e., the number
of outputs, leaks some information, any extension of that
trace will leak the same information again, thus it is
not reasonable for a forgetful attacker to forget progress
leaks. This can be captured by making forgetful attackers
remember the number of observed outputs, including the
ones that happened before a policy change. This approach
captures progress leaks even when they manifest after a
policy change. This is similar to the idea of counting
attackers presented in van Deft et al. [10].

Program 7 illustrates the effect of progress leaks on
the attacker’s knowledge. When the execution reaches the
policy change at line 7, the attacker could have observed
trace t1 = 1 or t2 = 1.1. Since the policy change event is
not observable by the attacker and any program execution
can yield at least 2 outputs (e.g., trace 1.1), the attacker
learns nothing about x. Later, after the new policy at line
7 becomes active, the output at line 8 occurs. One of the
traces that the attacker could have observed at this point
is t2 = 1.1.1. This trace leaks that the first if statement
must have been executed and x > 0, which violates the
active policy. Therefore, the number of outputs leaks the
sign of x, which happens after the policy change, hence
the program should be flagged as insecure.

With these intuitions in mind, we proceed to define
the knowledge of forgetful attacker. We call the trace
between two policy changes an epoch and use the policy
events (np(p)) to partition the trace into multiple epochs.
At each step, the observable events of the last epoch,
as well as the number of events in previous epochs can
affect the forgetful attacker’s knowledge. To be able to
separate the last epoch from the whole trace, we define the
following auxiliary functions: splitPolicy(t) takes a trace t
and returns a tuple containing all events before and after
the last new policy (np(p)) event; split(t, n) takes a trace
t and a number n, and returns a tuple containing the first
n events and the reminder of events in the trace.

Definition 5. Given a trace t such that t = α1...αi...αk,
splitPolicy(t) =

(ε, t) if αr 6= np(p) r = 1...k

(α1...αi , αi+1...αk) if αi = np(p) ∧
αr 6= np(p) r = i+ 1...k

(t, ε) if αk = np(p)

Definition 6. Given a trace t such that t =
α1...αi.αi+1...αk,

split(t, n) =

{
(t, ε) if k ≤ n
(α1...αi , αi+1...αk) if i = n

Using these auxiliary functions, we can proceed to
define the forgetful attacker’s knowledge as:



1 setPolicy(X → A, Y → A);
2 outputA(y);
3 if (x > 0) then
4 outputA(1);
5 setPolicy(X 6→ A, Y 6→ A);
6 if (x <= 0) then
7 outputA(1);
8 outputA( 2 );

Program 5

1 setPolicy(X → A, Y → A);
2 outputA(1);
3 if (x > 0) then
4 outputA(y);
5 setPolicy(X 6→ A, Y 6→ A);
6 if (x <= 0) then
7 outputA(y);
8 outputA(2);

Program 6

1 setPolicy(X → A);
2 if (x > 0) then
3 outputA(1);
4 outputA(1);
5 else
6 outputA(1);
7 setPolicy(X 6→ A);
8 outputA(1);

Program 7

Definition 7 (Forgetful Attacker Knowledge at Point i).
Program c with initial store σ and initial policy pinit pro-
duces trace t after i execution steps, i.e., 〈c, σ, pinit〉

t
=⇒i.

Let (t1, t2) = splitPolicy(t), we define for the knowledge
of a forgetful attacker that observes the program outputs
on channel A as:

kfrgi (c, σ, pinit, A) = {σ′ | 〈c, σ′, pinit〉
t′′
=⇒j

∧ (t′′1 , t
′′
2) = split(t′′�A, | t1�A|)

∧ t′′2 = t2�A}

Intuitively, for each execution point i, we identify the
traces before (t1) and after (t2) the last policy change.
The goal is to forget the knowledge induced by attacker’s
trace t1�A and compute the knowledge induced by t2�A.
We achieve this by considering any initial states that
produce the same number of outputs as | t1�A| and the
same outputs as t2�A. Note that this condition (as all our
conditions) is progress sensitive and accounts for progress
leaks. We remark that progress leaks are never forgotten
once they are revealed at some execution point.

We can now use the definition of knowledge from
Definition 7 to obtain the security condition for forgetful
attackers.

Definition 8 (Security condition for Forgetful Attacker).
For all execution points i such that

〈c, σ, pinit〉
t

=⇒i−1〈outputA(e); ci, σi−1, pi−1〉
α−→ 〈ci, σi, pi〉

program c is secure if [σ]piA ⊆ k
frg
i (c, σ, pinit, A).

Appendix B exercises the definition for Programs 5–7
to investigate their security.

We can now show that if a program is secure against
the perfect recall attacker, it is also secure against less
powerful attackers such as bounded memory attackers and
forgetful attackers. Here, we present a theorem and prove
this claim for the forgetful attackers.

Theorem 1. Given a program c, initial store σ, and initial
policy pinit, if for all execution points i, c is secure against
perfect recall attacker Aper, it is also secure against
forgetful attacker Afrg. Formally:

[σ]piA ⊆ ki(c, σ, pinit,Aper) =⇒
[σ]piA ⊆ k

frg
i (c, σ, pinit, Afrg)

Appendix D contains the proof of Theorem 1 and the
corresponding theorem for bounded memory attackers.

4.3. Repairing Inconsistent Policies

An inconsistent policy means that the policy is in-
compatible with the current knowledge of the attacker.
One approach is to always reject the programs with in-
consistent polices, because pi 6⊆ ki. Alternatively, we can
suggest the user a new policy that is consistent with the
attacker’s current knowledge. Generally, a policy change
is inconsistent if it restricts access to information that has
already been learned by the attacker. Our goal is to relax
these restrictions and add what has been learned by the
attacker to the new policy to achieve a consistent policy.
The intersection of the new policy and the attacker’s
knowledge (pi∩ki) is a good candidate because it includes
all of the new flows introduced by the new policy, and uses
the knowledge of the attacker to relax the restrictions of
the new policy. Intuitively, the consistent policy pi ∩ ki
corresponds to the most adequate policy that meets the
intention of the policy change pi while being in line with
the attacker’s current knowledge ki.

Definition 9 (Consistent Policy Repair). For all execution
points i such that

〈c, σ, pinit〉
t

=⇒i−1〈setPolicy(pi); ci, σi−1, pi−1〉
np(p′i)−−−−→ 〈ci, σi−1, p′i〉

the repaired policy p′i is induced by [σ]piA ∩
ki−1(c, σ, pinit, A).

While previous approaches [8], [10], [21] use intersec-
tion as part of the security conditions, here we emphasize
that it corresponds to a new consistent policy, thus making
it explicit for the user that security of the program is
checked against a different (repaired) policy.

4.4. Generalization to Programs with Inputs

In a framework of dynamic policies, it is natural to
model new information arriving into the system via input
channels. We show how our framework can accommo-
date programs with inputs with minimal changes. We
extend the syntax of the language with an input command
input`(x) which reads a value from the input channel
with label ` and assigns it to variable x. Clark and Hunt
[23] have shown that for deterministic interactive systems,
streams are sufficient to model arbitrary interactive input
strategies. An input stream is an infinite sequence of
values representing the pending inputs on a channel. We
assume there is one input channel for each security level
` and an input environment ω mapping labels to input
streams. We extend the configurations 〈c, σ, p, ω〉 with the



input environment ω and the evaluation steps as expected.
We write v : vs for a input stream with the first element v
and remaining elements vs, and ω[` 7→ vs] for the input
environment that maps input stream with label ` to vs and
otherwise behaves the same as ω. The semantics of input
command is defined as:

INPUT
ω(`) = v : vs ω′ = ω[` 7→ vs]

〈input`(x), σ, p, ω〉 i(v,`)−−−→ 〈skip, σ[x 7→ v], p, ω′〉

This command updates the store σ with value v for
variable x, and continues with vs as the reminder of the
input stream of label `, while emitting the input event
i(v, `). Events and traces are extended with input events
in the expected manner.

We can now define security policies as equivalence re-
lations over input environments. Two input environments
are equivalent for a policy p and an attacker on channel
A, i.e., ω ≡Ap ω′ iff ∀` → A ∈ p . ω(`) = ω′(`).
We write [ω]pA for the equivalence class of ω with respect
to the policy p and attacker A. With these definitions at
hand, we can easily redefine the attacker knowledge over
input environments and use the same security conditions
adapted with the new definitions of attacker knowledge
and security policies. This extension are straightforward
and we omit them here in the interest of space.

5. Facets of Dynamic Policies

In this section we revisit the facets of dynamic poli-
cies, introduced by Broberg et al. [11], and discuss them in
our framework from an attacker-centric perspective. Our
goal is to show how these facets can be accommodated
in our framework, illuminating on the different types of
flows. We have modified and adapted the use cases to fit
our language model with explicit outputs.

Time-transitive flows A flow is time-transitive if it
moves information from level X to level Z via a third
level Y , while a direct flow from X to Z is never allowed
by the policy. Program 8 illustrates such a flow. It reveals
information about Patient to DrPhil who joined the
hospital after Patient had left.

According to Broberg et al. [11] time-transitive flows
should be considered insecure in scenarios where a data
flow such as Patient → Hospital is only allowed
temporary for as long as Patient is under treatment in
the hospital. Our framework can identify the insecurity of
such scenarios; when outputDrPhil(drPhil) happens it
indirectly reveals the value of patientData which is not
allowed by the active policy. A similar argument applies to
bounded memory and forgetful attackers. The main reason
for rejecting these flows is that the observer DrPhil did
not see the data at the time he was allowed to and the
actual flow has happened at a time when patient had
already left the hospital.

Broberg et al. [11] also interpret time-transitive flows
as secure by considering the assignment in line 2 as
a permanent declassification. Using permanent declas-
sification means changing the label of patientData
to Hospital permanently, however, this means that the
policy Patient 6→ Hospital becomes irrelevant, since
patientData no longer has the label of Patient and
hence it not affected by its policy. In our framework, this

interpretation amounts to a program that allows flows from
Hospital to DrPhil and subsequently outputs the data
to DrPhil.

Replaying flows model scenarios in which when a
piece of information is released, it can be released again,
regardless of the active policy. Program 9 illustrates such a
flow. When creditcard is written to a log file, it should
be available until the log is cleared.

Replaying flows should be considered secure when the
release of information is permanent [11]. Permanent re-
lease of information means that an observer can access any
information they had learned before, irregardless of the
active policy. For example in Program 9, if the output in
line 2 permanently releases the creditcard information
to Log, the observer at level Log can always access it
later. This definition can be captured by our framework,
by adapting the Definition 9 for inconsistent policies. This
means that the new policy will be the intersection of
the knowledge of the attacker k and new the policy p,
and since the output in line 2 adds creditcard to the
knowledge of the attacker, k ∩ p will always include that
knowledge, hence permanently releasing it.

However, considering information as permanently re-
leased is not always the natural choice in every situation;
for example in Program 1, Alice should not have access to
the movie after her subscription ended. Forgetful attackers
in our framework are good candidates for dealing with
such scenarios where we want to ignore the effects of the
earlier release and accept or reject programs only based
on the current active policy. This intuition is similar to the
insecure time-limited subscription example of Broberg et
al. [11].

Direct Release means that information is considered
released as soon as the current policy permits the flow.
Program 10 illustrates such a flow where salary is not
printed to the screen when the flow is allowed, but it is
printed when the flow is no longer permitted.

Broberg et al. [11] argue that these flows are insecure
when the attacker can only observe information that is
actively provided (through for example an output channel).
In Program 10 nothing about salary has been printed
to the screen, hence it makes sense to assume that an
observer does not know this information. Our framework
follows this intuition and rejects this flow under all at-
tacker types and policy checks; because an attacker learns
nothing from output of line 2 and the output on line 4
always violates the active policy.

However, this type of flow can be considered secure
if we model attackers as constantly observing, directly in
the memory, all the information which they are allowed
to learn. We can model such a behavior by outputting
all the variables with label Salary as soon as the policy
Salary → Screen is activated. However, doing so ef-
fectively changes the nature of this flow to a replaying
flow, and as it was discussed earlier, replaying flows
can be secure only if we consider permanent release of
information.

Whitelisting flows A flow is allowed whenever there
is some part of the policy that allows for it. Program
3 in Section 2 is an example of whitelisting flows,
where the observer Eve can use her knowledge of
(Alice.salary + Bob.salary) / 2 and Bob.salary
to learn the salary of Alice. For perfect recall attackers,



1 setPolicy(Patient→ Hospital,Hospital 6→ DrPhil);
2 hospital := patientData;
3 setPolicy(Patient 6→ Hospital,Hospital→ DrPhil);
4 drPhil := hospital;
5 outputDrPhil(drPhil);

Program 8

1 setPolicy(Creditcard→ Log);
2 outputLog(creditcard);
3 setPolicy(Creditcard 6→ Log);
4 outputLog(creditcard);

Program 9

1 setPolicy(Salary → Screen);
2 outputScreen(0);
3 setPolicy(Salary 6→ Screen);
4 outputScreen(salary);

Program 10

1 setPolicy(Secret→ Public,Key → Public);
2 outputPublic(secret XOR key);
3 setPolicy(Secret 6→ Public,Key → Public);
4 outputPublic(key);

Program 11

our framework rejects this class of programs because they
have inconsistent policy changes. This is inline with the
insecure example presented by Broberg et al. [11] which
argue that information belonging to two entities Alice and
Bob (in this case the average of their salaries) should be
available only when both of them allow it.

Broberg et al. [11] presents Program 11 as a secure
example for whitelisting flows, where first the encrypted
value (secret XOR key) is released and then later the
key. Broberg et al. [11] argue for the security of this
example on the grounds that key is an encryption key,
and “with the release of this key an observer learns the
secret information that was earlier released encrypted un-
der that key, even though part of the policy does not allow
the secret to be released”. This intuition is inline with
inconsistent policy repair of Definition 9, since we know
that the encrypted values have already been outputted and
publishing the key releases them as well, we should either
explicitly add Secret → Public to the policy, or use
Definition 9 to update the policy.

6. Verification of Dynamic Policies

This section discusses the precise verification of dy-
namic policies by symbolic execution and automated the-
orem proving. Our verification approach operates in two
phases: (1) it extracts the dependencies of a source pro-
gram by means of symbolic execution and (2) it verifies
the security conditions for dynamic policies under differ-
ent attacker models by relying on an SMT solver. We im-
pose some restrictions on the source program to make the
analysis in (1) feasible. First, we assume a bounded model
of runtime behavior, hence programs always terminate.
Second, we assume all inputs from external environments
can be read at the beginning. Hence, to support programs
with inputs, one can assign fresh variables to each of the
elements of a (finite) input stream. The output of phase
(1) is a graph capturing dependencies between program
inputs and outputs. We refer to existing works for details
on symbolic execution [24].

Specifically, we analyze source programs symbolically
to extract precise dependencies between program inputs
and outputs. Observe that this information is sufficient
to reason about security because security policies refer to
program inputs and attacker observations are made though
program outputs. For each program output, our symbolic
analysis stores a path condition Pc ∈ PC and an output
expressions e ∈ Exp which are defined over the program

inputs. The path condition is a predicate that represents
the set of initial concrete values that trigger the execution
of an output expression e. In particular, any satisfying
assignment3 δ of path condition Pc determines a concrete
program output as computed by δ(e).

We represent these dependencies in the form of sym-
bolic output trees (SOT) consisting of: (a) a set of nodes
B labeled with output expressions e ∈ Exp; (b) a set of
control flow edges E ⊆ B×B; (c) a set of path conditions
PC; (d) a mapping from nodes to output expressions
O : B 7→ Exp; (e) a mapping from edges to path
conditions L : E 7→ PC; and (f) a root node Start. We
also extend the SOT with a special node End, in order to
make terminal states explicit in the construction. Figure
3 illustrates the SOT of Program 12. Node n3 indicates
that for all initial values of variable y such that y ≤ 0, the
second output of the program is the expression 2.

We define security policies with respect to an attacker
at security level A. For a program variable x such that
X → A, we denote its initial value by l (for low) to reflect
that variable x can be observed by A, otherwise we denote
it by h (for high). We lift this notation to tuples of input
variables

−→
l and

−→
h in the expected manner. Moreover,

we support fine-grained policies modeled by predicates φ
over initial values of variables. We define the policy P

over
−→
l ,
−→
h , written as P (

−→
l ,
−→
h ) by the predicate:

−→
l =
−→
l ′ ∧ φ (4)

where
−→
l ′ stands for the renames of low variables, and

predicate φ represents the leaked (i.e., declassified) ex-
pressions which is defined over low and high identifiers,
and their renames. The policy predicate P (

−→
l ,
−→
h ) induces

an equivalence relation [σ]PA over initial stores σ, which
corresponds to the policy knowledge (cf. Section 4.1). The
relation can be constructed as follows: Let σ and σ′ be two
program stores over program variables and their renames,
respectively, unprime(S) be an operator “undoing” the
variable renames over a set S, and q(σ)(σ′) be the evalu-
ation of a predicate q over σ and σ′. Then the equivalence
relation [σ]PA = unprime({σ′ |P (

−→
l ,
−→
h )(σ)(σ′)}) defines

the policy knowledge induced by the predicate P (
−→
l ,
−→
h ).

For example, the policy in line 1 of Program 12 means
that variable x is low, variable y is high, and expression
y > 0 is leaked. Following equation (4), we write the
policy P (x, y) as x = x′ ∧ (y > 0 = y′ > 0).

3A satisfying assignment is a mapping from the free variables of
Pc to values, which makes the predicate Pc evaluate to true.



1 setPolicy(X → A, (Y > 0)→ A);
2 outputA(x);
3 if (y > 0) then
4 outputA(1);
5 else
6 outputA(2);
7 outputA(3);

Program 12 Figure 3: SOT of Program 12

1 setPolicy(X → A, Y 6→ A);
2 outputA(x);
3 outputA(1);
4 outputA(1);
5 if (y > 0) then
6 outputA(2);
7 setPolicy(X 6→ A, Y 6→ A);
8 if (y <= 0) then
9 outputA(2);

10 outputA(3);

Program 13 Figure 4: SOT of Program 13

We remark that the policy P (
−→
l ,
−→
h ) corresponds to a

global static policy encoding of a standard declassification
policy φ [25]. In fact, prior work by Balliu et al. [18]
shows how a static policy P (

−→
l ,
−→
h ) can be verified

against an SOT by means of an SMT solver. Definition
10 presents the process of generating such a formula.

Definition 10. An SOT S is secure wrt. a security policy
P (
−→
l ,
−→
h ) iff the following formula is unsatisfiable:

P (
−→
l ,
−→
h ) ∧

∨
n∈N(S)

(
Pcn(

−→
l ,
−→
h ) ∧

( ∧
n′∈N(S)

¬
(
Pcn′(

−→
l ,
−→
h ′) ∧

−→
On(
−→
l ,
−→
h ) =

−→
On′(

−→
l ,
−→
h ′)
)))

where
−→
On is the tuple of output expressions along the SOT

path to node n,
−→
On =

−→
On′ denotes the component-wise

equality of two tuples, and N(S) is the nodes of S.

Definition 10 presents a logical encoding of our secu-
rity condition p ⊆ ki of Section 4 for the perfect recall
attacker and a static policy p. Specifically, the condition is
true if all initial stores that satisfy policy p are contained
in the attacker’s knowledge set ki at each program point i.
We focus only on program outputs, since non-observable
commands do not affect knowledge. The non-satisfiability
of the formula above implies that for any initial state
(
−→
l ,
−→
h ) that satisfies the policy P (

−→
l ,
−→
h ) and reaches

some output node n (i.e., n ∈ N(S) and Pcn(
−→
l ,
−→
h ))

yielding an output sequence
−→
On, it is impossible to find

another state (
−→
l ,
−→
h ′) that satisfies the policy and reaches

some output node n′ (i.e., n ∈ N(S) and Pcn′(
−→
l ,
−→
h ′))

yielding a different output sequence
−→
On′ . Consequently,

for any initial store (
−→
l ,
−→
h ) ∈ P (

−→
l ,
−→
h ), we have that

(
−→
l ,
−→
h ) ∈ ki, thus verifying the security condition. By

contrast, if the formula is satisfiable, there exist two stores
that satisfy the policy P (

−→
l ,
−→
h ), but either one store

does not reach the output node or the two stores produce
different output sequences. This implies that there is an
initial store (

−→
l ,
−→
h ) ∈ P (

−→
l ,
−→
h ), such that (

−→
l ,
−→
h ) 6∈ ki,

thus violating the security condition.

For example, the SOT of Figure 3 is secure wrt.
the above-mentioned policy P (x, y), as witnessed by the

following unsatisfiable formula:

x = x′ ∧ (y > 0 = y′ > 0) ∧
∨

n∈N(S)

(
Pcn(x, y) ∧

( ∧
n′∈N(S)

¬
(
Pcn′(x, y′) ∧

−→
On(x, y) =

−→
On′(x, y′)

)))
We revise this condition to verify deterministic pro-

grams with dynamic policies for our attacker models. In a
dynamic setting, the active policy at each node of S might
be different from its parent or children. Therefore, instead
of generating a single formula for the whole SOT, we need
to generate a formula for every node n corresponding
to its policy Pn(

−→
l ,
−→
h ). To this end, we modify the

SOT generation algorithm and enrich each node with an
additional attribute to store the active policy at the time
of its creation.

6.1. Perfect Recall Attacker

We use Definition 11 to check the security of a pro-
gram wrt. the perfect recall attacker.

Definition 11. An SOT S secure iff for all n ∈ N(S)

with active policy Pn(
−→
l ,
−→
h ), the following formula is

unsatisfiable:

Pn(
−→
l ,
−→
h ) ∧

(
Pcn(

−→
ln ,
−→
hn) ∧

( ∧
n′∈N(S)

¬
(
Pcn′(

−→
ln ,
−→
hn
′) ∧
−→
On(
−→
ln ,
−→
hn) =

−→
On′(

−→
ln ,
−→
hn
′)
)))

In contrast to Definition 11 here the active policy can
be different in each node (as denoted by Pcn(

−→
ln ,
−→
hn)). For

a node n the formula is unsatisfiable only if there is no
other node with a satisfiable path condition Pcn′(

−→
ln ,
−→
hn
′)

that can produce a different output. Unsatisfiability of the
formula for a node n means that the program is secure
wrt. the active policy at that node. To ensure security for
the SOT we repeat this process for all nodes, regenerate
the formula at each node and check its satisfiability. If
none of the formulas are satisfiable, we can conclude that
the SOT S is secure.

We use a similar approach to verify the policy con-
sistency. However, because we do not have specific nodes
for policy changes, we mark all of the nodes that appear
right after a policy change and only check the policy
consistency on those nodes using the following definition:



Definition 12. Given an SOT S, active policy Pn(
−→
l ,
−→
h ),

and parent(n) which returns the parent of node n, a
policy change is consistent iff for all n ∈ N(S) such
that n comes right after a policy change, the following
formula is unsatisfiable:

Pn(
−→
l ,
−→
h ) ∧

(
Pcparent(n)(

−→
ln ,
−→
hn) ∧

( ∧
n′∈N(S)

¬
(
Pcn′(

−→
ln ,
−→
hn
′) ∧
−→
O parent(n)(

−→
ln ,
−→
hn) =

−→
On′(

−→
ln ,
−→
hn
′)
)))

If a node was marked as an output after a policy
change, before checking its security using Definition 11,
we first use Definition 12 to check the policy consis-
tency. The process is similar to Definition 11, except
that here instead of using the path condition and output
of node n, we use the path condition and output of
its parent (Pcparent(n)(

−→
ln ,
−→
hn) and

−→
O parent(n)(

−→
ln ,
−→
hn),

respectively).
Following Definition 2 in Section 4, we check that the

attacker knowledge is allowed by the new policy. If node
n is marked by the policy change it means that a policy
change has happened between n and parent(n), so we use
the output of the node before the policy change (parent
node)

−→
O parent(n)(

−→
ln ,
−→
hn) and the new policy (policy of

the current node) Pn(
−→
l ,
−→
h ) to generate the formula, and

check that the new policy is in line with the observations
up to n’s parent. The unsatisfiability of this formula means
that the policy change between nodes parent(n) and n is
consistent.

Figure 4 illustrates the SOT of Program 13. As in the
previous example, a node with expression x represents
outputting the initial value of x (with Pc = true), while
y > 0 and y ≤ 0 are path conditions. The nodes following
a policy change are shown with dashed lines (nodes n1
and n5). This program is rejected by the Definition 12,
because the policy change between nodes n3 and n5 is
inconsistent. The generated formula for node n5 is:(

Pcn3(∅, {x, y}) ∧
( ∧
n′∈N(S)

¬
(
Pcn′(∅, {x′, y′})

∧
−→
On3(∅, {x, y}) =

−→
On′(∅, {x′, y′})

)))
The path condition of node n3 is true and its output

sequence is On3 = (x, 1, 1). The formula is satisfiable if
there exists a value for y or x where Pcn3(y) holds and for
all nodes falsifies either the path conditions or the equality
between outputs. The only node on the same level as n3
is n3 itself, which clearly means that the path condition
is also true. However, since the output sequences are
(x, 1, 1) and (x′, 1, 1), it is sufficient to pick any value
for x and x′ such that x′ 6= x to satisfy the following
formula. This implies that the policy change at node n5
is inconsistent.(

true ∧ ¬
(
true ∧ (x, 1, 1) = (x′, 1, 1)

))
The following theorems show soundness of Definition

11 and Definition 12 wrt. the security conditions of Def-
inition 3 and Definition 2, respectively.

Theorem 2. Given a SOT S, if the formula in Definition
11 is unsatisfiable for all nodes n ∈ S, then S satisfies
Definition 3.

Theorem 3. Given a SOT S, if the formula in Defini-
tion 12 is unsatisfiable for all nodes n ∈ S such that n
follows a policy change, then S satisfies Definition 2.

6.2. Forgetful Attacker

In line with the definitions of forgetful attackers in
Section 4, we ignore the actual values of the output ex-
pressions occurring before the last policy change. There-
fore the output tuple

−→
O frg
n for the forgetful attacker

replaces all of the outputs that occurred before the last
policy change with the constant value 1. Additionally,
while generating the inner conjunction of the formula,
we only consider the nodes that have the same num-
ber of policy changes as n, using the auxiliary function
sameNP (S, n). Definition 13 adapts Definition 11 for
forgetful attackers:

Definition 13. Given an SOT S, policy Pn(
−→
l ,
−→
h ) at node

n, S is secure wrt. forgetful attacker iff for all n ∈ N(S),
the following formula is unsatisfiable:

Pn(
−→
l ,
−→
h ) ∧

(
Pcn(

−→
ln ,
−→
hn) ∧

( ∧
n′∈sameNP (S,n)

¬
(
Pcn′(

−→
ln ,
−→
hn
′) ∧
−→
O frg
n (
−→
ln ,
−→
hn) =

−→
O frg
n′ (
−→
ln ,
−→
hn
′)
)))

It uses
−→
O frg
n to compute output sequences, ignoring

the values leaked before the policy change. Additionally,
it only generates the formula for the nodes with the
same number of policy changes. This is because the only
relevant nodes for a forgetful attacker are the ones that are
on the same epoch as the current node. Progress leaks are
captured by the number of constant values in

−→
O frg
n and

the actual values leaked in the other epochs are ignored.
To illustrate this process, we revisit Program 7 and its

SOT in Figure 5, and check the security for the forgetful
attacker using Definition 13. For example, at node n5 the
generated formula is:(

Pcn5(∅, x) ∧
( ∧
n′∈sameNP (S,n)

¬
(
Pcn′(∅, x′) ∧

−→
O frg
n5 (∅, x) =

−→
O frg
n′ (∅, x′)

)))
The path condition of node n5 is x > 0 and its

output sequence is
−→
O frg
n5 = (true, true, 1). The formula

is satisfiable if there exists a value for x where Pcn5(x)
holds, and for all nodes it falsifies either the path condition
or the equality between outputs. The only node with the
same number of policy changes and at the same level as n5
is n5 itself. This clearly means that the output sequences
are equal. Therefore, to satisfy the formula we need a
value x′ that falsifies the path condition x′ > 0, which can
be any non-positive value. Thus, the formula is satisfiable
and the program is insecure.



Figure 5: SOT of program 7

Theorem 4 shows the soundness of Definition 13 wrt.
the security condition for the forgetful attacker.

Theorem 4. Given a SOT S, if the formula in Definition
13 is unsatisfiable for all nodes n ∈ S, then S satisfies
Definition 3 for the forgetful attacker.

We refer to Appendix C for proof sketches of the
theorems, and Appendix A for the verification algorithm
of bounded memory attackers.

6.3. Policy Repair

This section we discuss an approach for generating
repair policies. As discussed in Section 4.3, a repair
policy should ideally be the intersection between attacker
knowledge and the new inconsistent policy. The approach
presented here leverages the information provided by the
SOT to calculate the attacker’s knowledge at node n as
a combination of the direct (outputs) and indirect (Pc
values) observations made by the attacker. However, this
approach does not always result in the intersection as
defined by Definition 9 as it sometimes over-approximates
the attacker’s knowledge. Developing a precise approach
for generating consistent policies is left for future work.

When the policy consistency check fails at some node
n, we can calculate the knowledge by traversing the SOT
from n up to node start and collecting the attacker’s
explicit observations (i.e., the output expressions) and
implicit observation (i.e., Pcs). It is important to note
that not all output expressions and Pcs leak information,
therefore we should only collect the ones that are leaking
some information. Here we achieve this by applying a
preprocessing step to the SOT, which uses a bounded
memory attacker with memory capacity of m = 1 to
determine the leaked expressions at each level of SOT.
The addition of these leaked expressions to the new policy
gives a candidate repaired policy.

The intuition behind this approach is that a new policy
can only be inconsistent if it is more restrictive than
the current policy. Thus a repaired policy should ease
some of those restrictions. To this end, we extract already
leaked expressions and add them to the inconsistent policy,
which gives us the most restrictive version of policy that
is consistent with the knowledge. After generating the
repaired policy, we should also update the policy field of
n’s children up to the next policy change. This is because
all of the nodes between n and the ones with a new policy
are affected by the inconsistent policy.

7. Implementation and Evaluation

We implemented the algorithms presented in Section
6 by extending ENCOVER [26] and creating a prototype
dubbed DYNCOVER [20]. Like ENCOVER, DYNCOVER
relies on Symbolic PathFinder (SPF) [27], an extension
of Java PathFinder (JPF) [28], to concolically execute
programs and extract the symbolic output trees from Java
bytecode.

DYNCOVER analyzes the program by means of con-
colic testing and does the following in a loop to ex-
plore all execution paths of the program and generate
the SOT: it starts with concrete and symbolic values for
input variables and executes the program concolically
to collect each step’s path condition. These conditions
are then passed to a constraint solver to generate new
inputs that explore different paths. Upon reaching an
output statement, the output expression is evaluated in the
symbolic state and a new node representing the result of
that evaluation is added to the SOT. The path condition
that directed the program to this output statement is also
saved in the node.

After generating the SOT, DYNCOVER traverses the
tree using a depth-first search (DFS) strategy, and for
each node, depending on the attacker, it generates the
formulas described in Section 6. Then, DYNCOVER feeds
the generated formula to a satisfiability modulo theory
(SMT) solver (Z3 in the current implementation). If the
SMT solver answers that the formula is satisfiable, then
the analyzed program is deemed insecure. DYNCOVER
repeats this process for all of the nodes in SOT and if the
SMT solver’s answer was unsatisfiable for all nodes, the
program is accepted as secure.

For the perfect recall and bounded memory attack-
ers, DYNCOVER also checks the policy consistency for
all nodes that are marked as “nodes following a policy
change”. DYNCOVER uses Definition 12 for generating
the policy consistency check formula, feeds it to the SMT
solver, and if the result was unsatisfiable, it deems the
policy change as consistent, and moves on to checking
the security on that node.

DYNCOVER also supports policy repair by relying
on the heuristic of Section 6.3. If configured in repair
mode, DYNCOVER performs preprocessing on the SOT
and identifies leaking expressions. Upon reaching an in-
consistent policy, it shows a warning message, proceeds
to generate the repaired policy, and prints it to the user.

DYNCOVER uses ENCOVER [26] as a basis and
extends it with support for dynamic polices, policy con-
sistency checks, and policy repair. DYNCOVER is approx-
imately 6 KLOC as computed by CLOC and includes
nearly 86 classes/interfaces. Like ENCOVER, the class of
programs that DYNCOVER can handle is indirectly limited
by the class of programs SPF (JPF core and its symbolic
extension) can handle and the class of constraints Z3 can
solve.

7.1. Case Studies

To evaluate the effectiveness and efficiency of DYN-
COVER, we carried out two different experiments. First,
we created a micro benchmark suite to facilitate checking
and understanding dynamic policy scenarios and different



types of attackers. Second, we implemented and verified
the core of a social network to demonstrate the effective-
ness of our security conditions in a real-world scenario.

These case studies target three objectives: (1) to val-
idate that the results of DYNCOVER are in line with the
conditions in Section 4; (2) to ensure that the policy
repair heuristic works as expected; (3) to evaluate the
performance of DYNCOVER.

7.1.1. Benchmark. Our benchmark consists of 25 pro-
grams, including programs from the paper, to demonstrate
different aspects of dynamic policies. It includes programs
with various constructs, loops, and implicit leaks. This
benchmark is implemented in Java, and the only use of
non-standard command is the setPolicy method, indi-
cating a policy change. Each program has a configuration
file which defines the attacker type, its memory capacity,
and the method used to deal with inconsistent policies.
These .jpf configuration files are used by JPF’s virtual
machine and DYNCOVER to verify the program.

Table 1 shows an excerpt of programs from the bench-
mark, Table 3 in the Appendix contains more programs.
As we can see in column “DYNCOVER Result”, DYN-
COVER rejects insecure programs and accepts secure
ones, in line with the definitions in Section 4. In addition
to the results for security and policy consistency, Table
1 also reports some information about the efficiency and
performance of DYNCOVER. For simple programs with
small number of outputs, the SOT size and the evalua-
tion time of DYNCOVER is low. But when testing more
complex programs with multiple loops and outputs, the
performance decreases. Memory usage of DYNCOVER is
around 235 MB for simple programs, and starts to increase
when the number of loops and instructions increases.

7.1.2. Social Network. In this case study, we imple-
mented a social network that simulates the interactions
between users, and contains some of the main functional-
ities of a social network, such as following, unfollowing,
blocking other users, sending DMs, and creating groups
and events. Users also have privacy settings and change
their setting to hide their sensitive information such as
phone number. The high level of interactivity between
entities in a social networks makes it a good candidate
for dynamic policy analysis.

A social network is naturally an interactive program,
whose behavior is determined by the actions of differ-
ent users of the system. To model these behaviors and
make them amenable to extract the SOT of the program
with DYNCOVER, we implemented an additional program
which simulates the behavior of different users involved
in the execution of the interactive program.

The Java implementation of the social network has 5
classes and 659 LOCs. There is one class for each of the
entities: server, user, group, event, and post. To evaluate
this case study, 6 different scenarios have been imple-
mented and examined. The results of these experiments
are reported in Table 2.

In the postForFollowers scenario, users interact by
following each other and creating posts. The goal here
is to ensure that a post is only visible to the followers
of a certain user. This scenario is secure for a forgetful
attacker, and inconsistent for a perfect recall attacker.

This is because the ex-follower has already seen some
of the unfollowed user’s posts. The second scenario is
similar, but this time a user can block their followers.
Similarly, this program is secure for a forgetful attacker
and inconsistent for a perfect recall attacker. The policy
repair mode does not make sense for these scenarios,
because after unfollowing or getting blocked, the observer
should no longer be able to see the user’s old posts.

The next scenario simulates forwarding a user’s DM
to another user. This scenario is insecure for all types of
attackers, because a third user should not be able to see
other users’ DMs. The phoneNumberPrivacy scenario
checks the privacy settings of a user. Initially, the user’s
information such as the phone number is private. However,
a user can changes their privacy setting to make the phone
number public. The goal here is to make sure that users
cannot see other users’ private information. This scenario
is secure for both perfect recall and forgetful attackers.

Next, we consider a scenario in which a user’s mem-
bership in a group should be kept secret from all users
that are not in that group. A user cannot see the group
members until they are added to that group. This scenario
is secure for all three types of attackers. Now, if we change
this scenario in such a way that a users leaves the group
after learning the names of its members, then the program
is inconsistent for perfect recall and secure for forgetful
attackers. In the last scenario we consider events. Here
a user should not be able to see an event’s information
such as its title or date unless they are invited to it. The
program is secure for this scenario.

8. Related Work

This section discusses closely related works targeting
dynamic policies and information flow control. We refer
to Broberg et al. [11] for a survey on dynamic policies.

Our security framework is inspired by the work of
Askarov and Chong [8] on knowledge-based security
conditions for dynamic policies. They propose a gen-
eral framework for capturing the semantics of dynamic
policies for all attackers, showing that secure program
under perfect recall attacker can be insecure under a
weaker attacker. We revisit and extend their framework
to accommodate three realistic attacker models and point
out the challenges with policy consistency. Because the
notions of perfect recall attacker and bounded memory
attackers have well-defined interpretations in applications
and epistemic logics [29], security conditions should be
specific about the attacker model and uncover inconsistent
policies. This allows us to show that the security of a
program under a stronger attacker implies security under
weaker attackers. Moreover, we propose a security con-
dition for forgetful attackers to capture transient release
of sensitive information, instantiating the framework of
Askarov and Chong. On the enforcement side, DYN-
COVER uses automated theorem proving while Askarov
and Chong design a security type system, each targeting
well-known trade-offs between precision and scalability.
Van Deft et al. [10] improve the framework of Askarov
and Chong with regards to progress-insensitive security,
showing how a type system enforces security against all
attackers. By contrast, our conditions are progress sen-
sitive, while progress insensitivity can be accommodated



TABLE 1: Benchmark evaluation results

DYNCOVER Attacker Inconsistent JPF Time (ms) SOT
Result Type Policy Mode Inst OA ME FG FS PR Nodes

Program 3  Perfect Reject 2940 219.5 8.7 1.5 31.6 − 2
Program 3 X Perfect Repair 2940 231.6 8.8 0.6 31.5 20.4 2
Program 3 X Forgetful − 2940 217.4 8.7 1.6 31.4 − 2
Program 7 × Perfect Reject 2964 316.4 38.4 2.6 84.1 − 5
Program 7 × Bounded Reject 2964 301.0 38.6 2.5 84.3 − 5
Program 7 × Forgetful − 2964 298.2 38.5 2.3 69.0 − 5
Program 13  Perfect Reject 2982 292.7 49.5 1.9 63.3 − 7
Program 13 X Perfect Repair 2982 367.1 49.0 1.9 91.5 47.7 7
Program 13 X Bounded Reject 2982 341.6 47.0 3.6 111.5 − 7
Program 13 X Forgetful − 2982 300.0 48.6 2.9 68.2 − 7

DYNCOVER Results: X the program is secure; × the program is insecure;  the program has an inconsistent policy change.
Inconsistent Policy: What to do when facing an inconsistent policy: Reject the inconsistent policies; Repair the policy.
JPF Inst: total number of instructions executed by JPF
Time: OA: overall; ME: model extraction ; FG: interference formula generation; FS: interference formula satisfiability checking; PR: policy repair
(only if applicable)
SOT Nodes: Number of nodes in the generated Symbolic Output Tree

TABLE 2: Social network evaluation results

DYNCOVER Attacker Inconsistent JPF Time (ms) SOT
Result Type Policy Mode Inst OA ME FG FS PR Nodes

postForFollowers  Perfect Reject 13953 659.4 270.5 11.5 168.0 − 24
postForFollowers X Forgetful − 13953 795.6 293.3 12.4 160.3 − 24
blockingUser  Perfect Reject 14133 656.3 274.5 10.5 163.5 − 25
blockingUser X Forgetful − 14133 599.4 226.6 11.5 160.1 − 25
forwardingDM × Perfect Reject 13037 519.0 169.5 4.2 154.1 − 12
forwardingDM × Bounded Reject 13037 499.5 166.8 4.4 145.0 − 12
forwardingDM × Forgetful − 13037 495.9 164.4 4.1 130.0 − 12
phoneNumberPrivacy X Perfect Reject 13135 656.6 181.0 14.0 261.5 − 21
phoneNumberPrivacy X Forgetful − 13135 680.7 212.7 9.8 242.9 − 21
leakMembership X Perfect Reject 18569 747.0 286.8 10.1 232.0 − 19
leakMembership leave  Perfect Reject 18850 802.2 314.9 8.7 283.8 − 21
leakMembership leave X Forgetful − 18850 769.0 301.8 13.0 231.7 − 21
leakEventInfo X Perfect Reject 10676 427.5 159.5 2.0 73.9 − 4

following Van Deft et al. [10]. Broberg et al. [11] illumi-
nate the different facet of dynamic policies proposed in the
literature [30], [12], [13], [14], [16], [9], [21]. We revisit
and discuss this facets in our framework by developing
the corresponding security conditions or pointing out mis-
matches. Other works addressing the challenge of flexible
policies include Chudnov and Naumann [31] framework
for downgrading policies in reactive programs, Lu and
Zhang’s [32] framework for non-transitive policies, and
Kozyri and Schneider’s [33] reactive labels.

Recently, Li and Zhang [34] propose a general-purpose
framework for dynamic policies. Their approach catego-
rizes dynamic policies into persistent and transient poli-
cies, and uses the notion of effective traces to define a
unified knowledge-based security condition. By contrast,
our work departs from existing works on dynamic policies,
by focusing on an attacker-centric approach and tries to
address the issues of dynamic policies through policy
consistency and the relation between attacker power and
policy.

Our enforcement techniques build on the line of work
on verifying static information flow policies by automated
theorem proving [17], [19], [18], [35], [36]. To our best
knowledge, none of these works addresses either dynamic
policies or the issues of policy consistency and policy
repair. A precursor of our approach is the work of Balliu et
al. [18] which also uses Java Pathfinder to extract program
dependencies and verify static noninterference policies by
symbolic execution. Our verification conditions are similar
to Balliu et al. [18] for static policies, and develop them

further to accommodate dynamic policies. Paragon [37]
extends Java with support for dynamic policies using a
security type system [16], [38] and it enforces security
for the perfect recall attacker. By contrast, DYNCOVER
additionally supports bounded memory and forgetful at-
tacker models with policy consistency and repair. Other
languages and tools supporting information flow control
for perfect recall attackers include JIF [39], LIO [40],
Jeeves [41], and JOANA [42].

9. Conclusion

We have revised knowledge-based security conditions
for dynamic policies and proposed attacker-centric con-
ditions for perfect recall, bounded memory, and forgetful
attackers. Drawing on the notion of policy consistency,
we studied the relationship with the different facets of
dynamic policies as well as policy repair. To verify and
repair dynamic policies under different attacker models,
we designed, implemented, and evaluated DYNCOVER, an
open source tool based on symbolic execution and SMT
solving. An interesting avenue for future work is to inves-
tigate the interplay between integrity and confidentiality
for dynamic policies [43], [44], [45], [46], [47].
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Appendix A.
Bounded Memory Attacker

The unlimited memory of perfect recall attacker means
that it can remember everything it once observed. A
bounded memory attacker is a variant of perfect recall
attacker with a limited memory (called m hereafter). After
observing m outputs, its memory will become full and in
order to capture any new outputs the oldest observation
should be removed from it (in a FIFO manner).
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A.1. Security Policies

The security condition used for bounded memory at-
tacker is similar to Definition 4, except that when comput-
ing the knowledge of a bounded memory attacker, we have
to consider its memory capacity (m) as well as the number
of outputs it has observed. If the number of outputs is less
than m, the attacker is going to behave just like prefect
recall, and if it is more than m, the attacker is going to
only remember the last m observations.

With this intuition, we can define the auxiliary func-
tion suffix(t,m) which takes a trace t and returns the last
m events of the trace:

Definition 14. Given trace t as t = α1.α2...αk, suffix(t,m)
is defined as:

suffix(t,m) =

{
t if k ≤ m
αk−m...αk if k > m

Now, we can define the knowledge of a bounded
memory attacker at execution point i.

Definition 15. Program c with initial store σ, and initial
policy pinit produces trace t after i execution steps, i.e.,
〈c, σ, pinit〉

t
=⇒i . We write kbndi (c, σ, pinit, A,m) for the

knowledge of an attacker that observes the outputs of
this program on channel A and has a bounded memory
capacity of length m, and define it as follows:

kbndi (c, σ, pinit, A,m) = {σ′ | 〈c, σ, pinit〉
t′
=⇒j

∧ suffix(t�A,m) = suffix(t′�A,m)}

By adapting Definitions 2 and 3 to kbndi (c, σ, pinit, A,m)
for attacker knowledge, we can use Definition 4 to check
security for bounded memory attackers as well.

A.2. Verification of Dynamic Policies

Since a bounded memory attacker is a special type of
perfect recall with limited observations, the verification
approach used for checking a program’s security against
a bounded attacker is also similar to the verification for a
perfect recall attacker. We just have to modify Definition
11 to account for the limited memory of the attacker.

Definition 16. Given an SOT S, active policy Pn(
−→
l ,
−→
h )

at node n, S is secure wrt. bounded memory attacker
with memory capacity m iff for all nodes n ∈ N(S), the
following formula is unsatisfiable:

Pn(
−→
l ,
−→
h ) ∧

(
Pcn(

−→
ln ,
−→
hn) ∧

( ∧
n′∈N(S)

¬
(
Pcn′(

−→
ln ,
−→
hn
′) ∧
−→
Om
n (
−→
ln ,
−→
hn) =

−→
Om
n′(
−→
ln ,
−→
hn
′)
)))

where
−→
Om
n is a tuple of the last m output expressions

encountered on a path in SOT from node Start to node n,−→
Om
n =

−→
Om
n′ denotes the component-wise equality between

two tuples, and N(S) is the nodes of SOT S.

In this definition we limit the length of the at-
tacker’s observations by m, which is the capacity of

his memory. In other words,
−→
Om
n contains the last m

outputs observable by the attacker. Therefore by checking−→
Om
n (
−→
ln ,
−→
hn) =

−→
Om
n′(
−→
ln ,
−→
hn
′) for all n′ ∈ N(S) we are

looking for nodes that can – from the attacker’s perspec-
tive – produce the same trace of outputs.

The process of checking a program’s policy consis-
tency for a bounded memory attacker is similar to that of
a perfect recall attacker (Definition 12); the only difference
is that we should use

−→
Om
n instead of

−→
On during the

generation of the formula for checking consistency.
To illustrate this, we revisit Program 13 and check its

policy consistency under a bounded memory attacker with
memory capacity of m = 2. For example, the generated
formula for node n5 is:(

Pcn3(∅, {x, y}) ∧
( ∧
n′∈N(S)

¬
(
Pcn′(∅, {x′, y′})

∧
−→
O 2
n3(∅, {x, y}) =

−→
O 2
n′(∅, {x′, y′})

)))
The output sequence of node n3 is O2

n3 = (1, 1). The
formula is satisfiable if there exists a value for y or x
where Pcn3(y) holds, and for all nodes it falsifies either
the path conditions or the equality between outputs. For
this attacker, it is possible for the nodes which are not
on the same level to have equal outputs, so we have
to consider all n′ ∈ N(S). However, in this example,
there are two nodes that can possibly produce an output
sequence equal to (1, 1). n2 with output sequence (x, 1)
and n3 with (1, 1), for both of which the path condition
is also true. We consider n3 first, because in this case
both of the output sequences are (1, 1), which means that
the inner formula is true, hence the result of conjunction
is false. This means that even without considering n2 we
can be conclude that the whole formula is unsatisfiable
and the policy change at node n5 is consistent. Similarly,
we can apply Definition 16 to all of the nodes in S and
show that Program 13 is in fact secure.

The following theorem shows soundness of Definition
16 wrt. the security condition for a bounded memory
attacker.

Theorem 5. Given a SOT S, if the formula in Definition
16 is unsatisfiable for all nodes n ∈ S, then S satisfies
Definition 3 for the bounded memory attacker.

Proof. Similar to the proof of Theorem 2.

Appendix B.
Examples for the Forgetful Attacker

In this section, we revisit some of the examples
presented in Section 4 to demonstrate how a forgetful
attacker’s knowledge is calculated.

For Program 5 we calculate the attacker’s knowledge
after the output of line 8. Without the loss of generality, let
us assume x = 5 and y = 7. At this point, the attacker has
observed the trace t = 7.1.2. There is also an unobservable
new policy event between 1 and 2, thus the splitPolicy(t)
function gives us the sub-traces (7.1, 2). The length of the
sub-trace t1 = 7.2 is 2, so the knowledge of attacker will
be all of the stores that can produce a trace ending with 2



that has exactly two other observable events (of any value)
before that:

kfrg8 (c, σ, pinit, A) = {σ′ | 〈c, σ′, pinit〉
t′′
=⇒j

∧ (t′′1 , t
′′
2) = split(t′′�A, 2)

∧ t′′2 = 2}

This corresponds to all the stores with any value for
x, and since the active policy p at execution point i = 8
is also the set of all the stores, security condition 3 holds.
If we repeat this process for all execution points, we can
see that the program is accepted by Definition 3.

Similarly, the knowledge of the attacker at line 8 of
Program 6 will be all of the stores that can produce a
trace that ends with sub-trace 7.2 and have exactly one
other observable event before that, which will be the stores
with any value for x, but only value 7 for y. Since the
active security policy at this point is the set of all stores
with any value for both x and y, the security condition
p8 ⊆ kfrg8 (c, σ, pinit, A) does not hold and Program 6 is
rejected as insecure.

In Program 7, for a positive x, the attacker observes the
trace t = 1.1.1 after the output on line 8. The splitPolicy(t)
function gives us the tuple (1.1, 1) and since | 1.1 | is 2,
the attacker knowledge will be all of the stores that can
produce a trace that ends with 1, and have exactly two
other observable event before that:

kfrg8 (c, σ, pinit, A) = {σ′ | 〈c, σ′, pinit〉
t′′
=⇒j

∧ (t′′1 , t
′′
2) = split(t′′�A, 2)

∧ t′′2 = 1}

The only stores that can produce such a trace are the
ones with x > 0, which implies that the security condition
does not hold and the program is rejected as insecure.

Appendix C.
Proof of Verification Soundness

Here we present sketches for the proofs of Theo-
rems 2, 3, and 4.

Theorem 2. Given a SOT S, if the formula in Definition
11 is unsatisfiable for all nodes n ∈ S, then S satisfies
Definition 3.

Proof. By Definition 3, a program is insecure if there is
a point i during the execution in which the policy is not
contained in the knowledge (i.e., pi 6⊆ ki). This means
that there is a value such that it is in the policy but not
in the knowledge. Similarly, in the SOT, if the formula
corresponding to a node n is satisfiable, it means that
there exist two stores that satisfy the policy P (

−→
l ,
−→
h ), but

either one store does not reach the output node or the two
stores produce different output sequences. This implies
that there is an initial store (

−→
l ,
−→
h ) ∈ P (

−→
l ,
−→
h ), such

that (
−→
l ,
−→
h ) 6∈ ki, thus violating the security condition.

On the other hand if the formula at node n is un-
satisfiable, it implies that for any initial state (

−→
l ,
−→
h )

that satisfies the policy P (
−→
l ,
−→
h ) and reaches node n

producing the output sequence
−→
On, it is impossible to find

another state (
−→
l ,
−→
h ′) that satisfies the policy and reaches

some output node n′ (i.e., n ∈ N(S) and Pcn′(
−→
l ,
−→
h ′))

yielding a different output sequence
−→
On′ . If we repeat this

process for all nodes n ∈ S, and none of their formulas
are satisfiable, it means that there are no outputs in SOT
S such that pi 6⊆ ki.

Theorem 3. Given a SOT S, if the formula in Defini-
tion 12 is unsatisfiable for all nodes n ∈ S such that n
follows a policy change, then S satisfies Definition 2.

Proof. The proof of this theorem is similar to Theorem 2.
However, because in the SOT we do not have any nodes
for the policy change, we have to capture the policy
changes on the next output nodes.

In the policy consistency check formula (Definition
12) the policy part of the formula (P (

−→
l ,
−→
h )) is generated

at node n because we want it to reflect the new policy,
however, the rest of the formula is generated for n’s parent
node (i.e., parent(n)). The satisfiability of this formula
means that there exist two stores that satisfy the new
policy P (

−→
l ,
−→
h ) at node n, but either one store does

not reach an output or the two stores produce differ-
ent output sequences up to parent(n). This implies that
there is an initial store (

−→
l ,
−→
h ) ∈ Pn(

−→
l ,
−→
h ), such that

(
−→
l ,
−→
h ) 6∈ ki−1, thus violating the policy consistency

condition.
If we repeat this process for all nodes n ∈ S with

new policy, and none of their formulas are satisfiable, it
means that there are no policy changes in SOT S such that
pi 6⊆ ki−1. Here we assume that there is always an output
after a policy change. For programs that have a policy
change as their last command, we can use the node End
for policy consistency check and apply Definition 12.

Theorem 4. Given a SOT S, if the formula in Definition
13 is unsatisfiable for all nodes n ∈ S, then S satisfies
Definition 3 for the forgetful attacker.

Proof. The difference between the the security condition
of the forgetful attacker and the perfect recall is that
the latter uses Definition 7 to calculate the attacker’s
knowledge.

This definition limits the observations of the attacker
to the number of outputs before the policy change and
the values of outputs after a policy change. The output
function

−→
O frg
n used in the forgetful attacker’s formula

(Definition 13) captures this behavior by ignoring the
value of outputs before the last policy change (replacing
them with a constant value), and only keeping the actual
value of the outputs that happened after the policy change.

The rest is similar to the proof of Theorem 2. The
satisfiability of the formula of Definition 13 means that
there exist two stores that satisfy the new policy P (

−→
l ,
−→
h )

at node n, but if they reach an output, the output sequences
up to node n wrt.

−→
O frg
n will be different. This implies

that there is an initial store (
−→
l ,
−→
h ) ∈ Pn(

−→
l ,
−→
h ), such

that (
−→
l ,
−→
h ) 6∈ kfrgi , thus violating the security condition

condition.

Appendix D.
Proof of Attacker Power

In this section, we present Theorem 6 to prove the
claim that in the absence of inconsistent policy changes,



a program which is secure against a perfect recall attacker
is also secure against a bounded memory attacker.

Theorem 6. Given a program c with no inconsistent
policy changes, initial store σ, and initial policy pinit, if
for all execution points i, c is secure against perfect recall
attacker Aper, it is also secure against bounded memory
attacker Ambnd with memory capacity m ∈ N . Formally:

pi ⊆ ki(c, σ, pinit,Aper) =⇒
pi ⊆ kbndi (c, σ, pinit, A

m
bnd,m) ∀m ∈ N

Proof. We should consider all execution points i such that

〈c, σ, pinit〉
t

=⇒i〈ci, σi, pi〉

and continue with structural induction on command ci.
All of the commands presented in Figure 1 should be

considered here. However, not all of them have an effect
on the knowledge, therefore we only investigate command
output`(e). Without the loss of generality let us assume
that e is visible to the attacker Ambnd.

Since knowledge is monotone, the more observations
an attacker has, the smaller his knowledge set will be. We
can use this fact to limit the number of cases we have
to investigate for different values of m. Thus, we only
consider two scenarios:

• if | (t.α)�Am
bnd
|≤ m then the bounded memory

attacker with memory capacity m is going to know
everything that the perfect recall attacker knows.
Hence

ki(c, σ, pinit, Aper) = kbndi (c, σ, pinit, A
m
bnd,m)

and since by assumption we know that pi ⊆
ki(c, σ, pinit, Aper), we can conclude:

pi ⊆ kbndi (c, σ, pinit, A
m
bnd,m)

• if | (t.α)�Am
bnd
|> m then the bounded memory at-

tacker Ambnd had less observations than the perfect
recall attacker. Hence

ki(c, σ, pinit, Aper) ⊆ kbndi (c, σ, pinit, A
m
bnd,m)

and since by assumption we know that pi ⊆
ki(c, σ, pinit, Aper), we can conclude that

pi ⊆ kbndi (c, σ, pinit, A
m
bnd,m)

also holds.

As a result, the security condition:

pi ⊆ kbndi (c, σ, pinit, A
m
bnd,m) ∀m ∈ N

holds for all values of m ∈ N .
Additionally, if ci is setPolicy(p′) we can use the

assumption that program c does not have any inconsistent
policies to conclude that Definition 2 holds for perfect
recall attacker Aper for all execution points i. Since we
already established that bounded memory attacker Ambnd’s
knowledge is less than or equal to Aper at each execution
point, it is straightforward to show that:

pi ⊆ kbndi−1(c, σ, pinit, A
m
bnd,m)

which means that the policy changes are also consistent
for bounded memory attacker Ambnd.

Theorem 1 proves a similar claim for the forgetful
attackers.

Theorem 1. Given a program c, initial store σ, and initial
policy pinit, if for all execution points i, c is secure against
perfect recall attacker Aper, it is also secure against
forgetful attacker Afrg. Formally:

[σ]piA ⊆ ki(c, σ, pinit,Aper) =⇒
[σ]piA ⊆ k

frg
i (c, σ, pinit, Afrg)

Proof. The proof of this theorem is similar to Theorem 6.
We consider all execution points i such that:

〈c, σ, pinit〉
t

=⇒i〈ci, σi, pi〉

and only investigate the case where command ci is
output`(e), and assume that e is visible to the attacker
Afrg. Let us consider three scenarios:

• If splitPolicy(t) is (ε, t), then the observations of
forgetful attacker are the same as the observations
of the perfect recall attacker, hence:

ki(c, σ, pinit, Aper) = kfrgi (c, σ, pinit, Afrg)

Since by assumption we know that pi ⊆
ki(c, σ, pinit, Aper), we can conclude:

pi ⊆ kfrgi (c, σ, pinit, Afrg)

• If splitPolicy(t) is (t, ε), then the forgetful attacker
makes no observations after the policy change and
only knows | t |. Thus,

ki(c, σ, pinit, Aper) ⊆ kfrgi (c, σ, pinit, Afrg)

Hence, we can conclude that:

pi ⊆ kfrgi (c, σ, pinit, Afrg)

• If splitPolicy(t) is (t1, t2). Since knowledge is
monotone and t2 is a sub-trace of t, the knowledge
set of an observer that sees t2 is bigger that the
knowledge set of the observer of t. Additionally,
for all events before t2, the attacker Aper observed
the actual value of the event while the attacker
Afrg only knows that an event has occurred.
Therefore, it is straightforward to show that the
knowledge of Afrg is less than the knowledge of
Aper:

ki(c, σ, pinit, Aper) ⊆ kfrgi (c, σ, pinit, Afrg)

Therefore we can conclude that:

pi ⊆ kfrgi (c, σ, pinit, Afrg)



TABLE 3: Benchmark evaluation results (Extended Table)

DYNCOVER Attacker Inconsistent JPF Time (ms) SOT
Result Type Policy Mode Inst OA ME FG FS PR Nodes

Program 1  Perfect Reject 2937 279.1 8.7 1.4 69.3 − 2
Program 1 X Perfect Repair 2937 242.5 8.5 0.3 39.7 19.6 2
Program 1 × Forgetful − 2937 222.0 8.5 1.4 29.5 − 2
Program 2  Perfect Reject 2937 211.3 8.6 1.4 27.6 − 2
Program 2 X Perfect Repair 2937 249.5 8.6 0.3 52.0 19.9 2
Program 2 X Forgetful − 2937 210.8 8.5 1.4 25.7 − 2
Program 3  Perfect Reject 2940 219.5 8.7 1.5 31.6 − 2
Program 3 X Perfect Repair 2940 231.6 8.8 0.6 31.5 20.4 2
Program 3 X Forgetful − 2940 217.4 8.7 1.6 31.4 − 2
Program 4 × Perfect Reject 2937 229.2 6.8 1.6 41.3 − 2
Program 4 × Forgetful − 2937 216.5 7.2 1.5 31.5 − 2
Program 5  Perfect Reject 2972 252.4 46.8 1.5 32.0 − 5
Program 5 X Perfect Repair 2972 342.9 48.7 1.3 74.3 47.2 5
Program 5 X Forgetful − 2972 279.8 48.1 2.3 51.7 − 5
Program 6 × Perfect Reject 2972 294.3 48.9 2.1 48.4 − 5
Program 6 × Bounded Reject 2972 278.3 51.0 1.8 42.3 − 5
Program 6 × Forgetful − 2972 250.4 45.9 1.6 31.7 − 5
Program 7 × Perfect Reject 2964 316.4 38.4 2.6 84.1 − 5
Program 7 × Bounded Reject 2964 301.0 38.6 2.5 84.3 − 5
Program 7 × Forgetful − 2964 298.2 38.5 2.3 69.0 − 5
Program 8 × Perfect Reject 2938 214.2 6.7 1.3 14.8 − 1
Program 8 × Perfect Repair 2938 213.8 6.7 0.1 13.6 27.2 1
Program 8 × Forgetful − 2938 198.5 6.5 1.3 13.3 − 1
Program 9  Perfect Reject 2942 226.9 6.9 1.7 39.3 − 3
Program 9 X Perfect Repair 2942 250.0 6.7 0.5 51.3 20.6 3
Program 9 × Forgetful − 2942 221.4 6.7 1.6 36.4 − 3
Program 10 × Perfect Reject 2937 224.2 6.4 1.6 39.0 − 2
Program 10 × Forgetful − 2937 211.6 7.0 1.5 28.9 − 2
Program 11  Perfect Reject 2940 218.1 8.6 2.4 23.9 − 2
Program 11 X Perfect Repair 2940 330.8 9.4 0.4 39.2 29.1 2
Program 12 X Perfect Reject 2954 265.5 37.8 2.0 52.3 − 4
Program 12 X Bounded Reject 2954 269.3 37.8 2.0 49.3 − 4
Program 12 X Forgetful − 2954 276.8 38.5 2.1 43.4 − 4
Program 13  Perfect Reject 2982 292.7 49.5 1.9 63.3 − 7
Program 13 X Perfect Repair 2982 367.1 49.0 1.9 91.5 47.7 7
Program 13 X Bounded Reject 2982 341.6 47.0 3.6 111.5 − 7
Program 13 X Forgetful − 2982 300.0 48.6 2.9 68.2 − 7
WhileLoop 5 X Perfect Reject 3393 705.6 96.2 26.7 385.9 − 30
WhileLoop 10 X Perfect Reject 4093 1743.7 172.8 100.4 1226.4 − 85
WhileLoop 50 X Perfect Reject 20493 198030 1797 68486 126451 − 1425

DYNCOVER Results: X the program is secure; × the program is insecure;  the program has an inconsistent policy change.
Inconsistent Policy: What to do when facing an inconsistent policy: Reject the inconsistent policies; Repair the policy.
JPF Inst: total number of instructions executed by JPF
Time: OA: overall; ME: model extraction ; FG: interference formula generation; FS: interference formula satisfiability checking; PR: policy repair
(only if applicable)
SOT Nodes: Number of nodes in the generated Symbolic Output Tree
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