
InSpectre: Breaking and Fixing Microarchitectural
Vulnerabilities by Formal Analysis

Roberto Guanciale

robertog@kth.se

KTH Royal Institute of Technology

Stockholm, Sweden

Musard Balliu

musard@kth.se

KTH Royal Institute of Technology

Stockholm, Sweden

Mads Dam

mfd@kth.se

KTH Royal Institute of Technology

Stockholm, Sweden

ABSTRACT
The recent Spectre attacks have demonstrated the fundamental

insecurity of current computer microarchitecture. The attacks use

features like pipelining, out-of-order and speculation to extract

arbitrary information about the memory contents of a process. A

comprehensive formal microarchitectural model capable of repre-

senting the forms of out-of-order and speculative behavior that can

meaningfully be implemented in a high performance pipelined ar-

chitecture has not yet emerged. Such a model would be very useful,

as it would allow the existence and non-existence of vulnerabilities,

and soundness of countermeasures to be formally established.

This paper presents such amodel targeting single core processors.

The model is intentionally very general and provides an infrastruc-

ture to define models of real CPUs. It incorporates microarchitec-

tural features that underpin all known Spectre vulnerabilities. We

use the model to elucidate the security of existing and new vulnera-

bilities, as well as to formally analyze the effectiveness of proposed

countermeasures. Specifically, we discover three new (potential)

vulnerabilities, including a new variant of Spectre v4, a vulnerability

on speculative fetching, and a vulnerability on out-of-order exe-

cution, and analyze the effectiveness of existing countermeasures

including constant time and serializing instructions.

CCS CONCEPTS
• Security and privacy→ Formal security models; Side-channel
analysis and countermeasures.

KEYWORDS
microarchitecture, vulnerabilities, out-of-order, speculation, formal

models, countermeasures, verification

ACM Reference Format:
Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. InSpectre: Break-

ing and Fixing Microarchitectural Vulnerabilities by Formal Analysis. In

Proceedings of the 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM,

New York, NY, USA, 17 pages. https://doi.org/10.1145/3372297.3417246

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7089-9/20/11.

https://doi.org/10.1145/3372297.3417246

1 INTRODUCTION
The wealth of vulnerabilities that have followed on from Spectre

and Meltdown [32, 36] have provided ample evidence of the funda-

mental insecurity of current computer microarchitecture. The use

of instruction level parallelism in the form of out-of-order (OoO)

and speculative execution has produced designs with side channels

that can be exploited by attackers to learn sensitive information

about the memory contents of a process. One witness of the sub-

tlety of the issues is the more than 50 years passed since pipelining,

caching, and OoO execution, cf. IBM S/360, was first introduced.

Another witness is the fact that two years after the discovery

of Spectre, a comprehensive understanding of the security impli-

cations of pipeline related microarchitecture features has yet to

emerge. One result is the ongoing arms race between researchers

discovering new Spectre-related vulnerabilities [9], and CPU ven-

dors providing patches followed by informal arguments [5]. The

security and effectiveness of the currently proposed countermea-

sures is unknown, and there are continuously new vulnerabilities

appearing that exploit specific microarchitecture features.

It is important to note that side channels and functional correct-

ness are to a large extent orthogonal. The latter is usually proved

by reducing pipelined behavior to sequential behavior through

some form of refinement-based argument. The past decades have

seen a significant body of work in this area, cf. [1, 8, 39, 48]. Func-

tional correctness, however, focuses on programs’ input-output

behavior and fails to adequately capture the differential aspects

of speculation and instruction reordering that are at the root of

Spectre-like vulnerabilities. For a systematic study of the latter we

argue that new tools that are not necessarily tied to any specific

pipeline architecture are needed.

Along this line, several recent works [12, 14, 23, 41] have pro-

posed formal microarchitectural models using information flow

analysis to identify information leaks arising from speculative ex-

ecution. These models capture specific speculation features, e.g,

branch prediction, and variants of Spectre, and design analyses that

detect known attacks [12, 23, 54]. While these approaches illustrate

the usefulness of formal models in analyzing microarchitecture

leaks, features lying at the heart of modern CPUs such as OoO exe-

cution and many forms of speculation remain largely unexplored,

implying that new vulnerabilities may still exist.

Contributions. This work presents InSpectre, the first compre-

hensive model capable of capturing OoO execution and all exist-

ing forms of speculation. Our first contribution is a novel seman-

tics supporting microarchitectural features such as OoO execution,

non-atomicity of instructions, and various forms of speculation,

including branch prediction, jump target prediction, return address

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1853

https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1145/3372297.3417246

prediction, and dependency prediction. Additionally, the semantics

supports features such as address aliasing, dynamic references, store

forward, and OoO memory commits, which are necessary to model

all known variants of Spectre. The semantics implements the stages

of an abstract pipeline supporting OoO (Section 4) and speculative

execution (Section 5). In line with existing work [12, 23], our secu-

rity condition formalizes the intuition that optimizations should

not introduce additional information leaks (conditional noninter-

ference, Section 2). We use this condition to show that InSpectre

can reproduce all four variants of Spectre.

As a second contribution, we use InSpectre to discover three new

potential vulnerabilities. The first vulnerability shows that CPUs

supporting only OoO may leak sensitive information. We discov-

ered the second vulnerability while attempting to validate a CPU

vendor’s claim that microarchitectures like Cortex A53 are immune

to Spectre vulnerabilities because they support only speculative

fetching [5]. Our model reveals that this may not be the case. The

third vulnerability is a variant of Spectre v4 showing that specula-

tion of a dependency, rather than speculation of a non-dependency

as in Spectre v4, between a load and a store operation may also

leak sensitive information.

Finally, as a third contribution, we leverage InSpectre to analyze

the effectiveness of some existing countermeasures. We found that

constant-time [7] analysis is unsound for processors supporting

only OoO, and propose a provably secure fix that enables constant-

time analysis to ensure security for such processors.

Proofs are reported in the extended version of this paper [22].

2 SECURITY MODEL
Our security model has the following ingredients: (i) an execution
model which is given by the execution semantics of a program;

(ii) an attacker model specifying the observations of an attacker;

(iii) a security policy specifying the parts of the program state that

contain sensitive/high information, and the parts that contain pub-

lic/low information; (iv) a security condition capturing a program’s

security with respect to an execution model, an attacker model, and

a security policy.

First, we consider a general model of attacker that observes the

interaction between the CPU and the memory subsystem. This

model has been used (e.g., [3]) to capture information leaks via

cache-based side channels transparently without an explicit cache

model. It can capture trace-driven attackers that can interleave with

the victim’s execution and indirectly observe, for instance using

Flush+Reload [20], the victim’s cache footprint via latency jitters.

The attacker can observe the address of a memory load 𝑑𝑙 𝑣 (data

load from memory address 𝑣), the address of a memory store 𝑑𝑠 𝑣

(data store to memory address 𝑣), as well as the value of the program

counter 𝑖𝑙 𝑣 (instruction load from memory address 𝑣) [43].

We assume a transition relation −→ ⊆ States × Obs × States to
model the execution semantics of a program as a state transformer

producing observations 𝑙 ∈ Obs. The reflexive and transitive closure
of −→ induces a set of executions 𝜋 ∈ Π. The function trace : Π ↦→
Obs∗ extracts the sequence of observations of an execution.

The security policy is defined by an indistinguishability relation
∼ ⊆ States × States. The relation ∼ determines the security of

information that is initially stored in a state, modeling the set of

initial states that an attacker is not allowed to discriminate. These

states represent the initial uncertainty of an attacker about sensitive

information.

The security condition defines the security of a program on

the target execution model (e.g., the speculation model) −→𝑡 condi-

tionally on the security of the same program on the reference, i.e.

sequential, model −→𝑟 , by requiring that the target model does not

leak more information than the reference model for a policy ∼.
Definition 2.1 (Conditional Noninterference). Let ∼ be a secu-

rity policy and −→𝑡 and −→𝑟 be transition relations for the target

and reference models of a system. The system is conditionally

noninterferent if for all 𝜎1, 𝜎2 ∈ States such that 𝜎1 ∼ 𝜎2, if for

every 𝜋1 = 𝜎1 −→𝑟 · · · there exists 𝜋2 = 𝜎2 −→𝑟 · · · such that

trace(𝜋1) = trace(𝜋2) then for every 𝜌1 = 𝜎1 −→𝑡 · · · there exists
𝜌2 = 𝜎2 −→𝑡 · · · such that trace(𝜌1) = trace(𝜌2).

Conditional noninterference captures only the new information

leaks that may be introduced by model −→𝑡 , and ignores any leaks

already present in model −→𝑟 . The target model is constructed in

two steps. First, we present an OoO model that extends the se-

quential model, which is deterministic, by allowing evaluation to

proceed out-of-order. Then the OoO model is further extended by

adding speculation. At each step the traces of the abstract model are

included in the extended model, and a memory consistency result

demonstrates that the per location sequence of memory stores is the

same for both models. This establishes functional correctness. Con-

ditional noninterference then establishes security of each extension.

Each such step strictly increases the set of possible traces by adding

nondeterminism. Since refinement is often viewed as essentially

elimination of nondeterminism, one can think of the extensions

as “inverse refinements”. Since conditional noninterference con-

siders a possibilistic setting, it does not account for information

leaks through the number of initial indistinguishable states. Appen-

dix A elucidates the advantages of conditional noninterference as

compared to standard notions of noninterference.

3 FORMAL MICROARCHITECTURAL MODEL
We introduce a Machine Independent Language (MIL) which we

use to define the semantics of microarchitectural features such as

OoO and speculative execution. We use MIL as a form of abstract

microcode language: A target language for translating ISA instruc-

tions and reasoning about features that may cause vulnerabilities

like Spectre. Microinstructions in MIL represent atomic actions that

can be executed by the CPU, emulating the pipeline phases in an ab-

stract manner. This model is intentionally very general and provides

an infrastructure to define models of real microarchitectures.

We consider a domain of values 𝑣 ∈ V , a program counter pc ∈
PC, a finite set of register/flag identifiers 𝑟0, . . . , 𝑟𝑛, 𝑓 , 𝑧 ∈ R ⊆ V ,
and a finite set of memory addresses 𝑎0, . . . , 𝑎𝑚 ∈ M ⊆ V . The
language can be easily extended to support other type of resources,

e.g., registers for vector operations. We assume a total order < on

a set of names 𝑡0, 𝑡1, . . . ∈ N , which we use to uniquely identify

microinstructions. We write N1 < N2 if for every pair (𝑡1, 𝑡2) ∈
N1 × N2 it holds that 𝑡1 < 𝑡2.

Microinstructions 𝜄 ∈ I are conditional atomic single assign-

ments. A microinstruction 𝜄 = 𝑡 ← 𝑐?𝑜 is uniquely identified by its

name 𝑡 ∈ N and consists of a boolean guard 𝑐 , which determines if

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1854

the assignment should be executed, and an operation 𝑜 ∈ 𝑂𝑝 . The
MIL language has three types of operations:

𝑒 ::= 𝑣 | 𝑡 | 𝑒1 + 𝑒2 | 𝑒1 > 𝑒2 | · · ·
𝑜 ::= 𝑒 | 𝑙𝑑 𝜏 𝑡𝑎 | 𝑠𝑡 𝜏 𝑡𝑎 𝑡𝑣

An internal operation 𝑒 is an expression over standard finite

arithmetic and can additionally refer to names in N and values in

V . A resource load operation 𝑙𝑑 𝜏 𝑡𝑎 , where 𝜏 ∈ {PC,R,M}, loads
the value of resource 𝜏 addressed by 𝑡𝑎 . We support three types

of resources: The program counter PC, registers R, and memory

locationsM. A resource store operation 𝑠𝑡 𝜏 𝑡𝑎 𝑡𝑣 uses the value of

𝑡𝑣 to update the resource 𝜏 addressed by 𝑡𝑎 .

The free names fn(𝜄) of an instruction 𝜄 = 𝑡 ← 𝑐?𝑜 is the set of

names occurring in 𝑐 or 𝑜 , the bound names, bn(𝜄), is the singleton
{𝑡}, and the names 𝑛(𝜄) is fn(𝜄) ∪ bn(𝜄).

To model the internal state of a CPU pipeline, we can translate

an ISA instruction as multiple microinstructions. For an ISA instruc-

tion at address 𝑣 ∈ M and a name 𝑡 ∈ N , the function translate(𝑣, 𝑡)
returns the MIL translation of the instruction at address 𝑣 , ensuring

that the names of the microinstructions thus generated are greater

than 𝑡 . Because we assume code to not be self-modifying, an in-

struction can be statically identified by its address in memory. We

assume that the translation function satisfies the properties: (i) for

all 𝜄1, 𝜄2 ∈ translate(𝑣, 𝑡), if 𝜄1 ≠ 𝜄2 then bn(𝜄1) ∩ bn(𝜄2) = ∅; for all
𝜄 ∈ translate(𝑣, 𝑡), (ii) fn(𝜄) < bn(𝜄), and (iii) {𝑡} < 𝑛(𝜄).

These properties ensure that names uniquely identify microin-

structions, the name parameters of a single instruction form a

Directed Acyclic Graph, the translated microinstructions are as-

signed names greater than 𝑡 , and the translation of two different ISA

instructions does not have direct inter-instruction dependencies

(but may have indirect ones).

3.1 MIL Program Examples
We introduce some illustrative examples of MIL programs, using

their graph representation. For clarity, we omit conditions when-

ever they are true and visualize only the immediate dependencies

between graph elements.

Consider an ISA instruction that increments the value of register

𝑟1, i.e., 𝑟1:=𝑟1+1. The instruction can be translated in MIL as follows:{
𝑡1 ← 𝑟1, 𝑡2 ← 𝑙𝑑 R 𝑡1, 𝑡3 ← 𝑡2 + 1, 𝑡4 ← 𝑠𝑡 R 𝑡1 𝑡3,

𝑡5 ← 𝑙𝑑 PC , 𝑡6 ← 𝑡5 + 4, 𝑡7 ← 𝑠𝑡 PC 𝑡6

}
Intuitively, 𝑡1 refers to the identifier of target register 𝑟1, 𝑡2 loads

the current value of 𝑟1, 𝑡3 executes the increment, and 𝑡4 stores the

result of 𝑡3 in the register store. The translation of an ISA instruction

also updates the program counter to enable the execution of the

next instruction. In this case, the program counter is increased by 4,

unconditionally. Notice that we omit the program counter’s address,

since there is only one such resource. We can graphically represent

this set of microinstructions using the following graph:

⊤ 𝑟1

𝑡1

⊤ 𝑙𝑑 R 𝑡1

𝑡2

⊤ 𝑡2 + 1

𝑡3

⊤ 𝑠𝑡 R 𝑡1 𝑡3

𝑡4

⊤ 𝑙𝑑 PC

𝑡5

⊤ 𝑡5 + 4

𝑡6

⊤ 𝑠𝑡 PC 𝑡6

𝑡7

Example 1: 𝑟1 := 𝑟1+1

In the following we adopt syntactic sugar to use expressions,

in place of names, for the address and value of load and store

operations. This can be eliminated by introducing the proper inter-

mediary internal assignments. This permits to rewrite the previous

example as:

𝑙𝑑 R 𝑟1

𝑡2

𝑠𝑡 R 𝑟1 𝑡2 + 1

𝑡4

𝑙𝑑 PC

𝑡5

𝑠𝑡 R 𝑡5 + 4

𝑡7

The translation of multiple ISA instructions results in discon-

nected graphs. This reflects the fact that inter-instruction depen-

dencies may not be statically identified due to dynamic references

and must be dynamically resolved by the MIL semantics. When

translating multiple instructions, we use the following convention

for generated names: the name 𝑡𝑖 𝑗 identifies the 𝑗-th microinstruc-

tion resulting from the translation of the 𝑖-th instruction. Our con-

vention induces a total (lexicographical) order over names (i.e.,

𝑡𝑖 𝑗 < 𝑡𝑖′ 𝑗 ′ iff (𝑖 < 𝑖 ′) ∨ (𝑖 = 𝑖 ′ ∧ 𝑗 < 𝑗 ′)), which respects the

properties of the translation function.

MIL is expressive enough to support conditional instructions like

conditional move. Conditional branches can be modeled in MIL via

microinstructions that are guarded by complementary conditions.

For instance, the beq a instruction, which jumps to address 𝑎 if the

𝑧 flag is set, can be translated as in Example 2.

𝑙𝑑 R 𝑧

𝑡1

𝑡1 = 1

𝑡2

𝑙𝑑 PC

𝑡3

𝑡2 𝑠𝑡 PC 𝑎

𝑡4

¬𝑡2 𝑠𝑡 PC 𝑡3 + 4

𝑡5

Example 2: beq a

4 OUT-OF-ORDER SEMANTICS
This section presents an OoO semantics for MIL programs, which

is extended in Section 5 to account for speculation. To show the

adequacy of the OoO and speculative semantics we prove that they

are memory consistent with respect to the in-order (sequential)

semantics, namely that writes to the same memory location are

seen in the order. Full details of memory consistency and in-order

semantics are reported in Appendix B.

4.1 States, Transitions, Observations

We formalize the semantics via a transition relation 𝜎
𝑙−→→ 𝜎 ′, which

maps a state 𝜎 to a state 𝜎 ′, and produces a (possibly empty, rep-

resented by a dot (·)) observation 𝑙 ∈ Obs, eliding the dot when

convenient. As in Section 2, Obs = {·, 𝑑𝑙 𝑣, 𝑑𝑠 𝑣, 𝑖𝑙 𝑣} captures the
attacker model.

States 𝜎 are tuples (I , 𝑠,C, F) where: (i) I is a set of MIL microin-

structions, (ii) 𝑠 ∈ Stores = N ⇀ V is a (partial) storage function

from names to values recording microinstructions’ execution re-

sults, (iii) C ⊆ N is a set of names of store operations that have been

committed to the memory subsystem, (iv) F ⊆ N is a set of names of

program counter store operations that have been processed, caus-

ing the ISA instruction at the stored location to be fetched and

decoded.

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1855

Decoded

𝑣

Executed

𝑣

Committed

𝑣Fetched

Exe Cmt

Ftc

𝑠 (𝑡)↑ ∧ 𝑡 ∉ C ∪ F

𝑣 𝑠 (𝑡) ∧ 𝑡 ∉ C ∪ F

𝑣 𝑠 (𝑡) ∧ 𝑡 ∈ C ∧ 𝑡 ∉ F

𝑣 𝑠 (𝑡) ∧ 𝑡 ∉ C ∧ 𝑡 ∈ F

Figure 1: OoO semantics: Microinstruction lifecycle

In the following we write 𝑠 [𝑡 ↦→ 𝑣] for substitution of value 𝑣 for

name 𝑡 in store 𝑠 . We use 𝑓 (𝑥)↓ to represent that the partial function
𝑓 is defined on 𝑥 , and 𝑓 (𝑥)↑ if not 𝑓 (𝑥)↓. We write dom(𝑓) for the
domain of a partial function 𝑓 . We also use 𝑓 |𝐷 to represent the

restriction of function 𝑓 to domain 𝐷 . The semantics of expressions

is [𝑒] : Stores ⇀ V and is defined as expected. An expression

is undefined if at least one name is undefined in a storage, i.e.,

[𝑒] (𝑠)↑ ⇔ fn(𝑒) ⊈ dom(𝑠). For 𝜎 = (I , 𝑠,C, F) we use [𝑒]𝜎 for [𝑒]𝑠 ,
𝜎 (𝑡)↑ for 𝑠 (𝑡)↑, and 𝜄 ∈ 𝜎 for 𝜄 ∈ I .

4.2 Microinstruction Lifecycle
Figure 1 represents the microinstruction lifecycle in the OoO seman-

tics. For a given state (I , 𝑠,C, F), a microinstruction 𝜄 = 𝑡 ← 𝑐?𝑜 ∈ I
can be in one of four different states. A microinstruction in state

Decoded (represented by a gray circle) has not been executed, com-

mitted or fetched (𝑠 (𝑡)↑, 𝑡 ∉ C, 𝑡 ∉ F), and its guard is either true

([𝑐]𝑠) or undefined ([𝑐] (𝑠)↑). If the guard is false, i.e, ¬[𝑐]𝑠 , the
instruction is considered as Discarded. A microinstruction moves

to state Executed (denoted by a simple circle containing 𝑠 (𝑡)) if its
guard evaluates to true and all dependencies have been executed.

An Executed store microinstruction can either be committed to the

memory (Committed: 𝑡 ∈ C, denoted by a bold circle), or, if it is a PC
store, assign the program counter, causing a new ISA instruction to

be fetched and decoded (Fetched: 𝑡 ∈ F , denoted by a double circle).

Accordingly, the transition of a PC store to state Fetched leads to

the spawn of a collection of newly decoded microinstructions (i.e.,

the translation of the subsequent ISA instruction) in state Decoded.

The labels of the edges in the diagram correspond to the names of

the transition rules of Section 4.4.

4.3 Semantics of Single Microinstructions
The semantics is defined in two steps: we first define the seman-

tics of single microinstructions, then introduce the operational

semantics of MIL programs. The semantics of a microinstruction

[𝜄] : States → (V × Obs) ∪ {⊥} returns either a value and an

observation, or ⊥ if the microinstruction cannot be executed.

(Internal operations) The semantics of internal operations is

straightforward:

[𝑡 ← 𝑐?𝑒]𝜎 =

{
([𝑒]𝜎, ·) if [𝑒] (𝜎)↓
⊥ otherwise

An internal operation can be executed as soon as its dependencies

are available. In Example 1, the semantics of internal operation 𝑡1 is

defined for the empty storage ∅, since it does not refer to any names.

However, the semantics of 𝑡3 is undefined in ∅, since it depends on
the value of 𝑡2 that is not available in ∅.

(Store operations) The semantics of store operations is defined as

follows:

[𝑡 ← 𝑐?𝑠𝑡 𝜏 𝑡𝑎 𝑡𝑣]𝜎 =

{
([𝑡𝑣]𝜎, ·) if [𝑡𝑣] (𝜎)↓ ∧ [𝑡𝑎] (𝜎)↓
⊥ otherwise

A resource update can be executed as soon as both the address

of the resource and the value are available. Observe that this rule

models the internal execution of a resource update and not its

commit to the memory subsystem. These internal updates are not

observable by a programmer, therefore there is no restriction on

their execution order. As an example, the ISA program 𝑟1:= 0; 𝑟2:=
𝑟1; 𝑟1:= 1 can be implemented by the following microinstructions:

𝑠𝑡 R 𝑟1 0

𝑡11

𝑙𝑑 R 𝑟1

𝑡21

𝑠𝑡 R 𝑟2 𝑡21

𝑡22

𝑠𝑡 R 𝑟1 1

𝑡31

The semantics of 𝑡11, i.e., 𝑠𝑡 R 𝑟1 0, and 𝑡31, i.e., 𝑠𝑡 R 𝑟1 1, is

defined in ∅, and yields (0, ·) and (1, ·), respectively. As we will see,
the operational semantics is in charge of ordering resource updates

to preserve consistency and dependencies.

(Load operations)While the semantics of internal operations and

store operations only depends on the execution of their operands,

load operations may depend on past store operations. This requires

identifying the previous resource update that determines the correct

value to be loaded. We use the following definitions to compute the

set of store operations that may affect a load operation.

Definition 4.1. Consider a load operation 𝑡 ← 𝑐?𝑙𝑑 𝜏 𝑡𝑎

• str-may(𝜎, 𝑡) = {𝑡 ′ ← 𝑐 ′?𝑠𝑡 𝜏 𝑡 ′𝑎 𝑡 ′𝑣 ∈ 𝜎 | 𝑡 ′ < 𝑡 ∧ ([𝑐 ′]𝜎 ∨
[𝑐 ′] (𝜎)↑) ∧ ([𝑡 ′𝑎]𝜎 = [𝑡𝑎]𝜎 ∨ 𝜎 (𝑡 ′𝑎)↑ ∨ 𝜎 (𝑡𝑎)↑)} is the set of
stores that may affect the load address of 𝑡 in state 𝜎 .

• str-act(𝜎, 𝑡) = {𝑡 ′ ← 𝑐 ′?𝑠𝑡 𝜏 𝑡 ′𝑎 𝑡
′
𝑣 ∈ str-may(𝜎, 𝑡) | ¬∃𝑡 ′′ ←

𝑐 ′′?𝑠𝑡 𝜏 𝑡 ′′𝑎 𝑡 ′′𝑣 ∈ str-may(𝜎, 𝑡). 𝑡 ′′ > 𝑡 ′ ∧ [𝑐 ′′]𝜎 ∧ [𝑡 ′′𝑎]𝜎 ∈
{[𝑡𝑎]𝜎, [𝑡 ′𝑎]𝜎}} is the set of active stores.

The stores that may affect the address of 𝑡 are the stores that: (𝑖)
have not been discarded, namely they can be executed ([𝑐]𝜎) or may

be executed (𝑐 (𝜎)↑), and (𝑖𝑖) the store address in 𝑡 ′𝑎 may result in

the same address as the load address in 𝑡𝑎 , namely either they both

evaluate to the same address (𝜎 (𝑡 ′𝑎) = 𝜎 (𝑡𝑎)), or the store address
is unknown (𝜎 (𝑡 ′𝑎)↑), or the load address is unknown (𝜎 (𝑡𝑎)↑).

The active stores of 𝑡 are the stores that may affect the load

address computed by 𝑡𝑎 , and, there are no subsequent stores 𝑡 ′′ on
the same address as the load address in 𝑡𝑎 , or on the same address

as the store address in 𝑡 ′𝑎 . This set determines the “minimal” set of

store operations that may affect a load operation from address 𝑡𝑎 .

The definitions of str-act(𝜎, 𝑡) and str-may(𝜎, 𝑡) are naturally

extended to stores 𝑡 ← 𝑐?𝑠𝑡 𝜏 𝑡𝑎 𝑡𝑣 . These definitions allow us to

define the semantics of loads:

[𝑡 ← 𝑐?𝑙𝑑 𝜏 𝑡𝑎]𝜎 =
([𝑡𝑠]𝜎, 𝑙) if bn(str-act(𝜎, 𝑡)) = {𝑡𝑠 }∧

𝜎 (𝑡𝑎)↓ ∧ 𝜎 (𝑡𝑠)↓
⊥ otherwise

where 𝑙 ={
𝑑𝑙 𝜎 (𝑡𝑎) if 𝑡𝑠 ∈ C ∧ 𝜏 =M
· otherwise

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1856

A load operation can be executed if the set of active stores con-

sists of a singleton set with bound name 𝑡𝑠 , i.e., the store causing 𝑡𝑎
to be assigned is uniquely determined, and both the address 𝑡𝑎 of

the load and the address 𝑡𝑠 of the store can be evaluated in state 𝜎 .

Note that the semantics allows forwarding the result of a store to

another microinstruction before it is committed to memory. In fact,

if the active store is yet to be committed to memory, i.e., 𝑡𝑠 ∉ C, it is
possible for the store to forward its data to the load, without causing

an interaction with the memory subsystem (i.e., 𝑙 = ·). Otherwise,
the load yields an observation of a data load from address 𝜎 (𝑡𝑎).

1

𝑡11

𝑠𝑡 M 𝑡11 1

𝑡12

0

𝑡21

𝑠𝑡 M 𝑡21 2

𝑡22

1

𝑡31

𝑠𝑡 M 𝑡31 3

𝑡32

1

𝑡41

𝑙𝑑 M 𝑡41 𝑡42

Example 3: *(1):=1; *(0):=2; *(1):=3; *(1);

Example 3 illustrates the semantics of loads. The program writes

1 into address 1, then writes 2 in 0, overwrites address 1 with 3,

and finally loads from address 1. We use active stores to dynam-

ically compute the dependencies of load operations. Let 𝜎0 be a

state containing microinstructions as in the example, and having

empty storage. For this state, the active store for the load 𝑡42, i.e.,

str-act(𝜎0, 𝑡42), consists of all stores of the example, as depicted by

the solid rectangle. Since none of microinstructions that compute

the addresses have been executed, the address 𝑡41 of the load is

unknown, hence, we cannot exclude any store from affecting the

address that will be used by 𝑡42. Therefore, the load cannot be exe-

cuted in 𝜎0. This set of active stores will shrink during execution

as more information becomes available through the storage.

Let the storage of 𝜎1 be {𝑡11 ↦→ 1; 𝑡31 ↦→ 1}, i.e., the result of
executing 𝑡11 and 𝑡31. The active stores str-act(𝜎1, 𝑡42) consist of
microinstructions depicted by the dashed rectangle. Observe that

the store 𝑡12 is in str-may(𝜎1, 𝑡42), however there exists a subsequent
store, namely 𝑡32, that overwrites the effects of 𝑡12 on the same

memory address. Therefore, 𝑡12 is no longer an active store and it

can safely be discarded.

Let the storage of 𝜎2 be {𝑡11 ↦→ 1; 𝑡31 ↦→ 1, 𝑡41 ↦→ 1}, i.e., the
result of executing 𝑡11, 𝑡31 and 𝑡41. The active stores str-act(𝜎2, 𝑡42)
now consist of the singleton set {𝑡32} as depicted by the dotted

rectangle. This is because the address 𝑡41 of the load can be com-

puted in state 𝜎2. Although 𝑡22 is still in str-may(𝜎2, 𝑡42), there is a
subsequent store, 𝑡32, that will certainly affect the address of the

load. Therefore, 𝑡22 is no longer an active store.

Finally, let the storage of 𝜎3 be {𝑡11 ↦→ 1; 𝑡31 ↦→ 1, 𝑡41 ↦→ 1, 𝑡32 ↦→
3}, i.e., the result of executing 𝑡11, 𝑡31, 𝑡41, and 𝑡32. Once str-act has
been reduced to a singleton set ({𝑡32}), and the active-store has been
executed (𝜎3 (𝑡32)↓), the semantics of the load is defined. This yields

the same value as the store in 𝑡32. If the store 𝑡32 has been committed

to memory, the execution of the load yields the observation 𝑑𝑙 1.

4.4 Operational Semantics

We can now define the microinstructions’ transition relation 𝜎
𝑙−→→

𝜎 ′, implementing the lifecycle of Section 4.2.

(Execute) A microinstruction can be executed if it hasn’t already

been executed (𝑠 (𝑡)↑), the guard holds ([𝑐]𝑠), and the dependencies

have been resolved ([𝜄] (𝑠)↓):

(Exe)
𝜄 = 𝑡 ← 𝑐?𝑜 ∈ I 𝑠 (𝑡)↑ [𝑐]𝑠 [𝜄]𝜎 = (𝑣, 𝑙)

𝜎 = (I , 𝑠,C, F) 𝑙−→→ (I , 𝑠 [𝑡 ↦→ 𝑣],C, F)

Observe that if 𝜄 is a load from the memory subsystem, the rule

can produce the observation of a data load.

(Commit) Once a memory store has been executed (𝑠 (𝑡)↓), it can
be committed to memory, yielding an observation. The rule ensures

that stores can only be committed once (𝑡 ∉ C) and that stores on

the same address are committed in program order, by checking that

all past stores are in C, i.e., bn(str-may(𝜎, 𝑡)) ⊆ C.

(Cmt)
𝑡 ← 𝑐?𝑠𝑡 M 𝑡𝑎 𝑡𝑣 ∈ I 𝑠 (𝑡)↓ 𝑡 ∉ C

bn(str-may(𝜎, 𝑡)) ⊆ C

𝜎 = (I , 𝑠,C, F)
𝑑𝑠 𝑠 (𝑡𝑎)−−−−−−−→→ (I , 𝑠,C ∪ {𝑡}, F)

In summary, stores can be executed internally in any order, how-

ever, they are committed in order. In Example 3, if 𝜎 has storage

𝑠 = {𝑡11 ↦→ 1; 𝑡12 ↦→ 1; 𝑡31 ↦→ 1; 𝑡32 ↦→ 3} and commits C = ∅, then
only 𝑡12 can be committed, since 𝑡22 has not been executed and

bn(str-may(𝜎, 𝑡32)) ⊈ C. Notice that 𝑡22 is in the may stores since

its address has not been resolved. Therefore, 𝑡32 can be committed

only after 𝑡12 has been committed and 𝑡21 has been executed. How-

ever, the commit of 𝑡32 does not have to wait for the commit or

execution of 𝑡22. In fact, if 𝜎 ′ has storage 𝑠 ′ = 𝑠 ∪ {𝑡21 ↦→ 0} then
bn(str-may(𝜎 ′, 𝑡32)) = {𝑡12}. That is, the order of store commits is

only enforced per location, as expected.

(Fetch-Decode) A program counter store enables the fetching and

decoding (i.e., translating) of a new ISA instruction. The rule for

fetching is similar to the rule for commit, since instructions are

fetched in order. The set F keeps track of program counter updates

whose resulting instruction has been fetched and ensures that in-

structions are not fetched or decoded twice. Fetching the result of

a program counter update yields the observation of an instruction

load from address 𝑎.

(Ftc)

𝑡 ← 𝑐?𝑠𝑡 PC 𝑡𝑣 ∈ I 𝑠 (𝑡) = 𝑎 𝑡 ∉ F
bn(str-may(𝜎, 𝑡)) ⊆ F

𝜎 = (I , 𝑠,C, F) 𝑖𝑙 𝑎−−−→→ (I ∪ I ′, 𝑠,C, F ∪ {𝑡})
where I ′ = translate(𝑎,𝑚𝑎𝑥 (I))

Write𝑚𝑎𝑥 (I) for the largest name 𝑡 in I and translate(𝑎,𝑚𝑎𝑥 (I))
for the translation of the instruction at address 𝑎, ensuring that

the names of the microinstructions thus generated are greater than

𝑚𝑎𝑥 (I).
(Remarks on OoO semantics) The three rules of the semantics

reflect the atomicity of MIL microinstructions: A transition can

affect a single microinstruction by either assigning a value to the

storage, extending the set of commits, or extending the set of fetches.

In the following, we use step-param(𝜎, 𝜎 ′) = (𝛼, 𝑡) to identify the

rule 𝛼 ∈ {Exe, Cmt(𝑎, 𝑣), Ftc(I)} that enables 𝜎 −→→ 𝜎 ′ and the name 𝑡

of the affected microinstruction. In case of commits we also extract

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1857

the modified address 𝑎 and the saved value 𝑣 , in case of fetches

we extract the newly decoded microinstructions I . The semantics

preserves several invariants: Let (I , 𝑠,C, F) = 𝜎 if 𝛼 = Exe then

𝜎 (𝑡)↑; if 𝛼 = Cmt(𝑎, 𝑣) then 𝑡 ∉ C and free names (i.e., address and

value) of the corresponding microinstruction are defined in 𝑠; if

𝛼 = Ftc(I ′) then 𝑡 ∉ F ; all state components are monotonic.

(Initial state) In order to bootstrap the computation, we assume

that the set of microinstructions of the initial state contains one

store for each memory address and register, the value of these stores

is the initial value of the corresponding resource, and that these

stores are in the storage and commits of the initial state.

5 SPECULATIVE SEMANTICS
We now extend the OoO semantics to support speculation. We

add two new components to the states: a set of names 𝑃 ⊆ 𝑛(I)
whose values have been predicted as result of speculation, and

a partial function 𝛿 : N ⇀ 𝑆 recording, for each name 𝑡 , the

storage dependencies at time of execution of the microinstruction

identified by 𝑡 . Therefore, a state in the speculative semantics is a

tuple ℎ = (I , 𝑠,C, F, 𝛿, 𝑃) where 𝜎 = (I , 𝑠,C, F) is the corresponding
state in the OoO semantics. Abusing notation we write (𝜎, 𝛿, 𝑃)
to denote a state in the speculative semantics, and use ℎ,ℎ1, . . . to

range over these states. Informally, 𝛿 (𝑡) is a snapshot of the storage
that affects the value of 𝑡 due to speculative predictions. As we

will see, these snapshots are needed in order to match speculative

states with non-speculative states, and to restore the state of the

execution in case of misspeculation.

5.1 Managing Microinstruction Dependencies
The execution of a microinstruction may depend on local (intra-)

instruction dependencies, the names appearing freely in a microin-

struction, as well as cross (inter-) instruction dependencies, caused

by memory or register loads.

Definition 5.1. Let 𝑡 ← 𝑐?𝑜 ∈ 𝜎 . The dependencies of 𝑡 in 𝜎 are

deps(𝑡, 𝜎) = fn(𝑡 ← 𝑐?𝑜) ∪ depsX (𝑡, 𝜎)
where the cross-instruction dependencies are defined as

depsX (𝑡, 𝜎) =
{
∅, if 𝑡 is not a load

asn(𝜎, 𝑡) ∪ srcs(𝜎, 𝑡), otherwise.

Cross-dependencies are nonempty only for loads and consist of the

names of active stores affecting 𝑡 in state𝜎 , asn(𝜎, 𝑡) = bn(str-act(𝜎, 𝑡)),
plus, the names of stores potentially intervening between the earli-

est active store and 𝑡 (we call srcs(𝜎, 𝑡) the potential sources of 𝑡),

which are defined as

srcs(𝜎, 𝑡) =
⋃{fn(𝑐 ′), {𝑡 ′𝑎} | min(asn(𝜎, 𝑡)) ≤ 𝑡 ′ < 𝑡,

𝑡 ′ ← 𝑐 ′?𝑠𝑡 𝜏 𝑡 ′𝑎 𝑡 ′𝑣 ∈ 𝜎}

Intuitively, a load depends on the execution of active stores that

may affect the address of that load. Moreover, the fact that a name

𝑡∗ is in the set of active stores 𝑎𝑠𝑛 depends on the addresses and

guards of all stores between 𝑡∗ and 𝑡 . This is because their values
will determine the actual store that affects the address of the load 𝑡 .

Thanks to our ordering relation < between names, we can use the

minimum name𝑚𝑖𝑛(𝑎𝑠𝑛) in 𝑎𝑠𝑛 to compute all stores between any

name in 𝑎𝑠𝑛 and 𝑡 , thus extracting the free names of their guards

and addresses.

The following figure illustrates dependencies of the load from

Example 3:

1

𝑡11

𝑠𝑡 M 𝑡11 1

𝑡12

0

𝑡21

𝑠𝑡 M 𝑡21 2

𝑡22

1

𝑡31

𝑠𝑡 M 𝑡31 3

𝑡32

1

𝑡41

𝑙𝑑 M 𝑡41

𝑡42

If 𝑠 = {𝑡11 ↦→ 1; 𝑡21 ↦→ 0; 𝑡41 ↦→ 1} then the set of active stores

names 𝑎𝑠𝑛 for 𝑡42 is bn(str-act(𝜎, 𝑡42)) = {𝑡12, 𝑡32}, as depicted

by the solid ellipses. In particular, 𝑚𝑖𝑛(𝑎𝑠𝑛) = 𝑡12. We consider

all stores between 𝑡12 and the load 𝑡42 (i.e., 𝑡12, 𝑡22, and 𝑡32), and

add to the set of cross-dependencies the names in their guards

and addresses, namely 𝑡11, 𝑡21 and 𝑡31, as depicted by the dashed

rectangle. Observe that 𝑡21 is in the set of cross-dependencies,

although 𝑡22 is not an active store. This is because membership

of 𝑡12 in the active stores’ set depends on the address 𝑡21 being

set to 0, i.e., 𝑠 (𝑡21) = 0. Therefore, the set of cross-dependencies

depsX (𝑡42, 𝜎) = {𝑡12, 𝑡32, 𝑡11, 𝑡21, 𝑡31}. Finally, the local dependen-

cies of the load 𝑡42 consist of its parameter 𝑡41 (the dotted ellipsis),

such that deps(𝑡42, 𝜎) = {𝑡12, 𝑡32, 𝑡11, 𝑡21, 𝑡31, 𝑡42}.
We verify that the dependencies deps are computed correctly.

Definition 5.2 (𝑡-equivalence). Let𝜎1 and𝜎2 be states with storage
𝑠1 and 𝑠2, and 𝜄1 and 𝜄2 be the microinstructions identified by 𝑡 .

Then 𝜎1 and 𝜎2 are 𝑡-equivalent, 𝜎1 ∼𝑡 𝜎2, if 𝜄1 = 𝜄2, 𝑠1 |fn(𝜄1) =
𝑠2 |fn(𝜄2) , and if 𝑡 ’s microinstruction is a load with dependencies

𝑇𝑖 = deps(𝑡, 𝜎𝑖) and active stores 𝑆𝐴𝑖 = str-act(𝜎𝑖 |𝑇𝑖 , 𝑡) for 𝑖 ∈
{1, 2} then 𝑆𝐴1 = 𝑆𝐴2 and 𝑠1 |𝑆𝐴1

= 𝑠2 |𝑆𝐴2
.

Intuitively, 𝑡-equivalence states that, if the microinstruction

named with 𝑡 depends (in the sense of deps) in both states on the

same active stores and these stores assign the same value to 𝑡 , then

the microinstruction has the same dependencies, it is enabled, and

it produces the same result in both states.

We use three possible states of the example above to illustrate

𝑡-equivalence: 𝜎1 is a state reachable in the OoO semantics, 𝜎2 and

𝜎3 may result from misspeculating the value of 𝑡31 to be 0 and 5

respectively.

1𝑡11 1𝑡12

0𝑡21 2𝑡22

1𝑡31 3𝑡32

1𝑡41 𝑡42

𝜎1

≁𝑡
42

1𝑡11 1𝑡12

0𝑡21 2𝑡22

0𝑡31 3𝑡32

1𝑡41 𝑡42

𝜎2

∼𝑡
42

1𝑡11 1𝑡12

0𝑡21 2𝑡22

5𝑡31 3𝑡32

1𝑡41 𝑡42

𝜎3

The states 𝜎1 and 𝜎2 are not 𝑡42-equivalent. In particular, 𝑇1 =

deps(𝑡42, 𝜎1) = {𝑡31, 𝑡32} (notice that 𝑡12 and 𝑡22 are not in the de-

pendencies because by we know that 𝑡31 ↦→ 1 and 𝑡41 ↦→ 1) ,

𝑇2 = deps(𝑡42, 𝜎2) = {𝑡11, 𝑡21, 𝑡31, 𝑡12}. Notice that 𝜎1 |𝑇1 and 𝜎2 |𝑇2
contain all the information needed to evaluate the semantics of 𝑡42 in

𝜎1 and 𝜎2 respectively. In this case 𝑆𝐴1 = str-act(𝜎1 |𝑇1 , 𝑡42) = {𝑡32},
and 𝑆𝐴2 = str-act(𝜎2 |𝑇2 , 𝑡42) = {𝑡12} hence 𝑆𝐴1 ≠ 𝑆𝐴2: the two

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1858

𝐷𝑒𝑐𝑜𝑑𝑒𝑑

𝑣

Predicted

𝑣

Speculated

𝑣

Retired

𝑣

Fetched

𝑣

Speculatively fetched

𝑣

Committed

Prd

Exe

Pexe

Ret

Rbk

Ftc

Cmt

RetRbk

Ftc

𝑣 𝑡 ∈ 𝑃 𝑣 𝛿 (𝑡)↓ ∧ 𝑡 ∉ F 𝑣 𝛿 (𝑡)↓ ∧ 𝑡 ∈ F

𝑣 𝛿 (𝑡)↑ ∧ 𝑡 ∉ F ∪ C 𝑣 𝛿 (𝑡)↑ ∧ 𝑡 ∈ F 𝑣 𝛿 (𝑡)↑ ∧ 𝑡 ∈ C

Figure 2: Speculative semantics: Microinstruction lifecycle

states lead the load 𝑡42 to take the result produced by two different

memory stores.

The states𝜎2 and𝜎3 are 𝑡42-equivalent. In fact,𝑇3 = deps(𝑡42, 𝜎3) =
{𝑡11, 𝑡21, 𝑡31, 𝑡12} and 𝑆𝐴3 = str-act(𝜎3 |𝑇3 , 𝑡42) = {𝑡12}. Therefore,
𝑆𝐴2 = 𝑆𝐴3 and 𝑠2 |𝑆𝐴2

= 𝑠3 |𝑆𝐴3
: The two states lead the load 𝑡42 to

take the result produced by the same memory stores.

Lemma 5.3. If 𝜎1 ∼𝑡 𝜎2 and 𝑡 ’s microinstruction in 𝜎1 is 𝜄 = 𝑡 ←
𝑐?𝑜 , then deps(𝑡, 𝜎1) = deps(𝑡, 𝜎2), [𝑐]𝜎1 = [𝑐]𝜎2, and if [𝜄]𝜎1 =

(𝑣1, 𝑙1) and [𝜄]𝜎2 = (𝑣2, 𝑙2) then 𝑣1 = 𝑣2.

5.2 Microinstruction Lifecycle
Figure 2 depicts the microinstruction lifecycle under speculative

execution. Compared to the OoO lifecycle of Section 4.2, states

Decoded, Predicted, Speculated, and Speculatively Fetched corre-

spond to state Decoded, state Retired corresponds to Executed, oth-

erwise states Fetched and Committed are the same. As depicted in

the legend, transitions between states set different properties of a

microinstruction’s lifecycle, which we will model in the semantics.

State Predicted (dotted circle) models microinstructions that

have not yet been executed, but whose result values have been pre-

dicted. ADecodedmicroinstruction can transition to state Predicted

by predicting its result value, thus recording that the value was

predicted and causing the state of the microinstruction to be de-

fined. A microinstruction that is ready to be executed (in Decoded),

possibly relying on predicted values, can be executed and transition

to state Speculated (dashed circle), recording its dependencies in

the snapshot. Notice that state Speculated models both speculative

and non-speculative execution of a microinstruction.

From state Speculated, a microinstruction can: (𝑎) roll back to

Decoded (if the predicted values were wrong); (𝑏) speculatively

fetch the next ISA instruction to be executed, thus moving to state

Speculatively Fetched, doubled dashed circle) and generating newly

decoded microinstructions; or (𝑐) retire in state Retired (single cir-

cle) if it no longer depends on speculated values.

Microinstructions in state Speculatively Fetched can either be

rolled back due to misspeculation, otherwise move to state Fetched

(double circle). Finally, in state Retired, as in theOoO case, a PC store

microinstruction can be (non-speculatively) fetched and generate

newly decoded microinstructions, or, if it is a memory store, it can

be committed to the memory subsystem (bold circle).

5.3 Microinstruction Semantics
We now present a speculative semantics, denoted by the transition

relation (𝜎, 𝛿, 𝑃) −→→→ (𝜎 ′, 𝛿 ′, 𝑃 ′), that reflects the microinstructions’

lifecycle in Figure 2. We illustrate the rules of our semantics using

the graph in Example 4 and the interpretation of states (circles) in

Figure 2. Additionally, for two microinstruction identifiers 𝑡 and 𝑡 ′

in speculative state ℎ = (I , 𝑠,C, F , 𝛿, 𝑃), we draw an edge from 𝑡 to

𝑡 ′ labeled with 𝑣 whenever 𝛿 (𝑡) (𝑡 ′) = 𝑣 .

(Predict) The semantics allows to predict the value of an internal

operation choosing a value 𝑣 ∈ V . The rule updates the storage and
records the predicted name, while ensuring that the microinstruc-

tion has not been executed already.

(Prd) 𝑡 ← 𝑐?𝑒 ∈ I 𝑠 (𝑡)↑ 𝛿 ′ = 𝛿 ∪ {𝑡 ↦→ ∅}
(I , 𝑠,C, F, 𝛿, 𝑃) −→→→ (I , 𝑠 [𝑡 ↦→ 𝑣],C, F, 𝛿 ′, 𝑃 ∪ {𝑡})

We remark that the semantics can predict a value only for an

internal operation (𝑡 ← 𝑐?𝑒) that has not been already executed

(𝑠 (𝑡)↑). As we will see, this choice does not hinder expressiveness
while it avoids the complexity in modeling speculative execution

of program counter updates and loads. Concretely, the rule assigns

an arbitrary value to the name of the predicted microinstruction

(𝑠 [𝑡 ↦→ 𝑣]) and records that the result is speculated (𝛿 ∪ {𝑡 ↦→ ∅}).
Observe that the snapshot 𝛿 ′(𝑡) is ∅ because the prediction does

not depend on the results of other microinstructions.

Consider state ℎ0 in Example 4 containing all microinstructions

of our running program,which have just been decoded (gray circles).

The CPU can predict that the value of arithmetic operation 𝑡2 is

0. Rule Prd updates the storage with 𝑡2 ↦→ 0 (dotted circle), the

snapshot for 𝑡2 with an emptymapping, and adds 𝑡2 to the prediction

set.

(Execute) The rules for execution, commit, and fetch reuse the

OoO semantics. First for the case when the instruction has not been

predicted already:

(Exe) 𝜎
𝑙−→→ 𝜎 ′ step-param(𝜎, 𝜎 ′) = (Exe, 𝑡)

(𝜎, 𝛿, 𝑃) 𝑙−→→→ (𝜎 ′, 𝛿 ∪ {𝑡 ↦→ 𝑠 |deps (𝑡,𝜎) }, 𝑃)

The rule executes a microinstruction 𝑡 using the OoO semantics

and updates the snapshot 𝛿 , recording that the execution of 𝑡 was

determined by the value of its dependencies in deps(𝑡, 𝜎) in storage

𝑠 of state 𝜎 . Notice that the premise step-param(𝜎, 𝜎 ′) = (Exe, 𝑡)
ensures that microinstruction 𝑡 has not been predicted. In fact,

step-param(𝜎, 𝜎 ′) = (Exe, 𝑡) only if 𝜎 (𝑡)↑, while rule Prd would

update the storage with a value for name 𝑡 , hence 𝑡 ∉ 𝑃 .

Consider now the state ℎ2 resulting from the execution of 𝑡1
and 𝑡3 in Example 4. In ℎ2 the CPU can execute the PC update 𝑡6,

updating the storage with 𝑡6 ↦→ 36. The rule additionally updates

the snapshot for 𝑡6 with the current values of its dependencies,

i.e., {𝑡2 ↦→ 0, 𝑡3 ↦→ 32}. Since the executed microinstruction 𝑡6
is a store, its dependencies are the free names occurring in the

microinstruction. These snapshots are used by rules Cmt and Rbk to

identify mispredictions. Similarly, the rule enables the execution of

the memory store 𝑡4 in ℎ3, which updates the storage with 𝑡4 ↦→ 1

and the snapshot for 𝑡4 with the values of its dependencies {𝑡1 ↦→ 1}.

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1859

The following rule enables the execution of microinstructions

whose result has been previously predicted:

(Pexe)
𝜎 = (I , 𝑠,C, F) 𝑡 ∈ 𝑃

(I , 𝑠 \ {𝑡},C, F) 𝑙−→→ 𝜎 ′ step-param(𝜎, 𝜎 ′) = (Exe, 𝑡)
(𝜎, 𝛿, 𝑃) 𝑙−→→→ (𝜎 ′, 𝛿 ∪ {𝑡 ↦→ 𝑠 |deps (𝑡,𝜎) }, 𝑃 \ {𝑡})

The rule removes the value predicted for 𝑡 from the storage

(𝑠 \ {𝑡}) to enable the actual execution of 𝑡 in the OoO semantics. It

also removes 𝑡 from the set of predicted names 𝑃 and updates the

snapshot with the new dependencies of 𝑡 .

In our example, rule Pexe computes the actual value of 𝑡2 in state

ℎ4, which was previously mispredicted as 0. The rule corrects the

misprediction updating the storage with 𝑡2 ↦→ 1 and the snapshot

for 𝑡2 with the values of its dependencies, i.e., 𝑡1 ↦→ 1. Notice

that in case of a misprediction, the rule does not immediately roll

back all other speculated microinstructions that are affected by the

mispredicted values, e.g., 𝑡6.

(Commit) To commit a microinstruction it is sufficient to ensure

that there are no dependencies left (𝛿 (𝑡)↑), i.e., the microinstruc-

tion has been retired. Since memory commits have observable side

effects outside the processor pipeline, only retired memory stores

can be sent to the memory subsystem.

(Cmt) 𝜎
𝑙−→→ 𝜎 ′ step-param(𝜎, 𝜎 ′) = (Cmt(𝑎, 𝑣), 𝑡) 𝛿 (𝑡)↑

(𝜎, 𝛿, 𝑃) 𝑙−→→→ (𝜎 ′, 𝛿, 𝑃)

Consider the state ℎ4 and the memory store 𝑡4 in our example.

Since 𝑡4 has not been retired (i.e., 𝛿 (𝑡4) = {𝑡1 ↦→ 1}) it cannot be
committed as 𝛿 (𝑡4)↓. By contrast, the commit of 𝑡4 is allowed in

state ℎ8 where 𝛿 (𝑡4)↑.
(Fetch) Finally, for the case of (speculative or non-speculative)

fetching, the snapshot must be updated to record the dependency

of the newly added microinstructions:

(Ftc) 𝜎
𝑙−→→ 𝜎 ′ step-param(𝜎, 𝜎 ′) = (𝐹 (I), 𝑡)

(𝜎, 𝛿, 𝑃) 𝑙−→→→ (𝜎 ′, 𝛿 ∪ {𝑡 ′ ↦→ 𝑠 |{𝑡 } | 𝑡 ′ ∈ I }, 𝑃)

Following the OoO semantics, if step-param(𝜎, 𝜎 ′) = (𝐹 (I), 𝑡)
then 𝑡 is a PC update and 𝑠 (𝑡) is the new value of the PC. For every

newly added microinstruction in 𝑡 ′ ∈ I , we extend the snapshot 𝛿

recording that 𝑡 ′ was added as result of updating the PC microin-

struction 𝑡 with the value 𝑠 (𝑡) (formally, we project the storage 𝑠

on 𝑡 , i.e., 𝑠 |{𝑡 }). The new snapshot may be used later to roll back

the newly added microinstructions in 𝐼 if the value of the PC is

misspeculated.

For example, in state ℎ5 the CPU can speculatively fetch the

PC update 𝑡6, which sets the program counter to 36. Suppose that

the newly added microinstructions in I (i.e., the microinstructions

resulting from the translation of the ISA instruction at address 36)

are 𝑡 ′
1
and 𝑡 ′

2
. Following the OoO semantics, I is added to existing

microinstructions in 𝜎 ′ . The rule additionally updates the snap-

shot for 𝑡 ′
1
and 𝑡 ′

2
recording the PC store that generated the new

microinstructions, i.e., 𝑡6 ↦→ 36.

(Retire) The following transition rule allows to retire a microin-

struction in case of correct speculation:

𝑙𝑑 R 𝑧

𝑡1

𝑡1 = 1

𝑡2

𝑙𝑑 PC

𝑡3

𝑠𝑡 M 16 𝑡1

𝑡4

𝑡2 𝑠𝑡 PC 𝑎

𝑡5

¬𝑡2 𝑠𝑡 PC 𝑡3 + 4

𝑡6

𝑡1 𝑡2 𝑡3

𝑡4 𝑡5 𝑡6

ℎ0

Prd, 𝑡2
0

ℎ1

∗
1 0 32

ℎ2

Exe, 𝑡6

1 0 32

36

ℎ3

320
Exe, 𝑡4

1 0 32

1 36

ℎ4

3201

Pexe, 𝑡2

1 1 32

1 36

ℎ5

1

1

320

Ftc(I), 𝑡6

1 1 32

1 36

𝑡′
1

𝑡′
2

ℎ6

1

1

320

36 36

Ret, 𝑡4

1 1 32

1 36

𝑡′
1

𝑡′
2

1

320

36 36

ℎ7

Rbk, 𝑡6

1 1 32

1

1

ℎ8

Cmt, 𝑡4

1 1 32

1

1

ℎ9

Example 4: Execution trace of speculative semantics.

(Ret)
𝑠 (𝑡)↓ dom(𝛿 (𝑡)) ∩ dom(𝛿) = ∅
(I , 𝑠,C, F) ∼𝑡 (I , 𝛿 (𝑡),C, F) 𝑡 ∉ 𝑃

(I , 𝑠,C, F, 𝛿, 𝑃) −→→→ (I , 𝑠,C, F, 𝛿 \ {𝑡}, 𝑃)

The map 𝛿 (𝑡) contains the snapshot of 𝑡 ’s dependencies at time

of 𝑡 ’s execution. A microinstruction can be retired only if all its

dependencies have been retired (dom(𝛿 (𝑡)) ∩ dom(𝛿) = ∅), the
microinstruction has been executed (i.e. its value has not been just

predicted 𝑠 (𝑡)↓ ∧ 𝑡 ∉ 𝑃), and the snapshot of 𝑡 ’s dependencies is ∼𝑡
equivalent with the current state, hence the semantics of 𝑡 has been

correctly speculated (see Lemma 5.3). Retiring a microinstruction

results in removing the state of its dependencies from 𝛿 , as captured

by 𝛿 \ {𝑡}.
For instance, in state ℎ6 the PC store 𝑡6 cannot be retired for two

reasons: one of its dependencies has not been retired (i.e., 𝛿 (𝑡6) =
{𝑡2 ↦→ 0, 𝑡3 ↦→ 32} and 𝛿 (𝑡2) = {𝑡1 ↦→ 1}, hence dom(𝛿 (𝑡6)) ∩
dom(𝛿) = {𝑡2}), and the snapshot for 𝑡6 differs with respect to the

storage (i.e., 𝛿 (𝑡6) (𝑡2) ≠ 𝑠 (𝑡2)). Instead, the microinstruction 𝑡4 can

be retired because its dependencies (i.e., 𝑡1) have been retired (i.e.,

𝛿 (𝑡1)↑) and the snapshot for 𝑡4 (i.e., 𝑡1 ↦→ 1) exactly matches the

values in the storage. Notice that retiring 𝑡4 would simply remove

the mapping for 𝑡4 from 𝛿 (not shown).

Notice that in case of a load, (I , 𝑠,C, F) ∼𝑡 (I , 𝛿 (𝑡),C, F) may hold

even if some dependencies of 𝑡 differ in 𝑠 and 𝛿 (𝑡). In fact, a load

may have been executed as a result of misspeculating the address

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1860

of a previous store. In this case, ∼𝑡 implies that the misspeculation

has not affected the calculation of str-act of the load (i.e., it does

not cause a store bypass), hence there is no reason to re-execute

the load. This mechanism is demonstrated in examples later in this

section.

(Rollback)Amicroinstruction 𝑡 can be rolled back when it is found

to transitively reference a value that waswrongly speculated. This is

determined by comparing 𝑡 ’s dependencies at execution time (𝛿 (𝑡))
with the current storage assignment (𝑠). In case of a discrepancy, if

𝑡 is not a program counter store, the assignment to 𝑡 can simply be

undone, leaving speculated microinstructions 𝑡 ′ that reference 𝑡 to
be rolled back later, if necessary.

(Rbk) 𝑡 ∉ 𝑃 𝑡 ∉ F (I , 𝑠,C, F) ≁𝑡 (I , 𝛿 (𝑡),C, F)
(I , 𝑠,C, F, 𝛿, 𝑃) −→→→ (I , 𝑠 \ {𝑡},C, F , 𝛿 \ {𝑡}, 𝑃)

However, if 𝑡 is a program counter store, the speculative evalua-

tion using rule Ftc will have caused a new microinstruction to be

speculatively fetched. This fetch needs to be undone. To that end

let 𝑡 ′ ≺ 𝑡 (𝑡 ′ refers to 𝑡) if 𝑡 ∈ dom(𝛿 (𝑡 ′)), let ≺+ be the transitive
closure of ≺. As expected ≺+ is antisymmetric and its the reflexive

closure is a partial order. Define then the set Δ+ as {𝑡 ′ | 𝑡 ′ ≺+ 𝑡}:
i.e., Δ+ is the set of names that reference 𝑡 , not including 𝑡 itself.

Finally, let Δ∗ = Δ+ ∪ {𝑡}.

(Rbk) 𝑡 ∉ 𝑃 𝑡 ∈ F (I , 𝑠,C, F) ≁𝑡 (I , 𝛿 (𝑡),C, F)
(I , 𝑠,C, F , 𝛿, 𝑃) −→→→ (I \ Δ+, 𝑠 \ Δ∗,C, F \ Δ∗, 𝛿 \ Δ∗, 𝑃 \ Δ∗)

For example, in state ℎ7 the program counter update 𝑡6 can be

rolled back because 𝑠 (𝑡2) = 1 ≠ 0 = 𝛿 (𝑡6) (𝑡2). The transition

moves the microinstruction 𝑡6 back to the decoded state (i.e., the

storage and snapshot ℎ8 are undefined for 𝑡6) and removes every

microinstruction that have been decoded by 𝑡6 (i.e., 𝑡
′
1
and 𝑡 ′

2
).

Notice that rollbacks can be performed out of order and that

loads can be retired even in case of mispredictions if their dependen-

cies have been enforced. This permits to model advanced recovery

methods used by modern processors, including concurrent and

partial recovery in case of multiple mispredictions.

Speculation of load/store dependencies Since the predicted val-
ues of internal operations (cf. rule Prd) can affect conditions and

targets of program counter stores, the speculative semantics sup-

ports speculation of control flow, as well as speculative execution

of cross-dependencies resulting from prediction of load/store’s ad-

dresses. We illustrate these features with an example (Figure 3),

which depicts one possible execution of the program in Example 3.

Consider the state ℎ0 after the CPU has executed and retired

microinstructions 𝑡11, 𝑡12, 𝑡21, 𝑡22, and 𝑡41, thus resolving the first

two stores and the load’s address. In state ℎ0 the CPU can predict

the address (i.e., the value of 𝑡31) of the third store as 0 and modify

the state as in ℎ1 (rule Prd).

This prediction enables speculative execution of the load 𝑡42 in

state ℎ1: the active store’s bounded names 𝑏𝑛(str-act(𝜎1, 𝑡42)) con-
sist of the singleton set {𝑡12}, since 𝑠1 (𝑡21) = 𝑠1 (𝑡31) = 0, while

𝑠1 (𝑡41) = 1. Hence, we can apply rule Exe to execute 𝑡42, thus

updating the storage with 𝑡42 ↦→ 1, and recording the snapshot

{𝑡11 ↦→ 1, 𝑡21 ↦→ 0, 𝑡31 ↦→ 0, 𝑡41 ↦→ 1, 𝑡12 ↦→ 1} for 𝑡42. Concretely,
𝑡42’s dependencies in state ℎ1 consists of the local dependencies

(i.e., the load’s address 𝑡41), and the cross dependencies containing

1𝑡11 1𝑡12

0𝑡21 2𝑡22

𝑡31 𝑡32

1𝑡41 𝑡42

ℎ0

Prd, 𝑡31

1 1

0 2

0

1

ℎ1

Exe, 𝑡42

1 1

0 2

0

1 1

1

0

0

1

1

ℎ2
Pexe, 𝑡31

1 1

0 2

1

1 1

1

0

0

1

1

ℎ3

Rbk, 𝑡42

1 1

0 2

1

1

ℎ4

1 1

0 2

5

1 1

1

0

0

1

1

ℎ′
3

Ret, 𝑡42

1 1

0 2

1

1 1

ℎ′
4

Figure 3: Speculation of load/store dependencies

𝑡12 (i.e., active store it loads the value from), as well as the potential

sources of 𝑡42, that is, the addresses of all stores between the active

store 𝑡12 and the load 𝑡42, namely 𝑡11, 𝑡21 and 𝑡31.

At this point, load 𝑡42 cannot be retired by rule Ret in state ℎ2
since its dependencies, e.g., 𝑡31, are yet to be retired. However, we

can execute 𝑡31 by applying rule Pexe. The execution updates the

state by removing 𝑡31 from the prediction set and storing its correct

value, as well as extending the snapshot with 𝑡31 ↦→ ∅, as depicted
in state ℎ3.

The execution of 𝑡31 enables the premises of rule Rbk to capture

that the dependency misprediction led to misspeculation of the

address of the load 𝑡42. Specifically, the set 𝑎𝑠𝑛 at the time of 𝑡42’s

execution 𝑏𝑛(str-act((I3, 𝛿3 (𝑡42),C3, F3), 𝑡41)) = {𝑡12} differs from
the active store set 𝑏𝑛(str-act(𝜎3, 𝑡41))) = {𝑡32} in the current state.

Therefore, we roll back the execution removing the mappings for

𝑡42 from the storage and the snapshot as in ℎ4.

Finally, we remark that the speculative execution of loads is

rolled back only if a misprediction causes a violation of load/store

dependencies. For instance, if the value of 𝑡31 was 5 instead of 1, as

depicted inℎ′
3
, the misprediction of 𝑡31’s value as 0 inℎ1 does not en-

able a rollback of the load. This is because the actual value of 𝑡31 does

not change the set of active stores. In fact, the set of active stores

at the time of 𝑡42’s execution 𝑏𝑛(str-act((I ′
3
, 𝛿 ′

3
(𝑡42),C ′

3
, F ′

3
), 𝑡41)) =

{𝑡12} is the same as the active store’s set 𝑏𝑛(str-act(𝜎 ′
3
, 𝑡41))) =

{𝑡12} in the current state.

6 ATTACKS AND COUNTERMEASURES
InSpectre can be used to model and analyze (combinations of) mi-

croarchitectural features underpinning Spectre attacks [9, 32, 38],

and, importantly, to discover new vulnerabilities and to reason

about the security of proposed countermeasures. Observe that these

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1861

results hold for our generic microarchitectural model, while spe-

cific CPUs would require instantiating InSpectre to model their

microarchitectural features. We remark that real-world feasibility

of our new vulnerabilities falls outside the scope of this work.

Specifically, we use the following recipe: We model a specific

prediction strategy in InSpectre and try to prove conditional nonin-

terference for arbitrary programs. Failure to complete the security

proof results in new classes of counterexamples as we report below.

Concretely, prediction strategies and countermeasures are mod-

eled by constraining the nondeterminism in the microinstruction

scheduler and in the prediction semantics (see rule Prd). The predic-

tion function pred𝑝 : Σ→ N ⇀ 2
V
captures a prediction strategy

𝑝 by computing the set of predicted values for a name 𝑡 ∈ N and a

state𝜎 ∈ Σ. We assume the transition relation satisfies the following

property: If (𝜎, 𝛿, 𝑃) 𝑙−→→→ (𝜎 ′, 𝛿 ′, 𝑃 ∪ {𝑡}) then 𝑡 ∈ dom(pred𝑝 (𝜎))
and 𝜎 ′(𝑡) ∈ pred𝑝 (𝜎) (𝑡). This property ensures that the transition

relation chooses predicted values from function pred𝑝 .
Following the security model in Section 2, we check conditional

noninterference by: (𝑎) using the in-order transition relation −→ as

reference model and speculative (OoO) transition relation −→→→ (−→→)

as target model; (𝑏) providing the security policy ∼ for memory

and registers. To invalidate conditional noninterference it is suf-

ficient to find two ∼-indistinguishable states that yield the same

observations in the reference model and different observations in

the target model. We use the classification by Canella et al. [9] to

refer to existing attacks. We refer to Appendix C for the models

and countermeasures for Spectre-PHT, Spectre-BTB, Spectre-RSB,

and Retpoline.

6.1 Spectre-STL
Spectre-STL [27] (Store-To-Load) exploits the CPUs mechanism to

predict load-to-store data dependencies. A load cannot be executed

before executing all the past (in program order) stores that affect

the same memory address. However, if the address of a past store

has not been resolved, the CPU may execute the load in speculation

without waiting for the store, predicting that the target address of

the store is different from the load’s address. Mispredictions cause

store bypasses leading to information leaks and access to stale data.

This behavior can be modeled as pred𝑆𝑇𝐿 (𝜎, 𝛿, 𝑃) =𝑡𝑎 ↦→ 𝑎 |
𝑡 ′ ← 𝑐 ′?𝑙𝑑 M 𝑡 ′𝑎 ∈ 𝜎 ∧ 𝜎 (𝑡 ′𝑎) ≠ 𝑎

𝑡 ← 𝑐?𝑠𝑡 M 𝑡𝑎 𝑡𝑣 ∈ str-act(𝜎, 𝑡 ′)∧
𝜎 (𝑡𝑎)↑

A prediction occurs whenever a memory store (𝑡) is waiting an un-

resolved address (𝜎 (𝑡𝑎)↑), while the address (𝑠 (𝑡 ′𝑎)) of a subsequent
load (𝑡 ′) has been resolved, and the load may depend on the store

(𝑡 ∈ 𝑏𝑛(str-act(𝜎, 𝑡 ′))). Prediction guesses that the store’s address

(𝑡𝑎) differs with the load’s address.

6.1.1 Hardware countermeasures to Store Bypass. The specification
of proposed hardware countermeasures oftentimes comes with no

precise semantics and is ambiguous. ARM introduced the Specula-

tive Store Bypass Safe (SSBS) configuration to prevent store bypass

vulnerabilities. The specification of SSBS [4] is: Hardware is not
permitted to load . . . speculatively, in a manner that could . . . give rise
to a . . . side channel, using an address derived from a register value
that has been loaded from memory . . . (L) that speculatively reads

an entry from earlier in the coherence order from that location being
loaded from than the entry generated by the latest store (S) to that
location using the same virtual address as L.

InSpectre provides a ground to formalize the behavior of these

hardware mechanisms. We formalize SSBS as follows. Let 𝜎 =

(I , 𝑠,C, F, 𝛿, 𝑃) and 𝑡 ← 𝑐?𝑙𝑑 𝜏 𝑡𝑎 ∈ 𝜎 . If 𝜎
𝑙−→→→ 𝜎 ′, 𝜎 (𝑡)↑, and 𝜎 ′(𝑡)↓,

then for every 𝑡 ′ ∈ srcs(𝑡, 𝜎), if 𝜎 (𝑡 ′) ≠ 𝜎 (𝑡𝑎) then 𝑡 ′ ∉ 𝑃 .

The reason why SSBS prevents Spectre-STL is simple. The rule

forbids the execution of a load 𝑡 if any address used to identify the

last store affecting 𝑡𝑎 has been predicted to differ from 𝑡𝑎 .

6.1.2 New Vulnerability: Spectre-STL-D. Our model reveals that

if a microarchitecture mispredicts the existence of a Store-To-Load
Dependency (hence Spectre-STL-D), e.g., in order to forward tempo-

rary store results, a similar vulnerability may be possible. To model

this behavior it is enough to substitute 𝜎 (𝑡 ′𝑎) ≠ 𝑎 with 𝜎 (𝑡 ′𝑎) = 𝑎

in pred𝑆𝑇𝐿 . We consider this a new form of Spectre because the

implementation of this microarchitectural feature can be substan-

tially different from the one required for Spectre-STL (e.g., Feiste

et al. [17] patented a mechanism to implement this feature) and

because the vulnerable programs are different.

This feature may cause Spectre-STL-D if a misspeculated depen-

dency is used to perform subsequent memory accesses. Consider

the following program:

𝑎1 : ∗(∗b_1) := 𝑠𝑒𝑐
𝑙𝑑 M 𝑏1

𝑡11

𝑡11

𝑡12

𝑠𝑡 M 𝑡12 𝑡𝑠𝑒𝑐

𝑡13

𝑠𝑡 PC 𝑎2

𝑡14

𝑎2 : 𝑟1 : = ∗ (∗ 𝑏2)
𝑙𝑑 M 𝑏2

𝑡21

𝑙𝑑 M 𝑡21

𝑡22

𝑠𝑡 R 𝑟1 𝑡22

𝑡23

If the CPU executes and fetches 𝑡14, predicts that 𝑡12 = 𝑏2 (i.e., it

mispredicts the alias *𝑏1==*𝑏2), executes 𝑡13, forwards the result
of 𝑡13 to 𝑡21, and executes 𝑡22 before the load 𝑡11 is retired, then the

address accessed by 𝑡22 depends on 𝑡𝑠𝑒𝑐 . This can produce the secret-

dependent sequence of observations 𝑖𝑙 𝑎1 :: 𝑖𝑙 𝑎2 :: 𝑑𝑙 𝑠𝑒𝑐 , while the

sequential semantics always produces the secret-independent se-

quence of observations 𝑖𝑙 𝑎1 :: 𝑑𝑙 𝑏1 :: 𝑑𝑠 ∗𝑏1 :: 𝑖𝑙 𝑎2 :: 𝑑𝑙 𝑏2 :: 𝑑𝑙 ∗𝑏2.
Notice that SSBS may not be effective against Spectre-STL-D.

6.2 New Vulnerability: Spectre-OoO
A popular countermeasure to prevent sensitive data from affecting

the execution time and caches is “constant time programming”, also

known as “data oblivious algorithms”. This mechanism ensures

that branch conditions and memory addresses are independent of

sensitive data. The following definition formalizes “ISA constant

time” while abstracting from the specific ISA:

Definition 6.1. A program is “ISA constant time” if for every pair

of states 𝜎1 ∼ 𝜎2 and every pair of in-order executions of length

𝑛, 𝜎1 −→𝑛 𝜎 ′
1
and 𝜎2 −→𝑛 𝜎 ′

2
, it is the case that 𝜎 ′

1
≈𝐼𝑆𝐴 𝜎 ′

2
, where

(I , 𝑠,C, F) ≈𝐼𝑆𝐴 (I ′, 𝑠 ′,C ′, F ′) iff
(1) I = I ′, C = C ′, F = F ′: the sets of microinstructions, commits

and decodes are equal.

(2) If 𝑡 ← 𝑐?𝑙𝑑 M 𝑡𝑎 ∈ I or 𝑡 ← 𝑐?𝑠𝑡 M 𝑡𝑎 𝑡𝑣 ∈ I then

[𝑐]𝜎 = [𝑐]𝜎 ′, 𝑠 (𝑡)↓ = 𝑠 ′(𝑡)↓, (whenever defined, guards
evaluate the same, and memory operations execute in lock-

step) and [𝑐]𝜎 ⇒ (𝜎 (𝑡𝑎) = 𝜎 ′(𝑡𝑎)) (the same values are used

to address memory)

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1862

(3) If 𝑡 ← 𝑐?𝑠𝑡 PC 𝑡𝑣 ∈ I then [𝑐]𝜎 = [𝑐]𝜎 ′, 𝑠 (𝑡)↓ = 𝑠 ′(𝑡)↓,
and [𝑐]𝜎 ⇒ (𝜎 (𝑡𝑣) = 𝜎 ′(𝑡𝑣)) (the same values are used to

update the PC)

The following program (and its MIL translation) exemplifies this

policy. It loads register 𝑟1 from address 𝑏1, copies the value of 𝑟1 in

𝑟2 if the flag 𝑧 is set, and saves the result into 𝑏2.

𝑎1 : 𝑟1 = ∗𝑏1;
𝑙𝑑 M 𝑏1

𝑡11

𝑠𝑡 R 𝑟1 𝑡11

𝑡12

𝑠𝑡 PC 𝑎2

𝑡13

𝑎2 : 𝑐𝑚𝑜𝑣 𝑧, 𝑟2, 𝑟1;

𝑙𝑑 R 𝑧

𝑡21

𝑡21 = 1 𝑙𝑑 R 𝑟1

𝑡22

𝑠𝑡 PC 𝑎3

𝑡24

𝑡21 = 1 𝑠𝑡 R 𝑟2 𝑡22

𝑡23

𝑎3 : ∗𝑏2 = 𝑟2;
𝑙𝑑 R 𝑟2

𝑡31

𝑠𝑡 M 𝑏2 𝑡31

𝑡32

Suppose that flag 𝑧 contains sensitive information and the attacker

observes only the data cache. The “conditional move” instruction in

𝑎2 executes in constant time [28] and is used to re-write branches

that may leak information via the execution time or the instruction

cache. This allows the program to always access address 𝑏1 and 𝑏2
unconditionally and execute always the same ISA instructions: In

the sequential model the program always produces the sequence

of observations 𝑑𝑙 𝑏1 :: 𝑑𝑠 𝑏2.

Programs that are ISA constant time could be insecure in pres-

ence of speculation, as demonstrated by Spectre-PHT [32]. Perhaps

surprisingly, it turns out that ISA constant time is not secure even

for the OoO model, in absence of speculation. In fact, our analysis

of conditional noninterference for ISA constant time programs in

the OoO model led to the identification of a class of vulnerable pro-

grams, where secrets influence the existence of data dependency

between registers. The above program exemplifies this problem:

the data dependency between 𝑡11 and 𝑡32 exists only if 𝑧 is set. Con-

cretely, consider two states 𝜎0 and 𝜎1 in which 𝑧 = 0 and 𝑧 = 1, re-

spectively. Then, str-act(𝜎1, 𝑡31) = {𝑡23} and str-act(𝜎1, 𝑡23) = {𝑡12},
while str-act(𝜎0, 𝑡31) is the microinstruction representing the ini-

tial value of 𝑟2. Therefore, state 𝜎0 may produce the observation

sequence 𝑑𝑠 𝑏2 :: 𝑑𝑙 𝑏1 only if the flag 𝑧 = 0, thus leaking its value

through the data cache.

6.2.1 MIL Constant Time. Spectre-OoO motivates the need for a

new microarchitecture-aware definition of constant time.

Definition 6.2. A program is “MIL constant time” if for every pair

of states 𝜎1 ∼ 𝜎2 and every pair of in-order executions of length

𝑛, 𝜎1 −→𝑛 𝜎 ′
1
and 𝜎2 −→𝑛 𝜎 ′

2
, it is the case that 𝜎 ′

1
≈𝑀𝐼𝐿 𝜎 ′

2
, where

(I , 𝑠,C, F) ≈𝑀𝐼𝐿 (I ′, 𝑠 ′,C ′, F ′) iff
(1) (I , 𝑠,C, F) ≈𝐼𝑆𝐴 (I ′, 𝑠 ′,C ′, F ′)
(2) If 𝑡 ← 𝑐?𝑙𝑑 R 𝑡𝑎 ∈ I or 𝑡 ← 𝑐?𝑠𝑡 R 𝑡𝑎 𝑡𝑣 ∈ I then [𝑐]𝜎 =

[𝑐]𝜎 ′, 𝑠 (𝑡)↓ = 𝑠 ′(𝑡)↓, and [𝑐]𝜎 ⇒ (𝜎 (𝑡𝑎) = 𝜎 ′(𝑡𝑎))

Notice that in addition to standard requirements of constant time,

MIL constant time requires that starting from two∼-indistinguishable
states the program makes the same accesses to registers. MIL con-

stant time is sufficient to ensure security in the OoO model:

Theorem 6.3. If a program 𝑃 is MIL constant time then 𝑃 is con-
ditionally noninterferent in the OoO model.

The theorem enables the enforcement of conditional noninter-

ference for the OoO model by verifying MIL constant time in the

sequential model. This strategy has the advantage of performing

the verification in the sequential model, which is deterministic, thus

making it easier to reuse existing tools for binary code analyses [6].

Finally, we remark that MIL constant time is microarchitecture

aware. This means that the same ISA program may or may not

satisfy MIL constant time when translated to a given microarchi-

tecture. In fact, the MIL translation of conditional move above is

not MIL constant time because of the dependency between the

sensitive value in 𝑡21 and conditional store in 𝑡23. However, if a

microarchitecture translates the same conditional move as below,

the translation is clearly MIL constant time.

𝑙𝑑 R 𝑧

𝑡1

𝑙𝑑 R 𝑟2

𝑡2

𝑙𝑑 R 𝑟1

𝑡3

𝑠𝑡 R 𝑟2 ((¬𝑡1 ∗ 𝑡2) + (𝑡1 ∗ 𝑡3))

𝑡4

7 RELATEDWORK
Speculative semantics and foundations Several works have re-
cently addressed the formal foundations of specific forms of spec-

ulation to capture Spectre-like vulnerabilities. Cheang et al. [12],

Guarnieri et al. [23], and Mcilroy et al. [41] propose semantics that

support branch prediction, thus modeling only Spectre v1. Nei-

ther work supports speculation of target address, speculation of

dependencies, or OoO execution. Disselkoen at al. [14] propose a

pomset-based semantics that supports OoO execution and branch

prediction. Their model targets a higher abstraction level model-

ing memory references using logical program variables. Hence, the

model cannot support dynamic dependency resolution, dependency

prediction, and speculation of target addresses.

Like us, Cauligi et al. [11] propose a model that captures exist-

ing variants of Spectre and independently discover a vulnerability

similar to our Spectre-STL-D. Remarkably, they demonstrate the

feasibility of the attack on Intel Broadwell and Skylake proces-

sors. A key difference between the two models is that Cauligi et al.

impose sequential order to instruction retire and memory stores.

While simplifying the proof of memory consistency and verifica-

tion, it does not reflect the inner workings of modern CPUs, which

reorder memory stores and implement a relaxed consistency model.

These features are required to capture Spectre-OoO in Section 6.2.

Moreover, our model provides a clean separation between the gen-

eral speculative semantics and microarchitecture-specific features,

where the latter is obtained by reducing the nondeterminism of

the former. This enables a modular analysis of (combinations of)

predictive strategies, as in Spectre-PHT ICache in Section C.1.3.

Cache side channels In line with prior works [11, 12, 23], our

attacker model abstracts away the mechanism used by an attacker

to profile the sequence of a victim’s memory accesses, providing

a general account of trace-driven attacks [46]. Complementary

works [15, 20, 37, 59] show that cache profiling is becoming increas-

ingly steady and precise. Performance jitters caused by cache usage

have been widely exploited to leak sensitive data [2, 21, 33, 40, 44,

45, 60], e.g., in cryptography software. Miller [42], and Fogh and

Ertl [18] propose a taxonomy for mitigating speculative execution

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1863

vulnerabilities. We refer to a recent survey by Canella et al. [19] on

cache-based countermeasures.

Spectre vs Meltdown Recent attacks that use microarchitec-

tural effects of speculative execution have been generally distin-

guished as Spectre and Meltdown attacks [9]. We focus on the

former [13, 16, 24, 25, 31, 32, 34, 38, 58], which exploits speculation

to cause a victim program to transiently access sensitive memory

locations that the attacker is not authorized to read. Meltdown

attacks [36] transiently bypass the hardware security mechanisms

that enforce memory isolation. Importantly, Meltdown attacks can

be easily countered in hardware, while Spectre attacks require

hardware-software co-design, which motivates our model. We re-

mark that the vulnerability in Section 6.1 is different from the recent

Microarchitectural Data Sampling attacks [10, 49, 53], since it only

requires the CPU to predict memory aliases with no need of violat-

ingmemory protectionmechanisms. Microarchitectures supporting

this feature have been proposed, e.g., in Feiste et al. [17].

Tool support Several prototypes have been developed to repro-

duce and detect known Spectre-PHT attacks [12, 23, 54, 55]. Check-

mate [51] synthesizes proof-of-concept attacks by using models

of speculative and OoO pipelines. Tool support for vulnerabilities

beyond Spectre-PHT requires dealing with a large number of possi-

ble predictions and instruction interleavings. In fact, current tools

mainly focus on Spectre-PHT ignoring OoO execution.

Functional Pipeline Correctness A number of authors, cf.

[1, 8, 29, 39, 48], have studied the orthogonal problem of functional

correctness in the context of concrete pipeline architectures involv-

ing features such as OoO and speculation, usually using a complex

refinement argument based on Burch-Dill style flushing [8] in order

to align OoO executions with their sequential counterparts. Our

correlate is the serialization proofs for OoO and speculation pro-

vided is the full version of the paper. It is of interest to mechanize

these proofs and to examine if a generic account of serialization

using, e.g., InSpectre can help also in the functional verification of

concrete pipelines.

Hardware countermeasuresWhile CPU vendors and researchers

propose countermeasures, it is hard to validate their effectiveness

without a model. InSpectre can help modeling and reasoning about

their security guarantees, as in Section C.1.1. Similarly, InSpectre

can model the hardware configurations and fences designed by In-

tel [26] to stall (part of) an instruction stream in case of speculation.

Several works [30, 50, 56, 57, 61] propose security-aware hardware

that prevent Spectre-like attacks. InSpectre can help formalizing

these hardware features and analyzing their security.

8 CONCLUDING REMARKS
This paper presented InSpectre, the first comprehensive model

capable of capturing out-of-order execution and different forms

of speculation that could be implemented in a high-performance

pipeline. We used InSpectre to model existing vulnerabilities, to

discover three new potential vulnerabilities, and to reason about

the security of existing countermeasures proposed in the literature.

There are a number of interesting directions left open in this work.

Foundations of microarchitecture security We argue that

InSpectre pushes the boundary on foundations of microarchitecture

security with respect to the current state-of-the-art substantially.

Existing models [11, 12, 14, 23, 41] miss features like dynamic inter-

instruction dependency (except [11]]), instruction non-atomicity,

OoOmemory commits, and partial misprediction of rollbacks. These

features were essential to discover the vulnerabilities, as well as to

reason about countermeasures like retpoline or memory fences for

data dependency. For instance, InSpectre would not have captured

our Spectre-OoO vulnerability if the memory stores and instruction

retire are performed in the sequential order. Similarly, static com-

putation of active stores would not have exposed Store-To-Load

variants of Spectre. Moreover, forcing the rollback of all subse-

quent microinstructions as soon as a value is mispredicted prevents

modeling advanced recovery methods used by modern processors,

including concurrent and partial recovery in case of multiple mis-

predictions.

A novel feature of our approach is to decompose instructions

into smaller microinstruction-like units. We argue that the model-

ing of pipelines using ISA level instructions as atomic units is in

the long run the wrong approach, not reflecting well the behav-

ior at the hardware level, and inelegant as a foundation for real

pipeline information flow. Non-atomicity is needed to handle, for

instance, intra-instruction dependencies and interactions between

I/D-caches. Therefore, decomposing instructions into smaller mi-

croinstructions, as we do, appears convenient.

InSpectre lacks explicit support of Meltdown-like vulnerabilities,

multicore and hyperthreading, fences, TLBs, cache eviction poli-

cies, and mechanisms used to update branch predictor tables. Our

model can already capture many of these features. In the paper we

give Intel’s lfence as an example. We focus here on core aspects of

out-of-order and speculation, but there is nothing inherent in the

framework that prevents modeling the above additional features.

Also, by providing a general model we cannot currently argue if

a concrete architecture is secure. For that we need to specialize

the model to a given architecture, by adding detail and eliminating

nondeterminism.

Tooling Tooling is needed to explore more systematically the

utility of the model for exploit search and countermeasure proof,

and the framework needs to be instantiated to different concrete

pipeline architectures and be experimentally validated.

One can envisage MIL-based analysis tools like Spectector [23],

Pitchfork [11], and oo7 [55]. However, the large nondeterminism

introduced by out-of-order and speculation will make such an ap-

proach inefficient. We are currently taking a different route by

modeling concrete microarchitectures within a theorem prover.

This allows verifying conditional noninterference if the microarchi-

tecture is inherently secure. A failing security proof gives a basis

for proving countermeasure soundness as in Section 6.2, and the

identification of sufficient conditions that can be verified in the

(more tractable) sequential model.

ACKNOWLEDGMENTS
We thank our shepherd Andrew Myers and anonymous reviewers

for the helpful feedback. The work was partially supported by the

Swedish Foundation for Strategic Research (SSF) through frame-

work project TrustFull, by the Swedish Civil Contingencies Agency

through framework project CERCES, and by the Swedish Research

Council (VR) through project JointForce.

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1864

REFERENCES
[1] Mark D. Aagaard, Byron Cook, Nancy A. Day, and Robert B. Jones. 2001. A

Framework for Microprocessor Correctness Statements. In Correct Hardware
Design and Verification Methods. 433–448.

[2] Onur Acıiçmez and Çetin Kaya Koç. 2006. Trace-driven cache attacks on AES

(short paper). In International Conference on Information and Communications
Security. Springer, 112–121.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and

Michael Emmi. 2016. Verifying constant-time implementations. In 25th {USENIX}
Security Symposium ({USENIX} Security 16). 53–70.

[4] ARM. 2018. SSBS, Speculative Store Bypass Safe. https://developer.arm.com/

docs/ddi0595/d/aarch64-system-registers/ssbs Accessed: 2020-01-16.

[5] ARM. 2019. Cache Speculation Side channels v2.4.

[6] Musard Balliu, Mads Dam, and Roberto Guanciale. 2014. Automating Information

Flow Analysis of Low Level Code. In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, Scottsdale, AZ, USA, November
3-7, 2014. 1080–1091.

[7] Daniel J. Bernstein. 2005. Cache-timing attacks on AES. http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf.

[8] Jerry R. Burch and David L. Dill. 1994. Automatic verification of pipelined micro-

processor control. In Computer Aided Verification, David L. Dill (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 68–80.

[9] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von

Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019.

A Systematic Evaluation of Transient Execution Attacks and Defenses. In 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August
14-16, 2019. 249–266.

[10] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Ma-

rina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo

Van Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data on Meltdown-resistant

CPUs. In Proceedings of the ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS). ACM.

[11] Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall, Deian Stefan, Tamara

Rezk, and Gilles Barthe. 2019. Towards Constant-Time Foundations for the New

Spectre Era. arXiv preprint arXiv:1910.01755 (October 2019).
[12] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan.

2019. A Formal Approach to Secure Speculation. In CSF 2019.
[13] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and

Ten H Lai. 2018. Sgxpectre attacks: Stealing intel secrets from sgx enclaves via

speculative execution. arXiv preprint arXiv:1802.09085 (2018).
[14] Craig Disselkoen, Radha Jagadeesan, Alan Jeffrey, and James Riely. 2019. The

Code That Never Ran: Modeling Attacks on Speculative Evaluation. In S&P 2019.
[15] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017. Prime+

Abort: A Timer-Free High-Precision L3 Cache Attack using Intel {TSX}. In 26th
USENIX Security Symposium. 51–67.

[16] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, and Dmitry Ponomarev.

[n.d.]. et almbox. 2018. BranchScope: A new side-channel attack on directional

branch predictor. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM.

[17] Kurt A. Feiste, John S. Muhich, Larry E. Thatcher, and Steven W. White. 2000.

Forwarding store instruction result to load instruction with reduced stall or

flushing by effective/real data address bytes matching. (February 2000). https:

//patents.google.com/patent/US6021485 US6021485A.

[18] Anders Fogh and Christopher Ertl. 2018. Wrangling with the Ghost An Inside

Story of Mitigating Speculative Execution Side Channel Vulnerabilities.

[19] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey of mi-

croarchitectural timing attacks and countermeasures on contemporary hardware.

Journal of Cryptographic Engineering 8, 1 (2018), 1–27.

[20] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+ Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, 279–
299.

[21] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache template

attacks: Automating attacks on inclusive last-level caches. In 24th USENIX Security
Symposium. 897–912.

[22] Roberto Guanciale, Musard Balliu, and Mads Dam. 2019. InSpectre:

Breaking and Fixing Microarchitectural Vulnerabilities by Formal Analysis.

arXiv:1911.00868 [cs.CR]

[23] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez.

2020. Spectector: Principled detection of speculative information flows. In

Proceedings of the 41st IEEE Symposium on Security and Privacy. IEEE.
[24] Jann Horn. 2018. speculative execution, variant 4: speculative store bypass.

[25] Jann Horn et al. 2018. Reading privileged memory with a side-channel. Project
Zero 39 (2018).

[26] Intel. 2018. Speculative Execution Side Channel Mitigations, Revision 3.0.

[27] Intel. 2018. Speculative Execution Side Channel Update.

[28] Intel. 2019. Guidelines for Mitigating Timing Side Channels Against Cryp-

tographic Implementations. https://software.intel.com/security-software-

guidance/insights/guidelines-mitigating-timing-side-channels-against-

cryptographic-implementations

[29] Ranjit Jhala and Kenneth L. McMillan. 2001. Microarchitecture Verification by

CompositionalModel Checking. In Proceedings of the 13th International Conference
on Computer Aided Verification. Springer-Verlag, 396–410.

[30] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer. 2018. DAWG:

A Defense Against Cache Timing Attacks in Speculative Execution Processors.

In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO).

[31] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer overflows:

Attacks and defenses. arXiv preprint arXiv:1807.03757 (2018).

[32] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In

2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019. 1–19.

[33] Paul C Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA,

DSS, and other systems. In Annual International Cryptology Conference. Springer,
104–113.

[34] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael

Abu-Ghazaleh. 2018. Spectre returns! speculation attacks using the return stack

buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT).
[35] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and

Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return

Stack Buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT 18).
USENIX Association.

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. 2018.

Meltdown: Reading kernel memory from user space. In 27th USENIX Security
Symposium. 973–990.

[37] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-

level cache side-channel attacks are practical. In 2015 IEEE Symposium on Security
and Privacy. IEEE, 605–622.

[38] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution

using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2109–2122.

[39] P. Manolios and S. K. Srinivasan. 2005. Refinement maps for efficient verification

of processor models. In Design, Automation and Test in Europe. 1304–1309 Vol. 2.
[40] Clémentine Maurice, ManuelWeber, Michael Schwarz, Lukas Giner, Daniel Gruss,

Carlo Alberto Boano, Stefan Mangard, and Kay Römer. 2017. Hello from the

Other Side: SSH over Robust Cache Covert Channels in the Cloud.. In NDSS,
Vol. 17. 8–11.

[41] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest. 2019.

Spectre is here to stay: An analysis of side-channels and speculative execution.

arXiv preprint arXiv:1902.05178 (2019).
[42] Matt Miller. 2018. Mitigating speculative execution side channel hardware vulner-

abilities. https://msrc-blog.microsoft.com/2018/03/15/mitigating-speculative-

execution-side-channel-hardware-vulnerabilities/

[43] David Molnar, Matt Piotrowski, David Schultz, and David A. Wagner. 2005. The

Program Counter Security Model: Automatic Detection and Removal of Control-

Flow Side Channel Attacks. In Information Security and Cryptology - ICISC 2005,
8th International Conference, Seoul, Korea, December 1-2, 2005, Revised Selected
Papers. 156–168.

[44] Michael Neve and Jean-Pierre Seifert. 2006. Advances on access-driven cache

attacks on AES. In International Workshop on Selected Areas in Cryptography.
Springer, 147–162.

[45] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-

termeasures: the case of AES. In Cryptographers’ track at the RSA conference.
Springer, 1–20.

[46] Dan Page. 2002. Theoretical use of cache memory as a cryptanalytic side-channel.

IACR Cryptology ePrint Archive 2002, 169 (2002).
[47] Andrew Pardoe. 2018. Spectre mitigations in MSVC.

[48] Jun Sawada and Warren A Hunt. 2002. Verification of FM9801: An out-of-order

microprocessor model with speculative execution, exceptions, and program-

modifying capability. Formal Methods in System Design 20, 2 (2002), 187–222.

[49] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-

lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-

Boundary Data Sampling. In CCS.
[50] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-

sensitive fencing: Securing speculative execution via microcode customization.

In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 395–410.

[51] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. CheckMate:

Automated Synthesis of Hardware Exploits and Security Litmus Tests. In 51st
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2018,
Fukuoka, Japan, October 20-24, 2018. 947–960.

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1865

https://developer.arm.com/docs/ddi0595/d/aarch64-system-registers/ssbs
https://developer.arm.com/docs/ddi0595/d/aarch64-system-registers/ssbs
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://patents.google.com/patent/US6021485
https://patents.google.com/patent/US6021485
https://arxiv.org/abs/1911.00868
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/insights/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://msrc-blog.microsoft.com/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
https://msrc-blog.microsoft.com/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/

[52] Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-

injection. https://support.google.com/faqs/answer/7625886

[53] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi

Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:

Rogue In-flight Data Load. In S&P.
[54] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra,

and Abhik Roychoudhury. 2019. KLEESPECTRE: Detecting Information Leakage

through Speculative Cache Attacks via Symbolic Execution. arXiv preprint
arXiv:1909.00647 (2019).

[55] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roychoudhury. 2019.

oo7: Low-overhead Defense against Spectre attacks via Program Analysis. IEEE
Transactions on Software Engineering (2019).

[56] OfirWeisse, Ian Neal, Kevin Loughlin, Thomas FWenisch, and Baris Kasikci. 2019.

NDA: Preventing Speculative Execution Attacks at Their Source. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM,

572–586.

[57] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore,

Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton,

and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an age

of risk. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). IEEE, 457–468.

[58] Yuan Xiao, Yinqian Zhang, and Mircea-Radu Teodorescu. 2020. SPEECHMINER:

A Framework for Investigating and Measuring Speculative Execution Vulnerabil-

ities. In NDSS.
[59] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: a high resolution,

low noise, L3 cache side-channel attack. In 23rd USENIX Security Symposium.

719–732.

[60] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: a timing

attack on OpenSSL constant-time RSA. Journal of Cryptographic Engineering 7, 2

(2017), 99–112.

[61] Drew Zagieboylo, G. Edward Suh, and Andrew C. Myers. 2019. Using Information

Flow to Design an ISA that Controls Timing Channels. In 32nd IEEE Computer
Security Foundations Symposium, CSF. 272–287.

A SECURITY CONDITION
We now elucidate the advantages of conditional noninterference

as compared to standard notions of noninterference and declassi-

fication. Suppose we define the security condition directly on the

target model, in the style of standard noninterference.

Definition A.1 (Noninterference). Let 𝑃 be a program with transi-

tion relation −→ and ∼𝑃 a security policy. 𝑃 satisfies noninterference

up to ∼𝑃 if for all 𝜎1, 𝜎2 ∈ States such that 𝜎1 ∼𝑃 𝜎2 and executions

𝜋1 = 𝜎1 −→ · · · , there exists an execution 𝜋2 = 𝜎2 −→ · · · such that

trace(𝜋1) = trace(𝜋2).

Noninterference ensures that if the observations do not enable

an attacker to refine his knowledge of sensitive information beyond

what is allowed by the policy ∼𝑃 , the program can be considered se-

cure. Noninterference can accommodate partial release of sensitive

information by refining the definition of the indistinguishability

relation ∼𝑃 . In our context, a precise definition of ∼𝑃 can be chal-

lenging to define. However, we ultimately aim at showing that

the OoO/speculative model does not leak more information than

the in-order (sequential) model, thus capturing the intuition that

microarchitectural features like OoO and speculation should not

introduce additional leaks. Therefore, instead of defining the policy

∼𝑃 explicitly, we split it into two relations ∼ (as in Def. 2.1) and

∼𝐷 , where the former models information of the initial state that

is known by the attacker, i.e., the public resources, and the latter

models information that the attacker is allowed to learn during the

execution via observations. Hence, ∼𝑃 = ∼ ∩ ∼𝐷 . This characteri-
zation allows for a simpler formulation of the security condition

that is transparent on the definition of ∼𝐷 , as described in Def. 2.1.

B IN-ORDER SEMANTICS
We define the in-order (i.e., sequential) semantics by restricting

the scheduling of the out-of-order semantics and enforcing the

execution of microinstructions in program order.

Say that a microinstruction 𝜄 = 𝑡 ← 𝑐?𝑜 is completed in state 𝜎

(written C(𝜎, 𝜄)) if one of the following conditions hold:
• The instruction’s guard evaluates to false in 𝜎 , i.e. ¬[𝑐] (𝜎).
• The instruction has been executed and is not a memory or a

program counter store, i.e. 𝑜 ≠ 𝑠𝑡 M 𝑡𝑎 𝑡𝑣 ∧ 𝑜 ≠ 𝑠𝑡 pc 𝑡𝑣 ∧
𝜎 (𝑡)↓.
• The instruction is a committed memory store or a fetched

and decoded program counter store, i.e. 𝑡 ∈ C ∪ F
The in-order transition rule allows an evaluation step to proceed

only if program-order preceding microinstructions have been com-

pleted.

𝜎
𝑙−→→ 𝜎 ′ step-param(𝜎, 𝜎 ′) = (𝛼, 𝑡)
∀𝜄 ∈ 𝜎 if 𝑏𝑛(𝜄) < 𝑡 then C(𝜎, 𝜄)

𝜎
𝑙−→ 𝜎 ′

It is easy to show that the sequential model is deterministic. In

fact, the OoO model allows each transition to modify one single

name 𝑡 , while the precondition of the in-order rule forces all previ-

ous instructions to be completed, therefore only one transition is

enabled.

Definition B.1. Let 𝜎1 :: · · · :: 𝜎𝑛 be the sequence of states of

execution 𝜋 , then commits(𝜋, 𝑎) is the list of memory commits at

address 𝑎 in 𝜋 , and is empty if𝑛 < 2; 𝑣 :: commits(𝜎2 :: · · · :: 𝜎𝑛, 𝑎) if
step-param(𝜎1, 𝜎2) = (Cmt(𝑎, 𝑣), 𝑡); and commits(𝜎2 :: · · · :: 𝜎𝑛, 𝑎)
otherwise.

We say that two models are memory consistent if writes to the

same memory location are seen in the same order.

Definition B.2. The transition systems→1 and→2 are memory
consistent if for any program and initial state 𝜎0, for all executions

𝜋 = 𝜎0 →∗
1
𝜎 , there exists 𝜋 ′ = 𝜎0 →∗

2
𝜎 ′ such that for all 𝑎 ∈ M

commits(𝜋, 𝑎) is a prefix of commits(𝜋 ′, 𝑎).
Intuitively, two models that are memory consistent yield the

same sequence of memory updates for each memory address. This

ensures that the final result of a program is the same in both models.

Notice that since we do not assume any fairness property for the

transition systems then an execution 𝜋 of →1 may indefinitely

postpone the commits for a given address. For this reason we only

require to find an execution such that commits(𝜋, 𝑎) is a prefix of
commits(𝜋 ′, 𝑎). We obtain memory consistency of both the OoO

and the speculative semantics against the in-order semantics.

Theorem B.3. −→→ and −→ are memory consistent. 2

Theorem B.4. −→→→ and −→ are memory consistent. 2

For reasons of space the proofs are deferred to the full version

of the paper.

C ATTACKS AND COUNTERMEASURES
C.1 Spectre-PHT
Spectre-PHT [32] exploits the prediction mechanism for the out-

come of conditional branches. Modern CPUs use Pattern History

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1866

https://support.google.com/faqs/answer/7625886

Tables (PHT) to record patterns of past executions of conditional

branches, i.e., whether the true or the false branch was executed,

and then use it to predict the outcome of that branch. By poisoning

the PHT to execute one direction (say the true branch), an attacker

can fool the prediction mechanism to execute the true branch, even
when the actual outcome of the branch is ultimately false. The
following program (and the corresponding MIL) illustrates infor-

mation leaks via Spectre-PHT:

𝑎1 : 𝑟1 = 𝐴1 .𝑠𝑖𝑧𝑒 ;
𝑙𝑑 M 𝐴1 .𝑠𝑖𝑧𝑒

𝑡11

𝑠𝑡 R 𝑟1 𝑡11

𝑡12

𝑠𝑡 PC 𝑎2

𝑡13

𝑎2 : if (𝑟0 < 𝑟1)
𝑙𝑑 R 𝑟0

𝑡21

𝑡21 < 𝑡22

𝑡23

𝑙𝑑 R 𝑟1

𝑡22

𝑡23 𝑠𝑡 PC 𝑎3

𝑡24

¬𝑡23 𝑠𝑡 PC 𝑎4

𝑡25

𝑎3 : 𝑦 = 𝐴2 [𝐴1 [𝑟0]];
𝑙𝑑 R 𝑟0

𝑡31

𝑙𝑑 M (𝐴1 + 𝑡31)

𝑡32

𝑙𝑑 M (𝐴2 + 𝑡32)

𝑡33

𝑠𝑡 R 𝑟0 𝑡33

𝑡34

𝑠𝑡 PC 𝑎4

𝑡35

Suppose the security policy labels as public the data in arrays 𝐴1

and 𝐴2, and in register 𝑟0, and that the attacker controls the value

of 𝑟0. This program is secure at the ISA level as it ensures that

𝑟0 always lies within the bounds of 𝐴1. However, an attacker can

fool the prediction mechanism by first supplying values of 𝑟0 that

execute the true branch, and then a value that exceeds the size of𝐴1.

This causes the CPU to perform an out-of-bounds memory access

of sensitive data, which is later used as index for a second memory

access of 𝐴2, thus leaving a trace into the cache.

Branch prediction predicts values for MIL instructions that block

the evaluation of the guard of a PC store whose target address has

been already resolved. For 𝜎 = (I , 𝑠,C, F, 𝛿, 𝑃), we model it as:

pred𝑏𝑟 (𝜎) =
{
𝑡 ′ ↦→ 𝑣 | 𝑡 ← 𝑐?𝑠𝑡 PC 𝑡𝑎 ∈ I ∧ 𝑡 ′ ∈ fn(𝑐) ∧ 𝑠 (𝑡𝑎)↓

}
Let 𝜎0 be the state where only the instruction in 𝑎1 has been trans-

lated. Then pred𝑏𝑟 (𝜎0) is empty, since 𝜎0 contains a single un-

conditional PC update (the guard of 𝑡13 has no free names). The

CPU may apply rules Exe, Ret, and Ftc on 𝑡13 without waiting the

result of 𝑡11. This leads to a new state 𝜎1 which is obtained by

updating the storage with 𝑠1 = {𝑡13 ↦→ 𝑎2}, extending the microin-

structions’ list with the translation of 𝑎2, and the snapshot with

𝛿1 = {𝑡2𝑖 ↦→ 𝑡13 ↦→ 𝑎2 for 1 ≤ 𝑖 ≤ 5}, while producing the obser-

vation 𝑖𝑙 𝑎2. In this state pred𝑏𝑟 (𝜎1) = {𝑡23 ↦→ 0, 𝑡23 ↦→ 1} since
the conditions of the two PC stores (i.e., 𝑡24 and 𝑡25) depend on 𝑡23
which is yet to be resolved. The CPU can now apply rule Prd using

the prediction 𝑡23 ↦→ 1, thus guessing that the condition is true. The

new state 𝜎2 contains 𝑠2 = 𝑠1 ∪ {𝑡23 ↦→ 1}, 𝛿2 = 𝛿1, and 𝑃2 = {𝑡23}.
The CPU can follow the speculated branch by applying rules Exe

and Ftc on 𝑡24, which results in state 𝜎3 with 𝑠3 = 𝑠2 ∪ {𝑡24 ↦→ 𝑎3},
𝛿3 = 𝛿2 ∪ {𝑡24 ↦→ {𝑡23 ↦→ 1}, 𝑡3𝑖 ↦→ {𝑡24 ↦→ 𝑎3} for 1 ≤ 𝑖 ≤ 5}, and
F3 = {𝑡13, 𝑡24}. Additionally, it produces the observation 𝑖𝑙 𝑎3.

Applying rule Exe on 𝑡31 and 𝑡32 results in a buffer overread and

produces state 𝜎4 with 𝑠4 = 𝑠3 ∪ {𝑡31 ↦→ 𝑟0, 𝑡32 ↦→ 𝐴1 [𝑟0]}, and
observation𝑑𝑙 𝑟0. Similarly, rule Exe on 𝑡33 produces the observation

𝑑𝑙 𝐴2 +𝐴1 [𝑟0].
Clearly, if 𝑟0 ≥ 𝐴1 .𝑠𝑖𝑧𝑒 , the observation reveals memory content

outside 𝐴1, allowing an attacker to learn sensitive data. Observe

that this is rejected by the security condition, since such observation

is not possible in the sequential semantics.

C.1.1 Countermeasure: Serializing Instructions. Serializing instruc-

tions can be modeled by constraining the scheduling of microin-

structions. For example, we can model the Intel’s lfence instruction
via a function lfence(I) that extracts all microinstructions resulting

from the translation of lfence.

Concretely, for 𝜎 = (I , 𝑠,C, F , 𝛿, 𝑃), 𝑡 ∈ lfence(I) and 𝜎 −→→→ 𝜎 ′, it
holds that: (i) if 𝜎 (𝑡)↑ and 𝜎 ′(𝑡)↓ then for each 𝑡 ′ ← 𝑐?𝑙𝑑M 𝑡𝑎 ∈ 𝜎
such that 𝑡 ′ < 𝑡 𝑓 𝑛(𝑐) ⊆ dom(𝑠) \ dom(𝛿) and 𝑐 ⇒ (𝜎 (𝑡 ′)↓ ∧
𝛿 (𝑡 ′)↑); (ii) if 𝜎 (𝑡 ′)↑, 𝜎 ′(𝑡 ′)↓, 𝑡 ′ > 𝑡 , and 𝑡 ′ ← 𝑐?𝑙𝑑 M 𝑡𝑎 ∈ 𝜎 , or
𝑡 ′ ← 𝑐?𝑠𝑡M 𝑡𝑎 𝑡𝑣 ∈ 𝜎 , or 𝑡 ′ ← 𝑐?𝑠𝑡 R 𝑡𝑎 𝑡𝑣 ∈ 𝜎 , then 𝜎 (𝑡)↓ ∧ 𝛿 (𝑡)↑.

Intuitively, the conditions restrict the scheduling of microinstruc-

tions to ensure that: (i) whenever a fence is executed, all previous

loads have been retired, and (ii) subsequent memory operations or

register stores can be executed only if the fence has been retired.

In order to reduce the performance overhead, several works (e.g.

[47]) use static analysis to identify necessary serialization points in

a program. In the previous example, it is sufficient to place lfence

after 𝑡32 and before 𝑡33. This does not prevent the initial buffer

overread of 𝑡32, however, it suspends 𝑡33 until 𝑡32 is retired. In case

of misprediction, 𝑡32 and 𝑡33 will be rolled back, preventing the

observation 𝑑𝑙 𝐴2 +𝐴1 [𝑟0] which causes the information leak.

C.1.2 Countermeasure: Implicit Serialization. An alternative coun-

termeasure to prevent Spectre-PHT is to use instructions that intro-

duce implicit serialization [18, 42]. For instance, adding the follow-

ing gadget between instructions 𝑎2 and 𝑎3 in the previous example

prevents Spectre-PHT on existing Intel CPUs:

/ / cmp

𝑎′
3
: 𝑓 = (𝑟0 ≥ 𝑟1)

𝑙𝑑 R 𝑟0

𝑡′
31

𝑡′
31
≥ 𝑡′

32

𝑡′
33

𝑙𝑑 R 𝑟1

𝑡′
32

𝑠𝑡 R 𝑓 𝑡′
33

𝑡′
34

𝑠𝑡 PC 𝑎′′
3

𝑡′
35

𝑎′′
3
: 𝑐𝑚𝑜𝑣 𝑓 , 𝑟0, 0

𝑙𝑑 R 𝑓

𝑡′′
31

𝑡′′
31

= 1 𝑠𝑡 R 𝑟0 0

𝑡′′
32

𝑠𝑡 PC 𝑎′′′
3

𝑡′′
34

Intuitively, this gadget forces mispredictions to always access𝐴1 [0].
Consider the extension of the previous example with the gadget

and suppose pred𝑏𝑟 mispredicts 𝑡23 ↦→ 1. The instruction in 𝑎′′
3
in-

troduces a data dependency between 𝑡11 and 𝑡32 since str-act of 𝑡31
includes 𝑡 ′′

32
until 𝑡 ′′

31
has been executed; str-act of 𝑡 ′′

31
includes 𝑡 ′

34
;

and str-act of 𝑡 ′
32

includes 𝑡12. These names (and intermediate intra-

instruction dependencies) are in the free names of some condition

of a PC store, hence they cannot be predicted by pred𝑏𝑟 and their

dependencies are enforced by the semantics. In particular, when

𝑡23 is mispredicted as 1, 𝑡 ′′
32

is executed after that 𝑡11 has obtained

the value from the memory. This ensures that 𝑡 ′′
32

sets 𝑟0 to 0 every

time a buffer overread occurs. Therefore misspeculations generate

the observations 𝑑𝑙 𝐴1 + 0 and 𝑑𝑙 𝐴2 +𝐴1 [0], which do not violate

the security condition (since 𝐴1 is labeled as public).

C.1.3 New Vulnerability: Spectre-PHT ICache. When the first Spec-

tre attack was published, some microarchitectures (e.g., Cortex

A53) were claimed immune to the attack because of “allowing

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1867

speculative fetching but not speculative execution” [5]. The infor-

mal argument was that mispredictions cannot cause buffer over-

reads or leave any footprint on the cache in absence of speculative

loads. To check this claim, we constrain the semantics to only

allow speculation of PC values. Specifically, we require for any

transition (𝜎, 𝛿, 𝑃) −→→→ (𝜎 ′, 𝛿 ′, 𝑃 ′) that executes a microinstruction

(step-param(𝜎, 𝜎 ′) = (Exe, 𝑡)) which is either a load (𝑡 ← 𝑐?𝑙𝑑 𝜏 𝑡𝑎 ∈
𝜎) or a store (𝑡 ← 𝑐?𝑠𝑡 𝜏 𝑡𝑎 𝑡𝑣 ∈ 𝜎) of a resource other than the

program counter (𝜏 ≠ PC) to have an empty snapshot on past

microinstructions (dom(𝛿) ∩ {𝑡 ′ | 𝑡 ′ < 𝑡} = ∅).
The analysis of conditional noninterference for this model led

to the identification of a class of counterexamples, which we call

Spectre-PHT ICache, where branch prediction causes leakage of

sensitive data via an ICache disclosure gadget.

Consider a program that jumps to the address pointed to by sec
if a user has admin privileges, otherwise it continues to address 𝑎3.

𝑎1 : 𝑟1 = ∗𝑠𝑒𝑐
𝑙𝑑 M 𝑠𝑒𝑐

𝑡11

𝑠𝑡 R 𝑟1 𝑡11

𝑡12

𝑠𝑡 PC 𝑎2

𝑡13

𝑎2 : 𝑖 𝑓 (∗𝑎𝑑𝑚𝑖𝑛)
(∗𝑟1) () 𝑙𝑑 M 𝑎𝑑𝑚𝑖𝑛

𝑡21

𝑡21 ≠ 1

𝑡23

𝑙𝑑 R 𝑟1

𝑡22

𝑡23 𝑠𝑡 PC (𝑎2 + 4)

𝑡24

¬𝑡23 𝑠𝑡 PC 𝑡22

𝑡25

In the sequential model, an attacker that only observes the in-

struction cache can see the sequence of observations 𝑖𝑙 𝑎1 :: 𝑖𝑙 𝑎2 ::

𝑖𝑙 𝑎2 if ∗𝑎𝑑𝑚𝑖𝑛 ≠ 1, otherwise the sequence 𝑖𝑙 𝑎1 :: 𝑖𝑙 𝑎2 :: 𝑖𝑙 𝑠𝑒𝑐 .

A CPU that supports only speculative fetchingmay first complete

all microinstructions in 𝑎1, and then predict the result of 𝑡23 to

enable the execution of 𝑡25. As a result the PC speculatively fetches

the instruction at location 𝑠𝑒𝑐 although ∗𝑎𝑑𝑚𝑖𝑛 ≠ 1. The transition

yields the observation sequence 𝑖𝑙 𝑎1 :: 𝑖𝑙 𝑎2 :: 𝑖𝑙 𝑠𝑒𝑐 which was

not possible in the sequential model, thus violating the security

condition and leaking the value of 𝑠𝑒𝑐 via the instruction cache.

Intel’s lfence does not stop all microarchitectural operations,

like instruction fetching. For this reason lfence may be ineffective

against leakage via ICache. In fact, InSpectre reveals that placing a

lfence between 𝑡21 and 𝑡23 does not prevent the leakage: 𝑡22, 𝑡23, 𝑡25
are neither memory operations nor register stores, hence they can

be speculated before the execution of the lfence.

C.2 Spectre-BTB and Spectre-RSB
Two variants of Spectre attacks [9] exploit a CPU’s prediction mech-

anism for jump targets to leak sensitive data. In particular, Spectre-

BTB [32] (Branch Target Buffer) poisons the prediction of indi-

rect jump targets. To model this prediction strategy we assume

a function 𝑖 𝑗𝑚𝑝𝑠 (I) that extracts all PC stores resulting from the

translation of indirect jumps. This can be accomplished by making

the translation of these instructions syntactically distinguishable

from other control flow updates. As a result, prediction is possible

for all indirect jumps whose address is yet to be resolved: Namely,

pred𝐵𝑇𝐵 (I , 𝑠,C, F, 𝛿, 𝑃) =

{𝑡𝑎 ↦→ 𝑣 | 𝑡 ← 𝑐?𝑠𝑡 PC 𝑡𝑎 ∈ 𝑖 𝑗𝑚𝑝𝑠 (I) ∧ 𝑠 (𝑡𝑎)↑}

We do not restrict the possible predicted values 𝑣 , since an accurate

model of jump prediction requires knowing the strategy used by

the CPU to update the BTB buffer.

Spectre-RSB [35, 38] poisons the Return Stack Buffer (RSB),

which is used to temporally store the 𝑁 most recent return ad-

dresses: call instructions push the return address on the RSB,

while ret instructions pop from the RSB to predict the return tar-

get. A misprediction can happen if: (𝑖) a return address on the stack

has been explicitly overwritten, e.g., when a program handles a

software exception using longjmp instructions, or, (𝑖𝑖) returning

from a call stack deeper than 𝑁 , the RSB is empty and the CPU

uses the same prediction as for the other indirect jumps. We model

call and ret instructions via program counter stores. A call to
address 𝑏1 from address 𝑎1 can be modeled as

𝑎1 𝑙𝑑 R 𝑠𝑝

𝑡11

𝑡11 − 4

𝑡12

𝑠𝑡 R 𝑠𝑝 𝑡12

𝑡13

𝑎1 + 4

𝑡14

𝑠𝑡 M 𝑡11 𝑡14

𝑡15

𝑠𝑡 PC 𝑏1

𝑡16

The call instruction saves (e.g. 𝑡15) the return address (e.g. 𝑎1 + 4)
into the stack, decreases the stack pointer (e.g. 𝑡13), and jumps to

address 𝑏1 (e.g. 𝑡16).

A ret instruction from address 𝑎2 can be modeled as

𝑎2 𝑙𝑑 R 𝑠𝑝

𝑡21

𝑡21 + 4

𝑡22

𝑠𝑡 R 𝑠𝑝 𝑡22

𝑡23

𝑙𝑑 M 𝑡22

𝑡24

𝑡24

𝑡25

𝑠𝑡 PC 𝑡25

𝑡26

The instruction loads the return address from the stack (𝑡24), in-

creases the stack pointer (𝑡23), and returns (𝑡26).

We assume functions 𝑐𝑎𝑙𝑙𝑠 (I) and 𝑟𝑒𝑡𝑠 (I) to extract the PC

stores that belong to a call and ret respectively. Moreover, if

𝑡 ∈ 𝑏𝑛(𝑐𝑎𝑙𝑙𝑠 (I)), we use ret-ra(I , 𝑡) to retrieve name of the microin-

struction that saves the return address (e.g 𝑡15) of the corresponding

call. We model return address prediction as

pred𝑅𝑆𝐵 (I , 𝑠,C, F , 𝛿, 𝑃) =
{𝑡𝑎 ↦→ 𝑣 | 𝑡 ← 𝑐?𝑠𝑡 PC 𝑡𝑎 ∈ 𝑟𝑒𝑡𝑠 (I) ∧ 𝑠 (𝑡𝑎)↑ ∧

∃𝑡 ′ ∈ 𝑏𝑛(𝑐𝑎𝑙𝑙𝑠 (I)). 𝑡 ′ < 𝑡 ∧ 𝑠 (ret-ra(I , 𝑡 ′)) = 𝑣 ∧
RSB-depth(I , 𝑡 ′, 𝑡) ⊆ {1 . . . 𝑁 }}

Prediction is possible only for ret microinstructions 𝑡 that have

a prior matching call 𝑡 ′, provided that the size of intermediary

stack depth is between 1 and 𝑁 . We define the latter as the set

RSB-depth(I , 𝑡 ′, 𝑡) = {#(𝑏𝑛(𝑐𝑎𝑙𝑙𝑠 (I))∩{𝑡 ′ . . . 𝑡 ′′})−#(𝑏𝑛(𝑟𝑒𝑡𝑠 (I))∩
{𝑡 ′ . . . 𝑡 ′′}) | 𝑡 ′ ≤ 𝑡 ′′ < 𝑡}, where {𝑡 ′ . . . 𝑡 ′′} is an arbitrary contin-

uous sequence of names starting from 𝑡 ′ and ending before 𝑡 ′′, and
#(𝑏𝑛(𝑐𝑎𝑙𝑙𝑠 (I)) ∩ {𝑡 ′ . . . 𝑡 ′′}) and #(𝑏𝑛(𝑟𝑒𝑡𝑠 (I)) ∩ {𝑡 ′ . . . 𝑡 ′′}) count
the number of calls and rets in the sequence respectively. The

prediction consists in assuming the target address (e.g. 𝑡𝑎) of the

ret to be equal to the return address (e.g. 𝑣) that has been pushed

into the stack by the matching call.
In some microarchitectures (e.g. [?]), RSB prediction falls back

to the BTB in case of underflow, i.e., when returing from a function

with nested stack deeper than 𝑁 . This case can be modeled by

considering the prediction strategy pred𝑅𝑆𝐵/𝐵𝑇𝐵 defined as

pred𝑅𝑆𝐵
⋃{𝑡𝑎 ↦→ 𝑣 | 𝑡 ← 𝑐?𝑠𝑡 PC 𝑡𝑎 ∈ 𝑟𝑒𝑡𝑠 (I) ∧ 𝑠 (𝑡𝑎)↑ ∧

∃𝑡 ′ ∈ 𝑏𝑛(𝑐𝑎𝑙𝑙𝑠 (I)). 𝑡 ′ < 𝑡 ∧ RSB-depth(I , 𝑡 ′, 𝑡) = {1 . . . 𝑁 ′} ∧ 𝑁 ′ > 𝑁 }

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1868

The following example shows how jump target predictionmay vi-

olate the security condition. Consider the program *p:=&f; (*p)()
that saves the address of a function (i.e., &𝑓) in a function pointer

at constant address 𝑝 and immediately invokes the function. As-

suming that these instructions are stored at addresses 𝑎1 and 𝑎2,

their MIL translation is:

𝑎1 𝑠𝑡 M 𝑝 &𝑓

𝑡11

𝑠𝑡 PC 𝑎2

𝑡12

𝑎2 𝑙𝑑 M 𝑝

𝑡21

𝑡21

𝑡22

𝑠𝑡 PC 𝑡22

𝑡23

Example 5: *p:=&f; (*p)()

Because our semantics can predict only internal operations (see

rule Prd), the translation function introduces an additional internal

operation, i.e., 𝑡22 which allows predicting the value of the load 𝑡21.

Suppose that the function 𝑓 simply returns and the security

policy labels all data, except the program counter, as sensitive. The

program is secure (at the ISA level) as it always transfers control

to 𝑓 , producing the sequence of observations 𝑖𝑙 𝑎1 :: 𝑑𝑠 𝑝 :: 𝑖𝑙 𝑎2 ::

𝑑𝑙 𝑝 :: 𝑖𝑙 &𝑓 independently of the initial state.

Jump target prediction produces a different behavior. Let 𝜎0
be the state containing only the translation of the instruction in

𝑎1. Initially, pred𝐵𝑇𝐵 (𝜎0) is empty since the state contains no PC

updates (e.g. 𝑡12) that result from translating indirect jumps. The

CPU may execute and fetch 𝑡12, thus adding 𝑡21, 𝑡22, and 𝑡23 to

the set of microinstructions I . In the resulting state pred𝐵𝑇𝐵 is

{𝑡22 ↦→ 𝑣 | 𝑣 ∈ V }, since 𝑡23 models an indirect jump and 𝑡22 has

not been executed. The CPU can therefore predict the value of 𝑡22
without waiting for the result of the load 𝑡21. If the predicted value

is the address 𝑔 of the instruction 𝑟1:=*(𝑟2) the misprediction can

use 𝑔 as gadget to leak sensitive information.

𝑔 𝑙𝑑 R 𝑟2

𝑡31

𝑙𝑑 M 𝑟1

𝑡32

𝑠𝑡 R 𝑟1 𝑡32

𝑡33

In fact, the speculative semantics can produce the sequence of

observations 𝑖𝑙 𝑎1 :: 𝑑𝑠 𝑝 :: 𝑖𝑙 𝑎2 :: 𝑑𝑙 𝑝 :: 𝑖𝑙 𝑔 :: 𝑑𝑙 𝑣 , where 𝑣 is

the initial value of register 𝑟2. The last observation of the sequence

allows an attacker to learn sensitive data. Observe that this leak is

readily captured by the security condition, since such observation

is not possible in the sequential semantics.

C.2.1 Countermeasure: Retpoline. A known countermeasure to

Spectre-BTB is the Retpoline technique developed by Google [52].

In a nutshell, retpolines are instruction snippets that isolate indirect

jumps from speculative execution via call and return instructions.

Retpoline has the effect of transforming indirect jumps at address

𝑎2 of Example 5 as:

𝑎2 𝑙𝑑 R 𝑠𝑝

𝑡21

𝑡21 − 4

𝑡22

𝑠𝑡 R 𝑠𝑝 𝑡22

𝑡23

𝑎3

𝑡24

𝑠𝑡 M 𝑡21 𝑡24

𝑡25

𝑠𝑡 pc 𝑏1

𝑡26

𝑎3 𝑠𝑡 PC 𝑎3

𝑡31

𝑏1 𝑙𝑑 R 𝑠𝑝

𝑡41

𝑡41 + 4

𝑡42

𝑙𝑑 M 𝑝

𝑡43

𝑡43

𝑡44

𝑠𝑡 M 𝑡42 𝑡44

𝑡45

𝑠𝑡 PC 𝑏2

𝑡46

𝑏2 𝑙𝑑 R 𝑠𝑝

𝑡51

𝑡51 + 4

𝑡52

𝑠𝑡 R 𝑠𝑝 𝑡52

𝑡53

𝑙𝑑 M 𝑡52

𝑡54

𝑡54

𝑡55

𝑠𝑡 PC 𝑡55

𝑡56

Instruction at 𝑎2 calls a trampoline starting at address𝑏1 and instruc-
tion at 𝑎3 loops indefinitely. The first instruction of the trampoline

overwrites the return address on the stack with the value of at

address 𝑝 and its second instruction at 𝑏2 returns.

We leverage our model to analyze the effectiveness of Retpo-

line for indirect jumps. Since address 𝑏1 is known at compile time,

𝑡26 does not trigger jump target prediction. While executing the

trampoline, the value of 𝑡55 may be mispredicted, especially if the

load from 𝑝 has not been executed and the store 𝑡45 is postponed.

However, 𝑏2 is a ret, hence the value of 𝑡55 is predicted via pred𝑅𝑆𝐵 .
Since there is no call between 𝑎1 and 𝑏2, then prediction can only

assign the address 𝑎3 to 𝑡55 (i.e., pred𝑅𝑆𝐵 |𝑡55 ⊆ {𝑡55 → 𝑎3}). There-
fore, the RSB entry generated by 𝑎2 is used and mispredictions are

captured with the infinite loop in 𝑎3. Ultimately, when the value of

𝑡55 is resolved, the correct return address is used and the control

flow is redirected to the value in of ∗𝑝 , as expected.

Session 6C: Side Channels CCS '20, November 9–13, 2020, Virtual Event, USA

1869

	Abstract
	1 Introduction
	2 Security Model
	3 Formal Microarchitectural Model
	3.1 MIL Program Examples

	4 Out-of-Order Semantics
	4.1 States, Transitions, Observations
	4.2 Microinstruction Lifecycle
	4.3 Semantics of Single Microinstructions
	4.4 Operational Semantics

	5 Speculative Semantics
	5.1 Managing Microinstruction Dependencies
	5.2 Microinstruction Lifecycle
	5.3 Microinstruction Semantics

	6 Attacks and Countermeasures
	6.1 Spectre-STL
	6.2 New Vulnerability: Spectre-OoO

	7 Related Work
	8 Concluding Remarks
	Acknowledgments
	References
	A Security Condition
	B In-order Semantics
	C Attacks and countermeasures
	C.1 Spectre-PHT
	C.2 Spectre-BTB and Spectre-RSB

