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Abstract—Smart home devices collect and transmit user data
to smart home Trigger Action Platforms (TAPs) for processing
and executing automation rules. However, this data can also be
used to infer user activities or other sensitive information. In this
paper, we propose PTAP, a privacy-preserving approach based on
adversarial example attacks. PTAP injects targeted perturbations
into time-series sensor data, effectively confounding potentially
malicious TAP classifiers. Our approach significantly reduces
the chance of user activity recognition for a malicious TAP
while preserving the essential information for automation rule
execution, thus safeguarding TAP utility. We evaluated PTAP
using a real-world smart-home dataset and examined its effec-
tiveness in preserving utility through the execution of various
IoT applications. Our results demonstrate that PTAP effectively
preserves user privacy (reducing the accuracy of a malicious
classifier 91 to 6 percent) while maintaining automation rule
integrity, providing a practical and effective solution to protect
user privacy in smart-home environments.

I. INTRODUCTION

Smart home Trigger Action Platforms (TAPs), such as
Samsung SmartThings and Apple HomeKit, and more gen-
eral platforms like IFTTT, are becoming increasingly popular
among smart home users, boosting over 280 million users
globally [27]. These platforms allow end users to create
and execute customized automation rules, also called IoT
applications, in third-party cloud environments, thus providing
a seamless and user-friendly experience for managing smart
homes.

IoT applications are reactive applications that execute code
based on triggers and actions. For example, an IoT application
designed to manage users’ power consumption, such as ”When
the power rises above the specified threshold, turn off the
appliance(s) connected to the selected plug” [54], provides the
TAP platform with continuous access to the trigger pertaining
to a user’s power consumption, and executes the action of
turning off appliances. While this IoT application offers clear
utility to the user by assisting in managing power consumption,
it also poses privacy risks. Seemingly nonsensitive information
such as power consumption enables a malicious TAP to collect
the data provided by this specific application and to infer the
user’s daily activities, thus breaching the user’s privacy.

Unfortunately, these privacy risks are real. Recently, Sam-
sung SmartThings announced the SmartThings Context API
[27, 56] which leverages machine learning classifiers on
smart home data to offer inferences as new services for

users. Notably, they emphasized the platform’s potential in
using classifiers for home occupancy status and user con-
texts, including user activity recognition. While SmartThings
introduces inferences as a user feature, it can be viewed as a
significant privacy concern, given the potential misuse of such
inferred information by compromised or malicious TAPs. In
fact, a survey [26] with 40 smart-home end users shows that
47 % of them are concerned about household profiling, and
42 % are concerned about the sale of their data. Moreover,
major appliance manufacturers such as LG and Whirlpool have
found that fewer than half of their smart appliance owners have
connected their devices to the Internet, predominantly due to
privacy concerns [48].

Recent research has focused on different threat models
that target user privacy in TAPs [5], including malicious
app makers [6, 11], network eavesdroppers [4] [3], physical
environment attackers [31, 65], and untrusted TAPs [14, 15,
16, 51, 53, 68]. The latter threat model, which assumes the
TAPs are untrustworthy, is the most powerful and realistic
one because TAPs may share their data with third parties [55]
or get compromised [20]. A malicious or compromised TAP
with access to seemingly nonsensitive information, e.g., power
consumption, can infer sensitive user-specific information in-
cluding occupancy status and user identities [42, 66], vacation
habits [67], and household routines [8, 38, 63].

Figure 1 provides an overview of the TAP utility and the
associated privacy concerns in a smart home. The user sends
seemingly nonsensitive sensor data to the TAP to execute IoT
applications for utility. However, a compromised or untrusted
TAP can aggregate this data and extract sensitive inferences
using machine learning classifiers, posing a significant privacy
concern.

In this paper, we introduce the Privacy-preserving Trigger-
action Platform (PTAP) as a solution to address the potential
threat of untrusted TAPs in smart home environments. Unlike
previous studies, which focused on protecting sensitive data
points, PTAP considers the privacy of seemingly nonsensitive
aggregated data sets over time. As in our example, this data
can reveal personal behavior patterns and routines by means of
sensitive inferences such as home occupancy, daily activities,
and economic status. Specifically, we illustrate the PTAP
solution on experiments with real-world datasets focusing on
user activity recognition.
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Figure 1: IoT Application Privacy and Utility Concerns in a Smart Home TAP

Our key insight is the use of adversarial machine learning
in the face of malicious TAP classifiers. The design of PTAP
incorporates a privacy mediator, which serves as a trusted
intermediary between smart home devices and the TAP server.
The privacy mediator injects targeted perturbations into the
data stream, effectively confounding potentially malicious TAP
classifiers. Besides data perturbation, the privacy mediator also
acts as a filter, distinguishing between legitimate and fake
actions sent from the TAP server. Specifically, the privacy
mediator leverages local copies of IoT applications to identify
fake actions. Fake actions are elicited by emitting copies
of fake events to the local copies of IoT applications. The
resulting fake actions are then filtered out from the set of actual
actions, allowing their removal while passing genuine events
back to the IoT devices. By simultaneously employing adver-
sarial machine learning techniques for perturbation generation
and the filtering mechanism in the privacy mediator, PTAP
offers a robust solution for preserving user privacy and utility
in smart home TAPs.
We evaluated PTAP using the real-world Orange4Home
dataset [18]. Our experiments revealed that PTAP can con-
found activity recognition classifiers, reducing their accuracy
from 91 % to 6 % through the injection of noise, thereby
enhancing privacy. Based on our threat model, the privacy
mediator has no knowledge of the attacker classifier. Hence,
we tested the effectiveness of PTAP-generated noise against
unknown attacker classifiers in a black-box setting. Our exper-
iments demonstrate the transferability of adversarial examples
to unknown classifiers, reducing their accuracy from 93% to
4% and from 87% to 8%. Furthermore, our utility test on
sample IoT applications demonstrated that PTAP does not alter
legitimate TAP operations.

Contributions. The paper offers these contributions:

• PTAP design: We present PTAP, a Privacy-preserving

Trigger-Action Platform that safeguards user privacy by
emphasizing the protection of inferences drawn from aggre-
gated, seemingly nonsensitive data, rather than on individual
data points.

• Adversarial example attacks: We are the first to employ
adversarial example attacks for privacy preservation in the
smart home context. Our approach leverages targeted pertur-
bations generated to deceive unknown classifiers developed
with malicious TAPs in a black-box setting, effectively
preserving user privacy.

• Utility preservation: PTAP maintains the utility of the
smart home system by injecting perturbations as new event
data rather than modifying real data. The privacy mediator
filters out fake actions generated from perturbed data, allow-
ing only legitimate actions from real data to be executed in
the smart home environment.

• Seamless integration: PTAP seamlessly integrates into ex-
isting IoT platforms, app development processes, and infras-
tructure, requiring no modifications. Our solution ensures
privacy preservation without disrupting the functionality of
IoT applications.

The remainder of the paper is organized as follows: Sec-
tion II provides an overview of the smart-home architec-
ture, activity recognition, and adversarial example attacks. In
Section III, we define and formalize the research problem,
and present the threat model and design goals. Section IV
introduces PTAP and details the privacy mediator, as well as
how we have adopted the FGSM, JSMA, and UAP attacks
to our solution. Section V presents experimental results on
three attack methods and evaluates their effectiveness against
unknown classifiers in a black-box setting. In Section VI,
we discuss the strengths, limitations, and future research
directions of PTAP. In Section VII, we review related works,
and Section VIII concludes. PTAP and all experimental results



are publicly available on GitHub.1

II. BACKGROUND

A. Smart Homes

Smart homes integrate physical processes within homes
with digital connectivity to enhance comfort, efficiency, and
security. The key components in a smart home comprise (1)
IoT devices, (2) Smart home Trigger Action Platforms (TAPs),
and (3) IoT applications.

IoT devices. IoT devices are equipped with embedded sensors
and actuators that automate physical processes. Sensors gather
information about physical states and transmit it as data events
to the TAPs. These events are subsequently processed in
accordance with IoT applications, triggering the appropriate
actions on the relevant devices. Examples of these IoT devices
include smart thermostats, light bulbs, presence sensors, and
smart door locks.

Smart home trigger action platforms (TAPs). TAPs
manage the interactions of devices within the smart home
ecosystem, providing app-specific services. They allow users
to define reactive applications that respond to sensor data
events, generating action commands for respective devices.
Prominent examples of TAPs used in smart homes include
Apple’s HomeKit, OpenHAB, Samsung’s SmartThings, and
more generic platforms like IFTTT.

IoT applications. IoT applications are automation rules
created by users on TAPs. These applications process sensor
data and generate action commands for actuators. They enable
smart home automations, creating scenarios like ”When the
motion sensor detects motion at your door, turn on your
front door smart light”. Examples of IoT applications are
SmartApps and automations in SmartThings platform and
applets in IFTTT platform.

B. Activity Recognition

Activity recognition aims at identifying user activities
within a smart home, using data collected from various sensors
embedded in the environment. This task involves applying ma-
chine learning models, especially deep learning models [62].
These models are trained on sensor data that are labeled with
activities of interest. For instance, a model trained on user
data from a smart home environment can precisely identify
daily living activities such as cooking, sleeping, showering,
watching TV, and leaving home [36].

While user activity recognition has notable benefits, such
as aiding in ambient assisted living (AAL) to support elderly
people [9], it can also pose significant privacy risks in smart
homes. Specifically, an adversary who gains access to this
sensor data could potentially deduce sensitive information
about the residents of the home by recognizing user daily
living activities.

1https://github.com/mahmoudaghvami/ptap

C. Adversarial Examples

Despite the significant advances of deep neural networks
(DNNs) in tackling complex tasks, they exhibit notable suscep-
tibility to adversarial examples [57]. An adversarial example
is a slightly modified input, specifically designed to cause the
machine learning model to generate an incorrect output. Given
a classifier, f , that consistently produces the correct label for
an input vector, x, an adversarial vector x′ that is similar to
x can be defined as: f(x) = y, f(x′) = y′, and y 6= y′.

In this context, the adversarial vector x′ is crafted such
that it leads the classifier f to produce a different label y′

from the correct label y of the original input vector x. In
a typical scenario for the generation of adversarial example
x′, a perturbation vector η is added to the original input x,
such that x′ = x + η. The adversarial example x′ and the
original input x preserve a predefined distance. This ensures
that the perturbed input is similar enough to the original one
to be considered a valid input, while being different enough
to mislead the classifier.

Many techniques have been proposed for generating ad-
versarial examples, among which Fast Gradient Sign Method
(FGSM) [23] and Jacobian-based Saliency Map Attack
(JSMA) [45] are two of the most popular ones. Additionally,
universal adversarial techniques [39] allow for perturbations
that are effective against a wide range of inputs, further
expanding the potential of adversarial techniques.

While adversarial examples are traditionally viewed as a
form of attack against classifiers within adversarial machine
learning literature [10, 23, 28, 45, 57], they can also serve as a
powerful defense mechanism against an adversary’s classifier
in the context of smart home TAPs. Research by Papernot
et al. [44] shows the transferability of adversarial examples
across different classifiers, including classifiers trained with
diverse datasets. This suggests that adversarial attacks can be
effectively utilized in black-box settings, where the adversary’s
classifier is unknown.

III. ACTIVITY RECOGNITION PROTECTION

This section defines the problem of activity recognition
protection in smart home TAPs that preserve utility.

A. Problem Setting

Data sources. Smart homes use a variety of sensors for data
capture. Zheng et al. [69] classify smart home data sources
into three categories: sensory data, multimedia data, and user
interaction data. Privacy concerns often deter smart home
users from installing video cameras in private spaces[40],
making camera sensors for activity recognition typically un-
acceptable [59]. Given these insights, our research primarily
tackles privacy issues related to sensitive inferences steming
from seemingly nonsensitive sensory data and user interaction
data, excluding those pertaining to multimedia data. Sensory
data in smart homes fall into three groups: numerical (e.g.,
temperature, humidity), binary (e.g., door status, motion sensor
readings), and categorical data (e.g., heater set-points with
possible values 16, 19, 21).

https://github.com/mahmoudaghvami/ptap


Inferences. A smart home trigger-action platform allows
for various inferences from sensory and user interaction data,
including activity recognition, economic status prediction, and
home occupancy identification. Given the vast amount of
sensed data in smart homes, manual reviews to extract infer-
ences are impractical and inefficient, especially for attackers
seeking to profile users and invade their privacy. Thus, we as-
sume attackers use machine learning algorithms, such as deep
neural networks [25], to extract sensitive inferences for user
profiling. We specifically focus on user activity classification
as a sensitive inference that has the potential to violate user
privacy. We consider all classes of user activities to be sensitive
in our setting. Additionally, we assume that each time interval
corresponds to a single activity class, without any overlapping
activities within a given interval.

Privacy. Two levels of privacy pertain to our research prob-
lem: Ideal Privacy and Relative Privacy. Ideal Privacy refers to
the scenario where all data samples that are deemed sensitive
according to user privacy preferences are misclassified by
the attacker’s classifier. This level of privacy ensures that
none of the sensitive information is successfully inferred by
the attacker. However, achieving ideal privacy in real-world
scenarios can be challenging.

Relative Privacy is a level of privacy preservation in which
the attacker’s classifier can correctly detect a limited number
of sensitive samples. The disclosure budget, determined by
the user, sets the acceptable threshold for the percentage of
correct classifications by the attacker’s classifier. Any correct
classification above this threshold is considered a privacy
violation. This approach offers a practical and realistic means
of privacy preservation.

Utility. The primary utility for users in a smart home TAP
is the correct execution of their IoT applications. Utility is
of paramount importance as any compromise can have irre-
versible effects and potentially endanger the safety of physical
environment. In this paper, our proposed solution preserves the
correct execution of IoT applications.

B. Threat Model

Following previous research [14, 15, 16], our threat model
considers an untrustworthy TAP. In this setting, the TAP is
either compromised or malicious, and employs deep-learning-
based classifiers to infer sensitive information from user data.
We assume a malicious TAP that has developed an activity
recognition classifier, which assigns activity class labels to
each time interval. However, our solution is independent of
the specific classifier and can be applied to other types of
classifiers, e.g., economic status prediction or home occupancy
detection, based on smart home sensory data and user interac-
tions. Because our adversary is a malicious TAP, we have no
knowledge about the deep-learning model. We therefore view
the adversary classifier as a black box.

Our threat model does not consider attacks such as denial of
service, automation rule integrity, and action integrity attacks.
Additionally, we assume that a single data is nonsensitive

for the user and focus on sensitive inferences derived from
aggregated user data. We also assume that IoT devices, smart
home hubs, and communication channels between the TAP and
the smart home are trustworthy. In fact, the TAP represents
the most attractive target for adversaries to compromise, as it
aggregates data from multiple users.

C. Design Goals

To achieve privacy and utility in the smart home TAP envi-
ronment, while minimizing changes to the TAP architecture,
we formulate our design goals as follows:
Privacy goal. We aim to preserve relative privacy by limiting
the number of correct classifications made by the attacker’s
classifier on data samples. The disclosure budget, defined by
the user, sets the acceptable threshold for the percentage of
correct classifications. Any correct classification above this
threshold is considered a privacy violation.
Utility goals. To ensure the practicality and effectiveness of
our solution, we have defined the utility goals:

1. Preservation of existing TAP architecture: We aim to
keep the existing TAP software stack, smart home hubs, and
IoT devices intact. Making changes or adding new software
plugins to these entities can present significant barriers and
complexities in real-world implementations. Our approach
focuses on empowering users to preserve their privacy locally,
without requiring changes in commercial TAPs or IoT devices.

2. Preservation of IoT application execution: We ensure
that data perturbation does not compromise the correctness
of IoT application execution. The objective is to uphold the
functionality of IoT applications even with injected noise.
This means that all expected IoT applications should run
without any disruptions, and no unintended or extraneous IoT
application actions should be executed due to injected noise.

3. No impact on IoT application development: Our solution
aims to integrate seamlessly with existing IoT application
development processes, allowing users to continue using their
current IoT applications without modifications or adaptations.

D. Formalization of Problem Definition

In our setting, we use a set S of m sensors, with each sensor
written as si ∈ S. A data event, denoted as ei = (s, v, t),
represents a sensor reading. Here, s ∈ S refers to the sensor
from which the reading originates, v ∈ Domain(s) is the value
of the sensor reading in its domain, and t ∈ T is the time of
the event.

Definition 1: (Aggregated data samples)
Xi ∈ X,Xi = [ti, x1, x2, x3, ..., xm]
Xi.se = [x1, x2, x3, ..., xm], Xi.t = ti
Here, Xi represents an element of the set X and denotes an
aggregated data sample corresponding to the time window ∆T
starting at ti. Xi consists of a start time ti and m elements,
with each element xj (where 1 ≤ j ≤ m) representing the
value of the last read event from the respective sensor. If there
is an updated value from the corresponding sensor within the
∆T time window, the updated value is assigned to xj . If there
is no updated event from the corresponding sensor within the



∆T time window, then xj is set to the previous value that has
been read from the corresponding sensor.

Definition 2: (Data set)
D = {(X1, y1), (X2, y2), ..., (Xn, yn)}, where Xi ∈ X and
yi ∈ L
D represents a set consisting of n pairs of Xi and yi.
Each pair in D consists of Xi, which represents the smart
home aggregated data sample, and yi, which represents the
corresponding user activity class label. Importantly, there is
only one activity per data sample. The data set D is dynamic
and continually growing, as new smart home samples and user
activity class labels are added. Each yi is an element of L, the
set encompassing all possible user activity classes.

Definition 3: (TAP deep learning classifier model)
f(·) : X → L
We define the TAP deep learning classifier model as a function
f(·) that maps an input space X (n-dimensional vectors
representing smart home data samples within a specific time
window) to an output space L (set of labels corresponding
to the predicted activity class for the given time window).
Essentially, this formalizes the TAP model’s role in utilizing
deep learning techniques to predict activity classes based on
smart home data samples.

Definition 4: (Ideal privacy)
∀ (Xi, yi) ∈ D, if yi ∈ Sensitive Activities, then
∃ X ′i , f(X ′i) = y′i and yi 6= y′i and ||X ′i −Xi||p ≤ ε

This definition asserts that for every pair (Xi, yi) in the
dataset D, where yi is a sensitive activity, there exists a
perturbed version X ′i that the TAP deep learning model
misclassifies as y′i (with yi 6= y′i). Additionally, X ′i must be
close to Xi within a specified ε distance in the p-norm sense.

Definition 5: (Relative privacy)
∀ (Xi, yi) ∈ D, if yi ∈ Sensitive Activities, then
∃ X ′i, P r(f(X ′i) 6= yi) ≥ 1− b and
||X ′i −Xi||p ≤ ε

where b is the disclosure budget.
This definition states that for every pair (Xi, yi) in the

dataset D, there exists a perturbed version X ′i such that the
TAP deep learning model misclassifies as y′i (with yi 6= y′i)
with a probability of 1 − b, where b is the disclosure budget
defined by the user. Moreover, X ′i should remain close to Xi

within a specified ε distance.
Definition 6: (Utility function)

U : En × T × T → P (A)
The utility function U maps each sequence of events, e. g.,
“se ∈ En occurring within a time-interval [t1, t2]”, to a subset
of actions from A. These actions denote the result of IoT
application executions for the given sequence of events se at
this time interval.

Definition 7: (Utility preservation)

∀ (Xi, yi) ∈ D, U(Xi.se,Xi.t,Xi.t+ ∆T )

= U(X ′i.se,X
′
i.t,X

′
i.t+ ∆T ),

where X ′i is a perturbed sample data of Xi

For each data sample Xi ∈ D, the utility is preserved if the
actions generated by the real events are also generated by the
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perturbed events (the mix of real and injected fake events),
and no spurious actions are generated by fake events. Without
any precaution, we may have extra actions that are triggered
by the fake events. Therefore, we filter the fake actions to
keep only actions from real events. In this way, soundness
and completeness of IoT applications (utility) is guaranteed.

IV. PTAP PLATFORM

In this section, we discuss the PTAP architecture and detail
our technical solution to employ adversarial example attacks
to protect users’ sensitive information.

A. Architecture Overview

Our Privacy-preserving Trigger-Action Platform (PTAP) is
designed to address privacy concerns while maintaining the
utility of smart home TAPs, without requiring any modifica-
tions to existing TAPs, IoT hubs, or IoT application develop-
ment practices. The privacy mediator is the main module in
our architecture that generates the perturbation (see Section
IV-C) and filters fake actions (see Section IV-D) based on the
received data stream. Figure 2 displays the PTAP architecture,
illustrating the interactions among the IoT devices, privacy
mediator, TAP server, and user client.

The overall process comprises six steps (see Figure 2):
a) IoT application setup: By using the TAP interface, the

user set up a new IoT application. This includes selecting a
trigger, and an action, defining the fields for the trigger and
action, and constructing the logic of the application.

b) Sharing IoT applications and privacy preferences with the
mediator: During the application setup phase, the user shares
the combination of triggers, actions, and application logic that
form an IoT application with the privacy mediator through the
user client. Additionally, the user defines privacy preferences
(see Section IV-B) by selecting sensitive activity classes and
communicating them to the privacy mediator device.

c) Transmission of new events from the IoT device to the
privacy mediator: IoT devices periodically generate data events



(stemming from environmental changes within the house, such
as temperature fluctuations, or user activities and interactions
with devices, like activating a smart light) and forward them
to the privacy mediator.

d) Injection of perturbation and forwarding to the TAP
server: Based on user privacy preferences, the privacy mediator
generates targeted perturbations for event data (as explained
in Section IV-C) and sends the perturbed events to the TAP
server.

e) Execution of IoT applications and sending of action
commands: The TAP server processes the received perturbed
events and, upon executing the IoT applications, dispatches
action commands back to the privacy mediator.

f) Filtering of fake action commands and transmission of
real actions to devices: The privacy mediator filters out fake
action commands generated from the perturbed data and sends
the real action commands to the IoT devices for execution.

By following this process, PTAP enables users to control
their sensitive information and safeguard their privacy while
still benefiting from the functionality of smart home TAPs.

B. User Privacy Preferences

As IoT environments continue to grow, privacy by design
principles have not been sufficiently integrated into the ma-
jority of commercial and open-source smart home platforms.
Consequently, users lack the ability to specify their privacy
preferences [29]. We aim to bridge this gap by defining privacy
preferences from the viewpoint of potentially sensitive user ac-
tivities, simplifying privacy management for non-expert smart
home users. In PTAP, users select their privacy preferences
from their potential user activities. In line with existing works
on Human Activity Recognition (HAR) systems [18, 36, 37],
we have chosen the list of these activities, as displayed in
Table I. This empowers users to control their sensitive activies,
enhancing their ability to safeguard their personal privacy.

C. Data Perturbation via Adversarial ML

PTAP protects users’ privacy by preventing sensitive infer-
ences through the use of adversarial example attacks. Ad-
versarial example attacks involve an attacker compromising
the accuracy of a classifier by injecting a small perturbation
into the input data, leading to incorrect classification results.
In PTAP, we employ a similar strategy by injecting minor
perturbations into smart home data, thereby deceiving mali-
cious TAP classifiers attempting to identify users’ daily living
activities, which would otherwise violate their privacy. As
noted in Section II-C, the majority of research on adversarial
example attacks has focused on image processing, and there
are unique challenges associated with applying these attacks
to smart home contexts for privacy preservation:

Challenge 1 Modification of smart home data is not allowed,
as the utility derived from executing IoT applications is critical
and essential for smart home users. In fact, the compromise
of utility in a smart home could result in safety violations in
the physical environment, such as leaving a smart lock on the

main door open or a smart oven turned on. Consequently, each
individual data event sent to the TAP must remain unaltered.

Challenge 2 Unlike image processing contexts where all
features share the same domain (e. g., 0 to 255 for all im-
age pixels), smart homes involve different sensor types with
entirely distinct domains, including binary sensors, categorical
sensors, and numerical sensors. Therefore, any perturbations
must occur within each feature’s specific domain.

Challenge 3 Unlike image processing scenarios where the
image is provided from the beginning, smart home data is
time series data that grows over time, influenced by both user
activities and environmental changes. Since the data content
is not static from the start, the dynamic nature of user data
necessitates that perturbations are both adaptive and responsive
to changes in the data as it evolves.

To address these challenges, PTAP incorporates three adver-
sarial example attack methods: FGSM, JSMA, and Universal
Adversarial Perturbation (UAP). Each method employs dis-
tinct strategies: FGSM focuses on minimizing the amount of
perturbation, JSMA aims to minimize the number of perturbed
sensors, while UAP strives to generate perturbations that are
universally applicable across multiple inputs. We evaluate the
effectiveness of each method in preserving user privacy in
our experiments in Section V. To ensure the preservation of
utility, PTAP injects only new perturbation points into the
data streams to the TAP, while keeping the real data points
unaltered. Moreover, to ensure that perturbations fall within
each sensor’s domain, we adapt the generated perturbation
for each sensor type accordingly. For numerical sensors, we
apply the sensor’s range; for categorical sensors, we choose the
nearest possible value to the calculated perturbation; and for
binary sensors, we toggle the previous value if a perturbation
is needed.

1) Adversarial Setting:
Untargeted adversarial examples. In our privacy preserva-
tion framework, untargeted adversarial examples are used to
subtly perturb the TAP classifier. These perturbations aim to
disrupt the accuracy of the TAP’s activity recognition classifier
without forcing a specific incorrect classification label, thereby
maintaining user privacy.

Black box setting. In line with our threat model, the TAP
classifier is considered a black box for the privacy mediator,
meaning the privacy mediator has no knowledge of the ma-
chine learning algorithm’s architecture and hyper-parameters.
Utilizing the transferability feature of adversarial example
attacks, we compute perturbations based on a surrogate model
within the privacy mediator. The results of our transferability
tests, which detail the effectiveness of these perturbations, are
discussed in Section V-C.
L∞ and L0 metrics. To measure the similarity between

the perturbed vector x’ and the original vector x, we use two
distance metrics that have been extensively used in adversarial
example attacks. The Lp distance is ‖x− x′‖p, where the p-
norm ‖.‖p is defined as:



‖x‖p = (
∑
i

|xi|p)
1
p

The L∞ distance measures the maximum change to any of
the coordinates:

‖x− x′‖∞ = max(|x1 − x′1|, . . . , |xn − x′n|)

For vectors, we can imagine there is a maximum budget and
each feature is allowed to change up to this limit, with no
restriction on the number of features that can be modified [10].
In our work, we employ the L∞ norm for the FGSM algorithm
and UAP, focusing on the maximum perturbation allowed for
any single sensor.

The L0 distance measures the number of coordinates i for
which xi 6= x′i. In other words, the L0 distance corresponds to
the number of features that have been altered in a vector [10].
In our work, we use the L0 norm for the JSMA algorithm,
aiming to minimize the number of perturbed sensors.

2) Fast Gradient Sign Method (FGSM): The Fast Gradient
Sign Method (FGSM) [23] is a popular and computationally
efficient adversarial attack technique that aims to maximize
the adversarial perturbation by manipulating the input data.
By utilizing the L∞ norm, FGSM measures the maximum
change to any of the features. Algorithm 1 presents the adopted
FGSM. Initially, the target classifier, denoted by f , is the
malicious TAP classifier. Subsequently, a target input data
vector, Xi, is the smart home data within a specific time
window.

In the first step, the algorithm masks Xi using the set of
updated sensors, US, within a ∆t time window. This step
masks the features related to these updated sensors, preventing
them from undergoing any alteration. As a result, the algorithm
produces a masked vector, Xm

i .
Next, the algorithm computes the gradient of the loss

function concerning the input data, sign(∇xJf(Xm
i , f)). In

order to generate a perturbation, FGSM multiplies the sign of
this gradient by a small constant, ε. This perturbation is then
added to the masked input data vector to produce a perturbed
input data vector, X ′i .

Lastly, the algorithm conducts a domain adaptation on
the perturbation. This critical step ensures the perturbation
remains within the allowable domain of each feature, thereby
maintaining the validity of the data for TAP.

3) Jacobian-Based Saliency Map Attacks (JSMA): The
Jacobian-based Saliency Map Attack (JSMA) [46] is a targeted
adversarial attack that modifies the most critical features in the
input data, hence minimizing the number of altered features.
This approach employs the L0 norm to quantify the number of
non-zero elements in the perturbation vector, emphasizing the
importance of minimizing feature perturbation. In the smart
home context, as presented in Algorithm 2, we consider f as
the malicious TAP classifier and Xi as the target input data
vector, denoting the vector of smart home data within a specific
time window.

The algorithm begins by masking Xi with the set of sensors
updated within the ∆t time window, referred to as US. This

Algorithm 1 Adopted FGSM

Input: Data set D containing data sample Xi, activity recog-
nition classifier f , maximum perturbation ε, number of
iterations n, batch size batch_size, sensor domains
SD, set of updated sensors US within ∆t time window

Output: Perturbed data sample X ′i
1: for t = 0 to n do
2: Select a batch of batch_size data samples from D,

denoted by Xbatch

3: for each sample Xi in Xbatch do
4: Xm

i = Mask(Xi,US)
5: η = ε · sign(∇xJf (Xm

i , f))
6: X ′i = Xm

i + η
7: X ′i = Domain adoption(X ′i, SD)
8: end for
9: end for

10: return X ′i

step leads to the creation of the masked vector, Xm
i , which

keeps the associated features unaltered.
Our adversarial strategy primarily follows an untargeted

approach; however, JSMA necessitates the designation of a
target class for the execution of the attack. To meet this re-
quirement, we select a target class randomly for each iteration.
During each of these iterations, if the classifier’s output does
not match the target classification, ytarget, and the number of
perturbations is less than the predefined maximum, k, the
algorithm computes the gradient of the classifier’s output with
respect to the input data. This gradient informs the saliency
map which ranks each feature’s importance.

Using the saliency map, the top k features with the highest
saliency scores are selected for perturbation. The algorithm
perturbs these features and re-evaluates the perturbed input
data vector, X ′i , against the classifier. If the classifier’s output
aligns with the target classification or the maximum number of
perturbations has been attained, the algorithm applies a domain
adoption function on the perturbation. This step assures that
the perturbation is within the acceptable range of sensor
values.

4) Universal Adversarial Perturbation (UAP): Universal
Adversarial Perturbation (UAP) [39] is a type of adversarial
attack that aims to generate perturbations that are universally
applicable across multiple inputs. Unlike FGSM and JSMA,
which produce input-specific perturbations, UAP seeks to
create a single perturbation vector that, when applied to any
input, causes the classifier to produce incorrect prediction.
This unique characteristic enables the generation of a one-
time perturbation that can be universally applied. This is
particularly valuable for smart home data that initially is
neither complete nor fixed, but it continuously evolves over
time due to user activities and environmental changes.

Within the PTAP framework, as depicted in Algorithm 3,
the UAP is initially computed using a subset of the data.
This universal perturbation is then applied to subsequent data



Algorithm 2 Adopted JSMA

Input: Data set D containing data sample Xi, activity recog-
nition classifier f , set of class labels L, target classification
ytarget, maximum perturbations k, number of iterations
n, batch size batch_size, sensor domains SD, set of
updated sensors US within ∆t time window

Output: Perturbed data sample X ′i
1: for t = 0 to n do
2: Select a batch of batch_size data samples from D,

denoted by Xbatch

3: for each sample Xi in Xbatch do
4: ytarget = randomly select an element from L
5: Xm

i = Mask(X ′i,US)
6: X ′i = Xm

i

7: while (f(X ′i) 6= ytarget and
8: number of perturbations < k) do
9: gradient =

∂f(X′
i)

∂X′
i

10: S = SaliencyMap(gradient)
11: F = TopFeatures(S)
12: X ′i = Perturb(X ′i, F )
13: end while
14: X ′i = Domain adoption(X3

i 2m,SD)
15: end for
16: end for
17: return X ′i

samples. Given that UAP is universally applicable, this per-
turbation is particularly beneficial in scenarios where we seek
real-time perturbation, without imposing delays in transferring
the events of a time-window. In this scenario, we apply the
pregenerated universal noise in real-time while simultaneously
sending new real data events to TAP.

D. Utility Preservation

A key requirement in applying adversarial example attacks
in smart home data is the importance of utility. As mentioned
before, smart home utility directly affects the physical envi-
ronment; therefore, compromising the utility in some cases
can cause safety violations. PTAP ensures that no real data is
perturbed by only injecting new events as perturbations while
filtering out all fake actions received from the TAP.

When the privacy mediator receives events from an IoT
device, it forwards them unchanged to the TAP server. For
FGSM and JSMA attacks, PTAP computes the perturbation
at the end of each time window and injects it as new data
to the TAP. For UAP, PTAP injects a pre-generated universal
adversarial example in real time. As a result, the TAP receives
perturbed data and executes IoT applications based on it. Since
the original data remains unperturbed, the real actions are
preserved.

However, the TAP will also execute IoT applications based
on generated fake data, and the mediator will receive the result
of these executions (fake actions). To address this challenge,
we employ a filtering mechanism in the privacy mediator that
detects and filters the received fake actions while allowing

Algorithm 3 Adopted Universal Adversarial Perturbation
(UAP)

Input: Data set D containing data sample Xi, classifier f , L∞

norm of the perturbation ξ, desired accuracy on perturbed
samples δ, set of updated sensors US within ∆t time
window

Output: Universal perturbation vector v
1: Initialize v ← 0
2: while Err(Xv) ≤ 1 - δ do
3: for each data point xi in D do
4: xmi = Mask(xi,US)
5: if f(xmi + v) = f(xmi ) then
6: Compute the minimal perturbation that sends
xmi + v to the decision boundary:

∆vi ← arg min
r
‖r‖2 s.t. f(xmi + v + r) 6= f(xmi )

v ← Pp,ξ(v + ∆vi)

v ← Domain adoption(v,SD)

7: end if
8: end for
9: end while

10: return v

the real actions to pass. When the mediator creates fake
event data through adversarial techniques and sends it to the
TAP, the filtering mechanism determines if the generated fake
data is associated with the input trigger of any installed IoT
applications.

The privacy mediator uses the local copies of IoT appli-
cations to generate all potential actions locally. It therefore
knows what actions are generated by fake events. When
receiving the actions from TAP, the privacy mediator compares
the received action with the list of expected fake actions.
Through this mechanism, the privacy mediator can filter out
all of the fake actions and only pass the real actions. In
cases where the generated fake data causes an IoT application
to trigger an action, the action obtained by executing the
application locally with the generated fake data matches the
action from the TAP, allowing it to be filtered.

There are two key points that help the filtering mechanism
to achieve good performance and accuracy. First, the TAP
should preserve the order of execution of IoT applications and
forward responses based on the order of event data that has
been received [22]. This order can help the mediator to predict
the expected order of fake actions from the TAP. However, if
the order of received actions from TAP changes, e.g., due to
network interruption or discrepancy in computation time of
different IoT applications, the mediator will still filter out the
correct fake action. This is because the mediator runs the IoT
application with the fake data locally and has the exact fake
action as the result of local execution.

Second, for the sake of the filtering mechanism, the me-
diator only needs to run the IoT applications related to the



generated fake data, and there is no need to execute a local
copy of the applications with the real data. With this assump-
tion and the fact that we minimize the number of required
perturbed features with the JSMA algorithm, we only have a
small number of perturbed features during each time window
(for example, less than 10 percent of all possible IoT devices)
that need possible local execution for detecting the fake action.
This significantly reduces the local execution overhead outside
of the TAP server.

E. Running example
Here, we describe a running example application, which

progresses through steps of our architecture process (see
Section IV-A). We present abridged data vectors here; the
complete data vectors of our example are available in our
public repository.
Step a: IoT application setup. Our example IoT application
involves the logic ”When the voltage rises above the specified
threshold, turn off the appliance(s) connected to the selected
plug”. The user sets up this application by selecting the trigger
based on kitchen cooktop voltage data, choosing the action
to turn off the cooktop connected to the selected plug, and
defining a threshold of 240 volts for the IoT application.
Step b: Sharing IoT applications and privacy preferences
with the mediator. The user shares the IoT application with
the privacy mediator through the user client. Additionally,
the user defines privacy preferences by selecting specific
activity classes from the provided list of potential activities as
sensitive. In our example, the user has identified the activity
classes ’Cooking,’ ’Entering home,’ and ’Leaving home’ as
sensitive.

Step c: Transmission of IoT events to the privacy media-
tor. IoT devices periodically generate data events representing
environmental changes and user interactions in the smart
home. These events are then forwarded to the privacy mediator
for processing.
Step d: Injecting perturbations. The original input data to
step d comprises sensor data points, including cooktop voltage
readings. In this example, the aggregated data reading of time
window t is (0, 0, 21, . . . , 238.25, . . . ). In the current time
window, the privacy mediator receives updated data for some
sensors and aggregates them with the last received values of
other sensors. This process results in a 196-element vector
that presents the updated status of the smart home, reflecting
the user’s current activity of cooking. The last updated value
for the cooktop voltage is 238.25, which was received in the
previous time window.

During this step, the running JSMA attack method is em-
ployed to perturb the data. With the gamma attack parameter
set to 0.01, which means 20 sensor data points will be
perturbed among 196 sensor data points. After perturbation,
the 20 sensor data points have been perturbed and sent to the
TAP, resulting in the aggregated data vector for time window
t as (0, 0, 21, . . . , 240.57, . . . ), where the perturbed value for
cooktop voltage has increased to 240.57 and has been sent to
the TAP.

The TAP receives data points and attempts to predict the
user activity based on the received data. Since adversarial
perturbation has been injected, the TAP classifier is misled
in predicting user cooking activity, thereby preserving user
privacy.

Step e: Executing the IoT application.
In this step, based on the normal functionality of TAP,

the IoT applications are executed with the input of received
data points. Considering our running example, the application
involves monitoring cooktop voltage and taking action when it
surpasses a specified threshold (240.0). The last received data
for the cooktop voltage is 240.57. In our example case, when
the cooktop voltage exceeds the threshold of 240 volts, the
application triggers the action of turning off the cooktop con-
nected to the selected plug, which is considered an unwanted
fake action.

Step f: Filtering fake actions.
Following the execution of the IoT application with the

perturbed data, the privacy mediator filters out any fake
action commands generated from the perturbed data. In our
example scenario, this means identifying and disregarding the
fake action commands of turning off the cooktop due to the
perturbed cooktop voltage. The privacy mediator has access
to the IoT applications and runs the applications that have
a trigger of perturbed data. In our example, the application
will be executed with perturbed data input of 240.57 volts
and will yield a fake action result of ”turn off the cooktop
connected to the selected plug”. Then the privacy mediator will
wait to receive the predicted fake action by the TAP and then
drop it. By effectively filtering out fake actions, the privacy
mediator ensures that only genuine actions, based on real data,
are executed within the smart home environment.

V. EVALUATION

We evaluate PTAP by addressing the following research
questions:

RQ1: How successful is PTAP in preserving user privacy
by misleading TAP classifiers and hiding sensitive inferences?
How do FGSM, JSMA, and UAP attack methods compare in
this context?

RQ2: How effective is PTAP in a black-box setting against
an unknown classifier with different architecture and hyperpa-
rameters?

RQ3: How effective is PTAP in preserving user utility in
terms of IoT application execution?

RQ4: What is the computational overhead and network cost
associated with PTAP?

To answer these research questions, we established a com-
prehensive evaluation process. In the role of a malicious TAP,
we developed three different activity recognition classifiers
that represent the TAP’s intent to infer user activities. On the
other hand, we designed a privacy mediator leveraging FGSM,
JSMA, and UAP methods to generate adversarial perturbations
and perturb smart home data. Our evaluation of the efficacy
of deceiving the TAP classifier by injecting targeted noise



provides insights into the comparative effectiveness of these
methods.

For RQ2, we evaluated the transferability of adversarial
examples generated by the privacy mediator on two unknown
black-box classifiers of the malicious TAP. In this setting, we
assumed the privacy mediator has no knowledge about the
attacker’s classifier, and it is up to the attacker to choose
an effective unknown attack model against the privacy me-
diator. This was done to emphasize the generality of PTAP’s
approach, regardless of the adversary’s choice in user-activity
classifiers. Specifically, we assessed how successfully PTAP
could operate against classifiers with different architectures
and hyperparameters, ensuring that PTAP-generated perturba-
tions are robust against a variety of potential attack models.

For RQ3, we analyzed the ability of PTAP to preserve user
utility in terms of IoT application execution. We evaluated this
by comparing the functionality and performance of selected
IoT applications with and without the presence of PTAP.

Lastly, for RQ4, we evaluated the computational and net-
work overheads of the PTAP. Two primary metrics were
considered: the time taken for each attack execution, and the
number of events injected for each run.

A. Experimental Setup

Dataset: For our experiment, we used the Orange4Home
dataset [18], which includes approximately 180 hours of
recorded daily living activities of a single smart home user
over four consecutive weeks of workdays, from 8 AM to 6 PM.
The dataset was collected in a smart apartment equipped with a
total of 236 sensors distributed across various rooms, including
the entrance, kitchen, living room, toilet, staircase, walkway,
bathroom, office, and bedroom. These recordings were made
with the OpenHAB platform [41], a prominent open-source
TAP in the IoT community. The sensors were designed to
measure different parameters, such as temperature, humidity,
CO2 levels, noise, lighting, energy consumption, and water
consumption, along with switch devices and specific sensors
like fridge and oven sensors in the kitchen and bed pressure
sensors in the bedroom.

The full dataset contains 745,782 events. Each event is
represented by three attributes: timestamp, item name, and
value, indicating an update from an IoT device within the
house. We excluded data from 40 global sensors; a majority of
these sensors were related to external weather conditions and
were not directly tied to the internal smart home environment
sensors. We further preprocessed the dataset and created a
merged data table with one row of data per minute, assuming
that the TAP classifier needs to aggregate data for the activity
recognition task. As part of the preprocesisng, we filled any
missing data readings during each sample with the sensor’s
last updated value.

Table I details the Orange4Home dataset, presenting the
number of instances in each of the 24 activity classes for the
first iteration, where the initial three weeks form the training
set and the fourth week makes up the testing set. Apart from
these 24 activity classes, we introduced an “inter-activity”

class to denote the indefinite periods between two activity
classes.

Activity recognition classifier: We designed a 1D-CNN
activity recognition classifier to identify the activity class label
for each time window in the smart home sensor data. To reflect
common practices in activity recognition, we segmented the
data flow into regular 60-second time windows as suggested by
Kasteren et al. [60], a practice also endorsed by several other
studies [24, 34]. Our classifier then assigned an activity label
to each time window. To evaluate our model, we applied 4-
fold cross-validation, as we have four weeks of recorded data.
In each iteration, three weeks were used for training, and one
week was reserved for testing. This approach aligns with the
previous study that introduced an activity recognition classifier
for the Orange4Home dataset [36]. Our classifier achieves an
average accuracy of 91.72 % for 4-fold cross-validation.

IoT applications: To assess PTAP’s impact on user utility,
we selected five IoT applications, each representing a distinct
category of smart home sensors in our dataset. These appli-
cations included smart lighting, temperature monitoring, door
sensing, power consumption tracking, and an environmental
sensing application.

Hardware: The entire evaluation process was conducted on
a computer equipped with 31 GiB of RAM and an Intel(R)
Xeon(R) CPU E5-2630 v2 with 24 cores operating at 2.60
GHz, ensuring seamless execution of the evaluation tasks.

Table I: Activity class distribution in the first iteration of the
Orange4Home dataset, split into three weeks of training and
one week of testing.

No. Activity Classes Training Testing Total
1 Bathroom—Cleaning 7 2 9
2 Bathroom—Showering 258 71 329
3 Bathroom—Using sink 92 26 118
4 Bathroom—Using toilet 27 8 35
5 Bedroom—Cleaning 6 0 6
6 Bedroom—Dressing 22 9 31
7 Bedroom—Napping 292 108 400
8 Bedroom—Reading 350 74 424
9 Entrance—Entering 28 5 33

10 Entrance—Leaving 12 5 17
11 Kitchen—Cleaning 5 3 8
12 Kitchen—Cooking 170 39 209
13 Kitchen—Preparing 24 6 30
14 Kitchen—Washing dishes 85 21 106
15 Living room—Cleaning 16 4 20
16 Living room—Computing 351 103 454
17 Living room—Eating 173 46 219
18 Living room—Watching TV 401 92 493
19 Office—Cleaning 7 3 10
20 Office—Computing 5271 1779 7050
21 Office—Watching TV 217 44 261
22 Staircase—Going down 14 2 16
23 Staircase—Going up 14 5 19
24 Toilet—Using toilet 12 4 16
25 interActivity 64 92 156

Total 7966 2536 10502

B. Privacy Tests

To answer RQ1, we subjected the classifier to adopted
FGSM, JSMA, and UAP attacks. The FGSM attack was



conducted with a batch size of 32 and various epsilon
values ranging from 0.01 to 0.5. Figure 3a illustrates the
classifier’s accuracy under the FGSM attacks with different
epsilon values. During this attack, we preserved binary and
categorical sensors without any change, aiming to evaluate
the effectiveness of reducing the accuracy of a malicious TAP
classifier by adding a small amount of perturbation (less than
epsilon) to the numerical sensors. The results demonstrate that
by adding a perturbation with a maximum value of 0.15 to the
smart home data, the TAP’s classifier accuracy falls to 16.73
percent.

The JSMA attack also was conducted with a batch size of
32 and various gamma values ranging from 0.01 to 0.51. The
gamma parameter represents the fraction of features allowed
to be perturbed. The objective of this attack was to illustrate
the effectiveness of minimizing the number of features chosen
for perturbation in reducing the malicious TAP classifier’s
accuracy. Figure 3b illustrates the classifier’s accuracy under
the JSMA attack with different gamma values. The results
reveal that a gamma value of 0.1, which permits perturbation
of 20 sensors in our case study, leads to a decrease in the
malicious TAP classifier’s accuracy to 29.55 percent. Since the
original JSMA is a targeted attack, we executed the algorithm
twenty-five times with twenty-five randomly generated target
vectors. Figure 3b displays the average accuracy of these runs
and the variance of accuracies for each attack parameter. This
diagram highlights an overall reduction in accuracy from 91 %
to below 10 %.

The UAP attack was also executed with various epsilon
values, ranging from 0.001 to 0.005. Figure 3c illustrates
the classifier’s accuracy when subjected to the UAP attack,
showing a significant decrease in accuracy from 91 percent to
6.7 percent. Given that the UAP perturbation is pre-generated,
we distributed it uniformly, taking into account the distribution
of real data events. This distribution ensures that the TAP has
no opportunity to detect the UAP’s distribution pattern. Despite
the image classification context in which UAP typically has
weaker results in comparison with other nonuniversal attack
techniques, the simpler nature of time series data may lend
itself to more effective exploitation by UAP methods, as
evidenced by some of the datasets presented in [49].

In summary, each adversarial attack method—FGSM,
JSMA, and UAP—has its unique characteristics and implica-
tions for privacy preservation and classifier disruption. JSMA
proves advantageous in scenarios that demand minimal sensor
perturbation, preserving privacy by selectively altering data
features. FGSM stands out for its simplicity and, requiring
minimal computational time, effectively diminishes classifier
accuracy. UAP demonstrates remarkable efficacy, drastically
reducing classifier accuracy. However, its reliance on pre-
generated perturbations necessitates prior access to data sam-
ples, which could constrain its immediate applicability. While
all three attack methods are effective, the choice of attack
method depends on a trade-off between the number of per-
turbed sensors and the amount of perturbation. In general, we
recommend UAP, but if there are severe resource constraints,

FGSM is an alternative.

C. Transferability of PTAP

Adversarial examples exhibit transferability across various
classifiers and training sets. Due to the limited availability
of data for testing different training sets, we focused on
evaluating transferability among other classifiers in order to
answer RQ2. To achieve this, we trained three target classifiers
and used the adversarial examples, which were generated by
our original model, as perturbations.

We selected three classifiers for our evaluation: a Multilayer
Perceptron (MLP) and a Long Short-Term Memory (LSTM)
classifier based on the architectures proposed by Mihoub et
al. [36] for activity recognition in the Orange4Home dataset,
and a Deep Convolutional Neural Network (DeepCNN) devel-
oped by ourselve. The MLP model incorporates two hidden
layers besides the input/output layers. The LSTM model
consists of three layers in addition to the input/output layers,
which include one LSTM layer, a dropout layer to mitigate
overfitting, and a dense layer. Our DeepCNN model, employs
a series of convolutional and max-pooling layers followed by
dense layers, designed to capture temporal features in the data
effectively.

While we adhered to the architecture from Mihoub et
al. [36] for the MLP and LSTM classifiers, the DeepCNN
was independently constructed by our team. Adhering to the
principle of independence in PTAP’s design, we had no prior
knowledge of the parameters of these target classifiers within
the privacy mediator while generating the perturbations. We
subsequently utilized the adversarial examples produced by
our original model to assess the transferability of PTAP across
unknown classifiers with varied architectures. Table II presents
the accuracy of the target classifiers against benign data and the
PTAP-generated perturbations with different attack methods.
The results demonstrate that PTAP perturbation is transferable
among various DNN architectures, indicating its effectiveness
in preserving privacy across different models in black-box
settings.

D. Utility Tests

In order to address RQ3, we selected five IoT applications
to assess the preservation of user utility in presence of PTAP.
Each of these applications was chosen to represent a different
device category from our dataset. The chosen applications are
as follows:
1) Air conditioning: If the temperature in the living room

rises above 20 degrees Celsius, turn on the living room
air conditioner [58].

2) Power/water consumption: If the power consumption of the
kitchen exceeds 80 W, turn off the washing machine [54].

3) Presence: If the presence sensor in the bedroom detects
presence, turn on the bedroom light [50].

4) Door/smart lock: If the entrance door is opened, turn on
the entrance light [43].

5) Environment: If the humidity in the living room exceeds
40, turn on the living room air conditioner [19].
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Figure 3: Classifiers’ accuracy under various attacks. (a) FGSM attacks with varying epsilon values. (b) JSMA attack with
different gamma values. (c) Universal perturbation attack with different epsilons values.

Table II: Assessing the transferability of attacks across MLP, LSTM, and DeepCNN target classifiers

Attack Method Attack Parameters Overall Accuracy
MLP LSTM DeepCNN

No Attack — 93.57 % 78.08 % 87.53 %
FGSM epsilon=0.2 51.70 % 35.90 % 58.25 %
JSMA gamma=0.2 57.57 % 72.56 % 61.50 %

Uni-FGSM epsilon=0.2 4.10 % 4.39 % 8.97 %

It is worth noting that the selected applications were adapted
from real-world IFTTT application scenarios, while their core
logic was tailored to our dataset sensor types and implemented
independently. We have also simulated the behavior of both a
TAP’s application execution engine and the privacy mediator
for generating perturbations and filtering out fake actions.

We processed the 24-hour data from our dataset through
the TAP in the normal state, without PTAP. During this
period, the smart home dataset transmitted 28,186 data events
to TAP for processing, triggering 252 application executions
and the corresponding actions across the five applications.
Subsequently, we processed the same data while incorporating
JSMA-generated noise at a gamma value of 0.05. This added
an additional 5,096 data events for TAP to process for the
five applications, which led to 42 new application executions
triggered by TAP, which in turn generated 42 fake actions.
Given that we injected additional noise rather than modifying
the real data, the privacy mediator was able to efficiently run
IoT applications over the noisy data and filter out all resulting
fake actions.

E. Computational and Network Overhead

The execution time of each adversarial attack provides
insights into the latency introduced by PTAP. Our experiments
revealed that on average the FGSM attack took 34.36 millisec-
onds per instance, while the JSMA attack took slightly longer,
ranging from 327.16 to 1428.15 milliseconds per data sample
due to varying attack parameters. This difference can primarily
be attributed to the inherent complexity of the JSMA method
compared to FGSM. Furthermore, the iterative loop in JSMA
for larger gammas contributes to the extended duration, as
detailed in Table III. For the universal adversarial perturbation
(UAP), the time required to generate the perturbation varied

significantly based on the chosen epsilon values, ranging from
42.06 seconds to 707.46 seconds. This longer initial compu-
tation time can be attributed to the fact that UAP generates a
universal perturbation only once, which can then be applied
to multiple data samples. Importantly, this computation can be
performed prior to the real-time process. Once the perturbation
is generated, UAP incurs no additional computation time
during its application, which makes it more efficient than
FGSM and JSMA in scenarios where the perturbation can be
prepared in advance.

Another significant aspect of our evaluation is the number of
injected events for each run. This metric offers insights into
potential network overheads, as the count of events directly
correlates with network communication and data storage re-
quirements. On average, 48.11 events were injected per data
sample in our FGSM attack, while the number of injected
events per data sample in our JSMA attack ranged from 9.40
to 36.69 depending on the attack parameters. We interpreted
each data sample as an aggregation of data events in a 60-
second time window on the TAP server.

In comparison, the number of injected events in the JSMA
attack is less than 5 percent of aggregated data events (con-
sidering an effective gamma of 0.05), while the FGSM attack
strategy perturbs all numerical sensors with the minimum
acceptable perturbation amount, determined by the epsilon
parameter. Consequently, the number of injected events in the
FGSM attack amounts to 24.5 percent of the aggregated data
events. Hence, although the FGSM attack is faster than the
JSMA attack, its network overhead is more significant due
to the elevated count of perturbed events. This emphasizes
the balance between computational efficiency and network
resource utilization when dealing with adversarial attacks.

While these metrics emphasize the added latency and



Table III: Average computational overheads and number of injected events for FGSM, JSMA, and UAP attacks under varying
parameters.

Attack FGSM (ε)
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Time (ms) 31.92 31.53 34.82 34.76 34.79 35.04 35.43 35.01 35.25 35.12
Average number of injected events (per sample) 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11

Attack JSMA (γ)
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Time (ms) 327.16 540.10 720.67 875.85 1009.56 1090.99 1155.55 1331.1 1356.24 1428.15
Average number of injected events (per sample) 9.40 17.40 23.19 27.06 30.02 31.55 32.59 35.64 35.62 36.69

Attack UAP (ε)
0.001 0.002 0.003 0.004 0.005 0.1 0.2 0.3 0.4 0.5

Time (sec) 707.46 136.51 61.85 61.10 59.63 48.39 50.29 50.77 42.19 42.06
Average number of injected events (per sample) 160.6 169.6 163.9 166.62 159.7 153 164.4 162.1 163.3 135.7

communication overheads, it is essential to understand them
within the broader context of IoT applications where slight
delays are tolerable. Notably, commercial TAPs like IFTTT
inherently exhibit delays. As highlighted in [35], some triggers
provided by IFTTT are polling-based, operating at a frequency
of once every 15 minutes. This feature indicates that IFTTT
is not optimized for precise real-time service. In this light, the
marginal delay of up to 1.42 seconds introduced by PTAP is
deemed reasonable in real-world scenarios.

VI. DISCUSSION

In this section, we discuss various aspects and limitations
of PTAP, and identify potential avenues for future research.

A. Individual Data Points and Applicability

Sensitivity of single data points. The current focus of
PTAP is on inhibiting sensitive inferences. However, there
may be situations where individual data points themselves
hold a degree of sensitivity. For example, consider an IFTTT
application that activates a plug upon the user’s arrival home
[47]. This application necessitates the use of location data,
which could be viewed as sensitive information. As a default,
we proceed under the presumption that the user has given
consent to the sharing of this kind of data, considering its
pertinence to the application’s functionality. In future work,
our aim is to include the sensitivity of single data points into
our privacy considerations using anonymization techniques.

Handling external action services. PTAP uses a local copy
of the trigger-action rules to identify fake actions arising
from fake data. However, in certain scenarios, the action
service of an IoT application could be an external cloud-
based service, outside the user’s control. For instance, consider
an IFTTT application that sends a notification email when
power consumption exceeds a threshold [61]. In this case, the
privacy mediator has no access to the generated fake action
resulting from the perturbation, and therefore the action cannot
be filtered. This means that the user would receive fake emails
if fake data were generated. To maintain the utility of services
that cannot be replicated locally for filtering, PTAP currently
prevents the perturbation of data that is connected to such
actions.

Exploring Further Applicability. Our results are based on
the Orange4Home dataset. While we expect our findings to

apply equally to similar setups and sensor data types, further
experiments are necessary to validate their applicability across
a broader range of scenarios and platforms.

B. Advanced Attacks

Adversarial adaptive attacker. In case the attacker, a
malicious TAP, is aware of our privacy-preserving mechanism,
it might adapt its strategies to circumvent PTAP. In such a
scenario, the attacker might implement adversarial training
to counteract our adversarial example generation. Here, the
TAP continuously updates its models based on the perturbed
data to improve its ability to classify user activities despite
the noise. In real-world scenarios, this tactic is unlikely.
Adversarial training of activity recognizer in the TAP requires
knowledge about the real activity class labels. These are
typically inaccessible to the TAP, as only the user knows the
real activity class labels. For a specific case where labeled data
is available for training the attacker classifier, the TAP can
conduct adversarial training to reduce PTAP’s effectiveness
significantly. Nevertheless, previous work [52] presents ideas
for robust adversarial examples tailored to specific users,
which can offer resistance against adversarial training by
clouding a specific user’s data. Our future works will aim to
improve PTAP’s robustness against adversarial training from
an adaptive attacker.

Addressing semantic relations among inferences. In some
scenarios, extracted inferences might have a semantic relation
to each other, which could potentially leak information allow-
ing the attacker to discern that a fake generated inference is
not real based on possible implications of related inferences.
For example, if a user aims to hide their activity classes
from a malicious TAP classifier, a sophisticated TAP might
infer the probable relation between occurred and upcoming
activities, and deduce the presence of fake activities, thus
posing a challenge for PTAP. Currently, PTAP does not take
into account any relations between activities during adversarial
example generation, which implies an untargeted adversarial
generation approach. Nonetheless, by integrating a simple
upcoming activity class prediction, PTAP could leverage a
targeted adversarial example generation strategy that offers
robustness against possible inference leaks between fake gen-
erated activities. This is a point we aim to explore in future
developments.



Targeting privacy mediator. The privacy mediator in PTAP
maintains local copies of a user’s IoT applications and has
access to their data events, therefore posing privacy risks in
case of compromise. We argue that the risk is drastically
reduced compared to the attacker model of a compromised
or untrusted TAP. In fact, thanks to PTAP, an attacker would
now need to compromise every user’s privacy mediator across
different networks to gain similar access to compromising the
TAP, which is more difficult.

C. Privacy

Privacy guarantees. While practical experiments have
demonstrated the significant impact of PTAP in reducing
the accuracy of malicious TAP classifiers, there is currently
no absolute guarantee for privacy protection. This issue is
inherently associated with the nature of adversarial example
attacks and their transferability feature, which do not ensure
absolute privacy preservation and are practically effective.
We aim to develop theoretically-backed privacy guarantees to
enhance the dependability of our privacy-preserving solution.

VII. RELATED WORK

Privacy on TAPs. Several strategies have been proposed
in recent literature to address the privacy concerns of TAPs.
These strategies can be broadly classified into approaches
based on data minimization and data encryption.

Data minimization approaches aim to enforce the princi-
ples of least privilege and need-to-know. F&F [64] proposes
minimization of data transfer within a threat model that
involves a trustworthy SmartThings platform communicat-
ing with a potentially malicious IFTTT platform. Similarly,
minTAP [14] employs a language-based data minimization
strategy that discloses to the TAP only the necessary user data
attributes pertaining to the execution of an IoT application.
PFirewall [16], on the other hand, filters user data based
on automation-dependent and user-specified data-minimization
policies. SandTrap [2] proposes language-based sandboxing
to isolate and mediate communication between different IoT
applications under the threat model of a trusted TAP. Other
approaches track the flow of information in trusted TAPs
with the goal of identifying malicious or buggy IoT appli-
cations [6, 11, 12, 21].

In contrast to data minimization approaches, PTAP does not
merely limit data sharing. Instead, it uses a novel strategy of
injecting perturbations into data, misleading classifiers while
preserving user utility.

Data encryption approaches aim to enforce confidentiality
of each data point. OTAP [17] leverages encryption algorithms
at the expense of imposing constraints on users, limiting them
to IoT applications devoid of computation, which might be re-
strictive for many users. Exploring a different route, eTAP [15]
executes IoT applications without accessing user’s data in
plain text, using a garbled circuit protocol. In contrast to these
encryption-centric methods, PTAP considers user privacy from
the perspective of obscuring sensitive inferences, rather than
encrypting all data points. Consequently, PTAP manipulates

data without the need for encryption. This approach allows
PTAP to seamlessly integrate into the existing smart home TAP
architecture without necessitating alterations to the TAP cloud,
IoT hub, user client, or the IoT devices’ communication—
alterations that would be necessary to implement encryption-
based approaches such as OTAP and eTAP.

Data generation has been used in other domains to pro-
tect user privacy. For example, in the context of Android
apps, Mockdroid [7] generates fake data for a predefined
set of properties that are prevalent in mobile applications,
using custom-tailored algorithms. PTAP is general and can
generate data for any sensor domain using configurable al-
gorithms. Since the fake data can affect IoT devices through
trigger-action platforms, PTAP additionally requires a utility-
preserving mechanism to filter out fake actions that would
otherwise be triggered in a smart-home environment.

Privacy-preserving data analysis. Extensive research has ad-
dressed concerns surrounding the significant amount of sensi-
tive information that can be derived from the data collected by
mobile, IoT, and wearable devices. Replacement AutoEncoder
(RAE) [33] introduces a framework to manage access to time-
series data with the intention of shielding temporal inferences.
RAE learns to transform the discriminative features of data that
correspond to sensitive inferences into features that are more
often observed in non-sensitive inferences, hence safeguarding
user privacy. In another work, Guardian Estimator Neutralizer
(GEN) [32] aims to protect concurrent inferences. Inspired by
GANs, GEN establishes a game between a data transformer
model (guardian) and an information extractor model (estima-
tor) to achieve an efficient data transformation that ensures a
balance between utility and privacy. Also, the rapidly growing
field of machine learning has prompted considerable interest
in applying differential privacy to deep learning to balance
privacy needs with large, representative datasets. Abadi et
al. [1] propose a novel method for differential privacy, fo-
cusing on training deep neural networks. In contrast to these
methods, our proposed approach, PTAP, takes into account the
unique context of TAPs and aims to preserve the functionality
of IoT applications, thereby enhancing user privacy without
compromising utility.

Adversarial example for privacy. Adversarial examples
have been utilized as an effective strategy to preserve privacy
in various contexts. The generated perturbations attempt to
misdirect machine learning models while maintaining the
original data’s utility.

Chen et al. [13] propose a voice de-identification system
that has been developed to mitigate the privacy-utility trade-off
often faced by users. Their system uses convolutional adver-
sarial examples to hide user identity from Automatic Speaker
Identification (ASI). In a different context, Sadeghzadeh et
al. [52] propose a defense against website fingerprinting at-
tacks using adversarial deep learning approaches to preserve
the privacy of user browsing activities. In another work, Liu
et al. [30] propose a novel Stealth algorithm designed to
blind automatic deep neural network (DNN) detectors to the



presence of objects in an image, without compromising the
visual quality perceptible to human eyes by generating a type
of adversarial example that effectively renders the objects
“invisible” to the detector. Despite the breadth of applications
where adversarial examples have shown promise in enhancing
privacy, their potential in the context of TAPs was unexplored.
To the best of our knowledge, PTAP is the first work that
employs adversarial examples to address privacy concerns in
the context of TAPs.

VIII. CONCLUSION

In this paper, we have presented a privacy preservation
framework for smart homes leveraging adversarial examples.
These adversarial examples aim to disrupt TAP’s classifier
accuracy with controlled sensor data perturbations, thereby
safeguarding smart home privacy. Our work has shown that
PTAP significantly reduces the accuracy of a malicious clas-
sifier, from 91 % to 6 %. Our filter confirms PTAP’s role in
upholding IoT application integrity, demonstrating its efficacy
in smart-home privacy preservation.
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