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Abstract

We study a two-stage identification problem with pre-processing to enable efficient data retrieval and reconstruction. In
the enrollment phase, users’ data are stored into the database in two layers. In the identification phase an observer obtains an
observation, which is originated from an unknown user in the enrolled database through a memoryless channel. The observation
is sent for processing in two stages. In the first stage, the observation is pre-processed, and the result is then used in combination
with the stored first layer information in the database to output a list of compatible users to the second stage. Then the second step
uses the information of users contained in the list from both layers and the original observation sequence to return the exact user
identity and a corresponding reconstruction sequence. The rate-distortion regions are characterized for both discrete and Gaussian
scenarios. Specifically, for a fixed list size and distortion level, the compression-identification trade-off in the Gaussian scenario
results in three different operating cases characterized by three auxiliary functions. While the choice of the auxiliary random
variable for the first layer information is essentially unchanged when the identification rate is varied, the second one is selected
based on the dominant function within those three. Due to the presence of a mixture of discrete and continuous random variables,
the proof for the Gaussian case is highly non-trivial, which makes a careful measure theoretic analysis necessary. In addition, we
study a connection of the previous setting to a two observer identification and a related problem with a lower bound for the list
size, where the latter is motivated from privacy concerns.

Index Terms

Identification systems, list decoding, pre-processing, Gaussian distribution, rate-distortion trade-off.

I. INTRODUCTION

The blooming numbers of smart devices and services lead to an increase in high-dimensional contents such as videos or
audios. Because of the large amount of data, efficient data storage and compression mechanisms are necessary. Given an
observed sequence, e.g. an image, reliable identification of an related user inside a database is crucial in many image or video
processing applications in eHealth, IoT, etc.. However, using high-dimensional observations directly puts a heavy toll on the
system. We propose a pre-processing procedure, e.g. a letter-wise quantization, to reduce the search complexity.

The identification problem was first studied by Willems in [1], where he characterized the identification capacity for biometric
systems. The compression and distortion aspects of users’ data were taken into account in [2] and [3], where the trade-offs
between compression and identification rates, and compression-distortion-capacity, respectively, were provided. In [4] the
authors additionally considered compressing the observation and sending it to the processing center. Clustering was studied in
[5], [6], and [7] as a method to improve the search speed, where in the enrollment phase users were distributed into clusters
(groups) based on their data sequences. Each user could appear in several clusters.
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Fig. 1: A simplified model of identification systems studied in [1] and [2].

Generally speaking, The identification problem consists of two phases. In the first phase, the enrollment phase, data from
M users (xn(i))Mi=1 are enrolled into a database as (ji)

M
i=1, cf. Fig. 1, in a compressed or an uncompressed format. The users’

data are not available after the enrollment phase. In the second phase, the identification phase, an observation yn, which is
related to xn(w) where w is chosen uniformly at random from M users, is available to the system. The task of the system is
to identify the correct user w based on the observation yn and the stored information in the database (ji)

M
i=1. The identification

capacity corresponds to the maximum number of users M such that the probability of correct identification approaches one.
In some areas, for example, in forensics or surveilance, one would like to identify the suspects as quickly as possible and

view their criminal records. In these scenarios, we can also reduce the search complexity by first providing a list of possible
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suspects and refining the search inside the given list. The records are stored in a second node which might be even a legal
requirement, e.g. if only further details about suspicious people are stored.

Motivated by these examples, in this work we study an identification problem in which we assume only a single cluster
of users and two storage nodes to store their data sequences in the system. The focus is, hence, to study the capacity-list-
compression-distortion trade-off for the given cluster. In our setup each data sequence xn(i), which corresponds to the i-th
user is compressed and stored in two layers, cf. Fig. 2. We note that a user is actually represented by a data entry, which does
not have to be an actual person. The first layer stores some representative features of the sequence as in [8]. The second layer
contains refinement information. This information layer helps to identify the user exactly and reconstruct the corresponding data
sequence. This approach becomes interesting when querying information in the second layer is costly and therefore the system
needs to limit the number of queries. An observation yn is provided to the processing unit which needs to return the correct
user’s identity and its corresponding reconstruction sequence. To facilitate the processing time and power, the observation is
first passed through a fixed channel PZ|Y , which can be thought of as a feature extraction operation, or a fixed observation
compression scheme. The processed observation is then compared with the information in the first layer, which results in a
list of compatible users, L. Then, the processing unit retrieves the information contained in both layers for all users in the
list, (jL, kL). The retrieved information is then combined with observation yn to identity the correct user. Finally, the system
outputs the corresponding reconstruction sequence of the identified user.

We summarize our contribution as follows.
• Complete characterizations are provided for both discrete and Gaussian scenarios. The discrete case serves as the backbone

for deriving the rate-distortion trade-off. The Gaussian setting not only provides an explicit illustration of the rate-distortion
trade-off but also is interesting by itself for practical reasons. Specifically, we provide a complete achievability proof for
the Gaussian setting that combines ideas in [9], [10] with an interesting tweak in the error analysis. In the converse
direction, we estimate the distortion of the exact information aided by a genie and show that using the optimal estimator
the estimated distortion level is also below the target distortion level. As a result, we are able to derive and simplify an
outerbound using standard steps which we also provide some careful measure theoretic justifications for completeness of
the arguments.

• In addition, from the identification process’ perspective there is no difference between zn obtained from the pre-processed
procedure and zn obtained from another weaker user in the sense of degradedness. Therefore, we extend our consideration
in the discrete case to another related problem where two observers participate in the identification process. We provide
a tight characterization in the scenario where reconstruction is not required.

• We study a spin-off problem where the processing unit needs to publish the list of users after the first processing stage. To
guarantee some privacy, e.g. according to k-anonymity criterion1, we require that the publishable list which contains the
original list, must have a lower bound on its size. From this restriction, we see that our original setting literally provides
some additional privacy guarantee at a small cost.

The paper is organized as follows. In Section II we consider the scenario where the users’ data, the observation and the
pre-processed information are discrete. Section III is devoted for the case where the users’ data, observation, and pre-processed
information are jointly Gaussian. The main proofs are provided at the end of each section. Additionally, some technical proofs
are given in the Appendix for further justification.

II. THE DISCRETE IDENTIFICATION PROBLEM

A. Notation
We begin by introducing some notations. Random variables, their realizations and alphabets are denoted by uppercase,

lowercase and calligraphic letters, respectively, unless otherwise stated. In this section, we consider finite alphabets where
the i-th user sequence xn(i) is generated iid from the probability distribution PX on X . The random reconstruction symbol
and its alphabet are denoted by X̂ and X̂ , respectively. The letter-wise distortion measure is a bounded mapping of the form
d : X × X̂ → [0, dmax]. With abuse of notation, the sequence distortion measure is defined as

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i).

The strongly typical set is denoted by T nε . For a set A, |A| and Ac denote its cardinality and complement, respectively.

B. Formal Problem Formulation & Result
The (big) data xn(i) ∈ Xn, where2 i ∈ W = [1 : M ] with M = |W|, is compressed and stored hierarchically in two layers.

The enrollment can be described by (possibly stochastic) mappings

φkn : Xn →Mk, k = 1, 2. (1)

1Informally, k-anonymity is a property of a data table that for a given set of attributes each tuple of values appears at least k times in the table. For a
formal definition, the reader is referred to [11].

2For a ∈ Z we use the shorthand notation [1 : a] for the set {1, . . . , a}.
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Fig. 2: An overview of the two stage identification system. We assume that there always exists a user W which has been
enrolled previously and to which the observation Y n is the output of a memoryless channel PY |X with the input Xn(W ).
Furthermore, W is uniformly distributed over [1 : M ] and independent of users’ data. The first and second layer information
are represented by the collections (Ji)

M
i=1 and (Ki)

M
i=1, respectively.

We denote database indices φ1n(xn(i)) and φ2n(xn(i)) as ji ∈M1 and ki ∈M2 for all i ∈ W .
An observer obtains information yn about a user in the database from the output of the memoryless channel PY |X with

input xn(w), where w is an instance of a uniformly distributed random variable W over the set W , which is independent of
the users’ data. The observer sends yn to a processing unit to identify w and obtain a reconstruction x̂n of xn(w) within the
distortion D.

In the processing unit, the observation yn is first pre-processed. The pre-processing is modeled by a fixed channel PZ|Y to
produce a noisy version zn, which can be linked to a quantization or a feature extraction process. Then, based on zn and the
first layer database (ji)

M
i=1, a list L ∈ L of at most 2n∆ possible matching indices of a given size, is produced. This action

can be described by a processing mapping

g1 : Zn ×MM
1 → L,

g1(zn, (ji)
M
i=1) 7→ L, (2)

where
L =

{
S
∣∣∣∣S ⊆ W, |S| ≤ 2n∆

}
∪
{
{e}
}

is the set of subsets of users in W with cardinality at most 2n∆ and the set {e}, which describes an error event. This means
that we allow the mapping g1 to declare an error. The extracting action, which takes as its inputs the index list L and the
stored information of all users in both layers to return the information of all chosen users inside the list along with the list,
can be described by a projection mapping

π : MM
1 ×MM

2 × L→M12,

π((ji)
M
i=1, (ki)

M
i=1,L) 7→

{
((ji)i∈L, (ki)i∈L,L) if L 6= {e}
(1, 1, {e}) otherwise

, (3)

where
M12 =

⋃
L6={e}

{
((ji)i∈L, (ki)i∈L,L)

∣∣∣∣(ji)i∈L ∈M|L|1 , (ki)i∈L ∈M|L|2 , L ∈ L

}
∪ {(1, 1, {e})}.

It should be clear from the definition of M12 that the vectors (ji)i∈L and (ki)i∈L can contain repeated elements. Therefore,
the inclusion of L at the output of π helps to pinpoint which combination of users the output information belongs to3. For
brevity, elements of M12 are denoted by (jL, kL). In the second stage the processing unit returns an estimate of the index ŵ
which is the output of a deterministic processing mapping g2(·) where

g2 : Yn ×M12 →W ∪ {e},
3The choice of (1, 1) as the output information when L = {e} is inconsequential.
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g2(yn, (jL, kL)) 7→ ŵ, (4)

i.e., g2 can declare an error event as well. Furthermore, the processing unit needs to output a reconstruction sequence x̂n of
the data sequence xn(w). To describe the reconstruction processing mapping, first define a second projection mapping

π̂ : M12 ×
(
W ∪ {e}

)
→ M̂12 =M1 ×M2 ×

(
W ∪ {e}

)
π̂((jL, kL), ŵ) 7→

{
(jŵ, kŵ, ŵ) if ŵ ∈ L 6= {e}
(1, 1, e) otherwise

. (5)

Similarly, we denote elements of M̂12 as (jŵ, kŵ), then the reconstruction mapping is given by

g3 : Yn × M̂12 → X̂n
g3(yn, (jŵ, kŵ)) 7→ x̂n. (6)

The two projection mappings π and π̂ are inherent, hence need not to be designed explicitly.

Definition 1. For a given pre-processing channel PZ|Y , an identification scheme of length n consists of two enrollment
mappings {φkn}2k=1 and three processing mappings {gk}3k=1.

Definition 2. For a given pre-processing scheme PZ|Y , a rate-distortion tuple (R,R1, R2, RL, D) is achievable if for every
ε > 0, there exists an identification scheme of length n such that

1

n
logM > R− ε, 1

n
log |M1| < R1 + ε

1

n
log |M2| < R2 + ε, ∆ < RL + ε, Pr(W /∈ L) < ε,

Pr(W 6= Ŵ ) < ε, E[d(Xn(W ), X̂n)] < D + ε, (7)

for all sufficiently large n. The set of all achievable tuples is denoted by R.

Note that given Pr{W 6= Ŵ} in the finite alphabet case our constraint E[d(Xn(W ), X̂n)] < D + ε is equivalent to the
constraint E[d(Xn(W ), X̂n)|Ŵ = W ] ≤ D + ε, which is considered in [3], since the distortion measure is bounded.

Definition 3. Let R? be the collection of tuples (R,R1, R2, RL, D) such that there exist random variables U and V defined
on finite alphabets U and V which satisfy

|U| ≤ |X |+ 5, |V| ≤ (|X |+ 5)(|X |+ 2) (8)

and a deterministic reconstruction mapping f : U × V × Y → X̂ such that the followings expressions are fulfilled:

U − V−X − Y − Z,
R1 ≥ I(X;U), (9a)

R1 +R2 ≥ I(X;U) + I(X;V |U, Y ), (9b)
R1 +R2 −R ≥ I(X;U, V |Y ), (9c)

R ≤ min{RL + I(Z;U), I(Y ;U, V )}, (9d)
D ≥ E[d(X, f(U, V, Y ))]. (9e)

The above definitions imply that both R and R? are closed subsets of R5 w.r.t. `1 metric. Furthermore, R? is not empty
since it contains (0, 0, 0, 0, dmax). We state our first result in the following theorem.

Theorem 1. For a given pre-processing strategy PZ|Y , memoryless data source PX , and observation model PY |X , the rate-
distortion region for our setting is given by

R = R?. (10)

The proof of Theorem 1 is given in Subsection II-D.

Remark 1. For a given choice of auxiliary random variables U , V such that the distortion constraint (9e) is fulfilled, the
first inequality (9a) shows the minimum compression rate for the first layer. The second inequality (9b) indicates the trade-off
between total compression rate in both layers. One notices that the second term on the right-hand side of (9b) suggest the
use of binning for the stored data on the second storage node. (9c) shows the trade-off between the total compression rate
and the identification rate. Namely, the identification rate is strictly smaller than the total compression rate if the right-hand
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side of (9c) is positive. Lastly, the first term on the right-hand side of (9d) is the maximum identification rate resulting from
the first layer information and pre-processed information. The second term in (9d) is the maximum identification rate when
the identification process is performed jointly, i.e., with the original observation and information from both layers.

Remark 2. In the special case where RL = R we notice that U can be set to a deterministic value, e.g. U = ∅, so that the
rate-distortion region (9) reduces to the one given in [3, Theorem 1].

C. Related problems

1) The identification problem: When the distortion level D = dmax, i.e., the distortion constraint can be removed, then
binning for the second layer, described by V , is not necessary. We obtain the following corollary.

Corollary 1. For a fixed PZ|Y , the rate region of our identification setting, i.e., D = dmax, is given by the set of tuples
(R,R1, R2, RL) such that

U − V −X − Y − Z,
R1 ≥ I(X;U), R1 +R2 ≥ I(X;U, V ),

R ≤ min{RL + I(Z;U), I(Y ;U, V )}, (11)

where U and V are random variables taking values on alphabets U and V , respectively, with |U| ≤ |X | + 4 and |V| ≤
(|X |+ 4)(|X |+ 1).

The proof of Corollary 1 is given in Appendix C.
2) A two observer problem: A related problem is stated in the following. The data sequence xn(w) is observed through

the channel PZY |X by two Observers 1 and 2, which obtain yn and zn, respectively. Moreover, Observer 2 has only access
to the information stored in the first layer and is interested in obtaining a list of users in the database only, for instance due
to complexity or due to privilege restriction. Accordingly, the decoding mapping and the requirement for the second observer
are given by

L = g2(zn, (ji)
M
i=1), and Pr(W /∈ L) < ε, (12)

where |L| ≤ 2n∆. Observer 2 in the current setting corresponds to the first processing stage in the previous settings. In contrast,
Observer 1 has access to both layers and wants to identify the user correctly, i.e., the decoding mapping and the requirement
of the first observer are

ŵ = g1(yn, (ji)
M
i=1, (ki)

M
i=1), and Pr(W 6= Ŵ ) < ε. (13)

In other words, the identification processes for two observers are separated. Note that there is no reconstruction requirement
in the current problem. The rate region for this problem can be described by the following proposition.

Proposition 1. The optimal rate region for the stated problem is the set of tuples (R,R1, R2, RL) such that

U − V −X − (Y,Z),

R1 ≥ I(X;U), R1 +R2 ≥ I(X;U, V ),

R ≤ min{RL + I(Z;U), I(Y ;U, V )}, (14)

where U and V are random variables taking values on finite alphabets U and V , respectively, with |U| ≤ |X | + 4 and
|V| ≤ (|X |+ 4)(|X |+ 1).

Note that the Markov condition X − Y − Z is not needed since the two identification processes work independently. This
means that our original problem can be viewed as a sequential cooperation scheme between two identification processes. The
proof of Proposition 1 is given in Appendix D.

3) A lower bound on the list size: We consider the following related setting. The original setting is considered, namely
the identification scheme involves {φkn}2k=1 and {gk}3k=1. Additionally, the processing unit needs to release a list L̂, which
contains the original list L when L 6= {e}, i.e., L ⊆ L̂, such that

2n∆′ ≤ |L̂| ≤ 2n∆, (15)

which means that the list L̂ is always bounded. This restriction is motivated from the privacy criterion such as k-anonymity
when the processing unit needs to release a list of possible users. For this problem we have the following result.

Corollary 2. The trade-off among (R,R1, R2, RL, D) is the same as in (9), while additionally RL ≥ ∆′ due to the presence
of the constraint (15).

Sketch of Proof: The achievability part follows the one given in Theorem 1 with a modification. The processing unit publishes
the list L̂ if it fulfills the two-side constraint (15). As before we denote L1 the list of suitable indices resulting from the first



6

stage processing, i.e., satisfying the condition (107). If |L1| ≤ 2n∆′ then we randomly pick up d2n∆′e− |L1|+ 1 indices from
W\L1 and append them to L1 before returning as L̂. If the list of suitable indices violates the upper bound constraint, i.e.,
|L1| > 2n∆, then the processing unit publishes the list L̂ of the first d2n∆′e+ 1 indices from L1.
The converse follows immediately since the constraint (15) is more restrictive than |L| ≤ 2n∆. �

D. Proof of Theorem 1

The achievability proof is standard and presented in Appendix B. We provide herein the converse proof, which is relevant
for the proof of Theorem 3.

1) Cardinality bounding of U and V: It is sufficient to preserve the following quantities H(X|U), H(X|U, Y ), H(X|U, V, Y ),
H(Z|U), H(Y |U, V ), the distortion constraint, and p(x) for all but one x ∈ X . By the support lemma [12, Appendix C] the
cardinality of U and V can be bounded by

|U| ≤ |X |+ 5,

|V| ≤ (|X |+ 5)(|X |+ 2). (16)

This implies that R? is a closed region.
2) Converse: Given ε > 0 small enough, assume that there exist mappings such that all the conditions are fulfilled for all

sufficiently large n. Furthermore by taking n large enough, the condition 1
n < ε is valid. For notation brevity we abbreviate

(Ji)
M
i=1 as J and (Ki)

M
i=1 as K. The corresponding realizations are denoted by j, and k. Since Pr(Ŵ 6= W ) < ε, Fano’s

inequality for the second stage implies

H(W |Y n,(JL,KL)) < 1 + Pr(Ŵ 6= W ) log2M

< 1 + ε log2M. (17)

We also establish a variant of Fano’s inequality for the first stage. Define

E = χ{
W∈g1(Zn,J)

}, (18)

where χB is the indicator function of the set B. Since W is in the list when E = 1, the error probability Pe = Pr(E = 0) is
bounded by ε. We obtain the following inequality

H(W |Zn,J) ≤ hb(Pe) + Pe log2M + n(RL + ε)

= n(RL + ε+
1

n
(hb(Pe) + Pe log2M)) ≤ n(RL + εn), (19)

where εn = 2ε+ 1
nε log2M and hb(·) is the binary entropy function. The detailed derivation is given in Appendix H-B, more

specifically in (249). Define random variables

Ui = (W,JW , Y
i−1),

Vi = (Ui,KW , Y
n
i+1), i ∈ [1 : n]. (20)

Observe that Ui−Vi−Xi(W )−Yi−Zi for all i ∈ [1 : n], due to the memoryless property of the observation and pre-processing
channels and the source. The identification rate can be bounded firstly as

n(R− ε) ≤ log2M = H(W )

= I(W ;Zn,J) +H(W |Zn,J)

(?)

≤ I(W ;Zn|J) + n(RL + εn)

≤ I(W,J ;Zn) + n(RL + εn)

= I(W,JW ;Zn) + n(RL + εn)

=

n∑
i=1

I(W,JW , Z
i−1;Zi) + n(RL + εn),

(a)

≤
n∑
i=1

I(W,JW , Y
i−1;Zi) + n(RL + εn), (21)

where (?) holds due to (19) and since W is independent of J . (a) holds due to the Markov chain Zi−1−Y i−1− (Zi,W, JW )
for all i ∈ [1 : n], due to the memoryless property of the pre-processing. This implies that

(R− ε)(1− ε) ≤ 1

n

n∑
i=1

I(Ui;Zi) +RL + 2ε. (22)



7

Secondly,

n(R− ε) ≤ log2M = H(W )

= I(W ;Y n, (JL,KL)) +H(W |Y n, (JL,KL))

(b)

≤ I(W ;Y n, Zn,J ,K) + 1 + ε log2M

(c)
= I(W ;Y n,J ,K) + 1 + ε log2M

(??)

≤ I(W,J ,K;Y n) + 1 + ε log2M

= I(W,JW ,KW ;Y n) + 1 + ε log2M

≤
n∑
i=1

I(W,JW ,KW , Y
n\i;Yi) + 1 + ε log2M, (23)

where (b) holds since by eqs. (2) and (3), L = g1(Zn,J), and

(JL,KL) = ((Ji)i∈L, (Ki)i∈L,L) = π(J ,K,L),

hold. We also use the inequality (17) in (b). (c) is valid due to the Markov chain Zn − Y n − (W,J ,K). (??) holds since W
is independent of both J and K. Using (20) and (23) gives us

(R− ε)(1− ε) ≤ 1

n

n∑
i=1

I(Ui, Vi;Yi) + ε. (24)

Furthermore, the sum of the compressed rates can be bounded as

n(R1 +R2 + ε) ≥ H(JW ,KW |W )

≥ I(Xn(W ), Y n; JW ,KW |W )

≥ I(Y n; JW |W ) + I(Xn(W ); JW ,KW |W,Y n)

(d)
= I(Y n; JW ,W ) + I(Xn(W ); JW ,KW ,W |Y n)

(e)
=

n∑
i=1

(
I(Yi;W,JW , Y

i−1) + I(Xi(W );W,JW ,KW , Y
n\i, Xi−1(W )|Yi)

)
(f)

≥
n∑
i=1

(
I(Xi(W ), Yi;W,JW , Y

i−1) + I(Xi(W );KW , Y
n
i+1|Yi,W, JW , Y i−1)

)
(g)
=

n∑
i=1

I(Xi(W );Ui) + I(Xi(W );Vi|Ui, Yi), (25)

where (d) is valid since W is independent of both Xn(W ) and Y n. (e) is true due to the memoryless property of the
observational channel. (f) holds since we drop the term Xi−1(W ) in the second term. (g) follows from the Markov chain
Yi −Xi(W )− (W,JW , Y

i−1) for all i ∈ [1 : n]. Similarly, we can show that

n(R1 + ε) ≥ H(JW |W )

≥ I(Xn(W ); JW |W ) = I(Xn(W ); JW ,W )

=

n∑
i=1

I(Xi(W );W,JW , X
i−1(W ))

≥
n∑
i=1

I(Xi(W );Ui). (26)

In addition, using the first line of (25) and the second last line in (23) we obtain

n(R1 +R2 + ε)− log2M

≥ H(JW ,KW |W )− I(W,JW ,KW ;Y n)− (1 + ε log2M)

≥ I(Xn(W ); JW ,KW ,W )− I(Y n; JW ,KW ,W )− (1 + ε log2M)

(∗)
= I(Xn(W ); JW ,KW ,W |Y n)− (1 + ε log2M)

=

n∑
i=1

I(Xi(W ); JW ,KW ,W |Y n, Xi−1(W ))− (1 + ε log2M)
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(e)
=

n∑
i=1

I(Xi(W ); JW ,KW ,W, Y
n\i, Xi−1(W )|Yi)− (1 + ε log2M)

≥
n∑
i=1

I(Xi(W );Ui, Vi|Yi)− (1 + ε log2M), (27)

where (∗) holds due to the memoryless property of the observation channel, i.e., Y n−Xn(W )− (W,JW ,KW ) and (e) holds
as before. This leads to

R1 +R2 + 2ε− (R− ε)(1− ε) ≥ 1

n

n∑
i=1

I(Xi(W );Ui, Vi|Yi). (28)

Since (JŴ ,KŴ ) is an abbreviation of (JŴ ,KŴ , Ŵ ) and

D + ε > E[d(Xn(W ), g3((JŴ ,KŴ ), Y n))] = E[d(Xn(W ), g3(JŴ ,KŴ , Ŵ , Y n))]

> Pr(Ŵ = W )× E[d(Xn(W ), g3(JW ,KW ,W, Y
n))|Ŵ = W ], (29)

the following chain of expressions holds

E[d(Xn(W ), g3(W,JW ,KW , Y
n))] ≤ E[d(Xn(W ), g3(JW ,KW ,W, Y

n))|Ŵ = W ]Pr(Ŵ = W )

+ Pr(Ŵ 6= W )dmax < D + (1 + dmax)ε. (30)

Let Q be a random variable uniformly distributed on [1 : n] and independent of everything else. Define

U = (UQ, Q), V = (VQ, Q), (31)

and
f(U, V, YQ) = g3Q(JW ,KW ,W, Y

n). (32)

Note that U − V −XQ(W )− YQ − ZQ still holds. Then the above constraints can be rewritten as

(R− ε)(1− ε) ≤ I(UQ;ZQ|Q) +RL + 2ε = I(U ;ZQ) +RL + 2ε

(R− ε)(1− ε) ≤ I(U, V ;YQ) + ε

R1 +R2 + ε ≥ I(XQ(W );U) + I(XQ(W );V |U, YQ)

R1 + ε ≥ I(XQ(W );U)

R1 +R2 + 2ε− (R− ε)(1− ε) ≥ I(XQ(W );U, V |YQ)

D + (1 + dmax)ε > E[d(XQ(W ), f(U, V, YQ))]. (33)

Since (XQ(W ), YQ, ZQ) has the joint distribution as PXY × PZ|Y ,(
(R− ε)(1− ε)− ε, R1 + ε, R2 + ε, RL + ε,D + (1 + dmax)ε

)
∈ R?

by the cardinality bounding arguments presented in Subsection II-D1. Taking ε → 0 completes the backward direction since
R? is closed. �

III. THE GAUSSIAN IDENTIFICATION PROBLEM

In this section we consider the setup where the users’ data are Gaussian distributed, i.e., Xi(w) ∼ N (0, σ2
X), ∀i, w, and

Yi = Xi(W ) +N1i, Zi = Yi +N2i

where N1i ∼ N (0, σ2
N1

) and N2i ∼ N (0, σ2
N2

) are iid random variables, which are also independent of the users’ data and
each other. In other words, the observation and pre-processing channels are iid Gaussian. The reconstruction set is the set of
real numbers, i.e., X̂ = R. The distortion measure is the squared error distance

d(xn, x̂n) =
1

n
‖xn − x̂n‖22 =

1

n

n∑
i=1

(xi − x̂i)2. (34)

The definition of an identification scheme and achievability follows similarly as the ones given in Definitions 1 and 2 in which
the processing mappings {gi}3i=1 are measurable4. The enrollment mappings {φin}2i=1 given by

φin : Rn →Mi, i = 1, 2,

4To be more accurate, they are of the form f : (A1,A1) → (A2,A2) where {(Ai,Ai)}2i=1 are measurable spaces with Ai being the corresponding
Borel σ-algebra. The Borel σ-algebra of R equipped with the Euclidean distance is B(R), while the Borel σ-algebra of a discrete set A equipped with the
discrete metric is its power set 2A. If a mapping takes multiple arguments as input or output, in which each argument’s range can be either discrete or R,
then the corresponding (Borel) σ-algebra is the product of the (Borel) σ-algebra of each individual argument. This particular assumption is a consequence of
[13, Lemma 1.2] which states that “for countable products of separable metric spaces, the product and Borel σ-fields agree”.
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are also measurable. Let us denote (Ω,A,P) the underlying probability space. In the Appendix E we provide a proof of the
following observation.

Theorem 2. Let (R,R1, R2, RL, D) be a rate-distortion tuple such that there exist random variables U and V with a joint
conditional probability density5 pUV |X and a measurable reconstruction mapping g : R3 → R such that the following conditions
are fulfilled.

R1 ≥ I(X;U), (35a)
R1 +R2 ≥ I(X;U) + I(X;V |U, Y ), (35b)

R1 +R2 −R ≥ I(X;U, V |Y ), (35c)
R ≤ min{RL + I(Z;U), I(Y ;U, V )}, (35d)
D ≥ E[d(X, g(U, V, Y ))]. (35e)

Then (R,R1, R2, RL, D) is achievable in the sense of Definition 2.

It will be clear from Appendix E that our proof for Theorem 2 can be transferred directly to the discrete case as the pmfs
in the discrete case can be viewed as density functions w.r.t. the counting measure. Due to the formal analytical complexity
of the Gaussian case, where we have a mixture of discrete and continuous random variables, we choose to present its proof
separately for the sake of clarity. Theorem 2 allows us to derive the rate-distortion region for the Gaussian setting, denoted by
RGS , which is given by the following theorem.

Theorem 3. Assume that 0 ≤ RL ≤ R and 0 < D ≤ σ2
Xσ

2
N1

σ2
Y

. Then the corresponding rate-distortion region RGS is given by

R < Rγ , (36a)

R1 ≥
1

2
log2

(
σ2
X

σ2
Z2−2(R−RL) − (σ2

N1
+ σ2

N2
)

)
, (36b)

R1 +R2 ≥
1

2
log2

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

+ Γ, (36c)

R1 +R2 −R ≥ Γ, (36d)

where

Rγ = min

{
1

2
log2

(
σ2
Z

σ2
N1

+ σ2
N2

)
+RL,

1

2
log2

(
σ2
Y

σ2
N1

)}
,

Γ =
1

2
max

{
log2

σ2
Xσ

2
N1

σ2
YD

, log2

σ2
X2−2R

σ2
Y 2−2R − σ2

N1

, log2

σ2
X

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

σ2
Z2−2(R−RL) − (σ2

N1
+ σ2

N2
)

}
. (37)

Remark 3. The constraint (36a) corresponds to the constraint (35d) where Rγ can be seen as the supermum of the right-hand
side of (35d) w.r.t any pair of auxiliary random variables U and V such that Y Z−X−UV holds and the mutual information
terms are well-defined.
The constraint RL ≤ R is motivated from the fact that the first layer cannot reasonably output a list with size larger than
the number of users in the system. As for the second restriction on the distortion on D, if we consider for each i ∈ [1 : n]

estimating Xi(W ) using Yi and the MMSE estimator, then, the distortion level is exactly
σ2
Xσ

2
N1

σ2
Y

. With additional information,
the system in general can do better than this bound. If for some unknown reason, the target list size or the target distortion
level is set above the corresponding thresholds, then the corresponding terms, related to D or RL, in (36) are omitted. For
instance, the rate-distortion trade-off when RL > R and 0 < D ≤ σ2

Xσ
2
N1
/σ2

Y is given by

R1 +R2 ≥ R+
1

2
max

{
log2

σ2
Xσ

2
N1

σ2
YD

, log2

σ2
X2−2R

σ2
Y 2−2R − σ2

N1

}
0 ≤ R <

1

2
log2

(
σ2
Y

σ2
N1

)
. (38)

By definition the rate-distortion regionR is closed in the finite dimensional metric space induced by the `1 distance. However,
the constraint R < RL and D > 0 may lead to the impression that the region is not necessary closed. In Appendix F we show
that RGS is indeed closed.

The proof of Theorem 3 is divided into the following parts. We first establish an outer bound on the achievable rate-distortion
region. Then, we discuss how to resolve the complicated outer bound into small subregions that can be achieved by different
parameterized coding schemes. Finally, we show that each region can be achieved, hence implying that the complete outer

5The ranges of U and V are R and the joint density pXUV is with respect to the (product) Lebesgue measure in R3.
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bound is achievable. The crucial idea for deriving the outer bound is to minimize the term “related to” I(X;U, V |Y ) while all
other parameters are fixed. The approach is particularly helpful in our scenario, since it does not create additional parameters
for describing the region.

A. Study of extreme cases
We first consider extreme cases which provide some points and hints about the whole rate-distortion region.
• Our setup can be regarded as a blowing up of the Heegard-Berger [14] scheme without a constraint on the distortion in

the first layer, i.e., the distortion constraint in the first layer is “viewed” as ∞. Hence when additionally M = 1, which
also reduces the setting to the Wyner-Ziv problem, the rate region collapses into

R1 +R2 ≥
1

2
log2

σ2
Xσ

2
N1

σ2
YD

. (39)

• Similar to Remark 1, for a given RL the identification capacity is the minimum of the first stage identification capacity
1
2 log2

σ2
Z

σ2
N1

+σ2
N2

+ RL and the identification capacity 1
2 log2

σ2
Y

σ2
N1

when the processing unit has the full access to both
storage nodes.

Assume that we want to design an identification scheme such that a given tuple (R,R1, R2, RL, D) is achievable in which the
list size RL is large enough such that Rγ = 1/2 log2(σ2

Y /σ
2
N1

). When the identification rate R is small, the distortion level
D can be matched. However, when the identification rate R is close to the threshold Rγ , then the achieved distortion level by
the identification scheme is likely to be lower than the requested distortion D. One can explain this observation as follows. In
order for the identification rate to come close to the identification capacity Rγ , the compressed information must be close to
the corresponding user’s data, i.e., the distortion level for stored sequences will be extremely small and hence smaller than the
requested level D. In other words, the distortion constraint in (35e) becomes inactive. This provides a hint that there will be
a transition point from a region where the distortion constraint is active to a region where the distortion constraint is inactive
when R increases. When the list size RL is small or moderate, there exist additional transition points where the identification
rate is limited at the first stage.

B. An outerbound
Suppose that the rate-distortion tuple (R,R1, R2, RL, D) is achievable, i.e., for a given ε > 0 there exists an identification

scheme such that all conditions in Definition 2 are satisfied for all sufficiently large n. In the following we consider the case
where we have RL ≤ R and D ≤ σ2

Xσ
2
N1

σ2
Y

and derive an outerbound for the achievable rate-distortion region. Similarly, we
denote by J and K the tuples (Ji)

M
i=1 and (Ki)

M
i=1. The distortion constraint implies that

D + ε > E[d(Xn(W ), g3((JŴ ,KŴ ), Y n))]

≥ inf
g
E[d(Xn(W ), g(W,J ,K, Ŵ , JŴ ,KŴ , Y

n))]

≥ 1

n

n∑
i=1

inf
gi

E[d(Xi(W ), gi(W,J ,K, Ŵ , JŴ ,KŴ , Y
n))], (40)

where the infimum is taken over all possible measurable functions gi on W ×MM
1 ×MM

2 × (W ∪ {e})×M1 ×M2 ×Rn.
In our identification scheme, (Ŵ , JŴ ,KŴ ) are functions of (J ,K, Y n, Zn), which lead to the following relations

Xn(W )− (W,Y n, Zn,J ,K)− (Ŵ , JŴ ,KŴ ). (41)

as well as
Xn(W )− (Y n,W, JW ,KW )− (Zn,J\W ,K\W ), (42)

where we use J\W as a shorthand notation of (Jl)
M
l=1,l 6=W and similarly for K\W . Furthermore, for notation simplicity we

denote herein by T the tuple (Ŵ , JŴ ,KŴ ,J\W ,K\W ) and by t a realization tuple (ŵ, ĵ, k̂, j\w,k\w).
Thus, we have6

E[d(Xi(W ), gi(W,J ,K, Ŵ , JŴ ,KŴ , Y
n))]

= EY nWKW JWT

{
EXi(W )|Y nWJWKW

[
d(Xi(W ), gi(W,JW ,KW , T, Y

n))
]}
. (43)

A detailed justification for this can be found in Appendix G-A. Let7

a∗(w, jw, kw, y
n) = arg min

t
EXi(w)|ynwjwkw

[
d(Xi(w), gi(w, jw, kw, t, y

n))
]
, (44)

6We restrict our attention to those functions gi where the expectation is finite.
7If there exist multiple tuples (ŵ, ĵ, k̂, j\w, j\w) which achieve the minimum we select the first according to the lexigraphical order.
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where the minimum is attainable since the argument set is finite. Define the map g′i as

g′i(w, jw, kw, y
n) = gi(w, jw, kw, a

∗(w, jw, kw, y
n), yn) (45)

The measurability of a∗ and g′i are discussed in Appendix G-B. Then we have

E[d(Xi(W ), gi(W,JW ,KW , T, Y
n))] ≥ inf

g′i
E[d(Xi(W ), g′i(W,JW ,KW , Y

n))] (46)

where the infimum is taken over all possible measurable functions g′i on W ×M1×M2×Yn not just the one given in (45).
Thus

inf
gi

E[d(Xi(W ), gi(W,JW ,KW , T, Y
n))] = inf

g′i
E[d(Xi(W ), g′i(W,JW ,KW , Y

n))], (47)

which implies that

D + ε >

n∑
i=1

1

n
inf
g′i

E[d(Xi(W ), g′i(W,JW ,KW , Y
n))]

=

n∑
i=1

1

n
E[d(Xi(W ),E[Xi(W )|W,JW ,KW , Y

n])], (48)

since the distortion measure is the squared error. In Appendix G-C we present another route to arrive at (48), which is
perhaps more formal. The constraint (48) can be interpreted in the following sense. A genie provides us the exact information
(W,JW ,KW ). Then, we use the optimal estimator in the square error sense to reconstruct the orignal sequence using the
aided information and the available information (Ŵ , JŴ ,KŴ , Y

n). It turns out that the optimal estimator depends only on
the exact information and the observation sequence.
As a standard step for a Gaussian setting, we next relate the distortion constraint (48) to a differential entropy term. For this
we need to verify that the involved differential entropy term is well-defined. We establish that assertion in the following claim.

Claim 1. There exists a conditional density function p(xn|w, jw, kw, yn), which is jointly measurable on

(W ×M1 ×M2 × R2n, 2W×M1×M2 × B(R2n))→ (R,B(R))

such that h(Xn(W )|W,JW ,KW , Y
n) is well-defined according to the definition

h(Xn(W )|W,JW ,KW , Y
n) = E[− log2(p(Xn(W )|W,JW ,KW , Y

n))].

The proof of Claim 1 and some consequences are given in Appendix H-A. Using the Claim 1 and the fact that the Gaussian
distribution maximizes the conditional differential entropy subject to fixed error variance, (48) implies that

h(Xn(W )|JW ,KW ,W, Y
n) ≤ n

2
log2(2πe(D + ε)). (49)

Furthermore

h(Xn(W )|JW ,KW ,W, Y
n)

(∗)
≤ h(Xn(W )|Y n) =

n

2
log2

(
2πe

σ2
Xσ

2
N1

σ2
Y

)
, (50)

so that the assumption D ≤ σ2
Xσ

2
N1

σ2
Y

is to make the constraint (49) possibly active. (∗) is valid since conditioning reduces the
entropy. In the next steps we need to verify the validity of the inequality (19) in our current Gaussian setting. To that end we
need the following claim.

Claim 2. Pr{E = e,W = w,J = j|Zn = zn}, which is a measurable function of zn, is also a jointly measurable function
of (e, w, {ji}Mi=1, z

n) on the Borel σ-algebra 2{0,1}×W×M
M
1 × B(Rn).

Claim 2 allows us to show the following inequality which is the Gaussian counterpart of (19)

H(W |Zn,J) ≤ hb(Pe) + Pe log2M + n(RL + ε). (51)

The proofs of Claim 2 and (51) as well as further implications are given in Appendix H-B. Next, using the variant of Fano’s
inequality justified in (51) we arrive at the following expression, which corresponds to (21),

n(R− ε) ≤ log2M ≤ I(W,JW ;Zn) + n(RL + εn)

= h(Zn)− h(Zn|W,JW ) + n(RL + εn) (52a)

=
n

2
log2(2πeσ2

Z)− h(Zn|W,JW ) + n(RL + εn),
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where8 εn = 2ε+ 1
nε log2M . This leads to

n(R− ε)(1− ε) ≤ n

2
log2(2πeσ2

Z)− h(Zn|W,JW ) + n(RL + 2ε) (53)

which implies that
h(Zn|W,JW ) ≤ n

2
log2(2πeσ2

Z2−2((R−ε)(1−ε)−RL)+4ε). (54)

Claim 1 also shows that for a given (w, jw) the conditional pdfs pXn(W )|WJW (xn|w, jw) and pY n|WJW (yn|w, jw) are well
defined. Furthermore, Nn

1 and Nn
2 are independent of (W,JW ,KW ). Due to the entropy power inequality [12, p. 22], cf. also

[15, Eq. (20)], we obtain

2
2
nh(Zn|W,JW ) ≥ 2

2
nh(Y n|W,JW ) + 2

2
nh(Nn2 |W,JW ),

2
2
nh(Zn|W,JW ) ≥ 2

2
nh(Xn(W )|W,JW ) + 2

2
nh(Nn1 |W,JW ) + 2

2
nh(Nn2 |W,JW ), (55)

which leads to

2πe(σ2
Z2−2((R−ε)(1−ε)−RL)+4ε − σ2

N2
) ≥ 2

2
nh(Y n|W,JW )

2πe(σ2
Z2−2((R−ε)(1−ε)−RL)+4ε − (σ2

N1
+ σ2

N2
)) ≥ 2

2
nh(Xn|W,JW ). (56)

Since h(Xn|W,JW ) > −∞, we therefore have the following condition

(R− ε)(1− ε)−RL − 2ε <
1

2
log2

(
σ2
Z

σ2
N1

+ σ2
N2

)
. (57)

Inequality (57) further leads to, since by Definition 2 it must hold for every ε > 0,

R ≤ 1

2
log2

(
1 +

σ2
X

σ2
N1

+ σ2
N2

)
+RL, (58)

as we take ε → 0. Under the assumption RL ≤ R, the constraints (57) and (58) are not ruled out as they are not obviously
true. Additionally, corresponding to (23) we obtain

n(R− ε) ≤ I(W,JW ,KW ;Y n) + 1 + ε log2M

= h(Y n)− h(Y n|W,JW ,KW ) + 1 + ε log2M

=
n

2
log2(2πeσ2

Y )− h(Y n|W,JW ,KW ) + 1 + ε log2M, (59)

which leads to
h(Y n|W,JW ,KW ) ≤ n

2
log2(2πeσ2

Y 2−2(R−ε)(1−ε)+2ε). (60)

Similarly, using the entropy power inequality results in that

2πeσ2
Y 2−2(R−ε)(1−ε)+2ε ≥ 2

2
nh(Y n|W,JW ,KW ) ≥ 2

2
nh(Xn(W )|W,JW ,KW ) + 2

2
nh(Nn1 |W,JW ,KW )

> 2πeσ2
N1
, (61)

since h(Xn|W,JW ,KW ) > −∞. Thus, there exists an α1 with 0 ≤ α1 < 1, which depends on other parameters, such that

h(Y n|W,JW ,KW ) =
n

2
log2(2πe((1− α1)σ2

Y 2−2(R−ε)(1−ε)+2ε + α1σ
2
N1

)), (62)

and
h(Xn(W )|W,JW ,KW ) ≤ n

2
log2(2πe(1− α1)(σnY 2−2(R−ε)(1−ε)+2ε − σ2

N1
)). (63)

From (61) we also obtain a constraint on the rate R, namely

R ≤ 1

2
log2

(
σ2
Y

σ2
N1

)
. (64)

Thus (58) and (64) imply that
0 ≤ RL ≤ R ≤ Rγ . (65)

Using the second inequality in (56) we have

n(R1 + ε) ≥ I(Xn(W ); JW ,W )

≥ n

2

(
log2(2πeσ2

X)− log2(2πe(σ2
Z2−2((R−ε)(1−ε)−RL)+4ε − (σ2

N1
+ σ2

N2
)))

)
8We also provide a direct justification of the second equality (52a) in Appendix I for the interested readers.
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=
n

2
log2

(
σ2
X

σ2
Z2−2((R−ε)(1−ε)−RL)+4ε − (σ2

N1
+ σ2

N2
)

)
. (66)

Taking ε→ 0 we obtain

R1 ≥
1

2
log2

(
σ2
X

σ2
Z2−2(R−RL) − (σ2

N1
+ σ2

N2
)

)
. (67)

Similarly, corresponding to (25) we obtain

n(R1 +R2 + ε) ≥ I(Y n; JW ,W ) + I(Xn(W ); JW ,KW ,W |Y n)

= h(Y n)− h(Y n|W,JW )︸ ︷︷ ︸
∆1

+h(Xn(W )|Y n)− h(Xn(W )|JW ,KW ,W, Y
n)︸ ︷︷ ︸

∆2

. (68)

The first term in (68) is bounded based on the first inequality in (56) as

∆1 ≥
n

2

(
log2(2πeσ2

Y )− log2(2πe(σ2
Z2−2((R−ε)(1−ε)−RL)+4ε − σ2

N2
)

)
=
n

2

(
log2

σ2
Y

σ2
Z2−2((R−ε)(1−ε)−RL)+4ε − σ2

N2

)
. (69)

The second term is bounded in three different ways:
1) From (49) we obtain

∆2 ≥
n

2
log2

(
2πe

σ2
Xσ

2
N1

σ2
Y

)
− n

2
log2 2πe(D + ε)

=
n

2
log2

σ2
Xσ

2
N1

σ2
Y (D + ε)

. (70)

This implies in combination with (69) that

R1 +R2 ≥
1

2
log2

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

+
1

2
log2

σ2
Xσ

2
N1

σ2
YD

. (71)

2) Secondly, the expressions in (62) and (63) lead to

∆2 = h(Xn(W )|Y n)− h(Xn(W )|W,JW ,KW )− h(Y n|Xn(W )) + h(Y n|W,JW ,KW )

≥ n

2
log2

(
σ2
X

σ2
Y

(1− α1)σ2
Y 2−2(R−ε)(1−ε)+2ε + α1σ

2
N1

(1− α1)(σ2
Y 2−2(R−ε)(1−ε)+2ε − σ2

N1
)

)
(a)

≥ n

2
log2

(
σ2
X

σ2
Y (σ2

Y 2−2(R−ε)(1−ε)+2ε − σ2
N1

)
inf

0≤α1<1
(σ2
Y 2−2(R−ε)(1−ε)+2ε +

α1

1− α1
σ2
N1

)

)
. (72)

We note that due to the inequality (61) the term σ2
X

σ2
Y (σ2

Y 2−2(R−ε)(1−ε)+2ε−σ2
N1

)
is positive hence (a) is valid. Note also that

since α1 might depend on ε and n, we should avoid taking the limit directly. Since α1

1−α1
is an increasing and positive

function of α1 on [0, 1), the infimum is attained at α1 = 0. Hence

∆2 ≥
n

2
log2

(
σ2
X2−2(R−ε)(1−ε)+2ε

σ2
Y 2−2(R−ε)(1−ε)+2ε − σ2

N1

)
. (73)

This implies by taking ε→ 0 that

R1 +R2 ≥
1

2
log2

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

+
1

2
log2

(
σ2
X2−2R

σ2
Y 2−2R − σ2

N1

)
, (74)

3) Lastly, by applying a similar derivation we also observe that

R1 +R2 ≥
1

2
log2

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

+
1

2
log2

σ2
X

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

σ2
Z2−2(R−RL) − (σ2

N1
+ σ2

N2
)
. (75)

The details are given in Appendix H-C.
Combining these three bounds we obtain

R1 +R2 ≥
1

2
log2

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2
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+
1

2
max

{
log2

σ2
Xσ

2
N1

σ2
YD︸ ︷︷ ︸

h0(R)

, log2

σ2
X2−2R

σ2
Y 2−2R − σ2

N1︸ ︷︷ ︸
h1(R)

, log2

σ2
X

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

σ2
Z2−2(R−RL) − (σ2

N1
+ σ2

N2
)︸ ︷︷ ︸

h2(R)

}
. (76)

Additionally, we have the following constraint which corresponds to (27)

n(R1 +R2 + ε)− logM ≥ I(Xn(W );W,JW ,KW |Y n)− (1 + ε logM)

= ∆2 − (1 + ε logM). (77)

which implies that

R1 +R2 −R ≥ Γ. (78)

In summary, we obtain the following outerbound region

0 < D ≤ σ2
Xσ

2
N1

σ2
Y

, 0 ≤ RL ≤ R ≤ Rγ ,

R1 ≥
1

2
log2

(
σ2
X

σ2
Z2−2(R−RL) − (σ2

N1
+ σ2

N2
)

)
,

R1 +R2 ≥
1

2
log2

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

+ Γ,

R1 +R2 −R ≥ Γ. (79)

As R→ Rγ either h1(R) or h2(R) goes to ∞. However, since both R1 and R2 are finite we must have

0 ≤ RL ≤ R < Rγ . (80)

C. Analyzing the outerbound

An illustration of the following different situations is given in Fig. 3 and Fig. 4.
1) Phase transion points: The above outerbound matches some properties which are mentioned in Subsection III-A. We

observe that for fixed D and RL the three functions h0(R), h1(R) and h2(R) provide the key for the transition behavior from
one extreme case to another since they are monotone in the identification rate R. We show in the following that there are three
possible transition points Rcr12

, Rcr01
and Rcr02

as R varies, where the corresponding subscripts indicate which functions are
involved. More specifically, we have

Rcr12 =
1

2
log2

σ2
Z22RL − σ2

Y

σ2
N2

, Rcr01 =
1

2
log2

σ2
Y (1− D

σ2
N1

)

σ2
N1

Rcr02
= RL +

1

2
log2

σ2
Z

σ2
N2

+
σ2
N1

1− D

σ2
N1

. (81)

To derive Rcr12
we first notice that the function

σ2
Y 2−2R − σ2

N1

σ2
X2−2R

=
σ2
Y

σ2
X

− σ2
N1

σ2
X2−2R

(82)

is a decreasing function w.r.t. R, which implies that h1(R) is an increasing one. Similarly, h2(R) is also an increasing function
w.r.t. R. Hence by solving the following equation

h1(R) = h2(R) (83)

we can find the (possibly) unique intersection point Rcr12
if the equation has a solution. The above expression implies that

⇒ σ2
Y −

σ2
N1

2−2R
= σ2

Y (1− σ2
N1

σ2
Z2−2(R−RL) − σ2

N2

)

⇔ Rcr12 =
1

2
log2

σ2
Z22RL − σ2

Y

σ2
N2

. (84)
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Note that however Rcr12
can lie outside the interval [RL, Rγ), i.e., h1(R) 6= h2(R) for all R ∈ [RL.Rγ).

Next note that h1(0) = 0 and h1(R) → ∞ as R → 1
2 log2

σ2
Y

σ2
N1

. Since h1(R) is increasing, there is a unique point Rcr01
∈

[0, 1
2 log2

σ2
Y

σ2
N1

) such that h1(R) = h0(R), i.e.,

σ2
N1

σ2
YD

=
2−2Rcr01

σ2
Y 2−2Rcr01 − σ2

N1

, (85)

above which the h1(R) dominates h0(R). Solving for Rcr01
we obtain

Rcr01
=

1

2
log2

σ2
Y (1− D

σ2
N1

)

σ2
N1

. (86)

Analogously, Rcr02 ∈ [RL, RL+ 1
2 log2

σ2
Z

σ2
N1

+σ2
N2

) given as in (81) is the unique intersection point of h2(R) and h0(R), above

which the h2(R) dominates h0(R), as h2(RL) = 0 while h2(R)→∞ when R→ RL + 1
2 log2

σ2
Z

σ2
N1

+σ2
N2

. As the solution of

the equation h2(R) = h0(R), Rcr02
also satisfies

D = σ2
N1

(
1− σ2

N1

σ2
Z2−2(Rcr02−RL) − σ2

N2

)
. (87)

2) Discussion: In this part we discuss some additional properties of the three functions and transitions points. We note that
we have Rcr12

≥ RL because from RL ≥ 0 it follows that σ2
Z22RL − σ2

Y ≥ 22RL(σ2
Z − σ2

Y ) = 22RLσ2
N2

. Additionally, again
because we have RL ≥ 0 it follows that h1(0) = 0 ≥ h2(0) as

σ2
Y (1− σ2

N1

σ2
Z22RL − σ2

N2

) ≥ σ2
X . (88)

Thus for 0 ≤ R ≤ min{Rγ , Rcr12
}, h1(R) ≥ h2(R). Furthermore, we observe that when R ≤ min{Rcr12

, Rγ} the following
holds

R ≥ 1

2
log2

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

. (89)

Therefore, the constraint (36c), can be omitted in this case. If the interval (Rcr12 , Rγ) is not empty then the reverse inequality
holds on it and the constraint (36d) can be omitted.
The following relation is helpful to relate Case II and Case V in the later paragraph.

σ2
Y (1− 2−2Rcr01 ) = σ2

Z(1− 2−2(Rcr02−RL)) = σ2
Y −

σ2
N1

1− D
σ2
N1

. (90)

Importantly, when D → 0, we observe that as R → Rγ either h1(R) or h2(R) goes to ∞. Hence at least one of the point

Rcr01
or Rcr02

lies in the interval [RL, Rγ). If D → σ2
Xσ

2
N1

σ2
Y

, then Rcr01
goes to 0 and hence might lie outside the interval

RL ≤ R < Rγ . In this case Rcr02
is always inside.

D. Achievability

From Fig. 3 and Fig. 4 we see that different constraints will be active in the outer bound depending on the identification
rate R. In the achievability we will therefore distinguish between different cases and select the parameter accordingly. In Table
I we provide an overview about different cases as well as information about the marginal distributions of U and V that are
encountered in the following.

Fix a value of D and RL where 0 ≤ D ≤ σ2
Xσ

2
N1

σ2
Y

and 0 ≤ RL < Rγ(RL).
1) The case Rcr12

< Rγ: We consider first that Rcr12
< Rγ which implies that both h1(Rcr12

) and h2(Rcr12
) are defined,

i.e., Rcr12 lies in both domains of h1(R) and h2(R). Note also that Rcr12 ≥ RL holds, cf. (84).
a) Rcr01

≤ Rcr12
. In cases I and II we need to truncate the corresponding interval if necessary so that the condition R ≥ RL

holds.
• Case I: Rcr01

≤ R < Rcr12
, i.e., h1(R) is the dominant component in the outerbound since h1(R) ≥ h0(R) when

R ≥ Rcr01 and h1(R) > h2(R) when R < Rcr12 . Let X = V + N0 where V and N0 are independent Gaussian
random variables with σ2

V = σ2
Y (1− 2−2R). Note that σ2

V < σ2
X since R < Rγ . V should be understood as the output

of the test channel pV |X , cf. [16, p. 311]. Then, let V = U +N ′0 where U and N ′0 are independent Gaussian random
variables such that σ2

U = σ2
Z(1− 2−2(R−RL)). We also observe that σ2

U > 0 if R > RL. We note that

2−2R(σ2
Z22RL − σ2

Y ) > σ2
N2

or σ2
Y (1− 2−2R) > σ2

Z(1− 2−2(R−RL)), (91)
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(a) Case 1: Rcr12 < Rγ and RL ≤ Rcr01 ≤ Rcr12 . We can see that when RL ≤ R ≤ Rcr01 ,
h0(R) dominates over h1(R) and h2(R). h1(R) is the dominant component when Rcr01 < R ≤
Rcr12 . When Rcr12 < R < Rγ , then h2(R) dominates the other two functions.
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(b) Case 2: Rcr12 < Rγ and Rcr01 ≥ Rcr12 . In this case h0(R) dominates over the other two
functions when RL ≤ R ≤ Rcr02 . For R ∈ [Rcr02 , Rγ), h2(R) is the dominant component

Fig. 3: Two cases when D varies for fixed RL.
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Cases Subcases
Dominating functions

h0(R) h1(R) h2(R)
Distributions of U and V

I. Rcr01 ≤ R < Rcr12 X U ∼ PU , V ∼ PV

II. 0 ≤ R < Rcr01 X U ∼ PU , V ∼ PV (Rcr01 )

III. Rcr12 ≤ R < Rγ X U ∼ PU , V degenerate

Rcr01 ≤ Rcr12

IV. Rcr02 ≤ R < Rγ X As in Case III

V. RL ≤ R < Rcr02 X U ∼ PU , V ∼ PV (Rcr01 )

Rcr01 > Rcr12

Rcr12 < Rγ

VI. Rcr01 ≤ R < Rγ X As in Case I

VII. RL ≤ R < Rcr01 X As in Case II

Rcr01 > RL

Rcr01 ≤ RL VIII. ∀R X As in Case I

Rcr12 ≥ Rγ

TABLE I: Summary of optimal (marginal) distributions of the auxiliary random variables U and V for all possible cases
specified by the relation among Rcr12 , Rcr01 , Rcr02 , RL, Rγ and R where PU = N

(
0, σ2

Z(1 − 2−2(R−RL))
)

and PV =
N
(
0, σ2

Y (1 − 2−2R)
)
. Note that the marginal distribution of the auxiliary random variable U does not change. Additionally,

due to the relation (90) the distribution of V in Case V is identical to the one in Case II.

since R < Rcr12
. This means that σ2

U < σ2
V . Similarly, U is the output of the test channel pU |V . By our choice of

U and V the relation U − V − X − Y − Z holds. We next examine whether the chosen random variables satisfy
the constraints corresponding to the fixed parameters. The condition I(Z;U) = R − RL is satisfied by the chosen
U . Furthermore, I(Y ;V ) = R due to the choice of V . This means that the choice of U and V does not violate the
constraint

R ≤ min{I(Z;U) +RL, I(Y ;V )}. (92)

Next we calculate

h(X|V, Y ) = h(Y |X) + h(X|V )− h(Y |V )

=
1

2
log2

(
2πe

(σ2
X − σ2

V )σ2
N1

σ2
Y − σ2

V

)
=

1

2
log2

(
2πe

σ2
N1

σ2
Y

σ2
Y 2−2R − σ2

N1

2−2R

)
(?)

≤ 1

2
log2(2πeD) (93)

where (?) is valid due to (85) as R ≥ Rcr01 , i.e., the distortion level D is attainable using the MMSE decoder. Now,
plugging the random variable U into the first expression in the achievable region we obtain

R1 ≥ I(X;U) =
1

2
log2

σ2
X

σ2
Z2−2(R−RL) − (σ2

N1
+ σ2

N2
)
. (94)
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Fig. 4: Case 3: Rcr12
≥ Rγ and Rcr01

≥ RL. In this case for RL ≤ R ≤ Rcr01
, h0(R) is the dominant component, while for

Rcr01
< R < Rγ , h1(R) is the dominant component.

Moreover,

I(X;V |Y ) =
1

2
log2(

σ2
Xσ

2
N1

σ2
Y

σ2
Y

σ2
N1

2−2R

σ2
Y 2−2R − σ2

N1

)

=
1

2
log2

σ2
X2−2R

σ2
Y 2−2R − σ2

N1

. (95)

Since

I(X;U) + I(X;V |U, Y ) = I(X;U) + I(X;U, V |Y )− I(X;U |Y )

= I(Y ;U) + I(X;U, V |Y )

= I(Y ;U) + I(X;V |Y ), (96)

where the second equality holds since I(X;U |Y ) = I(X;U)− I(Y ;U) as U −X − Y , we obtain that

R1 +R2 ≥
1

2
log2

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

+
1

2
log2

σ2
X2−2R

σ2
Y 2−2R − σ2

N1

R1 +R2 −R ≥
1

2
log2

σ2
X2−2R

σ2
Y 2−2R − σ2

N1

, (97)

which matches the outerbound. When R = RL we can simply choose U to be a Gaussian random variable which is
independent of everything else. As discussed previously in (89), since R ≤ Rcr12

the first constraint in (97) can be
omitted.

The other cases can be matched similarly using the same principle. Since this results in lengthy derivations with limited new
insights, we provide the remaining proof in Appendix J.

APPENDIX A
SUPPORTING LEMMATA

In the following lemma and corollary we present useful properties of the conditional expectation over a σ-algebera (σ-
field) which are used in later sections. The unfamilar reader is referred to, for instance, [17, Chapter 5] for a comprehensive
introduction.
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Lemma 1. [13, Doob’s conditional independence lemma, Proposition 5.6] For any σ-fields F , G and H, we have F and H
are conditionally independent given G iff

P [H|F ,G] = P [H|G], P− a.s, H ∈ H. (98)

The conditioning on the left-hand side of (98) should be understood as w.r.t. the join σ-algebra σ(F ,G).

Corollary 3. Assume that F and H are conditionally independent given G. Let f be a nonnegative H-measurable, integrable
function. Then

E[f |F ,G] = E[f |G] ), P− a.s.. (99)

Proof: We note that for a given H ∈ H,
{
ω | P [H|F ,G](ω) 6= P [H|G](ω)

}
∈ σ(F ,G). Lemma 1 implies that for any

positive simple function χ =
∑k
i=1 aiχAi where Ai ∈ H, and ai > 0, ∀i,

E[χ|F ,G] = E[χ|G] a.s.. (100)

Since f is a nonnegative H-measurable, integrable function, there is a sequence of increasing nonnegative, H-measurable,
simple functions χn that converges pointwise to f . We have by monotone convergence theorem

lim
n→∞

E[χn|F ,G] = E[f |F ,G] a.s.,

lim
n→∞

E[χn|G] = E[f |G] a.s.. (101)

Denote B1 =
{
ω | limn→∞ E[χn|F ,G](ω) 6= E[f |F ,G](ω)

}
, B2 =

{
ω | limn→∞ E[χn|G](ω) 6= E[f |G](ω)

}
and

Ci =
{
ω | E[χi|F ,G](ω) 6= E[χi|G](ω)

}
, i = 1, . . . . (102)

Define B = B1 ∪B1

⋃
i Ci. We observe that B ∈ σ(F ,G) and P(B) = 0. For ω ∈ Bc then

E[f |F ,G](ω) = lim
n→∞

E[χn|F ,G](ω) = lim
n→∞

E[χn|G](ω) = E[f |G](ω). (103)

Hence, the conclusion follows.

APPENDIX B
ACHIEVABILITY OF THEOREM 1

Fix a conditional pmf PUV |X where U − V −X and a deterministic reconstruction mapping f such that we have

E[d(X, f(U, V, Y ))] = D. (104)

Additionally, for a fixed ε > 0, we assume that the number of enrolled users is given by M = 2nR̂ where R̂ = R − ε/2 and
the actual list size is ∆̂ = RL + ε/2. Also let R̂U = R1 + ε/2, R̂V = R2 + ε/2 and R̂′V = R′V − ε/4 be the actual code rates.
The set of suitable tuples (R,RL, R1, R2, R

′
V ) will be specified later in (124). We also select an ε̄ > 0 for the strongly typical

set, which depends on n and ε̄→ 0 as n→∞.
Codebook generation: The codebook used in the enrollment process is identical for all users and constructed as follows:
Generate 2nR̂U iid codewords un(j) where j ∈ [1 : 2nR̂U ] according to the marginal distribution PU . For each j, we draw
2n(R̂V +R̂′V ) codewords vn(j, l) where l ∈ [1 : 2n(R̂V +R̂′V )] iid via the conditional distribution PV |U . Each index l is parsed
into a unique tuple l = (k, k′) where k ∈ [1 : 2nR̂V ] and k′ ∈ [1 : 2nR̂

′
V ]. Denote by

B(k) = {l | l = (k, k′), for some k′}, (105)

the k-th bin, where k ∈ [1 : 2nR̂V ]. Additionally, we include a fixed pair of codewords (une , v
n
e ) corresponding to the error

event. The codebook is known in the whole system.
Enrollment: For each user index i ∈ M, a codeword un(ji) is looked for such that (xn(i), un(ji)) ∈ T nε̄ (XU). The chosen
ji is stored in the first layer. Next, a codeword vn(ji, li) is searched for such that

(xn(i), un(ji), v
n(ji, li)) ∈ T nε̄ (XUV ). (106)

The chosen bin index ki is stored in the second layer. We note that in both steps if there is more than one suitable index,
we select one of them uniformly at random. If there is none, an index is selected from the corresponding set of all indices
uniformly at random.
Identification and Reconstruction: The observation yn is first passed through the memoryless pre-processing channel given by
PZ|Y to produce zn which is used in the first stage of our identification and reconstruction process.

First stage: We look for all indices i ∈M such that

(zn, un(ji)) ∈ T nε̄ (ZU), (107)
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and put them into the list L. If there are more than 2n∆̂ suitable indices then an error is declared, i.e., we output the set
L = {e}. In this way, our list always meets the size constraint in (2).

Second stage: If L = {e}, then we set ŵ = e. Otherwise, if L 6= {e}, we find a unique index ŵ in L such that

(yn, un(jŵ), vn(jŵ, l̃)) ∈ T nε̄ (Y UV ) (108)

for some l̃, where l̃ ∈ B(kŵ), and jŵ and kŵ are the stored information of the ŵ-th user. If there is no such ŵ or there is
more than one then we set ŵ = e. In the next step, if ŵ 6= e then we search for a unique l̃ ∈ B(kŵ) such that

(yn, un(jŵ), vn(jŵ, l̃)) ∈ T nε̄ . (109)

If there is more than one l̃ or there is none then we set l̃ = e. Moreover, if ŵ = e or l̃ = e then we set un(jŵ) = une and
vn(jŵ, l̃) = vne . The reconstruction sequence is given as x̂τ = f(uτ (jŵ), vτ (jŵ, l̃), yτ ) for all τ = [1 : n].
Note that the search for the unique pair (ŵ, l̃) could be done in a single step, however, to mitigate the complexity of describing
(g2, g3) we choose the separate descriptions, cf. the Gaussian setting for more information.
Analysis: Let Ji and Li, i ∈M, be the chosen indices for the i-th user. Furthermore, let L1 be the list of indices i ∈M that
satisfy (107) in the first stage of the identification process, while the return list is denoted by L. Consider the following events

Eu = {(Xn(W ), Un(JW )) /∈ T nε̄ },
Ev = {(Xn(W ), Un(JW ), V n(JW , LW )) /∈ T nε̄ },

Eyz =

{
(Y n, Zn, Xn(W ), Un(JW ), V n(JW , LW )) /∈ T nε̄

}
,

E1 = {|L1| > 2n∆̂},
E2 = {∃l 6= LW , l ∈ B(KW ), (Y n, Un(JW ), V n(JW , l)) ∈ T nε̄ },

E3 =

{
∃(w′, lw′), w′ 6= W,w′ ∈ L1, (Y

n, Un(Jw′), V
n(Jw′ , lw′)) ∈ T nε̄ , l′w ∈ B(Kw′)

}
. (110)

Define

E = Eu ∪ Ev ∪ Eyz
3⋃
i=1

Ei, (111)

to be the event that summarizes all “errors.” By the covering lemma [12, Lemma 3.3] we obtain

Pr(Eu) =
1

M

∑
i

Pr
(
(Xn(i), Un(Ji)) /∈ T nε̄

)
→ 0 (112)

if R̂U > I(X;U) +γn, where γn > 0 and γn → 0 as n→∞, since W is independent of both
(
Xn(i)

)M
i=1

and the codebook.
Similarly, we have Pr(Ecu ∩ Ev)→ 0 if R̂V + R̂′V > I(X;V |U) + γn. Due to the Markov lemma [12, p.27], we have

Pr(Ecu ∩ Ecv ∩ Eyz)→ 0. (113)

For the sake of simplicity in the analysis of the last three events we use the symmetric property of our problem. Due to
symmetry, it is sufficient to condition on the event {W = 1}. Following the analysis in [12, Section 11.3] we have

Pr(E2|W = 1)→ 0 (114)

as n → ∞ if R̂′V < I(Y ;V |U) − γn. We focus on the two remaining events E1 and E3. For each i ∈ M define random
variable

Bi = χ{
(Zn,Un(Ji))∈T nε̄

}. (115)

Note that Pr(B1 = 1|W = 1)→ 1 as n→∞. Hence, it is sufficient to consider the following probability

Pr(B1 = 1, |L1| > 2n∆̂|W = 1) = Pr
{
B1 = 1,

2nR̂∑
i=1

Bi > 2n∆̂

∣∣∣∣W = 1

}

≤ Pr
{ 2nR̂∑
i=2

Bi > 2n∆̂ − 1

∣∣∣∣W = 1

}

≤

2nR̂∑
i=2

E[Bi|W = 1]

2n∆̂ − 1
=

2nR̂∑
i=2

Pr{Bi|W = 1}

2n∆̂ − 1

(?)

≤ ξ2n(R̂−∆̂)2−n(I(Z;U)−γn) → 0 (116)
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if R̂ − ∆̂ < I(Z;U)− γn where ξ = (1− 1/2nR̂)/(1− 1/2n∆̂) → 1 as n → ∞. (?) is valid since conditioning on W = 1,
Zn is independent9 of Un(Ji) for i ∈ [2 : M ]. Therefore, for i ≥ 2

Pr{Bi|W = 1} =
∑
ji

∑
un

∑
zn∈T nε̄ (Z|un)

PJi(ji)PUn(Ji)|Ji(u
n|ji)P (Zn = zn|W = 1)

(??)

≤
∑
ji

∑
un

∑
zn∈T nε̄ (Z|un)

PJi(ji)PUn(Ji)|Ji(u
n|ji)2−n(H(Z)−γn)

≤ 2−n(I(Z;U)−γn), (117)

where (??) holds since W is independent of Zn and Zn is iid according to the distribution PZ . The expressions (113) and
(116) imply that

δ1,n = Pr(W /∈ L)→ 0

as n→∞.
The probability of the last event can be bounded as

Pr(E3|W = 1) = Pr
{
∃(w′, lw′), w′ 6= 1, w′ ∈ L1, (Y

n, Un(Jw′), V
n(Jw′ , lw′) ∈ T nε̄ , l′w ∈ B(Kw′))|W = 1

}
≤ Pr

{
∃(w′, lw′), w′ 6= 1, (Y n, Un(Jw′), V

n(Jw′ , lw′)) ∈ T nε̄ , l′w ∈ B(Kw′)|W = 1

}

≤
2nR̂∑
i=2

Pr{∃li ∈ B(Ki), (Y
n, Un(Ji), V

n(Ji, li)) ∈ T nε̄ |W = 1}.

≤
2nR̂∑
i=2

∑
ji,ki

∑
li∈B(ki)

PJiKi(ji, ki)Pr{(Y n, Un(ji), V
n(ji, li)) ∈ T nε̄ |W = 1, Ji = ji,Ki = ki}.

Since for i = 2, . . . ,M

Pr{(Y n,Un(ji), V
n(ji, li)) ∈ T nε̄ |W = 1, Ji = ji,Ki = ki}

=
∑
un,vn

∑
yn∈T nε̄ (Y |un,vn)

PUn(ji)V n(ji,li)|JiKi(u
n, vn|ji, ki)P (Y n = yn|W = 1)

(a)

≤ 2−n(H(Y )−H(Y |U,V )−γn) = 2−n(I(Y ;U,V )−γn), (118)

Pr(E3|W = 1)→ 0 if R̂+R̂′V < I(Y ;U, V )−γn, where (a) is valid due to the independence of Y n and W . Since Pr(E1)→ 0
and Pr(E3)→ 0,

δ2,n = Pr(Ŵ 6= W )→ 0.

Moreover, due to the union bound
Pr{E} → 0, as n→∞. (119)

Given Ec, we obtain

(1− ε̄)E[d(X, f(U, V, Y ))] < d(Xn(W ), X̂n) < (1 + ε̄)E[d(X, f(U, V, Y ))], (120)

by the typical average lemma [12, p.26], which implies that
∣∣d(Xn(W ), X̂n)−D

∣∣ < ε̄D. Hence, choosing ε̄→ 0 as n→∞

E
[∣∣d(Xn(W ), X̂n)−D

∣∣] < E
[
|d(Xn(W ), X̂n)−D|

∣∣Ec]+ Pr(E)(dmax +D) = δ3,n. (121)

Since Pr(Ŵ 6= W ) = E[χ{Ŵ 6=W}] and Pr(W /∈ L) = E[χ{W /∈L}], by the Selection Lemma [18, Lemma 2.2] there exists a
codebook Hn such that

Pr(Ŵ 6= W |Hn) < δn, Pr(W /∈ L|Hn) < δn,

E
[
|d(Xn(W ), X̂n)−D|

∣∣Hn] < δn, (122)

where δn = 4 max({δi,n}3i=1). Since the space of codebooks is discrete,∣∣E[d(Xn(W ), X̂n)|Hn]−D
∣∣ ≤ E

[
|d(Xn(W ), X̂n)−D|

∣∣Hn],
9This can be explained in more details as follows. Conditioning on W = 1, Zn is independent of Xn(i) for i ∈ [2 : M ] and the codebook, while Un(Ji)

depends only on Xn(i) and the codebook. Hence, we can use a single codebook for all users.
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which implies that
E[d(Xn(W ), X̂n)|Hn] < D + δn. (123)

In summary, given an ε > 0 if the following conditions

R1 > I(X;U), R2 +R′V > I(X;V |U),

R′V < I(Y ;V |U),

R < RL + I(Z;U),

R+R′V < I(Y ;U, V ), (124)

hold, then there exists a data processing scheme that satisfies all the requirements of Definition 2 for sufficiently large n. By
using Fourier-Motzkin elimination [12, Appendix D] to eliminate R′V we obtain

R1 > I(X;U), R2 > I(X;V |U, Y ),

R2 −R > I(X;V |U)− I(Y ;U, V )

R < min{RL + I(Z;U), I(Y ;U, V )}. (125)

In the next step we simplify the above region by a rate transfer argument. Assume that R′1, R′2, and Θ are positive numbers
such that

R′1 −Θ > I(X;U),

R′2 + Θ > max

{
I(X;V |U, Y ), R+ I(X;V |U)− I(Y ;U, V )

}
. (126)

Herein, Θ is the rate transferred from storage Node 2 to storage Node 1. Since I(X;U) ≥ 0, by (125) there exists an
identification scheme such that (R′1 −Θ, R′2 + Θ) is achievable for the given R. This implies the achievability10 of (R′1, R

′
2)

for the given R. Applying the Fourier-Motzkin approach for a second time to eliminate Θ, the achievable rate region is enlarged
to

R′1 ≥ I(X;U),

R′1 +R′2 ≥ I(X;U) + I(X;V |U, Y ),

R′1 +R′2 −R ≥ I(X;U, V |Y ),

R ≤ min{RL + I(Z;U), I(Y ;U, V )}, (127)

since by definition, the achievable region is closed.

APPENDIX C
PROOF OF COROLLARY 1

Direct part: Rate tuples that fulfill the conditions given in (11) also satisfy the conditions given in (9) with D = dmax and
an arbitrary deterministic mapping f . Hence they are achievable.
Converse part: Define

Ui = (W,JW , Z
i−1),

Vi = (Ui,KW , Y
i−1), i ∈ [1 : n]. (128)

Then Ui − Vi −Xi(W )− Yi −Zi for all i ∈ [1 : n]. The two first constraints on the compression rates can be derived shortly
as

n(R1 + ε) ≥
n∑
i=1

I(Xi(W );W,JW , X(W )i−1)

≥
n∑
i=1

I(Xi(W );Ui), (129)

and

n(R1 +R2 + ε) ≥
n∑
i=1

I(Xi(W );W,JW ,KW , X
i−1(W ))

10For the given R and ε > 0 assume that the corresponding scheme is ({φkn}2k=1, {gk}
3
k=1), cf. Definition 1. Let (M̃21,M̃22) be a decomposition of

M2 of the enrollment mapping φ2n such that 1
n

log |M̃21| ≤ Θ + ε/2 and 1
n

log |M̃22| ≤ R2 + ε/2. For each user we can then store (M1,M̃21) in the
first layer and M̃22 in the second layer. The processing mappings {g̃k}3k=1 can be obtained from {gk}3k=1 accordingly. Note that this process is possible
since the second layer is always used in conjunction with the first layer, cf. (3) - (6).
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=

n∑
i=1

I(Xi(W );W,JW ,KW , X
i−1(W ), Y i−1, Zi−1)

≥
n∑
i=1

I(Xi(W );Ui, Vi). (130)

Following the same steps which lead to (23), we obtain

n(R− ε) ≤ H(W )

= I(W ;Y n, (JL,KL)) +H(W |Y n, (JL,KL))

(∗)
≤ I(W,JW ,KW ;Y n) + 1 + ε log2M

≤
n∑
i=1

I(Ui, Vi;Yi) + 1 + ε log2M, (131)

where (∗) holds due to the Markov chain Zn − Y n − (W,J ,K). In addition, from (21) we obtain

n(R− ε) ≤
n∑
i=1

I(W,JW , Z
i−1;Zi) + n(RL + εn),

=

n∑
i=1

I(Zi;Ui) + n(RL + εn). (132)

The rest follows by defining a uniform random variable Q on the set [1 : n] and taking ε→ 0 as in Theorem 1. The cardinality
of U and V can be bounded similarly using the support lemma [12, Appendix C].

APPENDIX D
PROOF OF PROPOSITION 1

The proof follows closely the one of Theorem 1 with some modifications.
Achievability: 2nR̂U codewords un(j) are generated as before. For each m we draw 2nR̂V codewords vn(j, k) iid via the
marginal pV |U , i.e., no binning is used. The enrollment process follows accordingly. The identification process corresponding
to Observer 2 works identically as the first stage in (107) while for Observer 1 the processing unit searches through all users
to find the unique ŵ such that

(yn, un(jŵ), vn(jŵ, kŵ)) ∈ T nε , (133)

which leads to the following event in the analysis

E ′3 =

{
∃w′, w′ 6= W, (Y n, Un(Jw′), V

n(Jw′ ,Kw′)) ∈ T nε
}
.

Similarly, we have Pr(E ′3|W = 1)→ 0 if R̂ < I(Y ;U, V )− γn.
One might notice that the condition X−Y −Z is not used in the achievability proof of Theorem 1. Hence, it can be concluded
that the two stage processing in the achievability of Theorem 1 achieves the rate region of Proposition 1.
Converse: Define the random variables Ui and Vi as in (128). We also obtain the constraints as in (129), (130), and (132). To
arrive at (131) we need the following modification

n(R− ε) ≤ H(W )

= I(W ;Y n,J ,K) +H(W |Y n,J ,K)

(?)

≤ I(W,JW ,KW ;Y n) + 1 + ε log2M, (134)

where (?) follows from the Fano’s inequality and the requirement in (13).

APPENDIX E
JUSTIFICATION OF THE GAUSSIAN SETTING

We provide a justification for Theorem 2 in several steps. In the first step we establish a supporting covering lemma, which
bypasses the need of a Markov lemma for weak typicality11. In the next step we provide a coding scheme which is based
on the adapted covering lemma. The analysis only highlights the important parts. Our approach resembles the one given in
[9], [10] with a tweak in the “error” analysis. In more detail, in our coding approach we use weak typicality with an adapted
covering lemma, the quantization of the reconstruction mapping and a distortion analysis as in Wyner-Ziv approach. However,
it is interesting to note that we do not quantize the auxiliary random variables.

11Markov lemmas for continuous alphabets can be found in the works [15, Lemma 5] in the context of weak typicality and [19] in the sense of weak*-
typicality. However, it is not obvious to extend Lemma 5 in [15] to multiple layers of auxiliary random variables used in our superposition coding scheme.
Bounding the distortion level using the approach in [19] is difficult since the distortion measure is unbounded.
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A. Preliminary

To differentiate between weak and strong typicality, given 0 < δ < 1 we denote the weakly typical set by Anδ whose
definition for a tuple of random variables (X1, . . . , Xk) with a joint probability density function pX1X2...Xk is given by [16,
p. 521], [15, Lemma 3]

Anδ (X1 . . . Xk) =

{
(xn1 , . . . , x

n
k )

∣∣∣∣∣∣− 1

n
log pnXS (xnS)− h(XS)

∣∣ < δ, ∀S ⊆ [1 : k]

}
(135)

where h(·) denotes the differential entropy12. Some important properties of weakly typical sequences are given in the following:
• If xnS ∈ Anδ (XS) then

2−n(h(XS)+δ) ≤ pnXS (xnS) ≤ 2−n(h(XS)−δ). (136)

• If S1 ∩ S2 = ∅ and (xnS1
, xnS2

) ∈ Anδ (XS1∪S2
) where S1,S2 ⊂ [1 : k] then

2−n(h(XS1
|XS2

)+2δ) ≤ pnXS1
|XS2

(xnS1
|xnS2

) ≤ 2−n(h(XS1
|XS2

)−2δ). (137)

• For xnS1
∈ Anδ (XS1

) then
Vol(Anδ (XS2

|xnS1
)) ≤ 2n(h(XS2

|XS1
)+2δ), (138)

where Anδ (XS2
|xnS1

) is the conditional typical set. Note that the left-hand side is zero if xnS1
/∈ Anδ (XS1

) as the set
Anδ (XS2 |xnS1

) is empty in this case.
Assume that the tuple (Xn, Y n, Zn, Un, V n) is generated iid from the joint density pXY ZUV . Then due to the weak law of
large numbers we have the following properties

Pr{(Y n, Zn, Un, V n) /∈ Anδ (Y ZUV )} → 0 as n→∞, (139)

as well as

Pr
{∣∣d(Xn, g(Un, V n, Y n))−D

∣∣ > δ

}
→ 0, (140)

when we assume that D = E[d(X, g(U, V, Y ))] <∞. As in [9] we define the following indicator function

ψn(xn, yn, zn, un, vn) =

{
1 if

∣∣d(xn, g(un, vn, yn))−D
∣∣ > δ, or (yn, zn, vn, un) /∈ Anδ (Y ZUV )

0 otherwise
. (141)

Let δn = E[ψn(Xn, Y n, Zn, Un, V n)], then due to the union bound, (139) and (140) we have

δn → 0, as n→∞. (142)

For brevity define13

Sδn = {(xn, un, vn) : ηXUV (xn, un, vn) ≤ δ1/2
n }, (143)

where

ηXUV (xn, un, vn) = E[ψn(xn, Y n, Zn, un, vn)|Xn = xn, V n = vn, Un = un]

= E[ψn(xn, Y n, Zn, un, vn)|Xn = xn]. (144)

Due to the Markov inequality we have

Pr{(Xn, Un, V n) /∈ Sδn} ≤
E[ψn(Xn, Y n, Zn, Un, V n)]

δ
1/2
n

= δ1/2
n . (145)

Finally, define14

Bδn = Anδ (UV X) ∩ Sδn, (146)

and Bδn(xn), Bδn(xn, un) as sections of Bδn corresponding to the sequence xn and on the pair (xn, un), respectively. Note that
Bδn(xn) can be the empty set. A similar statement can be made about Bδn(xn, un). The following lemma is useful for analyzing
the coding scheme that is presented in the next subsection.

12Note that Anδ (X1 . . . Xk) is a Borel-measurable set.
13Since ψn is a Borel measurable mapping, ηXUV is also Borel measurable. Hence, the set Sδn is Borel measurable.
14Hence Bδn is a Borel measurable set as it is the intersection of two measurable sets, cf. Footnotes 12 and 13.
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Lemma 2. Assume that Xn ∼ pnX . Generate M codewords un(j) iid according to the marginal density pU , where M ≥ 2nRU .
For each un(j) draw L codewords vn(j, l) via the conditional density pV |U , where L ≥ 2nRV . Then for a given δ, where
0 < δ < 1,

Pr

{
(Xn, Un(j), V n(j, l)) /∈ Bδn, ∀j, l

}
→ 0 (147)

as n→∞ if RU ≥ I(X;U) + 4δ and RV ≥ I(X;V |U) + 5δ.

Proof: For notational brevity we suppress the superscript δ in Bδn in the rest of this subsection. It is sufficient to prove
the lemma for RU = I(X;U) + 4δ, RV = I(X;V |U) + 5δ and 2nRU ≤ M ≤ M̂ = 22nRU . We first expand the left-hand
side of (147) as15

Pr
{

(Xn, Un(j), V n(j, l)) /∈ Bn, ∀j, l
}

=

∫
pX(xn)Pr

{
(Un(j), V n(j, l)) /∈ Bn(xn), ∀j, l

}
dxn. (148)

The second term inside the integral can be decomposed as

Pr
{

(Un(j), V n(j, l)) /∈ Bn(xn), ∀j, l
}

(a)
=

M∏
j=1

Pr{(Un(j), V n(j, l)) /∈ Bn(xn), ∀l}

(b)
=

{
Pr{(Un(1), V n(1, l)) /∈ Bn(xn), ∀l}

}M
, (149)

where (a) is valid due to the independence of tuples
(
Un(j),

(
V n(j, l)

)
l

)
j

for all j. (b) holds due to the iid of the codebook.

Note that
Bn(xn) = ∅ =⇒ Pr{(Un(1), V n(1, l)) /∈ Bn(xn), ∀l} = 1. (150)

Otherwise, we define

Cn(xn) = {un | un ∈ Anδ (U |xn), and {vn : vn ∈ Bn(xn, un)} 6= ∅}
Ccn(xn) = Un\Cn(xn) = Rn\Cn(xn). (151)

Then, for each xn such that Bn(xn) 6= ∅ the following holds

Pr{(Un(1), V n(1, l)) /∈ Bn(xn), ∀l}

=

∫
Ccn(xn)

pnU (un)dun +

∫
Cn(xn)

pnU (un)Pr{V n(1, l) /∈ Bn(xn, un), ∀l|Un(1) = un}dun

=

∫
Ccn(xn)

pnU (un)dun +

∫
Cn(xn)

pnU (un)

L∏
l=1

Pr{V n(1, l) /∈ Bn(xn, un)|Un(1) = un}dun

(b)
=

∫
Ccn(xn)

pnU (un)dun +

∫
Cn(xn)

pnU (un)

{
Pr{V n(1, 1) /∈ Bn(xn, un)|Un(1) = un}

}L
dun, (152)

where (b) holds due to the iid of the codebook. Moreover, for un ∈ Cn(xn),

Pr{V n(1, 1) /∈ Bn(xn, un)|Un(1) = un}
= 1− Pr{V n(1, 1) ∈ Bn(xn, un)|Un(1) = un}

= 1−
∫
Bn(xn,un)

pnV |U (vn|un)dvn. (153)

From the definition of Bn for each vn ∈ Bn(xn, un) we have

pnV |U (vn|un)

pnV |UX(vn|un, xn)
≥ 2−n(h(V |U)+2δ)

2−n(h(V |U,X)−2δ)

= 2−n(I(X;V |U)+4δ). (154)

This implies that for un ∈ Cn(xn) we have the following inequality

Pr{V n(1, 1) /∈ Bn(xn, un)|Un(1) = un}
15Note that herein dxn is a friendly notation for dλ⊗n, i.e., we are considering the product of Lebesgue measures.
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≤ 1− 2−n(I(X;V |U)+4δ)

∫
Bn(xn,un)

pnV |UX(vn|un, xn)dvn. (155)

Therefore, for un ∈ Cn(xn) the second integrand of the second integral in (152) is bounded as

{Pr{V n(1, 1) /∈ Bn(xn, un)|Un(1) = un}L

≤
(

1− 2−n(I(X;V |U)+4δ)

∫
Bn(xn,un)

pnV |UX(vn|un, xn)dvn
)L

(∗)
≤ 1−

∫
Bn(xn,un)

pnV |UX(vn|un, xn)dvn + exp
(
− L2−n(I(X;V |U)+4δ)

)
(c)

≤ 1−
∫
Bn(xn,un)

pnV |UX(vn|un, xn)dvn + exp(−2nδ), (156)

where (c) follows from the definition of L. In (∗) we use the following inequality [16, Lemma 10.5.3]

(1− xy)n ≤ 1− x+ e−yn, (157)

where 0 ≤ x, y ≤ 1, and n > 0. Thus, when Bn(xn) 6= ∅,

Pr{(Un(1), V n(1, l)) /∈ Bn(xn), ∀l}

≤
∫
Ccn(xn)

pnU (un)dun +

∫
Cn(xn)

pnU (un)

(
1−

∫
Bn(xn,un)

pnV |UX(vn|un, xn)dvn + exp(−2nδ)

)
dun

= 1 + exp(−2nδ)

∫
Cn(xn)

pnU (un)dun −
∫
Cn(xn)

pnU (un)

∫
Bn(xn,un)

pnV |UX(vn|un, xn)dvndun

(d)

≤ 1 + exp(−2nδ)− 2−n(I(X;U)+3δ)

∫
Bn(xn)

pnV U |X(vn, un|xn)dundvn

= 1 + exp(−2nδ)− 2−n(I(X;U)+3δ)Pr{(Un, V n) ∈ Bn(xn)|Xn = xn}, (158)

where (d) follows since for un ∈ Cn(xn) we have

pnU (un)

pnU |X(un|xn)
≥ 2−n(h(U)+δ)

2−n(h(U |X)−2δ)

= 2−n(I(X;U)+3δ). (159)

Finally,

Pr
{

(Un(j), V n(j, l)) /∈ Bn(xn), ∀j, l
}

≤
(

1 + exp(−2nδ)− 2−n(I(X;U)+3δ)Pr{(Un, V n) ∈ Bn(xn)|Xn = xn}
)M

= (1 + exp(−2nδ))M
(

1− 2−n(I(X;U)+3δ) Pr{(Un, V n) ∈ Bn(xn)|Xn = xn}
1 + exp(−2nδ)

)M
(∗)
≤ (1 + exp(−2nδ))M

(
1− Pr{(Un, V n) ∈ Bn(xn)|Xn = xn}

1 + exp(−2nδ)
+ exp(−M2−n(I(X;U)+3δ))

)
≤ (1 + exp(−2nδ))M̂

(
1− Pr{(Un, V n) ∈ Bn(xn)|Xn = xn}

1 + exp(−2nδ)
+ exp(−2nδ)

)
, (160)

where (∗) has the same explanation as before. From equation (150) we observe that the bound in (160) holds as well for the
case Bn(xn) = ∅. Furthermore, note that

(1 + exp(−2nδ))M̂ → 1 (161)

as n→∞ which will be pointed out in the following. Define β = 2nδ which implies that M̂ = 22n(I(X;U)+3δ) = βα where
α = 2 I(X;U)+3δ

δ > 0. Also as n→∞, β →∞. It suffices to show that

lim
β→∞

βα ln(1 + e−β) = 0, (162)

which can be concluded from L’Hospital’s rule. Next, we average over xn which gives us

Pr
{

(Xn, Un(j), V n(j, l)) /∈ Bn, ∀j, l
}
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≤ (1 + exp(−2nδ))M̂
(

1 + exp(−2nδ)− Pr{(Un, V n, Xn) ∈ Bn}
1 + exp(−2nδ)

)
. (163)

The fact that
Pr{(Un, V n, Xn) ∈ Bn} → 1, (164)

follows from
Pr{(Un, V n, Xn) ∈ Anδ (UV X)} → 1, as n→∞, (165)

and (145). In conclusion we obtain

Pr
{

(Xn, Un(j), V n(j, l)) /∈ Bn, ∀j, l
}
→ 0, as n→∞. (166)

B. A coding scheme

As in the discrete case we begin with the codebook construction. Given 0 < δ < 1, whose value is determined later, fix a
conditional density pUV |X and a measurable mapping g : R3 → R such that

E[d(X, g(U, V, Y ))] = D <∞, and I(Y ;V |U) > 0. (167)

We will discuss the degenerate case where I(Y ;V |U) = 0 at the end of this subsection. We note that since the distortion measure
is the squared error distance, there exists a measurable quantization mapping f : X̂ → {x̂i}Ni=1 ⊂ X̂ , with N sufficiently large
and X̂ = R such that [10, Eq. 2.11]

D̂ = E[d(X, f(g(U, V, Y )))] ≤ (1 + δ)D. (168)

Define16

ĝ = f ◦ g. (169)

With abuse of notation, we define Bδn as before with ĝ in place of g and D̂ in place of D.
Additionally17, we show in the following that there exist a deterministic mapping and an auxiliary random variable which
produce the same effect as drawing an element from a set uniformly at random. We use the mapping and random variable in
our formal coding scheme to show that the resulting mappings are measurable. Let T be the set of of all pairs (i, j) where
i ∈ [1 : 2nRU ] and j ∈ [1 : 2nR̄V ]. The corresponding power set is 2T . For each set E ∈ 2T , we select one element of E
uniformly at random if E 6= ∅. Otherwise, we select one element of T uniformly at random. The corresponding conditional
pmf is given by {PE(t) | t ∈ T }. For each n by the functional representation lemma [12, Appendix B] there exists a discrete
random variable T̂ , defined on the corresponding finite alphabet T̂ , and a function ψ̂ : 2T × T̂ → T such that

ψ̂(E , T̂ ) ∼ PE , ∀E ∈ 2T . (170)

Codebook generation: We generate a single codebook for all users which consists of 2nRU iid sequence un(j) from the
marginal pdf pU . For each j, 2nR̄V codewords vn(j, l) are drawn iid from the conditional pdf pV |U . Each index l is parsed
into a unique pair (k, k′), where k ∈ [1 : 2nRV ], k′ ∈ [1 : 2nR

′
V ] and R̄V = RV + R′V , i.e., k is the corresponding bin index

of l where the bin is given as in (105). We also fix two sequences une and vne corresponding to the error message {e}.
Enrollment: Given xn(i) where i ∈M, we search for the set Ii which is determined as

Ii =

{
(ji, li) | (xn(i), un(ji), v

n(ji, li)) ∈ Bδn, ji ∈ [1 : 2nRU ], li ∈ [1 : 2nR̄V ]

}
. (171)

If the set Ii is not empty then we select a tuple (ji, li) uniformly at random from Ii. Otherwise, (ji, li) is selected uniformly
from the set of all pairs. Formally the action is described by ψ̂(Ii, t̂) as in (170) where t̂ is the corresponding realization of
T̂ . We store ji in the first layer and the bin index ki in the second layer18.
Identification and Reconstruction: The two stage identification works similarly as in the discrete case with the following
modification. Condition (107) is replaced by

(zn, un(ji)) ∈ Anδ (ZU). (172)

16 Note that ĝ is a measurable mapping since it is a composition of two measurable mappings.
17By our restrictions, all mappings are required to be deterministic and measurable. However, in our proof we use randomization in the encoding step to

simplify the analysis. Hence, the existence of the mapping and the auxiliary random variable allow us to perfom derandomization in the last step. Moreover,
the output sequence is also a random vector since it is the ouput of the combination of deterministic transformations whose inputs are random vectors.

18We note that this encoding scheme is different from the one in Section II since the first layer message ji is chosen after searching through codeword
sequences in all layers. In contrast, in the discrete case the stored index in the first layer of the i-th user is chosen based only on the codewords in the first
layer

(
un(j)

)2nRU
j=1

.
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Condition (108) is replaced by searching for a unique ŵ such that

(yn, un(jŵ), vn(jŵ, l̃)) ∈ Anδ (Y UV ). (173)

for some l̃ ∈ B(kŵ). Condition (109) is changed to searching for a unique l̃ ∈ B(kŵ) when ŵ 6= e such that

(yn, un(jŵ), vn(jŵ, l̃)) ∈ Anδ (Y UV ). (174)

If ŵ = e we set l̃ = 1. When ŵ = e or l̃ = e, we set un(jŵ) = une and vn(jŵ, l̃) = vne . Then the processing center outputs
the corresponding sequence x̂τ = ĝ(uτ (jŵ), vτ (jŵ, l̃), yτ ) for all τ = [1 : n] where ĝ is defined in (169).
Properness of our coding scheme:
Roughly speaking, in each of the aforementioned steps the action consists of a combination of mappings whose pre-image
of a Borel set is a finite intersections, or/and unions, of Borel sets. Hence the resulting mappings are measurable. The
details are given in the following. We only need to show that mappings whose input arguments contain elements of R are
measurable19. For notation brevity we define Ξ = 1 + 2n(RU+R̄V ), Υ = 1 + 2nRU , un = (un(1), . . . , un(2nRU )) and
vn = (vn(1, 1), . . . , vn(2nRU , 2nR̄V )).
• We first show that the mappings from the users’ data sequences and codebook to the stored indices are jointly measurable.

For the sake of clarity, we focus on the first user. Consider the set of mappings {ψi,j} where i ∈ [1 : 2nRU ] and
j ∈ [1 : 2nR̄V ] each is defined as

ψi,j : Rn×Ξ → {∗, (i, j)}

ψi,j(x
n(1),un,vn) 7→

{
(i, j) if (xn(1), un(i), vn(i, j)) ∈ Bδn
∗ otherwise

where ∗ is a dummy symbol. Then each ψi,j is a measurable mapping since the pre-image

ψ−1
i,j ((i, j)) = {(xn(1),un,vn) | (xn(1), un(i), vn(i, j)) ∈ Bδn, other codewords take values in Rn}, (175)

is a Borel set. Hence the map

ψ = (ψ1,1, . . . , ψ2nRU ,2nR̄V ) : Rn×Ξ →×
i,j

{∗, (i, j)}

ψ(xn(1),un,vn) 7→ Î1, (176)

is a measurable mapping. The one-to-one correspondence π0 between the vector Î1 and the set of suitable pairs I1 given
in (171) by eliminating all ∗, e.g., for Î1 =

(
∗, (1, 2), ∗, (1, 4), ∗, . . . , ∗

)
I1 = π0(Î1) = {(1, 2), (1, 4)}, (177)

is obviously measurable. Let T , ψ̂ and T̂ be defined as in (170) then the map

φ : Rn×Ξ × T̂ → T
φ(xn(1),un,vn, t̂) = ψ̂(π0(ψ(xn(1),un,vn)), t̂) 7→ (j1, l1), (178)

which is our selection map, is (
Rn×Ξ × T̂ ,B(Rn×Ξ)× 2T̂

)
→ (T , 2T )

measurable. We note that the mappings from the chosen pair to the stored pair are projections, hence measurable. In
summary we show that the encoding mappings are measurable.

• To show that forming the list induces a measurable mapping, consider the following set of mappings {ĝ1i}Mi=1 where for
each i, ĝ1i is defined as

ĝ1i : Rn×Υ ×MM
1 → {∗, i}

ĝ1i(z
n,un, j) 7→

{
i if (zn, un(ji)) ∈ Anδ (ZU)

∗ otherwise
. (179)

Since Aδn(ZU) is a Borel set, it can be seen that the map

ĝ1 = (ĝ11, . . . , ĝ1M ) : Rn×Υ ×MM
1 → L̂ =

M×
i=1

{∗, i}

ĝ1(zn,un, j) 7→ L̂. (180)

19Mappings which map finite input alphabets to finite output alphabets are obviously measurable since the corresponding Borel σ-algebras are power sets.
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is jointly measurable. Next, let π1 be defined as

π1 : L̂→ L

π1(L̂) 7→
{
L by eliminating all ∗ and if 1 ≤ |L| ≤ 2n∆

{e} otherwise
.

Since π1 is a mapping from a discrete set to another discrete set, it is measurable w.r.t. the power set σ-algebra. Hence
the map ḡ1 = π1 ◦ ĝ1 is a jointly measurable on

(Rn×Υ ×MM
1 ,B(Rn×Υ)× 2M

M
1 )→ (L, 2L).

Our first stage processing map g1 can be obtain from ḡ1 once a set of codewords is fixed.
• Similarly, for user identification in the second stage we look at the following set mappings {ĝ2i}Mi=1, whereas each is

defined as

ĝ2i : Rn×Ξ ×M12 → {∗, i}

ĝ2i(y
n,un,vn, (jL, kL)) 7→


i if i ∈ L and (yn, un(ji), v

n(ji, l)) ∈ Anδ (Y UV )

for some l ∈ B(ki)

∗ otherwise
.

We observe that for each i the mapping ĝ2i is jointly measurable. Next we need the mapping

π2 :
M×
i=1

{∗, i} → W ∪ {e}

π2(α) 7→
{
ŵ if it is the only non-∗ element in α
e otherwise

.

The second stage identification mapping g2 can be obtained from ḡ2 = π2 ◦
((
ĝ2i

)M
i=1

)
once a set of codewords is fixed.

• Finally, to describe the reconstruction mapping g3 we need mappings ĝ3 and π3 which are defined in the following. Let
M̂′12 = M1 ×

{
[1 : 2nR̄V ] ∪ {e}

}
×
(
W ∪ {e}

)
. The mapping ĝ3 searches for the unique second layer index l̃ of the

chosen user ŵ, which has the bin index kŵ, and is defined formally as

ĝ3 : Rn×Ξ × M̂12 → M̂′12

ĝ3(yn,un,vn, (jŵ, kŵ, ŵ)) 7→



(jŵ, l̃, ŵ) if ŵ 6= e and l̃ is unique such that

(yn, un(jŵ), vn(jŵ, l̃)) ∈ Anδ (Y UV )

as well as l̃ ∈ B(kŵ)

(1, e, ŵ) if ŵ 6= e

(1, 1, e) if ŵ = e

where M̂12 is defined in (5). The mapping π3 outputs the corresponding codeword pair (un(jŵ), vn(jŵ, l̃)) given the
input tuple (jŵ, l̃, ŵ) and the codebook. It is defined as

π3 : Rn×(Ξ−1) × M̂′12 → R2n

π3(un,vn, (jŵ, l̃, ŵ)) 7→
{

(un(jŵ), vn(jŵ, l̃)) if ŵ 6= e and l̃ 6= e

(une , v
n
e ) otherwise

. (181)

The measurable properties of ĝ3 and π3 can be shown similarly as the ones of ĝ1 and ĝ2. The reconstruction mapping g3

can be obtained from ḡ3(·, yn) = ĝ(π3(·, ĝ3(·)), yn), where ĝ, which has a finite output alphabet and is defined in (169),
is applied symbolwisely.

Analysis: Let Ji and Li, i ∈ W , be the chosen indices for the i-th user. Furthermore, let L1 be the list of indices i ∈ W
that satisfy (172) in the first stage of the identification process.
Denoted by H the random variable which represents the randomly generated codebook, i.e.,

H =

{
(Un(j), V n(j, l)) | i ∈M, j ∈ [1 : 2nRU ], l ∈ [1 : 2nR̄V ]

}
, (182)

and its realization by H. The Markov relation

(Y n, Zn)−Xn(W )− (W,JW , LW ,H)

follows by our coding scheme. However, for the error analysis we need the Markov relation in form of density terms.
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Claim 3. For each triple (w, jw, lw), the function

pXn(W )Y nH|JWLWW (xn, yn,H|jw, lw, w)

=
Pr{Jw = jw, Lw = lw,W = w|Xn(W ) = xn,H = H}

PJWLWW (jw, lw, w)
× pnX(xn)pnY |X(yn|xn)p(H = H) (183a)

is a conditional density function of the distribution µ(B,w, jw, lw) = Pr
{

(Xn(W ), Y n,H) ∈ B|Jw = jw, Lw = lw,W = w
}

w.r.t. the product of Lebesgue measures λ⊗n(2+2n(RU+R̄V )), where B ∈ B
(
Rn×(2+2n(RU+R̄V ))

)
is a Borel set. It can also be

argued that this function is jointly measurable in (xn, yn,H, jw, lw, w).

Proof: It is immediate from the definition of pXn(W )Y nH|JWLWW in (183a) that it is a jointly measurable function in
(xn, yn,H). Lemma 1 implies the following relation

Pr{Jw = jw, Lw = lw,W = w|Xn(W ) = xn,H = H}
= Pr{Jw = jw, Lw = lw,W = w|Xn(W ) = xn, Y n = yn,H = H}
PXn(W )Y nH − a.s. (184)

Hence by integrating pXn(W )Y nH|JWLWW , defined as in (183a), on each set Borel set B and using the relation (184) as well
as the definition of conditional probability we obtain the conclusion. We further note that since our encoding procedure is
identical among users and W is independent of users’ data and the encoding process, we obtain

pXn(W )Y nH|JWLWW (xn, yn,H|jw, lw, w)

=
Pr{J1 = jw, L1 = lw|Xn(1) = xn,H = H}

PJ1L1
(jw, lw)

× pnX(xn)pnY |X(yn|xn)p(H = H), . (185)

Note further that as Pr{Jw = j, Lw = l|Xn(w) = xn,H = H} = 0 for some combinations of data sequence, observation
and codebook for the w-th user, the corresponding density value is zero.

The following piggy-back’s trick [20, Lemma 4.3] facilitates the need of the Markov lemma for the continuous alphabet.
For brevity, we denote herein by Ỹ n the pair (Y n, Zn), by ψn the random variable ψn(Xn(W ), Ỹ n, Un(JW ), V n(JW , LW ))
and by Pcp the distribution PXn(W )Un(JW )V n(JW ,LW )WJWLW . Additionally, we define

χBn = χBn(Xn(W ), Un(JW ), V n(JW , LW ))

χBcn = 1− χBn , (186)

where herein Bn is also a short notation for Bδn. We first notice that since 0 ≤ ψn(·) ≤ 1,

E[ψn] = E[χBcnψn] + E[χBnψn]

≤ Pr{(Xn(W ), Un(JW ), V n(JW , LW )) /∈ Bn}+ E[χBnψn], (187)

With the help20 of (183a) the second term can be bounded as

E[χBnψn] =

∫
χBn(xn, un, vn)× E

[
ψn(xn, un, vn, Ỹ n)|Xn(w) = xn, Un(jw) = un, V n(jw, lw) = vn,

W = w, Jw = jw, Lw = lw
]
dPcp

=

∫
χBn(xn, un, vn)E[ψn(xn, un, vn, Ỹ n)|Xn(w) = xn,W = w]dPcp

=

∫
χBn(xn, un, vn)ηXUV (xn, un, vn)dPcp

(a)

≤ δ1/2
n , (188)

where (a) holds since given (xn, un, vn) ∈ Bn, we have ηXUV (xn, un, vn) ≤ δ1/2
n .

Due to the symmetry of the problem we obtain

Pr{(Xn(W ), Un(JW ), V n(JW , LW )) /∈ Bn} = Pr{(Xn(1), Un(J1), V n(J1, L1)) /∈ Bn} (189)

as W is independent of the enrollment process. Moreover, by our encoding rule we have

{ω ∈ Ω | (Xn(1), Un(J1), V n(J1, L1)) /∈ Bn} = {ω ∈ Ω | (Xn(1), Un(j1), V n(j1, l1)) /∈ Bn, ∀j1, l1} (190)

Then by Lemma 2
Pr{(Xn(W ), Un(JW ), V n(JW , LW )) /∈ Bn} → 0, (191)

20See also the disintegration arguments in Appendix A.
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as n→∞ if
RU ≥ I(X;U) + 4δ, RV +R′V ≥ I(X;V |U) + 5δ. (192)

Hence
E[ψn]→ 0, as n→∞. (193)

This implies that (Ỹ n, Un(JW ), V n(JW , LW )) ∈ Anδ (Y UV ) with high probability, i.e.,

Pr{W /∈ L1} → 0, as n→∞. (194)

As in the discrete case we consider the following events

E1 = {|L1| > 2n∆},

E2 =

{
(Un(JW ), V n(JW , l̃), Y

n) ∈ Anδ (UV Y ), for some l̃ 6= LW , l̃ ∈ B(KW )

}
,

E3 =

{
∃(w′, l̃), w′ 6= W,w′ ∈ L1, (Y

n, Un(Jw′), V
n(Jw′ , l̃)) ∈ Anδ (Y UV ), l̃ ∈ B(Kw′)

}
. (195)

To bound the probability of the event E1 we only need to verify (117) for i ≥ 2, which is expressed in our case as

Pr{Bi|W = 1} =

∫
un,ji

∫
Anδ (Z|un)

pZn|W (zn|1)dzndPUn(Ji)Ji(u
n, ji)

≤
∫
un,ji

∫
Anδ (Z|un)

2−n(h(Z)−δ)dzndPUn(Ji)Ji(u
n, ji)

≤ 2−n(I(Z;U)−3δ). (196)

Therefore as in the discrete case Pr{E1} → 0 if R −∆ < I(Z;U) − 3δ. The analysis in (118) can be carried out similarly
and we obtain the condition R+R′V < I(Y ;U, V )− δ, which is needed for Pr{E3} → 0. This further leads to

Pr{Ŵ 6= W} → 0. (197)

Hence, we only need to bound the probability of the second event E2.
We use the same technique as the one in [21, Lemma 1]. Due to the symmetry of the codebook construction and the encoding

process, it is sufficient to condition on the following event21

{J1 = 1, L1 = 1,W = 1}. (198)

We also assume that l1 = 1 belongs to B(1). Then due to the union bound and symmetry

Pr{E2|J1 = 1, L1 = 1,W = 1} ≤
∑

l̃∈B(1), l̃ 6=1

Pr{(Un(1), V n(1, l̃), Y n) ∈ Anδ |J1 = 1, L1 = 1,W = 1}

≤ 2nR
′
V Pr{(Un(1), V n(1, 2), Y n) ∈ Anδ |J1 = 1, L1 = 1,W = 1}. (199)

The probability term in the right-hand side of (199) can be factorized22

Pr{(Un(1), V n(1, 2), Y n) ∈ Anδ |J1 = 1, L1 = 1,W = 1}

=

∫
Anδ (UV Y )

pUn(1)V n(1,2)Y n|J1L1W (un, vn, yn|1, 1, 1)dundvndyn

=

∫
Anδ (UV Y )

(∫
p(Un(1) = un, V n(1, 2) = vn, Y n = yn,

Xn(1) = xn, V n(1, 1) = ṽn|J1 = 1, L1 = 1,W = 1)dxndṽn
)
dundvndyn

(?)
=

∫
Anδ (UV Y )

(∫
pnY |X(yn|xn)pUn(1)V n(1,2)Xn(1)V n(1,1)|J1L1W (un, vn, xn, ṽn|1, 1, 1)dxndṽn

)
dundvndyn

(??)
=

∫
pnY |X(yn|xn)p(Xn(1) = xn, Un(1) = un, V n(1, 1) = ṽn|J1 = 1, L1 = 1)

21For simplicity we drop the subscript for the index of the first user, i.e., the notation (j1, l1) is simplified as (j, l).
22Since Anδ (UV Y ) is a Borel measurable set, we do not need to consider the complete measure space. We also use the notation pX|Y (x|y) and

p(X = x|Y = y) for probability density function interchangeably where the latter is handy when a long tuple of random variables is present in the
expression.
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×
(∫
Anδ (V |un,yn)

p(V n(1, 2) = vn|Un(1) = un, V n(1, 1) = ṽn, Xn(1) = xn,

J1 = 1, L1 = 1)dvn
)
dxndyndundṽn. (200)

The equality in (?) holds according to the relation (183a). Since densities are non-negative, (??) holds due to Fubini’s theorem
and (185). For brevity, we denote F = {Un(1) = un, V n(1, 1) = ṽn, Xn(1) = xn} and

C = {V n(1, l) | l ≥ 3}
⋃{

Un(j), V n(j, l)

}
j,l
∣∣j≥2

, (201)

as the rest of the codebook23. For given C = C define

n(C,F) =
∣∣{l | vn(1, l) ∈ C, (un, vn(1, l), xn) ∈ Bn}

∣∣
+
∣∣{(j, l) | j ≥ 2, (un(j), vn(j, l)) ∈ C, (un(j), vn(j, l), xn) ∈ Bn}

∣∣, (202)

which is a Borel measurable function, and

i(C,F) =

{
1 if (xn, un, ṽn) /∈ Bn and n(C,F) = 0

0 otherwise
. (203)

As a standard step, we further define24 G = {C : p(C = C|F , J1 = 1, L1 = 1) = 0}. Then

Pr{C ∈ G|F , J1 = 1, L1 = 1} = 0, (204)

which implies that ∫
Anδ (V |un,yn)

p(V n(1, 2) = vn|F , J1 = 1, L1 = 1)dvn

=

∫
Anδ (V |un,yn)

∫
G

p(V n(1, 2) = vn,C = C|F , J1 = 1, L1 = 1)dCdvn

+

∫
Anδ (V |un,yn)

∫
Gc
p(V n(1, 2) = vn,C = C|F , J1 = 1, L1 = 1)dCdvn

(b)
=

∫
Anδ (V |un,yn)

∫
Gc
p(V n(1, 2) = vn,C = C|F , J1 = 1, L1 = 1)dCdvn, (205)

where (b) is valid since (204) can be seen as the integration of p(V n(1, 2) = vn,C = C|F , J1 = 1, L1 = 1) over Rn × G,
which implies that the first term in the above sum is zero. A similar line of reasoning can be applied to resolve the case where

p(Xn(1) = xn, Un(1) = un, V n(1, 1) = ṽn|J1 = 1, L1 = 1) = 0, (206)

in (200).
Additionally, consider the case that (xn, un, ṽn) /∈ Bn. Define25

D = {C : n(C,F) > 0}, (207)

which is a Borel set. Then due to our encoding rule

Pr{C ∈ D|F , J1 = 1, L1 = 1} = 0, (208)

which leads to ∫
Anδ (V |un,yn)

p(V n(1, 2) = vn|F , J1 = 1, L1 = 1)dvn

=

∫
Anδ (V |un,yn)

∫
(D∪G)c

p(V n(1, 2) = vn,C = C|F , J1 = 1, L1 = 1)dCdvn. (209)

Therefore, to upper bound (200), by combining the arguments in (205) and (209), it is sufficient to consider the following
inner integral ∫

C

p(V n(1, 2) = vn,C = C|F , J1 = 1, L1 = 1)dC

23More precisely, C is a random vector in which components are V n(1, l) where l ≥ 3 and (Un(j), V n(j, l)) for j ≥ 2 arranged in the presented order.
24From its definition G is a Borel measurable set. In more details, due to the restriction (206) G is the (xn, un, ṽn)-section of the measurable set

Ḡ = {(C, xn, un, ṽn) | p(F|J1 = 1, L1 = 1) > 0 and p(C = C,F|J1 = 1, L1 = 1) = 0}. This implies that the inner integral over G in (205) produces
a measurable function in (xn, un, ṽn, vn).

25More specifically, D is the (xn, un, ṽn)-section of the measurable set D̄ = {(C, xn, un, ṽn) | (xn, un, ṽn) /∈ Bn and n(C,F) > 0}.
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=

∫
C

p(C = C|F , J1 = 1, L1 = 1)p(V n(1, 2) = vn|C = C,F , J1 = 1, L1 = 1)dC (210a)

(c)
=

∫
C

p(C = C|F , J1 = 1, L1 = 1)p(V n(1, 2) = vn|C = C,F)

× Pr{J1 = 1, L1 = 1|V n(1, 2) = vn,C = C,F}
Pr{J1 = 1, L1 = 1|C = C,F} dC, (210b)

where26

C =

{
(D ∪G)c if (xn, un, ṽn) /∈ Bn
Gc if (xn, un, ṽn) ∈ Bn

. (211)

Note that in both cases, Pr{J1 = 1, L1 = 1|C = C,F} > 0. In Appendix E-C we provide an argument to verify (c) in (210)
independently for interested readers.
Next, we have

p(V n(1, 2) = vn|C = C,F) =

n∏
i=1

pV |U (vi|ui) (212)

due to our codebook generation. In addition, we bound the numerator term in (210b) as follows:

Pr{J1 = 1, L1 = 1|V n(1, 2) = vn,C = C,F}︸ ︷︷ ︸
γ

≤ 1

2nR
i(C,F) +

1

n(C,F) + 1
(1− i(C,F))︸ ︷︷ ︸

γ′

, (213)

where R = RU + R̄V . We verify the above inequality by the following cases:
• (xn, un, ṽn) /∈ Bn then n(C,F) = 0 by our restriction which implies that i(C,F) = 1. We have

γ ≤ γ′ =
1

2nR
, (214)

with the equality when (xn, un, vn) /∈ Bn.
• (xn, un, ṽn) ∈ Bn, i.e., i(C,F) = 0, we always have

γ ≤ γ′ =
1

n(C,F) + 1
, (215)

with the equality when (xn, un, vn) /∈ Bn. The “+1” term in the denominator is due to the event (xn, un, ṽn) ∈ Bn.
Moreover, the denominator in (210b) can be lower bounded as

Pr{J1 = 1, L1 = 1|C = C,F}

≥
∫
Bcn(xn,un)

Pr{J1 = 1, L1 = 1|C = C,F , V n(1, 2) = vn}

× p(V n(1, 2) = vn|C = C,F)dvn

=

(
1

2nR
i(C,F) +

1

n(C,F) + 1
(1− i(C,F))

)
× Pr{V n(1, 2) /∈ Bn(xn, un)|Un(1) = un}

≥
(

1

2nR
i(C,F) +

1

n(C,F) + 1
(1− i(C,F))

)
× Pr{V n(1, 2) /∈ Anδ (V |un, xn)|Un(1) = un}. (216)

Now for sufficiently large n,

Pr{V n(1, 2) /∈ Anδ (V |un, xn)|Un(1) = un} = 1−
∫
Anδ (V |un,xn)

pnV |U (vn|un)dvn

≥ 1− 2−n(h(V |U)−2δ)

∫
Anδ (V |un,xn)

dvn

≥ 1− 2−n(h(V |U)−2δ)2n(h(V |U,X)+2δ)

= 1− 2−n(I(X;V |U)−4δ). (217)

26It can be seen that C is the (xn, un, ṽn)-section of (Ḡ ∪ D̄)c.



34

This analysis implies that when δ < I(X;V |U)/4 and for sufficiently large n

p(V n(1, 2) = vn|C = C,F)× Pr{J1 = 1, L1 = 1|V n(1, 2) = vn,C = C,F}
Pr{J1 = 1, L1 = 1|C = C}

≤ 1

1− 2−n(I(X;V |U)−4δ)

n∏
i=1

pV |U (vi|ui)

(e)

≤ (1 + ε̂)2−n(h(V |U)−2δ), (218)

where ε̂ is a fixed positive number. (e) holds since vn ∈ Anδ (V |un, yn). Combining (205), (210b) and (218) we obtain the
following upper bound ∫

Anδ (V |un,yn)

p(V n(1, 2) = vn|F , J1 = 1, L1 = 1)dvn

≤
∫
Anδ (V |un,yn)

(1 + ε̂)2−n(h(V |U)−2δ)dvn
∫
C

p(C = C|F , J1 = 1, L1 = 1)dC

≤ (1 + ε̂)2−n(h(V |U)−2δ)2n(h(V |U,Y )+2δ)

= (1 + ε̂)2−n(I(V ;Y |U)−4δ). (219)

Hence, inserting the above inequality in (200) we obtain

Pr{(Un(1), V n(1, 2), Y n) ∈ Anδ |J1 = 1, L1 = 1,W = 1} ≤ (1 + ε̂)2−n(I(V ;Y |U)−4δ)

and
Pr{E2} → 0 as n→∞, (220)

if R′V < I(V ;Y |U)− 4δ and δ < I(V ;Y |U)/4.
Lastly, we bound now the distortion level of the reconstruction sequence. Define

φn = (1−ψn)(1− χE1)(1− χE2)(1− χE3), (221)

and φ̄n = (1− φn). We have the following simple inequality, which is actually the union bound,

φ̄n ≤ 1− (1−ψn)(1− χE1)(1− χE2) + χE3 ≤ · · · ≤ ψn + χE1 + χE2 + χE3 . (222)

Then E[φ̄n]→ 0 as n→∞. We notice that

φn = 1 =⇒
{∣∣d(Xn(W ), X̂n)− D̂

∣∣ ≤ δ}, (223)

where X̂n = ĝ(Un(JŴ ), V n(JŴ , L̃), Y n). Therefore the distortion level can be upperbounded as

E
[∣∣d(Xn(W ), X̂n)− D̂

∣∣] = E
[
φn
∣∣d(Xn, X̂n)− D̂

∣∣]+ E
[
φ̄n
∣∣d(Xn, X̂n)− D̂

∣∣]
≤ δ + E[φ̄nD̂] + E[φ̄nd(Xn, X̂n)]. (224)

The last term in (224) can be bounded using similar techniques as in [10, Lemma 5.1]. First note that

E[φ̄nd(Xn(W ), X̂n)] =
1

n

n∑
i=1

E[φ̄nd(Xi(W ), X̂i)] ≤
1

n

n∑
i=1

E[φ̄nζ(Xi(W ))], (225)

where ζ(Xi(W )) = max{x̂}Nk=1
d(Xi(W ), x̂k). We further observe that {ζ(Xi(W ))}ni=1 are iid ∼ Pζ(X) and integrable random

variables. The latter statement holds due to the property of the square distortion measure and PX . Then for all i ∈ [1 : n] the
following is valid for any a > 0

E[φ̄nζ(Xi(W ))] ≤ aE[φ̄n] + E[ζ(Xi(W ))χ{ζ(Xi(W ))≥a}]. (226)

Due to the monotone convergence theorem and the iid property we have

E[ζ(Xi(W ))χ{ζ(Xi(W ))≥a}] = E[ζ(X)χ{ζ(X)≥a}] ≤ δ, ∀i (227)

for sufficiently large a ≥ a0 where a0 depends only on (d, PX , {x̂k}Nk=1). This implies that when a ≥ a0

1

n

n∑
i=1

E[φ̄nζ(Xi(W ))] ≤ aE[φ̄n] + δ ≤ 2δ (228)

when n→∞. In conclusion we obtain
E
[∣∣d(Xn(W ), X̂n)− D̂

∣∣] ≤ 4δ. (229)
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for sufficiently large n. Recall that the discrete random variable T̂ is used to select a pair of indices (ji, li) randomly, cf. (170),
and and H is the random codebook. Put δ̂ = 4δ, by using Markov’s inequality with the threshold 4δ̂, as in the proof of [18,
Lemma 2.2], we have for all sufficiently large n∣∣E[d(Xn(W ), X̂n)|H, T̂ ]− D̂

∣∣ < E
[∣∣d(Xn(W ), X̂n)− D̂

∣∣|H, T̂
]
, P− a.s,

Pr
{
E[χ{W 6=Ŵ}|H, T̂ ] < 4δ̂, E[χ{W /∈L}|H, T̂ ] < 4δ̂,

E
[∣∣d(Xn(W ), X̂n)− D̂

∣∣|H, T̂
]
< 4δ̂

}
> 1/4, (230)

which implies the existence of a codebook H and an instance of randomness t̂. Choosing δ small enough, we therefore arrive
at the conditions in (124). The rest follows immediately.
Finally, we discuss about the case when I(Y ;V |U) = 0. We then have that

I(X;V |U, Y ) = I(Y,X;V |U) = I(X;V |U), (231)

as Y −X − (U, V ). The second constraint (35b) becomes

R1 +R2 ≥ I(X;U, V ).

The third constraint (35c) can be omitted as

R+ I(X;U, V |Y ) ≤ I(Y,X;U, V ) = I(X;U, V ), (232)

where the first inequality holds since R ≤ min{RL+I(Z;U), I(Y ;U, V )}. In summary we need to prove the following region
is achievable

R1 ≥ I(X;U)

R1 +R2 ≥ I(X;U, V )

R ≤ min{RL + I(Z;U), I(Y ;U, V )}
D ≥ E[d(X, g(U, V, Y ))]. (233)

The achievability of the region (233) can be proceeded in a similar manner as the one when I(Y ;V |U) > 0. Namely, we need
two layers of codewords un and vn. However binning is not used for the second layer. The reconstruction sequence is given
by ĝ(un(jŵ), vn(jŵ, lŵ), yn). In the analysis we simply omit the event E2 since no binning is used.
The following sub-region, which is useful in a later discussion, can be obtained by choosing V and g such that V is independent
of everything else and g : R2 → R such that

R1 ≥ I(X;U)

R ≤ min{RL + I(Z;U), I(Y ;U)}
D ≥ E[d(X, g(U, Y ))]. (234)

C. A detailed justification of (210)

The skeptic reader might be wary of the validity of (c) in (210) which is ensured by the following analysis. Let

E =
{

(C, xn, un, ṽn) | p(C = C,F) > 0
}
. (235)

Then, we have Pr
{

(C, Xn(1), Un(1), V n(1, 1)) ∈ Ec
}

= 0. Therefore, we can modify the expression (200) as follows. The
LHS of (200) is expanded to be an integral over C and Anδ (UV Y ) of the corresponding conditional density term. Then
by restricting the integral on the set E and following similar steps as in (200), the last integral in (200) is changed to∫ ∫
Anδ (V |un,yn)

∫
E(xn,un,ṽn)

, where E(xn, un, ṽn) is the corresponding section of E. The set C in (210) can be modified to C′

which is the (xn, un, ṽn)-section of (Ḡ ∪ D̄)c ∩ E, cf. Footnote 24 and 25.

Claim 4. Let Rα be the product space of tuples (C, un, ṽn, xn, vn) where α = n(4 + (2nR̄V − 2 + (2nRU − 1)2nR̄V ))) with
the corresponding Borel σ-algebra B(Rα). Then

p(V n(1, 2) = vn|C = C,F , J1 = 1, L1 = 1)Pr{J1 = 1, L1 = 1|C = C,F}
= p(V n(1, 2) = vn|C = C,F)× Pr{J1 = 1, L1 = 1|V n(1, 2) = vn,C = C,F}

λ⊗α-almost everywhere on {(C, un, ṽn, xn, vn)|p(C = C,F) > 0} ∈ B(Rα). As a corollary, the conclusion also holds when
we restrict to vn ∈ Anδ (V |un, yn).
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Proof: We first notice that Pr{J1 = 1, L1 = 1|C = C,F}p(C = C,F) = Pr{J1 = 1, L1 = 1}p(C = C,F|J1 =
1, L1 = 1), λ⊗(α−n)-almost everywhere on Rα−n, hence also λ⊗α-a.e. on Rα. This can be seen by integrating both sides
w.r.t. (C, un, ṽn, xn) on any set Ê ∈ B(Rα−n) and using the definition of conditional probability distribution. Then for any set
E ∈ B(Rα)∫

E
p(V n(1, 2) = vn|C = C,F , J1 = 1, L1 = 1)Pr{J1 = 1, L1 = 1|C = C,F}p(C = C,F)dCdundṽndxndvn

= PJ1L1
(1, 1)

∫
E
p(V n(1, 2) = vn|C = C,F , J1 = 1, L1 = 1)p(C = C,F|J1 = 1, L1 = 1)dCdundṽndxndvn

(d)
= Pr{J1 = 1, L1 = 1, (C, Un(1), V n(1, 1), Xn(1), V n(1, 2)) ∈ E}

=

∫
E
p(V n(1, 2) = vn|C,F)Pr{J1 = 1, L1 = 1|V n(1, 2) = vn,C = C,F}p(C = C,F)dCdundṽndxndvn.

In (d) we use the expression p(V n(1, 2) = vn,C = C,F|J1 = 1, L1 = 1) = p(C = C,F|J1 = 1, L1 = 1)p(V n(1, 2) =
vn|F ,C = C, J1 = 1, L1 = 1) which holds except on a zero probability set where p(C = C,F|J1 = 1, L1 = 1) = 0. The
conclusion of the claim follows.

Since, we are doing integration over (un, yn, vn) ∈ Anδ (UV Y ) and (C, xn, un, ṽn) ∈ (Ḡ ∪ D̄)c ∩ E, Claim 4 indicates that
replacing (210a) by (210b) does not change the value of (199).

APPENDIX F
ON THE CLOSEDNESS OF RGS

Assume that the sequence of tuples (Rm, R1,m, R2,m, RL,m, Dm)m∈N ∈ RGS tends to (R,R1, R2, RL, D) as m → ∞
w.r.t. `1-distance. This implicitly means that neither R1 nor R2 is ∞. From the definition of RGS we only need to show that
we always have R < Rγ(RL) and D > 0, where due to the definition Rγ(RL) depends on RL. We show this by a proof by
contradiction. Suppose that we have R = Rγ(RL) or D = 0. For a given ε > 0, there exists m0(ε) ∈ N such that ∀m > m0(ε)

Dm < D + ε, Rm > R− ε, and Rm −RL,m > R−RL − ε. (236)

This implies that

R1,m +R2,m ≥
1

2
log2

σ2
Y

σ2
Z2−2(Rm−RL,m) − σ2

N2

,

+
1

2
max

{
log2

σ2
Xσ

2
N1

σ2
Y (D + ε)

, log2

σ2
X2−2(R−ε)

σ2
Y 2−2(R−ε) − σ2

N1

, log2

σ2
X

σ2
Y

σ2
Z2−2(R−RL−ε) − σ2

N2

σ2
Z2−2(R−RL−ε) − (σ2

N1
+ σ2

N2
)

}
. (237)

Taking m → ∞, substituting D = 0 or R = Rγ(RL) into the right-hand side of (237), and then taking ε → 0 we see the
violation since if D = 0 the first term in the maximization tends to ∞ whereas if R = Rγ(RL) one of the two latter terms in
the maximization goes to ∞ which contradicts R1, R2 <∞. Therefore (R,R1, R2, RL, D) ∈ RGS .

APPENDIX G

A. Justification of (43)

Due to the Markov chain (42) we know that, cf. Lemma 1,

P [H|Y n,W, JW ,KW , T ] = P [H|Y n,W, JW ,KW ] P− a.s., ∀H ∈ σ(Xi(W )). (238)

When the terms on both sides of (238) are regular conditional distributions, which exist since R is a Polish space, then
(238) implies that PXi(W )|Y nWJWKW is a regular conditional distribution of Xi(W ) given (Y n,W, JW ,KW , T ). Since
E[d(Xi(W ), gi(·))] <∞ by our restriction, cf. Footnote 6, the disintegration theorem [13, Theorem 5.4] gives us

E[d(Xi(W ),gi(·))|Y n,W, JW ,KW , T ]

=

∫
d(x, gi(·))dPXi(W )|Y nWJWKW (x), P− a.s.. (239)

Hence (43) is justified.
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B. Measurability of g′ in (45)

Let ḡ(Y n,W, JW ,KW , T ) to be the right-hand side of (239), where ḡ is measurable. Let t0 be an arbitrary value of t. Since
E[ḡ(·)] = E[d(Xi(W ), gi(·))] <∞, the set of (w, jk, kw, y

n, t) for which ḡ(w, jk, kw, y
n, t) =∞ has probability zero. Hence,

by for example setting these ḡ(w, jk, kw, y
n, t) to zero, it also suffices to assume that for all tuples (w, jk, kw, y

n, t) we have
ḡ(w, jk, kw, y

n, t) <∞. Since a∗ is the argmin of ḡ according to the lexigraphical restriction, we have

(a∗)−1(t0) =
⋂
t≺t0

{
(w, jw, kw, y

n) | ḡ(w, jw, kw, y
n, t) > ḡ(w, jw, kw, y

n, t0)
}

⋂
t0≺t

{
(w, jw, kw, y

n) | ḡ(w, jw, kw, y
n, t) ≥ ḡ(w, jw, kw, y

n, t0)
}

(240)

where ≺ is herein the lexigraphical order. This implies that a∗ is a measurable function of (w, jw, kw, y
n) since the space of

all possible t0 is finite. The measurability of g′i follows similarly from the finiteness.

C. A formal arrival at (48)

From (40) we have

D + ε >
1

n

n∑
i=1

inf
gi

E[d(Xi(W ), gi(W,JW ,KW , T, Y
n))]

=
1

n

n∑
i=1

E[d(Xi(W ),E[Xi(W )|W,JW ,KW , T, Y
n])]

(?)
=

n∑
i=1

1

n
E[d(Xi(W ),E[Xi(W )|W,JW ,KW , Y

n])] (241)

where (?) is explained using Corollary 3 as follows. In our case H = σ(Xi(W )), G = σ(Y n,W, JW ,KW ), F = σ(T ) and
σ(F ,G) = σ(W,JW ,KW , T, Y

n). Since Xi(W ) is integrable, eq. (99) implies that

E[Xi(W )+|F ,G] = E[Xi(W )+|G]), P− a.s.,
E[Xi(W )−|F ,G] = E[Xi(W )−|G]), P− a.s., (242)

where Xi(W )+ = max{Xi(W ), 0} and Xi(W )− = max{−Xi(W ), 0}. This leads to (?). In the light of explanations in
Appendix G-A, we also observe that (99) holds due to the disintegration theorem [13, Theorem 5.4].

APPENDIX H
PROOF OF CLAIMS

A. Proof of Claim 1

For notation brevity, we denote by η2 the distribution PXn(W )Y nZn . Consider the following definition, which results in a
Markov kernel,

η1(B,w, jw, kw) =


Pr{(Xn(w), Y n, Zn) ∈ B,W = w, Jw = jw,Kw = kw}

PWJWKW (w, jw, kw)
if PWJWKW (w, jw, kw) > 0

η2(B) else
, (243)

where B ∈ B(R3n). Then η1(B,W, JW ,KW ) is (a version of) the conditional probability Pr{(Xn(W ), Y n, Zn) ∈ B|WJWKW }.
Note that η2 and η1(·, w, jw, kw) for a given (w, jw, kw) are probability measures on B(R3n). Additionally, for each (w, jw, kw),
η1(·, w, jw, kw) � η2 � λ⊗3n where λ is the Lebesgue measure on B(R), λ⊗3n is the product of Lebesgue measures on
B(R3n) of (xn, yn, zn), and � denotes the absolute continuous relation between measures [17, Section 2.2]. By the Radon-
Nikodym theorem, for each (w, jw, kw) there exists a conditional density p(xn, yn, zn|w, jw, kw) given by

p(xn, yn, zn|w, jw, kw) =
dη1(·, w, jw, kw)

dλ⊗3n
, (244)

which is jointly Borel measurable in (xn, yn, zn). Next we will show that it is also jointly measurable w.r.t. (xn, yn, zn, w, jw, kw).
For each B ∈ B(R) we have{

(w, jw, kw, x
n, yn, zn) | p(xn, yn, zn|w, jw, kw) ∈ B

}
=

⋃
w,jw,kw

{
(w, jw, kw)

}
× p(·|w, jw, kw)−1(B) ∈ 2W×M1×M2 × B(R3n), (245)
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where p(·|w, jw, kw)−1(B) ∈ B(R3n) is the pre-image of B under p(·|w, jw, kw). This implies the joint measurability of
p(xn, yn, zn|w, jw, kw) as the right-hand side of (245) is a finite union of measurable sets and further

p(xn, yn, zn|w, jw, kw) =
dPXn(W )Y nZnWJWLW

d(λ⊗3n × PWJWKW )
. (246)

Then the function p(xn|yn, w, jw, kw) = p(xn, yn|w, jw, kw)/p(yn|w, jw, kw), defined when p(yn|w, jw, kw) 6= 0, is the
seeking jointly measurable conditional density. We can perform further marginalization to obtain, for example

p(yn|w, jw) =

∫
M2

p(yn|w, jw, kw)dPKW |W=w,JW=jw =
dPY nWJW

d(λ⊗n × PWJW )
, etc. (247)

B. Proof of Claim 2 and Implications

The proof of Claim 2 employs similar steps as the one of Claim 1. Note that for each tuple (e, w, j), the conditional
probability

Pr{E = e,W = w,J = j|Zn = zn}
is a measurable function of zn due to the definition of conditional probability. It is also clear that given zn, Pr{E = e,W =
w,J = j|Zn = zn} is a measurable function of (e, w, j) since there are only finite number of tuples (e, w, j). Hence, similar
as in (245) the jointly measurable of the conditional probability w.r.t. (e, w, j, zn) can be shown as follows. For each B ∈ B(R){

(e, w, j, zn)

∣∣∣∣Pr{E = e,W = w,J = j|Zn = zn} ∈ B
}

=
⋃
e,w,j

{
(e, w, j)} ×

(
Pr{E = e,W = w,J = j|·}

)−1

(B)

∈ 2{0,1}×W×M
M
1 × B(Rn). (248)

Claim 2 allows us to show the measurablity of Pr(e, w|zn, j) via Pr(e, w|zn, j) = Pr(e, w, j|zn)/Pr(j|zn) defined when
Pr(j|zn) 6= 0 and so on.
Therefore, the inequalities (19) and (51) are justified step by step as follows

H(E,W |Zn,J) = E[− log2 Pr(E,W |Zn,J)] = E[− log2 Pr(W |Zn,J)] + E[− log2 Pr(E|W,Zn,J)]

= H(W |Zn,J)

= E[− log2 Pr(E|Zn,J)] + E[− log2 Pr(W |E,Zn,J)]

(∗∗)
≤ H(E) + E

[
Pr(E = 0|Zn,J)H(W |E = 0, Zn,J)

+ Pr(E = 1|Zn,J)H(W |E = 1, Zn,J)
]

≤ hb(Pe) + Pe log2M + n(RL + ε), (249)

where (∗∗) follows from the law of total expectation, i.e., the computing order is EZnJ [EE|ZnJ [EW |E,Zn,J (·)]]. The inequality

H(W |Y n,(JL,KL)) < 1 + Pr(Ŵ 6= W ) log2M

< 1 + ε log2M, (250)

can be verified similarly, as (JL,KL) takes values on a finite set, cf. (3). The step

H(W ) = I(W ;Zn,J) +H(W |Zn,J) (251)

in (21) is also valid for the Gaussian scenario due to [22, Theorem 2.4], since W is discrete. The interested reader is referred
to Appendix I for an alternative direct justification of (251). The other steps follow from the chain rule of mutual information
and data processing inequality [22, Theorem 2.5].

C. Derivation of (75)

The entropy power entropy

2
2
nh(Y n|W,JW ,KW ) ≥ 2

2
nh(Xn(W )|W,JW ,KW ) + 2

2
nh(Nn1 |W,JW ,KW ), (252)

leads to
n

2
log2(2πeσ2

N1
) < h(Y n|W,JW ,KW ) ≤ h(Y n|W,JW )
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≤ n

2
log2(2πe(σ2

Z2−2((R−ε)(1−ε)−RL)+4ε − σ2
N2

)), (253)

which implies that there exists an α2 with 0 ≤ α2 < 1, such that

h(Y n|W,JW ,KW ) =
n

2
log2(2πe((1− α2)(σ2

Z2−2((R−ε)(1−ε)−RL)+4ε − σ2
N2

) + α2σ
2
N1

)). (254)

This further leads to

∆2 = h(Xn(W )|Y n)− h(Xn(W )|W,JW ,KW )− h(Y n|Xn(W )) + h(Y n|W,JW ,KW )

≥ n

2
log2

(
σ2
X

σ2
Y

(1− α2)(σ2
Z2−2((R−ε)(1−ε)−RL)+4ε − σ2

N2
) + α2σ

2
N1

(1− α2)(σ2
Z2−2((R−ε)(1−ε)−RL)+4ε − (σ2

N1
+ σ2

N2
))

)
(b)

≥ n

2
log2

(
σ2
X inf0≤α2<1((σ2

Z2−2((R−ε)(1−ε)−RL)+4ε − σ2
N2

) + α2

1−α2
σ2
N1

)

σ2
Y (σ2

Z2−2((R−ε)(1−ε)−RL)+4ε − (σ2
N1

+ σ2
N2

))

)
=
n

2
log2

(
σ2
X

σ2
Y

σ2
Z2−2((R−ε)(1−ε)−RL)+4ε − σ2

N2

σ2
Z2−2((R−ε)(1−ε)−RL)+4ε − (σ2

N1
+ σ2

N2
)

)
. (255)

We note that (57) implies the term σ2
X

σ2
Y (σ2

Z2−2((R−ε)(1−ε)−RL)+4ε−(σ2
N1

+σ2
N2

))
is positive. Hence we can move this term outside

of the inf-operation which implies that (b) is valid. (75) follows by taking ε→ 0

APPENDIX I
SOME EXTRA JUSTIFICATION

A. A direct proof of (251)

We also observe from Claim 2 that Pr{W = w|J = j, Zn = zn} = dPWJZn

d(µc×PJZn ) , where

Pr{W = w|J = j, Zn = zn} =
Pr{W = w,J = j|Zn = zn}

Pr{J = j|Zn = zn}
when Pr{J = j|Zn = zn} 6= 0, µc is the counting measure. This provides another way to validate (251). Specifically,
PWJZn � PW ×PJZn � µc×PJZn holds. The former holds since if PW ×PJZn(E) = 0 where E ∈ 2W×M

M
1 ×B(Rn) then

as E =
⋃
w{w}×Ew, PJZn(Ew) = 0, ∀w. Herein Ew is the w-section of E . This further implies that PWJZn

(
{w}×Ew

)
= 0,

∀w and hence PWJZn(E) = 0. Thus

I(W ;J , Zn) = EPWJZn

[
log2

dPWJZn

d(PW × PJZn)

]
= EPWJZn

[
log2

Pr{W = w|J = j, Zn = zn}
Pr{W = w}

]
. (256)

B. A direct proof of (52a)

For the second equality, cf. equation (52a), we need to verify that PZnWJW � PZn×PWJW � λ⊗n×PWJW holds. The first
� assertion is valid since if PZn ×PWJW (E) = 0 where E ∈ B(Rn)× 2W×M1 then for all (w, jw) either PWJW (w, jw) = 0
or PZn{E(w,jw)} = 0, where E(w,jw) is the corresponding (w, jw)-section of E , is valid as E =

⋃
w,jw
E(w,jw) × {(w, jw)}. In

both cases we have

PZnWJW

(
E(w,jw) × (w, jw)

)
≤ min

{
PWJW (w, jw), PZn(E(w,jw))

}
= 0, ∀(w, jw). (257)

Therefore

I(W,JW ;Zn) = EPZnWJW

[
log2

dPZnWJW

d(PnZ × PWJW )

]
= EPZnWJW

[log2

p(zn|w, jw)

p(zn)
]. (258)
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APPENDIX J
ACHIEVABILITY IN THEOREM 3

1) The case Rcr12
< Rγ:

a) Rcr01 ≤ Rcr12

• Case II: 0 ≤ R < Rcr01
, h0(R) dominates both h1(R) and h2(R). Let V and N0 be independent Gaussian random

variables such that X = V +N0 where σ2
V = σ2

Y (1−2−2Rcr01 ). Since Rcr12 < Rγ we also have σ2
V < σ2

X . Additionally,
let U and N ′0 be independent Gaussian random variables such that V = U + N ′0 where σ2

U = σ2
Z(1 − 2−2(R−RL)).

Note that σ2
U > 0, if R > RL. Furthermore, we also observe that σ2

U < σ2
V since σ2

U (R) is a increasing function of R,
and σ2

U (Rcr01
) ≤ σ2

V holds because Rcr01
≤ Rcr12

. We also have the Markov chain U − V −X − Y − Z. Moreover

R−RL = I(Z;U), R < Rcr01
= I(Y ;V ). (259)

Additionally

h(X|V, Y ) =
1

2
log2

(
2πe

σ2
N1

σ2
Y

σ2
Y 2−2Rcr01 − σ2

N1

2−2Rcr01

)
=

1

2
log2 2πeD, (260)

which implies that the distortion level is matched. Hence the chosen random variables satisfy the constraints for fixed
parameters. The rate constraint for R1 is given as in (94). The other sum rate constraints can be calculated as

R1 +R2 ≥
1

2
log2

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

+
1

2
log2

σ2
Xσ

2
N1

σ2
YD

,

R1 +R2 −R ≥
1

2
log2

σ2
Xσ

2
N1

σ2
YD

. (261)

which again match with the outerbound. If R = RL we can choose U to be a Gaussian and independent of everything
else. Similarly, the first sum rate constraint in the above region can be removed, cf. (89).

• Case III: Rγ > R ≥ Rcr12
≥ RL then h2(R) dominates the other functions since h2(R) ≥ h1(R) ≥ h0(R) on

this interval. We also observe that Rcr12 ≥ Rcr02 , i.e., Rcr02 lies inside the interval [RL, Rγ). Assume otherwise that
Rcr02 > Rcr12 , then we have the following chain

h0(Rcr02) = h2(Rcr02) > h2(Rcr12) = h1(Rcr12) ≥ h1(Rcr01) = h0(Rcr01), (262)

which is a contradiction. Furthermore, note that as Γ = 1
2h2(R) the third constraint (36c) becomes redundant due to

(36b) as

R1 +R2 ≥
1

2
log2

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

+
1

2
h2(R)

=
1

2
log2

σ2
X

σ2
Z2−2(R−RL) − (σ2

N1
+ σ2

N2
)
. (263)

Additionally, since R ≥ Rcr12
we have

22R(σ2
Z2−2(R−RL) − σ2

N2
) ≤ σ2

Y ,

⇒ R+
1

2
h2(R) ≤ 1

2
log2

σ2
X

σ2
Z2−2(R−RL) − (σ2

N1
+ σ2

N2
)
, (264)

which implies that the fourth constraint R1 + R2 ≥ R + Γ also becomes irrelevant, cf. also (89). Since this is a
degenerate case, we use the region (234) for achieving the corresponding outer bound. Let X = U +N0 where U and
N0 are independent Gaussian random variables, where σ2

U = σ2
Z(1 − 2−2(R−RL)). We observe that σ2

U < σ2
X since

R < Rγ . The Markov chain U −X − Y − Z is satisfied. Additionally, the condition I(Z;U) = R − RL is satisfied
by the chosen U . Since R ≥ Rcr12 , we have σ2

U ≥ σ2
Y (1− 2−2R), cf. (91). This implies that I(Y ;U) ≥ R. Next,

h(X|U, Y ) =
1

2
log2(2πeσ2

N1
) +

1

2
log2 2πe(σ2

Z2−2(R−RL) − (σ2
N1

+ σ2
N2

))

− 1

2
log2 2πe(σ2

Z2−2(R−RL) − σ2
N2

)

=
1

2
log2 2πeσ2

N1

(
1− σ2

N1

σ2
Z2−2(R−RL) − σ2

N2

)
(87)
≤ 1

2
log2 2πeD, (265)
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since R ≥ Rcr12
≥ Rcr02

, i.e., the distortion level D is achievable. The last constraint (36b) is justified straightforwardly.
We note again that in this case, the second layer is not necessary, hence binning can be omitted. A similar behavior is
observed in [3, Section IV].

b) If Rcr01
> Rcr12

then Rcr01
≥ Rcr02

≥ Rcr12
≥ RL. If Rcr02

< Rcr12
then the following meaningful chain of expressions,

i.e., all involving terms are defined, shows the contradiction

h0(Rcr02
) = h2(Rcr02

) < h2(Rcr12
) = h1(Rcr12

) ≤ h1(Rcr01
) = h0(Rcr01

). (266)

Combining with our discussion in Subsection III-C, we have Rcr02 ∈ [Rcr12 , RL + 1
2 log2

σ2
Z

σ2
N1

+σ2
N2

). For Rγ > R ≥ Rcr12 ,

we have h2(R) ≥ h1(R). Additionally, as R→ Rγ either h1(R) or h2(R) tend to ∞. This implies that h2(R) goes to ∞
and intersects h0(R) before h1(R). Hence, both relations Rcr01

≥ Rcr02
and Rcr02

∈ [Rcr12
, Rγ) follow.

• Case IV: If Rγ > R ≥ Rcr02
, then h2(R) dominates the outerbound. Since R ≥ Rcr12

the two constraints (36c) and
(36d) are again redundant. U is selected as in Case III. We note that the requirements I(Y ;U) ≥ R and h(X|U, Y ) ≤
1
2 log2 2πeD are still fulfilled since R ≥ Rcr02 ≥ Rcr12 .

• Case V: If RL ≤ R < Rcr02
, then h0(R) dominates the outerbound, since not only h0(R) = h0(Rcr02

) = h2(Rcr02
) ≥

h1(Rcr02
), but also both h1(Rcr02

) ≥ h1(R) and h2(Rcr02
) ≥ h2(R) hold. Let V and N0 be independent Gaussian

random variables such that X = V +N0 where σ2
V = σ2

Z(1−2−2(Rcr02−RL)) = σ2
Y (1−2−2Rcr01 ), cf. (90). Additionally,

let U and N ′0 be independent Gaussian random variables such that V = U +N ′0 where σ2
U = σ2

Z(1− 2−2(R−RL)) and
σ2
U > 0 if R > RL. Note that σ2

U < σ2
V since R < Rcr02 . Again we have the relation U − V −X − Y − Z. Next,

h(X|V, Y ) =
1

2
log2 2πeσ2

N1

(
1− σ2

N1

σ2
Z2−2(Rcr02

−RL) − σ2
N2

)
(87)
=

1

2
log2 2πeD, (267)

which implies that the distortion level is matched. The choice of U and V also leads to I(U ;Z) = R−RL and from
(267), cf. also (90),

I(Y ;V ) =
1

2
log2

σ2
Y

σ2
Z2−2(Rcr02−RL) − σ2

N2

=
1

2
log2 σ

2
Y

1− D
σ2
N1

σ2
N1

= Rcr01
≥ R. (268)

Lastly, the other constraints are calculated as

R1 +R2 ≥
1

2
log2

σ2
Y

σ2
Z2−2(R−RL) − σ2

N2

+
1

2
log2

σ2
Xσ

2
N1

σ2
YD

,

R1 +R2 −R ≥
1

2
log2

σ2
Xσ

2
N1

σ2
YD

, (269)

which matches the outerbound. If R = RL we select U to be independent of the other random variables. When
RL ≤ R < Rcr12

, (Rcr12
≤ R ≤ Rcr02

), the first (second) constraint in the above region can be removed.
2) The case Rcr12

≥ Rγ: Since Rcr12
≥ Rγ , h1(R) > h2(R) holds for all RL ≤ R < Rγ .

If Rcr01 > RL then the following argument shows that Rcr01 lies in the interval [RL, Rγ). If Rcr01 is outside the interval
[RL, Rγ) then both h1(R) and h2(R) lie below h0(R) in [RL, Rγ). However this is not possible since h1(R) or both h1(R)
and h2(R) tend to ∞ as R→ Rγ . Therefore, we need to consider the following subcases:
• Case VI: If Rcr01 ≤ R < Rγ , then h1(R) dominates the outerbound. We select U and V as in Case I the previous

discussion. We note that (91) still holds since R < Rγ ≤ Rcr12
.

• Case VII: If RL ≤ R < Rcr01
, then h0(R) is the dominating component in the outerbound. U and V are chosen identically

as in Case II. σ2
U < σ2

V is valid since Rcr01
< Rγ ≤ Rcr12

.
Case VIII: If Rcr01

≤ RL, then h1(R) dominates the other functions on [RL, Rγ). So the construction can be done similarly
as in Case I as R < Rcr12

always holds.
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