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Abstract

High-dimensional identification systems consisting of two groups of users in the presence of statistical uncertainties are
considered in this work. The task is to design enrollment mappings to compress users’ information and an identification mapping
that combines the stored information in the database and an observation to estimate the underlying user index. The compression-
identification trade-off regions are established for the compound, arbitrarily varying, general and mixture settings. It is shown that
several settings admit the same compression-identification trade-offs. We then study a connection between the Wyner-Ahlswede-
Körner network and the identification setting. It indicates that a strong converse for the WAK network is equivalent to a strong
converse for the identification setting. Finally, we present strong converse arguments for the discrete identification setting that are
extensible to the Gaussian scenario.

Index Terms

Identification systems, compound and arbitrarily varying, mixture distribution, information-spectrum method, strong converse,
WAK-network.

I. INTRODUCTION

Identification systems have become ubiquitous in modern life with applications and aspects ranging from biometrics [1]
to multimedia [2] to privacy-preserving identification [3]. Willems et.al [1] characterized the capacity of a biometric iden-
tification system with noisy data and observation sequences. The study has been developed further in several directions. In
[4] the compression of users’ information was taken into account. Therein, the author characterized the trade-off between the
compression-identification rate for multi-stage identification systems. Independently, the compression of observation and users’
information was also considered in [5] where achievable bounds for the compression-identification trade-off were proposed.
Subsequently the work [6] extended [4] by including a distortion constraint on the reconstructed data sequence. Methods for
improving search complexity and the corresponding limits were considered in [7], [8], and [9]. It is assumed in these works
that users’ information is iid generated from a known distribution and the observation channel is also perfectly known.

In this work we generalize the identification setting considered in [4]. We study an identification problem involving two
groups of users. Each group uses their own compression mapping to enroll the corresponding users’ data into a database. This
setting is motivated from applications when separate databases are merged together for the identification purpose. We further
assume that the distributions of users’ data in two groups are distinct. As perfect knowledge of the distributions are usually
unknown in practice and distribution learning is an active research theme in machine learning, we consider different models
for data distribution in each group such as compound, arbitrarily varying, and mixture models. These models are standard in
the source and channel coding literature [10]–[14]. We summarize our contributions in the following.
• We derive the optimal compression-identification trade-offs for the compound, arbitrarily varying, general and mixture

settings. In [4] the true user’s data sequence is identically independently distributed according to a known distribution
and independent of the true index. This is not the case in the mentioned settings. The distribution of the chosen user’s
data is a non-iid mixture distribution and depends on the chosen user’s index. Information spectrum arguments are used
in combination with standard single-letterization arguments to show the converse in the considered settings.

• We generalize the connection between the identification setting and the Wyner-Ahlswede-Körner (WAK) network [15],
[16]. Specifically, we show that given a WAK-code we can construct a corresponding identification scheme. Conversely,
given an identification scheme there exists a corresponding WAK-code. The dual connection implies that a strong converse
(an exponentially strong converse) for the WAK-setting is equivalent to a strong converse (an exponentially strong converse)
for the identification problem. Hence, universally any approach that proves the strong converse for the WAK problem
automatically proves the strong converse for the identification problem and vice versa.

The paper is organized as follows: The characterizations of the compound, arbitrary varying, and mixture settings are given
in Section II, III and IV, respectively. In Section V we establish the duality between the WAK setting and the identification
problem.

Notation: Random variables and their realizations are denoted by uppercase, and lowercase letters, respectively. The cal-
ligraphic letters are used to denote sets. Xn denotes the vector of random variables (X1, . . . , Xn) while xn denotes its
corresponding realization in the product set Xn, unless otherwise stated. We also denote the probability measures by uppercase
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Fig. 1: The generic model for a single-group high-dimension identification system.

letters for example PX while lowercase letters such as pX are used for density functions, unless otherwise stated. For a set A,
|A| denotes its cardinality when A is finite whereas Ac denotes its complement. For two probability measures µ on (A,FA)
and ν on (B,FB) we denote by µ× ν their product measure on (A×B,FA ×FB). Given a probability measure µ on A and
a Markov kernel κ : A×FB → [0, 1], κ× µ denotes the joint probability measure on (A×B,FA ×FB). Given a measure µ,
µ⊗n denotes its n-fold product measure extension. log(·) denotes the natural logarithm.

II. COMPOUND SETTING

We first recap the generic setup for a single-group identification system with M users as depicted in Fig. 1. The identification
process consists of two phases. In the enrollment phase, data sequences (xn(i))Mi=1 from M users are enrolled and stored as
(ji)

M
i=1 in a database via a compression mapping φn. It is assumed that the original data sequences (xn(i))Mi=1 might be absent

after the enrollment phase is completed. In the identification phase, an observation yn which is correlated with a selected
sequence xn(w) is provided to the processing unit. The chosen index w is a realization of a uniform random variable W on
[1 : M ]. The processing unit identifies the true user index w via an identification mapping ψn based on the observation yn and
the stored indices (ji)

M
i=1.

In this section we consider a compound setting where users’ data are generated from unknown distributions that belong to
sets of distributions. Assume that there are two groups of users with M1 and M2 members, respectively. Let M = M1 +M2

be the total number of users in the system. We further assume that the fraction of users in the first group is given by
limn→∞M1/M = α ∈ [0, 1]. Without loss of generality, we index the users in the first group by [1 : M1] and the users in the
second group by [M1 + 1: M ].

Let

P1 = {PX,s1 | s1 ∈ S1}, P2 = {PX,s2 | s2 ∈ S2}, (1)

be two non-overlapping sets of probability measures defined on the same measurable space (X ,F). Given an underlying
state s1 ∈ S1, the data sequences of the users in the first group are generated as xn(i) ∼ P⊗nX,s1 for i ∈ [1 : M1]. Similarly
given an underlying state s2 ∈ S2, the data sequences of the users in the second group are generated as xn(i) ∼ P⊗nX,s2 for
i ∈ [M1 + 1: M ]. These assumptions represent the case that users in each group all belong to some communities and the
distribution of each community is described by a state s1 or s2. An example for communities in the first and second group
would be communities of users with the same fingerprint patterns and eye colors, respectively.

We define the overall set of data generating distributions P and the corresponding set of states S as

P =


P1 if α = 1,
P1 ∪ P2 if α ∈ (0, 1),
P2 if α = 0,

S =


S1 if α = 1,
S1 ∪ S2 if α ∈ (0, 1),
S2 if α = 0.

(2)

Furthermore, the observation channel is from the set

Pc = {PY |X,τ | τ ∈ T }. (3)

The observation yn is generated as follows. An index w is chosen uniformly at random from [1 : M ]. For a given τ , yn is
observed through the channel P⊗Y |X,τ with input xn(w). An example for the set Pc could be different deformities for biometric
patterns.

Throughout the paper we assume that S1, S2, and T are finite, unless otherwise stated. Furthermore, we denote the
corresponding set of marginal distributions on Y by

PY = {PY | PY is the marginal distribution on Y of PY |X,τ × PX,s, for some (τ, s) ∈ T × S}. (4)

For simplicity, we enumerate elements of PY by PY,κ where κ ∈ [1 : |PY |].
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Definition 1. A identification scheme consists of two group enrollment mappings

φkn : Xn →Mk, k = 1, 2, (5)

which compress the corresponding users’ information and store it in a database, and an identification mapping

ψn : Yn ×MM1
1 ×MM2

2 → [1 : M ] ∪ {e}, (6)

which identifies the true user using the observation and the stored information in the database.

For a given triple (s1, s2, τ) the corresponding probability of error is given as

Prs1,s2,τ{W 6= Ŵ} =
∑
w

1

M

∫
dP⊗nY |X,τ (yn|xn(w))

M1∏
i=1

dP⊗nX,s1(xn(i))

M∏
i=M1+1

dP⊗nX,s2(xn(i))

1{w 6= ψn(yn, (φ1n(xn(i)))M1
i=1, (φ2n(xn(i)))Mi=M1+1)}. (7)

Definition 2. For a given α ∈ [0, 1], a compression-identification rate pair (Rc, Ri) is achievable if there exists a triple of
mappings (φ1n, φ2n, ψn) such that

lim sup
n→∞

1

n
log |Mk| ≤ Rc, ∀k = 1, 2, lim inf

n→∞
1

n
logM ≥ Ri,

lim
n→∞

sup
(s1,s2,τ)∈S1×S2×T

Prs1,s2,τ{W 6= Ŵ} = 0. (8)

The closure of the set of all achievable rate pair is denoted by Rsc.

Definition 3. When the alphabets X and Y are finite, we define R̄sc to be the set of rate pairs (Rc, Ri) for which we have

Rc ≥ max
s∈S

I(Xs;Us), Ri ≤ min
(s,τ)∈S×T

I(Yτ ;Us), (9)

where S is defined as in (2), PYτXsUs = PY |X,τ × PX,s × PU |X,s, and Us is defined on an alphabet U with |U| ≤ |X |+ |T |.
If X and Y are R, P can be represented by a set of density functions pX,s and Pc can be represented by the set of conditional

density functions pY |X,τ then R̄sc is defined similarly as the closure of rate pairs (Rc, Ri) satisfying (9) over the set of test
channels1 pU |X,s .

Theorem 1. For a given fraction of the first group α ∈ [0, 1] as well as given sets P1, P2 and Pc, the region R̄sc is achievable
in the mentioned cases, i.e.,

R̄sc ⊆ Rsc. (10)

Furthermore, if further X and Y are finite then we have Rsc = R̄sc.

The achievability proof of Theorem 1 follows the one of Theorem 2 in Section III. The converse proof of Theorem 1 is given
in Appendix B. Our result generalizes naturally to settings with a finite number of groups. However for clarity we present the
setting and state the corresponding result with only two groups.

Remark 1. When M1 = M and |S1| = 1 or M2 = M and |S2| = 1 hold, our result reduces to the one given in [4, Theorem
1]. Note that when 1 < M1 < M the distribution of the data sequence of the chosen user Xn(W ) is given by

PXn(W ) =
M1

M
P⊗nX,s1 +

(
1− M1

M

)
P⊗nX,s2 . (11)

Hence Xn(W ) is not iid and neither Xn(W ) ∼ P⊗nX,s1 nor Xn(W ) ∼ P⊗nX,s2 holds. Xn(W ) is also not independent of
W as in [4]. This further leads to Y n be neither iid nor independent of W . Therefore the standard converse steps used in
[4] are not straightforwardly applicable. To show the converse of Theorem 1 we use the information-spectrum approach in
combination with standard single-letterization steps. The idea of the proof is to show that the two-group identification setting
can be decomposed into two sub-identification problems corresponding to the first and second groups, respectively. Inside each
group (Y n, Xn(W )) is jointly iid given the states. This property is summarized in Lemma 2 in Appendix A. When α ∈ (0, 1)
it can be seen that 1

n logMk ≈ 1
n logM holds for k = 1, 2. Therefore, identification rate constraints in the two sub-problems

become relevant and independent of the specific value of α.

1We require that the corresponding entropy and mutual information are finite.
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Example: Assume that M1 = M . Let X be a zero mean Gaussian random variable with unknown variance which belongs
to the set {σ2

1 , σ
2
2}. Without loss of generality we assume that 0 < σ2

1 < σ2
2 . It is clear that for any probability metric d(·, ·),

we have d(P1, P2) 6= 0. The AWGN observation channel is modeled by

Y = X +N, N ∼ N (0, σ2
N ). (12)

It can be seen that the compression-identification rate region Rsc is given by

Rc ≥
1

2
log

σ2
1

σ2
Y1
e−2Ri − σ2

N

0 ≤ Ri <
1

2
log(1 + σ2

1/σ
2
N ), (13)

where σ2
Y1

= σ2
1 + σ2

N . The achievability follows from Theorem 1 with test channels pU |X,1 and pU |X,2 such that given each
state we can write

X = U +N ′, (14)

where U and N ′ are independent Gaussian rvs. More specifically, the distribution of U given the first state is given by
PU,1 = N

(
0, σ2

Y1
(1−e−2Ri)

)
. Similarly we have PU,2 = N

(
0, σ2

Y2
(1−e−2Ri)

)
. The converse holds due to the entropy power

inequality. The example easily illustrates that our scheme needs to adapt to the worst state.

III. ARBITRARILY VARYING SETTING

In this section we consider the scenario where each user i ∈ [1 : M ] has its own state. Similar to Section II we assume that
there exists two groups of users with the corresponding numbers of users M1 and M2, respectively. The fraction of users in
the first group is similarly denoted by α. For each user in the first group the corresponding data sequence xn(i) is generated
independently from P⊗nX,si where si ∈ P1 for all i ∈ [1 : M1]. The data sequence of each user in the second group is generated
as xn(i) ∼ P⊗nx,s̃i where s̃i ∈ S2 for all i ∈ [M1 + 1 : M ]. Compared to the setting of Theorem 1, the underlying states can
be different from user to user. An example of this setting would be the fingerprints (eye colors) of users in the first (second)
group do not follow the same patterns.

We define the set of overall source distributions as in (2). The observation channel is similarly assumed to be in the set Pc
as in (3). The definition of an identification scheme is identical as the one given in Definition 1. For simplicity we denote by
s a sequence of states ((si)

M1
i=1, (s̃i)

M
i=M1+1) ∈ SM1

1 × SM2
2 . The corresponding probability of error is given by

Prs,τ{W 6= Ŵ} =
∑
w

1

M

∫
dP⊗nY |X,τ (yn|xn(w))

M1∏
i=1

dP⊗nX,si(x
n(i))

M∏
i=M1+1

dP⊗nX,s̃i(x
n(i))

1{w 6= ψn(yn, (φ1n(xn(i)))M1
i=1, (φ2n(xn(i)))Mi=M1+1)}. (15)

Similarly, we have the following definition of achievability.

Definition 4. For a given α ∈ [0, 1], a compression-identification pair (Rc, Ri) is achievable if there exists a triple of mappings
(φ1n, φ2n, ψn) such that

lim sup
n→∞

1

n
log |Mk| ≤ Rc, ∀k = 1, 2, lim inf

n→∞
1

n
logM ≥ Ri,

lim
n→∞

sup
s∈SM1

1 ×SM2
2 ,τ∈T

Prs,τ{W 6= Ŵ} = 0. (16)

The closure of the set of all achievable pairs is denoted by Riis.

Note that the number of constraints in the current setting grows exponentially with the block length n. It can be seen that
when s = (s1, . . . , s1︸ ︷︷ ︸

M1

, s2, . . . , s2︸ ︷︷ ︸
M2

) where s1 ∈ S1 and s2 ∈ S2 the error probability given in (15) equals to the one given in (7)

provided that the same triple of mappings are used in both settings. Therefore, Riss ⊆ Rsc. The result for the current setting
is summarized in the following theorem.

Theorem 2. For given set of channels Pc and sets of distributions P1, P2, we have

R̄sc ⊆ Riis. (17)

When X and Y are finite, we further have Riss = R̄sc.

The achievability proof of Theorem 2 is given in the Appendix C while the converse proof of Theorem 2 follows the one
of Theorem 1. Similarly as in Remark 1 given an arbitrary but unknown sequence of states s the data sequence of the chosen
user Xn(W ) is likewise not iid and independent of W . In the following remark we present the proof idea of Theorem 2.
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Remark 2. For simplicity we consider the case α ∈ (0, 1). Since given an arbitrary but unknown sequence of states s,
the data sequence of each user is iid generated according to either P⊗nX,s1 , s1 ∈ S1 or P⊗nX,s2 , s2 ∈ S2 we can use the
concentration properties of probability measures to estimate the unknown state. Given an estimate ŝ(i) for the i-th user, we
use a corresponding codebook generated from P⊗nU,ŝ(i) to compress the data sequence xn(i) and store the index mi,ŝ(i) inside
the database. Given an arbitrary but unknown channel state τ we also can estimate the state of the output distribution of yn

denoted by κ̂. Given the estimate κ̂ we find all the pairs of source and channel states (s, τ) ∈ S × T such that PY,κ̂ is the
marginal of PY |X,τ × PX,s. In the identification process, we look for a unique index ŵ such that (yn, un(mŵ,ŝ(ŵ))) belongs
to the union of the joint typical sets Anγ (PYτUs) over all such pairs (s, τ). We note that in this problem we do not need to
store the estimated states ŝ(i) along with the compressed index mi,ŝ(i) inside the database. Note further that inside each group
the estimated state ŝ(i) can be different from user to user. The only requirement is that the estimated state of the true user is
correct with high probability.
The case α = 0 or α = 1 can be resolved by controlling the error probability of users from the major group as the error
probability of users from the minor group contributes only a vanishing fraction to the total error.

IV. MIXTURE MODELS

In this section we continue studying the two group identification models mentioned in Section II and Section III. We again
assume M1 and M2 users for two groups and the same sets P1, P2, and Pc. However, in contrast to the previous models we
assume in this section that the data sequences of users in group k are generated independently from distribution PXnk given in
the following

PXnk (xn) =
∑
s∈Sk

αksP
⊗n
X,s(x

n), k = 1, 2, (18)

where (αks)s∈Sk are arbitrary but fixed tuples which satisfy
∑
s∈Sk αks = 1, and αks > 0, for all k = 1, 2 and s ∈ Sk. We

assume further that the observation channel is given as

PY n|Xn =
∑
τ∈T

ατP
⊗n
Y |X,τ , (19)

where T is a finite set,
∑
τ∈T ατ = 1 and ατ > 0 for all τ ∈ T . In this setting we know imperfectly that data of users in the

the k-th group are independently generated from P⊗nX,s with probability αks for k = 1, 2, s ∈ Sk and the observation channel
is P⊗nY |X,τ with probability ατ for τ ∈ T . Additionally, we consider only finite alphabets X and Y in this subsection.

A. A general identification-compression trade-off

Before providing the detailed characterization of the region for the motivating setting, we make a digression and consider
a more general problem where the underlying processes are not necessarily memoryless. Assume that data of the users in the
first and second groups are generated independently from the distributions PXn1 and PXn2 defined on a finite alphabet Xn,
respectively. PXn1 and PXn2 are not necessary distributions of memoryless sources. The data sequences are enrolled inside a
database by two compression mappings φ1n and φ2n. The observation channel is given by PY n|Xn which is not necessary a
discrete memoryless channel. To study this general problem we use the following definition of achievability.

Definition 5. For a given α ∈ [0, 1], a rate pair (Rc, Ri) is achievable for the general identification problem if there exists a
pair of identification mappings (φ1n, φ2n) and an identification mapping ψn such that

lim sup
n→∞

1

n
log |Mk| ≤ Rc, ∀k = 1, 2, lim inf

n→∞
1

n
logM ≥ Ri,

lim
n→∞

Pr{Ŵ 6= W} = 0. (20)

Let Rgen denote the closure of the set of all achievable rate pairs (Rc, Ri).

To characterize Rgen we need the following quantities. For a joint discrete process (X,Y) = {(Xn, Y n)}∞n=1 such that
(Xn, Y n) ∼ PXnY n , the spectral sup-mutual information (inf-mutual information) rate [14] is defined respectively as

Ī(X; Y) = p- lim sup
n→∞

1

n
log

PY n|Xn(Y n|Xn)

PY n(Y n)
= inf

{
β
∣∣ lim
n→∞

Pr

[
1

n
log

PY n|Xn(Y n|Xn)

PY n(Y n)
> β

]
= 0

}
,

I(X; Y) = p- lim inf
n→∞

1

n
log

PY n|Xn(Y n|Xn)

PY n(Y n)
= sup

{
β
∣∣ lim
n→∞

Pr

[
1

n
log

PY n|Xn(Y n|Xn)

PY n(Y n)
< β

]
= 0

}
. (21)

Theorem 3. When α ∈ (0, 1), Rgen is the closure of the set of all pairs (Rc, Ri) such that

Rc ≥ max{Ī(X1; U1), Ī(X2; U2)}
Ri ≤ min{I(Y1; U1), I(Y2; U2)}, (22)
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for some general processes U1 = {Un1 }∞n=1 and U2 = {Un2 }∞n=1. Unk is defined on a finite alphabet Ukn such that there
exists N0 > 0 for which 1

n log |Ukn| < N0, ∀n, ∀k = 1, 2. Additionally, for each n and k, the joint distribution satisfies
PY nk Xnk Unk = PY n|Xn × PXnk Unk . When α = 1 (α = 0) holds the second (first) terms inside the maximization-minimization in
(22) can be omitted.

Remark 3. In the proof of Theorem 2 we use the union of jointly typical sets over all compatible source and channel states as
the decoding set. The arguments hold since given the states and chosen user, the distribution of the observation sequence is iid.
It is not straightforward to use similar arguments to the general case where given the states and the chosen user the distribution
of the observation sequence is not necessary iid. We instead use the “typical set” of the following mixed distribution

PỸ nŨn = αPY n1 Un1 + (1− α)PY n2 Un2 . (23)

The proof of Theorem 3 is presented in Appendix D.

B. Generalized mixture models

We now turn back to the motivating setting at the beginning of this section. We use Definition 5 as the definition of
achievability for this setting and denote the corresponding closure of set of achievable rate pairs by Rmix.
For a given α ∈ [0, 1], block length n, let (φ1n, φ2n, ψn) be an identification scheme for the arbitrarily varying setting in
Section III. If the triple of mappings is applied to the current mixture model given in (18) and (19), we then observe that

Pr{Ŵ 6= W} ≤ sup
s∈SM1

1 ×SM2
2 ,τ∈T

Prs,τ{Ŵ 6= W}. (24)

The left-hand side of the above inequality is the error probability in the current mixture model while the right-hand side is the
supremum of identification error probabilities (15) in the arbitrarily varying setting in Section III. This implies that if a pair
(Rc, Ri) is achievable for the arbitrarily varying setting then it is also achievable for the mixture model. Therefore we have
Riss ⊆ Rmix. The following theorem provides the characterization for Rmix.

Theorem 4. Assume that X and Y are finite. For a given α ∈ [0, 1], we have Rmix = R̄sc.

It can be seen from Theorem 1, 2 and 4 that the regions Rsc, Riss and Rmix have the same structure when X and Y are
finite.

Proof: As X and Y are finite we have Riis = R̄sc by Theorem 2. Therefore R̄sc ⊆ Rmix holds. Assume that there
exists an identification scheme such that the rate pair (Rc, Ri) is achievable when α ∈ (0, 1). Given an arbitrary γ > 0 for
sufficiently large n we have logM ≥ n(Ri − γ). Applying Lemma 2 with PXn1 , PXn2 , and PY n|Xn , we have

Ri ≤ min{I(Yk;φk(Xk))}2k=1, (25)

where (Yk, φk(Xk)) = {(Y nk , φkn(Xn
k ))}∞k=1, (Y nk , φkn(Xn

k )) ∼ PY nk φkn(Xnk ) and

PY nk φkn(Xnk )(y
n,mk) =

∑
τ∈T ,sk∈Sk

αταksk
∑

xn : φkn(xn)=mk

P⊗nY |X,τ × P⊗nX,sk(yn, xn). (26)

Therefore we have,
Ri ≤ I(Yτ ;φk(Xsk)), ∀k = 1, 2, ∀(sk, τ) ∈ Sk × T , (27)

which is exactly (66) in the proof of Theorem 1. The rest of the proof therefore follows the one of Theorem 1.
In the rest of this section we consider another mixture model. We assume for simplicity that there is only a single group

in our system, i.e., M1 = M . Furthermore we assume that the observation channel is given by (19). The distribution of data
sequence is given by

PXn =
∑
s∈S

αsP
⊗n
X,s (28)

where S is a countably infinite alphabet, αs > 0 for all s ∈ S and
∑
s∈S αs = 1. The definition of achievability is similarly

given as in Definition 5. Denote the closure of the set of all achievable rate pairs by Renum and define Renum
max (Rc) =

sup{Ri|(Rc, Ri) ∈ Renum}. The following theorem characterizes Renum
max (Rc) for the setting given by (28).

Theorem 5. When X and Y are finite, we have

Renum
max (Rc) = inf

s∈S
θs(Rc), (29)

where θs(Rc) is defined as

θs(Rc) = max
PU|X,s : |U|≤|X|+|T |

I(Xs;Us)≤Rc

min
τ∈T

I(Yτ ;Us), where PYτXsUs = PY |X,τ × PUsXs , ∀τ ∈ T . (30)

The proof of Theorem 5 is given in Appendix E.
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V. DUALITY BETWEEN WYNER-AHLSWEDE-KÖRNER NETWORK AND THE IDENTIFICATION PROBLEM

We establish herein a connection between the identification problem and the problem of lossless source coding with coded
side information, which sheds some light on reasons why the expression (17) holds. We consider the single group setup with
known distribution and channel in the identification problem. Recall that a code for Wyner-Ahlswede-Körner network, called
a WAK-code, [15], [16] for the pair of discrete memoryless sources (X̄n, Ȳ n) ∼ P⊗nXY consists of three mappings,

φ1n : Xn →M1, φ2n : Yn →M2,

ψn : M1 ×M2 → Yn. (31)

Definition 6. Given an ε ∈ [0, 1), a pair (R1, R2) is ε-achievable if there exists an WAK-code such that

lim sup
n→∞

1

n
log |Mk| ≤ Rk, k = 1, 2,

lim sup
n→∞

Pr{Y n 6= Ŷ n} ≤ ε. (32)

The closure of the set of all achievable rate pairs is denoted by RWAK,ε.

It is well-known that the region RWAK,ε is characterized by the following conditions

R1 ≥ I(X;U), R2 ≥ H(Y |U),

U −X − Y, |U| ≤ |X |+ 1, ∀ε ∈ [0, 1). (33)

For a single-group identification system with Xn(i) ∼ P⊗nX for all i ∈ [1 : M ] and the observation channel P⊗nY |X the
ε-achievable definition is given in the following.

Definition 7. Given an ε ∈ [0, 1), a pair (Rc, Ri) is ε-achievable if there exists an identification scheme such that

lim sup
n→∞

1

n
log |M1| ≤ Rc, lim inf

n→∞
1

n
logM ≥ Ri,

lim sup
n→∞

Pr{Ŵ 6= W} ≤ ε. (34)

The closure of the set of all achievable rate pairs is denoted by RID,ε.

We first have the following observation which is a strong converse w.r.t. the identification rate, see also [17] for another
strong converse proof using Arimoto’s argument.

Proposition 1. Given ε ∈ [0, 1), if (Rc, Ri) ∈ RID,ε then Ri ≤ I(Y ;X).

Proof. Suppose that (Rc, Ri) ∈ RID,ε with Ri = I(X;Y ) + 3γ for some γ > 0. It suffices to consider the uncompressed
scenario. Applying Lemma 2 with M1 = M , PXn1 = P⊗nX and PY n|Xn = P⊗nY |X as well as using the weak law of large
numbers we obtain

Pr{Ŵ 6= W} → 1, as n→∞, (35)

for any identification mapping ψn, a contradiction to (Rc, Ri) ∈ RID,ε.

In [18, Section III.C and Section III.E] the authors stated the following relation between the WAK problem and the
identification problem for ε = 0,

RID,0 = {(R1, H(Y )−R2) | (R1, R2) ∈ RWAK,0}. (36)

In both problems Ri characterizes the number of confused (coded) codewords that the system can tolerate. The authors also
stated briefly that the entropy characterization approach in their work provides the optimal achievable region for the identification
problem.

In the following we relate both problem using a generalization of the entropy characterization argument. For an arbitrary but
given ε ∈ [0, 1), we show that given an arbitrarily ε-achievable code for the WAK-setting we can construct a corresponding ε-
achievable scheme for the identification setting with a corresponding rate pair. Conversely, given any ε-achievable identification
scheme, we show that there exists a corresponding ε-achievable WAK-code.

Theorem 6. Given ε ∈ [0, 1).
1) Assume that there exists a WAK-code (φ1n, φ2n, ψn) such that (R1, R2) ∈ RWAK,ε is ε-achievable, where R2 < H(Y )

then we can construct an identification scheme (φ1n, ψ
′
n) based on the given WAK-code such that (R1, H(Y )−R2) is

in RID,ε.
2) Assume that there exists an identification scheme (φn, ψn) such that (Ri, Rc) ∈ RID,ε is ε-achievable where Ri <

H(Y ). Then there exists a WAK-code (φn, φ
′
2n, ψ

′
n) corresponding to the provided identification scheme such that

(Rc, H(Y )−Ri) is in RWAK,ε.
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Consequently, given (Ra, Rb) ∈ R2
+ with Rb ≤ H(Y ),

(Ra, Rb) ∈ RWAK,ε ⇔ (Ra, H(Y )−Rb) ∈ RID,ε, ∀ε ∈ [0, 1). (37)

Remark 4. Theorem 6 and Proposition 1 imply that for each ε > 0, RID,ε corresponds to the sub-region2 of RWAK,ε with
R2 ≤ H(Y ). Hence a strong converse for the WAK-problem is equivalent to a strong converse for the identification problem. In
fact our arguments also indicate that an exponentially strong converse for the WAK-problem is equivalent to an exponentially
strong converse for the identification problem.

Proof: WAK ⇒ ID: Fix an arbitrary γ > 0. Suppose that (φ1n, φ2n, ψn) is a WAK-code for which (R1, R2) ∈ RWAK,ε
is ε-achievable. We define for each m1 ∈M1 the correctly decodable set

Bn(m1) = {yn | yn = ψn(m1, φ2n(yn))}. (38)

We note that since the cardinality of the range of φ2n is bounded by |M2|, then |Bn(m1)| ≤ |M2| for all m1 ∈ M1. It can
also be seen that

PWAK(error) = Pr{Ȳ n 6= ψn(φ1n(X̄n), φ2n(Ȳ n))} = Pr{Ȳ n /∈ Bn(φ1n(X̄n))}. (39)

Assume that there are M users in the identification problem where M is specified later. We take φ1n as the enrollment mapping
for the identification setting. The corresponding enrolled index is denoted by ji for all i ∈ [1 : M ]. The identification mapping
is defined based on the sets {Bn(m1)}m1∈M1

as follows. We look for a unique index ŵ such that yn ∈ Bn(jŵ). Otherwise,
if there is none or there is more than one such indices, we declare an error. For every w ∈ W we then have

Pr{Ŵ 6= w|W = w} ≤ Pr{Y n /∈ Bn(φ1n(Xn(w)))|W = w}+ Pr{Y n /∈ Anγ (PY )|W = w}
+ Pr{∃w′ 6= w, Y n ∈ Bn(Jw′) ∩ Anγ (PY )|W = w}, (40)

where Anγ (PY ) is the weakly typical set based on PY and Ji = φn(Xn(i)) for all i ∈ [1 : M ]. The first term in (40)
corresponds to the error expression of the WAK problem and is independent of w. For each w′ 6= w we have

Pr{Y n ∈ Bn(Jw′) ∩ Anγ (PY )|W = w}
=
∑
jw′

Pφ1n(X̄n)(jw′)
∑

yn∈Anγ (PY )∩Bn(jw′ )

P⊗nY (yn) ≤ e−n(H(Y )−γ)|M2|. (41)

Therefore we have

Pr{Ŵ 6= w|W = w} ≤ PWAK(error) + Pr{Ȳ n /∈ Anγ (PY )}+M |M2|e−n(H(Y )−γ). (42)

There exists an n0(γ) > 0 such that 1
n log |M2| ≤ R2 + γ for all n ≥ n0(γ). If we take M = en(H(Y )−R2−3γ) then the last

term in (42) goes to 0 as n→∞. Hence,
lim sup
n→∞

Pr{Ŵ 6= W} ≤ ε. (43)

Since γ is arbitrary, this shows that (R1, H(Y )−R2) is in RID,ε.
WAK ⇐ ID: Similarly, fix an arbitrary γ > 0. Given an identification scheme (φn, ψn) such that the rate pair (Ri, Rc) is
ε-achievable. We construct a code for the WAK-problem as follows. Randomly assign each sequence yn to a bin B(m2) where
m2 ∈ [1 : enR2 ] and R2 is specified later. We use the mapping φn to compress the source sequence xn at Encoder 1 in the
WAK problem. Define the decoding set Dn(m1) as

Dn(m1) =

{
yn | 1

n
log

PȲ n|φn(X̄n)(y
n|m1)

PȲ n(yn)
≥ Ri − 2γ, yn ∈ Anγ (PY )

}
, ∀m1 ∈M1. (44)

We define a decoder for the WAK-problem as follows. If ŷn is a unique sequence such that ŷn ∈ B(m2) ∩ Dn(m1), then ŷn

is output as the reconstruction sequence. Let M̄1 and M̄2 be the encoded messages at Encoder 1 and 2. Applying Lemma 2
with M1 = M , PXn1 = P⊗nX and PY n|Xn = P⊗nY |X , we obtain

Pr{Ȳ n /∈ Dn(M̄1)} ≤ Pr{Ŵ 6= W}+ 2e−nγ + Pr{Ȳ n /∈ Anγ (PY )}, (45)

for all n ≥ n0(γ). Furthermore, we have

Pr{∃ŷn 6= Ȳ n, ŷn ∈ B(M̄2) ∩ Dn(M̄1)}
≤

∑
(m1,yn)

PȲ nφn(X̄n)(y
n,m1)

∑
m2

Pr{M̄2 = m2|Y n = yn}
∑

ŷn∈Dn(m1)

Pr{ŷn ∈ B(m2)}

≤ e−nR2en(H(Y )−Ri+3γ), (46)

2The RWAK,ε also includes all tuples (R1, R2) with R2 > H(Y ).
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where the last inequality holds due to the following chain of inequalities

1 ≥ Pr{Ȳ n ∈ Dn(m1)|φn(X̄n) = m1}

=

∫
Dn(m1)

dPȲ n|φn(X̄n)(y
n|m1) ≥ en(Ri−2γ)

∫
Dn(m1)

dP⊗nY (yn)

≥ en(Ri−3γ−H(Y ))|Dn(m1)|, ∀m1 ∈M1, (47)

By setting R2 = H(Y )−Ri + 4γ, we have

lim sup
n→∞

Pr{ ˆ̄Y n 6= Ȳ n} ≤ ε. (48)

Since γ is arbitrary, the rate pair (Rc, H(Y )−Ri) is in RWAK,ε.

Remark 5. In [19] a strong converse proof for the identification problem is provided using Oohama’s techniques initiated
in [20]. The authors argued in the introduction that classic techniques such as the image characterization [13, Chapter 15]
are perhaps not sufficient to establish the strong converse for the identification setting since the identification setting is an
unconventional source-channel coding problem. Theorem 6 refutes this point by showing that any technique that can prove
the (exponentially) strong converse for the WAK problem automatically proves the (exponentially) strong converse for the
identification problem. This includes the classic blowing-up approach in [21] and newly developed approaches in [20], [22]
and [23].

Remark 6. In Appendix F we present a strong converse proof for RID in both discrete and Gaussian settings. The crucial steps
for showing the strong converses in both cases are to use the transformation idea presented in Theorem 6. By noticing that the
inequality (45) is valid in both discrete and Gaussian cases, we relate the identification error probability to the probability of
non-typicality in the decoding of the WAK problem in the discrete setting and the one of a WAK-like problem in the Gaussian
setting. In [24] the authors prove the strong converse for a distributed Gaussian source coding with side-information which
can be (conceptually) viewed as a different dual of the WAK problem in the Gaussian scenario. After establishing the necessary
relation we use the techniques in [24] to show the strong converse for the Gaussian identification problem. Our arguments
provide an answer for an open question posed in [19]. In the light of Theorem 6 the proof for the discrete case is not necessary,
but we include the arguments therein for completeness.

Remark 7. The bound in (42), where the last term is caused by the presence of multiple users in the system, can be
extended to both settings in Theorem 1 and Theorem 2 as follows. For simplicity we assume that both settings involve a single
group of users, the observation channel is known, and no two input distributions result in the same output distribution. Let
{(φ1n,s, φ2n,s, ψn,s)}s∈S be an arbitrary set of mappings for the WAK-problems where the corresponding joint distributions are
{PY |X×PX,s}s∈S . A code for the setting of Theorem 2 is constructed as follows. In the enrollment phase we first estimate the
state ŝi and use the corresponding mapping φ1n,ŝi to compress the data of the i-th user. In the identification phase the processing
unit estimates the underlying state s′ and uses the corresponding set Bn,s′(m1,s′) = {yn | yn = ψn,s′(m1,s′ , φ2n,s′(y

n))} as
the decision region. Then we obtain the following upper bound for the setting in Theorem 2

Prs{Ŵ 6= w|W = w}
≤ Pr{Ȳ nsw 6= ψn(φ1n(X̄n

sw), φ2n(Ȳ nsw))}+ P (estimation error)

+ Pr{Ȳ nsw /∈ Anγ (PYsw )}+M |M2,sw |e−n(H(Ysw )−γ). (49)

The last term in (49) is valid since given underlying states the independence still holds. From the expression (49) we can
conclude that two important reasons for the expression (17) are vanishing estimation error and the mutual independence of
users’ data given underlying states.

APPENDIX A
SUPPORTING LEMMAS

In this section we establish several lemmas that are helpful to prove the results in the paper.

Lemma 1. Assume that the alphabet X is a Polish space, specifically, a finite set with discrete metric or R with Euclidean
distance, and F is the corresponding σ-algebra generated by open sets. Assume that the probability measures PX,s are distinct
for all s ∈ S, i.e., ∀(s, s′) ∈ S2 such that s 6= s′ we have d(PX,s, PX,s′) 6= 0 where d is any metric on the space of probability
measures. Then there exists a classifier T : Xn → S ∪ {e}, where e denotes an error, such that if X̄n ∼ P⊗nX,s then

Pr(T (X̄n) = s)→ 1, as n→∞. (50)

Proof: Let d be a metric on the set of probability measures M1(X ) that induces the weak? topology, for example the
Prohorov metric, and define

tX = inf
(s,s′)∈S2

s 6=s′
d(PX,s, PX,s′). (51)
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As |S| is finite, tX > 0. For each xn the empirical distribution Pxn is given by

Pxn(A) =
1

n

n∑
i=1

δxi(A), (52)

where A ∈ F , and δx is the corresponding Dirac measure. Define

AXs =
{
xn | d(Pxn , PX,s) <

tX
2

}
, ∀s ∈ S. (53)

By the triangle inequality we see that the sets AXs are disjoint. The corresponding classifier is given by

T (xn) 7→
{
s if xn ∈ AXs
e otherwise.

(54)

Furthermore we also see that, if the elements of X̄n are generated iid from the distribution PX,s then

Pr(X̄n /∈ AXs )→ 0, as n→∞ (55)

due to [25, Theorem 4.4].
Consider an identification setting as in Section II in which users are divided in two groups [1 : M1] and [M1 + 1: M ]. Data

sequences of the first group are identically distributed as Xn(i) ∼ PXn1 for all i ∈ [1 : M1]. These sequences are mapped
into stored indices by a mapping φ1n. Similarly data of users in the second group are generated as Xn(i) ∼ PXn2 for all
i ∈ [M1 + 1: M ] and mapped into stored indices by a mapping φ2n. The observation channel is given by PY n|Xn . Then we
have the following lemma.

Lemma 2. Given an arbitrary γ, we have

Pr{Ŵ 6= W}

≥ M1

M
Pr

{
log

dPY n1 φ1n(Xn1 )

d(PY n1 × Pφ1n(Xn1 ))
(Y n1 , φ1n(Xn

1 )) ≤ logM − nγ
}

+
(
1− M1

M

)
Pr

{
log

dPY n2 φ2n(Xn2 )

d(PY n2 × Pφ2n(Xn2 ))
(Y n2 , φ2n(Xn

2 )) ≤ logM − nγ
}
− 2e−nγ ,

where (Y n1 , X
n
1 ) ∼ PY n|Xn × PXn1 and (Y n2 , X

n
2 ) ∼ PY n|Xn × PXn2 .

Proof: For notation simplicity we denote by φ(x) the tuple ((φ1n(xn(i)))M1
i=1, (φ2n(xn(i)))Mi=M1+1) and by Q the product

measure
∏M1

i=1 Pφ1n(Xn(i))×
∏M
i=M1+1 Pφ2n(Xn(i)). Define for each k ∈ [1 : M ] the following correctly decodable and jointly

typical sets

Dk = {(yn, φ(x)) | k = ψn(yn, φ(x))}

Ak = {(yn, φ(x)) | log
dPY n1 φ1n(Xn1 )

d(PY n1 × Pφ1n(Xn1 ))
(yn, φ1n(xn(k))) > logM − nγ}, if k ∈ [1 : M1]

Ak = {(yn, φ(x)) | log
dPY n2 φ2n(Xn2 )

d(PY n2 × Pφ2n(Xn2 ))
(yn, φ2n(xn(k))) > logM − nγ}, if k ∈ [M1 + 1 : M ]. (56)

We observe that the sets Dk are disjoint. We further define the following auxiliary measures

Qk(yn, φ(x)) = PY n1 φ1n(Xn1 )(y
n, φ1n(xn(k))

M1∏
i=1,i6=k

Pφ1n(Xn(i))(φ1n(xn(i)))

×
M∏

i=M1+1

Pφ2n(Xn(i))(φ2n(xn(i))), k ∈ [1 : M1],

Qk(yn, φ(x)) = PY n2 φ2n(Xn2 )(y
n, φ2n(xn(k))

M1∏
i=1

Pφ1n(Xn(i))(φ1n(xn(i)))

×
M∏

i=M1+1,i6=k
Pφ2n(Xn(i))(φ2n(xn(i))), k ∈ [M1 + 1 : M ]. (57)

Then we have

Pr{W = Ŵ} =
1

M

M∑
k=1

Qk(Dk)
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=
1

M

M1∑
k=1

[
Qk(Dk ∩ Ack)︸ ︷︷ ︸

tk,11

+Qk(Dk ∩ Ak)︸ ︷︷ ︸
tk,12

]
+

1

M

M∑
k=M1+1

[
Qk(Dk ∩ Ack)︸ ︷︷ ︸

tk,21

+Qk(Dk ∩ Ak)︸ ︷︷ ︸
tk,22

]
. (58)

The terms tk,12 and tk,22 can be upper bounded using the definition of Ak by

tk,12 ≤ Qk(Ak) = Pr

{
log

dPY n1 φ1n(Xn1 )

d(PY n1 × Pφ1n(Xn1 ))
(Y n1 , φ1n(Xn

1 )) > logM − nγ
}

tk,22 ≤ Qk(Ak) = Pr

{
log

dPY n2 φ2n(Xn2 )

d(PY n2 × Pφ2n(Xn2 ))
(Y n2 , φ2n(Xn

2 )) > logM − nγ
}
. (59)

Similarly using change of measure, and definition of Ak, the terms tk,11 and tk,21 are upper bounded by

tk,11 ≤Me−nγ(PY n1 ×Q)(Dk ∩ Ack) ≤Me−nγ(PY n1 ×Q)(Dk)

tk,21 ≤Me−nγ(PY n2 ×Q)(Dk ∩ Ack) ≤Me−nγ(PY n2 ×Q)(Dk). (60)

Therefore we have

Pr{W = Ŵ} ≤ M1

M
Pr

{
log

dPY n1 φ1n(Xn1 )

d(PY n1 × Pφ1n(Xn1 ))
(Y n1 , φ1n(Xn

1 )) > logM − nγ
}

+
(
1− M1

M

)
Pr

{
log

dPY n2 φ2n(Xn2 )

d(PY n2 × Pφ2n(Xn2 ))
(Y n2 , φ2n(Xn

2 )) > logM − nγ
}

+ e−nγ
[
(PY n1 ×Q)(

M1⋃
k=1

Dk) + (PY n2 ×Q)(

M⋃
k=M1+1

Dk)

]
︸ ︷︷ ︸

≤2

. (61)

The conclusion of the lemma follows.

Lemma 3. Assume that X , Y , T are finite. Define the following function on R+

θ(Rc) = max
PU|X : |U|≤|X|+|T |

I(X;U)≤Rc

min
τ∈T

I(Yτ ;U), where PYτXU = PY |X,τ × PUX , ∀τ ∈ T . (62)

Then θ(Rc) is an upper-semicontinuous function, i.e., lim supR→Rc θ(R) ≤ θ(Rc).

Proof: Note that since X , U , T and Y are finite the functions I(X;U) and I(Yτ ;U) are continuous functions of PU |X .
Further PU |X can be identified as a vector in R|U|×|X|. Since the set {PU |X | I(X;U) ≤ Rc} is closed and bounded, it is a
compact subset of R|U|×|X|. The maximization hence can be achieved. The condition for upper semicontinuity states that for
an arbitrary γ > 0 there exists an ε > 0 such that

sup{θ(R) | |R−Rc| ≤ ε, R ≥ 0, R 6= Rc} ≤ θ(Rc) + γ. (63)

Take a decreasing sequence (Rk) such that Rk → Rc as k →∞. As we argue previously, for each k there exists a conditional
distribution PU |X,k which achieves θ(Rk). Since PU |X,k all belong to the set B1 = {PU |X | I(X;U) ≤ R1} which is compact,
there exists a subsequence (PU |X,kl) that converges to a conditional distribution P ?U |X ∈ B1. We observe that θ(Rc) ≤ θ(Rkl) =
minτ∈T I(Yτ ;Ukl)→ minτ∈T I(Yτ ;U?) and I(X;U?) ≤ Rc. Therefore we have θ(Rc) = minτ∈T I(Yτ ;U?), which implies
that there exists a l0(γ) such that ∀l ≥ l0(γ) we have θ(Rkl) ≤ θ(Rc) + γ. Since θ(Rc) is a non-decreasing function, setting
ε = Rkl0 −Rc fulfills the condition (63).

APPENDIX B
CONVERSE OF THEOREM 1 FOR FINITE ALPHABETS

We consider the case that the fraction of users in the first group α is strictly bounded away from 0 and 1, i.e., α ∈ (0, 1).
The other cases where α = 0 or α = 1 can be derived similarly. Assume that the pair (Rc, Ri) is achievable, i.e., there exists
an identification scheme such that

lim sup
n→∞

1

n
log |Mk| ≤ Rc, k = 1, 2, lim inf

n→∞
1

n
logM ≥ Ri,

lim
n→∞

Prs1,s2,τ{Ŵ 6= W} = 0, ∀s1, s2, τ. (64)

Given an arbitrary γ > 0 for all sufficiently large n we have logM ≥ n(Ri − γ). Given an arbitrary but unknown triple
(s1, s2, τ), applying Lemma 2 with PXn1 = P⊗nX,s1 , PXn2 = P⊗nX,s2 , and PY n|Xn = P⊗nY |X,τ , we have

lim
n→∞

Pr

{
1

n
log

dPY n1 φ1n(Xn1 )

d(PY n1 × Pφ1n(Xn1 ))
(Y n1 , φ1n(Xn

1 )) ≤ Ri − 2γ

}
= 0,
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and lim
n→∞

Pr

{
1

n
log

dPY n2 φ2n(Xn2 )

d(PY n2 × Pφ2n(Xn2 ))
(Y n2 , φ1n(Xn

2 )) ≤ Ri − 2γ

}
= 0. (65)

From the definition of inf-spectral mutual information, cf. (21), we have

Ri ≤ I(Yτ ;φk(Xsk)), ∀k = 1, 2, ∀(sk, τ) ∈ Sk × T (66)

where (Yτ , φk(Xsk) = {(Y nτ , φkn(Xn
sk

))}∞n=1 and (Y nτ , X
n
sk

) ∼ (PY |X,τ×PX,sk)⊗n. For simplicity we use φn to denote both
φ1n and φ2n in the following. The precise meaning can be inferred from the context. Since the spectral-inf mutual information
rate is less than or equal to the inf-mutual information rate [14, Theorem 3.5.2] we have with S = S1 ∪ S2

Ri ≤ I(Yτ ;φ(Xs)) ≤ lim inf
n→∞

1

n
I(Y nτ ;φn(Xn

s )), ∀(s, τ) ∈ S × T . (67)

Given a positive γ, there exists for each (s, τ) an n0(γ, s, τ) such that

lim inf
n→∞

1

n
I(Y nτ ;φn(Xn

s )) ≤ inf
n≥n0(γ,s,τ)

1

n
I(Y nτ ;φn(Xn

s )) + γ. (68)

Therefore by considering an n ≥ maxs,τ n0(γ, s, τ) we have

Ri ≤
1

n
I(Y nτ ;φn(Xn

s )) + γ, ∀(s, τ) ∈ S × T . (69)

Now we will apply the standard single-letterization approach. For each (s, τ) we have

n(Ri − γ) ≤ I(Y nτ ;φn(Xn
s )) =

n∑
i=1

I(Yτ,i;Y
i−1
τ , φn(Xn

s ))

≤
n∑
i=1

I(Yτ,i;X
i−1
s , φn(Xn

s )). (70)

where the last step holds since Y i−1
τ −Xi−1

s − (Yτ,i, φn(Xn
s )) is valid.

Similarly we have

n(Rc + γ) ≥ I(Xn
s ;φn(Xn

s )) =

n∑
i=1

I(Xs,i;X
i−1
s , φn(Xn

s )). (71)

Define for each s ∈ S , Us,i = (Xi−1
s , φn(Xn

s )) for i ∈ [1 : n]. Let Q be a uniform random variable on [1 : n] which is
independent of everything. Define further Us = (Us,Q, Q) for each s ∈ S. Then we obtain, ∀(s, τ) ∈ S × T

Rc + γ ≥ I(Xs,Q;Us)

Ri − γ ≤ I(Yτ,Q;Us). (72)

Note that

PYτ,QXs,QUs = PY |X,τ × PX,s × PUs|Xs,Q . (73)

Since each conditional distribution PU |Xs,Q acts independently, we can upper bound the cardinality of Us by |X | + |T | by
following [26, Appendix C] as each PU |Xs,Q affects |T | terms H(Yτ,Q|Us). This implies that (Rc +γ,Ri−γ) ∈ R̄sc. As R̄sc

is close, by taking γ → 0 we obtain the desired conclusion.

APPENDIX C
ACHIEVABILITY OF THEOREM 2

Assume first that α ∈ (0, 1). For each κ ∈ [1 : |PY |], we define the following set

C(κ) = {(τ, s) | PY,κ is the marginal distribution on Y of PY |X,τ × PX,s}. (74)

For each s ∈ S where S = S1 ∪ S2 and τ ∈ T assume that the tuple

(X̄n
s , Ȳ

n
τ , Ū

n
s ) ∼ (PUX,s × PY |X,τ )⊗n.

Fix an arbitrary δ > 0. Denote As = Anδ (PXU,s), where Anδ (PXU,s) is the weakly typical set corresponding to PXU,s. Note
that

Pr{(X̄n
s , Ū

n
s ) /∈ As} → 0, as n→∞. (75)

Moreover, define
φs,τ (xn, yn, un) = 1

{
(yn, un) /∈ Anδ (PYτUs)

}
, (76)
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where PYτUs is the marginal distribution on Y × U of PY |X,τ × PXU,s then

δn,τ,s = E[φs,τ (X̄n
s , Ȳ

n
τ , Ū

n
s )]→ 0, as n→∞, (77)

due to the weak law of large numbers. Hence we define

Bτ,s = {(xn, un) | E[φτ,s(x
n, Ȳ nτ , u

n)|X̄n
s = xn] ≤ δ1/2

n,τ,s}.

Define further Âs = As ∩
⋂
τ Bτ,s and

D(κ) =
⋃

(τ,s)∈C(κ)

Anδ (PYτUs). (78)

Let TX be a classifier for s and TY be a classifier for κ from Lemma 1.
For each s ∈ S generate 2nRc sequences un(ms) ∼ PUs , ms ∈ [1 : enRc ], where PUs is the marginal corresponding to
PUX,s = PU |X,s × PX,s. Hence, we have a total |S|enRc codeword sequences which are used to enroll all users’ data.

Enrollment: For each user i ∈ [1 : M ] we first assign xn(i) to one of the label using the classifier TX if it is possible. The
resulted label is denoted by ŝi = TX(xn(i)). Assuming that ŝi 6= e, then we proceed to look for an index mi,ŝi such that

(xn(i), un(mi,ŝi)) ∈ Âŝi . (79)

Then mi,ŝi is stored in the database in the i-th position inside the database.
Identification: Given the observation sequence yn, the processing unit first searches for a suitable label by using the classifier

TY if it is possible. We denote this label by κ′, i.e., κ′ = TY (yn). If κ′ 6= e, then the processing unit looks for a unique index
ŵ such that

(yn, un(mŵ,ŝŵ)) ∈ D(κ′) =
⋃

(τ,s)∈C(κ′)
Anδ (PYτUs). (80)

If there is more than one of such ŵ or there is none the system declares an error.
Analysis: For a given but unknown sequence of data states s = (si)

M
i=1 ∈ SM1

1 ×SM2
2 and a channel state τ , we define events

Eno(w), Ees(w), E≥2, EXU (w), E1(w) and E2(w) as

Ees(w) = {TX(Xn(w)) 6= sw} ∪ {TY (Y n) 6= κw}, where (sw, τ) ∈ C(κw),

EXU (w) = {(Xn(w), Un(mw,sw)) /∈ Âsw , ∀mw,sw}
E1(w) = {(Y n, Un(Mw,sw)) /∈ D(κw)},
E2(w) = {∃w′ 6= w | (Y n, Un(Mw′,Ŝw′

)) ∈ D(κw)},
Eno(w) = {(Y n, Un(Mw,Ŝw

)) /∈ D(TY (Y n))},
E≥2(w) = {∃w′ 6= w | (Y n, Un(Mw′,Ŝw′

)) ∈ D(TY (Y n))}. (81)

Assume that the unknown states are s, τ and W = w, if Ŵ 6= w then the following event occurs

Ees(w) ∪ Eno(w) ∪ E≥2(w).

Let ε > 0 be arbitrary but given. From Lemma 1 as Xn(w) ∼ P⊗nX,sw , there exists an n1(ε, sw) such that if n ≥ n1(ε, sw) then

Pr{TX(Xn(w)) 6= sw|W = w} ≤ ε. (82)

Since sw can be any element of the finite set S , there are only |S| possible values for the left-hand side as w varies, due to
the assumption that Xn(i) ∼ P⊗nX,si . Therefore, if we take n1(ε) = maxs∈S n1(ε, s) then for n ≥ n1(ε)

Pr{TX(Xn(w)) 6= sw|W = w} ≤ ε, ∀sw ∈ S, ∀w ∈ [1 : M ]. (83)

Similarly if n ≥ n2(ε) then

Pr{TY (Y n) 6= κw|W = w} ≤ ε, ∀sw ∈ S, ∀τ ∈ T , ∀w ∈ [1 : M ]. (84)

Next, we bound the conditional probability of the event Eces(w) ∩ Eno(w) as

Pr{Eces(w) ∩ Eno(w)|W = w}
≤ Pr{EXU (w)|W = w}+ Pr{{(Xn(w), Un(Mw,sw)) ∈ Âsw} ∩ E1(w)|W = w}
= Pr{EXU (w)|W = w}+ t̄2(w, s, τ). (85)

The first term can be bounded as [27, Lemma 5]

Pr{EXU (w)|W = w} ≤ Pr
{

(X̄n
sw , Ū

n
sw) /∈ Âsw}+ Pr

[
log

dPX̄nsw Ūnsw
d(PX̄nsw

× PŪnsw )
≥ n(Rc − δ/2)

]
+ e− exp(nδ/2) ≤ ε, (86)
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for n ≥ n3(ε, δ, sw) if
Rc ≥ I(Xsw ;Usw) + δ. (87)

Consequently, if we take n ≥ n3(ε, δ) = maxs∈S n3(ε, δ, s) and Rc > maxs∈S I(Xs;Us) + δ then

Pr{EXU (w)|W = w} ≤ ε,∀sw ∈ S, ∀w ∈ [1 : M ]. (88)

Furthermore,

t̄2(w, s, τ) ≤
∫
Âsw

∫
Anδ (PYτ |Usw |un)c

dP⊗nY |X,τ (yn|xn)× dPXn(w)Un(Mw,sw )(x
n, un)

≤ δ1/2
n,τ,sw ≤ ε, (89)

holds if n ≥ n4(ε, sw, τ). Hence taking n ≥ n4(ε) = maxs∈S,τ∈T n4(ε, s, τ) we obtain

t̄2(w, s, τ) ≤ ε, ∀sw ∈ S, ∀τ ∈ T , ∀w ∈ [1 : M ]. (90)

Next, we have

Pr{Eces(w) ∩ E≥2(w)|W = w} ≤ Pr{E2(w)|W = w}. (91)

The right-hand side of (91) can be bounded further as follows

Pr{E2(w)|W = w} ≤
∑
w′ 6=w

Pr
{

(Y n, Un(Mw′,Ŝw′
)) ∈ D(κw)|W = w

}
,

=
∑
w′ 6=w

∑
(τ,s)∈C(κw)

∫ ∫
Anδ (PYτ |Us |un)

dP⊗nY,κw(yn)× dPUn(Mw′,Ŝ
w′

)(u
n)

≤
∑
w′ 6=w

∑
(τ,s)∈C(κw)

e−n(I(Yτ ;Us)−3δ)

≤ enRi |S||T |e−n(mins,τ I(Yτ ;Us)−3δ). (92)

The second last inequality holds due to the property of weak typicality, which is independent of n. Hence if we take Ri <
mins∈S,τ∈T I(Yτ ;Us)− 3δ and n ≥ n5(ε, δ) then

Pr{E2(w)|W = w} < ε, ∀sw ∈ S, ∀τ ∈ T , ∀w ∈ [1 : M ]. (93)

In summary, by taking n > max{ni(ε, δ)}5i=1 and

Rc > max
s∈S

I(Xs;Us) + δ, Ri < min
s∈S,τ∈T

I(Yτ ;Us)− 3δ, (94)

then
Prs,τ{W 6= Ŵ} < 6ε, (95)

for every tuple s = (si)
M
i=1 ∈ SM1

1 × SM2
2 . Since ε and δ are arbitrary, this implies the achievable conclusion for the case

α ∈ (0, 1).
Next we consider the case that α = 1. Applying the previous argument directly would give a sub-optimal trade-off region as it

gives more extra constraints than needed. To show the achievability in this case, we use random codebook arguments for users in
the first group whereas for users in the second group we map their data into a fixed sequence un0 . The identification phase works
identically as before. Given ε > 0 and δ > 0 if we choose Rc > maxs∈S1 I(Xs;Us) + δ and Ri < mins∈S1,τ∈T I(Yτ ;Us)− δ
then when n ≥ n0(δ, ε) for some n0(δ, ε) sufficiently large we have

Prs,τ{Ŵ 6= w|W = w} ≤ ε, ∀w ∈ [1 : M1], ∀(s, τ) ∈ SM1
1 × SM2

2 × T . (96)

Therefore the average error probability is upper bounded by

Prs,τ{Ŵ 6= W} ≤ ε+ (1−M1/M), ∀(s, τ) ∈ SM1 × SM2
2 × T . (97)

Since α = 1 and ε and δ are arbitrary, we obtain the conclusion in this case. The case α = 0 can be solved similarly.

APPENDIX D
PROOF OF THEOREM 3

Assume that α ∈ (0, 1).
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a) Achievability: For each group k = 1, 2, choose a general source Uk where Unk takes values in a finite alphabet Uk,n
such that (Xn

k , U
n
k ) ∼ PXnk Unk . The condition 1

n log |Ukn| < N0, k = 1, 2, ensures that the right-hand sides in (22) are
finite. We hence can assume further that U1n = U2n = Un. For each k ∈ {1, 2}, let PY nk Unk be the marginal distributions of
PY n|Xn × PXnk Unk . Define an auxiliary distribution PȲ nŪn on Yn × Un for a general process (Ȳ, Ū) = (Ȳ n, Ūn)∞n=1 as

PȲ nŪn = αPY n1 Un1 + (1− α)PY n2 Un2 . (98)

Given γ > 0 we first define the set

Tn =

{
(yn, un) | 1

n
log

PȲ n|Ūn(yn|un)

PȲ n(yn)
≥ I(Ȳ; Ū)− γ

}
.

By [14, Lemma 3.3.1] we have I(Ȳ; Ū) = min{I(Y1; U1), I(Y2; U2)}. From the definition of Tn we have

lim
n→∞

PȲ nŪn(T cn ) = 0, (99)

which implies that
lim
n→∞

PY n1 Un1 (T cn ) = 0, and lim
n→∞

PY n2 Un2 (T cn ) = 0. (100)

Then, we define the sets Bkn, k = 1, 2, as follows

Bkn =
{

(xn, un) | Pr{(Y n, un) /∈ Tn|Xn = xn} ≤ δ1/2
kn

}
,

where δkn = Pr{(Y nk , Unk ) /∈ Tn} → 0 as n→∞ for k = 1, 2. By definition of Tn, if (yn, un) ∈ Tn, then we have

PY n1 (yn) ≤ 1

α
e−n(I(Ȳ;Ū)−γ)PȲ n|Ūn(yn|un)

PY n2 (yn) ≤ 1

1− αe
−n(I(Ȳ;Ū)−γ)PȲ n|Ūn(yn|un). (101)

For each group k, k = 1, 2, generate a codebook consisting of 2nRc sequences unk (m), m ∈ [1 : 2nRc ] where unk (m) ∼ PUnk
and Rc = max{Ī(X1; U1), Ī(X2; U2)}+ 2γ. In the enrollment phase for the i-th user which belongs to the k-th group, we
look for an index mi such that (Xn(i), Unk (mi)) ∈ Bkn and store it in the database. In the identification phase we look for a
unique ŵ such that (yn, un(mŵ)) ∈ Tn. The rest of the achievability part follows similarly as in the proof of Theorem 2. We
highlight some changes in the following. Given that W = w where w ∈ [1 : M1] we have

Pr{(Y n, Un(Mw)) /∈ Tn, (Xn(w), Un(Mw)) ∈ B1n|W = w}
=

∑
(xn,un)∈B1n

Pr[(Y n, un) /∈ Tn|Xn = xn]PXn(w)Un(Mw)(x
n, un)

≤
∑

(xn,un)∈B1n

δ
1/2
1n PXn(w)Un(Mw)(x

n, un)

≤ δ1/2
1n . (102)

Furthermore, we have for ŵ 6= w,

Pr{(Y n, Un(Mw′)) ∈ Tn|W = w} =
∑

(un,yn)∈Tn
PY n1 (yn)PUn(Mw′ )

(un)

≤ 1

α
e−n(I(Ȳ;Ū)−γ)

∑
(un,yn)∈Tn

PȲ n|Ūn(yn|un)PUn(Mw′ )
(un) ≤ 1

α
e−n(I(Ȳ;Ū)−γ). (103)

An analogous analysis can be carried out for w ∈ [M1 + 1: M ]. From the last inequality we can see that Ri < I(Ȳ; Ū)− γ
suffices to make the error probability to 0 as n→∞. The cases α = 0 and α = 1 can be handled similarly as in the proof of
Theorem 2.

b) Converse: Assume that the identification-compression rate pair (Ri, Rc) is achievable. Then, there exists a triple of
identification-compression mappings (φ1n, φ2n, ψn) such that for every γ > 0 we have

|Mk| ≤ en(Rc+γ), k = 1, 2, M ≥ en(Ri−γ), (104)

for all n ≥ n0(γ). For k = 1, 2, define Unk = φkn(Xn
k ) which takes values on Ukn. From (104) it can be seen that for all n,

1
n log |Ukn| = 1

n log |Mk| is upper bounded by a (large enough) constant. We also have PY nk Xnk Unk = PY n|Xn × PXnk Unk . It
can be then shown that

Rc + 2γ ≥ max{Ī(Xk; Uk)}2k=1 (105)

along the lines of arguments in [14, p.342]. Using Lemma 2 and taking n to ∞ we observe that

Ri ≤ max{I(Yk; Uk)}2k=1. (106)

Finally taking γ → 0 we obtain the claim. The cases α = 0 and α = 1 can be shown similarly.
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APPENDIX E
PROOF OF THEOREM 5

Let U be a set such that |U| ≤ |X | + |T |. For each s ∈ S , let PU |X,s be the conditional distribution on U such that
minτ I(Yτ ;Us) = θs(Rc). Let U be a discrete process where Un takes values on the Cartesian product set Un such that
PXnUn =

∑
s∈S αsP

⊗n
XsUs

where PXsUs = PX,s × PU |X,s for all s ∈ S. Following the proof of [14, Lemma 3.3.2] we obtain
that Ī(X; U) = sups∈S I(Xs;Us). We also have I(Y; U) = infs∈S minτ I(Yτ ;Us).

Applying the above calculation to the result of Theorem 3 with M1 = M we obtain that

Renum
max (Rc) ≥ inf

s∈S
min
τ
I(Yτ ;Us) (107)

= inf
s∈S

θs(Rc). (108)

Next we show the other direction. Similarly as in the proof of Theorem 1, given an achievable rate pair (Rc, Ri) we obtain
for each s ∈ S the following inequality for an arbitrary but given γ > 0 and for all n ≥ n0(s, γ)

Ri ≤
1

n
I(Y nτ ;φ1n(Xn

s )) + γ ≤ 1

n

n∑
i=1

I(Yτ,i;X
i−1
s , φ1n(Xn

s )) + γ

=
1

n

n∑
i=1

I(Yτ,i;Us,i) + γ = I(Yτ,Q;Us) + γ, ∀τ ∈ T , (109)

where Us,i = (Xi−1
s , φ1n(Xn

s )) for all i ∈ [1 : n], Q is an uniform random variable on [1 : n] and independent of everything
else, and Us = (Us,Q, Q). We also have Rc + γ ≥ I(Xs,Q;Us). Therefore we have

Ri ≤ sup
PUs|Xs,Q :Rc+γ≥I(Xs,Q;Us)

min
τ∈T

I(Yτ,Q;Us) + γ = θs(Rc + γ) + γ, (110)

since X and Y are finite. Furthermore, by Lemma 3, θs(Rc) is an upper-semicontinuous function. Hence for all small enough
γ we have θ(Rc + γ) ≤ θ(Rc) + γ1 for an arbitrary but given γ1 > 0. Therefore Ri ≤ θs(Rc) holds for all s ∈ S. Let
(Rc, Ri) ∈ Renum be any rate pair, then there exists a sequence of achievable rate pairs (Rc,k, Ri,k) such that Rc,k → Rc and
Ri,k → Ri as k →∞. Using the given bound we obtain

Ri = lim sup
k→∞

Ri,k ≤ lim sup
k→∞

inf
s∈S

θs(Rc,k)

≤ inf
s∈S

lim sup
k→∞

θs(Rc,k) ≤ inf
s∈S

θs(Rc). (111)

since again θs(Rc) is an upper-semicontinuous function. Therefore Renum
max (Rc) ≤ infs∈S θs(Rc).

APPENDIX F
A STRONG CONVERSE PROOF

We present herein strong converse proofs for the discrete and Gaussian settings in the case that both the source distribution
PX and the channel PY |X are known. In the discrete setting our proof is weaker than in [19] where the authors show the
exponential strong converse. We begin with some definitions and important tools.
The definition of ε-achievability is already given in (34) in Section V. When ε = 0, we denote the corresponding identification-
compression trade-off by RID. Our proof follows essentially the same arguments in [24, Theorem 4.11] and [21, Theorem 3],
where the former uses the following theorem

Theorem 7. [22, Theorem 9], [24, Corollary 4.7] Consider PX a probability measure on a finite set X , ν a probability
measure on Y and PY |X . Let βX = 1/minx PX(x) ∈ [1,∞), α = supx ‖

dPY |X=x

dν ‖∞ ∈ [1,∞). Let c ∈ (0,∞), η, δ ∈ (0, 1),
and n > 3βX log |X |δ . We can choose some set Cn with P⊗nX [Cn] ≥ 1− δ, such that for µn = P⊗nX

∣∣
Cn we have

logµn
(
{xn : EPY n|Xn=xn

[f ] ≥ η}
)
− c logEν⊗n [f ]

≤ nd?(PX , PY |X , ν, c) +A
√
n+ c log

1

η
(112)

for any integrable function f on Yn with range in [0, 1], where

A = log(αcβc+1
X )

√
3βX log

|X |
δ

+ 2c

√
(α− 1) log

1

η
. (113)

d? is defined as3

d?(PX , PY |X , ν, c)

3The convention is that ∞−∞ = −∞.
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= sup
QUX :QX=PX

{cD(QY |U ||ν|QU )−D(QX|U ||PX |QU )}.

We first examine the discrete case. Let (Rc, Ri) be an ε-achievable pair. Then, there exists a pair of mappings (φn, ψn) such
that (34) are satisfied. Let γ > 0 be such that ε+ 3γ < 1. From Lemma 2 with M1 = M , PXn1 = P⊗nX and PY n|Xn = P⊗Y |X
we know that for all n ≥ n0(γ) we have

ε+ 2γ

≥ Pr

{
1

n
log

dPY nφn(Xn)

d(PY n × Pφn(Xn))
(Y n, φn(Xn)) ≤ Ri − 2γ

}
. (114)

Then due to the union bound for n ≥ n1(γ) we have

Pr

{
1

n
log

dPY nφn(Xn)

d(PY n × Pφn(Xn))
(Y n, φn(Xn)) ≥ Ri − 2γ, Y n ∈ Anγ (PY )

}
≥ 1− ε− 3γ. (115)

For simplicity we define ε̂ = ε + 3γ. For each m1 ∈ M1 we define the set Dn(m1) as in (44). The inequality (115) can be
rewritten as

EP⊗nX [PY n|Xn [Dn(φn(Xn))]] ≥ 1− ε̂. (116)

Choose ε′ ∈ (ε̂, 1) and δ = ε′−ε̂
2ε′ . Then by Markov’s inequality we have

P⊗nX
(
{xn | PY n|Xn=xn [Dn(φn(xn))] ≥ 1− ε′}

)
≥ 1− ε̂

ε′
. (117)

We also choose ν as the uniform distribution on Y . Let c ∈ (0,∞), η = 1 − ε′. By Theorem 7 we then can find a measure
µn such that

µn
(
{xn | PY n|Xn=xn [Dn(φn(xn))] ≥ η}

)
≥ 1− ε̂

ε′
− δ = δ, (118)

and

logµn
(
{xn | EPY n|Xn=xn

[f ] ≥ η}
)
− c logEν⊗n [f ]

≤ nd?(PX , PY |X , ν, c) +O
(√
n), (119)

for any integrable f with range in [0, 1]. Further calculation indicates that

d?(PX , PY |X , ν, c)

= sup
U :U−X−Y
I(X;U)<∞

{−cH(Y |U)− I(X;U)}+ c log |Y|

= max
U :U−X−Y
|U|≤|X|+1

{−cH(Y |U)− I(X;U)}+ c log |Y| (120)

due to the Support Lemma [13, Lemma 15.4]. Since there are |M1| possible values of m1, it follows that there must exists
m?

1 such that

µn
(
{xn | PY n|Xn=xn [Dn(m?

1)] ≥ η}
)
≥ δ

|M1|
. (121)

Moreover we also have from (47) that

ν⊗n(Dn(m?
1)) ≤ |Y|−nen(H(Y )+3γ−Ri). (122)

Combining (120), (121) and (122), and taking f to be the indicator function of the set Dn(m?
1) we obtain

− log |M1| − cn(− log |Y|+H(Y ) + 3γ −Ri)

≤ n
(

max
U :U−X−Y
|U|≤|X|+1

{−cH(Y |U)− I(X;U)}+ c log |Y|
)

+O(
√
n). (123)

This implies further that

Rc − cRi + (1 + 3c)γ

≥ min
U :U−X−Y
|U|≤|X|+1

{I(X;U)− cI(Y ;U)}+O
(

1√
n

)

= f(c) +O
(

1√
n

)
. (124)
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Taking n→∞ we see that
(Rc + γ,Ri − 3γ) ∈

⋂
c>0

{Ra − cRb ≥ f(c)} (hp)
= RID, (125)

where (hp) follows from the hyper plane characterization of a closed convex set which is explained in details at the end of
this section. Hence, this leads to RID,ε ⊆ RID.

In the Gaussian case, assume that PX = N (0, σ2
X) and PY |X=x = N (x, 1), then by doing the same steps, with ν in this

case the Lebesgue measure, we obtain (119) using [24, Corollary 4.10]. Since ν is the Lebesgue measure, similarly as in (47)
we have

ν(Dn(m?)) ≤ en(h(Y )+3γ−Ri). (126)

Additionally,

d?(PX , PY |X , ν, c) = sup
U :U−X−Y
I(X;U)<∞

{−c× h(Y |U)− I(X;U)}

(∗∗)
≤ sup

1<β≤1+σ2
X

{
− c

2
log 2πeβ − 1

2
log

σ2
X

β − 1

}
, (127)

where (∗∗) follows by first putting h(Y |U) = 1
2 log 2πeβ and then using the entropy power inequality. Therefore we obtain,

Rc − cRi + (1 + 3c)γ

≥ inf
0≤β<log(1+σ2

X)

1

2

{
log

σ2
X

(σ2
X + 1)e−β − 1

− cβ
}

=


0 if 0 ≤ c ≤ 1 at β = 0

1

2

{
log σ2

X(c− 1) if c > 1

−c log(σ2
X + 1)(1− 1/c)

}
at β = log(σ2

X + 1)(1− 1/c)

. (128)

Compared with the characterization in (13), we observe that

(Rc + γ,Ri − 3γ)
(hp)
∈ RID. (129)

Therefore, we have RID,ε ⊆ RID.
On (hp): The inclusion

⋂
c>0{Ra − cRb ≥ f(c)} ⊇ RID is quite straightforward. Since RID is a closed convex subset of

R2
+ if (x, y) ∈ R2

+ and (x, y) /∈ RID then there exists a vector (a, b) ∈ R2 such that

ax+ by < aR1 + bR2, ∀(R1, R2) ∈ RID. (130)

Since (0, 0) ∈ RID, we see that either a or b must be negative. If a < 0, then plugging (R1, 0) in the above inequality we
obtain the violation for sufficiently large R1. Hence, we have a > 0 and b < 0. We can normalize further to obtain

x− cy < R1 − cR2, ∀(R1, R2) ∈ RID, (131)

where c = −b/a > 0. The minimum of the right-hand side, which is attained by a point (R∗1, R
∗
2) ∈ RID, is f(c). Therefore

if (x, y) /∈ RID then (x, y) /∈ ⋂c>0{Ra − cRb ≥ f(c)}, which implies that
⋂
c>0{Ra − cRb ≥ f(c)} ⊆ RID.
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[22] J. Liu, R. van Handel, and S. Verdú, “Beyond the blowing-up lemma: Sharp converses via reverse hypercontractivity,” in 2017 IEEE International

Symposium on Information Theory (ISIT). IEEE, 2017, pp. 943–947.
[23] S. Watanabe, “A converse bound on wyner-ahlswede-körner network via gray-wyner network,” in 2017 IEEE Information Theory Workshop (ITW).

IEEE, 2017, pp. 81–85.
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