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Abstract

We study hypothesis testing problems with fixed compression mappings and with user-dependent compression mappings to
decide whether or not an observation sequence is related to one of the users in a database, which contains compressed versions
of users’ data. We provide optimal characterizations of the exponents of the probability of the second kind of error when the
number of users in the database grows exponentially. Additionally we also characterize the identification capacity when different
compression mappings that vary among users are used to enroll user sequences into the database. We establish exponentially strong
converse equivalence between different settings. Finally we show that an identification scheme can be turned into a multi-user
hypothesis testing scheme and vice versa.

Index Terms

Mixture distribution, identification systems, information-spectrum method, strong converse, excess relative information, soft-
covering, constructive transformation.

I. INTRODUCTION

Membership testing has not been actively considered in existing works on identification systems. It is often assumed that
the observation sequence is related to the data inside the system. In this work we put our attention to this important problem.
Assume a database that stores compressed versions of data sequences of M users (xn(m))Mm=1. An observation sequence yn

is provided to a processing center which has access to these compressed data sequences. The processing center performs a
screening step and returns Yes/No when yn is related to one of the user/ independent of all users in the system. We call the
first case hypothesis H0 and the second case hypothesis H1. The case that M = 1 was studied in [1] and referred in this work
as single-user testing against independence to differentiate it from our multi-user setting.
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Fig. 1: A simplified model for the identification system. In the enrollment phase, observations (xn(i))Mi=1 are mapped into
stored indices by a mapping φid

n . In the identification phase, one user w is selected uniformly at random. The random selection
is described by a random variable W . An observation sequence yn which is the output of the observation channel PY n|Xn
with the input xn(w) is provided to the processing center. The processing center tries to recognize the user by producing an
estimate index ŵ based on yn and the database.

Our problem is influenced by the identification system, cf. Fig. 1, investigated in [2], where the task is to identify the correct
user based on the observation yn and the information inside the database (xn(i))Mi=1. Therein, yn is an output of an observation
channel PY |X where the input sequence is selected uniformly at random from the database (xn(i))Mi=1. The compression of
users’ data is considered in [3], [4]. In contrast, we are not interested in identifying the true user even if the sequence yn is
indeed related to one user in the system. Instead, we only want to know if the sequence is related to the database.

We first study the hypothesis testing problem when only one compression mapping is used to enroll all users’ data. Next,
we generalize the setting by allowing that each user can have a different compression mapping. This generalization may arise
when separate or distributed databases which use different compression techniques are merged together for the identification
purpose. We also examine the related identification problem where each user can have their own compression mapping. Finally,
we study the code transformation between the identification systems and our multi-user hypothesis testing problem.

We summarize our contributions in the following.

This paper was presented in parts at ITW 2018 and at ISIT 2019.
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• We characterize the error exponent of the hypothesis testing problem with a single compression mapping in both weak
converse sense and strong converse sense. Our results complement the one given in [3] by showing the fundamental
trade-off between the number of users in the database and the ability to reject a stranger. In both weak and strong
converse proofs we use a soft-covering lemma to transform our multi-user setting to a single-user setting. To the best of
our knowledge, this step is the first instance of novel use of a soft-covering lemma in converse proofs, which is otherwise
mainly used in achievability proofs.

• We establish an exponentially strong converse equivalence between our multi-user setting and the single-user testing
against independence via a code transformation argument. Furthermore, we connect the exponentially strong converse for
the single-user testing problem with the one of the Wyner-Ahlswede-Körner (WAK) network [5], [6] provided by Oohama
[7], [8] by using a similar code transformation argument.

• We show that the optimal characterizations in the strong converse sense of both the multi-user hypothesis testing problem
and the identification problem with user-dependent compression mappings under a uniformity condition are the same as
the ones for the single compression mappings. The generalized tools used in these proofs are also of independent interest.

• Finally, we show that a pair of mappings for an identification system can be explicitly turned into a pair of mappings for
our multi-user hypothesis testing problem and vice versa. This property is highly desirable in practice since one can add
a new feature, herein rejecting a stranger, on top of an old feature (recognizing an existing user) without re-designing
the whole system from the scratch. Several consequences of the code transformation such as the equivalence of the
ε-achievability and the equivalence of the second-order achievability are also provided.

A related identification model was studied in [1, Section V] which was an extension of the one in [9]. Ahlswede and Csiszár
considered a database (xn(i))Mi=1 ⊂ XnM iid generated from P⊗X of M users. Under hypothesis H0, which happens with
probability π0 > 0 an observation yn is related to a user i according to P⊗nY |X . While under hypothesis H1, which happens with
probability 1 − π0, yn is independent of all (xn(i))Mi=1. The authors approached the problem using the Bayesian framework
and used the following specific searching procedure to calculate the expected cost. Given yn, the processing searches for a list
of indices j such that xn(i) ∈ G(yn) ⊂ Xn. The decision incurs a cost c for each matched index irrespective of whether H0

or H1 is true. Additionally, if H0 is true a cost k is incurred if the true one is not in the list, i.e., xn(i) /∈ G(yn). It was shown
that the total expected cost can be expressed in terms of error probabilities of type I and II of testing PY X against PY ×PX as
Cn = c(M − π0)βn + π0(k− c)αn + π0c. The objective of [1, Section V] is to obtain the minimum cost C?n(Rc) of the total
expected cost Cn when all data sequences (xn(i))Mi=1 are compressed using the same compression mapping at a rate Rc. When
the false alarm cost is greater than the miss detection cost k > c, an upper bound and a lower bound on C?n(Rc) were given
when R < Rmax(Rc) and R > Rmax(Rc), respectively. The rate R corresponds to the number of user M and Rmax(Rc) is the
maximum error exponent for the testing against independence problem in [1]. In contrast, we formulate the problem according
to the Neyman-Pearson framework in which we do not assume any specific decision making procedure. Additionally, with this
approach, each user can have a distinct compression mapping. We characterize the optimal error exponents.

Other hypothesis testing problems related to the identification problem include [10]–[12]. In [10] the hypothesis H1 was
tested against M other hypotheses in the binary setting where the focus was to minimize the overall identification error under a
specific decision rule. It was shown that when the rate of M is below a value, which is less than or equal to the uncompressed
binary identification capacity, then the overall error probability goes to zero. In [11] the author considered the M -ary hypothesis
testing problem with fixed M and studied the large deviation regime. In [12] the decision rule was based on a decoding metric
using the hashed data and observation sequences at different lengths. The exponents of the probability of miss and the expected
number of incorrect items on the list were provided for a fixed hashed function. Error exponent aspects of the probability of
estimating the correct user in the identification systems have been studied in [13]–[15]. Recent developments on distributed
hypothesis testing with privacy constraints and relay networks can be found in [16]–[19].

The paper is organized as follows. We present the complete achievable error exponent in the weak converse sense of our
multi-user hypothesis testing when the same compression mapping is used for all users in Section II. We also remark that the
arguments used in the weak converse proof can be applied for other settings. In Section III we show the optimality of the same
compression mapping setting in the strong converse sense and establish the exponentially strong converse equivalence between
testing cases. We also show the strong converse proofs for the user-dependent compression mapping settings. Finally, in Section
IV we present the code transformation arguments between the single-user testing, the WAK network, and the identification
systems as well as their consequences.

II. PRELIMINARIES

We begin with some notational conventions. Random variables, their realizations are denoted by uppercase, lowercase letters,
respectively. Sets are denoted by calligraphic letters. The complement of a set A is denoted by Ac. log is taken to the natural
base. For a mapping φn, |φt

n| denotes the cardinality of its image. For a measure µ, µ⊗n denotes its n-fold product extension.
Additionally, we use the (̄·) notation, e.g. ᾱn, Ān, to emphasize that the single-user scenario is considered.

We assume that the database consists of M users with limn→∞
1
n logM = R. i.e., the number of users grows with the block

length n at rate R. We also denote this relation in the sequel by M .
= enR. In this and the next sections, if not otherwise stated,
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Fig. 2: Screening to find out whether the observation is related to one user inside the system.

we mainly consider the discrete scenario where alphabets X and Y are finite. For each i the corresponding data sequence xn(i)
is generated iid from the distribution PX . Under H0 the joint distribution of the sequence yn and sequences (xn(m))Mm=1 is
given by

PH0 =

M∑
i=1

1

M
PY nXn(i) ×

M∏
k=1,k 6=i

PXn(k), (1)

i.e., the sequence yn is related to one randomly chosen user in the system, where PY nXn(i) = P⊗nY |X × PXn(i). The joint
distribution under H1 is given by

PH1
= P⊗nY ×

M∏
i=1

PXn(i), (2)

i.e., the sequence yn is not related to the information in the database. Note that under both hypotheses the users’ data sequences
are mutually independent. Additionally, the processes governed by PH0

and PH1
are non-stationary since M .

= enR grows
exponentially with n1. We can also view PH0

as the result of mixing M general random processes uniformly where the
distributions at instance n are given by PY nXn(i) ×

∏M
k=1,k 6=i PXn(k), i ∈ [1 : M ].

We first consider the case that a single compression mapping is used to enroll all users’ data into the database. We illustrate
the setting in Fig. 2. We state in the following the formal definition of a corresponding testing scheme.

Definition 1. A testing scheme consists of a compression mapping φt
n which enrolls the users’ data sequences of length n into

the database according to
φt
n : Xn →M1, (3)

and a decision mapping ψt
n which outputs whether H0 or H1 is deemed true

ψt
n : Yn ×MM

1 → {0, 1}. (4)

Note that the compression mapping for our membership testing scheme φt
n could be different from the compression mapping

φid
n in Fig. 1, i.e., the testing scheme might induce additional storage space. In Section IV we show that an identification scheme

(φid
n , ψ

id
n ) can be turned into a testing scheme (φt

n, ψ
t
n) and vice versa such that φt

n = φid
n , i.e., no additional database for the

pre-scan is needed.
For brevity in the following we abbreviate the ensemble of user sequences (Xn(i))Mi=1 as Xn and the ensemble of enrollments

(φt
n(Xn(i)))Mi=1 as φt

n(Xn). The bold lower case notations xn and φt
n(xn) are used to denote the corresponding realizations.

For a given compression mapping φt
n the induced distributions under both hypotheses are denoted by

H0 : PY nφt
n(Xn), H1 : PY n × Pφt

n(Xn). (5)

The acceptance region of hypothesis H0 is defined as

An =
{

(yn, φt
n(xn)) | ψn(yn, φt

n(xn)) = 0
}
. (6)

An error of the first (second) type occurs when yn is related to one unknown user (independent from all users) in the system
but the testing scheme declares otherwise. Accordingly, the probability of first and second type of error are given respectively
as

αn = PY nφt
n(Xn)(Acn), βn = PY n × Pφt

n(Xn)(An). (7)

Definition 2. An error exponent E of type II is achievable given (R,Rc) with M .
= enR if there exist a sequence of testing

schemes (φt
n, ψn) such that

lim
n→∞

αn = 0, lim sup
n→∞

1

n
log |M1| ≤ Rc,

1Under PH0
the process is also non-ergodic.
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lim inf
n→∞

1

n
log

1

βn
≥ E. (8)

We define
E?f (R,Rc) = sup{E | E is achievable given (R,Rc)}. (9)

Note that the case M = 1 in our setting corresponds to the testing against independence setting studied in [1]. We refer to it
in the following as the single-user scenario.
Given a compression rate Rc we define the following functions

Rmax(Rc) = max
U−X−Y, |U|≤|X|+1,

I(X;U)≤Rc

I(Y ;U)

θ(R,Rc) = Rmax(Rc)−R, on 0 ≤ R < Rmax(Rc). (10)

Different interpretations of Rmax(Rc) appear in previous works. In [1] Rmax(Rc) is the maximum error exponent of type
II for the single-user testing against independence problem. In [3] Rmax(Rc) characterizes the number of users that can be
supported at a given compression rate Rc in the identification systems in Fig. 1 with vanishing probability of identification
error.

Our first result characterizes the error exponent E?f (R,Rc).

Theorem 1. Given a single-user hypothesis testing scheme (φ̄t
n, ψ̄

t
n) with probabilities of errors ᾱn and β̄n. Using the same

compression mapping φ̄t
n, we can construct a testing scheme (φ̄t

n, ψ
′
n), for the multi-user case that achieves the following

multi-user probabilities of error

αn ≤ ᾱn, βn ≤ β̄nM. (11)

Consequently, for E?f (R,Rc) defined in Definition 2 we have

E?f (R,Rc) =

{
θ(R,Rc) when R < Rmax(Rc),

0 otherwise.
(12)

For notational brevity, in the sequel we abbreviate Rmax(Rc) as Rmax.

Proof. The achievability part straightforwardly follows from the single-user scenario. An outline is presented here for com-
pleteness. Let Ān be the acceptance region for the single-user scenario corresponding to (φ̄t

n, ψ̄n). For each user i ∈ [1 : M ] the
compression mapping φ̄t

n maps the data sequence xn(i) into an index that is stored in the database. We define the acceptance
region for the multi-user case as follows

An = {(yn, φ̄t
n(xn)) | (yn, φ̄t

n(xn(i))) ∈ Ān for some i}. (13)

The probabilities of the first and second type of errors can be bounded accordingly as in (11). We omit the details. The
existence of testing schemes that achieve the exponent Rmax(Rc)−γ for the single-user scenario for any γ > 0 is well-known,
cf. [1], [20]. Thus E?f (R,Rc) ≥ θ(R,Rc) for R < Rmax(Rc) follows from (11) since M .

= enR holds.
We now present the converse for Theorem 1. Since the distributions in our setting are non-stationary, the standard weak

converse proof using divergence cannot be straightforwardly extended. We will use in the following the information-spectrum
method plus a covering lemma to obtain the weak converse result.

We first consider the case R < Rmax(Rc). Suppose that E > 0 is an achievable error exponent, i.e. there exists a sequence of
compression mappings (φt

n) and a sequence of decision mappings (ψt
n) such that all the conditions in Definition 1 hold. Then

we can view (ψt
n) as decision mappings for the simple hypothesis testing problem H0 : PY nφt

n(Xn) versus H1 : PnY ×Pφt
n(Xn).

Define two general sources C1 = {C1
n}∞n=1, C2 = {C2

n}∞n=1 in which for each n, C1
n ∼ PY nφt

n(Xn) and C2
n ∼ PY n ×Pφt

n(Xn)

hold. By [21, Theorem 4.1.1] we have
E ≤ D(C1‖C2), (14)

where the right-hand side is the spectral inf-divergence, which is defined as for two general sources Z = {Zi}∞i=1 and
Z′ = {Z ′i}∞i=1 as

D(Z‖Z′) = sup

{
α | lim

n→∞
Pr

{
1

n
log

dPZn

dPZ′n
(Zn) < α

}
= 0

}
. (15)

Using Lemma 1 presented in the next section with Ê = D(C1‖C2) − γ for any γ > 0 small enough such that Ê > 0, we
obtain

lim
n→∞

Pr

{
1

n
log

PȲ nφt
n(X̄n)

PȲ n × Pφt
n(X̄n)

(Ȳ n, φt
n(X̄n)) < R+ Ê − γ

}
= 0. (16)

This implies that

R+ Ê − γ ≤ D(C̄1‖C̄2), (17)
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in which (Ȳ n, X̄n) ∼ P⊗nXY and C̄1 = {C̄1
n}∞n=1, C̄2 = {C̄2

n}∞n=1 are two general source where for each n, C̄1
n ∼ PȲ nφt

n(X̄n)

and C̄2
n ∼ PȲ n × Pφt

n(X̄n) hold. From [21, Theorem 3.5.2] the right-hand side of (17) can be upper-bounded further by the
following

D(C̄1‖C̄2) ≤ lim inf
n→∞

1

n
I(Ȳ n;φt

n(X̄n)). (18)

Let (nk) be a sub-sequence of indices such that 1
nk
I(Ȳ nk ;φt

nk
(X̄nk)) converges to the right-hand side of (18). With nk

sufficiently large we have 1
nk

log |φt
nk
| ≤ Rc + γ and

lim inf
n→∞

1

n
I(Ȳ n;φt

n(X̄n)) ≤ 1

nk
I(Ȳ nk ;φt

nk
(X̄nk)) + γ ≤ Rmax(Rc + γ) + γ. (19)

The last inequality follows from the corresponding entropy characterization of Rmax(Rc) provided in [1]. This step can also
be carried out using the standard single-letterization approach. In summary we have

E − 3γ ≤ Rmax(Rc + γ)−R, γ→0
=⇒ E ≤ Rmax(Rc)−R. (20)

Since the right-hand side of the above inequality is positive, our reasoning is valid. This implies that E?f (R,Rc) ≤ Rmax(Rc)−
R, as E is arbitrary.

Now, assume that R ≥ Rmax(Rc). Let (φtn, ψ
t
n) be a testing scheme such that limn→∞ αn = 0. Suppose further that (16)

is still valid, i.e., D(C1‖C2) > 0 holds. Then by taking γ → 0 we see that (17) is contradicted. Therefore D(C1‖C2) = 0 for
all sequences (φt

n). Therefore E?f (R,Rc) = 0 in this case.

Remark 1. We note that the proof of Theorem 1 remains valid when PXY is jointly Gaussian. The only step that needs to
be changed is (19) when an explicit calculation based on the entropy power inequality is needed. We leave the details to the
interested reader.

Remark 2. Note that in the case of no compression our setting is an instance of hypothesis testing for the mixed source
problem. When M is a constant, we obtain a similar result as in [21, Example 4.1.1]. Namely the optimal exponent is given
by E?f = I(X;Y ) and does not depend on M . Therefore, Theorem 1 states that allowing the mixing coefficients, herein 1/M
in PH0

, to depend on n can lead to a non-trivial reduction in the error exponent of type II.

III. STRONG CONVERSES

In this section we first show that the result derived in the previous section is also tight in the strong converse sense. Next,
we generalize our hypothesis testing problem by studying the case where compression mappings can be different from user
to user, referred to as the user-dependent compression mapping case. It is shown that the generalization does not increase
the optimal error exponent. We choose to present these results separately, since the generality of the user-dependent mapping
setting might overshadow several interesting interpretations of derivation steps in the fixed mapping setting. Finally, we study
a similar generalized identification system where each user can have a different compression mapping.

Before we begin, let us define the notion of information density which will be used frequently in the subsequence. The
information density between two random variables Z and V that are jointly distributed according to PZV is defined when
PZV � PZ × PV as

ιZV (z; v) = log
dPZV

d(PZ × PV )
(z, v). (21)

When PZV is clear from the context we omit the subscript.

A. Strong converse for fixed compression mappings

Since both distributions are non-stationary, we employ the information spectrum approach on top of the result by Ahlswede
and Csiszár in [1] to show the strong converse for the setting in Section II. Similar to Definition 2 we have the following
definition for ε-achievability.

Definition 3. Let ε ∈ [0, 1) be an arbitrarily given constant. An error exponent E of type II is ε-achievable given (R,Rc) if
there exist compression and decision mappings (φt

n, ψ
t
n) such that

lim sup
n→∞

αn ≤ ε, lim sup
n→∞

1

n
log |φt

n| ≤ Rc,

lim inf
n→∞

1

n
log

1

βn
≥ E. (22)

We define
E?ε,f(R,Rc) = sup{E | E is ε-achievable given (R,Rc)}.
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We first present a key lemma that relates our multi-user setting to the single-user setting which enables further analysis. It
says roughly that when the likelihood ratio test is considered, the probability of type I error in our multi-user setting is greater
than or equal to the one of the single-user setting due to the presence of multiple users.

Lemma 1. For any compression sequence (φt
n), and Ê, γ > 0, we have for all sufficiently large n

Pr

{
1

n
log

PY nφt
n(Xn)(Y

n, φt
n(Xn))

PY n × Pφt
n(Xn)(Y n, φt

n(Xn))
> Ê

}
≤ Pr

{
ιȲ nφt

n(X̄n)(Ȳ
n;φt

n(X̄n)) > logM + n(Ê − γ)

}
+O(exp(−nÊ)), (23)

where the left-hand side of (23) is evaluated with (Y n,Xn) ∼ PH0 as given in (1), and (Ȳ n, X̄n) ∼ P⊗nY X .

The proof of Lemma 1 uses a soft-covering lemma from [22]. Soft-covering is usually used in achievability proofs. Its
appearance when deriving the strong converse is an interesting step for us.

Proof. We denote the LHS of (23) by Ln,f(Ê, γ) and suppress the dependency on (Ê, γ) in the proof for notation brevity.
Given a compressed tuple φt

n(xn) of users’ data sequences, we define the following (conditional) distribution on Yn

P̂H0,φt
n(xn)(y

n) =
1

M

M∑
i=1

PY n|φt
n(Xn)(y

n|φt
n(xn(i))).

We observe that under hypothesis H0 the joint distribution induced by the mapping φt
n can be reformulated as

PY nφt
n(Xn)(y

n, φt
n(xn)) = P̂H0,φt

n(xn)(y
n)×

M∏
i=1

Pφt
n(Xn)(φ

t
n(xn(i))). (24)

The corresponding induced joint distribution under hypothesis H1 is given by

PY n × Pφt
n(Xn)(y

n, φt
n(xn)) = PY n(yn)×

M∏
k=1

Pφt
n(Xn)(φ

t
n(xn(k))). (25)

Therefore, since (Y n,Xn) ∼ PH0
we can rewrite Ln,f as

Ln,f = Eφt
n(Xn)

[
Pr

{
P̂H0,φt

n(Xn)

PY n
(Y n) > η

∣∣φt
n(Xn)

}]
= Eφt

n(Xn)Fη(P̂H0,φt
n(Xn)||PY n). (26)

Herein we have
Fη(P ||Q) = Pr

{
dP

dQ
(X) > η

}
where X ∼ P is the excess relative information metric with threshold η, η = enÊ , as defined in2 [22]. For each tuple φt

n(xn),
which is a realization of φt

n(Xn), we can view P̂H0,φt
n(xn) as the output distribution induced by selecting one sequence in

the tuple uniformly at random and feeding it into the input of the channel PY n|φt
n(Xn). The soft-covering lemma for the Fη

metric in [22, Theorem 24] states that

Eφt
n(Xn)Fη(P̂H0,φt

n(Xn)||PY n)

≤ Pr
[
ι(Ȳ n;φt

n(X̄n)) > log(Mσ)
]

+
1

ν
Pr
[
ι(Ȳ n;φt

n(X̄n)) > logM − τ
]

+
exp(−τ)

(η − 1− ν − σ)2
, (27)

where herein σ, ν > 0 are arbitrarily satisfying η−1 > ν+σ, τ ∈ R and (Ȳ n, X̄n) ∼ P⊗nY X . If we take, τ = −nÊ, σ = η/4−1
and ν = η/4, then we obtain

Eφt
n(Xn)Fη(P̂H0,φt

n(Xn)||PY n) ≤ Pr

{
ι(Ȳ n;φt

n(X̄n)) > logM + nÊ + log(1/4− 1/η))

}
+ 8 exp(−nÊ). (28)

The conclusion of the lemma follows.

Roughly speaking, to provide a strong converse statement we aim to drive Ln,f to 0 as n → ∞ which is explained in the
following. For a given compression mapping sequence (φt

n) the inequality [21, Lemma 4.1.2]

αn + enÊβn ≥ 1− Ln,f (29)

2The metric is denoted therein by F̄η(P ||Q). We use a slightly different notation herein, since (̄·) has been employed to denote the single-user case.
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implies that if for a given threshold Ê, Ln,f goes to 0, then the ε-achievable error exponent is upper bounded by Ê. It can be
seen that if Ê is greater than the spectral-sup mutual information of the joint process {(Y n, φt

n(Xn))}∞n=1 then Ln,f always
goes to 0. However, the bound is hard to characterize in a single letter form. The following corollary of Lemma 1 shows that
there exists a sequence (Lnk,f) which goes to 0. It will be shown later that the conclusion is sufficient for proving a strong
converse statement.

Corollary 1. Given a compression sequence (φt
n) such that lim supn→∞

1
n log |φtn| ≤ Rc. If Ê = Rmax − R + 3γ where

R ≤ Rmax and γ > 0 is arbitrary, then there exists a subsequence (nk)∞k=1 such that

lim
k→∞

Lnk,f(Ê, γ) = 0. (30)

Proof. It suffices to show that there exists a subsequence (nk) such that the first term in the RHS of (23) converges to 0.
Define the following acceptance region for the single-user hypothesis testing problem

Ān =

{
(yn, φt

n(xn)) | ι(yn;φt
n(xn)) > nẼ

}
, (31)

where Ẽ = Rmax + γ. Then it can be seen that

β̄n = PȲ n × Pφt
n(X̄n)(Ān)

=
∑

(yn,φt
n(xn))∈Ān

PȲ n(yn)Pφt
n(X̄n)(φ

t
n(xn))

≤ e−nẼ
∑

(yn,φt
n(xn))∈Ān

PȲ nφt
n(X̄n)(y

n, φt
n(xn))

≤ e−nẼ , (32)

thus lim infn→∞
1
n log 1

β̄n
≥ Ẽ. Since Ẽ > Rmax, by the strong converse result of Ahlswede and Csiszar [1, Theorem 3] we

have
lim sup
n→∞

ᾱn = 1, where ᾱn = PȲ nφt
n(X̄n)(Ācn). (33)

Then there exists a subsequence (nk)∞k=1 such that

lim
k→∞

ᾱnk = 1⇔ lim
k→∞

PȲ nkφt
nk

(X̄nk )(Ānk) = 0. (34)

Additionally, for all sufficiently large n we have

Ê − γ +
1

n
logM > Ẽ

which implies further that
PȲ nφt

n(X̄n)(Ān) ≥ Pr{ι(Ȳ n;φt
n(X̄n)) > logM + n(Ê − γ)}.

By Lemma 1 and (34) we then obtain
lim
k→∞

Lnk,f(Ê, γ) = 0. (35)

We now summarize the above analysis in the following theorem, which is the strong converse statement for the setting
introduced in Section II.

Theorem 2. For E?ε,f(R,Rc) defined in Definition 3 we have for all ε, 0 ≤ ε < 1,

E?ε,f(R,Rc) = θ(R,Rc) = Rmax −R, if R ≤ Rmax. (36)

Proof. Suppose that there exists a sequence of compression mappings (φt
n) and a sequence of decision mappings (ψt

n) such
that

lim sup
n→∞

αn ≤ ε, lim sup
n→∞

1

n
log |φt

n| ≤ Rc,

and lim inf
n→∞

1

n
log

1

βn
≥ E. (37)
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Given γ > 0 small enough such that ε + γ < 1, then for all sufficiently large n we have αn ≤ ε + γ and βn ≤ e−n(E−γ).
Select Ê = Rmax −R+ 3γ and let (nk) be the corresponding subsequence such that (30) holds. Then as [21, Lemma 4.1.2],
c.f. also [23, Section 13.1], we have

1− αn − enÊβn ≤ Pr

{
1

n
log

PY nφt
n(Xn)

PY n × Pφt
n(Xn)

(Y n, φt
n(Xn)) > Ê

}
,

holds for any n. Since, the RHS is actually Ln,f(Ê, γ), we obtain for all sufficiently large nk the following

1− ε− γ − enkÊe−nk(E−γ) ≤ Lnk,f

=⇒ Ê − E + γ ≥ 1

nk
log(1− ε− γ − Lnk,f)

=⇒ Rmax −R+ 4γ ≥ E γ→0
=⇒ Rmax −R ≥ E

=⇒ Rmax −R ≥ E?ε,f(R,Rc). (38)

The last inequality holds since E is an arbitrary ε-achievable exponent. The conclusion follows since Rmax−R ≤ E?ε (R,Rc)
when R < Rmax by Theorem 1. Note that the upper bound still holds even if we define E?ε (R,Rc) on the closure of ε-achievable
region of (Rc, E).

In the next theorem we provide some partial information about the behavior of errors of type I and II when the number of
users exceeds the identifiable threshold, i.e., R > Rmax. The result further implies that E?ε,f(R,Rc) = 0 for all ε ∈ [0, 1) when
R > Rmax.

Theorem 3. Given a sequence of compression mappings (φt
n) such that lim supn→∞

1
n log |φt

n| ≤ Rc. Consider the case
R = Rmax(Rc) + γ where γ > 0 is arbitrary, then for any sequence of decision mappings (ψt

n), the following holds

lim sup
n→∞

(αn + βn) ≥ 1. (39)

Moreover, in case of no compression, i.e., correspondingly R = I(X;Y ) + γ, we obtain limn→∞(αn + βn) = 1.

We interpret the result of Theorem 3 via the receiver operating characteristic curve as follows. In the design process, one
aims to attain the highest detection probability for a given false alarm level. Theorem 2 states that the detection probability
can be driven to 1 as long as the number of users is below Rmax(Rc) and the false alarm level is strictly below 1. However,
Theorem 3 says that when the number of users in the system exceeds Rmax(Rc), the performance of any decision rule is not
better than a random guess.

Proof. From (24) and (25), the variational distance between PY nφt
n(Xn) and PY n × Pφt

n(Xn) is given by

‖PY n,φt
n(Xn) − PY n × Pφt

n(Xn)‖TV = Eφt
n(Xn)

∥∥P̂H0,φt
n(Xn) − PY n

∥∥
TV
.

By the soft-covering lemma [24, Corollary VII.2], [25, Lemma 2], we obtain that

‖PY n,φt
n(Xn) − PY n × Pφt

n(Xn)‖TV ≤ Pr
{
ι(Ȳ n;φt

n(X̄n)) > n(Rmax +
γ

2
)
}

+
1

2

√
en(Rmax+γ/2)

M
, (40)

where again (Ȳ n, X̄n) ∼ P⊗nXY . From the definition of the total variational distance we obtain

|1− αn − βn| ≤ sup
A
|PY n,φt

n(Xn)(A)− PY n × Pφt
n(Xn)(A)| = ‖PY n,φt

n(Xn) − PY n × Pφt
n(Xn)‖TV . (41)

Let Ān be defined as in (31) with Ẽ = Rmax + γ/2 instead. Then by using (40) we obtain3

lim inf
n→∞

|1− (αn + βn)| ≤ lim inf
n→∞

‖PY n,φt
n(Xn) − PY n × Pφt

n(Xn)‖TV ≤ lim inf
n→∞

PȲ nφt
n(X̄n)(Ān)

(34)
= 0, (42)

which implies lim supn→∞(αn+βn) ≥ 1. In case of no compression we replace the lim infn→∞(·) operation by the limn→∞(·)
operation and use the weak law of large numbers in the last step.

Combining the results of Theorem 2 and Theorem 3 we obtain E?ε (R,Rc) = max{Rmax(Rc)−R, 0}. We establish in the
following a reverse statement of Theorem 1.

Proposition 1. Fix Ê and γ > 0. Given a multi-user testing scheme (φt
n, ψ

t
n) with probabilities of errors (αn, βn) we can

construct a single-user testing scheme (φt
n, ψ

′
n) such that the corresponding probabilities of errors are given by

ᾱn ≤ αn + enÊβn +O(exp(−nÊ))

3Since R > Rmax holds, the last equality in (42) can also be shown by first using (27) and with an arbitrary η > 1, τ = R−Rmax > 0 and suitable ν
and σ. Then we can take the limits (in the order) lim infn→∞ and η → 1. The reader is referred to Remark 25 in [22] for the details.
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β̄n ≤ e−n(Ê−γ) 1

M
, (43)

for all sufficiently large n.

Proof. Define a single-user decision region as

Ān =
{

(yn, φt
n(xn)) | ιȲ nφt

n(X̄n)(y
n;φtn(xn)) > logM + n(Ê − γ)

}
. (44)

By Lemma 1 we obtain

αn + enÊβn ≥ 1− Ln(Ê, γ) ≥ PȲ nφt
n(X̄n)(Ācn)− 8 exp(−nÊ) = ᾱn − 8 exp(−nÊ). (45)

Similar to (32), by the change of measure we also have

β̄n ≤
e−n(Ê−γ)

M
. (46)

As a consequence of Theorem 1 and Proposition 1 we have the following theorem. It shows an equivalence for the exponentially
strong converse between our multi-user testing problem and the single-user testing against independence problem.

Theorem 4. Assume that R < Rmax(Rc) then the two following statements are equivalent.
1) For any single-user HT scheme (φ̄n, ψ̄n) with lim supn→∞

1
n log |φ̄t

n| ≤ Rc and lim infn→∞
1
n log 1

β̄n
≥ Ē, if Ē >

Rmax(Rc), then ᾱn → 1 exponentially fast at a positive convergence rate.
2) For any multi-user HT scheme (φt

n, ψ
t
n) with lim supn→∞

1
n log |φt

n| ≤ Rc and lim infn→∞
1
n log 1

βn
≥ E, if E >

Rmax(Rc)−R, then αn → 1 exponentially fast at a positive convergence rate.

Proof. Assume that the first statement holds. Let (φt
n, ψ

t
n) be an arbitrary multi-user testing scheme such that

lim sup
n→∞

1

n
log |φt

n| ≤ Rc, and lim inf
n→∞

1

n
log

1

βn
≥ E,

holds where E > Rmax(Rc) − R. Select Ê = E − 2γ for γ > 0 small enough such that E + R − 4γ > Rmax(Rc). By
applying Proposition 1 we obtain a single-user hypothesis testing scheme (φt

n, ψ
′
n) such that for all sufficiently large n the

corresponding single-user false alarm and miss detection probabilities (ᾱn, β̄n) are bounded by

ᾱn ≤ αn + e−nγ + C(exp(−n(E − 2γ))

β̄n ≤ exp(−n(E +R− 4γ)), (47)

where C is an absolute constant. Since E +R− 4γ > Rmax(Rc) holds, the assumption implies that ᾱn → 1 exponentially at
a positive rate. Hence αn → 1 exponentially at a positive rate.

Assume now that the second statement holds. Let (φ̄n, ψ̄n) be an arbitrary single-user hypothesis testing scheme such that

lim sup
n→∞

1

n
log |φ̄t

n| ≤ Rc and lim inf
n→∞

1

n
log

1

β̄n
≥ Ē,

where Ē > Rmax(Rc). Select an arbitrary γ > 0 small enough such that Ē − 2γ > Rmax(Rc). Then for all sufficiently large
n we obtain by applying Theorem 1 a multi-user testing scheme such that the corresponding multi-user false alarm and miss
detection probabilities (αn, βn) are upper bounded by

αn ≤ ᾱn, βn ≤ e−n(Ē−2γ−R). (48)

Since Ē −R− 2γ > Rmax(Rc)−R the assumption implies that αn tends to 1 exponentially fast at a positive rate. Hence ᾱn
goes to 1 exponentially fast a positive rate.

In Section IV-A we connect the first statement in Theorem 4 with a known result for the Wyner-Ahlswede-Körner network
in [7], [8].

In this paragraph, we present a general result which is a consequence of Theorem 1 and Proposition 1. Suppose that X
and Y have sufficient structure, for example being Polish spaces. We assume further that in (1) we have PY nXn(i) = PY nXn

which is not necessarily iid nor discrete. We keep using Definition 3 for the ε-achievability for the multi-user testing problem
and the supremum ε-achievable error exponent of type II, E?ε,f(R,Rc). Furthermore, for M = 1 we use the notation E?ε,s(Rc)
to denote the supremum ε-achievable error exponent for the single-user case. It can be seen that for a given compression rate
Rc, E?ε,s(Rc) is finite for similar reasons as in Remark 8 in Section IV-B. Then we have the following theorem.

Theorem 5. When {PY nXn}∞n=1 is a sequence of general distributions, we have for all ε ∈ [0, 1) and all (R,Rc) ∈ R2
+,

E?ε,f(R,Rc) = max{E?ε,s(Rc)−R, 0}. (49)
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Proof. Assume that R < E?ε,s(Rc) holds. By Theorem 1 we have E?ε,f(R,Rc) ≥ E?ε,s(Rc)−R. Therefore for all (R,Rc) we
have

E?ε,f(R,Rc) ≥ max{E?ε,s(Rc)−R, 0}. (50)

Assume for now that E is an ε-achievable error exponent of type II for the multi-user testing problem, then there exist a
pair of sequences (φt

n, ψ
t
n) such that all the conditions in Definition 3 are fulfilled. Applying Proposition 1 with Ê = E − γ

we obtain a single-user testing scheme (φt
n, ψ

′
n) such that

ᾱn ≤ αn + e−nγ + C exp(−n(E − γ)), β̄n ≤ exp(−n(E − 3γ +R)), (51)

for all sufficiently large n. Consider first the case R < E?ε,s(Rc). Assume further that E > 0, which is plausible if E?ε,f(R,Rc) >
0, then with γ > 0 sufficiently small we obtain

lim sup
n→∞

ᾱn ≤ ε, lim inf
n→∞

1

n
log

1

β̄n
≥ E − 3γ +R. (52)

Therefore we have E − 3γ +R ≤ E?ε,s(Rc). Accordingly, we must have E?ε,f(R,Rc) ≤ E?ε,s(Rc)−R for this case.
Next, consider the case that R ≥ E?ε,s(Rc). Assume that E?ε,f(R,Rc) > 0 still holds. Then again we have E − 3γ + R ≤

E?ε,s(Rc). By taking γ → 0 we see that the last inequality is not valid for 0 < E < E?ε,f(R,Rc). Therefore E?ε,f(R,Rc) = 0
in this case.

B. Hypothesis Testing with user-dependent compression mappings

We now consider the case that each user has its own compression mapping φt
kn for k ∈ [1 : M ]. This setting for instance repre-

sents the case where the hypothesis testing database (φt
kn(Xn(k))) is a merger of different, distributed sub-databases, which em-

ploy different compression mechanisms. For simplicity we denote by φt
n(Xn) the ensemble (φt

1n(Xn(1)), . . . , φt
Mn(Xn(M))).

The corresponding realization is denoted by φt
n(xn). These mappings induce the following distributions for our hypothesis

testing problem.

H0 : PY nφt
n(Xn) =

1

M

M∑
k=1

PY nφt
kn(Xn(k)) ×

∏
j 6=k

Pφt
jn(Xn(j))

H1 : PY n × Pφt
n(Xn) = PY n ×

M∏
k=1

Pφt
kn(Xn(k)). (53)

The decision region is given similarly as

An,var = {(yn,φt
n(xn)) | ψt

n(yn,φt
n(xn)) = 0}. (54)

The corresponding false alarm and miss detection probabilities are given by

αn,var = PY nφt
n(Xn)(Acn,var), βn,var = PY n × Pφt

n(Xn)(An,var). (55)

To enable the characterization in this setting we assume a uniformity condition that all the mappings φt
kn admit the same

compression rate. We state in the following the corresponding ε-achievable definition.

Definition 4. An error exponent E of type II is ε-achievable for a given pair (R,Rc) if there exist a doubly indexed4 sequence
(φt
kn) of enrollment mappings, and a sequence of decision mappings (ψt

n) such that

lim sup
n→∞

max
k∈[1:M ]

1

n
log |φtkn| ≤ Rc,

lim sup
n→∞

αn,var ≤ε, lim inf
n→∞

1

n
log

1

βn,var
≥ E. (56)

Let E?ε,var(R,Rc) be the supremum of all ε-achievable error exponent for a given pair (R,Rc).
In the following we proceed to show the strong converse for this user-dependent setting. The proof idea is similar to the one
in the previous section. Namely, we reduce the likelihood ratio in the multi-user setting to the one in the single-user setting
and carefully control the minimum false alarm probability in the single-user setting when multiple compression mappings are
present. For this purpose, we need to derive some generalized lemmas, since the tools used in the previous section are no
longer applicable. We first need the following lemma which is a fix for the soft covering using excess relative information
metric in [22, Theorem 24] .

4Note that in our case for a given n only M .
= enR mappings φtkn are active for compression, i.e., k does not run freely to ∞.
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Lemma 2. For each i ∈ [1 : M ] define the following distribution Qi = PZVi ×
∏
j 6=i PVj . Furthermore, for each i let

(Zi, V i1 , . . . , V
i
M ) be a tuple of random variables that follows the law Qi. For brevity we denote an outcome in the corresponding

sample space (z, v1, . . . , vm) by (z,v). Then we define two distributions of interest as follows

QH0 =
1

M

M∑
i=1

Qi and QH1
= PZ ×

M∏
k=1

PVk . (57)

Assume that for all k ∈ [1 : M ], PZVk � PZ × PVk holds. Given positive numbers η, σ such that η > σ we have

QH0

({
(z,v) | dQH0

dQH1

(z,v) > η
})
≤ 1

M

M∑
k=1

Pr

{
dPZVk

d(PZ × PVk)
(Zk, V kk ) > Mσ

}
+

1

η − σ
. (58)

For a given tuple v, the distribution 1
M

∑M
i=1 PZ|Vi=vi can be seen as the output distribution of a general channel that

depends on which input is picked. Lemma 2 therefore can still be seen as a soft-covering lemma. The proof is given in the
following.

Proof. First we have

QH0

(
{(z,v) | dQH0

dQH1

(z,v) > η}
)

=
1

M

M∑
i=1

Qi

(
{(z,v) | dQH0

dQH1

(z,v) > η}
)
. (59)

Since
dQH0

dQH1

(z,v) =
1

M

M∑
i=1

dPZVi
d(PZ × PVi)

(z, vi), QH1
− a.s. (60)

We have

Qi

(
{(z,v) | dQH0

dQH1

(z,v) > η}
)

= Qi

(
{(z,v) | 1

M

M∑
i=k

dPZVk
d(PZ × PVk)

(z, vk) > η}
)

≤ Pr

{
dPZVi

d(PZ × PVi)
(Zi, V ii ) > Mσ

}
+ Pr

{
1

M

∑
k 6=i

dPZVk
d(PZ × PVk)

(Zi, V ik ) > η − σ
}
. (61)

Since for k 6= i we have (Zi, V ik ) ∼ PZ × PVk , the following equality is valid

E
[

dPZVk
d(PZ × PVk)

(Zi, V ik )

]
= 1. (62)

The second term can be upper bounded by Markov’s inequality as

Pr

{
1

M

∑
k 6=i

dPZVk
d(PZ × PVk)

(Zi, V ik ) > η − σ
}
≤ 1

η − σ
1

M

∑
k 6=i

E
[

dPZVk
d(PZ × PVk)

(Zi, V ik )

]
≤ 1

η − σ
. (63)

Hence everything is done.

Remark 3. By closely following the proof of [22, Theorem 24] the inequality stated in Lemma 2 can be generalized into

QH0

({
(z,v) | dQH0

dQH1

(z,v) > η
})
≤ 1

M

M∑
k=1

[
Pr

{
dPZVk

d(PZ × PVk)
(Zk, V kk ) > Mσ

}
+

1

ν
Pr

{
dPZVk

d(PZ × PVk)
(Zk, V k) ≥M exp(−τ)

}]
+

exp(−τ)

(η − σ − ν − 1)2
, (64)

where ν > 0 such that η − σ − ν − 1 > 0 and τ ∈ R is arbitrary. This generalization is more than what is needed in our
setting, hence we choose to present in Lemma 2 a simplified version instead.

Lemma 2 implies that for a given doubly indexed sequence (φt
kn) and a given positive pair (Ê, γ) the following holds

Pr
{
ιY nφt

n(Xn)(Y
n;φt

n(Xn)) > nÊ
}

≤ 1

M

M∑
k=1

Pr{ιȲ nφt
kn(X̄n)(Ȳ

n;φt
kn(X̄n) > logM + n(Ê − γ)}+O(exp(−nÊ)) (65)

for all sufficiently large n. Similarly, we denote the left-hand side in (65) as Ln,var.
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Next, we need a maximal lemma given in the following. This lemma says that with the uniformity condition given in
Definition 4 the minimum false alarm probability is still going to 1. It is a generalization of the arguments in the proof of
Corollary 1.

Lemma 3. Suppose that N(n) is an arbitrary sequence of natural numbers. Let (φt
kn) be a doubly indexed sequence of

compression mappings on Xn such that lim supn→∞maxk∈[1:N ]
1
n log |φt

kn| ≤ Rc holds. Further let Ẽ = Rmax(Rc) + γ
where γ > 0 is arbitrary, then5

lim inf
n→∞

max
k∈[1:N ]

P⊗nXY
{

(xn, yn) | ιȲ nφt
kn(X̄n)(y

n;φt
kn(xn)) > nẼ

}
= 0 (66)

Proof. For each n and k ∈ [1 : N ], define the following sets

Ākn = {(yn, xn) | iȲ nφt
kn(X̄n)(y

n;φt
kn(xn)) > nẼ}. (67)

Furthermore let k?(n) be such that

P⊗nY X(Āck?n) = min
k∈[1:N ]

P⊗nY X(Āckn) (68)

We define a sequence of compression mappings (φt
n) for the single-user hypothesis testing against independence problem by

φt
n = φt

k?n, n = 1, 2, . . . . Let also denote the sequence of acceptance regions (Ān) as Ān = Āk?n. Then it can be seen that

lim sup
n→∞

1

n
log |φt

n| = lim sup
n→∞

1

n
log |φt

k?n| ≤ lim sup
n→∞

max
k∈[1:N ]

1

n
log |φt

kn| ≤ Rc. (69)

Furthermore from the definition of k? we also have

β̄n = P⊗nY × P⊗nX (Ān) = P⊗nY × P⊗nX (Āk?n) ≤ e−nẼ . (70)

By the strong converse result in [1] we have

lim sup
n→∞

ᾱn = 1,where ᾱn = P⊗nY X(Ācn). (71)

Therefore we have
lim inf
n→∞

max
k∈[1:N ]

P⊗nY X(Ākn) = 0. (72)

Having Lemma 2 and Lemma 3, we obtain a similar consequence as Corollary 1 which will be used in the proof of the
strong converse for the current setting. For a fixed γ > 0, choosing Ê = Ẽ −R+ 3γ in Lemma 2 where R ≤ Rmax(Rc) and
applying Lemma 3 with N = M , we again have

lim inf
n→∞

Ln,var = 0, (73)

where Ln,var denotes the left-hand side of (65). Accordingly, we have the following theorem.

Theorem 6. For E?ε,var(R,Rc) defined as in Definition 4 and for R ≤ Rmax(Rc) we have E?ε,var(R,Rc) = Rmax(Rc) − R
for all ε ∈ [0, 1).

Proof. Let E be an ε-achievable error exponent for a given pair (R,Rc). Let (φt
kn) and (ψt

n) be sequence of mappings such
that all the conditions in Definition 4 are fulfilled. Similarly as in the proof of Theorem 2 we select Ê = Rmax − R + 3γ
where γ > 0 is arbitrary but small enough. Then we have

1− ε− γ − enkÊe−nk(E−γ) ≤ Lnk,var (74)

for all sufficiently large nk where (nk) is a subsequence such that (Lnk,var) converges to lim infn→∞ Ln,var = 0. Therefore
we obtain

Rmax(Rc)−R+ 4γ − E ≥ 0. (75)

Since γ is arbitrary, we have Rmax(Rc)−R ≥ E, which implies that Rmax −R ≥ E?ε,var(R,Rc). The other direction follows
from Theorem 1.

The following theorem shows that the error probabilities behave similarly as in Theorem 3 when R > Rmax(Rc).

5Note that Theorem 10 in Section IV-A indicates that the lim inf operation can be replaced by lim.
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Theorem 7. Assume that R = Rmax(Rc) + γ where γ > 0 is arbitrary but given. Given any doubly indexed sequence (φt
kn)

such that lim supn→∞maxk∈[1:M ]
1
n log |φt

kn| ≤ Rc holds. Then for any sequence of decision mappings (ψt
n) we have

lim sup
n→∞

(αn,var + βn,var) ≥ 1. (76)

Proof. By [24, Theorem VII.1] we obtain that

‖PY nφt
n(Xn) − PY n × Pφt

n(Xn)‖TV ≤
1

M

M∑
k=1

P⊗nXY

({
(yn, xn) | ιȲ nφt

kn(X̄n)(y
n;φt

kn(xn)) > logM + τ
})

+ eτ/2/2. (77)

Pick τ = −nγ where γ > 0, then applying Lemma 3 with N = M we have

lim inf
n→∞

‖PY nφt
n(Xn) − PY n × Pφt

n(Xn)‖TV = 0. (78)

Hence the conclusion follows.

Remark 4. Assume that instead of using a deterministic mapping ψt
n to decide whether H0 or H1 is true, we use a probabilistic

mapping PH0|yn,φt
n(xn) 7→ [0, 1] to represent the probability that H0 is chosen given (yn,φt

n(xn)). Then the false alarm and
miss-detection probabilities are given by

αn,var =
∑

yn,φt
n(xn)

PY nφt
n(Xn)(y

n,φt
n(xn))(1− PH0|yn,φt

n(xn))

βn,var =
∑

yn,φt
n(xn)

PY n × Pφt
n(Xn)(y

n,φt
n(xn))PH0|yn,φt

n(xn). (79)

By [23, Lemma 12.2] the inequality

αn,var + enÊβn,var ≥ Pr

{
ιY nφt

n(Xn)(Y
n;φt

n(Xn)) ≤ nÊ
}
, (80)

is still valid. As (80) implies (74), the conclusion of Theorem 6 still holds when random decisions are used. In other words,
stochastic decisions do not increase the optimal error exponent. Furthermore it can be seen that

|1− αn − βn| ≤ ‖PH0|Y nφt
n(Xn)PY nφt

n(Xn) − PH0|Y nφt
n(Xn)PY n × Pφt

n(Xn)‖TV
= ‖PY nφt

n(Xn) − PY n × Pφt
n(Xn)‖TV . (81)

Hence, Theorem 7 is still valid for random decisions.

C. Identification Systems with user-dependent compression mappings

Let W be the hidden random variable that characterizes the uniformly chosen user in the identification setting in Fig. 1
which is independent of users sequences Xn. The underlying joint probability distribution is given by

PY nXnW (yn,xn, w) =
1

M id
P⊗nY X(yn, xn(w))×

∏
k 6=w

P⊗nX (xn(k)). (82)

In the following we study the problem of identifying W with high probability when the compression mappings can be
different from user to user. This problem is a generalization of the one in [3] which was depicted in Fig. 1. Similarly we use
φid
n (Xn) to denote the ensemble (φid

1n(Xn(1)), . . . , φid
M idn(Xn(M id))). The decision mapping herein is defined by

ψid
n (yn,φid

n (xn)) 7→ ŵ ∈ {1, . . . ,M id} ∪ {e}, (83)

and the probability of identifying an incorrect index is given by

Pr{W 6= Ŵ} = PY nφid
n (Xn)W

({
(yn,φid

n (xn), w) | ψid
n (yn,φid

n (xn)) 6= w
})

. (84)

Strong converse proofs for the setting in [3] have been given in [26] and [27]. We show that allowing different compression
mappings does not change the optimal performance of the system in the strong converse sense. We first define the ε-achievability.

Definition 5. A pair of compression-identification rates (Rid, Rc) is ε-achievable if there exists a doubly indexed sequence of
compression mappings (φid

kn), a sequence of identification mappings (ψid
n ) such that

lim sup
n→∞

max
k∈[1:M id]

1

n
log |φid

kn| ≤ Rc,

lim inf
n→∞

1

n
logM id ≥Rid, lim sup

n→∞
Pr{W 6= Ŵ} ≤ ε. (85)
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Let R?ε,var(Rc) be the supremum of all ε-achievable identification rate Rid at a compression rate Rc.

We point out in the following one important difference between the identification system setting and our previous multi-user
hypothesis testing problem. In our multi-user hypothesis testing, the number of users M grows at a fixed rate R, whereas in
the identification setting we want to maximize the growing rate Rid of the number of supportable users M id in the database.
We therefore use two different notations to differentiate the distinction.

To prove the strong converse, we need the following lemma, which relates the probability of correct identifying with the
probability that the compressed sequence of the chosen user and the observation sequence are jointly typical.

Lemma 4. For any given η we have the following inequality

Pr{W = Ŵ} ≤ max
k∈[1:M id]

Pr{ιȲ nφid
kn(X̄n)(Ȳ

n;φid
kn(X̄n)) > logM id − η}+ e−η, (86)

where (Ȳ n, X̄n) ∼ P⊗nY X .

Proof. Define for each k ∈ [1 : M id] the following correctly decodable and jointly typical sets

Dk = {(yn,xn) | k = ψid
n (yn,φid

n (xn))}
Ak = {(yn,xn) | ιȲ nφid

kn(X̄n)(y
n;φid

kn(xn(k))) > logM id − η}. (87)

We observe that the sets Dk are disjoint. Then we have

Pr{W = Ŵ} =
1

M id

M id∑
k=1

PY nφid
kn(Xn(k)) ×

∏
j 6=k

Pφid
jn(Xn(j))(Dk)

=
1

M id

M id∑
k=1

[
PY nφid

kn(Xn(k)) ×
∏
j 6=k

Pφid
jn(Xn(j))(Dk ∩ Ack) + PY nφid

kn(Xn(k)) ×
∏
j 6=k

Pφid
jn(Xn(j))(Dk ∩ Ak)

]
. (88)

The second term inside the bracket, which is the probability of correct identification as well as the observation and the
compressed sequence being jointly typical, can be upper bounded by

PY nφid
kn(Xn(k)) ×

∏
j 6=k

Pφid
jn(Xn(j))(Ak) = Pr{ιȲ nφid

kn(X̄n)(Ȳ
n;φid

kn(X̄n)) > logM id − η}. (89)

Similarly the first term inside the bracket, which is the probability of correct identification as well as the observation and the
compressed sequence being not jointly typical, is upper bounded by

M ide−ηPY n × Pφid
n (Xn)(Dk ∩ Ack) ≤M ide−ηPY n × Pφid

n (Xn)(Dk). (90)

Therefore we have

Pr{W = Ŵ} ≤ 1

M id

M id∑
k=1

Pr{ιȲ nφid
kn(X̄n)(Ȳ

n;φid
kn(X̄n)) > logM id − η}+ e−ηPY n × Pφid

n (Xn)

(⋃
k

Dk
)

≤ max
k∈[1:M id]

Pr{ιȲ nφid
kn(X̄n)(Ȳ

n;φid
kn(X̄n)) > logM id − η}+ e−η. (91)

The conclusion of the lemma follows.

The following theorem concludes that the performance of an identification systems with user-dependent compression
mappings are not better than the one using the same compression mapping for all users.

Theorem 8. For R?ε,var(Rc) defined in Definition 5 we have R?ε,var(Rc) = Rmax(Rc) for all ε ∈ [0, 1).

Proof. Assume that the rate pair (Rid, Rc) is ε-achievable. There exist corresponding sequences (φid
kn) and (ψid

n ) such that
all conditions in Definition 5 holds. The ε-achievability implies that lim infn→∞ Pr{W = Ŵ} ≥ 1 − ε. Suppose that Rid =
Rmax(Rc) + 3γ for some γ > 0. By choosing η = nγ in Lemma 4 and applying Lemma 3 with N = M id we obtain that

lim inf
n→∞

Pr{W = Ŵ} ≤ lim inf
n→∞

max
k∈[1:M id]

Pr{ιȲ nφid
kn(X̄n)(Ȳ

n;φid
kn(X̄n)) > logM id − η}

≤ lim inf
n→∞

max
k∈[1:M id]

Pr{ιȲ nφid
kn(X̄n)(Ȳ

n;φid
kn(X̄n)) > n(Rmax(Rc) + γ)} = 0, (92)

which contradicts the assumption of ε-achievability. Therefore we must have Rid ≤ Rmax(Rc) + 3γ. Since γ is arbitrary we
then have Rid ≤ Rmax(Rc) which leads to R?ε,var(Rc) ≤ Rmax(Rc).
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ID WAK 1-HT M-HT
Theorem 8

Theorem 8

Theorem 1

Proposition 3

Theorem 10

Theorem 10

Fig. 3: Code transformations across settings. Solid are dashed lines indicate constructive and non-constructive transformation,
respectively.

IV. EQUIVALENCE RELATIONS

This section is devoted to establishing operational equivalence between different settings: Wyner-Ahlswede-Körner (WAK)
network, single-user testing against independence and identification systems. These equivalence relations are established via
simple code transformations. We summarize the results of this section in Fig. 3.

Specifically, as a consequence of the operational equivalence we show explicitly that a code for an identification system
can be used for the membership testing purpose and vice versa. These are highlighted by red and blue colors in Fig. 3. In
other words, we do not need to use two different databases for screening users and recognizing users. This property is highly
desirable in practice since one can add a new feature, herein membership testing, on top of an old feature (recognizing an
existing user) without re-designing the whole system from the scratch.

Furthermore, we show that the simple code transformation argument between the WAK setting and the single-user HT implies
the strong converse, exponentially strong converse equivalence statements. The latter complements the result in Theorem 4
proven previously.

The transformations between the single-user HT and the identification setting imply the equalities of the ε-achievable regions
and the corresponding second-order quantities. These results connect and generalize existing results and are also of independent
interest.

The presentation is given in the order of generality in the assumption of distributions. For simplicity we drop superscripts
(·)id and (·)t at most of places.

A. Equivalence between single-user HT and WAK problems

Assume that the source in the WAK problem and the hypothesis H0 in the HT setting are given by X̄nȲ n ∼ P⊗nXY . We
briefly recap the definitions of a WAK-code and a HT scheme. A WAK-code consists of a pair of encoding mappings (φ1n, φ2n)
and a decoding function ψn which are defined as

φ1n : Xn →M1, φ2n : Yn →M2

ψn : M1 ×M2 → Yn. (93)

The WAK problem aims to control Pr{Ȳ n 6= ˆ̄Y n}, where ˆ̄Y n = ψn(φ1n(X̄n), φ2n(Ȳ n)).
The single-user HT setting aims to differentiate whether the observations (xn, yn) are generated from hypothesis H0 : P⊗nXY

or hypothesis H1 : P⊗nX × P⊗nY . A single-user HT scheme consists of an encoding mapping φn and a stochastic decision
mapping ψn, which are defined as follows

φn : Xn →M, ψn : M×Yn → {0, 1}, (94)

in which H0 is chosen with probability PH0|m,yn . The probabilities of error of type I and II are given as

ᾱn =
∑
yn,m

PȲ nφn(X̄n)(y
n,m)(1− PH0|yn,m)

β̄n =
∑
yn,m

PȲ n × Pφn(X̄n)(y
n,m)PH0|yn,m. (95)

We present in the following an equivalent relation between a WAK-code and a single-user HT scheme.

Theorem 9. Fix an arbitrary γ > 0. Given a WAK-code (φ1n, φ2n, ψn), we can construct a single-user hypothesis testing
scheme (φ1n, ψ

′
n) such that the corresponding error probabilities of type I and II are given by

ᾱn ≤ Pr{Ȳ n 6= ˆ̄Y n}+ Pr{Ȳ n /∈ Anγ}
β̄n ≤ e−n(H(Ȳ )−γ)|M2|, (96)
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where Anγ is the weakly typical set w.r.t PY . Conversely, given a testing scheme (φn, ψn) for the single-user hypothesis testing
problem there exists a WAK-code (φn, φ

′
2n, ψ

′
n) such that

Pr{ ˆ̄Y n 6= Ȳ n} ≤ ᾱn + en(Ê−γ)β̄n + Pr{Ȳ n /∈ Anγ}+
en(H(Ȳ )+2γ−Ê)

|M2|
, (97)

where Ê is a free parameter that satisfies the condition H(Ȳ ) > Ê + 2γ.

Proof. WAK ⇒ Single-user HT: For a given m1 ∈M1, define the following correctly decodable set of the WAK-code

Dm1
= {yn | yn = ψn(m1, φ2n(yn)), yn ∈ Anγ}. (98)

Then, it is clear that for all m1 ∈M1 we have |Dm1
| ≤ |M2| as φ2n can only take at most |M2| values. A decision region

for the single-user HT, based on Yn ×M1, is defined as

Ān =
⋃
m1

(
Dm1 × {m1}

)
⊂ Yn ×M1. (99)

The validity of Ān, i.e., the existence of a decision mapping ψn, follows from the fact that we have full access to the sequence
yn when making a decision. We use the mapping φ1n as the compression mapping for Xn in the single-user HT problem.
From (99) the probability of type I of error is bounded by

ᾱn = PȲ nφ1n(X̄n)(Ācn) ≤ Pr{ ˆ̄Y n 6= Ȳ n}+ Pr{Ȳ n /∈ Anγ}, (100)

and the probability of type II of error is bounded above by

β̄n = PȲ n × Pφ1n(X̄n)(Ān) =
∑
m1

Pφ1n(X̄n)(m1)PȲ n(Dm1)

≤
∑
m1

Pφ1n(X̄n)(m1)|Dm1
|e−n(H(Y )−γ)

≤ e−n(H(Ȳ )−γ)|M2|. (101)

WAK ⇐ Single-user HT: Given a single-user HT testing scheme (φn, ψn), for each m1 ∈M we define the set

Dn(m1) =

{
yn
∣∣∣∣ 1n log

PȲ n|φn(X̄n)(y
n|m1)

PȲ n(yn)
> Ê − γ

}
∩ Anγ . (102)

Dn(m1) plays the role of the conditional typical set in the standard proof of the WAK setting, cf. [28], [29]. We use the
mapping φn as the compression mapping for Xn in the WAK-problem. From the definition of Dn(m1) we obtain

Pr
{
Ȳ n /∈ Dn(φn(X̄n))

} (∗)
≤ ᾱn + en(Ê−γ)β̄n + Pr{Ȳ n /∈ Anγ}, (103)

where (∗) follows from [23, Lemma 12.2]. Furthermore, we have |Dn(m1)| ≤ en(H(Ȳ )+2γ−Ê) for all m1 ∈M since

1 ≥ PȲ |φn(X̄n)(Dn(m1)|m1)

=
∑

yn∈Dn(m1)

PȲ n|φn(X̄n)(y
n|m1) ≥

∑
yn∈Dn(m1)

PȲ n(yn)en(Ê−γ)

≥ |Dn(m1)|e−n(H(Y )+γ)en(Ê−γ). (104)

Let m2 be a uniformly random bin index of yn and B(m2) be the set of all such yn. The decoder decides that ŷn is the
reconstructed sequence if it is the unique sequence such that ŷn ∈ B(m2) ∩ Dn(m1), where m1 and m2 are sent messages
from Encoder 1 and 2. It then follows that

Pr{ ˆ̄Y n 6= Ȳ n} ≤ Pr{Ȳ n /∈ B(M2) ∩ Dn(φn(X̄n))}+ Pr{∃ỹn 6= Ȳ n, ỹn ∈ Dn(φn(X̄n)) ∩ B(M2)}
(a)

≤ Pr{Ȳ n /∈ Dn(φn(X̄n))}+ Pr{∃ỹn 6= Ȳ n, ỹn ∈ Dn(φn(X̄n)) ∩ B(M2)}
(b)

≤ αn + en(Ê−γ)βn + Pr{Ȳ n /∈ Anγ}+
en(H(Ȳ )+2γ−Ê)

|M2|
. (105)

(a) is valid since Ȳ n ∈ B(M2). The inequality (b) holds since each ỹn is assigned independently to a bin with probability
1/|M2| and the number of such ỹn is bounded by en(H(Ȳ )+2γ−Ê), cf. (104). The existence of deterministic mappings φ′2n
and ψ′n follows immediately.

Remark 5. Given a compression rate Rc for xn in both settings, let R?2,ε(Rc) and E?ε (Rc) be the minimum ε-achievable
compression rate for yn in the WAK problem and the maximum ε-achievable error exponent for the single-user HT problem,
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respectively. As a direct consequence, it can be inferred from Theorem 9 that R?2,ε(Rc) + E?ε (Rc) = H(Y ) holds for all
(Rc, ε) ∈ R+ × [0, 1). In particular it implies that a strong converse for the WAK problem implies a strong converse for the
single-user HT problem and vice versa. Strong converse for these two problems have been given in [30], [31] and [32].

An important consequence of Theorem 9, which states an equivalence of exponentially strong converse statements, is given
as follows.

Theorem 10. The following statements are equivalent:
1) For any code (φ1n, φ2n, ψn) which satisfies lim supn→∞

1
n log |φ1n| ≤ Rc and lim supn→∞

1
n log |φ2n| ≤ R2 in the

WAK problem, if R2 < H(Y )−Rmax(Rc), then Pr{Ȳ n 6= ˆ̄Y n} → 1 exponentially fast at a positive convergence rate.
2) For any single-user HT scheme (φn, ψn) with lim supn→∞

1
n log |φn| ≤ Rc and lim infn→∞

1
n log 1

β̄n
≥ E, if E >

Rmax(Rc), then ᾱn → 1 exponentially fast at a positive convergence rate.

A proof of the first statement is presented in [7], [8].

Proof. Assume that the first statement holds. It suffices to show the second statement when E < H(Y ). Let (φn, ψn) be a single-
user hypothesis testing scheme such that lim supn→∞

1
n log |φn| ≤ Rc and lim infn→∞

1
n log 1

β̄n
≥ E where E > Rmax(Rc).

Let γ > 0 be small enough such that E − 4γ > Rmax(Rc). By the second part of Theorem 9, there exists a WAK-code
(φn, φ

′
2n, ψ

′
n) such that with Ê = E − γ and |M2| = en(H(Y )+4γ−E) we have

Pr{ ˆ̄Y n 6= Ȳ n} ≤ ᾱn + 2e−nγ + Pr{Ȳ n /∈ Anγ}, (106)

for all sufficiently large n. Since the weakly typical set Anγ includes the strongly typical set T nε for a fixed, positive, and small
enough ε, the last term goes to 0 exponentially with a convergence rate of at least 2ε2. Since H(Y )+4γ−E < H(Y )−Rmax(Rc)

the assumption implies that Pr{Ȳ n = ˆ̄Y n} goes to 0 exponentially at a rate of η > 0, we then have ᾱn → 1 exponentially at
a positive rate.

Conversely, assume that the second statement holds. Let (φ1n, φ2n, ψn) be a WAK-code such that

lim sup
n→∞

1

n
log |φ1n| ≤ Rc, lim sup

n→∞

1

n
log |φ2n| ≤ R2, (107)

where R2 < H(Y ) − Rmax(Rc). Let γ > 0 be small enough such that R2 + 2γ < H(Y ) − Rmax(Rc). By the first part of
Theorem 9, the constructed testing scheme satisfies

ᾱn ≤ Pr{Ȳ n 6= ˆ̄Y n}+ Pr{Ȳ n /∈ Anγ}
β̄n ≤ e−n(H(Y )−2γ−R2), (108)

for all sufficiently large n. Since H(Y ) − 2γ − R2 > Rmax(Rc) holds the corresponding false alarm probability ᾱn hence
goes to 1 exponentially at a rate of ξ > 0, or Pr{Ȳ n 6= ˆ̄Y n} → 1 exponentially at a rate of min{ξ, 2ε2}.

B. Equivalence between single-user HT and Identification

Two hypotheses in the single-user HT problem are H0 : PX̄nȲ n , H1 : PX̄n × PȲ n . Note that we do not assume either
PX̄nȲ n = P⊗nXY , or X and Y are finite. Similarly as in Section III-A, it should be assumed that X and Y have sufficient
structure, for example being Polish spaces. With abuse of terminology and notation we will redefine some terms and notations
in the subsequent development.
A testing scheme consists of two compression mappings (φ1n, φ2n) and a deterministic decision mapping ψn where

φ1n : Xn →M1, φ2n : Yn →M2

ψn : M1 ×M2 → {0, 1}. (109)

The acceptance region can be defined similarly as in (6). The probabilities of type I and II errors ᾱn and β̄n can also be
determined accordingly. For the iid, discrete case, this setup was discussed briefly in [1], for which a single-letter characterization
for the optimal achievable error exponent of type II of error is an open question.
The underlying distribution for the identification systems in Fig. 1 is given by

PY nXnW (yn,xn, w) =
1

M id
PȲ nX̄n(yn, xn(w))×

∏
k 6=w

PX̄n(k)(x
n(k)). (110)

An identification scheme consists of two compression mappings (φ1n, φ2n) and a decoding mapping ψn where

φ1n : Xn →M1, φ2n : Yn →M2

ψn : MM id

1 ×M2 → {1, . . . ,M id} ∪ {e}. (111)
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Note that we are back to the case that the same compression mapping is used to enroll users data into a database. This setting
reduces to the one given in Fig. 1 if we set φ2n to be the identity mapping. In the identification problem one wants to control
the probability of incorrect identification Pr{Ŵ 6= W}, where Ŵ = ψn(φ1n(Xn), φ2n(Y n)). For the iid discrete scenario, this
setting was studied in [33], where inner bounds and outer bounds on the achievable rate region were derived. A connection
between the achievable regions of these two problems has been drawn recently in [34] via the entropy characterization.
We first establish the following useful lemma.

Lemma 5. For a given γ > 0 and a given identification scheme (φ1n, φ2n, ψn), we have

Pr{Ŵ 6= W} ≥ Pr

{
ιφ2n(Ȳ n)φ1n(X̄n)(φ2n(Ȳ n);φ1n(X̄n)) ≤ logM id − η

}
− e−η, (112)

where again (Ȳ n, X̄n) ∼ PȲ nX̄n

The proof of Lemma 5 can be obtained from the one of Lemma 4 by simply replacing Y n with φ2n(Y n), Ȳ n with φ2n(Ȳ n)
and the user data compression mappings φid

kn with φ1n for all k ∈ [1 : M id]. Using Lemma 5 we can establish the code
transformation between the identification problem and the single-user hypothesis testing against independence as follows.

Theorem 11. Fix an arbitrary η > 0. Given an identification scheme (φ1n, φ2n, ψn), we can construct a single-user HT
scheme (φ1n, φ2n, ψ

′
n) such that the corresponding error probabilities of type I and II are given by

ᾱn ≤ Pr{Ŵ 6= W}+ e−η,

β̄n ≤
eη

M id
. (113)

Conversely, given a testing scheme (φ1n, φ2n, ψn) for the single-user HT problem, we can construct an identification scheme
with M id users (φ1n, φ2n, ψ

′
n) such that

Pr{Ŵ 6= W} ≤ ᾱn +M idβ̄n. (114)

Proof. ID⇒ Single-user HT: From a given identification scheme (φ1n, φ2n, ψn) we use the same pair of mappings (φ1n, φ2n)
to compress information in the single-user HT. Define an acceptance region for the single-user HT setup as

Ān = {(φ1n(xn), φ2n(yn)) | ιφ2n(Ȳ n)φ1n(X̄n)(φ2n(yn);φ1n(xn)) > logM id − η}. (115)

The probability of type I of error is then given by

ᾱn = Pφ1n(X̄n)φ2n(Ȳ n)(Ācn) ≤ Pr{Ŵ 6= W}+ e−η, (116)

where the inequality follows from Lemma 5. By the change of measure we also obtain

β̄n = Pφ1n(X̄n) × Pφ2n(Ȳ n)(Ān) ≤
∑

(φ1n(xn),φ2n(yn))∈Ān

Pφ1n(X̄n)φ2n(Ȳ n)(φ1n(xn), φ2n(yn))
eη

M id
≤ eη

M id
. (117)

ID ⇐ Single-user HT: Given a testing scheme (φ1n, φ2n, ψn) of the single-user HT and a number of users M id. We use the
mapping φ1n to compress each user’s information and store it into a database and the mapping φ2n to compress the observation
sequence yn in the identification setting. We define the decoding rule as follows. We search for a unique ŵ such that

ψn(φ2n(yn), φ1n(xn(ŵ))) = 0. (118)

If there exists none or there is more than one of such index, we output e. Define the following error events

E1 = {ψn(φ2n(Y n), φ1n(Xn(W ))) = 1}
E2 = {∃w̃ 6= W | ψn(φ2n(Y n), φ1n(Xn(w̃))) = 0}. (119)

Then
Pr{Ŵ 6= W} ≤ Pr{E1}+ Pr{E2}. (120)

It can be seen that the first term is equal to ᾱn while the second term is upper bounded by M idβ̄n.

Remark 6. Assume that a stochastic mapping ψn with the corresponding transition kernel Pŵ|φ1n(xn),φ2n(yn) is used to
estimate the true user in the identification problem instead. It can be seen that the conclusion of Lemma 5 is still valid.
Therefore, Theorem 11 can be generalized with stochastic decision and identification mappings.

Remark 7. Suppose that we have an identification system that uses the same compression mapping φid
n to enroll data xn

from M users into the database where limn→∞
1
n logM = R. Suppose further that the identification mapping ψn using

uncompressed yn and φid
n (xn) is able to recognize M id users where lim infn→∞

1
n logM id ≥ Rid > R. Then by using the

first part of Theorem 11 with η = nγ where γ > 0 and Theorem 1 we can construct a membership testing scheme using the
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available database φid
n (xn) such that the error exponent of type II error is lower bounded by Rid − R − γ > 0 for small

enough γ.

We are now ready to present consequences of the transformation between the single-user HT problem and the identification
problem. For that purpose we need some additional definitions, which we state in the following.

Definition 6. For an arbitrary but fixed ε ∈ [0, 1), define RID,ε to be the closure of all tuples (R1, R2, R
id) such that there

exists an identification scheme (φ1n, φ2n, ψn) which satisfies

lim sup
n→∞

Pr{Ŵ 6= W} ≤ ε, lim sup
n→∞

1

n
log |φin| ≤ Ri, i = 1, 2, (121a)

lim inf
n→∞

1

n
logM id ≥ Rid. (121b)

Define the ε-identification capacity for a given compression rate pair (R1, R2) as

R?ε (R1, R2) = sup{Rid | (R1, R2, R
id) ∈ RID,ε}.

For an ε-achievable identification tuple (R1, R2, R
id) we say that a second-order rate R̂ is achievable if the condition (121b)

is replaced by

lim inf
n→∞

1√
n

(logM id − nRid) ≥ R̂. (122)

Similarly, we define the maximum second-order identification rate R̂?ε (R1, R2, R
id) for a given rate pair (R1, R2, R

id) as the
supremum of achievable second-order rates R̂.

Definition 7. Let RHT,ε be the closure of all tuples (R1, R2, E) such that there exists a single-user HT scheme (φ1n, φ2n, ψn)
such that

lim sup
n→∞

ᾱn ≤ ε, lim sup
n→∞

1

n
log |φin| ≤ Ri, i = 1, 2 (123a)

lim inf
n→∞

1

n
log

1

β̄n
≥ E. (123b)

Similarly define the maximum ε- achievable error exponent for a given compression rate pair (R1, R2) as

E?ε (R1, R2) = sup{E | (R1, R2, E) ∈ RHT,ε}.

For an ε-achievable hypothesis testing tuple (R1, R2, E) we say that a second-order rate Ê is achievable if the condition
(123b) is replaced by

lim inf
n→∞

1√
n

(log
1

β̄n
− nE) ≥ Ê. (124)

We define the maximum second-order HT error exponent Ê?ε (R1, R2, E) as the supremum of all achievable Ê.

We show in the following theorem a connection between the maximum ε-achievable identification rate in the ID setting and
the maximum ε-achievable error exponent in the single-user HT setting.

Theorem 12. For all ε ∈ [0, 1) and for all (R1, R2) ∈ R2
+, the following equality holds E?ε (R1, R2) = R?ε (R1, R2).

Proof. Assume that both quantities are finite. Given γ > 0 there exists an identification scheme (φ1n, φ2n, ψn) such that all
conditions in (121) are satisfied for (R1 + γ,R2 + γ,R?ε (R1, R2)− γ). This implies that for all sufficiently large n we have
M ≥ en(R?ε (R1,R2)−2γ). Then by the first part of Theorem 11 with η = nγ the probabilities of error of the corresponding
single-user HT scheme are bounded by

lim sup
n→∞

ᾱn ≤ ε, lim inf
n→∞

1

n
log

1

β̄n
≥ R?ε (R1, R2)− 3γ. (125)

This implies that E?ε (R1, R2) ≥ R?ε (R1, R2), by taking γ → 0.
Conversely, there exists a single-user testing scheme (φ1n, φ2n, ψn) such that all conditions in (123) are satisfied for (R1 +
γ,R2 + γ,E?ε (R1, R2) − γ). This implies that for all sufficiently large n we have β̄n ≤ e−n(E?ε (R1,R2)−2γ). By choosing
M = en(E?ε (R1,R2)−3γ) we obtain for η = nγ

lim sup
n→∞

Pr{Ŵ 6= W} ≤ ε, (126)

which implies that (R1 + γ,R2 + γ,E?ε (R1, R2)− 3γ) ∈ RID,ε. Hence, we have E?ε (R1, R2) ≤ R?ε (R1, R2).
Next, if E?ε (R1, R2) =∞ for some pair (R1, R2) ∈ R2

+ and ε > 0, then we can modify the proof as follows: Let {Em}∞m=1

be a sequence such that Em <∞,∀m, and Em →∞ as m→∞. Then we replace E?ε (R1, R2) with Em in the last paragraph
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to get (R1, R2, Em) ∈ RID,ε. This holds for any m, hence R?ε (R1, R2) = ∞ as well. The case R?ε (R1, R2) = ∞ can be
handled similarly.

Remark 8. For any pair of compression mappings (φ1n, φ2n) such that lim supn→∞
1
n log |φin| ≤ Ri for i = 1, 2, define the

joint process (φ1(X̄), φ2(Ȳ)) = {(φ1n(X̄n), φ2n(Ȳ n))}∞n=1. Then it follows from [21, Theorem 3.5.2] that the corresponding
spectral sup-mutual information satisfies Ī(φ1(X̄);φ2(Ȳ)) ≤ min{R1, R2} + γ where γ > 0 is arbitrary. Therefore, Lemma
5 implies that R ≤ min{R1, R2}+ γ for any ε-achievable identification rate, otherwise the right-hand side of (112) would go
to 1 by the definition of spectral-sup mutual information. Hence both E?ε (R1, R2) and R?ε (R1, R2) are finite and equal each
other.

Remark 9. Suppose that φ2n is the identity mapping and PXnY n = P⊗nXY on a finite alphabet X × Y in both scenarios. It
then can be inferred straightforwardly from Theorem 12 that the strong converse for the identification problem holds.

In the next theorem we establish a connection between the maximum second order quantities in these two settings.

Theorem 13. For all ε ∈ [0, 1) and for all ε-achievable pair (R1, R2, T ) we have R̂?ε (R1, R2, T ) = Ê?ε (R1, R2, T ).

Proof. To show this relation we apply Theorem 11 with η =
√
nγ with an arbitrary γ > 0. Given a second-order identification

rate R̂ by the first part of Theorem 11 we obtain βn ≤ e−n(T+(R̂−2γ)/
√
n) since we have M ≥ en(T+(R̂−γ)/

√
n) for all

sufficiently large n. This means that R̂− 2γ is a second-order achievable exponent for the hypothesis testing problem.
Given a second-order error exponent Ê by the second part of Theorem 11 we can choose M = en(T+(Ê−2γ)/

√
n) to achieve

the desired performance since we have βn ≤ e−n(T+(Ê−γ)/
√
n) for all sufficiently large n. This means that Ê − 2γ is a

second-order achievable exponent for the identification problem.
Since Ê, R̂ and γ are arbitrary the theorem follows.

Remark 10. For the iid, discrete, and uncompressed scenario such that V = Var[ι(X;Y )] > 0, Strassen’s result [35] implies
that Êε(log |X |, log |Y|, I(X;Y )) =

√
V Φ−1(ε) where Φ(·) is the cumulative distribution function of the standard Gaussian.

Recently, Zhou et.al [26, Theorem 8] obtained the second-order identification rate R̂ε(log |X |, log |Y|, I(X;Y )) =
√
V Φ−1(ε).

Our result shows that the equality of these two results are a part of a more general relation.
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[4] E. Tuncel and D. Gündüz, “Identification and lossy reconstruction in noisy databases,” IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 822–831, 2014.
[5] A. Wyner, “On source coding with side information at the decoder,” IEEE Trans. Inf. Theory, vol. 21, no. 3, pp. 294–300, 1975.
[6] R. Ahlswede and J. Körner, “Source coding with side information and a converse for degraded broadcast channels,” IEEE Trans. Inf. Theory, vol. 21,

no. 6, pp. 629–637, 1975.
[7] Y. Oohama, “Exponent function for one helper source coding problem at rates outside the rate region,” in 2015 IEEE International Symposium on

Information Theory (ISIT). IEEE, 2015, pp. 1575–1579. [Online]. Available: https://arxiv.org/abs/1504.05891
[8] ——, “Exponential strong converse for one helper source coding problem,” Entropy, vol. 21, no. 6, p. 567, 2019.
[9] H. Chernoff et al., “The identification of an element of a large population in the presence of noise,” The Annals of Statistics, vol. 8, no. 6, pp. 1179–1197,

1980.
[10] S. Voloshynovskiy, O. Koval, F. Beekhof, F. Farhadzadeh, and T. Holotyak, “Information-theoretical analysis of private content identification,” in IEEE

Information Theory Workshop (ITW). IEEE, 2010, pp. 1–5.
[11] N. A. Schmid, “Large deviations performance analysis for biometrics recognition,” in 40th Annual Allerton Conference on Communication, Control, and

Computing (Allerton), 2002.
[12] P. Moulin, “Statistical modeling and analysis of content identification,” in Information Theory and Applications Workshop (ITA). IEEE, 2010, pp. 1–5.
[13] V. Yachongka and H. Yagi, “Reliability function and strong converse of biomedical identification systems,” in International Symposium on Information

Theory and Its Applications (ISITA). IEEE, 2016, pp. 547–551.
[14] G. Dasarathy and S. C. Draper, “On reliability of content identification from databases based on noisy queries,” in Information Theory Proceedings

(ISIT), 2011 IEEE International Symposium on. IEEE, 2011, pp. 1066–1070.
[15] N. Merhav, “Reliability of universal decoding based on vector-quantized codewords,” IEEE Trans. Inf. Theory, vol. 63, no. 5, pp. 2696–2709, 2017.
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