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Sensors and time varying noise

• How signal variation gives rise to less than perfect precision
• How to use the PDF and Pe from your measurement data to 

decide if your measurement precision is good enough.
• How averaging will increase your precision and lower your Pe

Reading:
1) S. Smith, Statistics, Probability and Noise
http://www.dspguide.com/CH2.PDF

http://www.dspguide.com/CH2.PDF
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Looking again at the system
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We haven’t talked yet about the variability or noise present in the 
measured phenomena itself, nor the effect of other undesired 
signals combining in the system, for example from the 
interconnect, or number round-off noise from the processing.

Processing induces other errors as well.
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Systematic and Random Noise

• As we saw from our static noise analysis, some noise appears 
as a non-varying offset or bias.  Such noise also can arrive from 
the signals source as systematic noise.  Often you can filter it or 
calibrate it out.

• A signal source that has noise that is randomly varying in time 
often cannot be easily filtered or calibrated.  As we will see, 
such noise will decrease your measurement precision.

• The task is to determine if the loss of precision is significant, 
and if so determine if further signal conditioning will improve 
measurement precision to something acceptable.
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Systematic and random noise examples

0

DC Bias

Smith, Steven W., Digital Signal Processing, 2003,  Newnes, ISBN: 0-750674-44-X

Systematic DC bias.
Calibrate it out.

Higher frequency random noise.
Filter most of it out.

Signal with intrinsic random noise.
Assume we can’t easily filter or calibrate
the noise out.
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Gaussian noise model

• In some cases we can assume the noise is completely random 
in nature, and follows a Gaussian or normal distribution.

• It’s easy to develop this by looking at the random noise 
distribution from a series of sensor measurements.

• Repeatedly measure a steady signal with varying noise, and 
plot a histogram of the raw data.  (Accelerometers are good for 
this.)

Smith, Steven W., Digital Signal Processing, 2003,  Newnes, ISBN: 0-750674-44-X
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Histogram to a Probability Density Function

The histogram plots the number of occurrences as a function
of the measurement reading.

If you now divide the number of occurrences for each
measurement reading by the total number of measurements,
you get the fraction out of the whole that each measurement
occurs.  In other words, you get the probability that a particular
measurement will occur.  Ie, a measurement of 128 will occur
about 4% of the time, or 1 in 25 measurements.  This curve is
called the Probability Mass Function (PMF).  Note that it is
dependent on your measurement resolution.

If you now smooth it out, and treat the probabilities as
a continuous range instead of a few discrete values, you
end up with the Probability Density Function (PDF).  It
gives you the probability of a signal existing in a range
of values, ie between 120.4 and 120.5 is:
(120.5 – 120.4) * 0.03 = 0.003 or 0.3%  (area under the range)

Smith, Steven W., Digital Signal Processing, 2003,  Newnes, ISBN: 0-750674-44-X
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Mean and standard deviation

The PDF resulting from the histogram in the example approximates a Gaussian or
normal distribution.  The central peak of the curve is the mean of the data, and the
width of the curve around the mean represents the standard deviation.

You can directly calculate the mean and standard deviation from the histogram of your data:

Smith, Steven W., Digital Signal Processing, 2003,  Newnes, ISBN: 0-750674-44-X

Normalized Gaussian

N = total number of points
i = discrete measurement value
H = number of samples with value i
M = total number of possible i values,
       ie an 8 bit ADC would give M=256
(M is based on your resolution)
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Precision of the measured data

You can see now the relationship between the standard deviation derived from
your measured data, and precision.  The larger the standard deviation, the
worse the precision.

Smith, Steven W., Digital Signal Processing, 2003,  Newnes, ISBN: 0-750674-44-X

Precision

The reason this is important is that it will have an impact on how well you can
resolve, or tell the difference, between two adjacent values that you want to read.
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Properties of normal distributions

• The probability that a measurement value will exist anywhere 
under the normal curve is 1.

• The area corresponding to each SD is also consistent in a normal 
curve.  This area is equal to the probability that a measurement will 
fall within one SD away from the mean or “true value”.

1  0,Mean  
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A few more useful Gaussian properties

• The probability of a measurement value being within +-1 SD of 
the true value is 68%.

• The probability of a measurement value being within +- 2 SD of 
the true value is 95%.

• The probability of a measurement values being within +- 3 SD of 
the true value is 99.9%

• This is true of ALL Gaussian distributions!
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Overlapping readings and error probability

Here are two input signals, A and B, and their distributions.  Here is
what is interesting when we try to use our measurement system:

1. Our measurement precision won’t be perfect due to noise.
2. Values read from the green shaded areas can probably be resolved.
3. Values read elsewhere may not.  They could belong to either

signal.  Which one?  For now, let’s say there is no other way to decide.
4. What is the probability of error, or Pe?

Signal A

Signal B


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Signal A

Signal B

Probability of Error

Signal A

Signal B

Equal overlapping areas occur at      = 0.5, so a reasonable thing would be
to decide:
1. If a measurement value lies in the region above this we guess it is due 

to signal B. The blue area is the overlap where a signal from A could
be instead.  The probability of a signal A point being in this area is the
probability of error.

2. If it lies in the region below this we guess it belongs to signal A.  The red
area is the overlap where a signal from B could be instead.  The
probability of signal B being in this area is the probability of error.




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Example: Computing Pe

We’ve decided to make the decision that signal value B will
be accepted for any measurement reading that falls on our
curve to the right side of 
What is the probability that we are wrong, and that the data
was really generated by signal A, or what is our Pe? 

Signal A

Signal B

5.0


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Example: Computing Pe

Remember that a PDF tells you the probability of a data reading
being in a certain range or interval.  In our case, the interval we
are interested in is

Integrate over the blue area:

or, take the number off a precomputed table. 

Signal A

Signal B
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Using the Cumulative Distribution Function

Normalizing

This is the CDF of the normalized
Gaussian PDF.  From this you can
take off numbers that give you the
probability of being in some range
of the PDF.
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Example: Computing Pe

Signal A

Signal B

30.85% of the time we will be in error.
Is there any way to do better?
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The effect of averaging

• If your noise is truly random, averaging increases your precision 
because it reduces your variance.

• You can think of your data set that defines your Probability Mass 
Function, instead of being made up of single data points, now 
being made up of the averages of some number of data points.

• The population of averages will have less variation around the 
true mean than the single data points.

• How much less depends upon how many points you average.  
The greater the number, the less variation you have.  In the limit, 
if you could average an infinite number of data points, your 
variation would be zero, and your precision would be “perfect”.

• This indicates the limitation.  How much time do you have to 
average?  It’s a space/time tradeoff.  The bigger the sample 
space, the longer the time.
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The effect of averaging

Signal A
Signal B

Signal A

Signal B

Graphs from: Steven M. Kay, Fundamentals of Statistical Signal Processing,  1998, Prentice-Hall, ISBN 0-13-504135-X

Raw Data
X axis are data values

Averaged Data
X axis are data value set averages

In the averaged case,      has decreased 10x.  The two curves
now intersect at
Resulting  Much Better!
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Multiple and diverse sensors

• It is also possible to increase precision by using more and 
diverse sensors.

• Using arrays of similar sensors and averaging across them can 
increase precision, depending on your application.

• Using multiple heterogeneous sensors and correlating or fusing 
their data can in effect increase your precision.  For many 
complex tasks, such as object identification or various security 
applications, using multiple sensors may be the only way.

• Using other pieces of data such as time, or history (this is what 
machine learning tries to do).
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Effect of the processor on noise

The processing system can introduce significant computational error:
• The OS can introduce nondeterministic latencies.
• Poor interrupt response.
• Processor clocks used for timers are not accurate.

• This may be a systematic error on one processor, but across processors 
and combined with nondeterministic latencies, it becomes random.

• Number formats are not always optimal:
• Is floating point available?  Is it fast enough to be useful?
• If not, what integer formats are available?  Bytes, shorts, ints, longs?
• Will round off error be significant?

• Does the ALU have resources for:
• Filtering:  Need multiply-adds and sometimes fixed point number formats.
• Averaging:  Need divides and large enough number formats.

• Is there sufficient throughput?
• Are there enough MIPs to do what you need in the time available?
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Summary: To reduce noise

• Determine the source of your random noise
• Use a better sensor
• User better components that support the sensor
• Better design techniques to reduce noise: PC Board layout, analog 

and digital circuit separation, shielding, bypassing, decoupling, etc

• If your circuit is OK, and you can’t use a better sensor:
• Attempt to filter it out
• Average it out


