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Abstract. The powerful Hamilton-Jacobi theory is used for constructing reg-
ularizations and error estimates for optimal design problems. The constructed
Pontryagin methods is a simple and general method for optimal design and
reconstruction: the first, analytical, step is to regularize the Hamiltonian; next
its stationary Hamiltonian system, a nonlinear partial differential equation, is
computed efficiently with the Newton method for a sparse Jacobian. An error

estimate for the difference between exact and approximate objective functions
is derived, depending only on the difference of the Hamiltonian and its finite di-
mensional regularization along the solution path and its L

2 projection, i.e. not
on the difference of the exact and approximate solutions to the Hamiltonian
systems.
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1. Introduction to Optimal Design

As the computational capacity increases it becomes possible to solve more de-
manding construction problems. For instance, instead of only computing the defor-
mation of a given construction, it is possible to computationally design an optimal
construction with minimal deformation for a given load. In a mathematical setting
optimal design is a particular inverse problem where the goal is to find parame-
ters in a partial differential equation that meet the design criteria in an optimal
way; for instance, to distribute a fixed amount of material in space to construct
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a bridge with minimal deformation, for a given load, means to solve the elasticity
equations and determine a material configuration. The start of this computational
work is presented in [27] and has now become an activity with large international
optimal design conferences and several books [4],[1],[27]. Inverse problems are of-
ten ill posed, e.g. small perturbations of data lead to large changes in the solution.
To computationally solve inverse problems therefore requires some regularization,
cf. [17],[32],[4],[1],[27]. The standard Tikhonov method [31] requires to choose a
penalty, usually a norm and a parameter, with the purpose to regularize the compu-
tational method. Although there is good understanding how to choose the penalty
for some problems, e.g. in tomography [26], with norms related to the required reg-
ularity of solutions and parameters related to the error in data, there is no complete
theory for how to regularize general nonlinear problems.

The objective of this work is to show how the powerful theory of viscosity so-
lutions for time dependent optimal control problems in the dynamic programming
setting can be used as a theoretical tool, to understand how to regularize and es-
timate approximation errors, and to construct a simple and general computational
method also for some highly nonlinear time independent optimal design problems,
extending the work [29] on time dependent problems. Our method [28] reduces to
solve a Hamiltonian system, where the Hamiltonian is a C2-regularized version of
the original Hamiltonian. This Hamiltonian system is a nonlinear partial differen-
tial equation, where the Newton method with a sparse Jacobian becomes efficient
and simple to use, e.g. in standard PDE software. A clear limitation of our method
is the requirement to obtain an explicit formula for the regularized Hamiltonian,
which in another perspective is its advantage. We present a natural regularization
to meet requirements derived from viscosity solutions theory for time dependent
problems, future work may use better insight - e.g. on the time independent set-
ting - to find further improved regularizations.

We also derive an error estimate for the difference between exact and approxi-
mate objective functions, depending only on the difference of the Hamiltonian and
its finite dimensional regularization along the solution path and its L2 projection,
i.e. not on the difference of the exact and approximate solutions to the Hamilton-
ian systems. This error estimate is useful for further studies on adaptive methods
for optimal control problems: the difference of the Hamiltonians yields an error
density which measures errors both from discretization and the regularization. Our
experiments show that the estimate is relativly sharp.

One way to characterize so called symplectic time discretizations for Hamiltonian
systems is that these approximations are exact solutions to another Hamiltonian
system, cf. [20]. In this sense, our approximation in space and regularization shares
this symplectic property. An equivalent definition of symplectic time discretization
methods for Hamiltonian systems derived from optimal control problems is that
the first variation of the discrete value function agrees with the discretization of
the Lagrange multiplier, see [28] where symplectic time discretizations are analyzed
for optimal control problems with the the similar use of viscosity solution theory
as here. This property that the first variation of the discrete value function agrees
with the discretization of the Lagrange multiplier only makes sense for time depen-
dent problems, which is one reason our analysis starts by extending the original
time independent optimal control problem to an artificial time dependent dynamic
programming formulation.

We study three different examples where the nonlinear PDEs are of different
character: scalar concave maximization, scalar non-concave maximization and an
elliptic system for reconstruction. The homogenization method is a theoretically
powerful way to regularize some optimal design problems [1], based on a change of
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control variables related to composite micro structure. This regularization changes
the differential operator part of the Lagrangian. Section 3.2 suggests a simple
alternative regularization based on the material constraint part of the Lagrangian:
the constraint on material volume

∫

Ω σdx = C, which usually is included in the

Lagrangian by a term η
∫

Ω
σdx, is now instead represented by η′ ∫

Ω
σ−1dx which

turns out to give the same regularized Hamiltonian as the homogenization method
for a scalar problem.

2. Symplectic Pontryagin Approximations in Optimal Control

Consider a differential equation constrained minimization problem with solution
ϕ in some Hilbert space V on a domain Ω and control σ ∈ A := {σ : Ω → B}:

f(ϕ, σ) = 0 in distribution,

min
σ∈A

h(ϕ, σ),
(1)

and its approximation with solution ϕ̄ ∈ V̄ ⊂ V and control σ̄ ∈ Ā:

f̄(ϕ̄, σ̄) = 0

min
σ̄∈Ā

h̄(ϕ̄, σ̄).
(2)

Example 2.1 (Optimal conductor). Section 3.1 presents minimization of the power

loss in an electric conductor, by placing a given amount of conducting material in

a given domain Ω ⊂ R
d, for a given surface current q. Let η ∈ R be a given

constant Lagrange multiplier, associated to the given amount of material, and find

an optimal conduction distribution σ : Ω → {σ−, σ+} =: B, where σ± > 0, such

that

(3) min
σ

{ ∫

∂Ω

qϕ ds + η

∫

Ω

σ dx

∣
∣
∣
∣

f(ϕ, σ) := div(σ∇ϕ)
∣
∣
∣
Ω

= 0, σ
∂ϕ

∂n

∣
∣
∣
∂Ω

= q

}

.

Here ∂/∂n denotes the normal derivative, ds is the surface measure on ∂Ω and

ϕ ∈ V := {v ∈ H1(Ω) :
∫

Ω v dx = 0} is the electric potential.

The corresponding Lagrangians

L(λ, ϕ, σ) := 〈λ, f(ϕ, σ)〉 + h(ϕ, σ),

L̄(λ̄, ϕ̄, σ̄) := 〈λ̄, f̄(ϕ̄, σ̄)〉 + h̄(ϕ̄, σ̄),

can be used to formulate the necessary conditions

∂1L = f(ϕ∗, σ∗) = 0,

∂2L = 〈λ∗, ∂f(ϕ∗, σ∗)〉 + ∂h(ϕ∗, σ∗) = 0,

σ∗ ∈ argmin
σ∈A

{〈λ∗, f(ϕ∗, σ)〉 + h(ϕ∗, σ)},
(4)

for a minimum at (λ∗, ϕ∗, σ∗), and similarly for (λ̄∗, ϕ̄∗, σ̄∗). Here, ∂1 =: ∂ and
∂2 are the Gateaux derivatives with respect to the first and second arguments
respectively, and 〈v, w〉 is the duality pairing on V , which reduces to the L2(Ω)
inner product if v, w ∈ L2(Ω).

Optimal control problems are inverse problems. It is well known that inverse
problems often are ill-posed; therefore they need to be regularized. We will use
a formulation of (4) based on the Hamiltonian to regularize our optimal design
problems. The Hamiltonians H : V × V → R and H̄ : V × V̄ → R defined as

(5)

H(λ, ϕ) := min
σ∈A

{〈λ, f(ϕ, σ)〉 + h(ϕ, σ)}

H̄(λ, ϕ̄) := min
σ̄∈Ā

{〈λ, f̄(ϕ̄, σ̄)〉 + h̄(ϕ̄, σ̄)}
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eliminate the control variables in the local equilibrium conditions

∂1H(λ∗, ϕ∗) = 0

−∂2H(λ∗, ϕ∗) = 0,
(6)

and similarly for (λ̄∗, ϕ̄∗)

∂1H̄(λ̄∗, ϕ̄∗) = 0

−∂2H̄(λ̄∗, ϕ̄∗) = 0.

It turns out that for our optimal design problems it is easy to find an explicit ex-
pression for the Hamiltonian; for some other constrained minimization problems
the Hamiltonian can be too complicated to use computationally. The Hamiltonian
is in general only Lipschitz continuous even if f, g and h are smooth and we shall
see that in particular for optimal design the Hamiltonians indeed are not differen-
tiable everywhere. We also see that the stationary Hamiltonian system (6) becomes
undefined where the Hamiltonian is not differentiable. At a point where the Hamil-
tonian is not differentiable the optimal control depends discontinuously on (λ, ϕ).
The Hamiltonian form has the advantage that the Newton method can be used
to iteratively solve the nonlinear constrained optimization problem (1) when the
Hamiltonian can be written using a simple formula so that the Hessian of H is
explicitly known, while Hessian information is in general not available for direct
constrained minimization based on the control variable σ.

We want to understand how to regularize and to estimate errors introduced by
approximation and regularization of the optimal control problem. In particular we
seek an estimate of the error

E := min
σ̄∈Ā

{h̄(ϕ̄, σ̄) | f̄(ϕ̄, σ̄) = 0} − min
σ∈A

{h(ϕ, σ) | f(ϕ, σ) = 0}.

The definition of λ∗, ϕ∗ and H imply

min
σ∈A

{h(ϕ, σ) | f(ϕ, σ) = 0} = H(λ∗, ϕ∗)(7)

min
σ̄∈Ā

{h̄(ϕ̄, σ̄) | f̄(ϕ̄, σ̄) = 0} = H̄(λ̄∗, ϕ̄∗)(8)

which seems to require estimates of (ϕ̄∗−ϕ∗, λ̄∗−λ∗) to yield a bound on E. In fact
to obtain bounds on ϕ̄∗−ϕ∗ is a harder problem than to estimate E. The situation
is similar to minimization of a non strictly convex function where convergence of
the minimum value may hold without having convergence of the minimizing points.
In our case the error in the objective function can be small although the difference
of the controls is large, e.g. near a point where H is not differentiable.

We shall see that the corresponding time dependent optimal control problem is
useful for understanding regularizations and error estimates; in particular we use the
time dependent formulation to derive bounds on E depending only on the difference
of the two Hamiltonians along the same path, i.e. depending on H(λ, ϕ̄)− H̄(λ, ϕ̄),
so that no estimate of ϕ∗ − ϕ̄∗ or λ∗ − λ̄∗ is needed.

Let us now state and compare computational methods for time dependent opti-
mal control problems. Consider two controlled differential equations

∂tϕt = f(ϕt, σt),

∂tϕ̄t = f̄(ϕ̄t, σ̄t),

with solutions ϕ : [0, T ] → V , and ϕ̄ : [0, T ] → V̄ , and given initial values ϕ0,
ϕ̄0. Here, ∂t denotes the partial derivative with respect to time and ϕt := ϕ(t),
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σt := σ(t). The objective is to minimize

min
σ∈B

{ ∫ T

0

h(ϕt, σt) dt + g(ϕT )

∣
∣
∣
∣
∂tϕt = f(ϕt, σt)

}

, B := {σ : [0, T ] → A},

min
σ̄∈B̄

{ ∫ T

0

h̄(ϕ̄t, σ̄t) dt + ḡ(ϕ̄T )

∣
∣
∣
∣
∂tϕ̄t = f̄(ϕ̄t, σ̄t)

}

, B̄ := {σ̄ : [0, T ] → Ā}.
(9)

These optimal control problems can be solved either directly using constrained
minimization or by dynamic programming. The Lagrangian becomes

L :=

∫ T

0

〈λt, f(ϕt, σt) − ∂tϕt〉 + h(ϕt, σt) dt + g(ϕT )

and the constrained minimization method is based on the Pontryagin method

∂tϕt = f(ϕt, σt)

∂tλt = −〈λt, ∂f(ϕt, σt)〉 + ∂h(ϕt, σt)

σt ∈ argmin
σ∈A

{〈λt, f(ϕt, σ)〉 + h(ϕt, σ)}.

This can be written as a Hamiltonian system

(10)
∂tϕt = ∂1H(λt, ϕt)

∂tλt = −∂2H(λt, ϕt)

with ϕ0 given, and λT = ∂g(ϕT ).
The alternative dynamic programming method is based on the value functions

u : V × [0, T ] → R and ū : V̄ × [0, T ] → R,

u(φ, τ) := inf
σ∈B

{ ∫ T

τ

h(ϕt, σt) dt + g(ϕT )

∣
∣
∣
∣
∂tϕt = f(ϕt, σt), ϕτ = φ ∈ V

}

ū(φ, τ) := inf
σ̄∈B̄

{ ∫ T

τ

h̄(ϕ̄t, σ̄t) dt + ḡ(ϕ̄T )

∣
∣
∣
∣
∂tϕ̄t = f(ϕ̄t, σ̄t), ϕ̄τ = φ ∈ V̄

}

,

(11)

which solve the nonlinear Hamilton-Jacobi-Bellman equations

∂tu(φ, t) + H
(
∂u(φ, t), φ

)
= 0, u(·, T ) = g,

∂tū(φ, t) + H̄
(
∂ū(φ, t), φ

)
= 0, ū(·, T ) = ḡ.

(12)

with Hamiltonians defined as in (5).
The Hamilton-Jacobi formulation has two advantages and a severe disadvantage:

+ there is complete well posedness theory for Hamilton-Jacobi equation, based
on viscosity solution, see [13]. Although, in general the value function is not
everywhere differentiable, corresponding in the constrained optimization
method to optimal backward paths ϕ∗ that collide and hence the Lagrange
multiplier λ∗ becomes ill defined in a standard sense;

+ the Hamilton-Jacobi formulation finds a global minimum, while constrained
minimization focuses on local minima;

– the drawback with dynamic programming is that the method is only compu-
tationally feasible for problems in low dimension ϕ̄t ∈ R

n, while constrained
minimization is computable also for high dimensional problems where ϕ̄ is
an approximation of a solution to a partial differential equation with n � 1.

Therefore the computational option is to use constrained minimization for problems
in high dimension and we will choose a discretization of the stationary Hamiltonian
system (6) to solve optimal design problems. However, we shall use the Hamilton-
Jacobi equation in infinite dimension to understand regularizations and to derive
error estimates. The additional structure extending our optimal design problems
to dynamic programming problems is hence a useful theoretical tool, in particular
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since not all constrained optimal control problems have such extensions. Note also
that solving the Hamiltonian system (10) is the method of characteristics for the
Hamilton-Jacobi equation (12), with λt = ∂u(ϕt, t).

Example 2.2 (Artificial time dependent optimal conductor). The time dependent

extension of example 2.1 is to find an optimal time dependent conductivity σ :
Ω× [0, T ] → {σ−, σ+} to minimize the power loss under constraint of the parabolic

equation

∂tϕ = div(σ∇ϕ),

where ϕ = ϕ(x, t). The Lagrangian takes the form

L(σ, λ, ϕ) :=

∫ T

0

∫

∂Ω

q(ϕ + λ) ds dt +

∫ T

0

∫

Ω

σ (η −∇ϕ · ∇λ)
︸ ︷︷ ︸

v

−∂tϕλ dx dt,

with λ = λ(x, t) and the Hamiltonian

H(λ, ϕ) = min
σ:Ω→{σ±}

{ ∫

Ω

σv dx +

∫

∂Ω

q(ϕ + λ) ds

}

=

∫

Ω

min
σ∈σ±

{σv}
︸ ︷︷ ︸

h(v)

dx +

∫

∂Ω

q(ϕ + λ) ds.

The value function

u(φ, τ) = inf
σ

{ ∫ T

τ

∫

∂Ω

qϕ ds + η

∫

Ω

σ dx dt

∣
∣
∣
∣

∂tϕ = div(σ∇ϕ), ϕτ = φ

}

yields the infinite dimensional Hamilton-Jacobi equation

∂tu(φ, t) + H(∂u(φ, t), φ) = 0 t < T, u(·, T ) = 0,

using the Gateaux derivative ∂u(φ, t) of the functional u(φ, t) in L2(Ω). The cor-

responding Hamiltonian system is the parabolic system
∫

Ω

∂tϕw + h′(η −∇ϕ · ∇λ)∇ϕ · ∇w dx =

∫

∂Ω

qw ds, ϕ(·, 0) given,

∫

Ω

−∂tλv + h′(η −∇ϕ · ∇λ)∇λ · ∇v dx =

∫

∂Ω

qv ds, λ(·, T ) = 0,

for all test functions v, w ∈ V ≡ {v ∈ H1(Ω) :
∫

Ω v dx = 0}.

2.1. Derivation of Approximation Error. We simplify by considering the case
when ḡ = g. A study of the validity of the derivation under more general conditions
is in [29]. Let us first derive the approximation error, ū(ϕ̄0, 0) − u(ϕ0, 0) =: Ẽ, of
the value functions (11) given solutions σ, σ̄ and ϕ, ϕ̄ to the time dependent optimal
control problems (9)

Ẽ :=

∫ T

0

h̄(ϕ̄t, σ̄t) dt + g(ϕ̄T ) −
(
∫ T

0

h(ϕt, σt) dt + g(ϕT )
)

=

∫ T

0

h̄(ϕ̄t, σ̄t) dt + u(ϕ̄T , T ) − u(ϕ0, 0)

=

∫ T

0

h̄(ϕ̄t, σ̄t) dt + u(ϕ̄T , T ) − u(ϕ̄0, 0) + u(ϕ̄0, 0) − u(ϕ0, 0)

(13)

To simplify the analysis choose the initial data for the exact path to coincide with
the initial data for the approximate path, i.e. ϕ0 = ϕ̄0. Also assume that u is
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Gateaux differentiable; the general case with only sub differentiable u is in Section
2.2. Then the right hand side simplifies to

∫ T

0

du(ϕ̄t, t) +

∫ T

0

h̄(ϕ̄, σ̄) dt

=

∫ T

0

∂tu(ϕ̄t, t) + 〈∂u(ϕ̄t, t), f̄(ϕ̄t, σ̄t)〉 + h̄(ϕ̄t, σ̄t) dt

≥
∫ T

0

−H
(
∂u(ϕ̄t, t), ϕ̄t

)

︸ ︷︷ ︸

∂tu(ϕ̄t,t)

+H̄
(
∂u(ϕ̄t, t), ϕ̄t

)
dt.

(14)

The more general case with ḡ 6= g yields the additional error term

(g − ḡ)(ϕ̄T )

to the right hand side in (14).
Similarly exchange the role of the exact value function along the approximate

path, (u, ϕ̄), with the approximate value function along the exact path, (ū, ϕ), to

obtain an upper bound on Ẽ. This requires a new step to give meaning to ū along
the exact path ϕt. For this purpose we introduce the L2-projection P : V → V̄ in
the L2 inner product 〈·, ·〉. We have, using ϕ̄0 = Pϕ0,

−Ẽ =

∫ T

0

h(ϕt, σt) dt + g(ϕT ) −
(
∫ T

0

h̄(ϕ̄t, σ̄t) dt + g(ϕ̄T )
)

=

∫ T

0

h(ϕt, σt) dt + g(ϕT ) + ū(PϕT , T ) − g(PϕT ) − ū(ϕ̄0, 0)

=

∫ T

0

h(ϕt, σt) dt + ū(PϕT , T ) − ū(Pϕ0, 0) + g(ϕT ) − g(PϕT )

(15)

The first three terms in the right hand side become

∫ T

0

dū(Pϕt, t) +

∫ T

0

h(ϕt, σt) dt

=

∫ T

0

∂tū(Pϕt, t) + 〈∂ū(Pϕt, t), P f(ϕt, σt)〉 + h(ϕt, σt) dt

=

∫ T

0

∂tū(Pϕt, t) + 〈P∂ū(Pϕt, t), f(ϕt, σt)〉 + h(ϕt, σt) dt

≥
∫ T

0

∂tū(Pϕt, t) + H
(
∂ū(Pϕt, t), ϕt

)
dt

=

∫ T

0

−H̄
(
∂ū(Pϕt, t), Pϕt

)
+ H

(
∂ū(Pϕt, t), ϕt

)
dt.

(16)

Combining (15) and (16) we now have

Ẽ ≤
∫ T

0

H̄
(
∂ū(Pϕt, t), Pϕt

)
− H

(
∂ū(Pϕt, t), ϕt

)
dt − g(ϕT ) + g(PϕT )

=

∫ T

0

(
H̄ − H

)(
∂ū(Pϕt, t), Pϕt

)
dt

+

∫ T

0

H
(
∂ū(Pϕt, t), Pϕt

)
− H

(
∂ū(Pϕt, t), ϕt

)
dt + g(PϕT ) − g(ϕT ).

(17)
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Assume now that h, g and H are Lipschitz continuous in V , with respect to the
variable ϕ. Then the projection error terms in the right hand side of (17) are

ẼP :=

∣
∣
∣
∣

∫ T

0

H
(
∂ū(Pϕt, t), Pϕt

)
− H

(
∂ū(Pϕt, t), ϕt

)
dt + g(PϕT ) − g(ϕT )

∣
∣
∣
∣

= sup
t∈[0,T ]

‖Pϕt − ϕt‖V O(T ).

Combine (14) and (17) to obtain

∫ T

0

(
H̄ − H

)(
∂u(ϕ̄t, t), ϕ̄t

)
dt ≤ Ẽ ≤

∫ T

0

(
H̄ − H

)(
∂ū(Pϕt, t), Pϕt

)
dt + ẼP

(18)

Remark 2.1 (No minimizers). If there are no minimizers to (9), then for every

ε > 0, we can choose controls σ, σ̄ with corresponding states ϕ, ϕ̄ such that

Elhs − ε ≤ Ẽ ≤ Erhs + ε

with Elhs, Erhs being the left and right hand sides of (18).

To estimate the error in the case of time independent optimal control problems
with solutions ϕ and ϕ̄, we assume that the time dependent control problems with
initial data ϕ0 = ϕ̄0 for some given ϕ̄0 ∈ V̄ (close to some approximation of ϕ̄)
asymptotically have the same solutions as the time independent versions, i.e.

lim
T→∞

inf
σ∈A

{
1

T

∫ T

0

h(ϕt, σt) dt

∣
∣
∣
∣

∂tϕt = f(ϕt, σt), ϕ0 = ϕ̄0

}

= inf
σ∈B

{h(ϕ, σ) | f(ϕ, σ) = 0}

lim
T→∞

inf
σ̄∈Ā

{
1

T

∫ T

0

h(ϕ̄t, σ̄t) dt

∣
∣
∣
∣

∂tϕ̄t = f(ϕ̄t, σ̄t), ϕ̄0

}

= inf
σ̄∈B̄

{h(ϕ̄, σ̄) | f̄(ϕ̄, σ̄) = 0},

(19)

which implies

Theorem 2.1. Assume that h, g and H are Lipschitz continuous in V and that the

stationary solutions satisfy (19), then the error of the value function, E, satisfies

the estimate

lim inf
T→∞

Ẽ

T
≤ E ≤ lim sup

T→∞

Ẽ

T
,

where Ẽ, given in (13), (15) and Section 2.2, only depends on the difference of the

Hamiltonians H−H̄ along a solution path and on the projection error ‖ϕt−Pϕt‖V

but not on the error between the paths (ϕ − ϕ̄, λ − λ̄).

2.2. Non Differentiable Solution to Hamilton-Jacobi Equations. Solutions
to Hamilton-Jacobi equations are in general not differentiable. Let us extend the
derivation (16) to a case when u is not differentiable. The theory of viscosity so-
lutions to Hamilton-Jacobi equations gives well posedness for solutions, which are
continuous but not necessarily differentiable, cf. [18], [3], [2]. This theory is now
rather complete in the finite dimensional setting, cf. [14]. Let us therefore con-
sider a case when V and V̄ are two finite element spaces, with V̄ ⊂ V so that the
corresponding Hamilton-Jacobi equations are defined on finite dimensional spaces.
By theory in e.g. [9], which covers finite dimensional optimal control systems, it
follows that the value functions, u and ū, in all problems treated in this report, are
semiconcave on, respectively, V × [0, T ] and V̄ × [0, T ]. One of the requirements
for semiconcavity in [9] is that the flux (here f(ϕ, σ)) and its spatial derivative
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(∂ϕf(ϕ, σ)) must both be Lipschitz in the state variable, ϕ, with a constant in-
dependent of σ. This can be verified for the fluxes in the present problems using
a discrete H2 norm which is equivalent to the Euclidean norm since the spaces
are finite dimensional. The other requirements for semiconcavity are easily veri-
fied. Therefore the error estimate (18) extends to the general case when u, ū are
viscosity solutions that are not differentiable functions as follows. If u is a non
differentiable semiconcave solution to a Hamilton-Jacobi equation the definition of
viscosity solution reduces to

q + H(p, ϕ) ≥ 0 for all (p, q) ∈ D+u(ϕ, t)

u(·, T ) = g,

where D+u(x) := {z ∈ V × [0, T ] : u(y + x) − u(x) − 〈z, y〉 ≤ o(‖y‖)} is the super
differential of u at the point x = (ϕ, t). This means that in (14) we can for each t
choose a point (p, q) ∈ D+u(ϕ̄t, t) so that

∫ T

0

du(ϕ̄t, t) +

∫ T

0

h dt =

∫ T

0

(q + 〈p, f̄〉 + h) dt

≥
∫ T

0

(
q + H̄(p, ϕ̄t)

)
dt ≥

∫ T

0

(
− H + H̄

)
(p, ϕ̄t) dt.

The analogous formulation holds for ū. Consequently (18) holds for some
(p, q) ∈ D+u(ϕ̄t, t) replacing (∂u(ϕ̄t, t), ∂tu(ϕ̄t, t)) and some (p̄, q̄) ∈ D+ū(Pϕt, t)
replacing (∂ū(Pϕt, t), ∂tū(ϕ̄t, t)).

The present analysis is, however, in principle valid even when we let V be an
infinite dimensional Hilbert space, although existence and semiconcavity of solu-
tions is not derived in full generality. For instance parabolic problems with fluxes f
where the terms including second order derivatives depend on the control (as here)
seem to not have been studied. In [8] and [7] the case of semilinear control prob-
lems is treated. This theory is used in [29] to perform analysis similar to the one in
this section when V is infinite dimensional. For theory involving more nonlinearly
operators, see e.g. [30].

2.3. Derivation of Regularization Error. In the examples treated in this re-
port the Hamiltonian H is nondifferentiable, as the function h is nondifferentiable.
Therefore it can not be expected that using the Hamiltonian system (10), even
in the discretized case, would give an optimal path which could be used to deter-
mine the value of ū. For this reason we will consider solutions to the regularized
Hamiltonian system

(20)
∂tϕ̄t = ∂1H̄δ(λ̄t, ϕ̄t),

∂tλ̄t = −∂2H̄δ(λ̄t, ϕ̄t),

where H̄ ≡ H̄δ is a smooth regularization of H , which is also concave in the λ̄
variable, for δ > 0 and H̄0 = H . To find an optimal control problem corresponding
to (20), we may relate to the Hamiltonian, H̄δ, the Legendre transform in the λ̄
variable:

L(ϕ̄, l̄) ≡ sup
λ̄∈V̄

{
− 〈l̄, λ̄〉 + H̄δ(λ̄, ϕ̄)

}
.

The function L is a running cost for the following variational problem:

(21) ūδ(φ, t0) = inf
{

∫ T

t0

L(ϕ̄t, ∂tϕ̄t)dt + g(ϕ̄T )
∣
∣ ϕ̄t0 = φ

}
,
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where the infimum is taken over all absolutely continuous functions ϕ : [t0, T ] → V̄ .
This can be formulated as the optimal control problem

(22) inf
σ̄∈L1([t0,T ];V̄ )

{
∫ T

t0

L(ϕ̄t, σ̄)dt + g(ϕ̄T )
∣
∣ ∂tϕ̄ = σ̄, ϕ̄t0 = φ

}
,

and its associated Hamiltonian system is (20), since the Legendre transform of L
gives

(23) H̄δ(λ̄, ϕ̄) = − sup
σ̄∈V̄

{
− 〈λ̄, σ̄〉 − L(ϕ̄, σ̄)

}
= inf

σ̄∈V̄

{
〈λ̄, σ̄〉 + L(ϕ̄, σ̄)

}
.

Note that the equivalent problem with time reversed, s = T − t, corresponds to

inf
{

∫ T

t0

L̃(ϕ̄s, ∂sϕ̄s)ds + g(ϕ̄0)
∣
∣ ϕ̄T = φ

}

where

L̃(ϕ̄, l̄) := sup
λ̄∈V̄

{
〈l̄, λ̄〉 + H̄δ(λ̄, ϕ̄)

}
= L(ϕ̄,−l̄)

is the usual Legendre transformation of the convex function −H̄δ(·, ϕ̄).
The problems described in sections 3.1 and 3.3 have concave Hamiltonians which

are not coercive, which implies that their corresponding running costs, L, takes the
value +∞ for some arguments. Such running costs are treated in [12], where it is
shown that the problem (21), with the aforementioned running cost has a minimizer
φ̄ : [t0, T ] → V̄ . Furthermore, such a minimizer solves the Hamiltonian system (20)
together with a function λ̄, granting existence of a solution to this Hamiltonian
system.

The value function ūδ is a viscosity solution to the Hamilton-Jacobi equation

∂tūδ(φ, t) + H̄δ(∂ūδ(φ, t), φ) = 0, ūδ(·, T ) = ḡ(·).
This result can easily be obtained from Theorem 6.4.5 in [9]. This theorem treats
only running costs, L, with finite values, but the proof is basically unchanged by
allowing the running costs of interest here. The error estimate of Theorem 2.1 is
applicable both to estimate u − ūδ, with approximation of both V and H , and to
ū0− ūδ, with approximation only of H . We may alternativly estimate the difference
between ū and ūδ by using known results of the Hamilton-Jacobi equations

∂tūδ(φ, t) + H̄δ(∂ūδ(φ, t), φ) = 0,

∂tū0(φ, t) + H̄0(∂ū0(φ, t), φ) = 0,

and the fact that ū0(·, T ) = ūδ(·, T ) = ḡ(·); the comparison principle for viscosity
solutions gives that

||ū − ūδ||C(V̄ ×[0,T ]) ≤ T ||H̄0 − H̄δ ||C(V̄ ×V̄ ),

see [28].
The value of ūδ for a case with constant solutions φ̄∗ and λ̄∗ to (20) is approxi-

mately T · L(φ̄∗, 0) when T is large (so that we can neglect ḡ(φ̄T )). The definition
of L gives that

(24) L(φ̄∗, 0) = H̄δ(λ̂, φ̄∗),

where λ̂ is the maximizer of H̄δ(·, φ̄∗). As the Hamiltonian system for constant
solutions is

(25) ∂1H̄δ = ∂2H̄δ = 0,

and H̄δ is concave in the λ argument we have that λ̂ = λ̄∗. Hence the candidate for
a value approximating (8) is H̄δ(λ̄

∗, φ̄∗), where φ̄∗ and λ̄∗ are solutions to (25).
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3. Three Different Conduction Designs

In the following sections we will study numerical approximation of three opti-
mal control problems related to optimal design, using the Hamiltonian system (10)
with a regularized Hamiltonian. By optimal design we mean that we seek to opti-
mize some physical property, such as energy loss, by distributing a discrete valued
control, such as electric conduction, on a fixed domain. The problems considered
are: to optimally design an electric conductor, to design an elastic domain and to
reconstruct the interior of an object from measured electrical surface currents.

All three problems produce non-smooth controls due to lack of regularity in the
Hamiltonian, which for the success of a discrete Pontryagin Principle needs to be
regularized. However, in the time-independent setting, even a smooth Hamiltonian
may result in a ill-posed minimization problem in the sense that one cannot find a
minimizer as the limit of a minimizing sequence. The existence of such a minimizer
essentially depends on the weak lower semicontinuity of the Hamiltonian, which in
the standard theory of variational calculus is a necessary condition closely connected
to quasi-convexity [16].

Ill-posed problems related to optimal design, as the one described in Section 3.2,
has been studied extensively in the context of relaxation by quasi-convexification
and homogenization in [1], [19], [23], [24], [25] and [21].

In Section 3.3, we study the now classical problem of impedance tomography,
reviewed in [5]. Since there seems to be no algorithm to directly compute the quasi-
convexification of a general problem we will here show that a simple regularization,
which in Section 3.1 and 3.2 much resembles a Tichonov regularization, can pro-
duce good approximations in the value functions, with the advantage that, by the
Pontryagin approach, the Newton method with a sparse Hessian can be used.

3.1. Concave Maximization. A concave problem of electric conduction is to
place a given amount of conducting material in a given domain Ω ⊂ R

d in order to
minimize the power production for a given surface current q, satisfying

∫

∂Ω
q ds = 0:

let C be a given amount of material and find an optimal conduction distribution
σ : Ω → {σ−, σ+}, where σ± > 0, such that

(26) min
σ

{ ∫

∂Ω

qϕ ds

∣
∣
∣
∣
div(σ∇ϕ) = 0 in Ω, σ

∂ϕ

∂n

∣
∣
∣
∂Ω

= q,

∫

Ω

σ dx = C

}

,

here ∂/∂n denotes the normal derivative and ds is the surface measure on ∂Ω and
ϕ ∈ V ≡ {v ∈ H1(Ω) :

∫

Ω v dx = 0} is the electric potential. Note that (26) implies
that the power loss satisfies

∫

∂Ω

qϕ ds −
∫

Ω

div(σ∇ϕ)ϕ dx +

∫

∂Ω

σ
∂ϕ

∂n
ϕ ds =

∫

Ω

σ|∇ϕ|2 dx.

For simplicity, let η > 0 be a given constant, associated to the given amount of
material, and replace (26) with the easier problem to find an optimal conduction
distribution such that

(27) min
σ

{ ∫

∂Ω

qϕ ds + η

∫

Ω

σ dx

∣
∣
∣
∣

div(σ∇ϕ) = 0, in Ω, σ
∂ϕ

∂n

∣
∣
∣
∂Ω

= q

}

.

Observe, that although there exists a corresponding multiplier η for each volume
constraint C, the converse may not be true.

The Lagrangian takes the form
∫

Ω

σ (η −∇ϕ · ∇λ)
︸ ︷︷ ︸

v

dx +

∫

∂Ω

q(ϕ + λ) ds
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and the Hamiltonian becomes
(28)

H(λ, ϕ) = min
σ

{ ∫

Ω

σv dx +

∫

∂Ω

q(ϕ + λ) ds

}

=

∫

Ω

min
σ

{σv}
︸ ︷︷ ︸

h(v)

dx +

∫

∂Ω

q(ϕ + λ) ds

with the concave regularization

(29) H̄δ(λ̄, ϕ̄) =

∫

Ω

hδ(η −∇ϕ̄ · ∇λ̄) dx +

∫

∂Ω

q(ϕ̄ + λ̄) ds,

depending on a smooth approximation, hδ ∈ C2(R), of the Lipschitz continuous and
monotonically increasing function h (with discontinuous derivative h′ at the origin,
see Figure 2). In this case the regularization H̄δ is therefore similar to a Tichonov
regularization with penalty δ

∫

Ω
σ2dx, see Figure 1. Note that σ need not to be

PSfrag replacements

Tichonov
h′δ

v

σ

Figure 1. A Tichonov type penalty δ
∫

Ω
σ2dx compared to the

approximation h′
δ.

restricted to discrete values in (27), since σ : Ω → [σ−, σ+] will lead to the same
Hamiltonian.

PSfrag replacements

h

hδ

v

h, hδ

Figure 2. The function h and its regularization hδ with respect to v.

By symmetry, λ = ϕ, the Hamiltonian system for this electric potential reduces
to finite element discretizations of the nonlinear elliptic partial differential equation

(30) div
(
h′δ(η − |∇ϕ|2)∇ϕ

)
= 0 in Ω, h′δ

∂ϕ

∂n

∣
∣
∣
∂Ω

= q,

which can be formulated as the concave maximization problem: ϕ̄ ∈ V̄ is the unique
maximizer of

(31) H̄δ(ϕ̄) =

∫

Ω

hδ(η − |∇ϕ̄|2) dx + 2

∫

∂Ω

qϕ̄ ds,
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where H̄δ(ϕ̄) means H̄δ(ϕ̄, ϕ̄), while ϕ ∈ V is the unique maximizer of

(32) H(ϕ) =

∫

Ω

h0(η − |∇ϕ|2) dx + 2

∫

∂Ω

qϕ ds,

where H(ϕ) means H(ϕ, ϕ).
An advantage with the Pontryagin approach (30) is that the Hessian D2H̄δ can

be determined explicitly and is sparse, so that the Newton method can be used for
iterative solution of (30). In fact, the Newton method works well to solve the finite
element version of (30) by successively decreasing δ, see Section 4.1.

Since σ here can be determined explicitly by the Pontryagin method an alterna-
tive approach would be to maximize (31) separately over σ and ϕ according to the
scheme

(33) σi+1 = h′δ(η − |∇ϕ̄i|2)
where ϕ̄i solves discretizations of

(34) div
(
σi∇ϕ̄i(x)

)
= 0, x ∈ Ω, σi

∂ϕ̄i

∂n

∣
∣
∣
∂Ω

= q,

given an initial guess σ0. This type of scheme, which essentially is the Jacobi
method, is highly unstable with respect to initial guess since information from
the Hessian is lost. In Section 3.2 we will however use this method, with δ = 0,
as a post-processing method to eliminate areas of intermediate density generated
by the Newton method. These iterations are allowed as long as the value of the
Hamiltonian stays relatively unchanged. As pointed out in [19] convergence to a
global maximum can of course not be guaranteed, since maximizing (31) with δ = 0
in both σ ≡ h′0 and ϕ can be compared to minimizing f(x, y) = |x−y|+ 1

2 |x+y| by
iterating in x and y separately; such iterations would terminate at x = y although
f is convex.

3.2. Non-Concave Maximization. Consider the conduction problem (27) where
the objective now is changed to maximize the power production

max
σ

{ ∫

∂Ω

qϕ ds + η

∫

Ω

σ dx

∣
∣
∣
∣
div(σ∇ϕ) = 0, in Ω, σ

∂ϕ

∂n

∣
∣
∣
∂Ω

= q

}

.

A problem with the same qualitative property of concave maximization is to max-
imize the torsional rigidity of the cross section Ω of an infinitely long elastic bar

(35) max
σ

{ ∫

Ω

ϕ dx + η

∫

Ω

σ dx

∣
∣
∣
∣
− div(σ∇ϕ) = 1 in Ω, ϕ

∣
∣
∂Ω

= 0

}

,

with shear moduli σ−1, see [1],[19], [21].
The maximization problem (35) has the Lagrangian

∫

Ω

(λ + ϕ) dx +

∫

Ω

σ (η −∇ϕ · ∇λ)
︸ ︷︷ ︸

v

dx

and the Hamiltonian

H(λ, ϕ) =

∫

Ω

(λ + ϕ) dx +

∫

Ω

max
σ

{σv}
︸ ︷︷ ︸

h(v)

dx

which, as in Section 3.1, is regularized by H̄δ with the C2-approximation hδ of the
Lipschitz continuous function h. Similarly to (31) we have ϕ = λ by symmetry
and from the Hamiltonian system we arrive at finite element discretizations of the
nonlinear elliptic partial differential equation

(36) −div
(
h′δ(η − |∇ϕ|2)∇ϕ

)
= 1 in Ω, ϕ

∣
∣
∂Ω

= 0,
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which is the Euler-Lagrange equation of the problem to find an extremal point
ϕ ∈ H1

0 (Ω) of

(37) H̄δ(ϕ) =

∫

Ω

2ϕ dx +

∫

Ω

hδ(η − |∇ϕ|2) dx.

In contrast to (31), the existence of an extremal point can not be guaranteed for
(37) since it lacks weak lower or upper semicontinuity as δ becomes small.

PSfrag replacements

hc

h

hδ

|∇ϕ|

h, hδ , hc

Figure 3. The function h, its regularization hδ and its concavifi-
cation hc with respect to |∇ϕ|, for the non-concave case.

Note that existence of minimizers to general functionals

(38) F (ϕ) =

∫

Ω

f(x, ϕ(x),∇ϕ(x)) dx.

where Ω ⊂ R
d is a bounded open set, ϕ : Ω → R

n, can be guaranteed if F fulfills
appropriate growth conditions (coercivity) and is weakly lower semi-continuous on
H1

0 (Ω). Weak lower semi-continuity is generally hard to verify but for the scalar
case n = 1, or d = 1, then F is weakly lower semicontinuous if and only if f(x, ϕ, ·)
is convex [16]. For the vectorial case convexity is a sufficient but far from necessary
condition and can be replaced by quasi-convexity which is both a necessary and
sufficient condition, but almost as hard to verify as weak lower semi-continuity.

To achieve, in this case, a weakly upper semicontinuous functional one can re-
place the function hδ , for δ = 0, in (37) with its concavification

(39) hc =







σ+(η − |∇ϕ|2), |∇ϕ|2 < η σ−

σ+

η(σ+ + σ−) − 2
√

ησ+σ−|∇ϕ|, η σ−

σ+
≤ |∇ϕ|2 ≤ η σ+

σ−

σ−(η − |∇ϕ|2), |∇ϕ|2 > η σ+

σ−
,

as in [19], [21], see Figure 3. This gives a concave functional in (37) which not
only has a maximizer but achieves the same supremum as the Hamiltonian H0,
and has maximizers which are exactly the weak limits of maximizing sequences
for H0. If d > 1 and n > 1, maximizers with equivalent properties are given by
quasi-concavification, see [16].

Numerical experiments using a finite element discretization of (36) shows that,
although existence of solutions cannot be guaranteed for small δ, the Pontryagin
approach generates approximations close to the true concavified solutions in the
sense that the error in the value functions is small, see Section 4.2. Of course, the
sensitivity of the controls with respect to the value function may still be large.

An alternative to the above concavification (39) is to simply replace the original
maximization problem in (35) by

(40) max
σ

{ ∫

Ω

ϕ dx − γ

∫

Ω

1

σ
dx

∣
∣
∣
∣
− div(σ∇ϕ) = 1 in Ω, ϕ

∣
∣
∂Ω

= 0

}

,
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with a given multiplier γ ≥ 0 and σ : Ω → {σ−, σ+}. This formulation only differs
in the choice of the given constant γ, associated to the amount of material.

From the new Hamiltonian

(41) H(ϕ) =

∫

Ω

2ϕ dx +

∫

Ω

max
σ

{

− γ

σ
− σ|∇ϕ|2

}

︸ ︷︷ ︸

h

dx.

we then see that, allowing intermediate controls σ : Ω → [σ−, σ+], the explicit
maximization in σ gives the concave function

h =







− γ
σ+

− σ+|∇ϕ|2, |∇ϕ| <
√

γ

σ+

−2
√

γ|∇ϕ|,
√

γ

σ+
< |∇ϕ| <

√
γ

σ−

− γ
σ−

− σ−|∇ϕ|2,
√

γ

σ+
< |∇ϕ|.

and we thus have the concave maximization problem: to find the unique maximizer
ϕ ∈ H1

0 (Ω) to (41). In fact, the formulation (40) is related to relaxation by the
homogenization method [1]. Instead of just expanding the set of admissible controls
for the original problem (35) to σ : Ω → [σ−, σ+], we look at the problem

(42) max
θ,φ

{ ∫

Ω

ϕ dx − η

∫

Ω

θ dx

∣
∣
∣
∣
− div

(
σ∗(θ, φ)∇ϕ

)
= 1 in Ω, ϕ

∣
∣
∂Ω

= 0

}

,

with θ : Ω → [0, 1], φ : Ω → [0, π] and the rank-1 laminate tensor

σ∗ =

(
cosφ sin φ

− sinφ cosφ

)(
λ+

θ 0
0 λ−

θ

)(
cosφ − sinφ
sin φ cosφ

)

,

with

λ−
θ =

(
θ

σ−
+

1 − θ

σ+

)−1

, λ+
θ = θσ− + (1 − θ)σ+.

The tensor σ∗ is obtained from rotation and mixing of the two tensor valued controls
σ−I and σ+I in proportions θ and 1 − θ and direction φ, see Figure 4. We have
thus enlarged the set of admissible controls by introducing two new parameters θ, φ
describing a laminated material, where the effective conductivities in the principal
directions of the material is λ+

θ and λ−
θ . It is easy to see that (λ+

θ )−1 and (λ−
θ )−1

corresponds to the total resistances for resistors connected in parallel and in series,
respectively.

PSfrag replacements

x

y

φ

θ
1 − θ

σ−

σ+

Figure 4. Laminate

Using symmetry ϕ = λ, the Hamiltonian derived from (42) is

(43) H(ϕ) =

∫

Ω

2ϕ dx +

∫

Ω

max
θ,φ

{

− ηθ −
(
σ∗(θ, φ)∇ϕ

)
· ∇ϕ

}

dx.
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Rewriting the maximization in (43) as

(44) max
θ,φ

{

− ηθ −
(
diag(λ+

θ , λ−
θ )qφ

)
· qφ

}

where qφ is the rotation of ∇ϕ, it is evident that since λ−
θ ≤ λ+

θ , aligning qφ in the

λ−
θ -direction or equivalently aligning the material perpendicular to ∇ϕ, maximizes

(44) with respect to φ. The maximization over φ thus gives

(45) H(ϕ) =

∫

Ω

2ϕ dx +

∫

Ω

max
σ

{

− ησ+σ−
σ+ − σ−

(
1

σ
− 1

σ+

)

− σ|∇ϕ|2
}

dx,

with the change of variables σ = λ−
θ . Defining γ = ησ+σ−(σ+ − σ−)−1, (41) and

(45) have the same minimizer ϕ.

3.3. Interior Reconstruction. In the previous sections we discussed problems
with symmetry, i.e. ϕ = ±λ, which could be reduced to the scalar case and for which
convexification is a straightforward and simple approach. Although symmetry is
present in many optimization problems connected to minimization of energy, there
are important exceptions such as inverse problems related to reconstruction from
measurements. Even the simplest reconstruction problems are known to be highly
ill-posed [17].

We will here focus on a problem to reconstruct the interior of an object from
measured electrical surface currents i.e. electric impedance tomography [5]: Let
σ∗ : Ω → {σ−, σ+} denote a real valued unknown conductivity distribution, with
σ± > 0, in a given domain Ω ⊂ R

d. Using given surface currents qi, i = 1, . . . , N on
∂Ω, satisfying

∫

∂Ω qi ds = 0, and the resulting measured surface potentials ϕ∗
i on

∂Ω, the goal in this inverse problem is to find the optimal conductivity distribution
σ : Ω → {σ−, σ+} such that

(46) min
σ

{ N∑

i=1

∫

∂Ω

(ϕi − ϕ∗
i )

2 ds

∣
∣
∣
∣
div(σ∇ϕi) = 0 in Ω, σ

∂ϕi

∂n

∣
∣
∣
∂Ω

= qi

}

,

with ϕi ∈ V ≡ {v ∈ H1(Ω) :
∫

Ω v dx = 0}. Note, that we have here chosen the
simpler case with measurements on the whole boundary; in reality often only a
discrete number of contacts are allowed.

The Lagrangian becomes

N∑

i=1

∫

∂Ω

(ϕi − ϕ∗
i )

2 + λiqi ds +

∫

Ω

σ

N∑

i=1

−∇ϕi · ∇λi

︸ ︷︷ ︸

v

dx

and the Hamiltonian

H(λ1, . . . , λN , ϕ1, . . . , ϕN ) =
N∑

i=1

∫

∂Ω

(ϕi − ϕ∗
i )

2 + λiqi ds +

∫

Ω

min
σ

{σv}
︸ ︷︷ ︸

h(v)

dx.

As in previous sections the Hamiltonian needs to be regularized such that

H̄δ(λ1, . . . , λN , ϕ1, . . . , ϕN ) =
N∑

i=1

∫

∂Ω

(ϕi − ϕ∗
i )

2 + λiqi ds +

∫

Ω

hδ(v) dx.(47)
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which generates the coupled non-linear elliptic partial differential equations

div

(

h′δ

( N∑

i=1

−∇ϕi · ∇λi

)

∇ϕi

)

= 0, in Ω, h′δ
∂ϕi

∂n

∣
∣
∣
∂Ω

= qi

div

(

h′δ

( N∑

i=1

−∇ϕi · ∇λi

)

∇λi

)

= 0, in Ω, h′δ
∂λi

∂n

∣
∣
∣
∂Ω

= 2(ϕi − ϕ∗
i )

(48)

for i = 1, . . . , N . Even though the lack of symmetry prohibits any simplification,
this system is only locally coupled, and finite element discretizations can be solved
by the Newton method with a sparse Hessian, see Section 4.3.

It is clear that the minimization problem (46) attains its minimum for σ = σ∗

and ϕi = ϕ∗
i , but it has not necessarily a unique solution. To determine uniqueness

of solutions would require knowledge of the Neumann-Dirichlet map

Λσ : σ
∂ϕi

∂n

∣
∣
∣
∂Ω

→ ϕ
∣
∣
∂Ω

associating boundary voltages with currents at the boundary for a fixed σ. Perfect
knowledge of the map Λσ can in general only be gained by measuring the resulting
potentials for all possible input currents. However, if σ ∈ {σ−, σ+} inside or outside
a possibly multiple-connected domain D ⊂ Ω, it is possible to uniquely determine σ
with only partial knowledge of Λσ , i.e by using only a finite number of experiments,
see [5] for references.

Although the reconstruction problem (46) allows unique solutions it is still ill-
posed in the sense that the slightest disturbance in measurements ϕi or having a
true conductivity which allows intermediate values σ∗ ∈ [σ−, σ+] would destroy all
results on existence and uniqueness of solutions. This is also the case for a discrete
number of contacts or for measurements on only parts of the boundary.

Alternative formulations of the impedance tomography problem related to re-
laxation of functionals as in Section 3.2 is found in [33] and [22]. In the latter the
reconstruction problem is formulated as

min
σ,ϕi,Ji

{

I :=

N∑

i=1

∫

Ω

∣
∣σ

1
2∇ϕi + σ− 1

2 Ji

∣
∣
2

dx

∣
∣
∣
∣

div(Ji) = 0 in Ω, Ji · n|∂Ω = qi, ϕi|∂Ω = ϕ∗
i

}

.

Here the need for regularization to guarantee existence of solutions comes from the
lack of lower semicontinuity of the functional I . This formulation also allows an
explicit expression for σ since expanding the squares gives

min
σ>0,ϕ,J

{

σ

N∑

i=1

∫

Ω

∣
∣∇ϕi

∣
∣
2

dx + σ−1
N∑

i=1

∫

Ω

∣
∣Ji

∣
∣
2

dx

∣
∣
∣
∣

div(Ji) = 0 in Ω, Ji · n|∂Ω = qi, ϕi|∂Ω = ϕ∗
i

}

from the constraint div(J) = 0, which allows pointwise minimization in σ, as in our
case, such that

σ =

( N∑

i=1

|Ji|
) 1

2
( N∑

i=1

|∇ϕi|
)− 1

2

.
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4. Numerical Examples

4.1. Electric Conduction. In all numerical tests for the electric conduction prob-
lem (27) we let Ω be the unit square, sometimes with holes cut out, and apply cur-
rents on contacts at the boundary. We also let V̄ ⊂ V ≡ {v ∈ H1(Ω) :

∫

Ω
v dx = 0}

be the linear finite element subspace with Ω partitioned into a quasi uniform mesh
with triangles of maximum diameter hmax = 0.01. The bounds on the conductiv-
ity are σ− = 10−3 and σ+ = 1, and the regularized function hδ is chosen to be a
hyperbola with asymptots coinciding with h and with a closest distance δ from the
origin, see Figure 2.

For solving the non-linear partial differential equation (30), or equivalently max-
imizing (31), we use the Newton method ϕ̄new = ϕ̄old + φ, where the update φ
comes from solving the system

(49) D2
vi,vj

H̄δ(ϕ̄old)φ = −Dvi
H̄δ(ϕ̄old), i, j = 1, . . . , N,

with the sparse positive definite Hessian

D2
vi,vj

H̄δ(ϕ̄) = −2

∫

Ω

h′δ(η − |∇ϕ̄|2)∇vi · ∇vj dx+

4

∫

Ω

h′′δ (η − |∇ϕ̄|2)(∇ϕ̄ · ∇vj)(∇ϕ̄ · ∇vi) dx.

(50)

and

(51) Dvi
H̄δ(ϕ̄) = −2

∫

Ω

h′δ(η − |∇ϕ̄|2)∇ϕ̄ · ∇vi dx + 2

∫

∂Ω

qvi ds,

Here vi ∈ V̄ denotes the nodal Lagrange element basis functions of V̄ , with vi(xj) =
δij and xj denoting the corners of the triangles and δij the Kronecker delta.

To decrease the regularization δ we use the scheme:

• If the Newton method for δold converged choose

δnew = αoldδold, αnew = αold

• otherwise let

δnew =
1

2
δold(1 +

1

αold

), αnew =
αold

αold + 1
.

Here, αold = 0.5 is used as initial stepsize.
Results for different regularizations can be seen in Figure 5. Figure 6 shows

solutions for different multipliers η, corresponding to different volume constraints.
Solutions for different geometries and boundary conditions is presented in Figure
7. The Newton method works well but requires some additional iteration steps for
smaller regularizations or finer grids since the Hessian becomes ill-conditioned. It
is possible that other methods using or approximating Hessian information, such as
quasi-Newton methods, may be used. However, from our experience we conclude
that good aproximation of the Hessian is vital for convergence. Some experiments
using the non-linear multigrid method with a modification preventing large course-
level corrections close to the jump in hδ has also showed good results.

To verify the error estimates in Section 2.1 we let V be the piecewise linear
element space on a mesh finer than the mesh for V̄ . For given solutions ϕ ∈ V to
(32) and ϕ̄ ∈ V̄ to (31) the error in the value functions is by (21) - (24)

(52) E = H̄δ(ϕ̄, ϕ̄) − H(ϕ, ϕ).

Section 2.1 and Theorem 2.1 estimates such errors in terms of the L2 projection
error |Pϕ − ϕ| and the difference in the Hamiltonians; we derived error estimates
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Figure 5. Electric conduction: Contour plots of h′
δ for different

regularizations and with η = 0.5. The countours are equally spaced
in the range [σ−, σ+], with σ+ in the region between the contacts.
Current enters the top contacts (q = −1) and leaves on the bottom
contact (q = 2). All contacs are of width 0.1. The regularization
was initialized to δ = 10 and the pictures show the result after 5,
10 and 30 reductions of δ. For each value of δ no more than 5
Newton steps was necessary to reach a residual error of 10−6 in
the maximum norm. For two values of δ the Newton method fails
to converge, leading to a change in the update parameter α.
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Figure 6. Electric conduction: Contour plots of h′
δ for different

values of η. Left: Data as in Figure 5 but with η = 0.1. Right:
Data as in Figure 5 but with η = 1.5. The left example has reached
δ ≈ 10−4 in 23 reductions of δ starting with δ = 10, while the right
example was stopped after 30 reductions of δ.

for two optimal control problems with general Hamiltonians H and H̄ . Now we
apply this with H̄ = H̄δ defined in (29). The definitions (5) and (23) show that

(53) H̄(λ, ϕ̄) ≡ H̄δ(λ, ϕ̄) = H̄δ(Pλ, ϕ̄).

We expect λ ≈ ∂u and λ̄ ≈ ∂ū in (14) and (16). Replacing ∂u by λ and ∂ū by
λ̄ would give an upper and a lower bound

Ê+ := H̄(λ̄, Pϕ) − H(λ̄, ϕ), Ê− := (H̄ − H)(λ, ϕ̄),

of the error. The symmetry λ = ϕ ,λ̄ = ϕ̄ and (53) imply Ê+ = Ê− = Ê, where

Ê := H̄(ϕ̄, Pϕ) − H(ϕ̄, ϕ)

=

∫

Ω

hδ(η −∇ϕ̄ · ∇Pϕ
︸ ︷︷ ︸

v̄

) − h(η −∇ϕ̄ · ∇ϕ
︸ ︷︷ ︸

v

) dx +

∫

∂Ω

q(Pϕ − ϕ) ds.(54)
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Figure 7. Electric conduction: Contour plots of h′
δ for different

geometries and boundary currents q. Left: Data as in Figure 5 but
with two holes cut out. Right: Data as in Figure 5 but with four
contacts of width 0.1 and currents q = −1 and q = −2 on the top
contacts and q = 1.5 on the bottom contacts.

Finally from (54) we get the error bound

|Ê| =

∣
∣
∣
∣

∫

Ω

hδ(v̄) − h(v) dx +

∫

∂Ω

q(Pϕ − ϕ) ds

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

Ω

hδ(v̄) − hδ(v) + hδ(v) − h(v) dx +

∫

∂Ω

q(Pϕ − ϕ) ds

∣
∣
∣
∣

≤ C0δ +

∣
∣
∣
∣

∫

Ω

hδ(v̄) − hδ(v) dx +

∫

∂Ω

q(Pϕ − ϕ) ds

∣
∣
∣
∣

= C0δ +

∣
∣
∣
∣

∫

Ω

∫ 1

0

h′δ

(

tv̄ + (1 − t)v
)

(v̄ − v) dt dx +

∫

∂Ω

q(Pϕ − ϕ) ds

∣
∣
∣
∣

≤ C0δ +

∫

Ω

σ+

∣
∣
∣∇ϕ̄ · ∇(ϕ − Pϕ)

∣
∣
∣ dx +

∣
∣
∣
∣

∫

∂Ω

q(Pϕ − ϕ) ds

∣
∣
∣
∣

(55)

which can be estimated by

(56) |Ê| ≤ C0δ + C1hmax‖ϕ̄‖W 1,∞(Ω)‖ϕ‖W 2,1(Ω) + C2hmax‖q‖L∞(∂Ω)‖ϕ‖W 2,1(Ω).

This estimate follows from stability of the L2 projection onto V [15] combined with
a standard interpolation error estimate, see [6]. The regularization hδ is chosen so
that C0 ≈ 0.05.

Figure 8 and 9 shows a comparison of the different estimates (52), (54), (55)
and (56). In Figure 8 the approximation error from different meshes are shown by
choosing h = hδ1

, where δ1 ≈ 0, so that

Ê =

∫

Ω

hδ1
(v̄) − hδ1

(v) dx +

∫

∂Ω

q(Pϕ − ϕ) ds =: E2,

and E3 and E4 are the last two terms in (55) and (56), respectively. We see
that E2 and E3 are accurate approximations of the true error E1 := E, while E4
overestimates the error although it has the correct rate. Note that the interpolation
constants satisfy C1 ≈ C2 ≈ 1. Figure 9 shows the remaining regularization error
by choosing the same mesh so that V = V̄ and

E2 =

∫

Ω

hδ(v̄) − hδ1
(v) dx, δ1 = 10−3.

We see that E2 again is an accurate approximation of E1 while E4 overestimates
the error although it has the correct rate; it does not vary with δ. Note that E3 is
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not presented in Figure 9 since it has the order of machine precision. We conclude
that the approximation of the error estimate (54) in Theorem 2.1 is accurate.

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

E1
E2
E3
E4
O(h

max
)

PSfrag replacements

Approximation error

hmax

Figure 8. Electric conduction: Error estimates for different
meshes. Both ϕ̄ and ϕ are solutions to the regularized problem
with δ ≈ 10−5. ϕ is computed on a mesh with hmax = 0.015 and
the mesh for ϕ̄ is varying. E1–E2 denote the right hand sides of
(52) and (54), respectively. E3–E4 are the last two expressions in
the right hand sides of (55)–(56), with C1 = C2 = 1.
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Figure 9. Electric conduction: Error estimates for different reg-
ularizations. Both ϕ̄ and ϕ are solutions to regularized problems
with hmax = 0.015. The regularization for ϕ is δ ≈ 10−3 and the
regularization for ϕ̄ is varying. E3 dissappears and E4 remains
constant since no approximation error is present in this case.

4.2. Elastic Domain. For the problem of maximizing the torsional rigidity of an
elastic bar (35), we let the cross section Ω of the bar be the unit square. The inverse
shear moduli and the multiplier is, as in [1], chosen to be σ− = 1, σ+ = 2 and
η = 0.0165., respectively. We also let V̄ the linear finite element subspace of V ≡
H1

0 (Ω) with maximum triangle diameter hmax = 0.01 and choose a regularization
as in Section 4.1.
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The minimization problem (35) has a Hamiltonian (37) which for small regular-
izations lacks upper semicontinuity, and thus there may not exist any solutions to
the corresponding non linear partial differential equation (36). We solve (36) using
the Newton method and a simple scheme to reduce the regularization, as in the
previous section. As expected, the Newton method works well for sufficiently large
regularizations, but does not converge for small regularizations, see Figure 10.

In Section 3.2 we concavify the unregularized Hamiltonian, which not only gu-
rarantees existence of at least one soution but gives a maximum that coincides
with the supremum of the unregularized Hamiltonian. Figure 10 compares the re-
sult from solving the regularized problem (36) with the solution of the concavified
problem. The regularized problem was solved by succesively reducing the regular-
ization 30 times, starting with δ = 2.

In Figure 11 we see how the value of the regularized Hamiltonian approaches the
value of the concavified Hamiltonian as the regularization decreases. We can also
see that the Newton iterations fail when δ becomes too small.

Since the goal is to find an optimal design with a discrete control σ ∈ {σ−, σ+} a
few additional elementwise iterations with the Discrete Pontryagin method in (33)–
(34) is done for postprocessing. These iterations are allowed as long as the value
function does not increase substantially. In general, the discrete iterations does not
converge and we may need to control the amount of material allowed to change
in each iteration; for the non-concave problem this appears however not necessary.
The right plot in Figure 10 shows the solutions after a few discrete iterations with
initial data from the middle figure.

The Discrete Pontryagin method much resembles the method in [10], which uses
topological shape derivatives and starts from a domain with σ = σ+ and sucessively
replaces volume fractions with σ−. This method is appealing since it is simple and
gives interesting designs, but it may not converge to the true optimal design if it is
possible to remove too much material, which never can be added again.

Finally, in Figure 12, we show the results from solving the concavified and reg-
ularized problem with a different multiplier η = 0.025.

PSfrag replacements PSfrag replacements PSfrag replacements

Figure 10. Elastic Domain: Left: Contour plot of hc for the con-
cavified solution with η = 0.0165. The value of the Hamiltonian is
0.0555. Middle: Contour plot of hδ with δ = 0.08 and η = 0.0165.
The value of the Hamiltonian is 0.0570. Right: Five discrete itera-
tions with (33)–(34) using initial data from the middle figure. The
value of the Hamiltonian has converged to 0.0554.

4.3. Impedance Tomography. When solving the impedance tomography prob-
lem (46) one major issue affecting the reconstruction of the interior conductivity is
the choice of input currents q1, . . . , qN . Consider applying a surface current q on two
different conductivity distributions σ and σ∗ and measuring the resulting potentials
ϕ = Λσq and ϕ∗ = Λσ∗q. Due to the nonlinearity of the inverse problem Λσ → σ
the different conductivities σ and σ∗ may produce similar surface potentials ϕ and
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Figure 11. Elastic Domain: Plot of the regularized and concav-
ified Hamiltonians for the solutions in Figure 10 with respect to
regularization. Only regularizations for which the Newton method
has converged are plotted. The regularized Hamiltonian approches
the concavified Hamiltonian as δ → 0, and the relative error for
the smallest regularization, δ = 0.08, is 2.7%.
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Figure 12. Elastic Domain: Left: Contour plot of hc for the con-
cavified solution with η = 0.025. The value of the Hamiltonian is
0.0695. Middle: Contour plot of hδ with δ = 0.1 and η = 0.025.
The value of the Hamiltonian is 0.0715. Right: Five discrete itera-
tions with (33)–(34) using initial data from the middle figure. The
value of the Hamiltonian has converged to 0.0695, i.e. a relative
error of 0.9%.

ϕ∗ when subjected to a certain input current q, thus causing redundancy in the
coupled equations (48). To prevent this we choose, following [11], the input current
q to be optimal in the sense that it best distinguishes one conductivity distribution
from another, i.e

(57) max
q

{

‖Λσq − Λσ∗q‖L2(∂Ω)

∣
∣
∣ ‖q‖L2(∂Ω) = 1,

∫

∂Ω

q ds
}

,

which from self-adjointness of the Neumann-to-Dirichlet map Λσ is maximized by
the eigenfunction corresponding to the largest eigenvalue of Λσ −Λσ∗ . For multiple
experiments we choose q1. . . . , qN to be the eigenfunctions corresponding to the N
largest eigenvalues.

In the numerical experiments we have calculated the input currents using σ = 1.5
and a true conductivity profile with σ∗

− = 1 inside the region marked by a dashed
line in Figure 14, and σ∗

− = 2 outside. In Figure 13 the currents corresponding to
the eigenfunctions of the four largest eigenvalues are shown. The boundary currents
and potentials were calculated using a maximum element diameter of hmax = 0.01.

The results from solving the coupled non-linear partial differential equations (48)
using piecewise linear elements with hmax = 0.03 and an initial regularization of
δ = 1 can be seen in Figure 14. In the calculations we reduce δ at most 30 times
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and stop if δ ≤ 10−4 or if there is no decrease in the L2-norm of h′
δ − σ∗. From

Figure 14 it is evident that increasing the number of experiments has a significant
effect on the reconstruction.

In Figure 15 the stability of the Newton method is tested by adding 10% white
noise to the measured boundary potentials. Since noise is present, the reconstructed
conductivity will not reach the true conductivity σ∗ as δ → 0, although ϕ may
approach ϕ∗, thus motivating the termination criterion on the L2-norm of h′

δ − σ∗.
However, in reality this criterion is not possible since there is no knowledge of σ∗,
which calls for some other termination critera possibly based on the shape of h′

δ.
The impedance tomography problem seems here to behave as the concave prob-

lem in Section 4.1. However in our experience there are cases, such as large differ-
ences between σ∗

− and σ∗
+ ,where (48) is harder to solve.
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Figure 13. Boundary currents used for the impedance tomogra-
phy problem plotted as a function of the angle variable in polar
coordinates starting at the lower left corner of Ω.



PONTRYAGIN APPROXIMATIONS FOR OPTIMAL DESIGN 25

1.94

1.27 1.38

1.94

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

PSfrag replacements

N = 1

N = 2
N = 3
N = 4

1.93

1.93

1.111.11
1.25

PSfrag replacements

N = 1

N = 2

N = 3
N = 4

1.93

1.93

1.11
1.11PSfrag replacements

N = 1
N = 2

N = 3

N = 4

1.93

1.11

1.11
PSfrag replacements

N = 1
N = 2
N = 3

N = 4

Figure 14. Impedance tomography: Plots of h′
δ for different num-

ber of experiments with hmax = 0.03. The measured data was gen-
erated from solving the forward problem with hmax = 0.01 using
the conductivity profile marked with a dashed line in the upper left
figure. The true conductivity is σ∗ = 1 inside and σ∗ = 2 outside
the marked region.
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Figure 15. Impedance tomography: Plots of h′
δ for different num-

ber of experiments. Data as in Figure 14 but with 10% noise added
to the measurements.
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Figure 16. Impedance tomography: Plots of h′
0 after one discrete

iteration (N = 4). Left: Initial data taken from the lower right
plot in Figure 14. Right: Initial data taken from the lower right
plot in Figure 15.
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