
ID2208 Programming Web
Services

http://people.kth.se/~misha/

ID2208/index.html

Mihhail Matskin:
misha@kth.se

Spring 2016

Course info
http://ict.kth.se/courses/ID2208

Coordinator

 Mihhail Matskin
misha@kth.se
tel. 08-790 41 28

Lectures & Tutorials
 see Schedule

Assistants
 Edward Tjörnhammar and Shatha Jaradat

Written examination (4.5 p.)
 March 23 at 9-13
 Registration at least 21 days before exam period

Homework and project assignments (3 p.)

Homework
(preliminary schedule)

Start Date Due Date Description
2016-01-27 2016-02-05 Homework 1

2016-02-05 2016-02-12 Homework 2
2016-02-12 2016-02-19 Homework 3

It is assumed that the Homework are done by groups of 2 students -
there will be no additional bonus for doing them alone

Project
Aims of the project

•  To apply knowledge obtained during the course to

design and implementation of web services

Your task
There will be suggested topic. You can also make your
own project proposal for the system - the proposal must be
approved by the course coordinator (the last date for
approval of your own project proposal is February 18).

Bonus
1.Delivering all Homeworks 1,2,3 in due time

gives 5 bonus points to written exam (this
assumes that all Homeworks are approved)

2. Delivering project work before March 2 gives
5 bonus points to written exam (this assumes
that the project work is approved)

Bonuses are only valid on the first exam

Course literature
•  Building Web Services with Java:

Making Sense of XML, SOAP,
WSDL, and UDDI, 2nd Edition

 By Steve Graham, Doug Davis, Simeon
Simeonov, Glen Daniels, Peter Brittenham,
Yuichi Nakamura, Paul Fremantle, Dieter
Koenig, Claudia Zentner. Published by
Sams. Series: Developer's Library

Available at
http://proquest.safaribooksonline.com/
0672326418

(you have to be logged with KTH account)
•  lecture notes
•  selected papers (an additional list of

literature may be provided in the course)

Very Tentative Lecture Plan

Date Lecture

1 20.01.2016 Introduction and Overview, SOA

2 22.01.2016 XML Basics

3 27.01.2016 SOAP, RESTful Web services
4 27.01.2016 Service description - WSDL, WS-Policy

5 03.02.2016 Service discovery - UDDI

6 03.02.2016 Security - WS-Security

7 08.02.2016 Coordination and transaction - WS-Coordination

8 08.02.2016 Web Services Composition (BPEL4WS)

9 15.02.2016 Stateful Web services - WS-Resources

10 15.02.2016 Semantic Web Services

What will you learn from this course?

1.  What is Web Services and Service
Oriented Architecture

2.  What are main Web Services
Standards

3.  What are basic mechanisms in Web
Services

4.  Could Web Services and Service
Oriented Architecture ” save the
world”?

Introduction. Content
•  Introduction

–  Historical remarks
–  Software services
–  Middleware
–  Web technologies

•  Web services: a new computing paradigm?
–  What is Web Services
–  Service Oriented Architecture
–  Web services architecture stack

This lecture reference

•  Text book Building Web Services with
Java: Making Sense of XML, SOAP,
WSDL, and UDDI, 2nd Edition

Chapter 1

Other literature used (recommended)
•  M. P. Papazoglou. Web Services: Principles and

Technology Pearson Prentice Hall, 2012
•  H. M. Deitel at al. Web Services. A Technical

Introduction. Pearson Education. 2003
•  E. Cerami. Web Services Essentials. O’Reilly and

Associates.2002.
•  XML and Web Services, Sams
•  G. Glass. Web Services. Building Blocks for

Distributed Systems. Prentice Hall. 2002
•  G. Alonso. Web Services. Concepts, Architectures

and Applications. Springer, 2004

What are services?
•  Services are autonomous, platform independent,

business functions
•  In economics and marketing, a service is the non-

material equivalent of a good.
•  A service is a provider-to-client interaction that creates

and captures value while sharing risks of the
interactions

•  Services are value that can be rented
•  Services are the application of specialized competences

(skills and knowledge) for the benefit of another entity
or the entity itself

© Copyright IBM Corporation 2006, 2007. All rights reserved.

What are Services

(U.S. Department of Commerce, 1995, p. 417).

Percent Employment in Service Jobs

1980 1987 1993 1999
USA 67.1 71 74.3 80.4
Canada 67.2 70.8 74.8 73.9
Japan 54.5 58.1 59.9 72.4
France 56.9 63.6 66.4 70.8
Italy 48.7 57.7 60.2 61.1
China 13.1 17.8 21.2 26.4

(United Nations, 1999).

Software as a service

•  Software as a service (SaaS) is a software
application delivery model where a software
vendor develops a software application and
hosts and operates (either independently or
through a third-party) the application for use
by its customers.

•  Customers do not pay for owning the
software itself but rather for using it.

From Wikipedia, the free encyclopedia

Service-Orientation

•  A design paradigm comprised of specific set
of design principles

•  Emphasizes the creation of very specific
design characteristics and de-emphasizes
some other characteristics

From Erl, 2008

Software Services

•  A software service is something that accepts
digital request and returns digital response

–  a C function, a Java object and SQL-stored procedure
are all examples of software services

–  a computer application can be viewed as a set of
software services

Software Services
(a historical perspective)

•  Assembly language: subroutines
•  Procedural languages: functions

orchestrated by control structures

f1()

f2()
f3()

Network computing: Remote
Procedure Call

f1()

f2()

f4()

f3() RPC

Remote Procedure Calls

Calling
process

Client stub
Bind Marshal
Serialize Send

Communication
module

Communication
module

Called
process

Server stub
Unmarshal Deserialize

Receive

call P(X,Y)

Passed
arguments

Returned
arguments

Returned
values

Passed
arguments

Client process Server process

Remote Method Invocation (RMI)

•  OO equivalent of RPC

method1

method2

Process 1

Process 2

Remote Method Invocation

a remote object

Object Broker Paradigm (ORB)

Object Request Broker

Object
Requestor

Object

•  A process issues requests to ORB which directs it to an
appropriate object that provides the desired service

•  Resembles RMI
•  ORB functions as middleware allowing a requestor to

potentially access multiple remote (or local) objects
•  ORB may also function as a mediator for heterogeneous

objects

Object Broker Paradigm (ORB)

Basic CORBA Architecture

Naming Service Object Client

Stub

ORB

Network

Operating
System

Object
Implementation

Skeleton

ORB

Network

Operating
System

Naming
Lookup

Logical data flow

Physical data flow

The CORBA Object Interface
(language independence)

•  The interface is defined using a universal language with a
distinct syntax, known as the CORBA Interface Definition
Language (IDL)

•  For most of languages there is a standardized mapping
from CORBA IDL to the programming language

Object client writen in Java

Stub in Java generated by compiling
the CORBA object interface

ORB written in Java

Object client writen in C++

Skeleton in C++ generated by compiling
the CORBA object interface

ORB written in C++

Inter-ORB Protocols
•  General Inter-ORB Protocol (GIOP) provides a general framework for

interoperable protocols to be built on top of specific transport layers
•  A special case of the protocol is the Internet Inter-ORB protocol

(IIOP) applied to TCP/IP
•  Object bus: the Internet is seen as a bus that interconnects CORBA

objects

CORBA
Object

CORBA
Object

CORBA
Object

ORB ORB ORB

The Internet

High level view of the CORBA
architecture

Object Request Broker

Naming Transactions Events Lifecycle Properties Relationships Time Licensing
Trader Concurrency Query Security Collection Externalization Startup Persistence

Vertical facilities:
 financials supply chain …

Horizontal facilities:

Distributed Information System Task
documents management management management

CORBA facilities

CORBA services

User-defined
objects

Adopted from Alomso et al.

Dynamic Service Selection and
Invocation

Application object
(client)

stub

Application object
(service provider)

skeleton

O R B

Dynamic Invocation Interface

Application object
(client)

IDL of service
provider

IDL compiler
(client side)

IDL compiler
(server side)

Interface repository

Adopted from Alomso et al.

Object-oriented languages: CORBA,
DCOM

CORBA/
DCOM CORBA

LAN1

DCOM

LAN2

Message-Based Interoperability

•  Previous solutions are mainly based on
synchronous method invocation

•  Message-Based interoperability refers to
communication by exchanging messages.

•  Once client and service provider agree on a set of
message types, they can communicate by
exchanging messages

•  It also provides a concept of message queue.

Layers of an Information System
client

Presentation layer

Application logic
 layer

Resource
management

 layer
In

fo
rm

at
io

n
sy

st
em

Adopted from Alomso et al.

Layers of an Information System

•  Presentation layer – presenting information to
external entities and allowing them interact with
the system by submitting operations and getting
responses

•  Application logic layer – programs that implement
the actual operations requested by the client
through the presentation layer

•  Resource management layer – deals with and
implements the different data sources of an
information system

Architecture of an Information System (1-tier)

•  Combines all layers in a single tier – monolithic architecture

client

Presentation layer

Application logic
 layer

Resource
management

 layer

In
fo

rm
at

io
n

sy
st

em

Adopted from Alomso et al.

Architecture of an Information System (2-tier)

•  Separates the presentation layer – the results is client/server system

client

Presentation layer

Application logic
 layer

Resource
management

 layer

In
fo

rm
at

io
n

sy
st

em

Adopted from Alomso et al.

2-tier architecture
•  Very popular
•  Thin (minimal functionality) and fat (provides a

wide range of functionality) clients
•  Allows efficiency and portability in

implementation
•  Problems:

–  Single server can only support a limited number of
clients

–  2-tiers systems received a reputation of less scalable
than expected

–  2-tier systems run into troubles when clients want to
connect to more than one server.

Architecture of an Information System (3-tier)

•  Introduces a middleware layer

client

Presentation layer

Application logic
 layer

Resource
management

 layer
In

fo
rm

at
io

n
sy

st
em

middleware

Adopted from Alomso et al.

Architecture of an Information System
(3-tier)

client
Presentation layer

Application logic
 layer

Resource
management

 layer

middleware Integration logic

client client

wrapper
wrapper wrapper

Adopted from Alomso et al.

Architecture of an Information System (3-tier)

•  Main advantage – provision of an additional
tier where integration logic can reside –
better flexibility

•  Provides better scalability and reliability
•  Also may relax the server load
•  However, may cause performance loss,

especially when communicating with
resource management layer

Architecture of an Information System (N-tier)

client

Presentation
layer

Application logic
 layer

Resource management
 layer

In
fo

rm
at

io
n

sy
st

em

middleware

Web browser

Web server

HTML filter

Adopted from Alomso et al.

Architecture of an Information System (N-tier)

•  Architecture of information systems
encompasses many different tiers
integrating systems that becomes building
blocks for future integration

•  Main disadvantages
–  too much middleware involved (often with

redundant functionality)
– Costs of developing, maintenance etc. increases

almost exponentially with the number of tiers

Enterprise Application Integration
(EAI)

•  Each system may run on different OS
•  Each system may support different interfaces and

functionality
•  Each system may use a different data format
•  Each system may have different security

requirements
•  Each system may have different infrastructure,

interaction models and protocols
•  There are also non-technical challenges

Enterprise Application Integration
(EAI)

•  Behind any system integration effort there is a
need to automate and streamline procedures

•  The EAI problem appears when all different steps
are to be combined into a coherent and seamless
process

Supplier and
Customer mgnt Quotation Order

Processing
Procurement Shipment

management
Financial

Supply chain

EAI middleware: Message Brokers

•  Descendants of the platforms for message-based
interoperability

•  Derived from the new requirements posted by EAI
•  Extend previous platforms with capability of attaching

logic to the message and of processing messages directly at
the middleware level

•  Not only transporting messages but also in charge of
routing, filtering and even processing the message

•  Most message brokers provide adapters that mask
heterogeneity

EAI middleware: Message Brokers

Supplier and
Customer mgnt Quotation Order

Processing
Procurement Shipment

management
Financial

Supplier and
Customer mgnt

Adapter
Quotation
Adapter

Order
Processing

Adapter
Procurement

Adapter
Shipment

Management
Adapter

Financial
Adapter

Message broker

Integrating application
(contains composition logic)

Adopted from Alomso et al.

Enterprise Application Integration
(drawbacks)

•  Software licenses are extremely expensive and EAI
message bus, along with its development and management
tools, may cost a lot

•  Each adapter may cost a lot
•  Training costs a lot
•  Development of integrated application is quite complex

and expensive (including configuration of adapters,
developing new adapters for systems not supporting EAI
platform)

•  This often discourage small and medium enterprises from
adopting EAI platforms, or even, from performing
integration

B2B integration
•  Cross-organizational interactions
•  The basic idea for conventional middleware

is to reside between integrated applications
and to mediate integration. While the
application are distributed the middleware is
centralized.

•  While applying the same approach to B2B
integration is possible it is very rarely
happens in practice due to lack of trust,
autonomy and confidentiality reasons

B2B integration

•  Alternative solution is a point-to point integration

Supplier and
Customer mgnt Quotation Order

Processing
Procurement Shipment

management
Financial

Supplier and
Customer mgnt

Adapter
Quotation
Adapter

Order
Processing

Adapter
Procurement

Adapter
Shipment

Management
Adapter

Financial
Adapter

Message broker1 Message broker2 Message broker3 Message broker4 Message broker5

Adopted from Alomso et al.

B2B integration

•  A point-to-point integration

Supplier

Middleware
for A

Middleware
for B

Middleware
for C

Middleware
for D

Middleware for integrating the middleware

Supplier’s
adapters A

Supplier’s
adapters B

Supplier’s
adapters C

Supplier’s
adapters C

Internal infrastructure

Adopted from Alomso et al.

Web technologies

•  The Web emerged as a technology for
sharing information on the Internet

•  It quickly became the medium for
connecting remote clients with applications
across the Internet

•  More recently it becomes a medium for
integrating application across the Web

Web Technologies

•  Information exchange over the Internet
–  ARPANET,1969
–  TCP (Transmission Control Protocol) – handles

conversion between messages and streams of packets
–  IP (Internet Protocol) – handles addressing of packets

across networks
–  TCP/IP – defining technology of the Internet, enables

packets to be sent across multiple networks using
multiple standards

Web Technologies

•  Before the Web
–  telnet protocol and SMTP (Simple Mail

Transfer Protocol) – they specify different ways
of directly connecting accounts on different
systems, regardless of OS and platforms

– FTP (File Transfer Protocol) – supports file
transfer between Internet sites (allows a system
publish a set of files by hosting FTP server)

Web Technologies

•  HTTP (HyperText Transfer Protocol) – a generic
stateless protocol that governs a file transfer
across a network (also supports access to FTP and
SMTP)
–  Information exchanged in form of documents identified

by URI (Uniform Resource Identifier)
–  Documents can be static or dynamic (generated at

access time)
–  HTTP is designed to support hypertext (in particular,

HTML)

Web Technologies
(remote clients)

•  Letting the remote computer use a Web browser as a client
•  Since the Web browsers are standard tools, no application specific

clients need to be installed
•  Using widely available tools for building browser-based channels for

company’s applications
•  Wrapping local information systems to support access channels

client HTTP
server

middleware

Server
(resource manager)

client

HTTP
client

W
 A

 N
 (I

nt
er

ne
t)

Adopted from Alomso et al.

Web Technologies (Applets)
•  Web browsers were initially intended to display static documents only
•  Applets are Java programs that can be embedded in an HTML

documents
•  When the document is downloaded the program is executed by Java

Virtual Machine (JVM)
•  The way to turn the browser into a client is to send the client code as

an applet

Web
server

middleware

Server
(resource manager)

client

W
 A

 N
 (I

nt
er

ne
t) applet

JVM

browser

Adopted from Alomso et al.

Web Technologies (Common
Gateway Interface - CGI)

•  Web server can respond to a request by invoking an application that
automatically generates a document to be returned

•  CGI is a standard mechanism that enables HTTP servers to interface
with external applications

•  CGI assigns programs to URLs, so when the URL is invoked the
program is executed

Web
server

middleware

Server
(resource manager)

client

W
 A

 N
 (I

nt
er

ne
t)

CGI program

browser HTTP GET
request

Adopted from Alomso et al.

Web Technologies (Servlets)
•  Java servlets can be used instead of CGI programs – they differ only in

implementation
•  The execution of servlets is triggered by addressing URL (as for CGI).

Servlets are invoked directly by embedding servlet-specific information within
HTTP request

•  Servlets run as threads of Java server rather than independent processes and
they run as a part of Web server

Web server

middleware

Server
(resource manager)

client

W
 A

 N
 (I

nt
er

ne
t)

Java thread

browser HTTP GET
request

Java server process

Adopted from Alomso et al.

Application servers
•  Application servers are equivalent to the middleware

platforms but the main difference is that they incorporate
the Web as a key access channel to the services
implemented using the middleware

other servers
(email, SOAP,…)

Web
server

presentation layer

Server (resource manager)

client

W
 A

 N
 (I

nt
er

ne
t)

browser

application logic layer
connection to resource mngt

layer
application server

HTTP

other protocols

Adopted from Alomso et al.

W
A

N
 In

te
rn

et

Architecture for Wide Area
Integration

Client

Middleware

Server
(resource manager)

Client

Middleware

Server
(resource manager)

Adopted from Alomso et al.

Direct integration of middleware
platforms

W
A

N
 In

te
rn

et

Client

Middleware

Server
(resource manager)

Client

Server
(resource manager)

Remote middleware
protocol

WAN communication
protocol

Middleware
Remote middleware

protocol

WAN communication
protocol

Adopted from Alomso et al.

B2B interaction using tunneling

W
A

N
 In

te
rn

et

Client

Middleware

Server
(resource manager)

Client

Server
(resource manager)

Remote middleware
protocol

WAN communication
protocol

Middleware
Remote middleware

protocol

WAN communication
protocol

fir
ew

al
l

fir
ew

al
l

Web server Web server

HTTP tunnel

Adopted from Alomso et al.

Web services

WS protocol

WS protocol

LAN1

WS protocol

LAN2

What are Web Services?

•  “A Web service is often seen as an application
accessible to other applications over the Web” (Fisher)

•  “It is software designed to be used by other software
via Internet protocols and formats.” (Forrester)

•  “Web Services are loosely coupled software
components delivered over the Internet via standards-
based technologies like XML, and SOAP. “ (Gartner)

Web Services definitions

“Web Service are a new breed of Web application.
They are self-contained, self-describing, modular
applications that can be published, located and
invoked across the Web. Web services perform
functions, which can be anything from simple
requests to complicated business process.

Once a Web service is deployed, other applications
(and other Web services) can discover and invoke
the deployed service”
 IBM web service tutorial

Web Services definitions

A Web service is a software system designed to
support interoperable machine-to-machine
interaction over a network. It has an interface
described in a machine-processable format
(specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its
description using SOAP messages, typically
conveyed using HTTP with an XML serialization
in conjunction with other Web-related standards.
 W3C Working Group

Comparison with Component-Based
Model

The Web today
(human-centric)

HTTP GET:
“What is the status of my order?”

HTTP response with HTML page:
“Leaving the warehouse at 3 pm today”

Web browser Web server

Adopted from Cerami

Web Services
(application-centric web)

Web browser

HTTP GET:
“What is the status of my order?”

HTTP response with HTML page:
“Leaving the warehouse at 3 pm today”

Web server

Inventory
Application

On to human user

On to other applications

Adopted from Cerami

Web Services vision
(automated web)

Inventory
Application

Service
registry

Service description

Order status service

Web server

1

Discover services

2

3

Retrieve service description

Invoke remote service

Adopted from Cerami

Web Services Advantages
•  There is nothing special about Web Services

–  Many enabling technologies existed before

•  Web Services may change the world!
–  Companies can expose and access Web Services using technology

already in place
–  Web Services are more interoperable
–  Nearly all major software vendors have agreed to use the same

core standards
–  All these factors indicate that Web Services have the capability to

provide direct application-to-application communication
–  Web service have potential to change the entire process of

designing, developing and deploying software

Web Services Advantages

•  Operate using open, text-based standards
(communication of components in different
languages and platforms)

•  Promote a modular approach to programming
•  Comparatively easy and inexpensive implement?
•  Significantly reduce the cost of enterprise

application integration and B2B communications
•  Can be implemented incrementally

Web Services and Application
Service Providers (ASPs)

•  ASPs provide customized (typically commonly
used) business software applications over the Web

•  Allow access necessary applications over the
Internet

•  Assume responsibility for maintaining the
applications

•  Web services, compare to ASPs, need not be
developed and maintained by different bodies

•  Web services can have different granularity

Service-oriented paradigm

•  “everything is a service”

•  Different services are autonomous and
independent (loosely coupled)

Service Oriented Architecture
SOA is a form of distributed systems

architecture that is typically characterized
by the following properties:
–  Logical view: The service is an abstracted, logical view of actual

programs, databases, business processes, etc., defined in terms of
what it does, typically carrying out a business-level operation

–  Message orientation: The service is formally defined in terms of
the messages exchanged between provider agents and requester
agents

–  Description orientation: A service is described by machine-
processable meta data.

–  Granularity: Services tend to use a small number of operations
with relatively large and complex messages

–  Network orientation: Services tend to be oriented toward use
over a network

–  Platform neutral: Messages are sent in a platform-neutral format

Service Oriented Architecture (SOA)
(individual roles 1)

•  Service provider
–  Implements service and makes it available on the

Internet
•  Service requestor

– Utilizes existing web service by opening network
connection and sending (XML) request

•  Service registry
– Place for publishing new services and finding

existing ones

Service Oriented Architecture
(individual roles 2)

Service
Requestor

Service
Broker/
Registry

Service
Provider

Find

Publish Bind

Why SOA is important
-  With SOA approach the whole view to entire

software portfolio is different.
-  Existing applications can be easily converted

to the services.
-  Eventually monolithic, inflexible applications

will be replaced by SOA –architecture
applications

-  Very important aspect – bridging IT concepts
and business concepts together

Web Service Architecture (W3C)
•  The WSA describes both the minimal characteristics that are

common to all Web services, and a number of characteristics
that are needed by many, but not all, Web services.

•  Web service is an abstract notion, while it is implemented by a
particular agent

•  The agent is the concrete piece of software or hardware that
sends and receives messages, while the service is the resource
characterized by the abstract set of functionality that is
provided

•  The purpose of Web service is providing some functionality
on behalf of its owner

•  Web Services Architecture is an interoperability architecture

A protocol for services discovery
and selection

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved . From http://www.w3.org/TR/ws-arch/

General Service Architecture
(The Architectural Models)

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved . From http://www.w3.org/TR/ws-arch/

Message Oriented Model

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved . From http://www.w3.org/TR/ws-arch/

The Service Oriented Model

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved . From http://www.w3.org/TR/ws-arch/

The Resource Oriented Model

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved . From http://www.w3.org/TR/ws-arch/

The Policy Model

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved . From http://www.w3.org/TR/ws-arch/

Discovery service

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved . From http://www.w3.org/TR/ws-arch/

Discovery:

•  The Registry Approach
•  The Index Approach
•  Peer-to-Peer (P2P) Discovery

Web Services Architecture
(protocol stack)

•  Service transport
–  Transporting message

between applications
•  XML messaging

–  Encoding messages in a
common XML format

•  Service description
–  Describing the public

interface to a specific
service

•  Service discovery
–  Centralizing services into a

common registry

Discovery UDDI

Description WSDL

XML messaging SOAP

Transport HTTP, SMTP,FTP

SOAP, UDDI and WSDL in Web
Service interaction

1  Client queries registry to
locate services

2  Registry refers client to
WSDL document

3  Client accesses WSDL
document

4  WSDL provides data to
interact with Web Service

5  Client sends SOAP-
message request

6  Web Service returns
SOAP-message response

Client Web Service

UDDI
registry

WSDL
Document

1

2

3

4

5

6

Adopted from Cerami

Service provider perspective

Step1: Create core functionality

Step2: Create SOAP service wrapper

Step3: Create WSDL service description

Step4: Deploy service

Step5: Register new service via UDDI

Adopted from Cerami

Service requester perspective

Step1: Find service via UDDI

Step2: Retrieve service description file: WSDL

Step3: Create SOAP client

Step4: Invoke remote service

Adopted from Cerami

Web Service Architecture Stack

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved . From http://www.w3.org/TR/ws-arch/

Web services interoperability stack

Adopted from Sobah Abbas Petersen

Web Service interoperability stack

Transport HTTP, SMTP etc

Messaging XML, SOAP, WS-Addressing

Description WSDL, WS-Policy, UDDI,
 WS-ResourceProperties

Quality of experience WS-Security, WS-ReliableMessaging,
 WS-ResourceLifetime, WS-Transactions

Compositional BPEL, WS-Notification

Two Facets of Web Services
Architectures (implementation)

client

Web service

Web service

Web service

Web service

Web service

Web service

Web service interface
Access to internal systems

 middleware

internal
service

internal
service

Internal
architecture

External
architecture

Company D
(client)

Company C
(provider)

Company B
(provider)

Company A
(provider)

Adopted from Alomso et al.

Web Services Architectures
(internal architecture)

Web service

Web service interface
Access to internal systems

 conventional middleware
 (includes middleware services)

Web service middleware (internal)

Service interface

Integration logic

other tiers other tiers

Clients from
other companies

Company A (provider)

Adopted from Alomso et al.

Web Services Architectures
(external architecture)

Web service client

Web service middleware
(internal)

other tiers

Company A (requestor)

Web service

Web service middleware
(internal)

other tiers

Company B (provider)

Service descriptions

1. publish 2. find

3. bind

Adopted from Alomso et al.

External architecture for Web services
augmented with P2P execution capability

Web service client

Web service middleware
(internal)

other tiers

Company A (requestor)

Web service

Web service middleware
(internal)

other tiers

Company B (provider)

Transaction
mngt

Other protocol
infrastructure

Composition
engine

Transaction
mngt

Other protocol
infrastructure

Composition
engine

External middleware

Service descriptions

Directory service provider

Company C

Adopted from Alomso et al.

Next lecture

•  XML basics

Text-book Building Web Services with

Java: Making Sense of XML, SOAP,
WSDL, and UDDI, 2nd Edition

Chapter 2

