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Abstract— In this paper we address the 3D reconstruction
of points, on a non-central catadioptric system, composed by a
mirror, a projector, and a perspective camera. The goal of the
paper is to propose a framework to build an omnidirectional
depth camera, towards an omnidirectional RGB-D camera
system. The main contributions are: an efficient technique to
project 3D points from the world to an image of a general
non-central catadioptric camera; the definition of the template
pattern (for both the projector and camera’s images); and the
matching between the projection of these features to the world
and its respective images. The 3D depth is directly recovered
using the template matching approach. In conclusion, we apply
some filtering techniques to improve the results. To evaluate
the proposed framework, we test the method using synthetic
data, under different levels and types of noises, proving that
the framework is robust to noise and, thus, can be put into
practice.

I. INTRODUCTION

RGB-D cameras capture both color and depth images of
a scene. Depth maps are images where each pixel contains
information about the distance from objects (in the scene)
to the respective viewpoint. There are some techniques to
obtain these images, which can be either active or passive,
depending on whether they require special light sources or
not. The most common passive sensor is the stereo camera
system. Having multiple views of a scene, depth can be
estimated from triangulation, [1]. However, it requires a
3D point to be seen by, at least, two pixels acquired from
different viewpoints.

As for active sensors, the most common are time-of-
flight cameras (ToF), [2], and structured light sensors, [3].
In the former, a single or several light sources illuminate
the scene for a short period of time; the light is reflected
by the objects; and its captured by a matrix of detectors,
which yield the phase shift between the emitted and re-
flected beams. These cameras are compact, do not require
mechanical parts, and have an high frame rate. Nevertheless,
they suffer from the interference of background light (as well
as other external light sources), the ambiguity generated by
multiple reflections and their high price. The latter consists of
projecting a known pattern into the scene. Depth is computed
from the shift between the observed and a reference pattern.
They are cheaper than ToF cameras, but they are limited
to indoor use. The first version of the Microsoft Kinect
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Fig. 1: Representation of the proposed system for the esti-
mation of the depth information: a projector, a RGB camera,
and a quadric mirror.

works under this principle. Even though the technology is
not disclosed (patent protected), the way depth is estimated
can be speculated from some patent applications, e.g. [4] and
[5]. In this paper we were inspired by this last latter type of
sensor.

Kinect’s high accuracy range data, associated with its
robustness to light conditions and speed of measurement,
helped increasing its popularity. Between 2010 and 2013,
over thousands articles on the use of Kinect were published,
with many applications in robotics, such as simultaneous
localization and mapping [6], [7], [8] and object perception
[9], [10]. The Kinect has become a popular sensor, but it is
limited by its field-of-view (43◦ vertical by 57◦ horizontal),
much smaller than conventional sensors used in robotics, like
the laser rangefinder (aprox. 210◦). Given this limitation,
in this work we propose a theoretical framework to build
a structured light omnidirectional RGB-D camera, using a
catadioptric systems. The output of the system will be a
3D point cloud, which means that one can use the same
algorithms for same robotic’s applications that have been
used with standard kinect’s sensor but, in this case, we would
benefit from a wider representation of the environment. The
sensor consists of a projector, a RGB cameras, and a quadric
mirror (i.e., a mirror described by a quadratic surface).

One of the main challenges in the design of this sensor is
related with the reconstruction of the 3D scene (estimation
of the D information of the RGB-D image). After this step,
if the sensor is calibrated, an additional RGB sensor can be



used to project the color to the reconstructed scene, setting
up all the required data for the RGB-D image. As a result
and since this problem was not yet fully addressed in the
literature, in this paper we focus our work on the estimation
of the D channel, towards an omnidirectional catadioptric
RGB-D camera. The proposed system for the 3D scene
reconstruction is shown in Fig. 1.

To the best of our knowledge, in the literature there are
three different approaches to solve this problem. The first ap-
proach consists of having a catadioptric camera and projector
in different configurations. Orghidan at [11] proposed such a
solution with the camera placed above the projector, which
emits a single circle, captured by the camera. However, depth
is computed only on that circle. A similar solution was
presented by Zhang at [12]. However, the pattern is different
consisting of distinctive concentric circles. These allows us
to compute depth in more than one plane, but it still does
not provide a depth map. On the same line as the previous
work, Esperanza at [13] proposed to place the camera and
the projector back-to-back with the possibility of projecting
different patterns. However, the field-of-view of the sensors
do not overlap completely, thus it does not allow for a full
depth map. In this paper we aim at proposing a real depth
map estimation, given from general 3D points on the image,
instead of estimating the reconstruction of circles.

A different way of obtaining an omnidirectional depth
information is to use several laser projectors in association
with an omnidirectional camera. Zhou at [14] proposed
an omnidirectional depth sensor consisting of a perspective
camera looking at a square pyramid mirror, which simulates
the field-of-view of four virtual cameras. This catadioptric
camera is on top of four laser projectors, which combined
emit a 360 light stripe. The virtual cameras have a relation of
one-to-one with the projectors, giving rise to four structured-
light sensors. Each one computes 3D measurements of the
laser stripe in its field-of-view. In [15], an omnidirectional
3D camera was proposed. Four diodes emit infrared light,
which passes through diffracting optical elements, generating
a known pattern of speckles. The pattern is observed by
an omnidirectional camera (CCD camera and hyperbolic
mirror) and depth is computed by structured light. All of the
method mentioned above require more devices that the ones
necessary to build an omnidirectional catadioptric camera.
In this paper (and contrarily to these method), we aim at
proposing a simple omnidirectional camera sensor, more
compact and less expensive, because we only use a projector
and RGB cameras, looking to the same mirror.

The last type consists on an extension catadioptric for
RGB-D cameras, presented in [16]. This consisted of a
typical RGB-D sensor placed under two planar mirrors,
which allow to use the built-in processing of the camera for
the registered RGB-D image. The mirrors split the field-of-
view, creating two virtual viewpoints, and hence two virtual
RGB-D cameras. Their approach is more similar to ours. The
main difference to what we propose is the fact that they are
using two planar mirrors (simulating two different RGB-D
sensor looking at different place), while we propose the use

of a quadric mirror, allowing a wider field of view. Notice
that, contrarily to this case, our system will not have the same
properties of typical RGB-D sensors, which means that new
algorithms and methods for the basic properties of an RGB-
D sensor have to be defined.

The main contributions of the paper are:
• The proposal of a novel omnidirectional RGB-D device;
• An efficient technique for the projection 3D points into

an image of a general non-central catadioptric camera;
• The definition of a template matching, that will be used

for the 3D reconstruction; and
• Matching of the projector image features and image

features.
To conclude, we evaluate the proposed system and method
for the scene reconstruction using synthetic data, under
different levels and types of noises.

II. PROPOSED APPROACH

The goal of this paper is to study the effects of having
a curved mirror in front of a structured line sensor, useful
to have large field of view (Fig. 1 we shows the proposed
setup). The reconstruction of the depth information using
structure light sensors can be divided into two steps. Firstly,
the projector is used to project a known pattern to the world.
Then, from the images of the pattern captured by the camera,
one can recover the depth and, as a result, reconstruct the
world points that were projected.

The projector and the camera are in front of the mirror,
which means that one needs to take into account the re-
flection from both. In Sec. II-A we study the effects of the
reflection associated with the projection of the pattern to the
3D scene. In sec. II-B, we address the projection of these
patterns into the image of the camera and, in Sec. II-C, we
study the matching and reconstruction problem (between the
projected patterns and the respective images).

We define the mirror such that any 3D point r =
[r1,r2,r3]

T , that is incident with the mirror, satisfies the
following relation:

Ar2
1 +Br2

2 +(r3−C)2−D = 0, r3 ≤C, (1)

where A,B,C,D ∈ R are the mirror’s parameters. To con-
clude, we consider the RGB camera, located at c =
[c1,c2,c3]

T and a projector at p = [p1, p2, p3]
T .

A. Pattern projection

The goal of the projector is to project a binary pattern
(supose 0’s and 1’s) to the world. An example of a possible
binary pattern is shown in Fig. 2(a), where was used a image
size 1348×1048 and the points are separated 500 pixels
horizontally and 40 pixels vertically. The spacing between
the projected points was designed to improve the matching
and reconstruction steps (more detail are given in Sec. II-C).

Let us denote the coordinates (u(k)P ,v(k)P ) as the kth non-
zero pixel of the projected pattern (see for example Fig.2(a)),
KP ∈ R3×3 be the intrinsic parameter matrix of the projec-
tor, and RP be its rotation matrix related to the mirror’s



(a) Example of an image pattern. (b) Direct projection lines. (c) Discretization of the lines. (d) Projection of the points.

Fig. 2: Example of a possible binary pattern, the template pattern, and its real projection into the image. For this example
we used p = [0,0,0]T , c = [0,−7.5,0]T , A = B = 1, C = 37.5, D = 202 and a specific world. Images with size (image size
of 1348×1048).

coordinate system. Then, the direction of the optical ray
d(k)

P = [d(k)
P,1 , d(k)

P,2 , d(k)
P,3 ]

T that leaves the projector is given by

d(k)
P = (KPRP)

−1
[
u(k)P v(k)P 1

]T
. (2)

The projection of the pattern onto the mirror’s surface
r(k)P = [r(k)P,1,r

(k)
P,2,r

(k)
P,3]

T (for all k), can be written as

r(k)P = λ
(k)d(k)

P +p, where λ
(k) ∈ R+. (3)

To calculate the unknown λ (k), we use the condition that any
point on the mirror must verify (1). Replacing (3) at (1), one
can write

a1λ
(k)2

+a2λ
(k)+a3 = 0, (4)

such that

a1 =Ad(k)
P,1

2
+Bd(k)

P,2
2
+d(k)

P,3
2
; (5)

a2 =2(Ad(k)
P,1 p1 +Bd(k)

P,2 p2 +d(k)
P,3(p3−C)); and (6)

a3 =Ap2
1 +Bp2

2 +(p1−C)2−D, (7)

which give us the two solutions for λ (k). Depending on the
type of mirror and the projector’s position relatively to the
mirror, one can easily select the correct λ (k)1. This allow us
to compute the intersection point, as written in (3).

The normal to the mirror at r(k)P is given by

n(k)
P = [2Ar(k)P,1, 2Br(k)P,2, 2(r(k)P,3−C)]T . (8)

Now, from the Snell’s law of reflection, we can compute the
direction of the reflection ray d̃(k)

P (see Fig. 1), as

d̃(k)
P = d(k)

P −2n(k)
P

(
n(k)P ·d

(k)
P

‖n(k)P ‖
2

)
, (9)

which means that the projection line, that projects the pro-
jector’s pixel k, can be written as

l(k)p
.
= α

(k)d̃(k)
P + r(k)P ,where α

(k) ∈ R+, (10)

see for example Fig. 2(b). For some α(k), this projection line
will intersect the world somewhere in a point, that we will

1For example, considering spheroid or ellipsoid mirrors we would choose
the λ (k) with the smallest value.

denote as w(k). The aim of this subsection is to compute
α(k).

Since the 3D scene is unknown, what we do is to give a set
of possible solution for α(k), by discretizing the respective
projection lines, such as

{ŵ(k, j)}= {α(k, j)d̃(k)
P + r(k)P : j = 1, . . . ,M} (11)

for a pre-defined set α(k, j). An example of this discretization
is shown in of Fig. 2(c).

Then, the problem can be solved by computing w(k), from
the set of predefined points {ŵ(k, j)}. To do this, in this paper,
we propose to project this set of points (that belong to the
projected line) into the camera’s image (see Fig. 1),

{(u(k, j)C ,v(k, j)C )}= {Proj(ŵ(k, j))}, for all j, (12)

where Proj(.) denotes the projection of a 3D point onto
the camera’s image. We call template matching image (also
denoted as T (u,v)) to the image formed with this set of
points. An example of the projection of these ŵ(k, j) into the
camera’s image is shown in Fig. 2(d). Then, the goal is to
use the real image of the unknown w(k) (acquired by the
camera) to do the matching.

In the next subsection, we address the problem of the
projection of these set of points onto the camera’s image.

B. Images of the patterns

There are some methods to estimate the reflection point
in a catadioptric camera system, e.g. [17], [18]. Notice that,
so far, there is not a close-form solution for this problem. At
[17], Nuno proposed expressing the problem as an intersec-
tion of two quadrics, which results in finding the reflection
point in quartic curve, using an general iterative technique.
On the other hand, Agrawal et al. [18] expressed the problem
as a polynomial equation. However, in general (which is the
case needed for the problem addressed in this paper), this
polynomial equation has degree eight, which means that there
are not a close-form solution to this problem. In addition,
they consider only mirror axial symmetric mirror.

In this paper, we use known restrictions and propose
a novel optimization technique, based on a well known
algorithm which we optimize to this problem, improving its
computational speed. Using this method, we got an average



of only 10 iterations for the method to converge to the goal
solution. In addition, we also show that, for this specific
problem, the proposed optimization technique has a global
minimum.

According to the scheme shown at Fig. 1, the points ŵ(k, j)

will appear in the camera’s image through a new reflection
on the mirror. Let us denote the reflected point on the mirror
(that allows the camera to see ŵ(k, j)) as r̂(k, j)C . It is known
that at the point r̂(k, j)C (which result from the projection of
ŵ(k, j) through the incident direction d̂(k, j)

C ), the projection
line reflects on the mirror, according to the same reflection
law as defined in (9), and we can define the constraint∥∥∥∥̂̃d(k, j)

C ×
(

c− r̂(k, j)C

)∥∥∥∥2

= 0, (13)

where ̂̃d(k, j)

C is the direction of the reflected ray (see Fig. 1).

This happens because the two directions, ̂̃d(k, j)

C and (c−
r̂(k, j)C ), must be colinear, which implies that its cross product
must be a null vector.

Using the reflection law defined in (9) (but now applied
to d̂(k, j)

C , r̂(k, j)C and n̂(k, j)
C – the normal to the mirror at r̂(k, j)C )

and multiplying both sides of (13) by ‖n̂(k, j)
C ‖

4
, we get∥∥∥‖n̂(k, j)

C ‖2
(

d̂(k, j)
C −2n̂(k, j)

C

(
n̂(k, j)

C · d̂(k, j)
C

))
×
(

c− r̂(k, j)C

)∥∥∥2
= 0.
(14)

Since we assume that the camera is calibrated, if we estimate
the coordinates of the reflection point on the mirror, one can
easily compute the respective image pixel (more details will
be given later). Then, the goal is to find r̂(k, j)C such that

r̂(k, j)C = argmin
x̂(k, j)

f (x̂(k, j)), (15)

where

f (x̂(k, j)) =
∥∥∥‖n̂(k, j)

C ‖2
(

d̂(k, j)
C −2n̂(k, j)

C

(
n̂(k, j)

C · d̂(k, j)
C

))
×
(

c− x̂(k, j)
)∥∥∥2

(16)
and the direction d̂(k, j)

C and the normal n̂(k, j)
C are given by

d̂(k, j)
C =

x̂(k, j)− ŵ(k, j)

K1
, and (17)

n̂(k, j)
C =

[2Ax̂(k, j)1 , 2Bx̂(k, j)2 ,2(x̂(k, j)3 −C)]T

K2
, (18)

such that K1 and K2 are convenient constants, that smooth the
cost function f (.) by making the euclidean norms of d̂(k, j)

C
and n̂(k, j)

C smaller, without turning f (.) into a more complex
function (notice that d̂(k, j)

C and n̂(k, j)
C are vectors that can be

defined up to a scale factor).
Knowing that x̂(k, j) = [x̂(k, j)1 , x̂(k, j)2 , x̂(k, j)3 ]T has to belong to

the mirror, we can write

x̂(k, j)3 =C−
√

D− Ax̂(k, j)1
2
− Bx̂(k, j)2

2
(19)

and redefine f (.) .
= f (x̂(k, j)1 , x̂(k, j)2 ).

As said before, (15) hits a minimum if vectors ̂̃d(k, j)

C and
c− r̂(k, j)C are collinear, which means that they can have the

(a) Objective function f (.)
colormap.

(b) sign(β̂ (k, j)) colormap.

Fig. 3: Example of the variation of the values of the objective
function (15), considering the parameters A = 1.59, B = 1,
C = 35, D = 252.

same or opposite directions. In both cases, we can expect

to have two solution for: r̂(k, j)C = {r̂(k, j,1)C , r̂(k, j,2)C }; ̂̃d(k, j)

C =

{̂̃d(k, j,1)

C ,
̂̃d(k, j,2)

C }; and β̂ (k, j) = {β̂ (k, j,1), β̂ (k, j,2)}, such that

c = r̂(k, j,i)C + β̂
(k, j,i)̂̃d(k, j,i)

C , β̂
(k, j,i),∈ R, and i = 1,2, (20)

Since we will have opposite directions for both ̂̃d(k, j,1)

C

and ̂̃d(k, j,2)

C , sign(β̂ (k, j,1)) =−sign(β̂ (k, j,2)). This means that,
from the two solutions of f (x̂(k, j)1 , x̂(k, j)2 ) = 0, we can only
consider the one in which β̂ (k, j) > 0, which corresponds to
the one with the short’s ray path (Fermat’s principle).

To illustrate this problem, let us consider an example.
Fig. 3(a) shows the color map of f (.) for the optimization
parameters x̂(k, j)1 and x̂(k, j)2 . All the possible solutions for the
optimization parameters, which means x̂(k, j)1 and x̂(k, j)2 that
hit the mirror, are shown in this figure. The two minimums
mentioned in the previous paragraph are clearly visible. On
the other hand, in Fig. 3(b) it is shown the sign of β̂ (k, j),
of each of the (x̂(k, j)1 , x̂(k, j)2 ) considered. As it can be easily
seen from these figures, the desired solution is the one on
the right, since it is the one which has β̂ (k, j) > 0. The
separation between the two regions (β̂ (k, j) > 0 and β̂ (k, j) < 0)
coincides with a local maxima barrier of f (.) and, with
that information, one can conclude that any iterative method
initialized with a point such that the initial β̂ (k, j) > 0 will
converge to the desired solution.

In order to solve this optimization problem, a gradient
descent method with adaptive step size [19], optimized
for our problem, was developed. The (iterative) gradient
method is commonly used in minimization of unconstrained
optimization problems, which is the case of our problem.
The method uses steps proportional to the opposite direction
of the gradient of the objective function, at the current point.
The adaptive step size is an acceleration technique, so that
the convergence occurs faster. We define positive variables
η1 and η2 as the steps that will be multiplied by ∂ f

∂ x̂(k, j)1

and
∂ f

∂ x̂(k, j)2

(analytically deduced) respectively. In our case, the
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(a) Example of a world and the re-
spective projected pattern.

(b) Projection of the pattern onto
the camera’s image.

Fig. 4: Example of a 3D scene used in the experimental
results (a) and its respective camera’s image (b). We use the
same setup as Fig. 2.

adaptive component of the method increases η1 (multiplying
by ku > 1) when the derivatives ∂ f

∂ x̂(k, j)1

of the current and

previous shearched points have the same sign, or decreases
(multiplying by 0 < kd < 1) if they have opposite signs. The
same reasoning is used for η2, in respect to ∂ f

∂ x̂(k, j)2

.

Being an iterative method, at each iteration we will have
a generic x̂(k, j), which means that (20) will not be true.
In addition to the objective function f (.), we also use as
stopping criteria ‖c− c̃‖, where we define c̃ as being the
intersection of the ray that leaves x̂(k, j) with the plane z = c3,
i.e.,

c̃ = x̂(k, j)+ β̂
(k, j)̂̃d(k, j)

C , β̂
(k, j) =

c3− x̂(k, j)3̂̃d(k, j)

C,3

. (21)

The reason why ‖c− c̃‖ is used as stopping criteria and not
as objective function is because, despite having a physical
interpretation simpler and more intuitive than our function,
it’s way more complex function than f (.) and it would
be computationally heavier to find the solution r̂(k, j)C . The
proposed algorithm is described in the appendix section.

After obtaining r̂(k, j)C , as said before, one can obtain its
projection (û(k, j)C , v̂(k, j)C ) onto the camera’s image using the
camera’s matrix PC ∈ R3×4, such that[

û(k, j)C v̂(k, j)C 1
]T
∼ PC

[
r̂(k, j)C 1

]T
. (22)

Doing this for all ŵ(k, j) we get the template image T (u,v),
with the projection of all the discretized lines l(k). An
example of the template image is shown in Fig. 2(d) (for the
projected pattern, projection lines, and discretized projection
lines shown by Figs. 2(a)-(c)). The goal is to use this
template image T (u,v) to perform the reconstruction of the
world’s scene, when an image C (u,v) is captured by the
camera (through the mirror). This topic is covered in the
next subsection.

C. Matching and reconstruction

To compute the 3D reconstruction, the goal is to use
both the information of the projected pattern and an image
acquired by the camera C (u,v). Since we have no knowledge

about the world’s scene, we will use the template image
T (u,v), obtained in Sec. II-B, to estimate all the possible
intersections of each line l(k) with the scene, i.e., the position
of each of ŵ(k, j). In Fig. 4(b), we show an example of a
camera’s image C (u,v) of the projected pattern (same pattern
shown in Fig. 2). For this image, we simulate a scene as
shown in Fig. 4(a).

With this information, in order to perform the matching,
all we have to do is to find the closest point in T (u,v), to
each point (u(k)C ,v(k)C ), in the camera’s image using

argmin
n,m

(
u(k)C − û(n,m)

C

)2
+
(

v(k)C − v̂(n,m)
C

)2
(23)

and, for the best solution n∗ and m∗ of (23), we reconstruct
the 3D point associated with (u(k)C ,v(k)C ) as the corresponding
3D point ŵ(n∗,m∗).

In order to get better coverage of the world, without
overloading the template image T (u,v) (which could cause
some mismatches at (23)), one can use changing patterns
which will create different incident rays in the mirror and,
consequently, different w(k) in the world. This can be done
by capturing a sequence of Ci(u,v) (image frames), each of
them corresponding to images captured by the camera, after
the projection of the pattern to the scene world with different
pattern template images Ti(u,v).

In conclusion, to reduce the noise in the reconstruction,
we do an additional filtering to the 3D data. We consider
the following procedure. For each of the k image points
(u(k)C ,v(k)C ) (at the captured image Ci(u,v)), we find the N ≥ 2
closest 2D points in Ci(u,v) and consider its corresponding
3D reconstructed points and, with the N + 1 resulting 3D
points, we estimate a plane Π. This plane is computed using
a RANSAC algorithm [20], in order to exclude outliers from
the estimation of the plane. Then, the intersection point
between the plane Π with the line l(k) (projection line of
(u(k)C ,v(k)C )) is computed and assigned to w(k).

III. EXPERIMENTS

To evaluate the proposed system, we need to simulate a
world scene to project the pattern. An example of a world
used in the tests is shown in Fig. 4(a). This scene is composed
by four planes that form four different regions, allowing us
to check how the reconstruction performs. As Ground-Truth
(GT), we use the real w(k) that can be computed for all k, as
explained in Sec. II-A. In respect to the evaluation metrics,
we used:
• The error in the reconstruction given by the euclidean

distance between the reconstructed w(k) and the respec-
tive GT points;

• The Field-Of-View (FOV) of the resulting system, ac-
cording to the x-axis (i = 1) and to the y-axis (i =
2) direction. To calculate the FOV, for each of the
directions, we use the origin and the two points with the

largest value of w(k)
i

−w(k)
3

(w(k)
i > 0) and −w(k)

i

−w(k)
3

(w(k)
i < 0),

where i = 1,2 (check Fig. 5).
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Fig. 6: How the discretization and noise in the position of the
pixels in C (u,v) affects the final results: (a) no discretization
or noise in the process (when the reconstruction has no
error only the GT points are visible); (b) the influence of
discretization and noise in the 3D reconstruction.

In order to see how our approach performs, we designed
several experiments to test its robustness, with several types
of noise. Taking this in consideration, we choose 3 different
mirror: a spherical one (with A = B = 1); a spheroid (with
A = B = 1.59), and an ellipsoidal type mirror (with A = 1.59,
B = 1). In all the mirrors, we choose C and D such that
C−
√

D > 0.
For the evaluation, we choose four different tests. In the

first one, we check how does the noise in the camera’s image
C (u,v) affects the reconstruction. In the remaining tests, we
evaluate how the error and FOV are influenced by changes in
the mirrors’ D parameter; in the distance between the camera
and the projector; and in the distance between the projector
and the mirror. In all of the tests, the camera is pointed at
[0,0,C/2]T . To create the template points ŵ(k, j) (see (11)),
we used a step α(k, j), in order to consider points that verify
−300 < ŵ(k, j)

3 <−10 and steps of 5 in the −z direction, for
each l(k).

A. The influence of noise in the camera’s image

The goal of the first experiment is to test how the use of a
real camera effects the final 3D reconstruction. Real cameras
use discrete pixels. In addition, one has to take into account
some noise associated with the pixels. Contrarily to the one
used in the reconstruction shown in Fig. 6(a) (which show
the reconstruction without noise). To simulate this situation,
we add a normally distributed noise to (u(k)C ,v(k)C ), with mean
0 and standard deviation ranging from 0 to 3 pixels, for all

k. The resulting new position of the pixels are then rounded
to the nearest integer, in order to achieve the discretization.

In this simulation, the camera and the projector are at
fixed positions [0,−7.5,0]T and [0,0,0]T , respectively, and
the three previous mentioned mirrors are used. The distance
between the mirrors and the projector is 7.5, D = 202 and
C = 27.5. Fig. 6(b) shows the respective results.

B. The influence of the mirror’s D parameter

Changing the D parameter of the mirrors will change
their size (radius in case of the spherical mirror) and,
consequently, it will allow to reach points in different parts
of world. In order to study this situation a test to evaluate
how the reconstruction error and the FOV are affected was
designed. In this test, the D parameter is increased from 10 to
30, with a step of 0.5, and the values of the two metrics are
saved. The camera is located at [0,−7.5,0]T , the projector at
[0,0,0]T , and distance between the mirrors and the projector
is 7.5, which means that C = 7.5+

√
D, for each D tested.

Discretization and normally distributed noise is introduced
in the camera’s image pixel, with null mean and standart
deviation of 1.5 pixels. The results for the reconstruction
error and the FOV with D is shown in Figs. 7(a) and 7(b)
respectively.

C. The influence of the distance between the camera and the
projector

The way the camera sees the world through the mirror
changes as its distance to the projector is altered. This change
will produce different results in the 3D reconstruction, since
it depends on the location of each point in both the camera
and template’s images. To observe the influence of this
feature, we fixed the projector at [0,0,0]T and moved the
camera from [0,−2,0]T to [0,−20,0]T , with a steps of 0.5.
For this purpose, we are considering D = 202 and C = 27.5.
It is also considered a normally distributed noise, with null
mean and standart deviation of 1.5, in the camera’s image, as
well as discretization. The results of the simulation are shown
in Fig. 8(a), for the reconstruction error, and in Fig. 8(b), for
the FOV.

D. The influence of the distance between the mirror and the
projector

Similarly to the case where the D parameter changes, when
the distance between the mirror and the projector is modified,
the reflections and points reached in the world will be differ-
ent. In order to test this changes, the projector was put on a
fixed location (at [0,0,0]T ), we set D = 202, and the distance
between the mirror and the projector was increased from 5
to 17.5 (which implies changing C from 25 to 37.5), with a
step of 0.5. The camera was located at [0,−7.5,0]T and we
also took into account image discretization and a normally
distributed noise with standard deviation of 1.5. Figs. 9(a)
and 9(b) show the evaluation of the 3D reconstruction and
FOV, respectively, when changing the respective change in
the system’s parameters.
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Fig. 7: The influence of the mirror’s D parameter (mirror’s size – radius in case of the spherical mirror). in the 3D
reconstruction (a) and FOV (b).
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Fig. 8: The influence of the distance between the camera and the projector in the 3D reconstruction (a) and FOV (b).
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Fig. 9: The influence of the distance between the mirror and the projector in the 3D reconstruction (a) and FOV (b).

IV. CONCLUSIONS

In this section we discuss the main results obtained from
the experiments described in the previous section, and how
they can influence our final goal of building an omnidirec-
tional catadioptric RGB-D camera system, as well as what
it’s planned for future work.

A. Analysis of the results

From the four experiments realized, it was possible to
take several important conclusions. The first experiment
tested how a system with a real camera would behave, by

considering discretization and noise pixel. We concluded
that, adding the discretization of the pixels to the model
created a baseline reconstruction error, that can be use as
reference to the other experiments. Then, as expected, the
error increased as the standard deviation of the noise in the
pixels also did.

When considering the other experiments, one of the main
conclusions obtained was that, in general, in order to increase
the FOV (something that is essential in an omnidirectional
system), one has to accept that the resulting reconstruction
error will also increase. The only situation where this did



not happen was when the distance between the camera
and the projector was increased, resulting in a decreasing
reconstruction error, while the FOV remained approximately
constant. This fact can be used in our favour, to lower the
error but also without changing the FOV. However, one
should take into account that this will enlarge the physical
dimension of our system.

Other relevant situation was the fact that increasing the
mirrors’ D parameter resulted in a lower reconstruction error.
However, this can be explained by the fact that, in these
situations, the surface of the mirrors where reflections occur
are approximately flat, turning the system more similar to a
conventional RGB-D system, which results in a lower FOV.

To conclude, we can also see that the mirror parameters
also affect both the errors in the reconstruction and FOV.
From the three tested mirrors, the one that gave a more
balanced performance was the ellipsoidal mirror. It obtained
reconstruction errors almost as lower as the spherical mirror,
while keeping wider FOV than the spherical and, in some
cases, similar to the spheroidal mirror.

B. Final remarks and future work

In this work we addressed some problems related with
building an omnidirectional catadioptric RGB-D camera,
namely the problems associated with the estimation of the
parameters associated with the depth channel. We develop a
mathematical framework to solve this problem which, from
the experimental result, allows us to say that such type of
device is in practice possible to develop.

In this paper we propose a novel omnidirectional RGB-D
system, which uses a projector and cameras, both looking
at the same quadric mirror. We also propose a template
matching technique (including an approach for the projection
of 3D points into the mirror’s surface) for the reconstruction
of the scene and, as result, for the computation of the depth
channel of the sensor.

To conclude, as future work, we plan the construction of a
prototype of the proposed system, that will allow us to put in
practice the encouraging results obtained in the simulations.
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APPENDIX

In this appendix we present the gradient method with adaptive
step size for finding the reflection point r̂(k, j)C .

Data: A, B, C, D, ŵ(k, j), c
Choose initial x̂(k, j) such that β̂ (k j) > 0;
Define values for ku and kd such that ku > 1 and 0 < kd < 1;
Choose a tolerance for ‖c− c̃‖;
while ε > tolerance do

Compute ∂ f
∂ x̂(k, j)1

and ∂ f
∂ x̂(k, j)2

;

x̂(k, j)i ← x̂(k, j)i −ηi
∂ f

∂ x̂(k, j)i

, for i = 1,2;

x̂(k, j)3 ←C−
√

D−
(

Ax̂(k, j)1

)2
−
(

Bx̂(k, j)2

)2
;

d̂(k, j)
C ← x̂(k, j)− ŵ(k, j);

n̂(k, j)
C ← [2Ax̂(k, j)1 ,2Bx̂(k, j)2 ,2(x̂(k, j)3 −C)]T ;̂̃d(k, j)

C ← d̂(k, j)
C −2n̂(k, j)

C

(
n̂(k, j)

C ·d̂(k, j)
C

‖n̂(k, j)
C ‖

2

)
;

β̂ (k, j)← c3−x̂(k, j)3̂̃d(k, j)

C,3

;

c̃← x̂(k, j)+ β̂ (k, j)̂̃d(k, j)

C ;
ε ←‖c− c̃‖;
if di

∂ f
∂ x̂(k, j)i

> 0, for i = 1,2 then

ηi← kuηi, for i = 1,2 ;
else

ηi← kdηi, for i = 1,2;
end
di← ∂ f

∂ x̂(k, j)i

, for i = 1,2;

end


