Pliicker Correction Problem: Analysis and Improvements in Efficiency*

Jodo Cardoso'?, Pedro Miraldo®, and Helder Araujo'

nstitute for Systems and Robotics, Universidade de Coimbra, Portugal

2Coimbra Institute of Engineering, Instituto Politécnico de Coimbra, Portugal

3Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Portugal

jocar@isec.pt, pmiraldo@isr.tecnico.ulisboa.pt, and helder@isr.uc.pt

Abstract

A given six dimensional vector represents a 3D
straight line in Pliicker coordinates if its coordinates
satisfy the Klein quadric constraint. In many problems
aiming to find the Pliicker coordinates of lines, noise in
the data and other type of errors contribute for obtain-
ing 6D vectors that do not correspond to lines, because
of that constraint. A common procedure to overcome
this drawback is to find the Pliicker coordinates of the
lines that are closest to those vectors. This is known
as the Pliicker correction problem. In this article we
propose a simple, closed-form, and global solution for
this problem. When compared with the state-of-the-art
method, one can conclude that our algorithm is easier
and requires much less operations than previous tech-
niques (it does not require Singular Value Decomposi-
tion techniques).

1 Introduction

In many 3D vision problems that range from camera
calibration to robot navigation, it is required to repre-
sent 3D straight lines. Pliicker coordinates are one of
the most used formulations [4]. Vectors of Pliicker coor-
dinates are built-up by stacking both direction and mo-
ment of the respective lines (both 3D vectors), giving
a 6D vector. Direction and moment vectors must sat-
isfy the so-called Klein quadric constraint, that is, they
need to be orthogonal to each other. In this paper we
address the problem of estimating Piicker coordinates
from general (unconstrained) R® vectors. This is called
the Pliicker correction problem.

For many reasons, especially when considering data
with noise, it is hard to include the orthogonal constraint

* P. Miraldo was supported by the FCT project with refer-
ence [UID/EEA/50009/20131], and the FCT grant with reference
[SFRH/BPD/111495/2015].

in the estimator (frequently, it requires non-linear pro-
cedures). Some authors do not consider this constraint
on their methods or propose optimization techniques in-
volving this constraint but, to avoid unnecessary com-
putational effort, non-linear procedures are stopped be-
fore fulfilling the respective constraint. Several exam-
ples can be found in the literature, e.g. camera models
(mapping between pixels and 3D straight lines) [12];
triangulation of 3D lines [10]; structure-from-motion
using lines [6, 8]; and 3D reconstruction of lines us-
ing a single image of a non-central catadioptric camera
[8]. Thus, to get Pliicker coordinates on these cases, a
Pliicker correction needs to be applied.

The state-of-the-art method for solving the Pliicker
correction problem is due to Bartoli and Sturm at [6],
hereafter called BS method. They find the clos-
est Pliicker coordinates (in Euclidean sense) from an
unconstrained six-dimensional vector by orthogonally
projecting the input vector onto the Klein quadric (and
so it verifies the orthogonal constraint). Their approach
involves SVD decompositions and can be found in [6, p.
425]. It should be noticed that in the description of the
BS Pliicker correction algorithm (Table 2 in [6]) there is
a typo in the entries of the matrix 7'. The correct matrix
T is given by

T [z2 22] 0
Z21 —Z11

We performed a detailed analysis of the proof of the BS

method ([6, p. 425]) and propose some clarifications.

For the proof of BS method the following identity is

used:

IUA -B| = A -U"B]| 2)
where A and B are matrices of sizes nxn and m xn, re-
spectively, with m > n, and U is an m X n matrix with
orthonormal columns (i.e . UTU = I, but UU” #£ I).
This identity is related with the invariance of the Frobe-
nius norm for left multiplication by matrices with or-
thonormal columns.

However, (2) does not hold in general. It is valid if,
and only if, the space of columns of B coincides with
the space of columns of U, in which case B = UF,
for some matrix F of size n x n. We notice that, in the
proof of the BS method, this requirement is not explic-
itly mentioned.

Paper [15] also addresses the same problem. How-
ever they do not address the problem of the computa-
tional efficiency and the proposed approach is quite dif-
ferent from the method described in this paper. More-
over, even if the solution proposed in [15] is indeed a
global minimum, there is no formal proof of such a fact.
We shall recall that Lagrange multipliers yield only lo-
cal minima, unless the existence of a global minimum
is guaranteed.

1.1 Notations and Problem Definition

Column vectors are represented by bold small let-
ters (e.g. a € R” for an n-dimensional vector). Bold
capital letters denote matrices (e.g. A € R"™*™ for
an n X m matrix). Regular small letters denoted zero
dimensional elements (e.g. a). ||.|| denotes the Frobe-
nius norm for matrices or the 2-norm for vectors. Re-
call that, for any matrix A, the Frobenius norm is given
by ||A||? = trace(AT A) and, for any vector u, the
2-norm satisfies ||u? = u”u.

The Pliicker coordinates of a 3D straight line G can
be represented by a six dimensional vector:

G~ (u",v") e R, 3)

where u,v € R3 are, respectively, the direction and
moment of the line, verifying the Klein quadric con-
straint

ulv =0, “)

see [4].

Let a and b be given vectors in R? (not necessar-
ily satisfying the orthogonality constraint), and assume
that x and y denote vectors in R3. Mathematically, the
Pliicker correction problem corresponds to solving the
nonlinear constrained optimization problem formulated
as

min |[[ab] - [x y][|*. ©)
x1ty=0

While the objective function
fxy) = lla—x|* + b -yl ©)

is convex, the Klein quadric constraint x”'y = 0 is not.
The optimization problem (5) belongs to a class of non-
convex problems known in the literature as quadrati-
cally constrained quadratic programs. This means, in

particular, that the existence of a global minimum may
be a non trivial problem.

The main goals of this paper are to prove the exis-
tence of a global minimum for (5) and to give an explicit
formula for computing such a minimum. Our approach
is essentially based on the application of the classical
Lagrange multipliers to the constrained problem (5). It
does not involve singular value decompositions which
turns it faster than the BS method. Our results are sup-
ported by mathematical proofs and numerical experi-
ments. In addition our method is designed to deal with
general n-dimensional vectors a and b, and not exclu-
sively with 3-dimensional vectors.

1.2 The Explicit Formula

Let us consider two general 3D vectors a and b, such
that a # +b and b # 0. As it will be shown in the
following sections, the proposed solution (x., y.) for
the global minimum of (5) is given by

1 1

x*:ﬁ(a—ab) and y*zl_iaz(b—aa),

(7

. 2p
g+ — 4

withp =a”b and ¢ = ||a]|®> + |b]|®. (8)

2 Pliicker Correction using Lagrange
Multipliers

Suppose again that a and b satisfy a # +b and
b # 0, and let £(x,y, A) denote the Lagrangian func-
tion associated to (5). Some calculation yields

L(x,y,A) = |la]|® + ||b]> —2a"x—
—2bTy + [x[* + |ylI* +2Ax"y, (9

where the real number A is the Lagrange multiplier, x
and y are the aimed solutions. The partial derivatives
of the Lagrangian with respect to x, y and A\ are (for
formulae of derivatives with respect to vectors see [1])

%: —2a+2x + 2\y (10)
ox

%: —2b + 2y + 2\x (11)
dy

oL | r

DN 2x7y. (12)

Equating these partial derivatives to zero, one obtains
the first order optimality conditions (also known as

Karush, Kuhn, Tucker conditions; see [9, 2]):

a—x = Ay (13)
b-y = X (14)
xTy 0. (15)
From (13) and (14),
a— b b — la
e M y=Ton U9

(a geometric interpretation of (15) and (16) can be
found in Figure 1). Replacing x and y in (15), leads
to the quadratic equation in A

PN —gA+p=0, (17)
where p and q are
p=a’b and ¢=al* +|bJ%. (18
Hence, the solutions of (17) are

N LEVE W VE
2p 2p
(19)
Denoting, fori = 1, 2,

a—)\ib b—)\ia> ’ (20)

(Xi7yi):(1—>\?7 1_/\5

we know that (x1,y1) and (x2,y2) are the candidates
to be a local minimum of the Lagrangian £(x,y, \).
However, since the gradient of the constraint x”y = 0
involved in (5) annihilates at (0, 0), one also needs to
consider this non regular and non stationary point. Thus
a local minimum of (5) must be attained at one of the
following three points: (x1,y1), (X2,y2) or (0, 0).

Now we shall note the following facts:

e The assumption of a and b being such that a #
+b, with b # 0, guarantees, in particular, that A
cannot be 1, which ensures that x and y in (16)
are well defined.

e In (19), \; is always a real number because g > 2p.
Indeed,

g—2p=aTa+bTb—-2a"b =
(a-b)"(a-b)=la-Db[*>0. 1)

Moreover, if p = 0, then a and b are orthogonal,
which means that the global minimum of the ob-
jective function is attained at (a, b).
We end this section by showing that the objective
function (6) satisfies

f(x2,¥2) < f(x1,y1) < f(0,0), (22)

which proves that (x3,y2) given in (20) is the local
minimum where the objective function f attains the
smallest value. In Sec. 2.1 it is shown that (x2,y2) is
also the global minimum. Substituting x and y given
in (16) in the objective function (6), some calculation
yields the following real function depending on the real
variable \:

A 2
g(\) = (1 — /\2> (g* —4pA+q) . (23)

Now (22) can be rewritten as
g(A2) < g(A\1) <gq. (24)
Let us write the function g in the form

g\ = [eN)* BN, (25)

with ¢(\) = A/(1 — A?) and (\) = gA\? — 4p\ + q.
For A\; and Ao given in (19), it is not hard to check
that ¢(\1) = —¢(Az), which implies [¢p(A\)]> =
[6(A\2)]>. Hence, to prove the first inequality of (24),
it remains to show that ¥ (Ag) < ().
In fact, because \; (: = 1, 2) satisfies the quadratic
equation (17), one has A2 = (q/p)\; — 1. Therefore,

-’

PY(\i) ’

>\i7
and, consequently,

a(q® — 4p%) — (¢ — 4p*)*°

Y(hs) = 7 <v(n) =
2 g2 2 42)3/2
q(q° —4p*) -;pgq P 06
Finally, considering the equality
A= (g/p)) — 1 (27)

and the fact that the quadratic function ¢)(\) is non neg-
ative, for all real numbers), the second inequality of
(24) arises as a consequence of the equivalences

—4pA3 4+ 3¢)\2 < ¢

AL(—4pAT +3¢A1) < g (by (27))

AM(dp —qh) <q

4ph1 —g\] < ¢

4 2 _ 2
oy

g(A1) <q

<0 (by(27) again)

(N

—1(A1) <0.

Vi

Flgure 1: Geometric interpretation of the Pliicker correction problem.
Given vectors a and b, the goal is to find two perpendicular vectors x, and
Yy that minimize the sum di + do representing the sum of the distance be-
tween a and the line through the origin with the direction of the unit vector s
with the distance between b and the line through the origin with the direction
of the unit vector t.

2.1 Existence of a Global Minimum

Given a unit vector s in the Euclidean space R”, con-
sider the line ¢ through the origin with the direction of
s. Given another vector a € R", it is well-known that
the unique vector of ¢ that is closest to a (in Euclidean
sense) is the orthogonal projection of a onto ¢, which is
the vector x = (a”'s)s (see, for instance, [3, p.435]).

Hence, the constrained problem (5) corresponds to
find orthonormal vectors s and t minimizing the sum of
the distance d;, between a and the line through the ori-
gin with the direction of s, with the distance d5, between
b and the line through the origin with the direction of t
(see Fig. 1). This means that (5) can be reformulated as

min [lab] - [(aTs)s (bTE)t]|.
sTt =0,
lsll = 1, f1e]l = 1

(28)
This formulation of the Pliicker correction problem is
apparently more complicated and less practical than (5),
but it is helpful to show that (5) has in fact a global mini-
mum. To see this, one just needs to observe that the con-
straints in (28) define a closed and bounded (and, con-
sequently, compact) set in R?” endowed with the Eu-
clidean metric. Thus, by the classical Weierstrass theo-
rem (see, for instance, [9, Appendix A.6]), there exists
at least a global minimum. This proves that the analysis
carried out in Section 2, using the Lagrange multipli-
ers, guarantees that the objective function (6) attains a
global minimum at

(X)_ a—)\zb b—>\2a
2,y2) = 1_)\%7 I—A%)

where \; is defined as in (19).

2.2 Casesa=+b

As far as we know, the cases when a = +b rarely oc-
cur in practical problems of computer vision. However,
it is worth to make some comments on this particular
case.

If a = b with b = 0, the solution of (5) is obviously
x=0andy = 0. If a = b but b # 0 then replacing b
by a in the Lagrangian (9), we get a simpler expression.
Finding the first order optimality conditions and solving
them, one easily concludes that any pair of vectors of
the form (a+y,y), with (a+y)”y = 0 and y arbitrary,
gives a local minimum. The value of the Lagrangian at
all these local minima is ||a]|? and does not depend on
y. Choosing, for instance, y = 0, it follows that the
pair (a, 0) is a local minimum of (5). Using a similar
argument to that of Sec. 2.1, this pair is also a global
minimum.

Similarly, if a = —b, with b # 0, it can be con-
cluded that (a, 0) provides also a global minimum for

5).
3 Experiments

In this section, we compare the method based on
the explicit formula (7), with the method of Bartoli
and Sturm [6], in terms of computational effort. Both
methods were implemented using MATLAB. We con-
sider three different algorithms (the codes are shown in
the Appendix A):

e LMPC which denotes the method derived in this pa-

per;

e BS which corresponds to the Bartoli and Sturm’s

approach; and

e BS-LSVD which denotes to the method proposed

by Bartoli and Sturm, where the SVD is computed
using closed-form techniques.

To compare the methods we use the following proce-
dure: we randomly generated unconstrained 106 vectors
a, b € R3 (Klein quadric a’b = 0 is not enforced).
For each trial, we apply both the Pliicker correction al-
gorithms to the respective six-dimensional vectors, stor-
ing the values of the corresponding objective functions
(6). The results in terms of computational time required
for each algorithm are shown in Tab. 1.

Both LMPC and BS-LSVD methods can be imple-
mented using only closed-form steps. However, while
LMPC can be computed with a few steps (it only re-
quires six lines of code), BS-LSVD requires more alge-
braic operations and takes a longer time to execute, see
Tab. 1. Indeed, BS—LSVD is about two times slower

Table 1: Evaluation of the computational time for the
three algorithms, for general unconstrained 10° trials.

Algorithm | For all trials | For each trial (median) ‘

LMPC 6.5797 s 5.3940 us
BS 43.688 s 34.827 ps
BS—-LSVD 14.0058 s 11.805 us

than LMPC. On the other hand, if we consider the orig-
inal approach BS, our experiments have shown that it
is about six times slower than our method. We recall
that it requires the computation of two singular value
decompositions and some iterative steps.

3.1 Discussion of the Experimental Results

Firstly, as one can see from the code of the three al-
gorithms shown in Appendix A, the number of opera-
tions required by the method proposed in this paper is
significantly lower. With this information, one can con-
clude that from a computational complexity perspec-
tive, our method is more efficient.

In many applications there are estimates of 3D line
coordinates that are not obtained from points. 3D lines
can be estimated from intersections of planes, for ex-
ample, or they can be obtained from non-conventional
sensors, such as non-central generic cameras. In non-
central generic cameras calibration, it consists in esti-
mating a 3D line for each pixel [11, 12]. If we represent
3D lines using Pliicker coordinates, the Klein quadric
constraint has to be enforced — in this case this correc-
tion has to be applied to all and each pixel, which corre-
sponds to call the Pliicker correction algorithm a large
number of times. Let us consider a camera system, with
a standard image size of 1280 x 1024, which contains
a total of 1310720 pixels. For this case and from the
experimental results, one can conclude that the Pliicker
correction step using the method proposed in this paper
will be, at least, twice as fast as the BS method, which
consists in saving more than eight seconds.

Other example is, using perspective cameras, the es-
timation of 3D lines from the intersections of the back-
projecting planes from two or more images.

4 Conclusions

In this paper we have addressed the Pliicker cor-
rection problem, by minimizing the Frobenius norm
between the estimated and input vectors. By solv-
ing the corresponding optimization problem using La-
grange multipliers, a simple solution, that can be com-
puted in closed-form with a very small number of oper-

ations, was proposed. Contrarily to the state-of-the-art
method, we have proved theoretically that our method
computes always the global minimum. In addition, the
special cases (where a solution cannot be computed) are
analysed. As the experimental results show, the pro-
posed method is faster.

References

[1] H. Liitkepohl, Handbook of Matrices, Jonh Wiley and
Sons, 1996.

[2] J. Nocedal and S. Wright, Numerical Optimization,
Springer-Verlag New York, 1999.

[3] C. D. Meyer, Matrix Analysis and Applied Linear Alge-
bra, SIAM, Philadelphia, 2000.

[4] H. Pottmann and J. Wallner, “Computational Line Ge-
ometry”, Springer-Verlag Berlin Heidelberg, 2001.

[5] R. Hartley and A. Zisserman, Multiple View Geometry
in Computer Vision, 2nd Edition, Cambridge University
Press, 2004.

[6] A. Bartoli and P. Sturm, “Structure-from-Motion Using
Lines: Representation, Triangulation and Bundle Ad-
justment”, Computer Vision and Image Understanding,
2005.

[71 D. Lanman, M. Wachs G. Taubin, and F. Cukierman,
“Reconstructing a 3D Line from a Single Catadioptric
Image”, IEEE Int’l Symposium on 3D Data Processing,
Visualization, and Transmission (3DPVT), 2006

[8] T. Lemaire and S. Lacroix, “Monocular-vision based
SLAM using Line Segments”, IEEE Proc. Int’l Conf.
Robotics and Automation (ICRA), 2007.

[9] D. Luenberger and Y. Ye, Linear and Nonlinear Pro-
gramming, Third Ed., Springer, 2008.
[10] K. Josephson and F. Kah, “Triangulation of Points,
Lines and Conics”, J] Math Imaging Vis, 2008.

[11] P. Sturm, S. Ramalingam, “A Generic Concept for
Camera Calibration”, European Conf. Computer Vision
(ECCV), 2011

[12] P. Miraldo and H. Araujo, “Calibration of Smooth Cam-
era Models”, IEEE Trans. Pattern Analisys and Machine
Intelligence, 2013.

[13] P. Miraldo and H. Araujo, “Planar Pose Estimation for
General Cameras using Known 3D Lines”, IEEE/RSJ
Proc. Int’l Conf. Intelligent Robots and Systems (IROS),
2014.

[14] P. Miraldo, H. Araujo, and N. Gongalves, “Pose Esti-
mation for General Cameras using Lines”, IEEE Trans.
Cybernetics, 2015.

[15] F. Wu, M. Zhang, G. Wang, and Z. Hu, “Algebraic Error
Based Triangulation and Metric of Lines”, PLoS ONE,
2015.

A Appendix

24

25

26

27

Considering two general vectors a = (aj,as,a3) and b = (b1, b, b3) that do not verify the Klein constraint, using
our method, the closest orthogonal vectors are given by x = (21, 22,23) and y =

LMPC

(y1, Y2, y3) such that:

p = alxbl + a2+b2 + a3*b3;

g = alxal + a2xa2 + a3xa3 + blxbl + b2xb2 + b3xb3;
mu = 2%p/ (gtsqrt (gqxg-4xp*p));

u_ = 1/ (l-mu*mu) ;

x1 = (al-mu*bl)*u_; x2 = (a2-muxb2)*u_; x3 =

vyl = (bl-muxal)*u_; y2 = (b2-mu*a2)x*u_; y3 =

(a3-muxb3) xu_;
(b3-mu+*a3) xu_;

The Bartoli and Sturm’ algorithm is based on the singular value decomposition (SVD) and can be implemented as:

BS
[U,S,V] = svd(A,0);
Z = SxV'; z11 = Z(1,1); z21 = Z2(2,1); 222 = 72(2,2); z12 = 7Z(1,2);
T = [212, z22; 221, -z11];
[7,St,V_] = svd(T);
hv = V_(:,2);
hv = [hv(1),-hv(2);hv(2),hv(1)];
R = UxhVxdiag(diag (hV’ «SxV’));
x = R(:,1);
y = R(:,2);

Since in this case we are dealing with 3 x 3 matrices, there is a closed form solution for this decompositions. Thus, in

our experiments we also implemented a closed form solution for the Bartoli and Sturm method:

BS-LSVD
sl = sgrt((allxallxallxall + 2xallxall xal2+xal2 + 2xallxall xa2lxa2l -
s2 = sqgrt(all*xall /2 - (allxall*all*all + 2xallxall *al2*al2 +) ;
vll = —((all*al2 + a2lxa22 + a31*a32))/(a11A2 + a2l1”2 + a31"2 - sl*sl)- v21
vl = v11/ (v11lxv1ll + v21xv21) " (1/2); v21 = v21/(v1l*vll + v21*v21l)~(1/2)
v1l2 = v21; v22 = -vll;
ull = (al2xv21 + all*vll)/sl; ul2 = (al2*v22 + allxvl2)/s2;
u2l = (a2l*xvll + a22*v21)/sl; u22 = (a2l*vl12 + a22xv22)/s2;
u3l = (a31lxvll + a32xv21l)/sl; u32 = (a3l*xvl2 + a32%v22)/s2;
z11 = sl*vll; z12 = sl*v2l;
z21 = s82%v12; 222 = 82%v22;
tll = z12; tl12 = z22; t21 = z21; t22 = -z11;
stl = tl1ll/2 + t22/2 — (tllxtll - 2*tl11+t22 + t22+t22 + 4*t12+t21) " (1/2)/2;
st2 = tll/2 + t22/2 + (tll*tll — 2*tll*t22 + t22+t22 + 4xtl12+t21) " (1/2)/2;
if stl < st2
vl = (tl2%1)/(stl - tl1l); v2 = 1; nv = (vlixvl + v2xv2) " (1/2)
vl = vl/nv; v2 = v2/nv;
else
vl = (tl2x1)/(st2 — tll); v2 = 1; nv = (vlixvl + v2*xv2) "~ (1/2)
vl = vl/nv; v2 = v2/nv;
end
hll = vl; hl2 = -v2; h2l1 = v2; h22 = vl;
x1 = (ull*hll + ul2+h21)*(hllxsl*vll + h2lxs2+%v12);
yl = (ullxhl2 + ul2+«h22)x (hl2xsl*v21l + h22%s2%xv22);
x2 = (u2lxhll 4+ u22+h21)*(hll*sl*vll + h21xs2xv12);
y2 = (u2lxhl2 + u22+h22)* (hl2%sl*xv21l + h22xs2xv22);
x3 = (u31l*hll + u32+h21)*(hllxsl*vll + h2lxs2%v12);
y3 = (u31lxhl2 + u32+xh22)* (hl2%xsl*v21l + h22%s2%v22);

1;

