
UNIVERSIDADE DE COIMBRA
DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES
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Abstract—In this paper we study pose estimation for non-
central cameras, using planes. The method proposed uses non-
minimal data. Using the homography matrix to represent the
transformation between the world and camera coordinate sys-
tems, we describe a non-iterative algorithm for pose estimation.
In addition, we propose a parameter optimization to refine the
pose estimate. We evaluate the proposed solutions against the
state-of-the-art method in terms of both robustness to noise and
computation time. From the experiments, we conclude that the
proposed method is more accurate against noise. We also conclude
that the numerical results obtained with this method improve
with increasing number of data points. In terms of processing
speed both versions of the algorithm presented are faster than
the state-of-the-art algorithm.

I. INTRODUCTION
Considering only geometric entities, an imaging system is a

mapping between the 3D world and a 2D image [1]. This map-
ping can be represented by an individual association between
world 3D lines and pixels in the image plane [2], [3]. Camera
calibration consists in the estimation of the correspondences
between image pixels and the corresponding projecting 3D
straight lines.

Usually image space does not change and, as a result, we
can define a 3D coordinate system for the image coordinates.
On the other hand, a camera is a mobile device and as a con-
sequence we can not define a fixed global coordinate system
to represent the lines mapped into the image points. Therefore
we define a 3D reference coordinate system associated with
the camera to represent the 3D lines mapped into the image
pixels [1]. As a consequence, to estimate the coordinates of
3D entities represented in a different coordinate system, we
need to estimate a rigid transformation mapping the camera
coordinate system into the world coordinate system.

For central camera models (which can be modeled by
a perspective projection Figure 1(a)), several approaches to
absolute pose estimation, such as [4], [5], have been proposed
for both minimal configurations (suitable for hypothesize-
and-test architectures like RANSAC [6]) and non–minimal
cases [7], [8], [9], [10]. Some work has also been developed
extending pose estimation methods so that points and lines can
be used, such as e.g. [11], [12].

Most of the algorithms for the estimation of pose are based
on arbitrary 3D target point configurations. In many problems
such as mobile robotics and augmented reality, it is pratical
to use planar patterns to compute the absolute pose. For the
case of central cameras several approaches using 3D coplanar
points were developed, such as [13], [14].

In the last few years, cameras whose projection rays do not
intersect at a single effective view point (imaging devices that
can not be modeled by a central projection, see Figure 1(b))
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started to be used, due essentially to the large fields of view that
can be obtained. Examples of such configurations occur when
the imaging rays are subject to reflection and/or refraction. For
these imaging devices new methods and algorithms have to be
considered for the estimation of the absolute pose.

For non-central camera models, there are algorithms for
the minimal case, [15], [16]. For the non-minimal case,
Schweighofer and Pinz at [17] proposed an iterative solution
for global pose estimation. Despite the fact that the method
proposed by Schweighofer and Pinz can be applied to both
planar and non-planar cases, the method is iterative.

In this article, we address the problem non-minimal ab-
solute pose estimation for general non-central cameras, when
considering the case where the world points belong to a plane.
We present a non-iterative algorithm to estimate the pose. In
addition, we also propose a refinement of the estimation of
the pose parameters by means of an optimization using the
Quasi-Newton algorithm.

A. Proposed Approach
For the estimation of the 3D pose, the calibration of

the imaging device is assumed to be known. We use the
Generalized Camera Model [2], which can represent any type
of imaging device (central or non-central). This model assumes
that an image pixel is mapped into an arbitrary ray in 3D
world. Since we assume that the camera has been previously
calibrated, for all image pixels we know the corresponding 3D
straight line coordinates in the camera coordinate system.

Pose is given by the estimates of the rotation and translation
parameters that define the transformation between the camera
and the world coordinate systems. In this article we use the
homography map to represent this transformation. Using the
homography matrix and based on the relationship of incidence
between points and lines in 3D space, we define an algebraic
relationship for the pose. However, the homography matrix is a
function of both transformation and 3D plane parameters [18].
As a result, we divided the estimation of the homography into
two steps: we define a space of solutions with three degrees
of freedom for the homography matrix, based on the algebraic
relationship between the 3D points and 3D lines; using the
information of the 3D plane, three constraints that the space
of solutions must satisfy are defined. The homography matrix
is estimated using these constraints.

B. Notation
In general, bold capital letters (e.g. A ∈ Rn×m, n rows

and m columns), bold small letters (e.g. a ∈ Rn, n elements)
and small letters (e.g. a) represent matrices, vectors and one
dimensional elements respectively. The matrix represented as
â linearizes the exterior product such that a× b = âb.

Let us consider: known matrices U ∈ Rn×m, V ∈ Rk×l

and C; and an unknown matrix X ∈ Rn×l. Using Kronecker
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Fig. 1. Depiction of the pose estimation problem, using planar patterns.
Figure (a) shows pose estimation using central cameras. Figure (b) shows the
pose estimation configuration in the case of a general non-central camera.

product we can define the following relation

UXVT = C⇒ (V ⊗U) vec (X) = vec (C) (1)

where ⊗ represent the Kronecker product with (V ⊗U) ∈
Rnk×nl and vec (.) is a vector formed by the stacking of the
columns of the respective matrix.

II. RELATIONSHIP OF INCIDENCE USING THE
HOMOGRAPHY

Pose estimation requires the estimation of a rotation matrix
R ∈ SO (3) and a translation vector t ∈ R3 that define the
rigid transformation between the world and camera coordi-
nate systems. Since we consider that the imaging device is
calibrated, pose is specified by the rigid transformation that
satisfies the relationship of incidence between points in the
world coordinate system and 3D straight lines represented
in the camera coordinate system, Figure 1. To distinguish
between features represented in the world coordinate system
and entities in the camera coordinate system, we use the
superscripts (W) and (C) respectively.

The rigid transformation between a point in world coordi-
nates p(W) and the same point in camera coordinates p(C) is
given by

p(C) = Rp(W) + t. (2)

Since we use the assumption that all the points belong to
a plane Π(W), from the homography map [1], [18], we can
rewrite Equation (2) as

p(C) =

(
R +

1

ζ
tπT

)
︸ ︷︷ ︸

H

p(W) (3)

where Π(W) .
= (ζ,π) ∈ R4, H ∈ R3×3 is called the

homography matrix, ζ and π are the distance from the plane
to the origin and the unit normal vector to the plane Π(W)

respectively.
For pose estimation, we assume that the non-central cam-

era is calibrated. Therefore for each pixel the corresponding
3D line is known (in the camera coordinates system). Let
us consider that lines are defined using Plucker coordinates
l(C)R .

=
(
d(C),m(C)), where d(C) and m(C) are the di-

rection and moment of the line respectively, constrained to〈
d(C),m(C)〉 = 0. From the 3D incident relation between a

line and a point [19], we have

d(C) × p(C) = m(C) ⇒ d̂(C)p(C) −m(C) = 0. (4)

Since our goal is to estimate the pose using coplanar points
p(W) ∈ Π(W), we can use the homography map to transform
points from camera coordinates into the world coordinates

(Equation (3)). Thus, from Equation (4) and since m(C) ×
m(C) = 0, we derive the following relation

d̂(C)Hp(W) −m(C) = m̂(C)d̂(C)Hp(W) = 0. (5)

Using the Kronecker product, we isolate the unknown matrix
H, such that(

p(W) T ⊗ m̂(C)d̂(C)
)

vec (H) = 0. (6)

From the properties of the Kronecker product [20], the
dimension of the column-space of p(W) T ⊗ m̂(C)d̂(C) is
equal to the product of the dimension of the column-space
of p(W) T and m̂(C)d̂(C). Since

〈
d(C),m(C)〉 = 0, it can

be shown that the dimension of the column-space of both
p(W) T and m̂(C)d̂(C) are equal to one. As a result, the
dimension of the column-space of p(W) T ⊗ m̂(C)d̂(C) is one.
Since the dimension of the column–space is equal to the
number of linearly independent columns/rows, we conclude
that Equation (6) only has one linearly independent rows.

III. PROPOSED ALGORITHM
In the previous section we describe an algebraic relation-

ship between the coordinates of points represented in the world
coordinate system and the coordinates of lines represented in
the camera coordinate system, for an unknown homography
matrix. However, we note that it does not contain all the known
information. Since the coordinates of the points are known,
the coordinates of the plane Π(W) .

= (ζ,π) are also known
which, according to the definition of the homography matrix
(Equation (3)), must be taken into account on the estimation
of the homography map.

However, and if the data are not corrupted with noise,
these constraints need not to be taken into account in the
estimation of the homography matrix. If, on the other hand,
data are affected by noise the estimated homography map will
be an approximation. If the constraints associated to the plane
coordinates Π(W) are not imposed, the error on the estimation
of the parameters will affect the elements of (ζ,π), which will
decrease the accuracy of the method. In the rest of this section
we derive an approach which takes into account the plane
parameters in the computation of the homography matrix.

Without loss of generality, we consider a rigid transforma-
tion

{
R̃, t̃

}
of the coordinates of the world points, such that

the coordinates of the 3D points and of the plane are

p̃
(W)
i = R̃p

(W)
i + t̃, ∀i (7)

Π̃
(W) .

=
(
ζ̃, π̃

)
=

(
−t̃T R̃π + ζ, R̃π

)
(8)

such that π̃ is proportional to the z–axis and ζ̃ = 1.

A. Estimation of the Homography Matrix
Using the representation of the world points described in

the previous section and the algebraic constraints defined in
Equation (6), for a set of points in the world and respective
3D lines, we aim to estimate a homography matrix H(1), such
that 

p̃
(W)
1

T
⊗ m̂

(C)
1 d̂

(C)
1

...

p̃
(W)
N

T
⊗ m̂

(C)
N d̂

(C)
N


︸ ︷︷ ︸

M

vec
(
H(1)

)
= 0. (9)
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Fig. 2. In this figure we show the mean and median of the variation of
the five smallest singular values of the matrix M as a function of the noise
(we use the variable “Noise Level” mentioned in the section describing the
experiments).

In theory, and without noise, for N ≥ 8, we will have one
singular value of M equal to zero. This means that the space of
solutions for the homography matrix H(1) is one-dimensional.
In that case the solution is given by the right singular vector
that corresponds to the zero singular value. Since matrix H(1)

must have the second smallest singular value equal to one, this
condition can be used to determine the correct solution from
the one-dimensional space of solutions.

However, with noisy data, and in general, no singular value
is equal to zero. The variation of the five smallest singular
values as a function of the noise level is shown in the Figure 2.
As we can see from this figure, when the noise standard
deviation increases, the three smallest singular values take
similar values.

As a result, we select three right singular vectors{
e(1), e(2), e(3)

}
that correspond to the three smallest singular

values of the matrix M(1). Using this set of right singular
vectors we define the space of solutions for vec

(
H(1)

)
as

vec
(
H(1)

)
.
=
{
α(1)e(1) + α(2)e(2) + α(3)e(3) : α(i) ∈ R, ∀i

}
.

(10)
Unstacking the vectors e(i) to matrices F (i), we define the
matrix H(1) as a function of the unknowns α(i), such that

H(1) = α(1)F (1) + α(2)F (2) + α(3)F (3). (11)

However and from the fact that ζ̃ = 1, π̃ must be parallel
to the z–axis and from Equation (3), the homography matrix
must verify

p(C) =
(
R(1) +

[
0 0 t(1)

])
︸ ︷︷ ︸

H(1)

p̃(W) (12)

where R(1) and t(1) are respectively the unknown rotation
and translation that define pose. Since R(1) ∈ SO (3), h

(1)
1 =

r
(1)
1 and h

(1)
2 = r

(1)
2 (h(1)

i and r
(1)
i are the ith columns of

matrices H(1) and R(1) respectively), it is possible to define
the following constraints that apply to the first and second
column of the estimated homography matrix

h
(1)
1

T
h
(1)
1 = 1, h

(1)
2

T
h
(1)
2 = 1 and h

(1)
1

T
h
(1)
2 = 0.

(13)
From the space of solutions for the homography matrix

defined at Equation (11), we can define the columns h
(1)
1 and

h
(1)
2 as

h
(1)
1 = α(1)f

(1)
1 + α(2)f

(2)
1 + α(3)f

(3)
1 (14)

h
(1)
2 = α(1)f

(1)
2 + α(2)f

(2)
2 + α(3)f

(3)
2 (15)

where f (i)
j is the jth column of the matrix F (i). Without loss

of generality, we can define h̃
(1)
i = h

(1)
i /α(1), which means

h̃
(1)
1 = f

(1)
1 + bf

(2)
1 + cf

(3)
1 and h̃

(1)
2 = f

(1)
2 + bf

(2)
2 + cf

(3)
2 (16)

and b = α(2)/α(1) and c = α(3)/α(1). Using this formulation
we rewrite the constraints of Equation (13) as

h̃
(1)
1

T
h̃
(1)
2 = 0 and h̃

(1)
1

T
h̃
(1)
1 − h̃

(1)
2

T
h̃
(1)
2 = 0. (17)

Replacing the columns of the homography matrix in these
constraints using Equation (16), we define two constraints that
apply to the space of the unknowns b and c. These constraints
can be expressed by two functions gi (b, c) = 0, for i = 1, 2,
of the form

gi (b, c) = κ
(i)
1 b2 + κ

(i)
2 bc+ κ

(i)
3 c2 + κ

(i)
4 b+ κ

(i)
5 c+ κ

(i)
6 . (18)

Thus, the solution for the proposed problem is the set of
unknowns b and c such that

gi (b, c) = gi (b, c) = 0. (19)

The formulation of the Equation (19) represents the estimation
of the intersection points between two quadratic lines. From
the Bézout’s theorem [21], the theoretical maximum number
of solution for this problem is four. In the remaining of this
section we describe a method to solve this problem.

Let us consider the constraint g1 (b, c) = 0. Solving this
equation for the unknown b we get two solutions

b =
p1[c]

2κ
(1)
1

± v[c]1/2

2κ
(1)
1

(20)

where p1[c] and v[c] are two polynomial equations with
unknown c and degrees one and two respectively.

Substituting the unknown b on g2 (b, c) = 0 using Equa-
tion (20), we get the constraint

p2[c]± p3[c]v[c]
1/2 = 0⇒ p2[c] = ∓p3[c]v[c]1/2 (21)

where the degree of the polynomial equations p2[c] and
p3[c] are respectively two and one. Squaring both sides of
Equation (21) we get

p2[c]
2 = p3[c]

2v[c]⇒ p4[c] = p2[c]
2 − p3[c]

2v[c] = 0 (22)

where the polynomial equation p4[c] has degree four.
Thus, to find c that solves the problem defined by Equa-

tion (19) we just need to find the roots of the four degree
polynomial equation p4[c], which can be solved in closed-
form (e.g. using the Ferrari’s technique for solving the general
quartic roots). For each real solution of c we get the unknown
b selecting the correct solution on Equation (20).

To conclude the algorithm, we recover the solution for α(i)

using

α(1) = ±
∣∣∣h̃(1)

1

∣∣∣ , α(2) = bα(1) and α(3) = cα(1). (23)

Note that if we have a solution array
(
α(1), α(2), α(3)

)
, from

Equations (10) and (9), the solutions array −
(
α(1), α(2), α(3)

)
will also verify the same contraints, and that is why we
attribute both signs to α(1).



B. Ambiguities
From the previous section, we see that we can have

multiple solutions for the set of unknowns
(
α(1), α(2), α(3)

)
.

For the computation of the solution described at Sec-
tion III-A, it is only required that N ≥ 6. However for N ≥ 8
the dimension of the null–space of M(1) will be equal or
smaller than one and, as a result, for the different set of
possible arrays

(
α(1), α(2), α(3)

)
(and as a result vec

(
H(1)

)
)

we will get non–zero solutions for the algebraic relation
of Equation (9). Only when the data is noiseless, we can
get a single zero solution. As a result and from the set of
possible solutions, we can choose the one that minimizes the
Equation (9).

Note that the solutions are obtained in pairs
(
α(1), α(2), α(3)

)
and −

(
α(1), α(2), α(3)

)
. Thus, two solutions will be selected

from the previous paragraph. However these two solutions
will generate two homography matrices. Moreover, these two
solutions will be differ only with respect to the sign, ±H̃(1).
From Equation (4), the estimated solutions for the homography
matrix must verify the following condition

± d̂
(C)
i H̃(1)p

(W)
i = m

(C)
i , ∀i. (24)

As a result, we choose the sign of the estimated homogra-
phy matrix that minimizes this equation, for all the mappings
between 3D points and lines.

C. Recovery of the Pose Parameters
To recover the pose parameters, (R, t), we first have to

decompose the matrix H(1) into R(1) and t(1). Since h
(1)
1 =

r
(1)
1 and h

(1)
2 = r

(1)
2 and from Equation (13), using H(1) we

can define

R(1) =
(

h
(1)
1 h

(1)
2 h

(1)
1 × h

(1)
2

)
, (25)

t(1) = h
(1)
3 − h

(1)
1 × h

(1)
2 . (26)

Note that the constraints defined in Equation (14) are verified,
which means that R(1) ∈ SO (3).

To conclude, the estimation of the absolute pose R and t,
taking into account the rigid transformation defined by R̃ and
t̃, are given by

R = R(1)R̃ and t = R(1)t̃ + t(1). (27)

IV. REFINEMENT OF THE PARAMETERS
In addition to the non-iterative algorithm described in Sec-

tion III-A, we propose an iterative refinement of the rotation
and translation parameters that define the pose. Using the
geometric distance between a 3D line and a world point,

d
(
l(C),p(C)

)
.
=

∣∣∣d̂(C)p(C) −m(C)
∣∣∣∣∣d(C)

∣∣ , (28)

and since we are considering coplanar points such that π̃ is
parallel to the z–axis and ζ̃ = 1 and using Equation (3), we
define the geometric distance between a world point and a 3D
line as

d
(
l
(C)
i , p̃

(W)
i

)
=

∣∣∣d̂(C)
i

(
R(1) +

[
0 0 t(1)

])
p̃(W) −m(C)

∣∣∣
|d(C)|

.

(29)

We aim to minimize the sum of the squares of the geomet-
ric distance defined in the previous equation

argmin
R(1),t(1)

∑
i

d
(
l
(C)
i , p̃

(W)
i

)2
(30)

for all the mappings between world points and 3D lines. We
consider the rotation parametrization using quaternions [18].

To find the solution for Equation (30), we consider the non-
iterative solution at Section III-A and use the Quasi-Newton
optimization technique (iteration method) [1] to refine the
parameters of both rotation and translation.

V. EXPERIMENTS
We evaluate the proposed algorithm by comparing it to the

method proposed by Schweighofer and Pinz at [17], using both
synthetic and real data.

A. Synthetic Experiments
In this section we evaluate both the non-iterative algorithm

and the non-iterative algorithm plus the refinement of the pose
parameters, using synthetic data sets, against the state-of-the-
art method. For that purpose consider a cube with 800 units of
side length. The data was generated by randomly mapping 3D
lines and points

{
l
(C)
i ↔ p(C)

}
, for i = 1, . . . , N . A random

rigid transformation was randomly generated (R and t, where
the translation parameter is defined in the same cube with
800 units of side length) and applied to the set of points
such that p(C) 7→ p(W). The dataset for the pose problem
is
{
l
(C)
i ↔ p

(W)
i

}
.

Let us consider that the estimated pose is given by
{
R̂, t̂

}
.

We consider both rotation and translation metrics for the
computation of the error such that:

1) Rotation error: drotation =
∣∣∣R− R̂

∣∣∣
frob

;
2) Translation error: dtranslation =

∣∣∣t− t̂
∣∣∣.

To generate the 3D lines l
(C)
i we consider the following

procedure. For each p
(C)
i , an additional world point q

(C)
i is

computed and thus, the line (in Plücker coordinates) l
(C)
i is

computed as shown in [19]. A variable labeled as “Deviation
From Perspective Camera” is also defined: the value of this
variable represents the length of the sides of the cube to which
the set of points

{
q
(C)
i

}
must belong. Note that when this value

tends to zero, the camera model tends to central and that is the
reason why the variable is named “Deviation From Perspective
Camera”.

In addition, we also define a variable to represent noise.
Instead of considering the set

{
p
(C)
i ,q

(C)
i

}
to compute the line,

we consider
{
p
(C)
i + ri,q

(C)
i

}
, where vector ri has random

direction and whose the norm is distributed according to a
normal distribution whose standard deviation is variable. This
variable is named “Noise Level” in the experiments.

We compare the state-of-the-art algorithm proposed by
Schweighofer and Pinz at [17] with both the non-iterative
method and its variation with the iterative parameter refinement
method. The comparison is performed taking into account the
accuracy and the processing time.

The accuracy was evaluated as a function of the number
of points used to compute the pose, Figure 3(a); the “Noise
Level”, Figure 3(b); and the “Deviation From Perspective
Camera”, Figure 3(c).
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(b) Rotation and translation errors (mean and median) as a function of the “Noise Level”. We use three different number of points
represented at three different colors: black, blue and orange for 50, 150 and 400 number of points respectively.
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(c) Rotation and translation errors (mean and median) as a function of the distribution of the 3D lines. We use a “Noise Level” of 7.5 units
and three different values for the number of points (as the Figure (b)).

Fig. 3. In this figure we show the accuracy results of the application of the proposed non-iterative without and with parameters refinement algorithms compared
to the state-of-the-art methods of Schweighofer and Pinz (we identify our non-iterative solution as “Our”, our non-iterative solution plus a parameter refinement
by “Our + LM” and the Schweighofer and Pinz algorithm as “SP”). We evaluate both algorithms in terms of: number of points used, Figure (a); in terms of the
standard deviation of the noise, Figure (b); and in terms of the distribution of the 3D lines, Figure (c). In all the cases, the accuracy of the pose was measured
for both rotation and translation (mean and median).

To conclude the experiments with synthetic data we show
a comparison between the processing times for the proposed
algorithm and for the Schweighofer and Pinz algorithm, in
Figure 4. We note that our algorithm was fully implemented
in MATLAB while the algorithm of Schweighofer and Pinz uses
the SEDUMI optimization toolbox [22], which is implemented
in C/C++.

B. Experiments with real data
In addition to the experiments with synthetic data, we

evaluate our algorithm the state-of-the-art algorithms using real
data.

We consider calibrated non-central spherical catadioptric
camera as shown in Figure 5. Using a chess-board plane with
160 points, we get a set of images, moving the plane to
different positions and with different orientations. The metrics
for the errors used in this section were the same as those used
in the previous section.

The results were: for our non-linear method, we obtained
a mean error of 0.022 for the rotation matrix and a mean of
477.37[mm] for error on the translation vector; for our non-
linear method plus with iterative refinement, we obtained a

mean error of 0.0079 for estimate of the rotation matrix and
15.59[mm] for error on the translation vector; for the algorithm
proposed by Schweighofer and Pinz, we obtained a mean of
0.0084 for the rotation error and 16.51[mm] for the translation
error.

VI. CONCLUSIONS
A. Analysis of the Experiments

From the experiments with synthetic data we notice that the
results obtained with non-iterative algorithms are, in general,
worse than both non-iterative plus parameters refinement (pro-
posed also in this article) and the iterative solution proposed
by Schweighofer and Pinz. As we can see from Fig. 3(a), the
results for the non-iterative case are inferior to both iterative
cases when the number of points is smaller than 300.

In general, as it can be seen from Figure 3(b), the non-
iterative solution yileds worse results when compared with
both iterative methods. In some cases, it can be seen that
the non-iterative method proposed in this paper yields better
results than the iterative state-of-the-art method proposed by
Schweighofer and Pinz. However and from the same figure,
we can see that the non-iterative approach plus the iterative
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Fig. 4. In this figure we display the processing times corresponding to
the method proposed by Schweighofer and Pinz and to our algorithm, as a
function of the number of points. These results correspond to the experiment
described in Figure 3(a). We note that while our method is fully implemented
in MATLAB, the optimization of the Schweighofer and Pinz algorithm is
implemented in C/C++ (we label our non-iterative solution as “Our”, our
non-iterative solution plus a parameter refinement by “Our + QN” and the
Schweighofer and Pinz algorithm as “SP”).

refinement, suggested in Sec. IV, gives better results than the
non-iterative method proposed by Schweighofer and Pinz. We
have to take also into account that, as shown in Fig. 4, both
our methods are significantly faster than Schweighofer and
Pinz approach, which by itself is an advantage.

The method non-iterative plus a parameter refinement gives
better results then the non-iterative and Schweighofer and Pinz
for almost all cases in both Figs 3(a) and 3(b).

To conclude the analysis of the errors, we note that
from Fig. 3(c), the application of the method proposed by
Schweighofer and Pinz deteriorates when the “Deviation from
Perspective Camera” decreases. On the other hand, and for the
non-iterative method proposed in this paper, such effect is not
noticeable.

In terms of computation time (Fig. 4), the non-iterative
method is clearly faster. The processing time for the non-linear
plus parameter refinement tends to grow more rapidly than the
processing times for the Schweighofer and Pinz algorithm.

B. Closure
In this paper we addressed the planar pose problem for non-

central camera models. To the best of our knowledge, this is the
first planar-based algorithm for general non-central cameras.
We propose two methods: a fast non-iterative solution; and
this solution plus a parameter refinement.

From the experimental results, we can conclude that both
our approaches are significantly faster than the state-of-the-art
method, specially the non-iterative solution. The non-iterative
solution gives, in general, worse results than the state-of-the-art
approach. However, the non-iterative solution plus a parameter
refinement gives, in general, better results than the state-of-the-
art method. In addition, we also observed that, contrarily to the
state-of-the-art approach, the results given by our methods do
not degrade when the camera model approximates the central
camera, specially with the non-iterative approach.
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