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Abstract In this paper we study pose estimation for1

general non-central cameras, using planar targets. The2

method proposed uses non-minimal data. Using the ho-3

mography matrix to represent the transformation be-4

tween the world and camera coordinate systems, we de-5

scribe a non-iterative algorithm for pose estimation. To6

improve the accuracy of the solutions, data-set normal-7

ization is used. In addition, we propose a parameter op-8

timization to refine the pose estimate. We evaluate the9

proposed solutions against the state-of-the-art method10

(for general targets) in terms of both robustness to noise11

and computation time. From the experiments, we show12

that the proposed method plus normalization is more13

accurate against noise and less sensitive to variations14

of the imaging device. We also show that the numeri-15

cal results obtained with this method improve with the16

increasing number of data points. In terms of process-17

ing speed, the versions of the algorithm presented are18

significantly faster than the state-of-the-art algorithm.19

To further evaluate our method, we performed an ex-20

periment of a simple augmented reality application in21

which we show that our method can be easily applied.22
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1 Introduction 25

The computation of absolute pose, using cameras, con- 26

sists in the estimation of a rotation and a translation, 27

that define the rigid transformation between the world 28

and camera coordinate systems. Using known 3D fea- 29

tures (such as points, lines or planes) and their corre- 30

sponding images, the goal is to find the transformation 31

that ensures that the incident relation between the in- 32

verse projection of the 2D entities is verified by the 33

corresponding 3D features. For example, when match- 34

ing 3D points and their respective images, the goal is 35

to determine the rigid transformation so that the pro- 36

jection rays pass through the corresponding 3D points. 37

One of the main applications of pose estimation using 38

cameras is in robot navigation. If the system is prop- 39

erly calibrated, the estimation of the camera pose gives 40

the localization of the robot in the world coordinate 41

system. 42

Most of the methods proposed in the literature were 43

developed for perspective cameras [14], for example, us- 44

ing a non-minimal number of known 3D points [4,26], 45

a non-minimal solution using 3D lines [7,3], minimal 46

solutions using points or both points and lines [12,16, 47

30] (suitable for hypothesize-and-test methods such as 48

RANSAC [8]), and also solutions for point-based pla- 49

nar pose estimation [28,1,27,31]. The main reason for 50

the use of these cameras is their simplicity, wide avail- 51

ability and well-known mathematical model. However, 52

in the last decades, new types of imaging devices have 53

started to be used due to several advantages related to 54

their visual fields. 55

In 1996 Nalwa [23] introduced what he claimed to 56

be the first omni-directional system, built using four 57

cameras pointing to four planar mirrors, and which 58

was designed to comply with the geometric properties 59
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of perspective cameras. Basically, the goal was to en-60

sure that all the projection rays intersected at some 3D61

point–central camera systems. One of the main goals of62

omni-directional systems is the possibility of obtaining63

wide fields of view (e.g.over 180 degrees). This is spe-64

cially important for applications in robot navigation,65

mainly because using these types of imaging devices,66

we can get more information about the environment us-67

ing only one image. Some works on robot localization68

using non-conventional camera systems are described69

in [2,9]. Other applications are video surveillance or70

medical imaging devices where wide fields of view are71

fundamental.72

In 1997, Nayar and Baker [24] studied the use of73

a single camera and a single quadric mirror to create74

omni-directional systems. Later [5], they determined75

the sufficient conditions to ensure that these systems76

fulfill the geometric properties of central cameras. The77

main difficulty is that, to obtain a central system (all78

3D projection rays intersecting at a single point in the79

world, the single viewpoint), the camera must be per-80

fectly aligned with the axis of symmetry of the mirror,81

and a specific type mirror must be used. For example,82

spherical mirrors can not be used. Systems with small83

misalignments or different types of mirrors will not ver-84

ify the constraint that all the projection lines intersect85

at a single 3D point, the viewpoint. In those cases, we86

will have non-central camera systems–camera models87

that don’t have a single viewpoint. This problem was88

analyzed by Swaminathan et al. [36]. In this case, the89

“locus of viewpoints” forms a caustic. They analyzed90

the properties of caustics and presented a calibration91

procedure for non-central conic catadioptric systems.92

Later, because of the utility of these imaging devices,93

several authors proposed models and calibration proce-94

dures for non-central catadioptric camera systems using95

general quadric mirrors. A recent type of camera that96

can be modeled as a non-central camera is the light-97

field camera. Most of the results obtained for general98

camera models can be applied to light-field cameras.99

Considering only geometric entities, an imaging sys-100

tem can be modeled as a mapping between the 3D world101

and a 2D image [14]. In 2001, Grossberg and Nayar [11]102

defined the general camera model. The goal of this imag-103

ing model is to represent any imaging device (central or104

non-central) and it is modeled by the individual associ-105

ation between unconstrained 3D straight lines and 2D106

image pixels, for all image pixels. Thus, camera calibra-107

tion consists in the estimation of the correspondences108

between image pixels and the corresponding projecting109

3D straight lines [11,35,19].110

Usually image space does not change and, as a re-111

sult, we can define a 3D coordinate system for the image112

coordinates. On the other hand, a camera is a mobile 113

device and as a consequence we can not define a fixed 114

global coordinate system to represent the lines mapped 115

into the image points. Therefore we define a 3D refer- 116

ence coordinate system associated with the camera to 117

represent the 3D lines mapped into the image pixels. 118

As a consequence, to estimate the coordinates of 3D 119

entities represented in a different coordinate system, 120

we need to estimate a rigid transformation mapping 121

the camera coordinate system into the world coordi- 122

nate system. This problem is denoted as the pose of 123

the camera. Most of the algorithms for the estimation 124

of camera pose are based on targets with arbitrary 3D 125

point configurations. In many problems such as mobile 126

robotics and augmented reality, it is practical to use 127

planar patterns to compute absolute pose. 128

For general camera models (defined in [11]) there 129

are algorithms to estimate pose for several conditions, 130

namely for the minimal case [25,33], for the non- 131

minimal case using points [33,32], and for the non- 132

minimal case using known 3D straight lines [21,20]. In 133

this article, we address the problem non-minimal ab- 134

solute pose estimation for general non-central cameras, 135

when considering the case where the world points be- 136

long to a plane. To the best of our knowledge, this is 137

the first time that this problem is addressed (this pa- 138

per is an extension of our paper [22]). We present a 139

non-iterative algorithm to estimate pose. In addition, 140

we also propose a refinement of the estimation of the 141

pose parameters by means of an optimization using the 142

Levenberg-Marquardt algorithm. 143

1.1 Outline of the Paper 144

This paper is organized as follows: in the rest of this sec- 145

tion, we give the notation used in the paper. In Sec. 2 we 146

briefly describe the proposed formulation. In Sec 3, we 147

analyze the use of the homography to represent the pose 148

and derive the constraints associated with our problem. 149

In Sec. 4 we derive the proposed solution. To improve 150

the accuracy of the method, in Sec. 5 we propose a 151

data-set normalization. In Sec. 6 we propose an itera- 152

tive refinement method. The experimental results are 153

shown in Sec. 7 and the conclusions in Sec. 8. 154

1.2 Notation 155

In general, bold capital letters (e.g. A P Rnˆm, n rows 156

and m columns), bold small letters (e.g. a P Rn, n 157

elements) and small letters (e.g. a) represent matrices, 158

vectors and one dimensional elements respectively. The 159
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Fig. 1 Depiction of the pose estimation problem, using planar patterns. Fig. (a) shows pose estimation using central cameras.
Fig. (b) shows the pose estimation configuration in the case of a general non-central camera.

matrix represented as pa linearizes the exterior product160

such that aˆ b “ pab.161

Let us consider: known matrices U P Rnˆm, V P162

Rkˆl and C; and an unknown matrix X P Rnˆl. Using163

Kronecker product we can define the following relation164

165

UXVT “ C ñ pV bUq vec pXq “ vec pCq (1)

where b represent the Kronecker product with166

pV bUq P Rnkˆnl and vec p.q is a vector formed by167

the stacking of the columns of the respective matrix.168

2 Proposed Approach169

For the estimation of the 3D pose, the calibration of170

the imaging device is assumed to be known. We use171

the generalized camera model proposed by Grossberg172

and Nayar [11], which can represent any type of imag-173

ing device (central or non-central). This model assumes174

that an image pixel is mapped into an arbitrary rayin175

3D world. Since we assume that the camera has been176

previously calibrated, for all image pixels we know the177

corresponding 3D straight line coordinates in the cam-178

era coordinate system.179

Pose is given by the estimates of the rotation and180

translation parameters that define the transformation181

between the camera and the world coordinate system.182

In this article we use the homography map to repre-183

sent this transformation. Since we are considering a 3D184

point lying on a plane, we use the homography matrix185

to define the rigid transformation of 3D points from the186

world to camera coordinates. Based on the relationship187

of incidence between points and lines in 3D space, we188

define an algebraic relationship for pose. However, the189

homography matrix is a function of both the transfor-190

mation between the world and camera coordinate sys-191

tem (pose of the camera) and the 3D plane parameters192

[17]. As a result, we divided the estimation of the ho- 193

mography into two steps: first we determine a space of 194

solutions (with three degrees of freedom) for the ho- 195

mography matrix,and next, three constraints that the 196

space of solutions must satisfy are defined, based on the 197

algebraic relationship of incidence between lines and 3D 198

points. The homography matrix is computed applying 199

these three constraints to the three degrees of freedom 200

space of solutions for the homography matrix. 201

3 Relationship of Incidence using the 202

Homography 203

Pose estimation requires the estimation of a rotation 204

matrix R P SO p3q and a translation vector t P R3 that 205

define the rigid transformation between the world and 206

camera coordinate system. Since we consider that the 207

imaging device is calibrated, pose is specified by the 208

rigid transformation that satisfies the relationship of 209

incidence between points in the world coordinate sys- 210

tem and 3D straight lines represented in the camera 211

coordinate system, Fig. 1. To distinguish between fea- 212

tures represented in the world coordinate system and 213

entities in the camera coordinate system, we use the 214

superscripts pWq and pCq respectively. 215

The rigid transformation between a point in world 216

coordinates ppWq and the same point in camera coor- 217

dinates ppCq is given by 218

ppCq “ RppWq ` t. (2)

Since we use the assumption that all the points be- 219

long to a plane ΠpWq, from the homography map [15, 220

17], we can rewrite (2) as 221

ppCq “

ˆ

R`
1

ζ
tπT

˙

looooooomooooooon

H

ppWq (3)
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where ΠpWq .
“ pζ,πq P R4, H P R3ˆ3 is called the222

homography matrix, ζ and π are the distance from the223

plane to the origin and the unit normal vector to the224

plane ΠpWq respectively.225

For pose estimation, we assume that the non-central226

camera is calibrated. Therefore for each pixel the cor-227

responding 3D line is known (in the camera coordinate228

system). Let us consider that lines are defined using229

Plucker coordinates lpCqR .
“

`

dpCq,mpCq˘, where dpCq230

and mpCq are the direction and moment of the line re-231

spectively, constrained to
〈
dpCq,mpCq〉 “ 0. From the232

3D incidence relation between a line and a point [29],233

we have234

dpCq ˆ ppCq “ mpCq ñ pdpCqppCq ´mpCq “ 0. (4)

Since our goal is to estimate the pose using co-planar235

points ppWq P ΠpWq, we can use the homography236

map to transform points from word coordinates into237

the camera coordinates (3). Thus, from (4) and since238

mpCq ˆmpCq “ 0, we derive the following relation239

pdpCqHppWq ´mpCq “ pmpCq
pdpCqHppWq “ 0. (5)

Using the Kronecker product, we isolate the unknown240

matrix H, such that241

´

ppWq
T
b pmpCq

pdpCq
¯

vec pHq “ 0. (6)

From the properties of the Kronecker product [10],242

the dimension of the column-space of ppWq
T
b pmpCq

pdpCq243

is equal to the product of the dimension of the column-244

space of ppWq
T

and pmpCq
pdpCq. Since

〈
dpCq,mpCq〉 “ 0, it245

can be shown that the dimension of the column-space of246

both ppWq
T

and pmpCq
pdpCq are equal to one. As a result,247

the dimension of the column-space of ppWq
T
b pmpCq

pdpCq248

is one. Since the dimension of the column–space is equal249

to the number of linearly independent columns/rows,250

we conclude that (6) only has one linearly independent251

row.252

4 Proposed Algorithm253

In the previous section we described an algebraic rela-254

tionship between the coordinates of points represented255

in the world coordinate system and the coordinates256

of lines represented in the camera coordinate system,257

for an unknown homography matrix. However, we note258

that it does not contain all the known information.259

Since the coordinates of the points are known, the co-260

ordinates of the plane ΠpWq .
“ pζ,πq are also known261

which, according to the definition of the homography262

matrix (3), must be taken into account on the estima-263

tion of the homography map.264

However, and if the data are not corrupted with 265

noise, these constraints need not to be taken into ac- 266

count in the estimation of the homography matrix. If, 267

on the other hand, data are affected by noise the es- 268

timated homography map will be an approximation. 269

If the constraints associated to the plane coordinates 270

ΠpWq are not imposed, the error on the estimation of 271

the parameters will affect the elements of pζ,πq, which 272

will decrease the accuracy of the method. In the rest 273

of this section we derive an approach which takes into 274

account the plane parameters in the computation of the 275

homography matrix. 276

Without loss of generality, we consider a rigid trans- 277

formation
!

rR,rt
)

of the coordinates of the world points, 278

such that the coordinates of the 3D points and of the 279

plane are 280

rp
pWq
i “ rRp

pWq
i ` rt, @i (7)

ĂΠ
pWq .

“

´

rζ, rπ
¯

“

´

´rtT rRπ ` ζ, rRπ
¯

(8)

such that rπ is proportional to the z–axis and rζ “ 1. 281

4.1 Estimation of the Homography Matrix 282

Using the representation of the world points described 283

in the previous section and the algebraic constraints 284

defined in (6), for a set of points in the world and re- 285

spective 3D lines, we aim to estimate a homography 286

matrix Hp1q, such that 287

»

—

—

–

rp
pWq
1

T
b pm

pCq
1

pd
pCq
1

...

rp
pWq
N

T
b pm

pCq
N

pd
pCq
N

fi

ffi

ffi

fl

loooooooooooooomoooooooooooooon

M

vec
´

Hp1q
¯

“ 0. (9)

In theory, and without noise, for N ě 8, we will have 288

one singular value of M equal to zero. This means that 289

the space of solutions for the homography matrix Hp1q
290

is one-dimensional. In that case the solution is given by 291

the right singular vector that corresponds to the zero 292

singular value. Since matrix Hp1q must have the second 293

smallest singular value equal to one, this condition can 294

be used to determine the correct solution from the one- 295

dimensional space of solutions. 296

However, with noisy data, and in general, no sin- 297

gular value is equal to zero. The variation of the five 298

smallest singular values as a function of the noise level 299

is shown in the Fig. 2. As we can see from this figure, 300

when the noise standard deviation increases, the three 301

smallest singular values take similar values. 302

As a result, we select three right singular vectors 303
 

ep1q, ep2q, ep3q
(

that correspond to the three smallest 304
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Fig. 2 Mean and median of the variation of the five smallest
singular values of the matrix M as a function of the noise
(we use the variable “Noise Level” mentioned in the section
describing the experiments). The curves for the two largest
singular values overlap (only the evaluation of singular value
associated with the blue line is visible).

singular values of the matrix Mp1q. Using this set of305

right singular vectors we define the space of solutions306

for vec
`

Hp1q
˘

as307

vec
´

Hp1q
¯

.
“

!

αp1qep1q ` αp2qep2q ` αp3qep3q : αpiq P R, @i
)

.

(10)

Unstacking the vectors epiq to matrices F piq, we define308

the matrix Hp1q as a function of the unknowns αpiq,309

such that310

Hp1q “ αp1qF p1q ` αp2qF p2q ` αp3qF p3q. (11)

However and from the fact that rζ “ 1, rπ must be311

parallel to the z–axis and from (3), the homography312

matrix must verify313

ppCq “
´

Rp1q `
“

0 0 tp1q
‰

¯

loooooooooooomoooooooooooon

Hp1q

rppWq (12)

where Rp1q and tp1q are respectively the unknown ro-314

tation and translation that define pose. Since Rp1q P315

SO p3q, h
p1q
1 “ r

p1q
1 and h

p1q
2 “ r

p1q
2 (h

p1q
i and r

p1q
i are316

the ith columns of matrices Hp1q and Rp1q respectively),317

it is possible to define the following constraints that318

apply to the first and second column of the estimated319

homography matrix320

h
p1q
1

T
h
p1q
1 “ 1, h

p1q
2

T
h
p1q
2 “ 1 and h

p1q
1

T
h
p1q
2 “ 0.

(13)

From the space of solutions for the homography ma-321

trix defined at (11), we can define the columns h
p1q
1 and322

h
p1q
2 as323

h
p1q
1 “ αp1qf

p1q
1 ` αp2qf

p2q
1 ` αp3qf

p3q
1 (14)

h
p1q
2 “ αp1qf

p1q
2 ` αp2qf

p2q
2 ` αp3qf

p3q
2 (15)

where f
piq
j is the jth column of the matrix F piq. Without 324

loss of generality, we can define rh
p1q
i “ h

p1q
i {αp1q, which 325

means 326

rh
p1q
1 “ f

p1q
1 `bf

p2q
1 `cf

p3q
1 and rh

p1q
2 “ f

p1q
2 `bf

p2q
2 `cf

p3q
2 (16)

and b “ αp2q{αp1q and c “ αp3q{αp1q. Using this formu- 327

lation we rewrite the constraints of (13) as 328

rh
p1q
1

T
rh
p1q
2 “ 0 and rh

p1q
1

T
rh
p1q
1 ´ rh

p1q
2

T
rh
p1q
2 “ 0. (17)

Replacing the columns of the homography matrix in 329

these constraints using (16), we define two constraints 330

that apply to the space of the unknowns b and c. These 331

constraints can be expressed by two functions gi pb, cq “ 332

0, for i “ 1, 2, of the form 333

gi pb, cq “ κ
piq
1 b2 ` κ

piq
2 bc ` κ

piq
3 c2 ` κ

piq
4 b ` κ

piq
5 c ` κ

piq
6 .

(18)

Thus, the solution for the proposed problem is the set 334

of unknowns b and c such that 335

gi pb, cq “ gi pb, cq “ 0. (19)

The formulation of the (19) represents the estimation 336

of the intersection points between two quadratic lines. 337

From the Bézout’s theorem [6], the theoretical maxi- 338

mum number of solutions for this problem is four. In 339

the remaining of this section we describe a method to 340

solve this problem. 341

Let us consider the constraint g1 pb, cq “ 0. Solving 342

this equation for the unknown b we get two solutions 343

b “
p1rcs

2κ
p1q
1

˘
vrcs1{2

2κ
p1q
1

(20)

where p1rcs and vrcs are two polynomial equations with 344

unknown c and degrees one and two respectively. 345

Substituting the unknown b on g2 pb, cq “ 0 using 346

(20), we get the constraint 347

p2rcs ˘ p3rcsvrcs
1{2 “ 0 ñ p2rcs “ ¯p3rcsvrcs

1{2 (21)

where the degree of the polynomial equations p2rcs and 348

p3rcs are respectively two and one. Squaring both sides 349

of (21) we get 350

p2rcs
2 “ p3rcs

2vrcs ñ p4rcs “ p2rcs
2 ´ p3rcs

2vrcs “ 0

(22)

where the polynomial equation p4rcs has degree four. 351

Thus, to find c that solves the problem defined by 352

(19) we just need to find the roots of the fourth de- 353

gree polynomial equation p4rcs, which can be solved in 354

closed-form (e.g. using the Ferrari’s technique for solv- 355

ing the general quartic roots). For each real solution of 356
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c we get the unknown b selecting the correct solution357

on (20).358

To conclude the algorithm, we recover the solution359

for αpiq (that will be used in (11)) using360

αp1q “ ˘
ˇ

ˇ

ˇ

rh
p1q
1

ˇ

ˇ

ˇ
, αp2q “ bαp1q and αp3q “ cαp1q. (23)

Note that if we have a solution array
`

αp1q, αp2q, αp3q
˘

,361

from (10) and (9), the solutions array ´
`

αp1q, αp2q, αp3q
˘

362

will also verify the same contraints, and that is why we363

attribute both signs to αp1q.364

4.2 Ambiguities365

From the previous section, we see that we can have mul-366

tiple solutions for the set of unknowns
`

αp1q, αp2q, αp3q
˘

.367

For the computation of the solution described in368

Section 4.1, it is only required that N “ 6. However,369

for N ě 8 the dimension of the null-space of Mp1q will370

be equal to one or zero. If N ě 8 and dimension of the371

null-space is one, we will get a non-zero solution for the372

algebraic relation of (9). On the other hand, for N ě 9373

we can get a we can get a dimension of the null-space374

equals to zero. In that case, from the set of possible375

solutions, we can choose the one that minimizes the376

(9).377

Note that the solutions are obtained in pairs378
`

αp1q, αp2q, αp3q
˘

and ´
`

αp1q, αp2q, αp3q
˘

. Thus, two so-379

lutions can be considered. However these two solu-380

tions will generate two homography matrices. More-381

over, these two solutions will be different only with382

respect to the sign, ˘ rHp1q. From (4), the estimated383

solutions for the homography matrix must verify the384

following condition385

˘pd
pCq
i

rHp1qp
pWq
i “ m

pCq
i , @i. (24)

As a result, we choose the sign of the estimated386

homography matrix that minimizes this equation, for387

all the mappings between 3D points and lines.388

4.3 Recovery of the Pose Parameters389

To recover the pose parameters, (R, t), we first have390

to decompose the matrix Hp1q into Rp1q and tp1q. Since391

h
p1q
1 “ r

p1q
1 and h

p1q
2 “ r

p1q
2 and from (12), using Hp1q

392

we can define393

Rp1q “

´

h
p1q
1 h

p1q
2 h

p1q
1 ˆ h

p1q
2

¯

, (25)

tp1q “ h
p1q
3 ´ h

p1q
1 ˆ h

p1q
2 . (26)

Note that the constraints defined in (13) are verified,394

which means that Rp1q P SO p3q.395

Algorithm 1 Normalization of 3D points coordinates.

Let us consider a set of 3D points represented p
pWq

i :

1. Compute rR and rt such that the z-coordinates of

rp
pWq

i “ rRp
pWq

i ` rt is equal to one for all i – (7).
2. Compute the positive-definite matrix

M P R3ˆ3 “
řN

i“1 rp
pWq

i rp
pWq

i

T
.

3. Compute the upper triangular matrix Kp1q P R3ˆ3 such

that M “ NKp1q Kp1q T . Since M is positive-definite,
Kp1q can be easily computed using the Cholesky
factorization;

4. Compute normalized points r
pWq

i using

r
pWq

i “ Kp1q
rp
pWq

i .

To conclude, the estimation of the absolute pose R 396

and t, taking into account the rigid transformation de- 397

fined by rR and rt, are given by 398

R “ Rp1q
rR and t “ Rp1q

rt` tp1q. (27)

5 Data-set Normalization 399

One of the issues in the method proposed in Sec. 4 is 400

related to the selection of the singular values that de- 401

fine the space of solutions for Hp1q, (10) and (11). As 402

described in the previous section, we will select the sin- 403

gular vectors associated with the three smallest singular 404

values. However, the accuracy of the solution will de- 405

pend on the magnitude of these three smallest singular 406

values. 407

The computation of the singular values and of the 408

singular vectors of a matrix is affected by the condition 409

number of the matrix [13]. In many cases, the condition 410

number is too large,which implies that small changes 411

on the values of the elements of the matrix will result 412

on large changes on the singular values and singular 413

vectors, which is an undesired effect (especially when 414

considering data with noise). The main idea behind 415

the data-set normalization is to decrease the condition 416

number of matrix M. When this condition number is 417

small, the matrix will be well-conditioned (which means 418

that small changes in the data will also result in small 419

changes in the singular values and singular vectors). 420

Let us first consider the normalization of the 3D 421

points that make up the data-set p
pWq
i . Our goal is to 422

consider nonisotropic normalization for 3D points (in 423

the world coordinate system). To get the normalized 424

points r
pWq
i , we derived the algorithm 1. 425

The normalization of the coordinates of the 3D 426

straight lines is not as trivial as the normalization of 427

3D point. Our goal is to apply an affine transformation 428
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but, in this case, to the 3D straight lines429

g
pCq
i “

˜

Kp2q 0

Kp2q det
`

Kp2q
˘

Kp2q ´T

¸

l
pCq
i (28)

(for more information see [18]). To get the affine param-430

eters Kp2q P R3ˆ3, we used the second and third points431

of algorithm 1 but, in this case, to the coordinates of432

the moments of the lines.433

After the application of this normalization, we just434

have to perform the computation of the pose derived in435

Sec. 4, using r
pWq
i instead of p

pWq
i and g

pCq
i instead of436

l
pCq
i . In addition, to ensure that the rotation and trans-437

lation parameters of (27) define the real pose, we need438

to take into account this normalization. After this nor-439

malization and after the application of the method de-440

rived in Sec. 4, one has441

Kp2qppCq “ Hp1qKp1q
rppWq

ñ ppCq “ Kp2q ´1
Hp1qKp1q

rppWq. (29)

As a result and from (11), to reverse the proposed nor-442

malization, instead of using F piq, we use qF
piq

such that443

444

qF
piq
“ Kp2q ´1

EpiqKp1q, for i “ 1, 2, 3. (30)

The remaining steps of the method proposed in Sec. 4445

will be the same.446

6 Refinement of the Parameters447

In addition to the non-iterative algorithm described in448

previous sections, we propose an iterative refinement of449

the rotation and translation parameters that define the450

pose. Using the geometric distance between a 3D line451

and a world point,452

d
´

lpCq,ppCq
¯

.
“

ˇ

ˇ

ˇ

pdpCqppCq ´mpCq
ˇ

ˇ

ˇ

ˇ

ˇdpCq
ˇ

ˇ

(31)

(for more information see [18]),and since we are con-453

sidering co-planar points such that rπ is parallel to the454

z–axis and rζ “ 1 and using (12), we define the geo-455

metric distance between a world point and a 3D line as456

457

d
´

l
pCq
i , rp

pWq

i

¯

“

ˇ

ˇ

ˇ

pd
pCq
i

`

Rp1q `
“

0 0 tp1q
‰˘

rppWq ´mpCq
ˇ

ˇ

ˇ

ˇ

ˇdpCq
ˇ

ˇ

.

(32)

458

Thus, the goal is to minimize the sum of the squares 459

of the geometric distance defined in the previous equa- 460

tion 461

argmin
Rp1q,tp1q

ÿ

i

d
´

l
pCq
i , rp

pWq
i

¯2

(33)

for all the mappings between world points and 3D lines. 462

We consider the rotation parametrization using quater- 463

nions [17]. 464

To find the solution for (33), we use the non-iterative 465

solution proposed in Section 4 and solve the problem 466

using Levenberg-Marquardt optimization technique (it- 467

eration method) [15]. 468

7 Experimental Results 469

We evaluated the proposed algorithm by comparing it 470

to the method proposed by Schweighofer and Pinz at 471

[32], using both synthetic and real data. 472

7.1 Experiments with Synthetic Data 473

For experimental results with synthetic data, we con- 474

sider the following algorithms: 475

– Our: denotes the method proposed in Sec. 4; 476

– Our + N: denotes the method proposed in Sec. 4 477

with the data-set normalization suggested in Sec. 5; 478

– Our + LN: denotes the method proposed in Sec. 4 479

with the non-linear refinement suggested in Sec. 6; 480

– SP: denotes the state-of-the-art method (for general 481

targets) proposed by Schweighofer and Pinz at [32]. 482

The comparison is performed taking into account the 483

accuracy and the processing time. For that purpose 484

we considered a cube with 800 units of side length. 485

The data was generated by randomly mapping 3D lines 486

and points
!

l
pCq
i Ø ppCq

)

, for i “ 1, . . . , N . A random 487

rigid transformation was generated (R and t, where 488

the translation parameter is defined in the same cube 489

with 800 units of side length) and applied to the set 490

of points such that ppCq ÞÑ ppWq. The data-set for the 491

pose problem is
!

l
pCq
i Ø p

pWq

i

)

. 492

Let us consider that the estimated pose is given by 493
!

pR,pt
)

. We consider both rotation and translation met- 494

rics for the computation of the error such that: 495

1. Rotation error: drotation “
ˇ

ˇ

ˇ
R ´ pR

ˇ

ˇ

ˇ

frob
; 496

2. Translation error: dtranslation “
ˇ

ˇ

ˇ
t ´ pt

ˇ

ˇ

ˇ
. 497

|.|frob denotes the frobenius norm. 498

To generate the 3D lines l
pCq
i we used the following 499

procedure: for each p
pCq
i , an additional world point q

pCq
i 500
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(a) Rotation and translation errors (means and median) as a function of the number of points. We use a Noise Level of 7.5
units and a Deviation from Perspective Camera value of 50 units. The y-scale of the graphics is represented in logarithmic
basis.
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(b) Rotation and translation errors (mean and median) as a function of the Noise Level. We use three different numbers of
points represented at three different colors: black, blue and orange for 50, 150 and 400 number of points respectively.
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(c) Rotation and translation errors (mean and median) as a function of the distribution of the 3D lines. We use a Noise Level

of 7.5 units and three different values for the number of points (as in Fig. (b)).

Fig. 3 Results corresponding to the application of the proposed non-iterative method with and without parameters refinement
compared to the state-of-the-art method of Schweighofer and Pinz (we identify our non-iterative solution as Our, our non-
iterative solution plus a data-set normalization as Our + N, our non-iterative solution plus a parameter refinement by Our + LM,
and the Schweighofer and Pinz algorithm as SP). We evaluated all the algorithms in terms of: number of points used,Fig. (a);
in terms of the standard deviation of the noise, Fig. (b); and in terms of the distribution of the 3D lines, Fig. (c). In all cases,
the accuracy of the pose was measured for both rotation and translation (mean and median).

is computed and thus, the line (in Plücker coordinates)501

l
pCq
i is computed using502

l
pCq
i

.
“

´

q
pCq
i ´ p

pCq
i , p

pCq
i ˆ q

pCq
i

¯

. (34)

A variable labeled as Deviation From Perspective503

Camera is also defined: the value of this variable rep-504

resents the length of the sides of the cube to which the505

set of points
!

q
pCq
i

)

must belong. Note that when this506

value tends to zero, the camera model tends to cen-507

tral and that is the reason why the variable is named508

Deviation From Perspective Camera.509

In addition, we also defined a variable to represent510

noise. Instead of considering the set
!

p
pCq
i ,q

pCq
i

)

to com-511

pute the line, we consider
!

p
pCq
i ` ri,q

pCq
i

)

and the line512

l
pCq
i is, thus, given by 513

l
pCq
i

.
“

´

q
pCq
i ´

´

p
pCq
i ` ri

¯

,
´

p
pCq
i ` ri

¯

ˆ q
pCq
i

¯

. (35)

Vector ri has random direction and its norm is dis- 514

tributed according to a normal distribution whose stan- 515

dard deviation is the value for the noise variable. This 516

variable was named Noise Level in the experiments. 517

The accuracy was evaluated as a function of the 518

number of points used to compute the pose, Fig. 3(a); 519

the Noise Level, Fig. 3(b); and the Deviation From 520

Perspective Camera, Fig. 3(c). 521

To conclude the experiments with synthetic data we 522

show a comparison between the processing times. The 523

results are shown in Fig. 4. The computation of Our and 524

Our + N only differs on small direct steps which means 525
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Fig. 4 Processing times corresponding to the method pro-
posed by Schweighofer and Pinz and to our algorithm, as a
function of the number of points. These results correspond
to the experiment described in Fig. 3(a). We note that while
our method is fully implemented in Matlab, the optimiza-
tion of the Schweighofer and Pinz algorithm is implemented
in C/C++ (we label our non-iterative solution as Our, our
non-iterative solution plus a parameter refinement by Our +

LN and the Schweighofer and Pinz algorithm as SP).

that the difference in terms of computational time is526

negligible – we only show the results for Our. Moreover,527

we note that our algorithm was fully implemented in528

Matlab while the algorithm of Schweighofer and Pinz529

uses the SeDuMi optimization toolbox [34], which is530

implemented in C/C++.531

In addition, to further evaluate the non-linear re-532

finement method proposed in Sec. 6, we independently533

evaluated its the convergence rate. To perform the eval-534

uation data was randomly generated, as described in535

the previous paragraphs (noiseless). Instead of using the536

values estimated by the non-iterative method as initial537

values (Sec. 4), values differing from the ground-truth538

were used. These initial values were obtained by adding539

some pre-defined values to the ground truth. For both540

translation and rotation parameters (t0 and R0 respec-541

tively), we considered:542

– t0 “ t`t, where t is a vector with random direction543

(the norm will define the distance between the t and544

t). In the experiments, we computed this norm us-545

ing a normal distribution with standard deviation546

equal to variable Deviation from ground-truth547

translation.548

– R0 has yaw, pitch and roll such that φ0 “ φ ` φ,549

θ0 “ θ ` θ and ψ0 “ ψ ` ψ, where φ, θ and ψ550

are the ground-truth angles, φ, θ and ψ are angles551

computed using a normal distribution with stan-552

dard deviation equal to variable Deviation from553

ground-truth rotation.554

The results of the convergence rate as a function555

of both Deviation from ground-truth translation556

0 20 40 60 80 100 120 140 160 180 200

40

50

60

70

80

90

100
Convergence varying initial t0

Deviation from ground−truth translation

C
on

ve
rg

en
ce

 r
at

e 
[p

er
ce

nt
ag

e]

0 5 10 15 20 25 30 35

40

50

60

70

80

90

100
Convergence varying initial R0

Deviation from ground−truth rotation [degrees]

C
on

ve
rg

en
ce

 r
at

e 
[p

er
ce

nt
ag

e]

Fig. 5 Analysis of the convergence rate of the iterative re-
finement approach proposed in Sec. 6. To evaluate the conver-
gence rate, we vary the initial estimate for both rotation and
translation parameters. As evaluation parameter, we consider
the distance from the initial estimate to the ground-truth so-
lutions.
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Fig. 6 Fig. (a) shows an image of the chessboard plane using
the non-central catadioptric camera. Fig. (b) shows the corre-
sponding 3D projection lines (in red) and the corresponding
3D points (blue) in the camera coordinate system – after the
application of the estimated pose.

and Deviation from ground-truth rotation vari- 557

ables are shown in Fig. 5. 558

The code used to obtain these results will be avail- 559

able on the page of the author. 560

7.2 Experiments with Real Data 561

In addition to the experiments with synthetic data, we 562

evaluated the proposed method using two experiments 563

with real data. 564

7.2.1 Comparison with the State-of-the-Art Method 565

For these experiments, we used a calibrated non-central 566

catadioptric camera. An example of the respective im- 567

age and the associated 3D projection lines are shown in 568

Fig. 6. Using a chessboard plane with 160 points, we get 569

a set of images, moving the plane to different positions 570

and with different orientations. To build the data-set we 571

computed the 2D corners of the chessboard in the im- 572

age and associated these points with the respective 3D 573

corners in the world, for all chessboard positions. The 574

metrics for the rotation and translation errors used in 575
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(a) In this figure we show the computed corners (2D image points marked as pink dots) of the chessboard used for the
computation of the pose. The respective 3D points are known from the problem definition.

(b) Since from pose estimation we know the position of the chessboard in the camera coordinate system, we can define a
virtual object in the chessboard and project this object into the image. We define a virtual rectangular parallelepiped in the
middle of the chessboard and project the coordinates of the 3D points that define the object to the image. The red and green
rectangles represent the edges of the top and bottom faces of the parallelepiped and blue lines represent the side edges.

Fig. 7 Augmented reality application using a non-central catadioptric camera. Using the 2D corners of the chessboard image
(a) and its size, we compute the coordinates of the chessboard in the camera coordinate system using the proposed solution
for pose. Then, we generate a virtual 3D parallelepiped in the middle of the chessboard (in the camera coordinate system) and
project its edges into the image. The results are shown in (b).

this section are the same as those used in the previous576

section.577

The results were: for our non-linear method plus578

normalization, we obtained a mean error of 0.022 for579

the rotation matrix and a mean of 477.37[mm] for er-580

ror on the translation vector; for our non-linear method581

plus with iterative refinement, we obtained a mean er-582

ror of 0.0079 for estimate of the rotation matrix and583

15.59[mm] for error on the translation vector; for the584

algorithm proposed by Schweighofer and Pinz, we ob-585

tained a mean of 0.0084 for the rotation error and586

16.51[mm] for the translation error.587

7.2.2 Augmented Reality Application using Real Data588

To conclude, we propose a simple augmented reality589

application. We used a different calibrated non-central590

catadioptric camera and considered a sequence of four591

images of a known chessboard (126 corners and squares592

with 38[mm] of side length) in different and unknown593

positions and orientations. In each image, we compute594

the respective 2D corners of the chessboard (the 2D 595

coordinates of the corners for each image are shown 596

in Fig. 7(a)) and associate these points with the 3D 597

corners of the chessboard. Then, we compute the coor- 598

dinates of the chessboard in camera coordinates which 599

is the same as to compute the pose of the camera, con- 600

sidering the world coordinate system attached to the 601

chessboard. For the computation of the pose, we used 602

the method proposed in this paper. 603

We generated a virtual rectangular parallelepiped 604

in the middle of the chessboard and, for each image, 605

we apply the rotation and translation that transform 606

the virtual object to the camera coordinates (pose es- 607

timation). Then, we project the points that form the 608

edges (base edges as red, top edges as green and verti- 609

cal edges as blue) to the image. The results are shown 610

in Fig. 7(b). 611
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8 Conclusions612

8.1 Discussion of the Experimental Results613

As a function of noise, and from the experiments with614

synthetic data Fig. 3(b), we notice that the results615

obtained with the non-iterative method with data-set616

normalization gives Our + N significantly better results617

than any other algorithm, in all the experiments. This618

difference is greater for smaller numbers of points. In619

general, it can be seen that both Our and Our + LN620

yield better results than the iterative state-of-the-art621

method SP. However, for small levels of noise (ă 7.5622

units) and for small number of points one can see that623

SP gives better results than Our and Our + LN.624

From Fig. 3(a), one can see that Our + N is also the625

best in all experiments. Notice that Our and Our + LN626

give better results for a larger number of points, mainly627

in terms of the translation errors (note that the error628

scale in these figures is on a logarithmic basis).629

To conclude the analysis of the errors, we note630

that from Fig. 3(c), the application of the method pro-631

posed by Schweighofer and Pinz (SP) deteriorates when632

the Deviation from Perspective Camera decreases.633

These tests are very important because most of the634

non-central imaging devices are close to central (for ex-635

ample the non-central catadioptric cameras). On the636

other hand, for all the methods proposed in this paper637

such effect is not noticeable. In fact, in some cases, for638

Our + LN we can see that we get better results when639

the camera approximates a central configuration.640

We also analyzed the convergence rate of the pro-641

posed iterative refinement approach. From Fig. 5, one642

can conclude that the convergence rate depends on the643

initial estimate, which means that a good initial esti-644

mate (in this case using the method proposed in Sec. 4)645

is very important for the convergence of the method.646

To conclude the analysis of the experiments with647

synthetic data, we want to emphasize that all of the648

methods proposed in this paper are significantly faster649

than SP approach, which by itself is an advantage.650

From Fig. 4, the processing time for the non-linear plus651

parameter refinement Our + LN tends to grow more652

rapidly than SP. However, for 1000 points (very large653

value), the computation time for Our + LN is signif-654

icantly lower and we also have to take into account655

that all of our methods were implemented with Mat-656

lab whereas SP was implemented using C/C++.657

In addition, we validated the proposed method us-658

ing real data. We proposed a simple augmented reality659

application with a non-central catadioptric camera and,660

from Fig. 7 we proved that the proposed solution com-661

putes the pose successfully.662

8.2 Closure 663

In this paper we addressed pose estimation for non- 664

central cameras using planes. To the best of our knowl- 665

edge, this is the first plane-based algorithm for general 666

non-central cameras. We proposed three methods: a fast 667

non-iterative solution; a fast non-iterative solution plus 668

a data-set normalization; and this solution plus a pa- 669

rameter refinement. 670

From the experimental results, we can conclude that 671

our approaches are significantly faster than the state-of- 672

the-art method (specially the non-iterative solutions). 673

The non-iterative solution plus data-set normalization 674

gives significantly better results than all the other ap- 675

proaches. In addition, we also observed that, contrarily 676

to the state-of-the-art approach, the results given by 677

our methods do not degrade when the camera model ap- 678

proximates the central camera, specially with the non- 679

iterative approach. 680

To validate the proposed solution, we implemented 681

a simple augmented reality application which showed 682

that our method computes pose successfully. 683
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