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Planar Pose Estimation for General Cameras using Known 3D Lines

Pedro Miraldo and Helder Araujo

Abstract— In this article, we address the pose estimation for
planar motion under the framework of generalized camera
models. We assume the knowledge of the coordinates of 3D
straight lines in the world coordinate system. Pose is estimated
using the images of the 3D lines. This approach does not require
the determination of correspondences between pixels and 3D
world points. Instead, and for each pixel, it is only required
that we determine to which 3D line it is associated with. Instead
of identifying individual pixels, it is only necessary to establish
correspondences between the pixels that belong to the images
of the 3D lines, and the 3D lines. Moreover and using the
assumption that the motion is planar, this paper presents a
novel method for the computation of the pose using general
imaging devices and assuming the knowledge of the coordinates
of 3D straight lines. The approach is evaluated and validated
using both synthetic data and real images. The experiments are
performed using a mobile robot equipped with a non-central
camera.

I. INTRODUCTION

The problem of the absolute pose (or localization) consists
in the estimation of a rotation and translation, that define the
rigid transformation between the world and camera coordi-
nate systems. Most of the methods proposed in the literature
were developed for perspective cameras [1], [2], [3] (cameras
that are modeled by a central projection [4]). The main
reason for the use of these cameras are their simplicity, wide
availability and well-known mathematical model. However,
in the last few years, new types of imaging devices have
started to be used due to several advantages related to their
visual fields. Some of these new imaging devices that provide
wide fields of view are designed and built to comply with a
central projection model, eg,[5], [6]. Others are not modeled
by a central projection, e.g., [7], [8]. To deal with all the cases
(central and non-central cameras), Grossberg and Nayar [9]
proposed the general camera model – individual association
between image pixels and unconstrained 3D straight lines.

In this paper we address the problem of the planar pose
of a camera, for general camera models. As far as we
know, the problem of the absolute pose for general camera
models was studied by Chen & Chang at [10] and [11] and
Schweighofer & Pinz at [12] (we specifically do not include
the works dealing with relative pose for general camera
models). Both approaches use matching between known
coordinates of 3D points (in the world coordinate frame)
and their corresponding pixels in the image. Chen & Chang
proposed a solution for the minimal case (where only three
3D points and their corresponding pixels are known) and
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then derived an algorithm that computes the pose in a least-
squared-error manner, using the minimal case. Schweighofer
& Pinz proposed an iterative globally optimal O pnq solution
to the problem. We also note that alternative solutions for
the minimal case were proposed [13], [14]. In this paper, we
address the non-minimal case using projection of lines.

Previous methods used the matching between known 3D
points and their corresponding image points to compute the
pose. However, the determination of point correspondences is
still a difficult problem and current solutions are error-prone.
The goal is to relax this procedure by using coordinates of 3D
straight lines (one dimensional elements) defined in the world
coordinate system, instead of 3D points, which constitutes
one of the advantages of the proposed approach.

From the framework of general camera models, we can
use the assumption that the image of a 3D straight line is
made up by a set of image pixels. If we are using a smooth
camera model (the variation between image pixels and the
projection lines varies smoothly [15]), this set of pixels will
define a continuous curve in the image plane. However,
when considering non-smooth cameras, we cannot make this
assumption. As a result, and since we are considering the
general case, we only assume that we have a set of pixels
whose coordinates are known and which correspond to a
given 3D straight line in the world. We note that, in practice,
the only data-set requirement is the determination of the
association between a set of image pixel and a 3D straight
line. There is no need to establish correspondences between
pixels and 3D point features and, therefore, the matching
problem becomes easier.

In our previous work [16], we used the known coordinates
of 3D lines to derive a solution for the general pose – six
degrees of freedom. However, specially in mobile robotics,
in many instances the pose or localization of a robot are
determined for the case of planar motion. In this case,
we have three degrees of freedom – see Fig. 1. In this
paper we address the planar pose estimation problem within
the framework of the generalized camera models, using
coordinates of 3D lines in the world.

In the remaining of this section, we describe the notation
and background that we use in the rest of the paper. In
Sec. II, we derive the proposed solution. In Sec. III, we
show experimental results and, in Sec. V, we present the
conclusions.

A. Notations and Background

By default, we use small bold letters, eg. a, to represent
vectors. Matrices are denoted with bold capital letters, eg. A.
Regular small letters represent one dimensional elements. We



e

xe

x(t  
,  t

  )y

xe

ye

ze

y

R
obot

θ

Fig. 1: Depiction of the problem addressed in this paper. The
goal is to compute the translation parameters tx and ty and
the rotation angle θ.

use „ to express an algebraic relation up to a scale factor.
We use superscripts pWq and pCq to distinguish between the
same feature in the world and camera coordinate systems,
respectively.

We use the operator s p.q to represent the skew-symmetric
3 ˆ 3 matrix that linearizes the exterior product, such that
aˆ b “ s paqb.

To represent 3D straight lines, we use the six-tuple Plücker
coordinates [17]. A line is thus denoted by g „ ppg, rgq where
pg P R3 and rg P R3 are respectively the direction and moment
of the line. Let us consider two lines g „ ppg, rgq and h „
´

ph, rh
¯

, defined in the same coordinate system. One can see
that they intersect, if and only if,

Ω pg,hq “ 0 ô pg ¨ rh` rg ¨ ph “ 0. (1)

Let us consider the rigid transformation between the
world and camera coordinate systems defined by the rotation
R P SO p3q and translation t P R3. Let us consider a
line represented in two distinct coordinate systems gpWq „
`

pgpWq, rgpWq
˘

and gpCq „
`

pgpCq, rgpCq
˘

. According to [18],
[19], it is possible to derive the linear operator

gpCq
.
“ Ψ

´

gpWq
¯

, (2)

that can be defined as
„

pgpCq

rgpCq



„

„

R 03ˆ3

s ptqR R



loooooooooomoooooooooon

HPR6ˆ6

„

pgpWq

rgpWq



. (3)

II. PLANAR POSE USING KNOWN COORDINATES OF 3D
LINES

Pose estimation consists in finding the rotation and trans-
lation parameters (R and translation t respectively), that
define the rigid transformation between the world and camera
coordinate systems. In this paper, we address the case
where the coordinates of 3D straight lines are known in the
world coordinate system. To represent lines, we use Plücker
coordinates (see Sec.I-A).

Assume that the coordinates of M 3D straight lines are
known (in the world coordinate system). As discussed in the
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Fig. 2: Representation of the data that we use to compute
the pose. gpCqi are the known coordinates of the 3D straight
lines in the world and h

pCq
i,j are the 3D straight lines that are

estimated from the pixels using the general camera model –
denoted here as “projection lines”.

introduction, and since we are considering general camera
models, we can only assume that the image of any 3D
straight line is made up of a set of image pixels (depending
on the imaging device, this set of pixels can or cannot define
a continuous curve). Formally, let us consider the ith known
3D straight line in the world coordinate denoted by g

pWq
i .

For each of the ith lines, it is possible to associate a set of
image pixels (here denoted by tui,ju, for all j), making up
the data-set gpWqi Ø tui,ju for all i. This set of image pixels
make up the image of the 3D lines.

Moreover, and since we consider that the camera is
calibrated (according to the general camera model), we
know, for each and all image pixels, the corresponding
3D straight line, here denoted as “projection line”, in the
camera coordinate system. To distinguish these 3D lines (in
the camera coordinate system) from the known 3D lines
in the world coordinate system, we denote these lines as
“projection lines”. However, we would like to stress out
that, since we are considering general camera models, these
lines will not verify the conventional perspective projection
model. Thus and formally, ui,j ÞÑ h

pCq
i,j , where h

pCq
i,j denotes

the “projection line” in the camera coordinate system. To
conclude, the data-set is made up with g

pWq
i ÞÑ

!

h
pCq
i,j

)

for
all i, which is depicted in Fig. 2. Note that, in this framework,
we never use coordinates of 3D points.

From Sec. I-A, and for each and all of the M 3D straight
lines (ith line), and the associated jth “projection lines”, the
following constraint must be verified

Ω
´

g
pCq
i ,h

pCq
j,i

¯

“ 0, @j. (4)

Note that, for this constraint, the lines must be represented
in the same coordinate system, in this case the camera
coordinate system. The coordinates of the “projection lines”
h
pCq
j,i are known. On the other hand, the known coordinates of



TABLE I: In this table we show the elements of the vector ci,j P R18. cpkqi,j denotes the kth element of ci,j and k
pg
pWq
i

denotes the kth element of the vector pgpWqi . The same denomination is used for rgpWqi , phpWqi,j and rh
pWq
i,j

κ
pi,jq
1 “p3q ph

pCq
i,j

p1q
pg
pWq
i κ

pi,jq
3 “ ´p2qph

pCq
i,j

p3q
pg
pWq
i κ

pi,jq
5 “ ´p3qph

pCq
i,j

p1q
pg
pWq
i

κ
pi,jq
2 “p3q ph

pCq
i,j

p2q
pg
pWq
i κ

pi,jq
4 “p3q ph

pCq
i,j

p2q
pg
pWq
i κ

pi,jq
6 “p1q ph

pCq
i,j

p3q
pg
pWq
i

κ
pi,jq
7 “p2q ph

pCq
i,j

p1q
rg
pWq
i ´p1q ph

pCq
i,j

p2q
rg
pWq
i `p1q pg

pWq
i

p2q
rh
pCq
i,j ´

p2q
pg
pWq
i

p1q
rh
pCq
i,j ´ c

te p1q
ph
pCq
i,j

p1q
pg
pWq
i ´ cte p2qph

pCq
i,j

p2q
pg
pWq
i

κ
pi,gq
8 “p1q ph

pCq
i,j

p1q
rg
pWq
i `p1q pg

pWq
i

p1q
rh
pCq
i,j `

p2q
ph
pCq
i,j

p2q
rg
pWq
i `p2q pg

pWq
i

p2q
rh
pCq
i,j ´ c

te p1q
ph
pCq
i,j

p2q
pg
pWq
i ` cte p2qph

pCq
i,j

p1q
pg
pWq
i

κ
pi,gq
9 “p3q ph

pCq
i,j

p3q
rg
pWq
i `p3q pg

pWq
i

p3q
rh
pCq
i,j

the 3D straight lines are expressed in the world coordinate
system g

pWq
i . However and as described in Sec. I-A, we

can apply the rigid transformation defined in (3), to change
the coordinates of these lines from the world to the camera
coordinate system g

pWq
i ÞÑ g

pCq
i . Formally, the constraint

defined in (4) can be rewritten as

Ω
´

Ψ
´

g
pWq
i

¯

,h
pCq
j,i

¯

“ 0, @j. (5)

Developing (5) using (1) and (3), for each and all of the ith

3D straight lines g
pWq
i , we get

´

Rpg
pWq
i

¯

¨rh
pCq
j,i `

´

Epg
pWq
i

¯

¨ph
pCq
j,i `

´

Rrg
pWq
i

¯

¨ph
pCq
j,i “ 0, @j.

(6)
For the general pose, the six degrees of freedom have to be

estimated (three for the translation and three for the rotation).
However, in this paper, we are considering the case of planar
motion. For this case, we have one degree of freedom for
the rotation (rotation angle φ about the z-axis) and two for
the translation (translation elements tx and ty) as shown in
Fig. 1. Thus, the rotation matrix and translation parameters
can be rewritten as

R “

»

–

cθ ´sθ 0
sθ cθ 0
0 0 1

fi

fl and t “

»

–

tx
ty
cte

fi

fl , (7)

where cθ and sθ are the cos pθq and sin pθq respectively
and cte is a known constant. Thus, the unknowns of the
problem are the angle θ, and the translation elements tx and
ty . Moreover, from (3), one can see that

s ptqR “

»

–

´ctesθ ´ctecθ ty
ctecθ ´ctesθ ´tx

´tycθ ` txsθ tysθ ` txcθ 0

fi

fl (8)

Developing (6) using E, from (8), and R, from (7), we
obtain the constraint

κpi,jqv “ 0 (9)

where v,κpi,jq P R9,

v “
“

txsθ txcθ tx tysθ tycθ ty sθ cθ 1
‰T

(10)
are the unknown vector, and the parameters of the vector
κpi,jq are shown in Tab. I.

Using this result, for a set of correspondences between
known coordinates of 3D straight lines in the world coordi-
nate system and a set of associated “projections lines” in the
camera coordinate system, we can define the system

»

—

–

κp1,1q

κp1,2q

...

fi

ffi

fl

looooomooooon

K

v “ 0 (11)

This problem, however, can not be computed using a
simple “least-squares solution of the homogeneous equation
(11)” [4]. From the unknown vector (10), the following
constraints cipvq “ 0 can be easily derived

c1pvq “v1 ´ v3v7 “ 0 (12)
c2pvq “v2 ´ v3v8 “ 0 (13)
c3pvq “v4 ´ v6v7 “ 0 (14)
c4pvq “v5 ´ v6v8 “ 0. (15)

where vi are the ith element of the vector v, of (10).
Moreover and from the trigonometric constraint sθ2`cθ2 “
1, a new constraint can be defined

c5pvq “ v7v7 ` v8v8 ´ 1 “ 0. (16)

To conclude, the solution for the problem can be com-
puted, in the least-squares sense, using the formulation

argmin
v

fpvq

subject to cipvq “ 0, i “ 1, . . . , 5.
(17)

where
fpvq “ ||Kv||

2
“ vTKTKv. (18)

This problem is well known and it can be easily solved
using standard toolboxes, such as the MATLAB optimization
toolbox or the NLOPT toolbox [20]. The computation time of
the problem is analyzed in the section relative to the analysis
of experimental results, Sec. V-A.

To evaluate and validate the proposed approach, the
method was tested using both synthetic and real data. We
used synthetic data-sets to evaluate the method subject to
noise and to different number of known 3D lines, in the
world coordinate system – see Sec. III. To validate the
approach, we also used real data. We used a Pioneer 3-DX
(from MobileRobots) in the experiments. The localization



2 4 6 8 10 12 14 16 18 20

0.5

1

1.5

2

2.5

3

Median of the Rotation Error

Noise

 

 

θ
1
 − Planar Solution

θ
1
 − General Solution

θ
2
 − General Solution

θ
3
 − General Solution

0 5 10 15 20
0

2

4

6

8

10
Median of the Translation Error

Noise

 

 

tx − Planar Solution
ty − Planar Solution
tx − General Solution
ty − General Solution
tz − General Solution

(a) Evaluation of the proposed approach as a function of the Noise variable.
For this purpose, we consider the data-set with M “ 6, Ni “ 20, @i. For
more information, see Sec. III
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(b) Evaluation of the proposed approach as a function of the number of 3D
straight lines used, here denoted as M . We use Ni “ 20, @i and Noise
variable with value equals to 7.

Fig. 3: In this figure, we evaluate the method proposed in this article (planar pose estimation) against our previous approach
[16] (general pose estimation). We consider the evaluation of both data with noise Fig. (a) and with different number 3D
lines in the world, denoted by g

pWq
i , Fig. (b). While for the method proposed in this paper, we only have three degrees of

freedom (here denoted by the rotation angle θ1 and translation elements tx and ty), for the general case one needs to evaluate
the six degrees of freedom (one has to consider more two rotation angles θ2, θ3 and an additional translation parameter tz).
For each value of the evaluation variable, we consider 103 trials as described in the text. Moreover, the errors associated
with the rotation parameters are in degrees.

of the robot on a path, and also the control its motion, were
performed using data provided by this algorithm. Control was
performed using well-known methods for motion control of
non-holonomic robot [21]. Additional details regarding these
experiments are presented in Sec. IV.

III. EXPERIMENTAL RESULTS USING SYNTHETIC DATA

To evaluate the proposed approach, we consider both
data with noise and also a different number of known 3D
straight lines g

pWq
i . As a comparison measure, we evaluate

the method proposed in this paper – which computes the
pose for the planar case – against our previous approach
[16] – which computes the pose for the general case. We
use Matlab to obtain the experimental results presented in
this section (the code will be available on the author’s page).

To generate the synthetic data-set, we used the following
procedure: M 3D straight lines were randomly generated
g
pCq
i . To obtain these lines we randomly generate 3D points

qg
pCq
i P R3 (in a cube with 200 units of side length) and

random directions pgpCqi (with norm equal to one). Using this
framework and from [17], the Plücker coordinates of the
known 3D straight lines are given by

g
pCq
i

.
“

´

pg
pCq
i , qg

pCq
i ˆ pg

pCq
i

¯

, @i “ 1, . . .M. (19)

The next step of the data-set generation is the computation
of Ni “projection lines” hpCqj,i . We randomly chose parameters
qµi,j and compute the coordinates of 3D points qh

pCq
j,i “

qg
pCq
i ` qµi,jpg

pCq
i (note that this belongs to the line g

pCq
i ). The

set of parameters qµi,j is randomly chosen, from ´100 to
100. The set of directions ph

pCq
j,i is randomly computed too.

Using this data, for the ith single 3D straight line (denoted as
g
pCq
i ), Plücker coordinates of the “projection lines” are thus

computed as

h
pCq
j,i

.
“

´

ph
pCq
j,i ,

qh
pCq
j,i ˆ

ph
pCq
j,i

¯

, @j “ 1, . . . , Ni. (20)

From the definition, the set of lines h
pCq
j,i will intersect the

ith line g
pCq
i .

To conclude, random ground truth rotations and translation
parameters (7) are generated and applied to the 3D straight
lines g

pCq
i ÞÑ g

pWq
i , using g

pWq
i “ Ψ´1

´

g
pCq
i

¯

– see (3).
Note that, here, rotation and translation have three degrees
of freedom. The pose is thus computed using the association
between g

pWq
i Ø

!

h
pCq
1,i , . . . ,h

pCq
Ni,i

)

, for all i. With this, we
conclude the data-set generation as is shown in Fig. 2.

The goal of this section is to evaluate the proposed
approach for data with noise (for different levels of noise
and for different number of known 3D lines). As a result,
we consider the following procedure. Instead of considering
“projection lines” as described in (20), we use

h
pCq
j,i

.
“

´

ph
pCq
j,i ,

´

qh
pCq
j,i ` e

pCq
j,i

¯

ˆ ph
pCq
j,i

¯

. (21)

The vector epCqj,i has random direction and random norm, with
standard deviation equal to the Noise variable. When this
variable increases, the noise of the data-set will be bigger
and vice versa.

The results are shown in Fig. 3. Let us first consider the
evaluation for different levels of noise. (we vary the Noise
variable from 0 to 20). For these experiments, we consider a
fixed value for the number of known 3D lines in the world
(M “ 6) and a fixed value for the number of “projection
lines” (Ni “ 20). The results are shown in Fig. 3(a).

For the case of the data with different number of 3D lines
in the world (variable N as described in (19)), we consider a
fixed value for the number of “projection lines” (Ni “ 20 in
(20)) and a Noise variable with the value of 7. The results
are shown in Fig. 3(b).

IV. ROBOT LOCALIZATION–EXPERIMENTS WITH REAL
DATA

For experiments with real data, we considered a problem
of visual navigation. We used a Pioneer-3DX mobile robot
(from Mobile Robots [22]) with a non-central catadioptric
camera, made up by a perspective camera and a spherical
mirror. For the calibration of the non-central catadioptric



(a) In this figure, we show the setup used in the robot localization experiments
– Pioneer 3-DX robot and a non-central catadioptric imaging system.

(b) The picture on the left is an original image, taken from the non-
central camera model shown in Fig. (a). On the right, we show the
results of the application of the color filter.

(c) In the picture on the left, we show an example of the contour
extraction of the color filtered image from (b). The contour is here used
to define the Blobs. On the right, we show an example of the association
of the Blobs/curves by colors – these curves will be associated with
3D straight lines in the world.

Fig. 4: In Fig. (a), we show the robot setup – the Pioneer 3-DX mobile robot with a non-central catadioptric camera. In
Figs. (b) and (c) we show an example of the image processing steps that we used to get the data-set – association between
a set of image pixels with 3D straight lines in the world.

camera, we used the method proposed by Perdigoto and
Araujo in [23]. The setup is shown in Fig. 4(a).

To get the data-set, we considered six green 3D straight
lines in the world – four 3D lines on the ground and two
3D vertical lines. An example of an image of these lines
is shown in Fig. 4(b). To complete the acquisition of the
data-set, we have to associate pixels in the image to these
3D straight lines. To get these pixels, we used the following
procedure:

1) Color Filtering: The first step of the image processing
is to apply a color filter (we used green lines for that
purpose). In addition, and to remove errors from the
filtering process, we apply morphological operators –
an example is shown in Fig. 4(b);

2) Object Identification: We detect/identify Binary Large
OBjects (Blobs) by extracting the closed contours in
the image obtaiend in the previous step – an example
is shown in Fig. 4(c);

3) Associate Blobs with 3D lines: For the first frame, we
associate the Blobs to the 3D lines manually. For the
next frames, this procedure is performed automatically,
by selecting the Blob in the new frame which is closest
to the corresponding Blob in the previous frame;

4) Associate 2D pixels with 3D lines: For each 3D straight
line, we select a set of random 75 image pixels from
its associated Blob. As a result, we have a set of
2D image pixels associated with 3D straight lines

(gpWqi Ø

!

h
pCq
1,i , . . . ,h

pCq
75,i

)

, for all i), concluding the
acquisition of the data-set.

All of these image processing operations were implemented
in C++, using OpenCV. We defined two types motions for the
robot: a circular motion and a S-motion. In a different pro-
cess, we implemented the optimization procedure described
in (17), using the C++ NLopt optimization toolbox [20] (the
computation time of the complete algorithm is detailed in
Sec. V-A).

The results of these experiments are shown in Fig. 5.
Let us first consider the circular motion. In the first row of
Fig. 5(a), we show four examples of the images acquired by
the non-central catadioptric camera with colors identifying
the blobs associated with the 3D lines. The 3D straight
lines are shown in the second row of Fig. 5(a), with the
respective colors. To conclude, also in the 3D plots, we show
the reconstruction of the motion of the robot in the world. In
Fig. 5(b), we have the same information but for an S-motion.

In addition to the images of Fig. 5, we recorded a video,
with the reconstruction of the position through the path,
which we attach as supplementary material. This video will
also be available on the author’s page.

V. CONCLUSIONS

A. Analysis of the Experimental Results

In this section, we analyze the experimental results of
Sec. III and IV.



(a) In this figure, we show the results for the localization of the robot with a circular motion. In the first row we show four images taken with the
non-central catadioptric camera – in which we can see the tracking curves associated with the 3D straight lines– and, in the second row, we show
the reconstruction of the motion in 3D.

(b) Similar to the case described in (a) but, in this case, for a mixture between a straight and circular motion.

Fig. 5: In this figure, we show the results of the application of the proposed method in a robot localization problem. We
use a Pioneer 3-DX robot with a non-central catadioptric system, made up by a perspective camera and a spherical mirror.
We consider a circular motion (a) and a mixture between straight and circular motion (b).

The goal of the experiments with synthetic data is to
evaluate the robustness of the proposed approach against
noise and also as a function of different numbers of known
3D straight lines in the world. To better understand the
advantage to study the planar case, we compare the proposed
method with our previous approach, general case [16]. From
the experimental evaluation shown in Fig. 3(a), we can
see that, for noisy data, the proposed approach performs
significantly better when compared to the general case. Of
course, it is obvious that in the case of planar motion
only three degrees of freedom exist, which simplifies the
problem. As we can see, from Fig. 3(a), the errors associated
with the additional degrees of freedom (two angles θ2, θ3
and a translation element tz) are highly sensitive to noise.

Moreover and as we can see from these figures, even in the
other cases (the angle θ1 and the two translation elements
tx and ty) the planar solution is much more robust than the
general solution. For example, for the translation parameters,
the planar solution is up to two times more robust than the
general solution. The same analysis can be made for the
experiments using a different number of known 3D lines
in the world coordinates, Fig. 3(b). As we can see, in the
general solution, the three additional degrees of freedom are
highly sensitive to noise. Similar to the noise evaluation, the
planar solution is also less sensitive to the variation on the
number of 3D lines used.

To conclude the analysis of the experiments using syn-
thetic data, we will discuss the computation time spent in the



computation of both the planar motion parameters and also
in the case of general motion parameters. We recorded all
the computation times for the experiments of Fig. 3(a). For
these experiments, we used the Matlab toolbox and an intel
i7-3930K CPU. The average of the computation times for
planar motion model proposed in this paper is 0.0225 rss. On
the other hand, the computation time for the general case was
0.0517 rss. Thus, we can conclude that the method proposed
in this paper is significantly faster than the general case (more
than twice faster). Note that, since these methods are all
iterative, the initial solution used for the optimization process
is very important. We ensured that the initial solutions used
for both types of motion models were the same.

In what concerns the experiments with real data, Sec. IV,
we considered robot navigation examples. From the results
of Fig. 5 and from the video sent as supplementary material,
one can see that the method has good performance. In this
analysis, we want to emphasize that, with the exception
of the non-central catadioptric system, no further sensory
information was used. For the experiments with the robot, we
used an intel i7-3630QM CPU. Both image processing and
pose estimation procedures were implemented in C++. The
average of the computation time spent on the optimization
step was 0.00531 rss.

B. Closure

In this article, we presented a novel approach to problem
of planar pose estimation for generalized camera models.
This method can be applied to any imaging device, such
as: the conventional perspective cameras, central catadioptric
cameras, non-central catadioptric camera, or even cameras
with refraction elements. To the best of our knowledge, this
problem (using 3D straight lines) was not addressed before.

One of the main advantages of the proposed approach
is the use of correspondences between known 3D straight
lines and pixels that belong to their images. This approach
significantly reduces the difficulties in the acquisition of
the data set in particular because it does not require the
determination of correspondences between 3D points and
their images.

To conclude, when considering planar motion, we prove
that the planar solution proposed in this paper is more robust
against noise and also against the variation of the data-set
than the general solution. To validate the method, we tested
our approach in a visual navigation problem using a mobile
robot.
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