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A Simple and Robust Solution to the Minimal General Pose Estimation*

Pedro Miraldo and Helder Araujo

Abstract— In this article we address the problem of minimal
pose under the framework of the generalized camera models.
Previous approaches were based on geometric properties, such
as the preservation of distance between points. In this paper we
propose a novel formulation to the problem using an algebraic-
based approach. We represent the pose by a 3ˆ3 matrix. Using
both the algebraic relationship between three incident 3D points
and straight lines and the underlying constraints of the pose
matrix, pose can be computed. In terms of experimental results,
the main contribution of the proposed method is the robustness
to critical configurations. In addition, a full comparison and
analysis between state-of-the-art methods is made (so far, there
is no published comparison between state-of-the-art methods
published).

I. INTRODUCTION

In this article we address the problem of minimal abso-
lute pose for general camera models, Fig. 1. This problem
consists on the estimation of the rotation and translation
parameters that define the rigid transformation between three
3D points (in the world coordinate system), and three 3D
lines (in the camera coordinate system). To handle any type
of camera (central and non-central), we consider the general
camera models [6] which basically consist on the individual
association of image pixels and non-constrained 3D lines.

The analysis of solutions using minimal data is important
because of their computation speed and their applications
in hypothesis-and-test estimation methods such as RANSAC
[5], [16]. They also allow insights and a better understanding
of the problem.

The basic approach to solve this problem consists in
computing the coordinates of the 3D points in the cam-
era coordinate system, using the known distance between
the three points. This formulation was studied by both
Chen & Chang [2], [3] and Ramalingam et al. at [21]. In
both articles, to solve the problem, the authors claim that it
is possible to derive an eight degree polynomial equation.
Chen & Chang proposed a set of transformations of the
data set so that the computation of the coefficients of the
eight degree polynomial is easier. For these two approaches
and since the pose is given by the transformation between
the world and camera coordinate systems, to compute the
rotation and translation from two 3D points sets, additional
steps are required. To compute this rigid transformation the
conventional methods such as [1], [25], require the singular
value decomposition (SVD) of a 3ˆ 3 matrix for each
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valid solution. Note that there are closed-form solutions
for this decomposition. However, as it can be seen from
the experimental results, the numerical accuracy deteriorates
when the closed-form solutions are used. Thus, it is usual to
use iterative methods to compute the SVD, which increases
the computational effort. See for instance the analysis made
by Kneip et al. [11], for the case of minimal pose problem
for central cameras.

To deal with these drawbacks, Nistér and
Stewénius at [17], [19] express the rotation and translation
parameters as a problem of intersection between a ruled
quartic surface and a circle. Differently from Chen &
Chang’s method, Nistér & Stewénius’s algorithm outputs
the rotation and translation parameters that represent pose.
However, their formulation of this problem is complex.

In this article we propose a new parameterization of the
minimal pose problem. As Nistér and Stewénius’s method,
our approach also yields the pose parameters directly. In the
remaining of this section, we summarise the main contribu-
tions of the paper.

Let us consider general calibration methods, such as [6],
[24], [15]. For any specific camera model it is expected
that, due to noise, the 3D straight lines generated by the
general camera models do not fit the underlying camera
geometry. For instance, when we calibrate a perspective
camera with noisy data and using general methods, the
probability of the lines intersect at a single point is very
small. However, depending on the quality of the calibration
data and calibration process, all the 3D lines must pass close
to a common point. The same analysis can be made for
other configurations such as Pushbroom cameras [8], [10]
Fig. 3(c) (these types of cameras are used in a wide variety of
applications that goes from CT X-rays to satellite imaging)
and X-Slit cameras [26] Fig. 3(e) (used in photography to
create new images). For these cases, general solutions for the
minimal absolute pose problem must be used. Thus, general
solutions for pose must perform in these situations as well
as they perform in general configurations (when 3D straight
lines can be random). The main contributions of the paper,
are:
‚ When compared to previous methods, our formulation

is significantly more robust to critical configurations.
‚ A simple solution that can be easily implemented (spe-

cially when compared with the Nistér & Stewénius
algorithm);

‚ Outputs the rotation and translation parameters that
define the pose. When compared to Chen & Chang and
Ramalingam et al., it does not require additional steps
for the computation of the rotation and translation from
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Fig. 1. Fig. (a) and Fig. (b) represent the minimal absolute pose problem
for central and non-central camera models repsectively.

two 3D points sets;
‚ Full comparison and analysis between the proposed al-

gorithm and state-of-the-art methods. So far, there is no
published work comparing state-of-the-art approaches,
Moreover, in the author page, we released the code for
the proposed algorithm as well as the code for the state-
of-the-art-methods.

II. PROPOSED SOLUTION

Pose Estimation requires the estimation of a rotation
matrix Rout PS O p3q and a translation vector tout P R3 that
define the rigid transformation between the world and camera
coordinate systems. Since we consider that the imaging
device is calibrated according to [6], pose is specified by
the rigid transformation that satisfies the relationship of
incidence between points in the world coordinate system
and 3D straight lines represented in the camera coordinate
system, Fig. 1.

The rigid transformation between a point in world coor-
dinates ppW q and the same point in camera coordinates ppC q
is given by

ppC q “ RppW q` t. (1)

R represents the rotation from the world to the camera
coordinate system. The translation t is defined in the camera
coordinate system. The minimal pose uses only three world
points. Let us consider the plane Π

pW q defined by the three
world points

Π
pW q .

“

”

ζ
pW q,πpW q

ı

.
“ ppW q1 YppW q2 YppW q3 , (2)

where ζ pW q and πpW q are the distance from the plane to the
origin and the unit normal vector to the plane.

Without loss of generality and since we are using only
three world points, we can use the planar homography [10]
to represent the transformation from points in the world to
the camera coordinate system. Thus, we can rewrite (1) as

ppC q “
ˆ

R`
1

ζ pW q
t π
pW q T

˙

loooooooooooomoooooooooooon

H

ppW q (3)

where H PR3ˆ3 is called the homography matrix [10], [14].
Moreover and again without loss of generality, we can

apply a pre-defined transformation to the data points and
plane coordinates rR andrt. We consider a transformation such
that

rppW q “ rRppW q`rt (4)

rΠ
pW q .

“

”

rζ
pW q,rπ

pW q
ı

“

”

ζ
pW q´rtT

rRπ
pW q, rRπ

pW q
ı

, (5)

which makes rπ
pW q parallel to the z-axis (additional infor-

mation regarding the computation of the to get the transfor-
mation parameters will be available in the author’s page).
The choice for rζ pW q is not irrelevant. In the next section we
describe the constraints for the selection of this parameter
–see the text after the Theorem 1.

Using this representation we can simplify (3) such that

ppC q “
´

R`
”

0 0 1
rζ pW q

t
ı¯

loooooooooooooomoooooooooooooon

H

rppW q, (6)

which means that matrix H – that defines the aimed trans-
formation, is such that

H“
”

r1 r2

´

r3`
1

rζ pW q
t
¯

ı

(7)

where ri is the ith column of the rotation matrix R. From the
fact that R must belong to the special orthogonal group, the
following three constraints can be easily derived

rT
1 r1 “ 1, which implies hT

1 h1 “ 1 (8)

rT
2 r2 “ 1, which implies hT

2 h2 “ 1 (9)

rT
1 r2 “ 0, which implies hT

1 h2 “ 0. (10)

From now on, we will consider that the points in the world
are represented in this coordinate system.

A. Formalization

Let us consider the general case where the 3D lines can or
cannot intersect at a single point in the world. Let us consider
the 3D straight lines represented in Plücker coordinates
lpC qR .

“
`

dpC q,mpC q
˘

, where dpC q and mpC q represent the
direction and moment of the line respectively. Using this
representation and from [20], a point that is incident on a
line verifies the following relationship

dpC qˆppC q “ pdpC qppC q “mpC q. (11)

pa P R3ˆ3 represents the skew–symmetric matrix that lin-
earizes the exterior product such that aˆb“ pab.

We wish to determine the relationship between the points
in the world coordinate system and the lines in the camera
coordinate system. Thus and considering (6), we can rewrite
(11) such that

pdpC qHrppW q “mpC q. (12)

The unknown is the matrix H. Thus, let us consider the
linearization of the unknown matrix H in (12), using the
Kronecker product,

´

rppW q
T
bpdpC q

¯

vecpHq “mpC q. (13)

This minimal problem, corresponds to the determina-
tion of the mapping between three world points and their
corresponding 3D straight lines. Therefore and using the



representation of (13), we can define the following algebraic
relation

»

—

—

–

rppW q1
T
bpdpC q1

rppW q2
T
bpdpC q2

rppW q3
T
bpdpC q3

fi

ffi

ffi

fl

looooooooooomooooooooooon

M

vecpHq “

»

—

–

mpC q
1

mpC q
2

mpC q
3

fi

ffi

fl

looooomooooon

w

(14)

where M P R9ˆ9, w P R9. The space of the solutions for
the unknown matrix H will depends on the dimension of
the column space of the matrix M. To handle that issue, the
following theorem was derived:

Theorem 1: Consider a set of three points defined in the
world coordinate system rppW qi and their correspondent lines
in the camera coordinate system

´

dpC qi ,mpC q
i

¯

for i“ 1,2,3.
If the three points define a plane that does not contain the
origin, the dimension of the column-space of M in (14) will
be rankpMq “ 6.
The proof of this theorem will be available in the author’s
page.

Note that we can choose the transformation parameters rR
and rt, such that the plane does not pass through the origin.
For that, we have to ensure that the rζ pW q ‰ 0.

To solve this problem, we define a matrix N PR9ˆ10 such
that the solution vector vecpHq is represented in homoge-
neous coordinates ξ P R10, and such that

“

M ´w
‰

loooooomoooooon

N

ξ “ 0, where ξ “

„

vecpHq
1



. (15)

From linear algebra the dimension of the column-space of
the matrix N is rankpNq “ rankpMq, which means that from
Theorem 1, rankpNq “ 6.

It is well known from linear algebra – see [23], that
rankpNq ` nullitypNq “ 10. Thus, we conclude that the
dimension of the null-space of N is nullitypNq “ 4. More-
over, from (15), we conclude that ξ Ă nullpNq . Since the
dimension of the null-space of N is four, we define

nullpNq .
“ tα1e1`α2e2`α3e3`α4e4 : α1,α2,α3,α4 P Ru

(16)
where the ei P R10 are the vectors defining the basis of the
null-space. However, from (15), we see that the tenth element
of vector ξ must be ξ10 “ 1. Note that the basis ei are
defined up to a scale factor. As a result, and without loss
of generality, we can consider that the tenth element of all ei
is equal to one. Using this result, and to ensure that ξ10 “ 1,
we define the following constraint

α4 “ 1´α1´α2´α3. (17)

Redefining the basis as re1“ e1´e4, re2“ e2´e4, re3“ e3´e4
and e4 “ e4, we define a three dimensional affine space Q

Q
.
“ tα1re1`α2re2`α3re3`re4 : α1,α2,α3 P Ru (18)

such that ξ PQ. To compute the basis rei, we can use SVD
to estimate ei and derive rei as suggested. On the other hand,

we can also use an analytical solution as the one derived in
the Appendix .

Defining the matrices rEi PR3ˆ3 as the un–stacking matri-
ces of the vectors rei, we can define H as a function of the
unknowns α1, α2 and α3 such that

H“ α1rE1`α2rE2`α3rE3` rE4. (19)

Let us consider the vectors fp jq
i as the ith column of the matrix

rE j. Using these vectors, we define two affine spaces for the
two first columns of the aimed matrix H as

h1 “ α1fp1q1 `α2fp2q1 `α3fp3q1 ` fp4q1 (20)

h2 “ α1fp1q2 `α2fp2q2 `α3fp3q2 ` fp4q2 . (21)

Since the matrix H must be as (7), the constraints defined
by (8), (9) and (10) can apply to both h1 and h2. Thus, three
constraints of the type gi, j pα1,α2,α3q “ 0 can be derived
and the solutions for the unknowns αi are given by

g1,1 pα1,α2,α3q “ g2,2 pα1,α2,α3q “ g1,2 pα1,α2,α3q “ 0,
(22)

where each function gi, j pα1,α2,α3q is such that

gi, j pα1,α2,α3q “ α
2
1 κ
pi, jq
1 `α

2
2 κ
pi, jq
2 `α

2
3 κ
pi, jq
3 `α1α2κ

pi, jq
4 `

`α1α3κ
pi, jq
5 `α2α3κ

pi, jq
6 `α1κ

pi, jq
7 `α2κ

pi, jq
8 `α3κ

pi, jq
9 `κ

pi, jq
10 .

(23)

According to Nister et al. at [18], the minimal abso-
lute pose problem requires a solution of a single variable
polynomial equation with degree no less than eight. From
Bézout’s theorem [4], we can conclude that the problem
of (22) can have up to eight solutions for pα1,α2,α3q,
which correspond to points where three quadrics intersect.
Moreover, as shown by Guo at [7], it is possible to derive
an eight degree polynomial equation for the problem of (22)
in closed-form, which means that finding the points where
where three quadrics intersect has the same computational
complexity as state-of-the-art approaches (finding the roots
of an eight degree polynomial equation).

It is also possible to use conventional methods such as
Gröebner basis [22], [12], hidden variable technique [9] or
polynomial eigenvalue [13]. Note that the aim of this paper is
not to develop a minimal solver but a new parameterization
of the problem.

B. Decomposition of Matrix H
Note that as a result of the pre-defined transformation of

the data set, each solution for H will verify (7). Therefor
and since the rotation matrix must belong to the special
orthogonal group, the rotation matrix to be estimated will
be

R“
“

h1 h2 ph1ˆh2q
‰

(24)

where the column vectors hi correspond to the ith columns
of the estimated matrix H. Moreover, from (7) and since we
already know the rotation matrix, we can get the coordinates
of the translation vector as

t“ rζ
pW q ph3´h1ˆh2q . (25)



Note that as a result of the application of a pre–defined
transformation to the data set, the rotation and translation
defined by the decomposition of H matrix will not represent
the pose of the camera. We have to take into account the
transformation parameters defined by rR andrt. Consequently,
we define the pose parameters by the rotation matrix Rout and
translation vector tout, such that

Rout “ RrR and tout “ Rrt` t. (26)

III. EXPERIMENTAL RESULTS

To evaluate the proposed method against the state-of-
the-art algorithms, we considered synthetic data-sets. We
analyze the numerical errors, and the number of solutions.
In addition, and to assess the robustness of each method, we
consider three critical configurations. We consider two linear
cameras and an orthogonal camera – the orthogonal camera
is a degenerate case, and compute the pose for configurations
close to these cases.

Since there are no comparisons between the previous
algorithms, we perform the evaluation using the following
approaches:
‚ Our – denotes the method described in this paper when

nullpNq is computed using iterative methods;
‚ Our - CfN – denotes the method described in this

paper when nullpNq is computed using the analytical
solution presented in the Appendix ;

‚ Nister and Stewenius – denotes the method de-
scribed in [17], [19];

‚ Chen and Chang – denotes the method described
in [2], [3] where the SVD – required for [1], [25], is
computed using iterative methods;

‚ Chen and Chang - CfSVD – the same as Chen
and Chang with the SVD computed using analytical
solutions;

For that purpose we consider a cube with 200 units of
side length. We consider lines defined by a point and a
direction. Three points belonging to line xpC qi were computed
inside the cube. Random directions dpC qi were computed –
where

ˇ

ˇ

ˇ
dpC qi

ˇ

ˇ

ˇ
“ 1. Three depths λi, ranging between 20 and

500 were randomly generated and the coordinates of 3D
points in the camera coordinate system are computed using
ppC qi “ λid

pC q
i `xpC qi . A rigid transformation was randomly

generated (R PS O p3q and t PR3). The rigid transformation
generated was applied to the set of points so that ppC qi ÞÑ

ppW qi . For the data set
!

lpC qi ,ppW qi

)

pose is estimated using
the corresponding algorithms. Note that we can easily get
the Plücker coordinates from a point and a direction [20].

This procedure is repeated for 106 trials where, for each
trial, a new pose and data are randomly generated.

Solutions of the minimal absolute pose problem must yield
similar results in both the number of solutions and the for the
values of the parameters. As a result and as was emphasized
and discussed by Nistér and Stewénius [19], tests with noisy
data are not relevant for comparison. For experiments with
real data, the same analysis can be made.

A. Numerical Errors and Number of Solutions

For each of the 106 trials we evaluate the error in the
rotation parameters by computing the square root of the sum
of the error on the rotation angles. The numerical error for the
translation is computed using the norm of the vector tout´tgt.
The distribution of the numerical errors on the values of the
rotation and translation are shown in Figs. 2(a).

To eliminate abnormal solutions, it is usual to consider the
constraint that points should be in forward direction. In the
framework of generalized camera models, we consider this
constraint as dpC qi

T ´

ppC qi ´xpC qi

¯

ą 0 for i“ 1,2,3, where:

ppC qi is the ith estimated 3D point in the camera coordinate
system; and xpC qi is the ith point in the camera coordinate
system that defines the forward direction. In the experiments,
we call this constraint the “Orientation Constraint”. The
result of the application of the “Orientation Constraint” is
shown in Fig. 2(b).

B. Critical Configurations

We consider following critical cases: orthographic config-
uration (affine camera) [10] where the pose is degenerate –
there are an infinite number of solutions; the classical linear
pushbroom configuration; and the X-Slits cameras. For that
purpose, we consider the same data-set generation previously
defined. However, instead of considering general direction
and 3D points: dpC qi and xpC qi , we constrain this random data
to the proposed configurations. We compute three vectors
vpC qi with random directions and the norm randomly de-
stributed over a normal distrubution with standard deviation
defined by a variable called Distance from Critical
Case. The 3D points in the camera coordinate system are
then given by ppC qi “ λiqd

pC q
i `xpC qi , where the directions of

the lines are qdpC qi “ dpC qi `vpC qi .
As the variable Distance from Critical Case

goes from one to zero, the trial approximates the critical
configuration. From each value for this variable, we compute
the median of 103 trials. If some algorithm fails, we discard
that trial and randomly generate a new one. This procedure
is repeated until we get 103 trials. The results are shown in
Fig. 3. In addition to the errors in the rotation and translation
parameters, we show the number of failures for each one of
the algorithms (occurred until 103 valid trials were obtained).

IV. DISCUSSION

The comparison in terms of number of solutions (Fig. 2(b))
does not add relevant information concerning the relative
merits of the algorithms.

In terms of numerical accuracy (Fig. 2(a)), it can be seen
that four of the five suggested algorithms perform similarly.
We note that our method performs slightly better when
taking into account the variation of the distribution of the
errors, specially for the case where the matrix N is computed
using SVD. The algorithm Chen and Chang - CfSVD
performs the worst, specially due to a larger variation on the
distribution of the numerical errors.



−16 −14 −12 −10 −8 −6

Base 10 Logarithm of the Numerical Error

N
u
m

b
e
r 

o
f 
O

c
c
u
rr

e
n
c
e
s
 i
n
 1

0
6
 T

ri
a
ls

Distribution of the Rotation Error

 

 

Our
Our − CfN
Nister and Stewenius
Chen and Chang
Chen and Chang − CfSVD

−14 −12 −10 −8 −6

Base 10 Logarithm of the Numerical Error

N
u
m

b
e
r 

o
f 
O

c
c
u
rr

e
n
c
e
s
 i
n
 1

0
6
 T

ri
a
ls

Distribution of the Translaction Error

(a) Evaluation for the numerical accuracy.

1 2 3 4 5 6 7 8

Without Orientation Contraint

Number of Solutions

N
u
m

b
e
r 

o
f 
O

c
c
u
rr

e
n
c
e
s
 i
n
 1

0
6
 T

ri
a
ls

 

 

Our
Nister and Stewenius
Chen and Chang

1 2 3 4 5 6

With Orientation Contraint

Number of Solutions

N
u
m

b
e
r 

o
f 
O

c
c
u
rr

e
n
c
e
s
 i
n
 1

0
6
 T

ri
a
ls

(b) Results for the number os solutions.

Fig. 2. In this figure we show the numerical distribution of the errors – Fig. (a), and the distribution of the number of solutions – Fig. (b). The proposed
method is compared against the state-of-the-art algorithms proposed by Nistér and Stewénius at [17], [19] and by Chen and Chang at [2], [3]. More
information abount the evaluated algorithms is given in the text.
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(f) Results for X-Slit camera models – Figs. (e).

Fig. 3. In this figure we evaluate the stability and robustness of the proposed algorithms. We consider the algorithms that we used in previous tests. For
that, we consider three critical cases: orthogonal configuration (a) and (b); pushbroom cameras (c) and (d); and X-Slit cameras (e) and (f). The stability
and robustness are analyzed by computing the errors in the rotation and translation parameters that define the pose, as a function of a Distance from
Critical Case – see the Sec. III-B. Note that the errors are shown in a log-base 10 representation. The errors are computed as the median of 103

valid trials. Close to critical cases it is possible that some algorithms fail to compute a solution. As a result, and for each algorithm, we show the number
of failures that we get until 103 valid trials are obtained.

A. Computational Effort

We have implemented all the algorithms in MATLAB
using a Intel core i7–3930k with a 3.2GHz processor. All
the computation times that are shown in the paper were
computed as the median of the respective computation times,
for all the 106 trials. For the evaluation, we will consider
only the steps that require the most significant computational
effort, which correspond to the iterative steps.

The main computation step for all the algorithms consists
in the computation of the minimal solver which, for all
the algorithms, corresponds to finding the roots of an eight

degree polynomial equation. As suggested by both Nistér
& Stewénius and Chen & Chang, the companion matrix is
suitable in terms of both speed and accuracy. This method
corresponds to performing an eigen decomposition of an
8ˆ8 matrix, which takes 43µs.

For our parameterization, we considered two possibilities
for the estimation of the null-space of the matrix N PR9ˆ10,
(15): using an analytical solution (Our - CfN); and using
the iterative SVD (Our). If we use the latter, we have to take
into account 40µs.

Note that the Chen & Chang formulation estimates the



coordinates of the 3D points in the camera coordinate system
and since the pose is given by the rotational and translational
parameters (that define the transformation between the world
and camera coordinate systems) it is therefore necessary,
for each valid solution, the computation of a SVD. If we
use iterative methods (Chen & Chang), each valid solution
takes 19µs.

To conclude, in Table I we present figures representing the
main computational load required by all the five algorithms
evaluated. From this table, we conclude that the method
that we denote as Our - CfN method requires the same
computational effort as the fastest method (Nister and
Stewenius) , Our is faster than the Chen & Chang
algorithm in the case where the number of possible solutions
is bigger then two (which, according to Fig. 2(b), happens
in most of the cases).

B. Critical Camera Models

Let us consider general calibration methods, such as [6],
[24], [15], to calibrate X-Slit cameras – Fig. 3(e). For noisy
data, the 3D lines generated from the calibrated general
camera model will not pass through the two slits that define
the camera geometry. However, and again depending on the
quality of the calibration, they must pass close to these slits.
The same analysis can be made for Pushbroom cameras
– Fig. 3(c). For data with noise, the 3D lines will not
pass through the line of motion nor will belong the the
instantaneous view plane. As a result, the solutions for the
minimal pose have to be computed using a general method,
such as the one presented in this article.

As we can see from the results, we conclude the method
denoted as Our behaves better than the sate–of–the–art
methods in all the tests. Our - CfN only performs worst
when compared with the Chen & Chang method and for
the X-Slit critical configuration. However, we note that
Chen & Chang method is significantly slower than Our
- CfN method – it requires the computation of an iterative
SVD for each valid solution. We note that Nister &
Stewenius method performs up to 1013 worst than the
algorithm Our.

In additional to the previous previous configurations, we
consider the Orthographic critical configuration. Pose es-
timation for these cameras is degenerate. As we can see
from the results, the median of the numerical errors for the
algorithm Our are up to 106 times better, relative to all the
other algorithms. Note that when method Our has a median
of the errors close to one, the other algorithms have values
close to 106, which is a significant difference. However and
for the case where the null-space of N is computed using
the analytical solution (Our - CfN), the results are not as
god as Our algorithm. Moreover and in most of the cases,
the approach performs slightly worst than state-of-the-art
methods. We also note that other analytical solutions for the
null-space can be derived, which can improve these results.

To conclude, we remark that the parameterization pro-
posed in this article is significantly more robust than the
state-of-the-art formalizations.

V. CONCLUSIONS

In this article we proposed a novel parameterization for
the minimal absolute pose problem within the framework
of generalized camera models. In terms of formalization,
our parameterization is very simple and gives the rotation
and translation parameters directly. We note that this pa-
rameterization can be easily changed to allow a closed-form
solution for central cameras – that also gives the rotation and
translation parameters directly as the recent method proposed
by Kneip et al. [11].

The main contribution of the proposed parameterization is
its robustness in the cases of imaging devices with critical
configurations. Note that when considering both the general
camera model and the associated calibration procedure, it
is very important to analyze the robustness of the proposed
solvers in the cases of non-central imaging systems– spe-
cially when considering noisy data. From the results shown
in the paper, we see that our method performs significantly
better than state-of-the-art methods, specially when consid-
ering the algorithms with the smallest computational effort.

The Matlab code will be avaliable in the author’s web
page.

APPENDIX

In this appendix we derive an analytical solution for the
basis of nullpNq. This solution should be used when the
computation time is essential. From the definition of the
Kronecker product we can rewrite the matrix M, (14), as

M“

»

—

–

rppW q1,1
pdpC q1 rppW q1,2

pdpC q1 rppW q1,3
pdpC q1

rppW q2,1
pdpC q2 rppW q2,2

pdpC q2 rppW q2,3
pdpC q2

rppW q3,1
pdpC q3 rppW q3,2

pdpC q3 rppW q3,3
pdpC q3

fi

ffi

fl

(27)

where rppW qi, j is the jth element of the vector rppW qi .
Let us define the vectors qpW qi – orthogonal to both rppW qj

and rppW qk ,

qpW q

1 “ rppW q

2 ˆrppW q

3 , qpW q

2 “ rppW q

1 ˆrppW q

3 and qpW q

3 “ rppW q

1 ˆrppW q

2 ,
(28)

Using these vectors, the fact that dpC qi ˆ dpC qi “ 0 and
since the null-space of M has dimension equal to three –
Theorem 1, we define the three basis vectors for nullpMq as

e1 “

”

qpW q1,1 dpC q1 , qpW q1,2 dpC q1 , qpW q1,3 dpC q1

ı

(29)

e2 “

”

qpW q2,1 dpC q2 , qpW q2,2 dpC q2 , qpW q2,3 dpC q2

ı

(30)

e3 “

”

qpW q3,1 dpC q3 , qpW q3,2 dpC q3 , qpW q3,3 dpC q3

ı

(31)

where qpW qi, j is the jth element of the vector qpW qi . It can be
seen that these bases are linearly independent.

Let us now consider matrix N as described in (15). From
the basis for the null-space of M – ei, (29-31), and from
definition of matrix N, we define rei “ rei,0s for i “ 1,2,3.
It can be seen that rei, for i “ 1,2,3, are three linearly
independent basis for the null-space of N. However and since
the dimension of the null-space must be four, there is one
basis left.



TABLE I
MAIN COMPUTATIONAL EFFORT REQUIRED FOR THE COMPUTATION OF THE PROPOSED ALGORITHMS. K – REPRESENTS THE NUMBER OF VALID

SOLUTIONS GIVEN BY THE ALGORITHMS.

Methods: Our Our - CfN Nister & Stewenius Chen & Chang Chen & Chang - CfSVD

Times 43`40µs 43µs 43µs 43`K19µs 43µs

From geometric properties, we know that mpC q
i “ xpC qi ˆ

dpC qi , for any point xpC qi that belongs to the line. As a result
and considering vector qpW qi defined in (28), we derived the
following three vectors

rep1q4 “

”

qqpW q1,1 xpC q1 , qqpW q1,2 xpC q1 , qqpW q1,3 xpC q1 , 1
ı

(32)

rep2q4 “

”

qqpW q2,1 xpC q2 , qqpW q2,2 xpC q2 , qqpW q2,3 xpC q2 , 1
ı

(33)

rep3q4 “

”

qqpW q3,1 xpC q3 , qqpW q3,2 xpC q3 , qqpW q3,3 xpC q3 , 1
ı

(34)

where

qqpW qi, j “
qpW qi, j

qpW qi,1 rppW qi,1 `qpW qi,2 rppW qi,2 `qpW qi,3 rppW qi,3

. (35)

Using these vectors, we have

Nrep1q

4 “

»

–

0
´mpC q

2
´mpC q

3

fi

fl , Nrep2q

4 “

»

–

´mpC q

1
0

´mpC q

3

fi

fl ,Nrep3q

4 “

»

–

´mpC q

1
´mpC q

2
0

fi

fl .

(36)
As a result and taking into account (15), we define the last
basis for the null-space of N as

re4 “rep1q4 `rep2q4 `rep3q4 `r0, . . . ,0,´2sT . (37)

The null-space for the matrix N is thus given by

nullpNq .
“ tα1re1`α2re2`α3re3`α4re4 : αi P R,@iu . (38)

Note that the tenth element of re1, re2 re3 and re4 are 0, 0, 0
and 1 respectively. From Sec. II-A, we want ξ P nullpNq such
that ξ10 “ 1. Using the solution for the null-space described
in this appendix, (38), we get this constraint by ensuring that
α4 “ 1.
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