FPGA Design with VHDL

Justus-Liebig-Universitat Gielden,
ll. Physikalisches Institut

Ming Liu
Dr. Soren Lange
Prof. Dr. Wolfgang Kuhn

ming.liu@physik.uni-giessen.de

mailto:ming.liu@physik.uni-giessen.de

ﬂm Lecture 2

= FPGA Development Flow
= VHDL Basics

= Concurrent Design

= Sequential Design

= Coding Style Issues

FPGA Development Flow

| Specification

| Modeling
\J

\ J——

QUARTUS"II v __
IfO Assignment & Analysis
. -
RTL Synthesis
v
Place & Route
v

[BTHTERE,
Srratx

Serier

Chip Editor +»

cripting Support

In-System Verification «»

| Final Products

Functional Simulation

~ Design Rule Checking

H‘_I'Lm

Power Analysis

 Static Timing Analysis
Technology Map Viewer

Board-Level Timing
Gate-Level Simufation
Board-Level Signal

Integrity Analysis

Specification & modeling
(algorithm investigation
with high-level languages)

System design (coding)

= Hardware description
(HDL)

= Simulation (functional
simulation or pre-
simulation)

Constraints (timing,
location assignments, ...)

Synthesis &
Implementation (timing
simulation or post-
simulation)

System verification & final
products

Simplified Development Flow

- Design

Design Ent
esign entry -l Verification

= Design Entry: Design
= Create your design files using: P Implementation
= hardware description (Verilog, VHDL)
= Design “implementation” on FPGA:
= Synthesis, map, place, and route to create bit-stream file
= Divide into CLB-sized pieces, place into blocks, route to blocks
= Design verification:
= Use Simulator to check functionality
= check max clock frequency
= Load into FPGA device (cable connects PC to board)
= check operation at full speed in real environment.

&m Related Softwares

= C or SystemC compilers for modeling (for
complicated algorithms, can be neglected for simple
designs)

= Editors for coding: Emacs, etc..
= Simulation software: Modelsim
= Synthesis & Implementation software: Xilinx ISE

= QOther useful tools in the Xilinx software package,
such as EDK, Chipscope, FPGA editor, ...

VHDL Basics

= VHSIC Hardware Description Language
(Very High Speed Integrated Circuit)

= Synthesizable (for implementation) & unsynthesizable
subset (for simulation)

= Detailed syntax:

Entity Declaration

« An entity declaration

ENTITY half adder IS describes the interface of
B the component
PCORT({ %, ¥, enable: IN bit; e PORT Clauseindicates
carry, result: OUT bit); ‘\ input and output ports
END half_adder; » An entity can be though
— X — Half [— carry of asasymbol for a

component

Adder |— result

VHDL Basics

Port Declaration

ENTITY test IS
PORT (name : mode data tyvpe);
END test;

Architecture Declaration

ARCHITECTURE behave OF half adder IS
EEGIN X
PROCESS (enakle, x, ¥) - - —_—
EEGIN enab?’e—t
IF (enakle = "1') THEHN X

END PROCESS;

>—carry

result <= x HOR v;
carry <= x AND v;

ELESE
carry == '07; Yy
result <= '07;

END IF;

END b

ehave;

)—result

« PORT declaration
establishes the
interface of the object
to the outside world

e Three parts

- Name

- Mode (in, out)

- Data type (std_logic,
std_logic_vector, ...)

 Architecture declarations
describe the operation of
the component

» Many architectures may
exist for one entity, but only
one may be active at a time
» An architecture is similar
to a schematic of the
component

VHDL Basics

Generics

« Generics allow the component to be customized upon instantiation

« Generics pass information from the entity to the architecture

« Commaon uses of generics
— Customize timing
— Alter range of subtypes
— Change size of arrays

Example 1.

Example 2:

The GENERIC MAP is similar to the PORT MAFP in that it maps
specific values to generics declared in the companent

entity user_logicis
generic (DATA_WIDTH : integer := 16);

port(
data in:instd logic vector(DATA_WIDTH — 1 downto 0);

);

end entity user_logic;

architecture arc of user_logicis
signal counter : std_logic_vector(DATA_WIDTH — 1 downto 0);

PACKAGE my_stuff IS
COMPOMNENT and gate
GEMERIC { tplh, tphl time);
BORT { inl, in2 IN EIT; outl
END COMPONENT;
END my_stuff;

OUT BIT);

USE Work.my_stuff.ALL;
LRCHITECTURE test OF test_entity
SIGNAL S1, 52, 53 : BIT;
BEGIN
Gatel : my_stuff.and gate
GEMEEIC MAFP (£ ns, 3 ns)
PORT MAF (51, 52, 53);
END test;

VHDL Basics — Concurrent Design

« Signals are used for

Signal Declaration communication between
components
* Signals can be seen as
SIGNAL signal name : type name [:=value]; real physical signals

» Some delay must be
incurred in a signal
assignment

SIGNAL brdy : BIT;
SIGNAL output : INTEGEER := Z;

] . » Signals can be assigned
Signal Assignment either in the behavioral style

or in the structural style

ARCHITECTURE signals OF test IS
SIGHNAL a, b, c, out 1, out 2Z: BIT;

BEGIN ul: inverter port map (a,ail;
cut_1 <= a NAND b; u2: inverter port map (b,bi);

cut_ 2 <= cut_1 XOR c;
—= = — f u3: and_gate port map (ai,b,t3);

END signals;
ud: and_gate port map (bi,a,td);
-
XOR gate ub: or_gate port map (£3,td,q);

| q
r \ q <= a xor by

VHDL Basics — Concurrent Design

IF- vs CASE-statement Syntax

if (a=“1") then case (a&b) 1s

q <= "1"; when “007 =>
elsif (=‘1") then g <= ‘07;

q <= *17; when others => .
else q <= ‘17;

q «<="'0"%; end case; .
end if;

FOR- vs WHILE-statement Syntax

for 1 in 0 to 9 loop
g(i) <= afl) and b(l);

end loop;

For is considered to be a
combinational circuit by some
synthesis-fools. Thus, it cannot have
a wait statement to be synthesised.

1:=0;
while (i<%) locop
g <= afl) and bii);
WAIT CM clk UNTIL clk="1";

end loop;

While is considered fo be an FSM
by some synthesis-tools. Thus, it
needs a wait statement to be
synthesised

WAIT-statement Syntax

The wait statement causes the suspension of a process statement or a procedure

wait [sensitivity_clause] [condition_clause] [timeout clause |;
— sensitivity clause = on signal_name { , signal_name }
walt on CLOCK;
— conhdition clause »= until boolean axpression
walt until Cleck = *1°;
— timeout_clause = for fime_axprassion

wait for 150 ns;

VHDL Basics — Concurrent Design

Sensitivity-lists vs Wait-on-statement

Summation: Summaticn: PROCESS
PROCESS(&, B, Cin) EEGIN
BEGIN — Sum <= A xor B xor Cin;

Sum «= A xor B xcor Cing WAIT CN A, B, Cin;
END PREOCESS Summation; END PROCESS Summation;

Concurrent Process Equivalents

*All concurrent statements correspond (o a process equivalent
Ul:q <= a xor b after 5 ns;
is a short hand notation for
Ul:process
begin
q <= a xor b after 5 ns;
wait on a,b;

end process;

VHDL Basics — Sequential Design

Flip-flop

process(clk) -- synthesis might complain that d is not listed
begin
if (¢clk="1") and clk’event then
q<=d:
end if;

end process;

D-flipflop with synchronous reset

process(clk) -- synthesis might complain that neither d nor
-~ reset is listed

begin
it {clk="1") and clk’event then
il (reset="1") then
q<="0";
else
q== D:
end il;
end if;

end process;

D | | Q p__| | Q

CLK—Z CLK —

Asynchronous reset

process(clk.reset) -- synthesis might complain that d is not
- listed

begin
il (reset="1") then
qe="0";
elsif (clk="1"}) and clk’event then
q<=D:
end if;

end process:

VHDL Basics — Sequential Design

= Finite State Machine (FSM)

= Mealy Machine & Moore Machine

Moore
k="0"
/ DYe
k="1"
MNext State logic Stale register Output logic

Inputs

t Outputs

Moore machine: The output has only to do with
the current state.

Clk

/ k="0"/0
k="1/1 \j w k="0"/0
'\h___;_f
k="1"/1 current state
Next State logic State register Dutpui logic
Outputs
Inputs —

next state*fIk

Mealy machine: The output has not only to do
with the current state, but also with the input.

k="1"
Acrchitectare moore of fsm is
fype state_type is (SO0051)
signal next_state pres_state:state_type;

besin
logic: processipres_state k)
begin
nexl_state <= pres_slate;
case pres_stale is
when S0 ==
q<=*1"
il (k="0") then
next_stale <= 51;
end if:
when S1 ==
q=="0
il (k="1") then
next_stale <= 51;
end if:
end case:
end process;
regs: processiclk reseat)

begin
if (reset="1"3 then — asynchronous resat
pres_stale <= S0,
elsif (clk=*1") and clk’event then
pres_stale <= next_state;
end if;
end process;

end moore;

VHDL Basics — Sequential Design

k="07/0

k="1"/1

e

e ——

k="1"/1

Architecture mealy of fsm is
type state_tvpe is (50,51)
signal nexi_state pres_state:stale_Lype:

begin
logic:

regs:

processipres_state. k)
begin
nexi_state

<= pIes_slate;

Case pres_state is

end case:
and process:

end mealy: -

when SO ==
qg<=k

k="0"/0

if (k="00"} then

end if:
when S1 ==
q<=k

nexl_slale <= 51;

if (k="1") then

end if:

mexl_state <= 51;

Coding Style Issues

process (A, B, C, SEL) process (A, B, C, SEL)
begin variable TMP : bit;
if (SEL='1’) then begin
Z <= A + B; if (SEL='1l’) then
else A B A C B C TMP := B;
Z <=A+C else
end if; ‘ ‘ TME.’ = C;
end process; end if;
SE A Z <= A + TMP;

end process;

SEL

E Z
= Structure of initially generated hardware is determined by the VHDL
code itself

= Synthesis optimizes that initially generated hardware, but cannot
do dramatic changes

= Therefore, coding style matters!

Coding Style Issues

process(A, B, C, D, X, Y, Z)

begin
X <= a * b;
E:;EESS(A, B, C, D, X, Y, 2) Y <= C + D;
X <= a * b Z<=X+Y;
A B end process;

Y<=X+ C;
Z <=Y + D;
end process; ‘ A BC D
C /
R
/P X Y
Y
Z

Z
CP=Mul + Add + Add CP=Mul + Add

&m Coding Style Issues

= Some more words on comparing VHDL with C

C VHDL
sw description language hw description language
sequential execution parallel architecture
single core multiple processing elements
machine codes on CPUs logic elements on FPGAs
high clk frequency (GHz) low clk frequency (MHz)
limited parallelism massive parallelism

So don't use the sw programming concepts in VHDL. A good

VHDL coding style is to Think In Hardwarelll

*M References

= The VHDL Golden Reference Guide
= Actel HDL Coding Style Guide
m QOther VHDL books

