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&W Lecture 1

= Digital design basics
= Basic logic devices
= Combinational circuits
= Sequential circuits
= Programmable Logic Devices
= |C classifications
= FPGA architecture and technologies




Basic Logic Devices
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Basic Logic Devices
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Basic Logic Devices
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im Basic Logic Devices
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im Combinational Circuits

= Combinational circuits
= Constructed with gate logics

= Have no synchronous elements (FFs)

= Have no concept of periodic timing

= Qutputs dependent only on inputs, after a delay time
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*W Combinational Circuits

= Examples:
= Multiplexer
= Adder
= Multiplier
= Divider
= Decoder
= Encoder
= Asynchronous RAM



Combinational Circuits: Example 1

= 2-to-1 Multiplexer
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ﬁm Combinational Circuits: Example 2

= Full Adder (FA)
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(a) Graphical symbol

Hidden for the [ab!'!'!
Do it by yourselves!!!

(b) Truth table

Hidden for the lab!!!
Do it by yourselves!!!

(c) Schematic
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(d) Ripple Carry Adder



Sequential Circuits

= Sequential circuits
= Constructed with gate logics & synchronous elements (FFs)
= Concept of periodic timing
= Qutputs updated at clock rising edge or falling edge
= |mportant basics for pipelined processing
= Clocks are regular periodic signals
= Period (T = time between ticks)
= Frequency = 1/T

= Duty-cycle (time clock is high between ticks - expressed as % of
period)
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Synchronous Element (FFs/Registers)
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Tlmlng AnaIYSiS
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= Data is transferred from register to register
= Combinatoric logic between the registers
= Critical Path is the delay between two register levels
» fcLk = 1/(Tcp + Tif)
= Register outputs are stable between clock cycles
= No glitches on the register outputs




Pipeline

dat R : .
>
= At
clock
data 5 0 5 ol D
=
= 120t [ E 1/2t
clock

= For a pipelined design

= According to fcLk = 1/(Tep + Tff), fcLk can be roughly doubled
= One more clock cycle delay introduced

= Computation throughput roughly doubled

= One more register utilization



ﬁm Synchronous vs. Asynchronous Designs

= Synchronous circuits (clocked)

= |nputs are sampled and outputs changed in relation to a
common reference signal (the clock)

= Asynchronous circuits (not clocked)

= |nputs directly change outputs independently of a common
reference signal (glitches a major concern)

= Stay away from asynchronous designs !
(only if you can...)

= |n this course, only synchronous circuits are concerned.



IC Classifications & Timeline

= |nthe early 80s :
= Generic logic circuits (Example TTL: SN7400)

= Complex applications assembled from basic building blocks:
chips with few ( < 10) hardwired logic functions

= Many PCBs, interconnects, inflexibility, cost ...
= Programmable PAL/GAL ...

= |n the end 80s: FPGA invented by Xilinx, but only very limited
capacity (http://en.wikipedia.org/wiki/Fpga)

= 90's: VLSI Circuits (ASICs) + “glue logics” (CPLD/FPGA)

= (00's: VLSI and PLD (especially FPGA)

= Nowadays, FPGA is large enough to host an entire system
(System-on-an-FPGA), rather than only performing as glue
logics.

= Programmable technologies are being merged with ASICs.
FPGA-in-ASIC or ASIC-in-FPGA will be popular.



Comparison of different technologies

Technology Performance/ Time until Time to high Time to change code

Cost running performance functionality

ASIC Very High Very Long | Very Long | Impossible
FPGA Medium Medium/ | Long Long E’
Long T
DSP High Short/ Long short/medium
Medium
Generic Low-Medium | Short Not Very Short
CPU/PC Attainable

The above conclusion is not really true. It depends on the real
applications and cannot be easily called "good" or "bad"!!!



ﬁm PLD

= Programmable Logic Device (PLD)

= A general term including all configurable devices
= CPLD (EPLD) + FPGA + PAL + GAL ...

= ROM-based, RAM-based, anti-fuse based

= RAM-based FPGA has large capacity and can be utilized in
large-scale design. But it needs downloading configuration
during power-on from non-volatile memories.

= ROM-based CPLD is small, but the configuration can be stored
In non-volatile memories on-chip and needs not downloading
during power-on.

= Anti-fuse based devices are mainly for aerospace and other
radiation-aware applications.

= |n this course, we discuss mainly normal FPGA designs



FPGA Overview

= Basic idea: 2D array of combination logic blocks (CL) and flip-flops (FF)
with a means for the user to configure both:

1. the interconnection between the logic blocks,
2. the function of each block.
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Simplified version of FPGA internal architecture



*m Structure of FPGA (Xilinx)
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*M Simplified FPGA Logic Block
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= implements combinational logic functions

= Register

= optionally stores output of LUT

= RAM determines output: register or LUT



An n-lut as a direct
implementation of a function truth-
table

Each latch location holds value of
function corresponding to one
input combination

Example: 2-lut
INPUTS| AND OR

00| 0 O
01|10 1
1010 1
MmM11 1

Implements any function of 2
inputs.

How many functions of n inputs?

INPUTS

LUTs as general logic gate

Example: 4-lut

0000
0001
0010
0011
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0) =— storein 1st RAM bit
,1) = storein 2nd RAM bit
0)



Advanced Programmable Resources

+

= Except for LUTs and FFs, other programmable resources
iInclude:

Block RAM (BRAM): dedicated RAM blocks on FPGAs.
Can be used as small storage components for fast
memory accessing.

DSP slices: multiplier and adder for DSP computation

Digital Clock Management (DCM): clock frequency
synthesis

Hardcore |IPs: processor, Ethernet MAC, RocketlO, ...

Refer to "Virtex-4 Libraries Guide for HDL Designs" for
detailed primitives on Virtex-4 FPGA



Communication Channels

= Single-end I/O (GPIO) vs. Differential /0 (LVDS)
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Differential signal data transfer

One data bit is carried through
two signal lines

= Voltage difference
determines logic High or
Low

Smaller voltage swing between
logic Low and High

= Higher performance
= Lower power

= Lower noise (fantastic
common mode rejection)



Configuration Interfaces

= Configuration is the process to download the design bitstream
into the FPGA configuration memory

= Configuration interfaces:
= Serial or Parallel configuration with non-volatile memories

= Boundary-Scan and JTAG
(http://en.wikipedia.org/wiki/Jtag)
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ﬁm Self-study

= Karnaugh Map (K-map)
= Used to derive equations from truth tables
= Can simplify equations for less gate utilization
= http://en.wikipedia.org/wiki/Karnaugh_map

= http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karnaugh.html



http://en.wikipedia.org/wiki/Karnaugh_map
http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karnaugh.html
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