FPGA Design with VHDL

Justus-Liebig-Universitat Gielden,
ll. Physikalisches Institut

Ming Liu
Dr. Soren Lange
Prof. Dr. Wolfgang Kuhn

ming.liu@physik.uni-giessen.de

mailto:ming.liu@physik.uni-giessen.de

&W Lecture 1

= Digital design basics
= Basic logic devices
= Combinational circuits
= Sequential circuits
= Programmable Logic Devices
= |C classifications
= FPGA architecture and technologies

Basic Logic Devices

AND

Logic gate

X j—}(AND 'Y
Y_

Logic gate

X
¥

OR

Truth table
X Y X AND Y
0 0 0
0 1 0
1 0 0
1 1 1

Truth table
X Y XORY
0 0 0
0 1 1
1 0 1
1 1 1

NOT

Logic gate

XAD:)—N{):X

Truth table
X Not X
0 1

1 0

Basic Logic Devices

NAND NOR

- Logic gate
Logic gate slc 8

X — X

Truth table Truth table
X Y XANDY [XNANDY X Y XORY |XNORY
0 0 0 1 0 0 0 1
0 1 0 1 0 1 1 0
1 0 0 1 1 0 1 0
1 1 1 0 1 1 1 0

Basic Logic Devices

XOR MUX
Logic gat
ogic gate X
X — 2
YTD—XXORY Y =—
S
Truth table Truth table
X XORY
Y - S Z

0 X

__\ODX

- 10O -~ 0

1
1 1 Y
0

im Basic Logic Devices

Tri-state Flip-Flop
D Q
| 4[?_ O cLk— [—0
E I
Truth table Truth table
E O CLK Q
0 roating(Z) f D
1 | else Q

im Combinational Circuits

= Combinational circuits
= Constructed with gate logics

= Have no synchronous elements (FFs)

= Have no concept of periodic timing

= Qutputs dependent only on inputs, after a delay time

X1 =
X2 >
X >

At

>21

>22

> 7/

Z=F(X,X, ..
[| 1 2

X.)

n

*W Combinational Circuits

= Examples:
= Multiplexer
= Adder
= Multiplier
= Divider
= Decoder
= Encoder
= Asynchronous RAM

Combinational Circuits: Example 1

= 2-to-1 Multiplexer

s Wo

Wy —0 [

>
>

(a) Graphical symbol

(c) Schematic

S f

0 Wo

L ow f=ws+ws
1 0]

(b) Truth table (d) equation

ﬁm Combinational Circuits: Example 2

= Full Adder (FA)

— S

B
AL
n out

(a) Graphical symbol

Hidden for the [ab!'!'!
Do it by yourselves!!!

(b) Truth table

Hidden for the lab!!!
Do it by yourselves!!!

(c) Schematic

Az B Az Bz A1 B Ao Bo
1 A PR Y
< FA |~ FA ——{ FA < FA
l l l l
Sa Sz S1 So

(d) Ripple Carry Adder

Sequential Circuits

= Sequential circuits
= Constructed with gate logics & synchronous elements (FFs)
= Concept of periodic timing
= Qutputs updated at clock rising edge or falling edge
= |mportant basics for pipelined processing
= Clocks are regular periodic signals
= Period (T = time between ticks)
= Frequency = 1/T

= Duty-cycle (time clock is high between ticks - expressed as % of
period)

l«—| duty cycle (in this case, 50%)

I R S R N R S B
f——

period

Synchronous Element (FFs/Registers)

D Q -ID Q Inputs sampled on clock
A A . :
| 7 rising/falling edge
CLK CLK outputs change after a delay
positive negative
edge-triggered edge-triggered
flip-flop flip-flop
100
1 1 1 1 I 1 1 1 1 ! 1 1 1
D |1 | N
. V1 V0
CLK At \ At '—I_
Qpos | 1 . '
Qpos' — \ : _ positive edge-triggered FF
Qneg VAL '%At r
Qneg' . . . negative edge-triggered FF

Tlmlng AnaIYSiS

dat ‘ .
>

clock

stable

e

data

clock l

= Data is transferred from register to register
= Combinatoric logic between the registers
= Critical Path is the delay between two register levels
» fcLk = 1/(Tcp + Tif)
= Register outputs are stable between clock cycles
= No glitches on the register outputs

Pipeline

dat R : .
>
= At
clock
data 5 0 5 ol D
=
= 120t [E 1/2t
clock

= For a pipelined design

= According to fcLk = 1/(Tep + Tff), fcLk can be roughly doubled
= One more clock cycle delay introduced

= Computation throughput roughly doubled

= One more register utilization

ﬁm Synchronous vs. Asynchronous Designs

= Synchronous circuits (clocked)

= |nputs are sampled and outputs changed in relation to a
common reference signal (the clock)

= Asynchronous circuits (not clocked)

= |nputs directly change outputs independently of a common
reference signal (glitches a major concern)

= Stay away from asynchronous designs !
(only if you can...)

= |n this course, only synchronous circuits are concerned.

IC Classifications & Timeline

= |nthe early 80s :
= Generic logic circuits (Example TTL: SN7400)

= Complex applications assembled from basic building blocks:
chips with few (< 10) hardwired logic functions

= Many PCBs, interconnects, inflexibility, cost ...
= Programmable PAL/GAL ...

= |n the end 80s: FPGA invented by Xilinx, but only very limited
capacity (http://en.wikipedia.org/wiki/Fpga)

= 90's: VLSI Circuits (ASICs) + “glue logics” (CPLD/FPGA)

= (00's: VLSI and PLD (especially FPGA)

= Nowadays, FPGA is large enough to host an entire system
(System-on-an-FPGA), rather than only performing as glue
logics.

= Programmable technologies are being merged with ASICs.
FPGA-in-ASIC or ASIC-in-FPGA will be popular.

Comparison of different technologies

Technology Performance/ Time until Time to high Time to change code

Cost running performance functionality

ASIC Very High Very Long | Very Long | Impossible
FPGA Medium Medium/ | Long Long E’
Long T
DSP High Short/ Long short/medium
Medium
Generic Low-Medium | Short Not Very Short
CPU/PC Attainable

The above conclusion is not really true. It depends on the real
applications and cannot be easily called "good" or "bad"!!!

ﬁm PLD

= Programmable Logic Device (PLD)

= A general term including all configurable devices
= CPLD (EPLD) + FPGA + PAL + GAL ...

= ROM-based, RAM-based, anti-fuse based

= RAM-based FPGA has large capacity and can be utilized in
large-scale design. But it needs downloading configuration
during power-on from non-volatile memories.

= ROM-based CPLD is small, but the configuration can be stored
In non-volatile memories on-chip and needs not downloading
during power-on.

= Anti-fuse based devices are mainly for aerospace and other
radiation-aware applications.

= |n this course, we discuss mainly normal FPGA designs

FPGA Overview

= Basic idea: 2D array of combination logic blocks (CL) and flip-flops (FF)
with a means for the user to configure both:

1. the interconnection between the logic blocks,
2. the function of each block.

-—
Logic Block
(CL & FFs)

‘\

Interconnections

Simplified version of FPGA internal architecture

*m Structure of FPGA (Xilinx)

-, Logic Block
[]

-\ I/O Block

=

L] Interconnections

*M Simplified FPGA Logic Block

——

~ Logic Block

set by configuration

RAM »E—/ bit-stream

{ .
| 1]
INPUTS | | 4-LUT iE ——— OUTPUT
: Elo |

\ _________________________ s

4-input "look up table"

= 4-lUT vs. 6-LUT

[Jeour

B [
B
BY |
B3 —|

B2 [Co—
BY 2

&-Input LUT

B[

= implements combinational logic functions

= Register

= optionally stores output of LUT

= RAM determines output: register or LUT

An n-lut as a direct
implementation of a function truth-
table

Each latch location holds value of
function corresponding to one
input combination

Example: 2-lut
INPUTS| AND OR

00| 0 O
01|10 1
1010 1
MmM11 1

Implements any function of 2
inputs.

How many functions of n inputs?

INPUTS

LUTs as general logic gate

Example: 4-lut

0000
0001
0010
0011
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0) =— storein 1st RAM bit
,1) = storein 2nd RAM bit
0)

Advanced Programmable Resources

+

= Except for LUTs and FFs, other programmable resources
iInclude:

Block RAM (BRAM): dedicated RAM blocks on FPGAs.
Can be used as small storage components for fast
memory accessing.

DSP slices: multiplier and adder for DSP computation

Digital Clock Management (DCM): clock frequency
synthesis

Hardcore |IPs: processor, Ethernet MAC, RocketlO, ...

Refer to "Virtex-4 Libraries Guide for HDL Designs" for
detailed primitives on Virtex-4 FPGA

Communication Channels

= Single-end I/O (GPIO) vs. Differential /0 (LVDS)

Driver

{

Data Out

Receiver

Data In {>_

Si"hgle ended data trans.f.er

u Traditional means
of data transfer

" Data is carried on
a single line

3.3
Logic High
2V—A
1.2V swing
0.8 \—Y¢
Logic Low

= Big voltage swing
between logic Low
and High

LVTTL input levels

33V

1.7V

1.3V

Receiver

AA
k]

A
0.4V swing
v

LVDS Input levels

,>:)£ln

Differential signal data transfer

One data bit is carried through
two signal lines

= Voltage difference
determines logic High or
Low

Smaller voltage swing between
logic Low and High

= Higher performance
= Lower power

= Lower noise (fantastic
common mode rejection)

Configuration Interfaces

= Configuration is the process to download the design bitstream
into the FPGA configuration memory

= Configuration interfaces:
= Serial or Parallel configuration with non-volatile memories

= Boundary-Scan and JTAG
(http://en.wikipedia.org/wiki/Jtag)

[=
- JTAG Header
Xilinx 1 Mo M
Serial PROM &0 i
e
TDO
DATA DIN DOUT b= _ . .
Virtex-4 Virtex-4 Virtex-4
X CRIR FPGA FPGA FPGA
e - Virtex-4 TDI TODI TDO TDI TDO TDI TDO
RESET/OE |ea—
b= Master TMS TMS TMS T™MS
[— Serial T
= gn = TCK TCK] TCK - ek
PROG_BE PROG_BE PROG_BE
; PROG_B D -) - D -
- evice 0 evice 1 evice 2
- DONE INIT_B ugnT1_6_121708
PROG_B : UGOT_12_0801 04

JTAG configuration
Master serial configuration

ﬁm Self-study

= Karnaugh Map (K-map)
= Used to derive equations from truth tables
= Can simplify equations for less gate utilization
= http://en.wikipedia.org/wiki/Karnaugh_map

= http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karnaugh.html

http://en.wikipedia.org/wiki/Karnaugh_map
http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karnaugh.html

im References

= Wikipedia
= Virtex-4 User Guide
= Virtex-4 Configuration Guide

