

# Solution for 'Hot-Upgrading' the Flash Memory in Compute Node

#### Justus-Liebig University in Giessen



## **Compute Node Design in Giessen**



- Prototype design
- Based on ML403 commercial board from Xilinx.



## ML403 Evaluation Board

- Xilinx Devices:
  - Virtex 4 XC4VFX12-FF668-10 FPGA
- Memory:
  - 64 MB DDR SDRAM
  - 8 Mb SRAM
  - 8 MB Linear Flash
  - 32 Mb Platform Flash
  - System ACE CF card
  - 4 Kb IIC EEPROM

#### Interfaces:

- 10/100/1000 RJ-45 Ethernet Port
- RS-232 Serial Port
- JTAG
- 3 USB Ports
- 2 PS/2 Connectors (Keyboard/Mouse)

- 2 Audio (Microphone/Head Phone)
- General Purpose I/O: Buttens and LEDs
- ..... Disnlav
- Display:
  - 16 x 2 Character LCD
  - DB 15 VGA Display
- Clocks:
  - 100 MHz Oscillator
  - 2 Clock Sockets



## Flash Memory

- FPGA configuration data and operating system image are both stored in flash memory chips.
- The hardware platform could be updated by: 1. power on and boot the system. 2. update the configuration data in flash. 3. reboot the system.
- Also the operating system image.



## System Upgrading

- The OS kernel image and the hardware configuration data are both stored in the flash chips on board.
- After the booting of Linux, the flash memory could be addressed via its device driver. Then the configuration data and kernel image could be upgraded in Linux.
- Reboot the system and hence the updated hardware and OS begin working.
- Operated remotely and need no download cable.



### **Backup Mechanism**

