Current Status and Outlook of the DAQ System Design for HADES, BESIII and PANDA

Ming Liu

Outline

- Background & Motivation
- Computation Platform for DAQ
 - Network Architecture
 - Compute Node Architecture
- FPGA Node Prototype Design on Xilinx ML40x board
 - HW Design (platform + feature extraction processors)
 - SW Design (embedded Linux + drivers + applications)
- MDC Track Recognition and Reconstruction
- Current Status and Outlook

Detector System in Physics Experiments

- Detectors: RICH, MDC, TOF, Shower
- Signals generated when particles fly through the detectors

Data Acquisition (DAQ) System

Giessen

Motivation

- The DAQ system in modern nuclear and particle physics experiments desires:
 - High data processing capability. (reaction rate up to 20MHz, data rate up to 200 GB/s)
 - Various on-line feature extraction algorithms. (Ring recog., MDC tracking, etc.)
 - To be general-purpose for different experiments. (HADES, BESIII, PANDA, etc.)
 - To be highly and remotely reconfigurable.
- Aim:
 - To design the system, based on the platform FPGA technology and HW/SW co-design.

Network Architecture

- Feature extractions implemented in the computation network
- Compute node boards internally interconnected by the full-mesh ATCA backplane (communications and correlations among feature extraction computations)
- External interconnections with detectors & PC farm:
 - Optical links
 - Gigabit Ethernet

ATCA Full-mesh Backplane

- Full-mesh backplane network
- High flexibility to correlate results from different algorithms
- High performance

Compute Node (CN) Architecture

- First version board with 5 Xilinx Virtex-4 FX60 FPGAs
- 4 FPGAs as algo. processors
- I FPGA as switch+processor
- Full-mesh communication on-board
- External links:
 - Optical links
 - Gigabit Ethernet

Compute Node PCB

System Topology

System Topology

Partitioning Strategy

- Computation-intensive algorithms implemented in the FPGA fabric for high performance.
- Parallel and pipelined computation in HW.
- Slow controls in SW (OS + Applications):
 - To remotely upgrade the HW and SW designs.
 - Network test and measurement.
 - To display and modify the experimental parameters.

• • • • • • •

Soft TCP/IP stack in Linux OS.

Bus-based HW Design (FPGA Node)

- Bus-based platform
 - PLB (fast)
 - OPB (slow)
- PowerPC 405 CPU
- Algo. Processing engines
- Other peripherals:
 - Gigabit Ethernet
 - DDR memory
 - Flash memory
 - RS232

.

LocalLink-based HW Design (FPGA Node)

- LocalLink-based platform
- Multi-Port Memory Controller (8 ports)
 - Heavy traffic avoided on the PLB bus
 - Direct access to the memory from the device
- Large performance improvement expected

SW Design

Open-source embedded Linux on the PowerPC 405

- Source code downloaded from internet
- GNU Cross-compile tool set for PPC405 architecture
- Communications with Linux fans around the world

Device drivers:

- For Ethernet, UART, Flash memory, etc.
- For the customized processing units
- Applications for slow controls:
 - High level scripts
 - C/C++ programs
 - Java programs on the VM

Linux OS Porting

- Kernel configuration
 - Configure useful kernel options
 - Enable necessary device drivers
- Cross-compile with GNU tools
 - Specify the HW adress mappings to the kernel by BSP files
 - Compilation errors have to be fixed
- File system generated by Busybox
 - /bin, /dev, /home, /etc, ... directory hierarchy
 - Scripts for system booting
- The entire OS is free!!! -> No official support from companies

Application Programs on Linux

- With the support of the OS and device drivers, application programs are easily developed to control the system.
 - Only for performance-noncritical control functions, such as system reconfiguration & upgrade, experimental condition displays, etc.
 - Useful for remote configuration and operation when using Ethernet socket programming techniques
 - Mainly in C and cross-compiled on the host PC

System Configuration Storage and Upgrade

- The OS kernel image and the FPGA bitstream are both stored in the flash chips on board.
- After the booting of Linux, the flash memory could be addressed via its device driver. Then the configuration data and kernel image could be upgraded in Linux.
- Reboot the system and hence the updated hardware and OS begin working.
 Flash Memory Space
- Remotely reconfigurable capability
- Backup mechanism to guarantee the system alive

Tracking in MDCs

4 MDCs

- Particles' tracks bended in the magnetic area
- Straight line tracks from target to MDC II, and from MDC III to MDC IV
- Inner and outer tracks pointing to RICH and TOF respectively and helping them to find patterns

Tracking in MDCs

Tracking in MDCs

May. 29, 2008

Current bus-based design:

Tracking Processing Unit (TPU) Design

Future LocalLink-based design:

Synthesis Results

Resources	TPU	compute node platform	PLB-IPIF	system with TPU (sum)
4-input LUTs	5175 out of 50560 (10.2%)	8531 out of 50560 (16.9%)	2900 out of 50560 (5.7%)	16606 out of 50560 (32.8%)
Slice Flip- Flops	1715 out of 50560 (3.4%)	5724 out of 50560 (11.3%)	1640 out of 50560 (3.2%)	9079 out of 50560 (18.0%)
Block RAMs	41 out of 232 (17.7%)	18 out of 232 (7.8%)	0	59 out of 232 (25.4%)
DSP Slices	0	8 out of 128 (6.3%)	0	8 out of 128 (6.3%)

Table 1. Resource consumption

- Resource utilization is acceptable for Virtex4 FX60.
- Timing limitation: 125 Mhz.
- We choose 100 Mhz, matching the speed of PLB.

Giessen

Performance Measurements

- A C program running on the PC as the software reference
- Measurement setup: 30 fired wires/sub-event, 5.7 Kbits LUT/wire in average (1,510,256 bytes/2110 wires)
- SW performance = 0.82K sub-events/s (10K sub-events/12.2 s)
- When DMA_done interrupt used, HW performance = 0.83K subevents/s
- When DMA_done polling used, HW performance = 4.5K subevents/s (5.5 times speedup)
- In theory, speedup of around 20~30 is expected according to the cycle-accurate simulation
- Some work should be migrated from the software to pure hardware for higher speedup. (e.g. The DMA_done interrupt handler in the driver is cycle-consuming.) Optimization needed!!!

Current Design Status & Outlook

Current Status:

- First version CN PCB produced and under the test
- Inner tracking system developed and being optimized
- Other modules being developed
 - Ring recognition
 - TOF processing
 - Event building
 - Intelligent Platform Management Interface Controller (IPMC)
- Inner tracking system developed and being optimized
 Outlook:
- All algorithm implementations
- Algorithm partition and distribution for parallel processing
- A complete running ATCA system

May. 29, 2008

Thanks for your comments!