System-on-an-FPGA Design for Real-time Particle Track Recognition and Reconstruction in Physics Experiments

Ming Liu, Wolfgang Kuehn, Zhonghai Lu, Axel Jantsch

†‡ II. Experimental Physics Institute, Justus-Liebig-University in Giessen, Germany

‡ Dept. of Electronic, Computer and Software Systems, Royal Institute of Technology, Stockholm, Sweden
Outline

- Background & algorithm description
- Tracking Processing Unit (TPU) design on FPGA
- Experimental results
Detector System for Particle Collisions

- 4 MDC detectors (2 before & 2 after the coil)
- Particle tracks bended in the magnetic area
- Straight line tracks from target to MDC II, and from MDC III to MDC IV
- Currently focusing on the inner part, due to a similar principle
Detector System for Particle Collisions

- 4 MDC detectors (2 before & 2 after the coil)
- Particle tracks bended in the magnetic area
- Straight line tracks from target to MDC II, and from MDC III to MDC IV
- Currently focusing on the inner part, due to a similar principle
Detector System for Particle Collisions

- 4 MDC detectors (2 before & 2 after the coil)
- Particle tracks bended in the magnetic area
- Straight line tracks from target to MDC II, and from MDC III to MDC IV
- Currently focusing on the inner part, due to a similar principle
Principle of the Tracking Algorithm

- 6 sectors
- 2110 wires per sector (inner)
- 6 orientations

- Wires fired by flying particles
- Project fired wires to a plane
- Recognize the overlap area and reconstruct tracks from the target

MDC – Chamber (front view)

- Cathodes: 7 plans 90 deg
- Anodes: 6 plans

- +40°
- +20°
- +0°, -0°
- -20°
- -40°
Principle of the Tracking Algorithm
FPGA Node Development

- Old bus-based architecture (PLB & OPB)
- CPU & Fast peripherals on PLB
- Slow peripherals on OPB
- Tracking Processing Unit (TPU) on PLB as a fast device

- New LocalLink-based architecture
- Multi-Port Memory Controller (8 ports)
- Direct access to the memory from the device
- TPU interfaced to MPMC directly
TPU Design on FPGA

- Tracking Processing Unit (TPU) for track reconstruction computation

- Sub-modules:
 - Wire No. Write FIFO
 - Proj. LUT & Addr. LUT
 - Bus master
 - Accumulate unit
 - Peak finder

Sub-modules:
- Wire No. Write FIFO
- Proj. LUT & Addr. LUT
- Bus master
- Accumulate unit
- Peak finder
TPU Design on FPGA

- Tracking Processing Unit (TPU) for track reconstruction computation

- Sub-modules:
 - Wire No. Write FIFO
 - Proj. LUT & Addr. LUT
 - Bus master
 - Accumulate unit
 - Peak finder

- Tracking Processing Unit (TPU) for track reconstruction computation

- Sub-modules:
 - Wire No. Write FIFO
 - Proj. LUT & Addr. LUT
 - Bus master
 - Accumulate unit
 - Peak finder
TPU Design on FPGA

- Tracking Processing Unit (TPU) for track reconstruction computation

- Sub-modules:
 - Wire No. Write FIFO
 - Proj. LUT & Addr. LUT
 - Bus master
 - Accumulate unit
 - Peak finder
TPU Design on FPGA

- Tracking Processing Unit (TPU) for track reconstruction computation
- Sub-modules:
 - Wire No. Write FIFO
 - Proj. LUT & Addr. LUT
 - Bus master
 - Accumulate unit
 - Peak finder
TPU Design on FPGA

- Tracking Processing Unit (TPU) for track reconstruction computation

Sub-modules:
- Wire No. Write FIFO
- Proj. LUT & Addr. LUT
- Bus master
- Accumulate unit
- Peak finder
Tracking Processing Unit (TPU) for track reconstruction computation

Sub-modules:
- Wire No. Write FIFO
- Proj. LUT & Addr. LUT
- Bus master
- Accumulate unit
- Peak finder
Implementation Results

Table 1. Resource consumption

- Resource utilization of Virtex-4 FX60 FPGA -- acceptable!
- Timing limitation: 125 MHz without much optimization effort
- Clock frequency fixed at 100 MHz, to match the PLB speed

<table>
<thead>
<tr>
<th>Resources</th>
<th>TPU</th>
<th>compute node platform</th>
<th>PLB-IPIF</th>
<th>system with TPU (sum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-input LUTs</td>
<td>5175 out of 50560 (10.2%)</td>
<td>8531 out of 50560 (16.9%)</td>
<td>2900 out of 50560 (5.7%)</td>
<td>16606 out of 50560 (32.8%)</td>
</tr>
<tr>
<td>Slice Flip-Flops</td>
<td>1715 out of 50560 (3.4%)</td>
<td>5724 out of 50560 (11.3%)</td>
<td>1640 out of 50560 (3.2%)</td>
<td>9079 out of 50560 (18.0%)</td>
</tr>
<tr>
<td>Block RAMs</td>
<td>41 out of 232 (17.7%)</td>
<td>18 out of 232 (7.8%)</td>
<td>0</td>
<td>59 out of 232 (25.4%)</td>
</tr>
<tr>
<td>DSP Slices</td>
<td>0</td>
<td>8 out of 128 (6.3%)</td>
<td>0</td>
<td>8 out of 128 (6.3%)</td>
</tr>
</tbody>
</table>
Performance Evaluation

- MPMC-based structure used for measurements
- A C program running on the Xeon 2.4 GHz computer as the software reference
- Different measurement points on different wire multiplicities (10, 30, 50, 200, 400 fired wires out of 2110)
- Speedup of 10.8-24.3 times per module have been seen compared to the software solution.
Conclusion and Future Work

- Basic principle of the inner track reconstruction for particle physics experiments was implemented on Xilinx FPGA.
- Integrated in the system design, the TPU module works to find out track candidates.
- Resource utilization is acceptable. The speedup of 10.8-24.3 times per module has been seen, compared to the software solution.

- Incorporate multiple modules in the system and make them work in parallel for high performance.
- Outer tracking implementation.
Thanks for your attention!