System-on-an-FPGA Design for Real-time Particle Track Recognition and Reconstruction in Physics Experiments

Ming Liu^{†‡}, Wolfgang Kuehn[†], Zhonghai Lu[‡], Axel Jantsch[‡]

II. Experimental Physics Institute, Justus-Liebig-University in Giessen, Germany

Dept. of Electronic, Computer and Software Systems, Royal Institute of Technology, Stockholm, Sweden

Outline

- Background & algorithm description
- Tracking Processing Unit (TPU) design on FPGA
- Experimental results

Detector System for Particle Collisions

Sep. 5, 2008

Detector System for Particle Collisions

Sep. 5, 2008

Detector System for Particle Collisions

Sep. 5, 2008

Principle of the Tracking Algorithm

Principle of the Tracking Algorithm

Sep. 5, 2008

FPGA Node Development

- Old bus-based architecture (PLB & OPB)
- CPU & Fast peripherals on PLB
- Slow peripherals on OPB
- Tracking Processing Unit (TPU) on PLB as a fast device

- New LocalLink-based architecture
- Multi-Port Memory Controller (8 ports)
- Direct access to the memory from the device
- TPU interfaced to MPMC directly

- Tracking Processing Unit (TPU) for track reconstruction computation
- Sub-modules:
 - Wire No. Write FIFO
 - Proj. LUT & Addr. LUT
 - Bus master
 - Accumulate unit
 - Peak finder

- Tracking Processing Unit (TPU) for track reconstruction computation
- Sub-modules:
 - Wire No. Write FIFO
 - Proj. LUT & Addr. LUT
 - Bus master
 - Accumulate unit
 - Peak finder

- Tracking Processing Unit (TPU) for track reconstruction computation
- Sub-modules:
 - Wire No. Write FIFO
 - Proj. LUT & Addr. LUT
 - Bus master
 - Accumulate unit
 - Peak finder

- Tracking Processing Unit (TPU) for track reconstruction computation
- Sub-modules:
 - Wire No. Write FIFO
 - Proj. LUT & Addr. LUT
 - Bus master
 - Accumulate unit
 - Peak finder

- Tracking Processing Unit (TPU) for track reconstruction computation
- Sub-modules:
 - Wire No. Write FIFO
 - Proj. LUT & Addr. LUT
 - Bus master
 - Accumulate unit
 - Peak finder

- Tracking Processing Unit (TPU) for track reconstruction computation
- Sub-modules:
 - Wire No. Write FIFO
 - Proj. LUT & Addr. LUT
 - Bus master
 - Accumulate unit
 - Peak finder

Implementation Results

Resources	TPU	compute node platform	PLB-IPIF	system with TPU (sum)
4-input LUTs	5175 out of 50560 (10.2%)	8531 out of 50560 (16.9%)	2900 out of 50560 (5.7%)	16606 out of 50560 (32.8%)
Slice Flip- Flops	1715 out of 50560 (3.4%)	5724 out of 50560 (11.3%)	1640 out of 50560 (3.2%)	9079 out of 50560 (18.0%)
Block RAMs	41 out of 232 (17.7%)	18 out of 232 (7.8%)	0	59 out of 232 (25.4%)
DSP Slices	0	8 out of 128 (6.3%)	0	8 out of 128 (6.3%)

Table 1. Resource consumption

- Resource utilization of Virtex-4 FX60 FPGA -- acceptable!
- Timing limitation: 125 MHz without much optimization effort
- Clock frequency fixed at 100 MHz, to match the PLB speed

Performance Evaluation

- MPMC-based structure used for measurements
- A C program running on the Xeon 2.4 GHz computer as the software reference
- Different measurement points on different wire multiplicities (10, 30, 50, 200, 400 fired wires out of 2110)
- Speedup of 10.8-24.3 times per module have been seen compared to the software solution.

Conclusion and Future Work

- Basic principle of the inner track reconstruction for particle physics experiments was implemented on Xilinx FPGA.
- Integrated in the system design, the TPU module works to find out track candidates.
- Resource utilization is acceptable. The speedup of 10.8-24.3 times per module has been seen, compared to the software solution.
- Incorporate multiple modules in the system and make them work in parallel for high performance.
- Outer tracking implementation.

Thanks for your attention!