
LOGO

A Reconfigurable Design
Framework for FPGA
Adaptive Computing

Ming Liu†‡, Wolfgang Kuehn†, Zhonghai Lu‡,
Shuo Yang†, Axel Jantsch‡

† Justus-Liebig-University Giessen (JLU) , Germany

‡ Royal Institute of Technology (KTH), Sweden

2

Outline

�Introduction & Motivation

�Reconfigurable Framework for
Adaptive Computing
� HW infrastructure

� OS, device drivers & scheduler SW

� Context saving and restoring

�A Case Study

�Technical Perspectives in
applications

�Conclusion & Future Work

ReConFig’09Dec. 09, 2009

3

Introduction & Motivation

� Adaptive computing: algorithms adapted to ambient
conditions during system run-time.

� Benefits:
� Higher performance
� Lower power consumption
� Multitasking on limited resources
� …

� Conventional adaptive multitasking on general-purpose CPUs
+ OSes: well-fledged as the development of OSes &
scheduler
� Computing resources (CPU) intelligently and efficiently
utilized

� In the FPGA world???
� Static designs? Not adaptive
� Partial Reconfiguration (PR)? Technical support

� Motivation: a complete design framework for more efficient
hardware resource management, based on FPGA PR
technology.

Dec. 09, 2009 ReConFig’09

4

Framework (HW Infrastructure)

� Xilinx PR design flow [1]

� Modular algorithm designs (A1, A2, …)

� PR Region (PRR)

� PR communication interface (BMs)

� System manager (GP CPU)

� Peripherals, memories, …

� ICAP design [2]

� mst_hwicap

� Conf. speed: ~235 MB/s

� Conf. overhead: xx μs

to xxx μs

[2] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch,
“Run-time Partial Reconfiguration Speed
Investigation and Architectural Design Space
Exploration”, In Proc. Of the International
Conference on Field Programmable Logic and
Applications, Aug. 2009.

Dec. 09, 2009 ReConFig’09

[1] Xilinx Inc., “Early Access Partial
Reconfiguration User Guide for ISE
8.1.01i”, UG208 (v1.1), Mar. 2006.

5

Framework (OS, Drivers & Scheduler)

� Embedded OS or Standalone

� Device drivers for algorithm modules
� Software control registers

� Interrupts

� Algorithm scheduler
� Application programs (flexible & portable)

� Monitors ambient conditions and triggers algorithm switching

� HW processes are preemptable and comply with the scheduler

� Flexible disciplines

Dec. 09, 2009 ReConFig’09

6

Framework (Context Switching)

� Context

� Control registers

� Buffered incoming data

� Intermediate calculation results

� To be saved and restored for algorithm modules in many
cases

� Concrete approaches [3][4]:

� Register read and write

� Bitstream readout and analysis

[3] H. Kalte and M. Porrmann, “Context Saving and Restoring for Multitasking
in Reconfigurable Systems”, In Proc. of the International Conference on Field
Programmable Logic and Applications, Aug. 2005.
[4] C. Huang and P. Hsiung, “Software-controlled Dynamically Swappable
Hardware Design in Partially Reconfigurable Systems”, EURASIP Journal on
Embedded Systems, Jan. 2008.

Dec. 09, 2009 ReConFig’09

7

A Case Study

�A case study switching a NOR flash memory
controller and an SRAM controller (V4-FX20)

�A pre-verification for algorithm switching in
real applications
� Existing IP cores and no need to modify

� Same connection interfaces (PLB, I/Os)

� To save I/O pins and resources on the FPGA

�Motivation:

� NOR flash memory: embedded Linux kernel

� SRAM: LUT storage for application-specific
computation

� To share FPGA resources and access different
memories according to system requirements

Dec. 09, 2009 ReConFig’09

8

A Case Study (HW Design)

� PR Region (PRR) reserved

� Flash and SRAM controller to be loaded: standard IP
cores and no need to modify

� Shared I/O pins to external devices

� Customized BM interfaces

� To lock signal routing between static & PR designs

� BM_out_en to isolate unpredictable outputs during
reconfiguration

� Reset to solely reset

the newly loaded core

after reconfiguration

� GPIO controls

� BM_out_en

� Reset

Dec. 09, 2009 ReConFig’09

9

A Case Study (Operation Flow)

� Operations in Linux

a. Context saving

b. Remove device driver

c. Disable BM outputs

d. Module reconfiguration

e. Reset the module

f. Re-enable BM outputs

g. Insert device driver

Dec. 09, 2009 ReConFig’09

10

A Case Study (Results)

� Evaluation
� Lstatic = L1 + L2 + ... + Ln (static LUTs)
� Fstatic = F1 + F2 + ... + Fn (static Flip-Flops)
� LPR = LPRR +1/2*LBM (PR LUTs)
� FPR = FPRR (PR Flip-Flops)
� LPRR = FPRR = Max[(L1+1/2*LBM), ...(Ln+1/2*LBM),

F1, ...Fn]+Rmargin (to reserve the PR region)

� Resource utilization benefits with PR
▇ static ● pr design ◊ util. factor

I/O pins ▇ 56(s)+61(f) ● 61 ◊ 52.1%

4-LUTs ▇ 954(s)+923(f) ● 1624(prr+1/2*BMs) ◊ 86.5%
Slice FFs ▇ 728(s)+867(f) ● 1296(prr) ◊ 81.3%

� Reconfiguration overhead: 299 μs for 71 KB bitstream
� More benefits foreseen when more and larger algorithm

modules multiplex the PR region

Dec. 09, 2009 ReConFig’09

11

Application Perspectives

� To be applied and verified in nuclear and particle
physics experiments (HADES, PANDA, WASA, etc..)

� Large-scale massive computing for online data
acquisition (DAQ) and triggering based on FPGA
clusters

� Motivation:

� Multiple pattern recognition algorithms

� Multiple cores for parallel processing

� Different computation features for algorithms
(computation-bounded, memory-bounded, …)

� Conventional approach: algorithm partitions are statically
distributed on FPGA nodes by designers

� Too complicated to manage and modify the design

Dec. 09, 2009 ReConFig’09

12

Application Perspectives

� Expected benefits from adaptive computing:
� Easy dynamic design management

� Efficient resource utilization for higher performance

� Reduced FPGA size/count (costs)

• Uniform design in adaptive computing – easy to maintain system designs
• No data distribution requirements for optical hubs (all kinds of sub-events fed into all FPGAs)
• Balanced computing and more efficient FPGA resource utilization [5]

[5] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “FPGA-based Adaptive Computing Framework for Correlated
Multi-stream Processing”, In Proc. of the Design, Automation & Test in Europe Conference 2010, to appear.

Static design: Adaptive design:

Dec. 09, 2009 ReConFig’09

13

Conclusion and Future Work

Conclusion:

� A design framework for FPGA-based adaptive
computing

� Key aspects discussed

� A case study using general memory controllers

� Technical perspectives in target applications

Future Work:

� Individual in-depth research in different aspects of the
framework

� Verification with real algorithms for physics
experiments

Dec. 09, 2009 ReConFig’09

LOGO

15

Framework (PR Tech. Support)

� ICAP for FPGA configuration

� ICAP designs [2]

� Xilinx opb_hwicap

� Xilinx xps_hwicap

� Improved mst_hwicap

� Improved bram_hwicap

� Practical mst_hwicap

� Conf. speed: ~235 MB/s (from
DDR memory)

� Conf. overhead: xx μs – xxx μs

[2] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time Partial Reconfiguration
Speed Investigation and Architectural Design Space Exploration”, In Proc. Of the
International Conference on Field Programmable Logic and Applications, Aug. 2009.

Dec. 09, 2009 ReConFig’09

