
Adaptive Computing based on FPGA
Run-time Reconfigurability

Ming Liu

Stockholm 2011

Thesis submitted to the Royal Institute of Technology in partial
fulfillment of the requirements for the degree of Doctor of

Technology

Liu, Ming
Adaptive Computing based on FPGA Run-time Reconfigurability

ISBN 978-91-7415-985-1
TRITA-ICT/ECS AVH 11:05
ISSN 1653-6363
ISRN KTH/ICT/ECS/AVH-11/05-SE

Copyright © Ming Liu, April 2011

Royal Institute of Technology
School of Information and Communication Technology
Department of Electronic Systems
Forum 120
SE-164 40 Kista, Sweden

Abstract

In the past two decades, FPGA has been witnessed from its restricted use
as glue logic towards real System-on-Chip (SoC) platforms. Profiting from the
great development on semiconductor and IC technologies, the programma-
bility of FPGAs enables themselves wide adoption in all kinds of aspects of
embedded designs. Modern FPGAs provide the additional capability of be-
ing dynamically and partially reconfigured during the system run-time. The
run-time reconfigurability enhances FPGA designs from the sole spatial to
both spatial and temporal parallelism, providing more design flexibility for
advanced system features.

Adaptive computing delegates an advanced computing paradigm in which
computation tasks and resources are intelligently managed in correspondence
with conditional requirements. In this thesis, we investigate adaptive designs
on FPGA platforms: We present a comprehensive and practical design frame-
work for adaptive computing based on the FPGA run-time reconfigurability. It
concerns several design key issues in different hardware/software layers, specif-
ically hardware architecture, run-time reconfiguration technical support, OS
and device drivers, hardware process scheduler, context switching as well as
Inter-Process Communications (IPC). Targeting a special application of data
acquisition (DAQ) and trigger systems in nuclear and particle physics experi-
ments, we set up the data streaming model and conduct theoretical analysis on
the adaptive system. Three application studies are employed to verify the pro-
posed adaptive design framework: The first application demonstrates a periph-
eral controller adaptable system aiming at general embedded designs. Through
dynamically loading/unloading a NOR flash memory controller and an SRAM
controller, both flash memory and SRAM accesses may be accomplished with
less resource consumption than in traditional static designs. In the second
case, two real algorithm processing engines are adaptively time-multiplexed
in the same reconfigurable slot for particle recognition computation. Exper-
imental results reveal the reduced on-chip resource requirements, as well as

iii

iv Abstract

an approximate processing capability of the peer static design. Taking advan-
tage of the FPGA dynamic reconfigurability, we present in the third applica-
tion a novel on-FPGA interconnection microarchitecture named RouterLess
NoC (RL-NoC). RL-NoC employs the novel design concept of Move Logic Not
Data (MLND), and significantly distinguishes itself from the existing inter-
connection architectures such as buses, crossbars or NoCs. It does not rely on
routers to distribute packets as canonical NoCs do, but time-share point-to-
point communication channels among different source-destination node pairs
with packet injection and retrieval decoupled. In comparison with canonical
packet-switching NoCs, the routerless architecture features lower design com-
plexity, less resource consumption, higher work frequency, more efficient power
dissipation as well as comparable packet delivery efficiency. It is regarded as
a promising interconnection approach in some design scenarios on FPGAs,
especially for light-weight applications.

Acknowledgments

This thesis project has been carried out under the collaboration between
Department of Electronic Systems of Royal Institute of Technology (KTH)
in Stockholm, Sweden, and II. Physics Institute of Justus-Liebig-University
(JLU) in Giessen, Germany. It was supported in part by BMBF under contract
Nos. 06GI9107I and 06GI9108I, FZ-Jülich under contract No. COSY-099
41821475, HIC for FAIR, and WTZ: CHN 06/20.

Most of all, I would like to thank my three supervisors, respectively Pro-
fessor Wolfgang Kühn, Dr. Zhonghai Lu, and Professor Axel Jantsch for pro-
viding me the opportunity to do such an interesting interdisciplinary work.
Professor Kühn is my local supervisor in Germany. I learned from him dif-
ferent cultures in physics and also different methods to solve problems. His
broad knowledge in physics, computer and electronics areas impresses me very
much. I thank him also for his enlightenment in our conversation, especially
when I encountered spiritual or technical obstacles in my study and work. Dr.
Lu is my direct supervisor who gave me most instructions. He devoted quite
much private time on my study. I give my greatest appreciation to him for his
fruitful advice on the process of problem targeting, solution proposal, experi-
mental setup and scientific writing. Last but not the least, Professor Jantsch
is a very respectable person for his personality, knowledge and inspiration to
students. I still clearly remember his words when I was enrolled as a Ph.D
student: “Ph.D study is exactly like the sailing Columbus on the sea. You can
never know which new land you will arrive at unless you go ahead and try to
search for.”

I am also thankful to all my colleagues in Giessen and Stockholm. The
discussion and suggestion from them are so helpful to improve my professional
knowledge and technical skills. My current and previous Giessen colleagues,
specifically Jens Sören Lange, Vladimir Pechenov, Geydar Agakishiev, Olga
Pechenova, Marco Destefanis, Stefano Spataro, Daniel Kirschner, Johannes
Roskoss, Camilla Kirchhübel, Andreas Kopp, Johannes Lang, Zoltán Gagyi-

v

vi Acknowledgments

Pálfy, Thomas Gessler, David Münchow, Ingo Heller, Matthias Ullrich, Marcel
Werner, Martin Galuska, Stephanie Künze, Sören Fleischer, Björn Spruck,
Yutie Liang, Li Lu, and so on, explained me plenty of physics background
knowledge which makes me understand the application very clearly. I also
thank Ingo Sander, Johnny Öberg, and Vladimir Vlassov for their interesting
lectures and discussion on the modern techniques, as well as Huimin She, Jun
Zhu, Liang Rong, Geng Yang, Xiaolong Yuan, Zhuo Zou, Peng Wang and Jiayi
Zhang for exchanging our experience of Ph.D study. Many thanks are given
to our Chinese collaboration group in Beijing, including Zhen’an Liu, Hao Xu,
Qiang Wang, Dapeng Jin for their nice work on the compute node PCB design.

I appreciate Christa Momberger, Thomas Köster, Lena Beronius, Agneta
Herling and Alina Munteanu for their administrative and non-technical assis-
tance in travel arrangements, device ordering, and many other issues.

Many thanks to all our international collaboration group members in Mu-
nich, Darmstadt, Jülich, Cracow, Uppsala, and other cities. Due to the large
quantity I cannot list all the names here. I appreciate very much for our
delightful technical discussion in collaboration meetings.

Greatest thanks to my parents and relatives who are far away in China.
Their continuous encouragement and support gave me strength to overcome
any kind of difficulties in all aspects. I want to tell them loudly, Mama and
Papa, thank you for your endless support on my study. I love you!

Special thanks go to my girlfriend Shuo who accompanies me through the
life in Europe. I will forever remember the days we spent together, busily but
happily.

Ming Liu

April 2011, Giessen

Contents

Abbreviations xvii

1 Introduction 3
1.1 FPGA and Reconfigurable Computing 3
1.2 FPGA-based System Examples 6
1.3 Motivation . 7
1.4 Thesis Outline and Author’s Contributions 9

2 Application Background 17
2.1 Nuclear and Particle Physics Experiments 17
2.2 DAQ and Trigger System . 20
2.3 Design Challenges . 22

3 Design Framework for Adaptive Computing 27
3.1 Related Work . 28
3.2 Overview of FPGA PR Technology 30
3.3 Hardware Architecture . 31
3.4 Run-time Reconfiguration Technical Support 33

3.4.1 ICAP Designs . 33
3.4.2 Experimental Results 36
3.4.3 Virtual Configurations 38

3.5 OS and Device Drivers . 45
3.6 Reconfiguration Scheduler . 46
3.7 Context Switching . 48
3.8 Inter-Process Communications 49

3.8.1 IPC Approaches . 49
3.8.2 Pipe-based IPC Models 51
3.8.3 Performance Analysis 52

vii

viii Contents

3.8.4 Hardware Implementation of Pipes 55
3.8.5 Experimental Results 58
3.8.6 Result Matching with Formulas 61

4 Case Study 1: A Peripheral Controller Adaptable System 65
4.1 Background and Motivation . 65
4.2 System Implementation . 67
4.3 Results . 70

5 Adaptive Computing in Correlated Multi-stream Processing 75
5.1 Related Work . 76
5.2 Correlated Multi-streaming Models 76

5.2.1 Static Model . 76
5.2.2 Adaptive Model . 79

5.3 Experiments . 80
5.3.1 Experimental Setup . 80
5.3.2 Results . 83

6 Case Study 2: Adaptive Particle Recognition Computation 89
6.1 Application Introduction . 89
6.2 System Implementation . 91
6.3 Experimental Results . 94

7 Case Study 3: A Light-weight Routerless NoC Infrastructure 99
7.1 Introduction . 99
7.2 Related Work . 101
7.3 Canonical NoC Architecture . 102
7.4 Light-weight Routerless NoC 103

7.4.1 Fundamental Principle 103
7.4.2 Scheduling Policy . 105
7.4.3 Comparison with Other Communication Architectures . 106
7.4.4 Performance Scaling . 107

7.5 Implementation Results . 111
7.6 Performance Measurements . 112

7.6.1 Experimental Setup . 112
7.6.2 Results . 113

7.7 Power Analysis . 118

8 Conclusion and Open Issues 123
8.1 Conclusion . 123

Contents ix

8.2 Open Issues for Future Work 126

A Design and Development of ATCA-based Compute Node 129
A.1 Global Computation Network 129
A.2 Compute Node . 131
A.3 HW/SW Co-design of the System-on-an-FPGA 134

A.3.1 Partitioning Strategy . 134
A.3.2 Hardware Design . 135
A.3.3 Software Design . 135

B Implementation of Particle Recognition Algorithms 137
B.1 Track Reconstruction in MDCs 137
B.2 Ring Recognition in RICH . 140
B.3 Implementation . 143
B.4 Results . 145

B.4.1 Implementation Results 145
B.4.2 Performance Estimation 145

References 147

x

List of Figures

1.1 The largest FPGA announced by Xilinx and Altera (by equiv-
alent 4-input LEs) [2] . 4

1.2 PLD market by end applications in the third quarter of 2009 . 5

2.1 Dismounted view of the HADES detector system 18
2.2 Event structure consisting of sub-events from different detectors 19
2.3 Experiments with different event sizes and reaction rates 19
2.4 Multi-streaming data flow in DAQ and trigger systems 20

3.1 Hardware/software layers of the adaptive system 28
3.2 Partially reconfigurable design on Xilinx FPGAs 30
3.3 Xilinx PR design flow . 31
3.4 The hardware infrastructure of the PR system 32
3.5 The ICAP primitive on Xilinx FPGAs 34
3.6 Structure of the Xilinx ICAP designs 35
3.7 Structure of MST ICAP and BRAM ICAP 35
3.8 Reconfiguration performance of ICAP designs 37
3.9 Virtual reconfigurations on multi-context FPGAs 39
3.10 Timing diagrams of PR designs without or with VCFs 40
3.11 Virtual reconfigurations on single-context FPGAs 40
3.12 Experimental setup of the consumer-reconfigurable design . . . 41
3.13 Throughput measurement results (reconfiguration time = 10 µs) 42
3.14 Throughput measurement results (reconfiguration time = 50 µs) 43
3.15 Latency measurement results (reconfiguration time = 10 µs) . . 44
3.16 Contextless module switching in the reconfigurable design . . . 48
3.17 Context saving and restoring in the reconfigurable design . . . 49
3.18 IPC approaches among reconfigurable modules located in vari-

ous PRRs . 50

xi

xii List of Figures

3.19 Consecutive pipe communications between algorithms or algo-
rithm steps . 51

3.20 Pipe communications in PR designs 52
3.21 TE definition in the producer-consumer model 53
3.22 Packet latency in the reconfigurable model 55
3.23 Pipe implementation with BRAM 56
3.24 Pipe implementation with DDR 56
3.25 TE measurements on BRAM pipe 59
3.26 Composition of the measurement time 60
3.27 TE comparison of BRAM pipe and DDR pipe 61
3.28 Latency measurements on BRAM pipe and DDR pipe 62

4.1 Blackboxes of the flash controller and the SRAM controller . . 66
4.2 Hardware structure of the flash/SRAM PR design 67
4.3 Flow chart of multiplexing flash/SRAM in Linux 69
4.4 Migrating LUT initialization data from the flash memory to the

SRAM . 70
4.5 Implementation of the flash and the SRAM controller within

the PRR on a Virtex-4 FX20 FPGA 71

5.1 Static SDF model for multi-streaming applications 77
5.2 Adaptive SDF model for multi-streaming applications 79
5.3 Implementation of multi-streaming models on the FPGA 81
5.4 Result throughput-per-unit-area of static/adaptive computing . 85

6.1 Petri Net model of the application computation 90
6.2 Static implementation of algorithm engines for particle recogni-

tion computation . 92
6.3 Reconfigurable implementation of algorithm engines for particle

recognition computation . 92
6.4 Event processing time diagram of TPU and RRU 95
6.5 Normalized performance of the reconfigurable TPU/RRU design 96

7.1 A typical 2D-mesh network architecture 102
7.2 A canonical wormhole router structure 103
7.3 The light-weight routerless NoC 104
7.4 Node design with coupled producer-consumer in RL-NoC . . . 106
7.5 Duplicated PCs for increasing communication bandwidth . . . 108
7.6 An application example of grouping communications in RL-NoC 109

List of Figures xiii

7.7 In-order packet delivery in duplicated PCs. In case of packet
flow fragmentation, the active consumer node stops reading the
current VC and raises an interrupt to the scheduler. It volun-
tarily gives up the utilization of the consumer region and waits
to retrieve in-order packets from other PCs. 110

7.8 Packet structure of WH-NoC and RL-NoC 113
7.9 Throughput comparison of various network sizes 114
7.10 Throughput of various flit FIFO depths in RL-NoC 115
7.11 Throughput comparison in the hotspot traffic pattern 116
7.12 Latency comparison in the random/hotspot traffic pattern . . . 117
7.13 Power consumption of WH-router and RL-NoC 118

A.1 ATCA crate and full-mesh backplane (only 8 nodes shown) . . 130
A.2 Online pattern recognition network. The system features a hi-

erarchical architecture constituted by interconnected compute
nodes. 131

A.3 Compute node schematic. Five FPGA chips are networked with
on-board connections. Memory and peripheral components as
well as communication links are placed on the board. 132

A.4 Prototype PCB of the compute node 133
A.5 Compute node PCB version 2 134
A.6 MPMC-based hardware design. In addition to general com-

ponents, customized algorithm engines are incorporated in the
system for application-specific computation. 136

B.1 The HADES detector system 138
B.2 Particle track reconstruction in HADES MDCs 139
B.3 Track penetration points on the projection plane 139
B.4 Fixed-diameter ring recognition on the RICH detector 141
B.5 Hardware design of the algorithm engines 144

xiv

List of Tables

3.1 Resource utilization of ICAP designs on Virtex-4 FX20 38
3.2 Timing performance of ICAP designs 38
3.3 Resource utilization of BRAM pipe and DDR pipe on Virtex-4

FX60 FPGA . 57
3.4 Measurement results of the pipe performance on the reconfig-

urable implementation . 57

4.1 Resource utilization of the static/reconfigurable flash/SRAM
designs . 71

5.1 Experimental results of the static/adaptive computing perfor-
mance . 84

5.2 Measurement results of the context switching overhead. 85

6.1 Resource utilization . 94
6.2 Context switching overhead at various pipe sizes 95

7.1 Resource utilization comparison of WH-NoC and RL-NoC . . . 112
7.2 Experimental setup of performance measurements 113

B.1 Resource utilization of TPU and RRU 145

xv

xvi

Abbreviations

AHB AMBA High-performance Bus

ALICE A Large Ion Collider Experiment

AMBA Advanced Microcontroller Bus Architecture

ARM Advanced RISC Machine

ASIC Application Specific Integrated Circuit

ATCA Advanced Telecommunications Computing Architecture

ATLAS A Toroidal LHC ApparatuS

BESIII BEijing Spectrometer 3

BM Bus Macro

BRAM Block RAM

CAMAC Computer-Aided Measurement And Control

CMS Compact Muon Spectrometer

CN Compute Node

CPU Central Processing Unit

xvii

xviii Abbreviations

DAQ Data AcQuisition

DDR Double Data Rate

DMA Direct Memory Access

DSP Digital Signal Processor

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

FRU Field Replaceable Unit

FSM Finit State Machine

GPCPU General-Purpose Central Processing Unit

GPIO General-Purpose Input/Output

HADES High Acceptance Di-Electron Spectrometer

HDL Hardware Description Language

HW Hardware

IC Integrated Circuit

ICAP Internal Configuration Access Port

IP Intelligent Property

IPC Inter-Process Communication

IPMC Intelligent Platform Management Controller

ISE Integrated Software Environment

LE Logic Element

xix

LHC the Large Hadron Collider

LHCb the Large Hadron Collider beauty

LUT Look-Up Table

MDC Mini Drift Chamber

MGT Multi-Gigabit Transceiver

MLND Move Logic Not Data

MOPS Mega Operations

MPMC Multi-Port Memory Controller

NI Network Interface

NoC Network-on-Chip

OPB On-chip Peripheral Bus

OS Operating System

P2P Point-to-Point

PANDA antiProton ANnihilations at DArmstadt

PC Personal Computer or Physical Channel

PCB Printed Circuit Board

PIM Personality Interface Modules

PLB Processor Local Bus

PLD Programmable Logic Device

PRM Partially Reconfigurable Module

PRR Partially Reconfigurable Region

xx Abbreviations

QoS Quality-of-Service

RICH Ring Imaging CHerenkov

RL-NoC RouterLess Network-on-Chip

RNI Resource Network Interface

RRU Ring Recognition Unit

SIMD Single Instruction Multiple Data

SDF Synchronous Data Flow

SDRAM Synchronous Dynamic Random Access Memory

SRAM Static Random Access Memory

SW Software

TDM Time-Division Multiplexing

TOF Time-Of-Flight

TPU Tracking Processing Unit

VC Virtual Channel

VCF Virtual ConFiguration

VHDL VHSIC hardware description language

VMEbus Versa Modular Eurocard bus

WH-NoC WormHole Network-on-Chip

XPS Xilinx Platform Studio

“Science is organized knowledge. Wisdom is
organized life.”

Immanuel Kant
(German Philosopher, 1724 - 1804 A.D.)

1

2

Chapter 1

Introduction

In this chapter we briefly introduce the technical background on
FPGAs and reconfigurable computing. Drawbacks of using the con-
ventional static approach to develop FPGAs are discussed. Moti-
vated to improve the development methodology, we propose a promis-
ing solution of employing FPGA run-time reconfigurability to con-
struct adaptive systems. In the end of the chapter, contributions
of the author are clearly summarized with professional publications
listed.

1.1 FPGA and Reconfigurable Computing

A Field-Programmable Gate Array (FPGA) is a special Integrated Cir-
cuit (IC) designed to be configurable by designers after its manufacturing,
in order to obtain customized logical or arithmetic functions. It was firstly
introduced by Xilinx into the commercial IC market in 1985. As the perfor-
mance gap between FPGAs and ASICs decreases [1], FPGAs are playing a
more and more important role in modern embedded designs. Modern FPGA
products take the advantage of semiconductor technology advances, combin-
ing both programmable Logic Elements (LE) and hardcore IP blocks on the
same die. They provide sufficient chip capacity and design convenience to
implement a real System-on-an-FPGA, which contains microprocessors, mem-
ory controllers, hardware accelerators as well as peripheral controllers, etc.
Figure 1.1 shows the capacity increment of the flagship products from the two
market-dominating FPGA vendors (Xilinx and Altera) in the period from 1998

3

4 Chapter 1. Introduction

to 2009. We observe that the quantity of on-chip LEs has increased by roughly
40X, from ∼20K using 220 nm process in 1998 to ∼800K using 40 nm process
in 2009. This chip density increment mirrors very well the famous prediction
of Moore’s Law.

Figure 1.1. The largest FPGA announced by Xilinx and Altera (by equivalent
4-input LEs) [2]

Programmable Logic Devices (PLD) especially FPGAs are widely employed
in various application fields. Figure 1.2 demonstrates the statistics of some
most significant fields in the third quarter of 2009. We see the field of commu-
nications takes the largest market share of 42%. The second largest application
is industrial devices. Although contributing only a very small proportion to the
market share and not even shown in the figure, scientific computing benefits
also largely from FPGAs, and this application field deserves extra attention
due to its special meaning for the entire human being. In this thesis work,
we place our research in the application background of nuclear and particle
physics experiments, which study the elementary constituents of matter and
their interactions. The application background will be introduced in the next
chapter.

Reconfigurable computing combines both the flexibility of software pro-
gramming and the high performance of hardware acceleration by using pro-
grammable computing fabrics mainly FPGAs. The principal difference in com-
parison with the ordinary microprocessor computing, is the capability to make
substantial changes to the datapath in addition to the control flow. Actually

1.1. FPGA and Reconfigurable Computing 5

Figure 1.2. PLD market by end applications in the third quarter of 2009

the basic concept can be traced back to the 1960s, when Gerald Estrin’s land-
mark paper proposed the concept of a computer made of a standard processor
and an array of “reconfigurable” hardware [3] [4]. The main processor con-
trols the behavior of the reconfigurable hardware. The latter can be tailored
to perform a specific task as quickly as a dedicated piece of hardware. Un-
fortunately this idea was far ahead of its time in terms of needed electronics
technologies. Only after the great development of configurable devices and cor-
responding EDA tools in the recent decade, reconfigurable computing could
be really widely adopted to achieve performance benefits as well as flexible
reprogrammability.

Although normally running at a much lower clock frequency, FPGA-based
reconfigurable computing is believed to have a 10 - 100X accelerated perfor-
mance but far lower power consumption compared to microprocessors. The
development methodology on the processor software focuses on flexible con-
trol flows with limited number of Processing Elements (PE), while more con-
cerns are placed on the datapath design and optimization through parallel
and pipelined approaches when developing reconfigurable hardware platforms.
The on-chip memory concurrency and fine-grained computation parallelism
may overcome the bottleneck existing in the computer memory system. More
efficiently utilizing the expensive chip area, reconfigurable computing cre-
ates an unprecedented opportunity for orders of magnitude improvement in
MOPS/dollar, MOPS/watt, and just MOPS.

In our target physics experiment applications, FPGA-based reconfigurable
solutions have significant advantages to implement application-specific algo-
rithms. They have comparatively simple control flows during data processing,
and optimized datapath designs can result in high performance with the on-

6 Chapter 1. Introduction

chip memory concurrency and fine-grained computation parallelism or pipeline
support. The reprogrammability enables to change the designs to meet dif-
ferent experimental requirements. In addition, the ASIC production start-up
cost can be saved, considering the required comparatively small quantity of
chips in experimental facilities.

1.2 FPGA-based System Examples

Reconfigurable computing satisfies the simultaneous demands of applica-
tion performance and flexibility. In the present era when cluster-based su-
percomputers still dominate the fields of super computation tasks, reconfig-
urable computing begins showing large potential and perspective on many
performance-critical areas such as realtime scientific computing. Currently
commercial and academic projects are developing hardware and software to
employ the raw computational power of FPGAs. Among them some plat-
forms are augmented computer clusters with FPGAs attached to the system
bus as accelerator blocks. One commercial example is the products from Cray
Inc., such as XD1, XT5h series supercomputers. FPGAs are integrated in
the system to embody various digital hardware designs and augment the pro-
cessing capability of AMD Opteron processors [5] [6] [7]. Another instance
in physics experiment applications is the ATLAS level 2 trigger [8]. Their
design appears as PCI cards in commodity PCs, in which only those simple
but computing-intensive steps are released to FPGAs while others remain on
CPUs. One major weakness of these systems is the bandwidth bottleneck
between the host microprocessor and the FPGA accelerator. In the ATLAS
case, the computation work relies much on the PC and the limited band-
width between CPUs and FPGAs via the PCI bus becomes the bottleneck
when partitioning the algorithm steps to the CPU and the FPGA. There exist
meanwhile standalone platforms in which FPGA units are independent on the
host processors of commodity PCs. Usually in the FPGA design, less pow-
erful embedded hardcore or softcore microprocessors are incorporated in the
system, as the alternative of PC processors to conduct controls or HW/SW co-
processing tasks. For instance the Dini Group products [9] combine multiple
FPGA chips through on-board interconnections and target mainly logic emu-
lation and ASIC verification applications. In addition the Berkeley Emulation
Engine (BEE) represents powerful and scalable platforms for large scale data
processing [10] [11] [12]. Its various product generations employ different com-
munication standards, such as Infiniband, Gigabit Ethernet, or PCI Express,
etc., to network the Printed Circuit Boards (PCB) for system scaling. The

1.3. Motivation 7

recent COPACOBANA [13] and the CUBE [14] projects use plentiful intercon-
nected FPGAs to run cryptanalytical algorithms. Specific to their application
requirements, the hardware design suits to solve parallel computation-hungry
problems partitioned into many FPGA chips, but features small memory band-
width and capacity as well as low inter-chip communication requirements.

According to the computation and communication requirements in our tar-
get physics applications, we have designed a hierarchical and scalable FPGA-
based computation platform that is optimized to interface with other experi-
mental devices and conducts the large-scale data processing work. Details on
the hardware and FPGA development may be referred to in Appendix A.

1.3 Motivation

Despite large advances on the density and work frequency, the chip area
utilization efficiency and the system clock speed of FPGAs are still low com-
pared to the gate-based logic implementation on ASICs. On the FPGA, Look-
Up Table (LUT) units are employed instead to construct combinational logic,
leading to larger area occupation on the die and slower work frequency than
elementary gates. In [15], the authors have measured FPGA designs to be 35X
larger in area and 3X slower in speed than a standard cell ASIC flow, both
using 90-nm technology. In [16], a 12 year old Pentium design was ported on
a Xilinx Virtex-4 FPGA. A 3X slower system speed (25 MHz vs. 75 MHz) is
still observed, even though the FPGA uses a recent 90-nm technology while
the original ASICs were 600-nm. The speed and area utilization gap between
FPGAs and ASICs has also been differently quantified in [17] and [18] for
various designs. We see that FPGA programmable resources are still compar-
atively expensive. Efficient resource management and utilization remain to be
a challenge especially for the applications with simultaneous high-performance
and low cost requirements.

From another point of view, design complexity especially in massive pro-
cessing systems is increasing rapidly and becoming unmanageable. Imagining
an FPGA cluster consisting of hundreds of interconnected FPGAs, heteroge-
neous functional modules have to be selected and integrated in system designs.
Bitstream files must be downloaded into the correct FPGA chip. The design
management work is annoying and error-prone if it is done by mentally over-
loaded designers.

The conventional approach to develop FPGAs is static: The entire system
is partitioned into tasks and implemented as hardware components. Design
components are managed and assembled by designers during their development

8 Chapter 1. Introduction

period. They are statically mapped on the FPGA fabric, being instantiated
throughout the system operation time. The functionalities normally do not
change when the design is still in operation. Drawbacks exist in the static
development approach, as itemized as follows:

1. Design management complexity. Designs are managed by designers
offline. The human being must face the complexity and error possi-
bilities, especially in heterogeneous massive systems consisting of large
quantity of FPGAs.

2. Resource utilization inefficiency. With respect to some design mod-
ules which may only occasionally function or do not function simulta-
neously at all, it is a large waste to respectively allocate them on-chip
resources. More utilized resources not only lead to higher static power
consumption, but also may result in extra hardware upgrade budget if
new functionalities are expected but the chip is already fully occupied.

3. Incapability of run-time maintenance. Static designs do not possess
the capability of online maintenance. In order to modify or upgrade the
firmware, the entire system may have to be completely stopped. This
might not be permitted at all or very expensive in some situations, such
as in the physics experiments.

As a promising solution, adaptive computing [19] [20] is the paradigm in
which computation tasks may vary and adapt to system status or ambient
conditions during run-time. Its self-awareness distinguishes itself from exist-
ing computational models, which are mostly procedural and simply a collection
of static functional components. Typically an adaptive system keeps aware the
context and changes its processing behavior according to trigger events such as
workload variations, computation interest switching, or environmental situa-
tions. As a consequence, benefits including more efficient utilization of compu-
tation resources, lower power consumption or multitasking on limited resources
may be obtained by dynamically modifying the system design or adjusting im-
portant parameters. One major prerequisite of adaptive computing, is the
reprogrammability of the computer systems: On General-Purpose micropro-
cessors (GPCPU), different computation tasks can be easily accomplished by
conditionally branching to different instructions. Nevertheless hardware logic
is not straightforwardly adaptable in contrast to the software computation,
in which the computation resource of CPU cores is intrinsically time-shared
among various tasks. Thanks to the newly emerged Partial Reconfiguration
(PR) technology, which offers the possibility to dynamically change part of the

1.4. Thesis Outline and Author’s Contributions 9

FPGA design without stopping the remaining system. The PR feature pro-
vides much convenience in realizing adaptive computing scenarios, in which
basic functions are to be maintained while specific algorithms or algorithm
steps can be freely adjusted. It is the PR technology that firstly introduces
the concept of Time-Division Multiplexing (TDM) into FPGA resource man-
agements. It leads to the benefits of more efficient resource utilization, shorter
reconfiguration time, as well as lower static power dissipation [21] [22] [23].

1.4 Thesis Outline and Author’s Contributions

The thesis is constructed into chapters listed as follows:

• Chapter 1: In this chapter we recall the readers with related technical
background on FPGAs and reconfigurable computing. We analyze the
main-stream development approach in existence and raise the necessity
to improve the design methodology with self-adaptation features. In the
end of the chapter, relevant publications on which this thesis is based
are listed.

• Chapter 2: Since we target a very special application in high-energy
physics experiments, it is necessary to reveal a picture of their partic-
ularities to the readers who are not familiar with this interdisciplinary
field. Hence we do a brief application introduction in this chapter, and
the knowledge on the application background also helps to understand
the motivation of the research work.

• Chapter 3: In this chapter we present the proposed design framework
for adaptive computing based on FPGA run-time reconfigurability. The
framework is comprehensive and key issues are systematically discussed
in different hardware/software layers. These aspects should be taken
into account when practically building an adaptive design on the FPGA.

• Chapter 4: Right after the discussion on the design framework, we em-
ploy a case study to verify the concept: Two types of memory controllers
time-share the same reconfigurable slot and they are adaptively loaded to
work according to different memory addressing requirements. This case
study reveals general benefits for FPGA-based embedded designs, on the
basis of accomplishing all the expected functionalities in the system.

• Chapter 5: This chapter focuses on the performance analysis of adap-
tive multi-stream processing. Correlated multi-streaming acts as the

10 Chapter 1. Introduction

fundamental model of our target applications in high-energy physics ex-
periments. Theoretical analysis and experimental results on the model
show the potential merits of applying the self-adaptation concept in data
stream processing scenarios.

• Chapter 6: Combined with the model analysis in the previous chapter,
we apply the adaptively reconfigurable framework to the case study of a
real application for particle recognition computation. Two pattern recog-
nition algorithms are alternately configured to process their respective
data streams, with their synchronization (correlation) requirement auto-
matically and optimally guaranteed. Experimental results demonstrate
practical design benefits.

• Chapter 7: Taking advantage of the run-time reconfigurability, we intro-
duce a novel on-FPGA interconnection microarchitecture called Router-
Less Network-on-Chip (RL-NoC) in this chapter. From the principle
point of view, it significantly distinguishes itself from the conventional
interconnection approaches such as buses, crossbars or NoCs. RL-NoC
features many advantages in the aspects of design complexity, resource
utilization, power consumption, operation frequency, etc. Meanwhile a
comparable or even superior throughput performance can be achieved in
comparison with a canonical wormhole NoC.

• Chapter 8: In this chapter we conclude the thesis. We summarize the
advantages of the discussed design framework for adaptive computing as
application references, and raise open issues for the future work in this
field.

• Appendix A: In this appendix chapter, related engineering work is con-
cerned on the FPGA-based reconfigurable platform design. This large-
scale system aims at our physics applications of data acquisition (DAQ)
and triggering in experiments. Moreover, the FPGA board works as the
experiment platform on which researches have been carried out.

• Appendix B: The application-specific computation is introduced in this
appendix chapter, specifically MDC particle track reconstruction and
RICH Cherenkov ring recognition. This part consists of physics back-
ground in the detector system, algorithm description, as well as hard-
ware implementations on FPGAs. The hardware implementation of both
algorithms behaves as the basis of the second case study discussed in
Chapter 6.

1.4. Thesis Outline and Author’s Contributions 11

The author’s publications are classified into three areas: system design and
development, algorithm implementation, and adaptive computing. The last
topic represents the author’s main research contribution and it runs throughout
the content of this thesis. The former two topics are application related and
discussed in the appendices. The publications are itemized as follows:

Adaptive computing:

1. Ming Liu, Zhonghai Lu, Wolfgang Kuehn, and Axel Jantsch, “A Hard-
ware/Software Design Framework for FPGA-based Self-aware Adaptive
Computing”, under submission. [24]

2. Ming Liu, Zhonghai Lu, Wolfgang Kuehn, and Axel Jantsch, “A Light-
weight Routerless Network-on-Chip Infrastructure using FPGA Dynamic
Reconfigurability”, under submission. [25]

3. Ming Liu, Zhonghai Lu, Wolfgang Kuehn, and Axel Jantsch, “Adap-
tively Reconfigurable Controller for the Flash Memory”, Book of Flash
Memory, invited book chapter, InTech, ISBN: 978-953-307-272-2, 2011. [26]

4. Ming Liu, Zhonghai Lu, Wolfgang Kuehn, and Axel Jantsch, “Inter-
Process Communications using Pipes in FPGA-based Adaptive Comput-
ing”, In Proceeding of the IEEE Computer Society Annual Symposium
on VLSI, Lixouri Kefalonia, Greece, Jul. 2010. [27]

5. Ming Liu, Zhonghai Lu, Wolfgang Kuehn, and Axel Jantsch, “Reducing
FPGA Reconfiguration Time Overhead using Virtual Configurations”,
In Proceeding of the International Workshop on Reconfigurable Commu-
nication Centric System-on-Chips, Karlsruhe, Germany, May 2010. [28]

6. Ming Liu, Zhonghai Lu, Wolfgang Kuehn, and Axel Jantsch, “FPGA-
based Adaptive Computing Architecture for Correlated Multi-stream
Processing”, In Proceeding of the Design, Automation and Test in Eu-
rope conference, Dresden, Germany, Mar. 2010. [29]

7. Ming Liu, Zhonghai Lu, Wolfgang Kuehn, Shuo Yang and Axel Jantsch,
“A Reconfigurable Design Framework for FPGA Adaptive Computing”,
In Proceeding of the International Conference on ReConFigurable Com-
puting and FPGAs, Cancun, Mexico, Dec. 2009. [30]

8. Ming Liu, Wolfgang Kuehn, Zhonghai Lu, and Axel Jantsch, “Run-time
Partial Reconfiguration Speed Investigation and Architectural Design

12 Chapter 1. Introduction

Space Exploration”, In Proceeding of the International Conference on
Field Programmable Logic and Applications, Prague, Czech Republic,
Aug. 2009. [31]

System design and development:

9. Ming Liu, Wolfgang Kuehn, Soeren Lange, Shuo Yang, Johannes Roskoss,
Zhonghai Lu, Axel Jantsch, Qiang Wang, Hao Xu, Dapeng Jin, and
Zhenan Liu, “A High-end Reconfigurable Computation Platform for Nu-
clear and Particle Physics Experiments”, Computing in Science and En-
gineering, vol. 13, no. 2, pp. 52-63, Mar./Apr. 2011. [32]

10. Qiang Wang, Axel Jantsch, Dapeng Jin, Andreas Kopp, Wolfgang Kuehn,
Johannes Lang, Soeren Lange, Lu Li, Ming Liu, Zhenan Liu, Zhong-
hai Lu, David Muenchow, Johannes Roskoss, and Hao Xu, “Hard-
ware/Software Co-design of an ATCA-based Computation Platform for
Data Acquisition and Triggering”, In Proceeding of the IEEE NPSS Real
Time Conference, Beijing, China, May 2009. [33]

11. Ming Liu, Johannes Lang, Shuo Yang, Tiago Perez, Wolfgang Kuehn,
Hao Xu, Dapeng Jin, Qiang Wang, Lu Li, Zhenan Liu, Zhonghai Lu, and
Axel Jantsch, “ATCA-based Computation Platform for Data Acquisition
and Triggering in Particle Physics Experiments”, In Proceeding of the
International Conference on Field Programmable Logic and Applications
2008, Heidelberg, Germany, Sep. 2008. [34]

12. Ming Liu, Wolfgang Kuehn, Zhonghai Lu, Axel Jantsch, Shuo Yang,
Tiago Perez, and Zhenan Liu, “Hardware/Software Co-design of a General-
Purpose Computation Platform in Particle Physics”, In Proceeding of
the IEEE International Conference on Field Programmable Technology,
Kitakyushu, Kokurakita, Japan, Dec. 2007. [35]

13. Wolfgang Kuehn, Camilla Gilardi, Daniel Kirschner, Johannes Lang,
Soeren Lange, Ming Liu, Tiago Perez, Lars Schmitt, Dapeng Jin, Lu
Li, Zhenan Liu, Yunpeng Lu, Qiang Wang, Shujun Wei, Hao Xu, Dixin
Zhao, Krzysztof Korcyl, Jacek Tomasz Otwinowski, Piotr Salabura, Igor
Konorov, and Alexander Mann, “FPGA - Based Compute Nodes for the
PANDA Experiment at FAIR”, In Proceeding of the NPSS Real Time
Conference, Batavia, USA, Apr. 2007. [36]

1.4. Thesis Outline and Author’s Contributions 13

14. Tiago Perez, Camilla Gilardi, Ming Liu, and Shuo Yang, “A FPGA-
based Compute Node for the PANDA Data Acquisition and Trigger
System”, In Proceeding of the International Winter Meeting on Nuclear
Physics, Bormio, Italy, Apr. 2007. [37]

Algorithm implementation:

15. Ming Liu, Zhonghai Lu, Wolfgang Kuehn, and Axel Jantsch, “FPGA-
based Particle Recognition in the HADES Experiment”, IEEE Design
and Test of Computers, special issue on Design Methods and Tools for
FPGA-Based Acceleration of Scientific Computing, Jul./Aug. 2011 (ac-
cepted). [38]

16. Ming Liu, Zhonghai Lu, Wolfgang Kuehn, and Axel Jantsch, “FPGA-
based Cherenkov Ring Recognition in Nuclear and Particle Physics Ex-
periments”, In Proceeding of the International Symposium on Applied
Reconfigurable Computing, Belfast, United Kingdom, Mar. 2011. [39]

17. Ming Liu, Axel Jantsch, Dapeng Jin, A. Kopp, Wolfgang Kuehn, J.
Lang, L. Li, Soeren Lange, Zhenan Liu, Zhonghai Lu, D. Muenchow, V.
Penchenov, Johannes Roskoss, S. Spataro, Qiang Wang, and Hao Xu,
“Trigger Algorithm Development on FPGA-based Compute Node”, In
Proceeding of the IEEE NPSS Real Time Conference, Beijing, China,
May 2009. [40]

18. Ming Liu, Wolfgang Kuehn, Zhonghai Lu, and Axel Jantsch, “System-
on-an-FPGA Design for Real-time Particle Track Recognition and Re-
construction in Physics Experiments”, In Proceeding of the EUROMI-
CRO Conference on Digital System Design, Parma, Italy, Sep. 2008. [41]

Other publications which are not concerned in this thesis include:

19. Daniel Georg Kirschner, Geydar Agakishiev, Ming Liu, Tiago Perez,
Wolfgang Kuehn, Vladimir Pechenov, and Stefano Spataro, “Level 3
Trigger Algorithm and Hardware Platform for the HADES Experiment”,
Nuclear Instruments and Methods in Physics Research A, Volume 598,
Issue 2, pp. 598 - 604, 2008. [42]

20. Zhonghai Lu, Ming Liu, and Axel Jantsch, “Layered Switching for Net-
works on Chip”, In Proceeding of the Design Automation Conference,
San Diego, USA, Jun. 2007. [43]

14

“Thinking is more interesting than knowing,
but less interesting than looking.”

Johann Wolfgang von Goethe
(German Playwright, Poet, Novelist and Dramatist, 1749 - 1832 A.D.)

15

16

Chapter 2

Application Background

This chapter concerns the necessary introduction of our target
application: data acquisition and triggering in nuclear and particle
physics experiments. This special application acts as a represen-
tative of large-scale computing in scientific researches, which bene-
fit from modern semiconductor and FPGA technologies. It differs
significantly from the common embedded designs such as consumer
electronics or mobile devices, and therefore deserves a brief overview
for the readers.

2.1 Nuclear and Particle Physics Experiments

Nuclear and particle physics is a branch of physics that studies the ele-
mentary constituents of matter and the interactions between them. It is also
called high-energy physics because many elementary particles do not occur un-
der normal circumstances in nature, but can be created and detected during
energetic collisions of other particles, as is done in particle colliders. In the
experiments, beam particles are accelerated to a velocity approaching to the
speed of light and then collide with target particles. Modern nuclear and par-
ticle physics experiments, for example HADES [44] and PANDA [45] at GSI
Germany, BESIII [46] at IHEP China, ATLAS, CMS, LHCb, ALICE at the
LHC [47] at CERN Switzerland, achieve their goals by studying the emission
direction, the energy, and the mass of the produced particles when the beam
hits the target. In the experimental facilities, different kinds of detectors are
adopted to generate raw data which are used to calculate and analyze the

17

18 Chapter 2. Application Background

characteristics of emitted particles after the collision. Figure 2.1 shows the
exploded view of the HADES detector system as an example.

Figure 2.1. Dismounted view of the HADES detector system

In high-energy physics, one “event” corresponds to a single interaction
of a beam particle with a target particle. It consists of sub-events which
typically represent the information from individual detector sub-systems, such
as RICH (Ring Image CHerenkov), MDCs (Mini Drift Chamber), TOF (Time-
Of-Flight), etc., as shown in Figure 2.1. Figure 2.2 demonstrates an example
event structure consisting of sub-events from various detectors. The event data
are to be filtered and recorded during experiments. Afterwards physicists will
extensively analyze the events to search for interesting ones such as new types
of particles.

The detector system in experimental facilities has commonly more than 105

signal channels, and the delivered data rate which is the product of the event
size and the reaction rate might be a scary number (e.g. PANDA, the reaction
rate of 10 - 20 MHz and the data rate of more than 200 GBytes/s). Compared
to the bandwidth needed by some other applications [48], Figure 2.3 lists some
experiments by their event sizes and reaction rates. We see that their data
rates range from 107 up to 1011 Bytes/s, which are too large for the disk
or tape storage to entirely record the data throughout the experiment time
lasting for months. Furthermore, the supercomputers would take forever to

2.1. Nuclear and Particle Physics Experiments 19

Figure 2.2. Event structure consisting of sub-events from different detectors

process all the data during offline analysis. Among the generated events, only
a rare fraction with particular physics contents is of interest for the physicists.
Such events might occur only once within one million interactions. Therefore
it is essential to realize an efficient on-line data acquisition (DAQ) and trigger
system which processes the sub-events coming from detectors and reduces the
data rate by several orders of magnitude by means of rejecting the background.

Figure 2.3. Experiments with different event sizes and reaction rates

20 Chapter 2. Application Background

2.2 DAQ and Trigger System

In the contemporary facilities, pattern recognition algorithms [49] [50] [51]
such as Cherenkov ring recognition, particle track reconstruction, Time-Of-
Flight (TOF) processing, Shower recognition, are implemented as sophisticated
criteria according to detector categories. Only the sub-events which possess
expected patterns generated by certain types of particles and could be suc-
cessfully correlated among different detectors, trigger a positive decision and
are encapsulated in a pre-defined event structure for mass storage and further
offline analysis. Others will be discarded on the fly in order to reduce the
data rate. Figure 2.4 demonstrates a sample multi-streaming data flow in the
experiments, which will be later modeled and analyzed in Chapter 5.

Figure 2.4. Multi-streaming data flow in DAQ and trigger systems

As an alternative approach of the traditional PC farm based pure soft-
ware computation, modular approaches with commercial bus systems, such
as VMEbus, FASTbus, and CAMAC, can be utilized to construct DAQ and
trigger systems for high-energy physics experiments [52] [53] [54] [55]. These
systems which usually contain programmable devices like FPGAs or DSPs may
interface to PC clusters for hardware/software hybrid processing. An instance
is the NA48 experiment [56], in which FPGAs are used to build wire hit co-
ordinates for the pion particle (π) track reconstruction computation, and the
trigger core algorithm is implemented on interconnected Digital Signal Proces-
sors (DSP). The customized hardware boards are installed on 4 VME crates.

2.2. DAQ and Trigger System 21

One SUN workstation remotely monitors the entire system through a private
Ethernet network. There is an additional SPARC VME SBC computer board
in each crate running Unix to control the system. However due to the largely
increased data rate generated by the detector systems in modern experiments,
the obsolete bus-based technologies cannot meet the increasing experimental
requirements any longer. The time-multiplexing nature of the system bus not
only deteriorates the data exchanging efficiency among algorithms residing on
different pluggable modules, but also restricts the flexibility to partition com-
plex algorithms. Nowadays the networking and switching technologies make
it efficient to construct large-scale systems for parallel and pipelined process-
ing. In addition, great development on FPGAs provides the practicability to
release some complex algorithms, which were conventionally implemented as
software on workstations or embedded processors/DSPs, into the FPGA fabric
for high-performance hardware processing. For example in [57], the authors
utilize FPGAs to implement the Compact Muon Solenoid (CMS) trigger of
the Large Hadron Collider (LHC) particle accelerator at CERN.

As a general-purpose solution for data acquisition and trigger applications
in various physics experiments, specifically the HADES and BESIII upgrade
and the PANDA construction projects, we have designed and developed a
computation platform consisting of interconnected nodes based on the Ad-
vanced Telecommunications Computing Architecture (ATCA) standard [58].
To simultaneously satisfy various algorithm partition and correlation require-
ments for current or future experiments, the full-mesh Point-to-Point (P2P)
backplane has been chosen to interconnect multiple FPGA-based Compute
Nodes (CN) for massive parallel processing. External channels including opti-
cal links as well as Gigabit Ethernet, are engaged in receiving sub-events from
detectors and forwarding processing results to the PC farm for mass storage
and offline analysis. Internal hierarchical interconnections, including the inter-
chassis optical link and Ethernet switching, inter-board full-mesh backplane
connections, and on-board FPGA I/O channels, are utilized to partition and
distribute algorithms or algorithm steps for parallel/pipelined trigger process-
ing and correlation. In the ATCA crate, CNs appear as Field Replaceable
Units (FRU), which are interconnected with each other by backplane chan-
nels. On each CN, five Xilinx Virtex-4 FX60 FPGAs are placed on board
and mutually interconnected by General-Purpose I/O (GPIO) buses as well as
RocketIO serial links. Four FPGAs work as algorithm processor nodes, and
the fifth one as a switch interfacing to the backplane. Detailed architectural
description on the ATCA-based computation platform and the CN design will
be separately discussed in Appendix A. Trigger algorithm implementations on
the FPGA can be found in Appendix B.

22 Chapter 2. Application Background

2.3 Design Challenges

Design and development of DAQ and trigger systems in high-energy physics
experiments feature different requirements from other common applications,
such as consumer electronics or mobile devices. Design particularities and
challenges are partly summarized in the following aspects:

• Large system scale. The DAQ and trigger system designs typically
feature an enormous scale. As we mentioned in the first section of this
chapter, the raw data rate generated by particle detectors may reach up
to several hundreds of GBytes/s. The number of links used to dump the
data into the system can easily reach the order of magnitude of hundreds.
With respect to the computation power, it may also contain hundreds
of high-end FPGA chips in order to distribute algorithm components for
concurrent data processing.

• Development difficulty. Diverse trigger algorithms are to be imple-
mented and optimized, corresponding to the combinational detector sys-
tem adopted to investigate various particle characteristics. These algo-
rithms often concern sophisticated principles and their implementations
must satisfy certain performance requirements.

• Design management complexity. For such a large-scale system, the
design management work is not negligible. How to reasonably partition
computation tasks, to efficiently organize the interconnection network of
task nodes, to map hardware implementations on different FPGA chips,
and to manage design and bitstream files for hundreds of FPGAs with
online and remote reconfiguration requirements, raise extra complexity
to the system developers.

• Run-time maintenance requirement. In some circumstances, the
system is expected to be online maintainable with partial functionalities
kept running. A complete stop may delay the experimentation progress,
and the financial cost introduced by the delay cannot be simply ignored.
(With respect to the experimental facilities, even the power cost itself is
an enormous number.)

• Expensive hardware cost. Due to the large scale of the system, hard-
ware cost becomes a very critical issue. Optimized designs which may
fully exploit the hardware resources, can actually reduce the hardware
cost from another standpoint.

2.3. Design Challenges 23

• Long development cycle. A complete DAQ and trigger system design
typically lasts for 5 to 10 years or even longer.

We understand that to construct a complex DAQ and trigger system for
high-energy physics applications can largely benefit from an optimal design and
development methodology on FPGAs. The modern FPGA partial reconfigu-
ration technology provides a good tool to address some dilemmas generated
by the conventional static approach. Therefore we investigate the adaptive
development methodology in the context of physics applications. Detailed
discussion in various aspects goes in the following chapters of this thesis.

24

“Learning without thought is labor lost;
thought without learning is perilous.”

Confucius
(Chinese educator, philosopher, and political theorist, 551 - 479 B.C.)

25

26

Chapter 3

Design Framework for
Adaptive Computing

In this chapter we present a comprehensive and practical design
framework for adaptive computing based on FPGA run-time recon-
figurability. Several design key issues are systematically discussed
in different hardware/software layers, concerning hardware archi-
tecture, run-time reconfiguration technology, OS and device drivers,
hardware process scheduler, context switching as well as inter-process
communications. All are the aspects which should be taken into ac-
count when practically building an adaptive system on FPGAs. The
themes of this chapter cover paper [24], [27], [28], [30], and [31]
listed in Section 1.4.

The modular design concept frequently adopted in static designs applies
also to run-time reconfigurable designs on FPGAs. In adaptive computing,
the entire system is partitioned and different tasks are to be individually im-
plemented as functional modules. Analogous to software processes running on
top of Operating Systems (OS) and competing for the CPU time, each func-
tional module can be regarded as a hardware process which is to be loaded into
reconfigurable slots on the FPGA rather than GPCPUs. Multiple hardware
processes may share the same programmable resources and be scheduled to
work according to certain disciplines on the awareness of computation require-
ments. Context switching happens when the current hardware process of a

27

28 Chapter 3. Design Framework for Adaptive Computing

task is leaving the reconfigurable slot (being overwritten) and a new task is
to be loaded to start working. All these key issues in the adaptive computing
framework are classified into and addressed within certain layers in hardware
or software. Figure 3.1 demonstrates the layered hardware/software architec-
ture and details in different aspects will be presented in the following sections
respectively.

Figure 3.1. Hardware/software layers of the adaptive system

3.1 Related Work

Run-time partially reconfigurable designs become practically feasible only
in the recent years, as the official technical support was announced by FPGA
vendors. The PR technology is foreseen to be more and more widely used
for addressing various design challenges, such as multitasking on limited re-
sources, power reduction, cost reduction, etc. However to our best knowl-
edge, the design framework for adaptively changeable functional modules with
context-awareness is not yet well regulated in various hardware/software lay-
ers. Contributions exist concerning specific aspects of run-time reconfigurable
designs.

Resource management on reconfigurable devices is a key issue of adaptive
computing. In [59], a resource allocation model is presented for load-balancing

3.1. Related Work 29

processing of multitasks. The complicated hardware architecture consisting
of hierarchical Upper Management Units (UMU), Management Units (MU),
Processing Units (PU) and Re-ordering Units (RU), makes it difficult and
impractical for implementation. In [60], the single processor scheduling algo-
rithm is investigated and applied to task hardware module reconfigurations.
The proposed Earliest Due Date (EDD) model for synchronous tasks and the
Earliest Deadline First (EDF) model for asynchronous tasks can improve the
module response time when multiple designs are being alternatively loaded
into multiple reconfigurable slots. Additional scheduling mechanisms and task
management studies can be found in [61], [62] and [63]. However, most of the
above cited investigations concentrate only on the modeling level and do not
take into account practical constraints in reconfigurable designs. In [64], a
practical hardware/software environment is implemented and tested to man-
age hardware processes on FPGAs, with the help of a modified Linux kernel
called BORPH. The authors’ main contribution is to enhance the OS kernel
to support hardware processes and schedule them altogether with normal soft-
ware processes. Nevertheless the modification work in the OS kernel space is
error prone and makes the reconfigurable design dependent on the customized
OS. It generates many difficulties to port the schedulable system onto different
platforms.

In addition, contributions on the PR relevant issues have been reported in
some other aspects: In [65], [66] and [67], run-time reconfiguration speed has
been investigated and optimized, enabling practical PR designs with low recon-
figuration time overhead. In [68], the authors present the approach to save and
restore the hardware context of reconfigurable modules, by parsing the FPGA
bitstream and extracting or recovering corresponding information. In order to
interface dynamically swappable IP modules with the static system, the au-
thors of [69] propose three wrapper designs which feature a buffer for reading
out or restoring the context data of reconfigurable modules. The authors of
[70] and [71] analyze the signal routing dilemmas in reconfigurable designs,
and optimize communications among relocatable modules simultaneously re-
siding in different configuration slots with a set of inter-module communication
paradigms. Unfortunately the challenge of communications among hardware
processes that are time-multiplexed in the same reconfigurable slot in sequence
are not concerned in their work.

30 Chapter 3. Design Framework for Adaptive Computing

3.2 Overview of FPGA PR Technology

Modern FPGAs (e.g. Xilinx Virtex-4, 5, and 6 FPGAs) offer the partial
reconfiguration capability to dynamically change part of the design without
stopping the remaining system. This feature enables alternate utilization of
on-FPGA programmable resources, therefore resulting in large benefits such
as more efficient resource utilization and less static power dissipation [21]. Fig-
ure 3.2 illustrates a reconfigurable design example on Xilinx FPGAs: In the
design procedure, a Partially Reconfigurable Region (PRR) A is reserved in the
overall design layout mapped on the FPGA. Various functional Partially Re-
configurable Modules (PRM) are individually implemented within this region,
and their respective partial bitstreams are generated and collectively initial-
ized in a design database residing in memory devices in the system. During
system run-time, various bitstreams can be dynamically loaded into the FPGA
configuration memory by its controller named Internal Configuration Access
Port (ICAP). With a new module bitstream overwriting the original one in the
FPGA configuration memory, the PRR is loaded with the new module and the
circuit functions according to its concrete design. In the dynamic reconfigu-
ration process, the PRR has to stop working for a short time (reconfiguration
overhead) until the new module is completely loaded. The static portion of
the system will not be disturbed at all.

Figure 3.2. Partially reconfigurable design on Xilinx FPGAs

The PR technology is coupled very closely to the underlying framework of
the FPGA chip itself. We use the Xilinx FPGAs to explain the PR design
flow as illustrated in Figure 3.3: The design begins from partitioning the
system between the static base design and the reconfigurable part. Usually

3.3. Hardware Architecture 31

basic hardware infrastructures that expect continuous work and do not want
to be unloaded or replaced during the operation are classfied into the static
category, such as the system processor or the memory controller. The partially
reconfigurable part delegates those modules with dynamically swapping needs
in the PR region. All the modular designs including PRMs are assembled
to form an entire system. After synthesis, netlist files are generated for all
the modules as well as the top-level system. The netlists serve as input files
to the FPGA implementation. Before implementation, the Area Group (AG)
constraints must be defined to prevent the logic in PRMs from being merged
with the one in the base design. Each PRR will be only restricted in the
area defined by the RANGE constraints. Then after the following individual
implementation of the base system and PR modules, the final step in the design
flow is to merge them and create both a complete bitstream (with default PR
modules equipped) and partial bitstreams for PR modules. Hence, run-time
reconfiguration will be initiated when a partial bitstream is loaded into the
FPGA configuration memory and overwrites the corresponding segment.

Figure 3.3. Xilinx PR design flow

3.3 Hardware Architecture

A dynamically reconfigurable design may consist of a general-purpose com-
puter system and application-customized functional modules, as shown in Fig-
ure 3.4 for a system on a Xilinx Virtex-4 FPGA. Existing commercial IP
cores can be exploited to quickly construct the general computer design. The

32 Chapter 3. Design Framework for Adaptive Computing

application-specific tasks such as algorithm accelerators feature the largest de-
sign challenges, and should be customized and optimized according to specific
requirements. They are to be integrated in the system design to communicate
with other components, specifically the host processor, the memory or some
peripherals. In order to shorten the development period, the general computer
design may be largely retained for different applications. The designers con-
centrate on the application-specific functionalities, customizing and optimizing
the required modules.

Figure 3.4. The hardware infrastructure of the PR system

In FPGA-based adaptive computing, PRRs or reconfigurable slots are re-
served in the system for being dynamically equipped with different functional
modules. In Figure 3.4 we show two PRRs to demonstrate the principle.
When incorporated in the system design, PRMs connect to the static base
design, specifically the PLB bus for receiving controls from the processor, the
Multi-Port Memory Controller (MPMC) for efficiently accessing the system
memory, and I/O buffers for addressing external devices. Respective inter-
face wrappers (slave or slv, master or mst, and IO interface) provide standard
ports to connect PRMs to the base design. Direct I/O channels may also exist
among various PRRs. Noting that the output signals from a PRM may unpre-
dictably toogle during ongoing reconfiguration, “disconnect” logic (illustrated
in the callout frame in Figure 3.4) is therefore required to be inserted to disable
PRM outputs and isolate the unsteady signal states for the base design from

3.4. Run-time Reconfiguration Technical Support 33

being interfered. Furthermore, a dedicated “reset” signal aims to solely reset
the newly loaded module after each partial reconfiguration. Both the “discon-
nect” and the separate “reset” signals can be driven by a register-accessible
General-Purpose I/O (GPIO) core under the control of the host processor.

In the previous Xilinx Partial Reconfiguration Early Access design flow [72],
a special type of component called Bus Macro (BM) must be instantiated in
the interface designs, straddling the PR region and the static design to lock the
implementation routing between them. This is the particular treatment on the
communication channels between the static and the dynamically reconfigurable
regions. However in the new PR design flow [73], BMs are no longer needed
and partition I/Os are automatically managed by the development software
tool.

One significant advantage of this hardware architecture, is that it conforms
to the standard Xilinx design tradition of embedded systems: The application-
specific tasks are implemented into IP cores. They are wrapped by interface
blocks and incorporated in the bus-based system design. Normal static designs
can be easily converted into a PR system by extracting task components,
combining common interfaces, and sharing the same programmable resources
in a preserved PR region. Little special consideration is needed to construct a
PR system on the basis of conventional static designs.

3.4 Run-time Reconfiguration Technical Sup-
port

3.4.1 ICAP Designs

The ICAP primitive is the hardwired FPGA logic by which the bitstream
can be downloaded into the configuration memory. As shown in Figure 3.5,
ICAP interfaces to the configuration memory and provides parallel access ports
to programmable resources. During the system run-time, a master device
(typically an embedded microprocessor) may transmit partial reconfiguration
bitstreams from the storage device to ICAP to accomplish the reconfiguration
process. The complete ICAP design, in which the ICAP primitive is instanti-
ated, interfaces to the system interconnection fabric to communicate with the
processor and memories.

As the Xilinx reference designs for PR, the structures of OPB HWICAP [74]
and XPS HWICAP [75] are demonstrated respectively in Figure 3.6(a) and
Figure 3.6(b). The OPB HWICAP core was previously designed for the low-
performance OPB bus. To link the OPB core to the system PLB, a bridge

34 Chapter 3. Design Framework for Adaptive Computing

Figure 3.5. The ICAP primitive on Xilinx FPGAs

is needed for protocol adaptation. Via the OPB slave interface, the partial
reconfiguration data are buffered in the Dual-Port Block RAM (DP BRAM),
if the command is decoded as “write”. A control state machine diagnoses
the occupancy status of the buffer and continuously supplies configuration
data to ICAP, by which the FPGA configuration memory is overwritten.
XPS HWICAP shares a similar structure except that Write/Read FIFOs and
register groups take the place of DP BRAM buffers and the command decod-
ing state machine in the OPB HWICAP design. Also in order to increase the
data transport efficiency, the PLB interface supports burst transfer mode.

Considering the inefficiency of the microprocessor moving data to ICAP, we
enhance the design with burst transmission support initiated by an integrated
bus master (MST) device. The master device can actively fetch bitstreams
from the system memory in a DMA mode. As shown in Figure 3.7(a), the
master interface may directly couple one port of MPMC (see Figure 3.4) using
the PLB protocol for efficient data movement. The slave interface is simply
attached to the host PLB to receive controls from the host processor.

A particular design shown in Figure 3.7(b) is used to investigate the con-
figuration capability of the ICAP primitive. Instead of the Write FIFO, a ded-
icated BRAM block is instantiated to store bitstream data. It must be large
enough to hold the entire partial bitstream, because all the reconfiguration
data for one PR module will be initialized there before each time reconfigura-
tion. Partial bitstreams are alternatively loaded in BRAM through the PLB
IP interface. The BRAM block works as a cache which removes the needed
time to transfer data from the memory into the HWICAP module. Therefore
ICAP always has its requested data ready in the high-speed BRAM. This ap-
proach can be used to evaluate the ultimate reconfiguration speed of the ICAP
primitive. The design architecture is well suited for the cases in which the PR

3.4. Run-time Reconfiguration Technical Support 35

(a) OPB HWICAP (b) XPS HWICAP

Figure 3.6. Structure of the Xilinx ICAP designs

(a) MST HWICAP (b) BRAM HWICAP

Figure 3.7. Structure of MST ICAP and BRAM ICAP

36 Chapter 3. Design Framework for Adaptive Computing

region is small (small bitstream files), and extremely fast reconfiguration speed
is required. Its disadvantage is the high utilization of the BRAM resource on
the FPGA.

3.4.2 Experimental Results

Based on the Xilinx ML405 development board [76] with a Virtex-4 FX20
FPGA, experiments have been done to measure the performance of various
design structures. Processor programs are executed in the DDR memory.
Partial bitstream files are initialized in DDR as well. The only exception is
the BRAM HWICAP test, in which bitstream data are initialized directly in
BRAM via PLB. Different ICAP designs are employed to reconfigure a pre-
served PR region with the help from the host processor. In the system design,
both PLB (64-bit) and OPB (32-bit) run at 100 MHz, and so do all ICAP
designs. The reconfiguration time is measured from the master device start-
ing to feed data to ICAP, and ends until the partial bitstream is completely
downloaded into the configuration memory. Measured with various sizes of
partial bitstream files specifically about 8, 23, 46, 80 KB, the reconfigura-
tion speed is calculated from the recorded time span. We pick up the maxi-
mumly achieved results of all ICAP designs and list them in Figure 3.8. To
demonstrate the performance dependency on the processor, we did measure-
ments using an embedded 300 MHz PowerPC 405 microprocessor together
with OPB HWICAP and XPS HWICAP respectively. We observe that en-
abling the separate 16 KB ICache and DCache of the host processor enhances
the program execution speed and thus the reconfiguration speed by 17.3 and
27.3 times for two reference cores. In MST HWICAP, the master device takes
the place of the host processor to transport bitstream data. We observe that
MST HWICAP achieves a configuration speed of 235.2 MB/s, improving the
data movement performance of the cache-enabled processor by one order of
magnitude. We also figure out the bottleneck in MST HWICAP to be the data
delivery throughput of the DDR memory (32-bit, 100 MHz) together with the
MPMC controller (100 MHz). In the design with larger DDR bandwidth or
higher clock frequency, the performance result is potentially further improv-
able. In addition, the reconfiguration speed of MST HWICAP is processor
independent due to little processor participation in the reconfiguration work.
The host processor is only responsible of initiating the storage base address
as well as the data length for the integrated master device. In the last, the
BRAM HWICAP design arrives at a speed of 371.4 MB/s, which approaches
the physical limit of 400 MB/s of the ICAP primitive interface (32-bit, 100
MHz). In the experiments for BRAM HWICAP, we could not measure the

3.4. Run-time Reconfiguration Technical Support 37

Figure 3.8. Reconfiguration performance of ICAP designs

large bitstream of 80 KB because of the constraint from the high BRAM uti-
lization on the small Virtex-4 FX20 FPGA. A similar performance close to the
physical limit of the ICAP primitive has been subsequently achieved by the
authors of [67], using an external SRAM chip to replace the expensive on-chip
Block RAM.

All ICAP designs have been synthesized with the Xilinx ISE and EDK v10.1
software. The resource utilization is summarized in Table 3.1. We observe that
OPB HWICAP plus the PLB-OPB bridge consumes the least resources. LUTs
are mainly used as logic and one BRAM array constructs the Write/Read
buffers. XPS HWICAP utilizes much more 4-LUTs than OPB HWICAP but
zero BRAM. The reason is that its buffer devices (Write/Read FIFOs) in
HWICAP are synthesized into LUTs as shift registers, rather than into BRAM.
The last two columns in the table list our improved designs of MST HWICAP
and BRAM HWICAP. We see comparable resource utilizations except for the
large consumption of Block RAMs in BRAM HWICAP. Almost half of the
BRAM resource provided by Virtex-4 FX20 is used to construct the dedicated
buffer for partial bitstreams. In our tests, 32 BRAMs constitute 64 KBytes
address space, which implies a maximum 64 KBytes bitstream initialization
in the performance experiments.

The maximum clock frequencies of all designs on -10 speed grade Virtex-
4 FPGAs are listed in Table 3.2. We see our improved designs based on

38 Chapter 3. Design Framework for Adaptive Computing

Resources OPB HWICAP XPS HWICAP MST HWICAP BRAM HWICAP

+bus bridge

4-LUT (total) 608 out of
17088 (3.6%)

3275 (19.2%) 1083 (6.3%) 963 (5.6%)

4-LUT used as
logic

576 out of
17088 (3.4%)

907 (5.3%) 1083 (6.3%) 614 (3.6%)

4-LUT used as
shift registers

32 out of
17088 (0.2%)

2368 (13.9%) 0 320 (1.9%)

Slice Flip-Flops 368 out of
17088 (2.2%)

417 (2.4%) 918 (5.4%) 469 (2.7%)

Block RAM
(BRAM)

1 out of 68
(1.5%)

0 2 (2.9%) 32 (47.1%)

Table 3.1. Resource utilization of ICAP designs on Virtex-4 FX20

XPS HWICAP do not degrade the timing performance. Both MST HWICAP
and BRAM HWICAP feature two clock domains, one of which is the interface
block and the other is the ICAP primitive. The ICAP primitive is possible
to be separately clocked over 200 MHz. In practical uses, normally we choose
100 MHz for all the designs to match the clock frequency of PLB or OPB.

ICAP designs Max. clock frequency

OPB HWICAP/PLB-OPB bridge 248/182 MHz

XPS HWICAP 121 MHz

MST HWICAP ≥200 (ICAP)/121 MHz

BRAM HWICAP ≥200 (ICAP)/121 MHz

Table 3.2. Timing performance of ICAP designs

We regard MST HWICAP as the most practical IP core according to the
tradeoff between the resource utilization and the performance. Therefore in the
coming discussion and experiments in the remainder of the thesis, we always
adopt MST HWICAP as the FPGA run-time reconfiguration solution unless
specially specified.

3.4.3 Virtual Configurations

To reduce the run-time reconfiguration time overhead has been being inves-
tigated in two directions: On one hand, design space of various ICAP modules
is explored to enhance the reconfiguration throughput [31] [66] [67]. Neverthe-
less the reconfiguration time is still constrained by the physical bandwidth of

3.4. Run-time Reconfiguration Technical Support 39

the reconfiguration port (ICAP) on FPGAs. On the other hand, compressing
partial bitstreams has been discussed in [65], [67] and [77] for shrinking the
reconfiguration time under the precondition of a fixed configuration through-
put. This approach requires a compression/decompression mechanism and its
corresponding hardware implementation.

As an additional solution, we propose the concept of Virtual ConFiguration
(VCF) to hide the configuration overhead of a PR design. As shown in Fig-
ure 3.9, two copies of configuration contexts, each of which represents a VCF,
are altogether dedicated to a single PRR on a multi-context FPGA [78] [79] [80].
The active VCF may still keep working in the foreground when module switch-
ing is expected. The run-time reconfiguration only happens invisibly in the
background, loading the new partial bitstream into configuration context 2.
After the reconfiguration process is finished, the newly loaded module can im-
mediately start working by being swapped with the foreground context and
migrating from the background to the foreground. The previously active con-
figuration context will be deactivated into the background and wait for the
next time reconfiguration. The configuration context swapping between the
background and the foreground is logically realized by changing the control on
the PRR among different VCFs. It does not really need to swap the configu-
ration data in the FPGA configuration memory, but instead switches control
outputs taking effect on the PRR using multiplexer (MUX) devices. Hence
the configuration context swapping takes only very short time (normally some
clock cycles), and is tiny enough to be negligible in comparison with the pro-
cessing time of the system design.

Figure 3.9. Virtual reconfigurations on multi-context FPGAs

With the approach of adopting VCFs, the reconfiguration overhead can
be fully or partly removed by using duplicated configuration contexts. The
timing advantage is illustrated in Figure 3.10, comparing to the canonical PR
designs without VCFs. We see in Figure 3.10(a), the effective work time and
the reconfiguration overhead have to be arranged in sequence on the time axis

40 Chapter 3. Design Framework for Adaptive Computing

Figure 3.10. Timing diagrams of PR designs without or with VCFs

in the canonical PR design without VCFs. By contrast in Figure 3.10(b),
the reconfiguration procedure only happens in the background and the time
overhead is therefore hidden by the working VCF in the foreground.

Figure 3.11. Virtual reconfigurations on single-context FPGAs

On normal FPGAs (most of the current devices) with only single-context
configuration memories, VCFs may be emulated by reserving duplicated PRRs
of the same size (see Figure 3.11). At each time, only one PRR is allowed to be
activated in the foreground and selected to communicate with the rest static
design by MUXes. The other PRR waits in the background for run-time
reconfiguration and will be swapped to the foreground to work after the next
scheduled module is successfully loaded. Taking into account the resource
utilization overhead of reserving duplicated PRRs, usually we do not adopt
more than 2 VCFs in practice.

3.4. Run-time Reconfiguration Technical Support 41

Figure 3.12. Experimental setup of the consumer-reconfigurable design

To investigate the impact of VCFs on the system performance, we set up
a producer-consumer design with run-time reconfiguration capability. This
design is consumer dynamically reconfigurable, meaning that multiple con-
sumer components compete for the same reconfigurable slot, and are alter-
nately scheduled to work in the single preserved PRR to digest their respec-
tive packets generated by the producer. As illustrated in Figure 3.12, the
producer periodically injects randomly-destined packets to the four consumers
and buffers them in 4 FIFO lanes. Each FIFO is dedicated to one correspond-
ing consumer algorithm. The scheduler program1 monitors the “almost full”
signals from all the FIFOs and arbitrates the to-be-loaded consumer module
using a Round-Robin policy. Afterwards, the loaded consumer will consume
its buffered data in a burst mode, until its FIFO lane is cleared and it has to
be replaced by the winner of the next-round reconfiguration arbitration. The
baseline canonical PR design has only one configuration context and must
stop the working module before the reconfiguration starts. In the PR design
with VCFs, we adopt two configuration contexts since the on-chip area over-
head of multiple configuration contexts should be minimized. Experimental
measurements have been carried out in cycle-accurate simulation using syn-
thesizable VHDL codes. Simulation provides much convenience for observing
all the signals in the waveform and debugging the design. It will have the
same results when implementing the design on any dynamically reconfigurable
FPGA. Both the baseline and the VCF designs run at a system clock of 100
MHz. The overall on-chip buffering capability is parameterized in the order

1To schedule hardware processes (reconfigurable modules) will be individually discussed
in the coming section of 3.6 as one key issue of the design framework.

42 Chapter 3. Design Framework for Adaptive Computing

of KiloBytes. For the run-time reconfiguration time of each module, we firstly
assume 10 µs which is a reasonable value when using the practical Xilinx ICAP
controller for partial reconfiguration [66] [67] [31]. The generated packets are
256-bit wide. The FIFO width is 32 bits. Before packets go into the FIFO,
they are fragmented into flits.

We did measurements on the received packet throughput in the unit of
packets per cycle per consumer node, with the FIFO depth of 512, 1K and
2K respectively. Measurement results are demonstrated in Figure 3.13. We
observe from the figure that:

30 28 26 24 22 20 18 16 14 12 10
0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.0184

0.0165

0.0156

0.0127

0.0116

Th
ro

ug
hp

ut
 [p

ac
ke

ts
/c

yc
le

/n
od

e]

1/(Packet Injection Rate) [cycles/packet]

 FIFO_depth = 512, without VCFs
 FIFO_depth = 512, with 2 VCFs
 FIFO_depth = 1K, without VCFs
 FIFO_depth = 1K, with 2 VCFs
 FIFO_depth = 2K, without VCFs
 FIFO_depth = 2K, with 2 VCFs

0.00918

Figure 3.13. Throughput measurement results (reconfiguration time = 10
µs)

1. As the packet injection rate increases, the on-chip communication be-
comes progressively saturated due to the limitation of the packet con-
suming capability.

2. For both types of PR designs (red or light curves for with 2 VCFs and
blue or dark curves for without), larger FIFO depths lead to higher
saturated throughput, since the data read-out burst size can be increased
by larger buffering capability, and the reconfiguration time overhead is
comparatively reduced.

3.4. Run-time Reconfiguration Technical Support 43

3. Introducing VCFs can further reduce the reconfiguration overhead by
hiding the reconfiguration time in the background. In the most obvious
case of 1K FIFO depth, two VCFs increase the throughput from 0.0127
packets/cycle/node to 0.0165, achieving a performance enhancement of
29.9%. Other two cases of 512 and 2K FIFO depth obtain a performance
enhancement of 26.4% and 17.9% respectively.

90 80 70 60 50 40 30 20 10
0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

0.0065

0.00628

0.00492

Th
ro

ug
hp

ut
 [p

ac
ke

ts
/c

yc
le

/n
od

e]

1/(Packet Injection Rate) [cycles/packet]

 FIFO_depth = 1K, without VCFs
 FIFO_depth = 1K, with 2 VCFs

Figure 3.14. Throughput measurement results (reconfiguration time = 50
µs)

We enlarged the time span of each reconfiguration from 10 µs to 50 µs
and did further throughput measurements with a middle-size FIFO depth
of 1K. Results are demonstrated in Figure 3.14, comparing the PR design
using 2 VCFs with the one without VCF. We observe that the overall sys-
tem throughput is worsened by the increased reconfiguration time overhead,
specifically from a saturated value of 0.0127 (see Figure 3.13) into 0.00492
packets/cycle/node for the non-VCF design. The increased reconfiguration
time also easily results in the channel saturation at an even lower packet in-
jection rate of about 1 packet per 50 cycles. In this test, we can still see the
performance improvement of 27.6% (0.00628 vs. 0.00492 packets/cycle/node),
using 2 VCFs to partly counteract the reconfiguration overhead. The channel
saturation point is extended to about 1 packet per 35 cycles by the duplicated
VCFs.

44 Chapter 3. Design Framework for Adaptive Computing

30 28 26 24 22 20 18 16 14 12 10

10000

20000

30000

40000

50000

60000

70000

80000
A

ve
ra

ge
 L

at
en

cy
 [c

yc
le

s]

1/(Packet Injection Rate) [cycles/packet]

 FIFO_depth = 1K, without VCFs
 FIFO_depth = 1K, with 2 VCFs

Figure 3.15. Latency measurement results (reconfiguration time = 10 µs)

In addition to the throughput comparison, we collected also statistics on
packet latency performance to demonstrate the effect of using VCFs. We dis-
cuss the average latency of a certain amount of packets, and exclude the system
warm-up and cool-down cycles out of the measurement, taking only into ac-
count steady communications. The latency is calculated from the instant when
the packet is injected into the source queue to that when the packet is received
by the destination node. It consists of two components: the queuing time in
the source queue and the network delivery time in flit FIFOs. Measurements
were conducted in the experimental setup with the smaller reconfiguration
time of 10 µs and the middle-size FIFO depth of 1K. Results are illustrated
in Figure 3.15. We observe that 2 VCFs have a slight reduction effect on the
packet latency before the channel saturation. In these curve segments, packets
do not stay in the source queue for too long time, but they must wait in flit
FIFOs until their specific destination node is configured to read them out in
a burst mode. Therefore we see two comparatively flat curve segments before
the channel becomes saturated, resulting from the steady switching frequency
of consumer nodes. Actually the latency segments go even slightly down along
with the increment of the packet injection rate, because faster packet injection
in flit FIFOs speeds up the configuration loading of consumer nodes and hence
reduces the wait time of packets in the flit FIFOs. Nevertheless after the chan-

3.5. OS and Device Drivers 45

nel’s packet delivery capability is saturated, packets have to spend much time
waiting in the source queue to enter the flit FIFOs. Thus the average latency
of packets deteriorates significantly and generates rising curve segments in the
figure. By contrast, using 2 VCFs may reduce the reconfiguration overhead
and extends the channel saturation to a higher packet injection rate. It re-
duces the packet wait time in the source queue and introduce them into the
flit FIFOs at an earlier time, leading to a large improvement on the packet
latency performance.

3.5 OS and Device Drivers

As in conventional static designs, all hardware modules in the reconfig-
urable system can be managed by the host processor with or without the OS
support. In a standalone mode without OS, the processor addresses device
modules with low-level register accesses in application programs. While in
OSes, device drivers are expected to be customized respectively. In a Unix-
like OS, common file operations are programmed to access devices, including
“open”, “close”, “read”, “write”, “ioctl”, etc. [81] Interrupt handlers should
also be implemented if interrupt services are supported in the hardware design.

Different device components multiplexed in a same PR region are allowed
to share the same physical address space for system bus accesses, due to their
operation exclusiveness on the time axis. In fact the physical address of a de-
vice is usually fixed in the bus interface design, and therefore all PR modules
have to feature the same address if they share the static interface block. In
order to match software operations with the equipped hardware component,
two approaches can be adopted: Either a universal driver is customized for
all the reconfigurable modules sharing a same PR region. Respective device
operations are regulated and collected in the code. The ID number of re-
configurable modules is kept track of and passed to the driver, branching to
the correct instructions according to the currently active hardware module; or
the drivers are separately compiled into software modules for different hard-
ware components. The old driver is to be removed and the new one inserted,
along with the presence of a newly loaded hardware device. Among these two
approaches, the former one can avoid the driver module removing/inserting
overhead in the OS, while the latter one is more convenient for system upgrade
when a new task is added to share a PR region.

Little special consideration or modification effort is required on the OS and
device drivers for run-time reconfigurable systems, in comparison with static
designs. One important thing to remember, is to keep track of the presently

46 Chapter 3. Design Framework for Adaptive Computing

activated module in the PRR and correctly match the driver software with the
hardware. Otherwise the device may suffer from misoperations.

3.6 Reconfiguration Scheduler

Analogous to the scheduler in an OS which determines the active process for
CPU execution, the scheduler in FPGA reconfigurable designs monitors trigger
events and decides which functional module is to be configured next in a recon-
figurable slot. All hardware processes are preemptable and they must comply
with the management from the scheduler. The scheduling policy may be im-
plemented in hardware with Finit State Machines (FSM). However for more
design convenience, it can be ported in software application programs running
on the host processor with or without the OS support. Distinguished from the
kernel space scheduling in [64] and the management unit design in hardware
in [59], the user space software scheduling possesses significant advantages of
convenient portability to other platforms, avoidance of error-prone OS ker-
nel modification, and flexibility to optimize scheduling disciplines. Scheduling
policies are very flexible. But they have direct effect on the system performance
and should be optimized according to specific application requireiments, such
as throughput or reaction latency. One general rule is to minimize the hard-
ware context switching times, taking into account the dynamic reconfiguration
time overhead and extra power dissipation needed during the reconfiguration
process. Algorithm 1 and 2 demonstrate two simplified scheduler examples for
throughput-aware data processing and a real-time application with fast reac-
tion requirement: In the scheduler routine of Algorithm 1, the buffered raw
data amounts of two data streams are monitored and compared. One algo-
rithm module will be loaded into the shared reconfigurable region to digest its
raw data, when there is a sufficient amount of data accumulated from the in-
put and the amount exceeds the other stream beyond a pre-defined threshold.
This scheduling policy features an intrinsic capability of balancing the pro-
cessing of two data streams. It aims to minimize the overall reconfiguration
overhead and guarantee the processing throughput. By contrast, the scheduler
in Algorithm 2 switches immediately to the corresponding hardware module if
its trigger event happens. The purpose is to react as early as possible in order
to meet real-time requirements.

The scheduler program is only in charge of light-weight control work and
usually does not feature intensive computation. In addition, the host CPU only
initiates run-time reconfiguration by providing the bitstream storage address
as well as the length, and it is actually the master block in the MST HWICAP

3.6. Reconfiguration Scheduler 47

Algorithm 1 Simplified scheduler routine example for throughput-aware pro-
cessing
int schedule(void){
if (data in buf0 - data in buf1) > THRESHOLD then

switch to hw process = 0; {Context switching to HW process 0, because
there are many raw data in buffer0 to be processed.}

else if (data in buf1 - data in buf0) > THRESHOLD then
switch to hw process = 1; {Context switching to HW process 1, because
there are many raw data in buffer1 to be processed.}

else
switch to hw process = switch to hw process; {Keep it unchanged to re-
duce reconfiguration overhead.}

end if
return switch to hw process;
}

Algorithm 2 Simplified scheduler routine example for real-time tasks
int schedule(void){
if event0 happened = 1 then

switch to hw process = 0; {Context switching to HW process 0 at once,
since task 0 has higher priority.}

else if event1 happened = 1 then
switch to hw process = 1; {Context switching to HW process 1, since task
1 has also RT requirement despite lower priority.}

else
switch to hw process = switch to hw process; {No event happened and
keep it unchanged.}

end if
return switch to hw process;
}

48 Chapter 3. Design Framework for Adaptive Computing

(a) x = a + b (b) y = c × d

Figure 3.16. Contextless module switching in the reconfigurable design

design that transports the configuration data. Therefore dynamic reconfigu-
ration scheduling does not take much CPU time, especially when the trigger
events of module switching happen only infrequently and the scheduler is in-
formed by CPU interrupts.

3.7 Context Switching

The context of hardware processes refers to the buffered incoming raw
data, intermediate calculation results and control parameters in registers or
on-chip memory blocks residing in the shared resources of PR regions or in-
terface blocks. In some applications, it becomes contextless when the buffered
raw data are completely consumed and no intermediate state is needed to be
recorded. Thus the scheduler may simply swap out an active PR module, and
after some time when it resumes, a module reset will be adequate to restore
its operation. Otherwise, context saving and restoring must be accomplished.
Figure 3.16 and 3.17 respectively demonstrate these two circumstances: In
the design in Figure 3.16, two dynamically reconfigurable functional modules
(adder and multiplier) do not share the bus interface and they both feature
pure conbinational logic in using the PRR. Hence during each time when the
PRR is configured with an arithmetic operator, the registers in interface blocks
are not needed to be saved or restored in order to obtain correct results of x
and y. By contrast in the design of Figure 3.17, the operand registers in the
common bus interface are shared and the reconfigurable region also contains
the context of one operand for the addition operation. Therefore in case of

3.8. Inter-Process Communications 49

module switching, the operands of the former operation must be saved in the
system memory, and the ones for the newly resumed operator are to be re-
stored.

(a) x = a + b (b) y = c × d

Figure 3.17. Context saving and restoring in the reconfigurable design

Generally speaking, two approaches can be employed to address the con-
text saving and restoring issue: In case of small amounts of parameters or
intermediate results, register accesses can efficiently read out the context into
external memories and restore it when the corresponding hardware module
resumes [69]. When there are large quantities of data buffered in on-chip
memory blocks, the ICAP interface can be utilized to read out the bitstream
and extract the storage values for context saving [68]. In order to avoid the
design effort and large time overhead in the latter case, an alternative solution
is to intentionally generate some periodic “pause” states without any context
for the data processing module. Context switching can be then delayed by
the scheduler until meeting a pause state. We will adopt this method in the
application study in Chapter 6 for adaptive data stream processing.

3.8 Inter-Process Communications

3.8.1 IPC Approaches

Reconfigurable modules (hardware processes) placed at run-time typically
need to exchange data among each other. In [70], the authors present four
approaches to address Inter-Process Communications (IPC) among different

50 Chapter 3. Design Framework for Adaptive Computing

reconfigurable slots: direct connection, shared memory, Reconfigurable Multi-
ple Bus (RMB), and external crossbar. We don’t incline to adopt the latter
two approaches in our system, considering their design complexity and large
hardware overhead. But direct connections through IO interface and shared
memories can efficiently realize high-speed data delivery, as shown in Fig-
ure 3.18(a) and 3.18(b). In addition, the system bus can also be employed
to exchange data in our specific system architecture. Transactions may be
initiated by either a master block residing in the master interface design, or a
separate master device such as the host processor or DMA. IPC via the system
bus is illustrated in Figure 3.18(c).

(a) Direct connections (b) Shared memory

(c) IPC via the system bus

Figure 3.18. IPC approaches among reconfigurable modules located in vari-
ous PRRs

3.8. Inter-Process Communications 51

3.8.2 Pipe-based IPC Models

More generally, communications among reconfigurable modules that are
time-multiplexed in the same PR region may also exist and be required in the
hardware implementation. In previous contributions such as [70], this chal-
lenge has not been concerned. We propose a mechanism using pipes to deliver
information among hardware processes alternately occupying the same PR re-
gion. In software, pipes and FIFOs (Also called named pipes. We use pipe
as the general name.) are a basic IPC mechanism provided in all flavors of
Unix OSes. They are best suited to implement producer-consumer interactions
among processes. A pipe is a unidirectional channel: All data written by a
process to the pipe is routed by the OS kernel to another process which can
thus read it [82]. In FPGA-based designs, the homonymous hardware pipe be-
haves in an analogous manner as the software one in OSes. As an application
example, Figure 3.19 shows consecutive pipe communications between algo-
rithm modules. Conventionally all algorithm processors or algorithm steps are
statically placed on the FPGA fabric. They work in parallel to process their
respective input data streams, possibly generate output results, and pass IPC
information to the next computation stage. In this model, intermediate pipes
with buffering capability decouple and coordinate producers and consumers,
if they do not generate and consume data at the same pace.

Figure 3.19. Consecutive pipe communications between algorithms or algo-
rithm steps

In adaptive computing scenarios in which multiple algorithm processors or
algorithm steps time-share the same resources in one PR region, the buffer-
based pipes can be used to bridge the communication of two modules activated
at different time. In Figure 3.20, a reconfigurable design is demonstrated with
the same dataflow as the static algorithm placement shown in Figure 3.19.
Algorithm modules are sequentially loaded into the PR region for a period of
time. They read and consume data from the previous-stage pipe, and store
the generated inter-module information in the current-stage pipe for next-stage

52 Chapter 3. Design Framework for Adaptive Computing

computation. For example after activated, algorithm A1 reads IPC packets of
A0 from pipe0, and pass information to A2 via pipe1.

Figure 3.20. Pipe communications in PR designs

3.8.3 Performance Analysis

Referring to Figure 3.21, we introduce a metric named Throughput Effi-
ciency (TE) to measure the data delivery bandwidth efficiency of the com-
munication channel in the producer-consumer model. TE is defined as the
division of the effective data delivery throughput (ε) via the channel and the
minimum value of the data generation rate of the producer (ρ) and the data
consumption rate of the consumer (σ), as shown in Equation 3.1:

TE =
ε

Min(ρ, σ) (3.1)

The minimum value of ρ and σ represents the physical limitation of data
throughput in the system. The effective data delivery throughput can never
exceed the smaller capability between the producer and the consumer. There-
fore, the maximum value of TE is 1 (100%), which indicates that the commu-
nication channel is fully utilized and does not obstruct the data transmission
flow between the producer and the consumer at all. If TE is smaller than 1,
the real data delivery throughput does not reach the physical limitation. This
condition implies there exists transmission efficiency loss in the channel due
to some reasons.

In the static model as shown in Figure 3.19, the backpressure of interme-
diate buffers may coordinate the producer and the consumer to both work in
the data generation or consumption rate of Min(ρ, σ). For example if ρ is

3.8. Inter-Process Communications 53

Figure 3.21. TE definition in the producer-consumer model

larger than σ (higher data generation capability than consumption), data will
be backlogged in the buffer (pipe) and then either pause the producer from
injecting or be overflowed. Hence the effective data delivery throughput (ε) is
actually equal to σ rather than the larger ρ. Vice versa, ε is equal to ρ if the
producer-consumer model features a larger data consumption capability than
generation (ρ < σ). In both cases, the real data delivery throughput ε is equal
to Min(ρ, σ) and TEstat (static) is 1, implying no obstacle from the channel
for data transmission. It may also happen that the channel cannot even han-
dle the data rate of Min(ρ, σ), due to its physical constraints such as clock
frequency limit. Thus ε will be smaller than Min(ρ, σ) and TEstat will be less
than 1. By contrast in the reconfigurable model shown in Figure 3.20, the pipe
must be firstly filled up by the producer and afterwards emptied by consumer
readout, considering that the producer and the consumer time-share the PR
region and cannot work simultaneously. Assuming the size of the pipe to be
S, then the data delivery throughput can be calculated with the transported
data amount (equal to S) divided by the total time span for the producer to
write the pipe till it is full (Twr) and then for the consumer to read it (Trd)
till empty.

εreconf =
S

Twr + Trd
=

S

S

ρ
+

S

σ

=
ρσ

ρ + σ (3.2)

Accordingly the throughput efficiency of the reconfigurable architecture is:

TEreconf =
εreconf

Min(ρ, σ)
=

ρσ

(ρ + σ) ·Min(ρ, σ) (3.3)

54 Chapter 3. Design Framework for Adaptive Computing

If assuming an equivalent data generation and consumption rate (ρ=σ) and
no channel constraints for simplicity, TEreconf is equal to 1/2 which stands
for half of the value TEstat in the static model. The reason comes from the
fact that the producer and the consumer share the same PR region at different
time, and thus the communication channel cannot be fully utilized due to the
lack of concurrent writing and reading.

The above analysis is for the ideal situation. In practice, context switching
overhead (Tcsp for switching to the producer and Tcsc for to the consumer) of
dynamically reconfiguring each algorithm module should also be included in
the total time span. Thus the data delivery throughput and the throughput
efficiency in the reconfigurable model can be revised as:

εreconf =
S

Twr + Trd + Tcsp + Tcsc
=

ρσ

ρ + σ +
(Tcsp + Tcsc) · ρσ

S

(3.4)

TEreconf =
εreconf

Min(ρ, σ)
=

ρσ

(ρ + σ +
(Tcsp + Tcsc) · ρσ

S
) ·Min(ρ, σ)

(3.5)

The latency (L) of an IPC packet is the time slice from its generation by
the producer till it is received by the consumer. In the static process model,
the latency is simply the time needed by the consumer to fetch the packet
from the pipe. Assuming that the producer and the consumer are ideally
coordinated at the same pace (ρ=σ) and channel constraints are excluded,
the pipe channel will behave much like a direct connection with a small delay
unit and the latency can be ignored. While in the reconfigurable model, the
latency consists of three compositions, as demonstrated in Figure 3.22. Firstly
the packet is injected by the producer into the pipe. It stays in the pipe until
the pipe is full. Afterwards the context switching reconfiguration starts and
the consumer is to be activated. Finally the IPC packet is received by the
consumer only after all other packets before it are read out from the pipe.
Equation 3.6 lists the three latency compositions of the ith packet in the
reconfigurable design, in which the pipe can hold n packets in total:

Li = Lwr i + Tcsc + Lrd i (i ∈ [0, n− 1]) (3.6)

In the periodic traffic pattern for both the producer and the consumer, Equa-
tion 3.6 will be elaborated as:

3.8. Inter-Process Communications 55

Li = Lwr i + Tcsc + Lrd i = Twr · (1− i + 1
n

) + Tcsc + Trd · i + 1
n

=
S

ρ
· (1− i + 1

n
) + Tcsc +

S

σ
· i + 1

n
(i ∈ [0, n− 1])

(3.7)

With a coordinated data generation and consumption rate (ρ=σ) and without
channel constraints, Equation 3.6 can be further simplified as:

Li = Twr + Tcsc = Trd + Tcsc =
S

ρ
+ Tcsc =

S

σ
+ Tcsc (3.8)

Figure 3.22. Packet latency in the reconfigurable model

3.8.4 Hardware Implementation of Pipes

The pipe can be realized by finite-depth FIFO devices using the Block
RAM resource on the FPGA or external memories such as DDR SDRAM.
On-chip BRAM provides more efficient data transmission bandwidth, while
DDR enables larger buffering capability. Figure 3.23 demonstrates the BRAM
implementation of the pipe. The producer and the consumer are dynamically
reconfigured to time-share the single preserved PR region. Module switching
is respectively triggered by pipe full or empty interrupts, which are detected
by the scheduler program running on the host processor. The isolation logic
sits between the PR region and the static design to disable the unpredictable

56 Chapter 3. Design Framework for Adaptive Computing

outputs of PR modules during reconfiguration. The separate reset signal brings
a newly loaded module to its initial state. When using DDR to implement the
pipe (see Figure 3.24), an interface design (ddr pipe interface) is required to
realize DDR accesses. The interface provides the bus master functionality
to actively collect produced IPC packets into the DDR memory and direct
them to the consumer, via a port of MPMC. Both BRAM pipe and the DDR
memory together with its controller feature a data bus width of 64 bits at a
system clock of 100 MHz.

Figure 3.23. Pipe implementation with BRAM

Figure 3.24. Pipe implementation with DDR

Table 3.3 lists the resource utilization of BRAM pipe and DDR pipe im-
plementations. We see from the numbers that BRAM pipe consumes the ex-
pensive BRAM resource on the FPGA to construct the FIFO. BRAM provides
more efficient data delivery bandwidth, but only small pipe sizes. LUT and
Flip-Flop utilizations in BRAM pipe are negligible. DDR pipe requires a fixed

3.8. Inter-Process Communications 57

B
R

A
M

p
ip

e
D

D
R

p
ip

e
(w

it
h

d
d
r

p
ip

e
in

te
rf

a
c
e
)

1
K

B
4

K
B

1
6

K
B

6
4

K
B

1
K

B
4

K
B

1
6

K
B

6
4

K
B

1
M

B
1
6

M
B

4
-i
n
p
u
t

L
U

T
s

6
3

o
u
t

o
f
5
0
5
6
0

(0
.1

2
%

)
5
9

(0
.1

2
%

)
6
9

(0
.1

4
%

)
2
0
0

(0
.4

0
%

)
9
7
1

(1
.9

2
%

)
S
li
c
e

F
li
p
-F

lo
p
s

5
3

o
u
t

o
f
5
0
5
6
0

(0
.1

0
%

)
6
3

(0
.1

2
%

)
7
3

(0
.1

4
%

)
1
1
8

(0
.2

3
%

)
8
2
9

(1
.6

4
%

)
B
lo

ck
R

A
M

2
o
u
t

o
f
2
3
2

(0
.8

6
%

)
2

(0
.8

6
%

)
8

(3
.4

5
%

)
2
9

(1
2
.5

%
)

2
(0

.8
6
%

)
D

D
R

S
D

R
A

M
/

/
/

/
1

K
B

4
K

B
1
6

K
B

6
4

K
B

1
M

B
1
6

M
B

T
a
b
le

3
.3

.
R

es
o
u
rc

e
u
ti

li
za

ti
o
n

o
f
B

R
A

M
p
ip

e
a
n
d

D
D

R
p
ip

e
o
n

V
ir

te
x
-4

F
X

6
0

F
P

G
A

P
e
a
k

d
a
ta

g
e
n
./

c
o
n
s.

ra
te

(ρ
,

σ
)

P
ip

e
si

z
e

(S
,

d
e
p
th
×

w
id

th
)

P
a
rt

ia
l

b
it

-
st

re
a
m

si
z
e

(B
S
)

M
e
a
su

re
m

e
n
t

ti
m

e
D

e
li
v
e
re

d
d
a
ta

a
m

o
u
n
t

D
a
ta

d
e
li
v
e
ry

th
ro

u
g
h
p
u
t

(ε
r

e
c
o

n
f
)

T
h
ro

u
g
h
p
u
t

E
ffi

c
ie

n
c
y

(T
E

r
e

c
o

n
f
)

T
e
st

1

1
.1

8
0
0

K
B

/
s

1
2
8
×

8
B

=
1
K

B
2
7

K
B

1
.4

2
7
s

5
0
0

K
B

3
5
0
.3

9
K

B
/
s

0
.4

3
8

1
.2

8
0
0

K
B

/
s

5
1
2
×

8
B

=
4
K

B
2
7

K
B

5
.2

7
0
s

2
M

B
3
7
9
.5

1
K

B
/
s

0
.4

7
4

1
.3

8
0
0

K
B

/
s

2
K
×

8
B

=
1
6
K

B
2
7

K
B

2
0
.6

2
s

8
M

B
3
8
7
.9

7
K

B
/
s

0
.4

8
5

1
.4

8
0
0

K
B

/
s

8
K
×

8
B

=
6
4
K

B
2
7

K
B

8
2
.0

7
s

3
2

M
B

3
8
9
.9

1
K

B
/
s

0
.4

8
7

T
e
st

2

2
.1

8
M

B
/
s

1
2
8
×

8
B

=
1
K

B
2
7

K
B

0
.2

7
3
s

5
0
0

K
B

1
.8

3
M

B
/
s

0
.2

2
9

2
.2

8
M

B
/
s

5
1
2
×

8
B

=
4
K

B
2
7

K
B

0
.6

5
6
s

2
M

B
3
.0

5
M

B
/
s

0
.3

8
1

2
.3

8
M

B
/
s

2
K
×

8
B

=
1
6
K

B
2
7

K
B

2
.1

9
4
s

8
M

B
3
.6

5
M

B
/
s

0
.4

5
6

2
.4

8
M

B
/
s

8
K
×

8
B

=
6
4
K

B
2
7

K
B

8
.3

3
9
s

3
2

M
B

3
.8

4
M

B
/
s

0
.4

8
0

T
e
st

3

3
.1

8
0

M
B

/
s

1
2
8
×

8
B

=
1
K

B
2
7

K
B

0
.1

5
9
s

5
0
0

K
B

3
.1

4
M

B
/
s

0
.0

3
9

3
.2

8
0

M
B

/
s

5
1
2
×

8
B

=
4
K

B
2
7

K
B

0
.1

9
7
s

2
M

B
1
0
.1

5
M

B
/
s

0
.1

2
7

3
.3

8
0

M
B

/
s

2
K
×

8
B

=
1
6
K

B
2
7

K
B

0
.3

5
0
s

8
M

B
2
2
.8

6
M

B
/
s

0
.2

8
6

3
.4

8
0

M
B

/
s

8
K
×

8
B

=
6
4
K

B
2
7

K
B

0
.9

6
6
s

3
2

M
B

3
3
.1

3
M

B
/
s

0
.4

1
4

T
e
st

4

4
.1

8
0
0

M
B

/
s

1
2
8
×

8
B

=
1
K

B
2
7

K
B

0
.1

4
3
s

5
0
0

K
B

3
.5

0
M

B
/
s

0
.0

0
4
4

4
.2

8
0
0

M
B

/
s

5
1
2
×

8
B

=
4
K

B
2
7

K
B

0
.1

5
1
s

2
M

B
1
3
.2

5
M

B
/
s

0
.0

1
6
6

4
.3

8
0
0

M
B

/
s

2
K
×

8
B

=
1
6
K

B
2
7

K
B

0
.1

6
5
s

8
M

B
4
8
.4

8
M

B
/
s

0
.0

6
0
6

4
.4

8
0
0

M
B

/
s

8
K
×

8
B

=
6
4
K

B
2
7

K
B

0
.2

2
8
s

3
2

M
B

1
4
0
.3

5
M

B
/
s

0
.1

7
5
4

T
e
st

5

5
.1

8
M

B
/
s

1
2
8
×

8
B

=
1
K

B
8
0

K
B

0
.5

0
0
s

5
0
0

K
B

1
.0

0
M

B
/
s

0
.1

2
5

5
.2

8
M

B
/
s

5
1
2
×

8
B

=
4
K

B
8
0

K
B

0
.8

8
2
s

2
M

B
2
.2

7
M

B
/
s

0
.2

8
4

5
.3

8
M

B
/
s

2
K
×

8
B

=
1
6
K

B
8
0

K
B

2
.4

1
8
s

8
M

B
3
.3

1
M

B
/
s

0
.4

1
4

5
.4

8
M

B
/
s

8
K
×

8
B

=
6
4
K

B
8
0

K
B

8
.5

6
3
s

3
2

M
B

3
.7

4
M

B
/
s

0
.4

6
8

T
a
b
le

3
.4

.
M

ea
su

re
m

en
t

re
su

lt
s

o
f
th

e
p
ip

e
p
er

fo
rm

a
n
ce

o
n

th
e

re
co

n
fi
g
u
ra

b
le

im
p
le

m
en

ta
ti

o
n

58 Chapter 3. Design Framework for Adaptive Computing

overhead of the interface design (ddr pipe interface). Its resource utilization is
small (all below 2%) and acceptable in practical reconfigurable designs. The
pipe size is flexibly adjustable in a wide range in the DDR memory.

3.8.5 Experimental Results

To verify the derived formulas, we did experiments to measure the per-
formance and explicitly demonstrate the characteristics of pipes. For analysis
simplicity, we select periodic traffic patterns and matching data generation
and consumption capabilities (ρ = σ), with which TE is both analyzed and
measured as 1 in the static producer-consumer design. On the reconfigurable
implementation using BRAM pipe, we measure the performance at four data
rates, specifically 800 KB/s, 8 MB/s, 80 MB/s and 800 MB/s. Results are
listed in Table 3.4 as the function of data generation/consumption rates (ρ, σ)
and pipe sizes (S). With the same partial bitstream size of 27 KB, Test 1 -
4 correspond to slow, medium, fast, and extra-fast IPC data rates. In each
test, four levels of pipe sizes are varied for measurements. We record the de-
livered data amount as well as the time span, and calculate the effective data
delivery throughput (ε) from their quotient. According to the definition for-
mula in Equation 3.1, we also derive the TE values of using BRAM pipe in
reconfigurable computing, and list the results in the last column of the table.
To study the effect of different partial bitstream sizes (BS), which result in
different context switching overhead Tcsp and Tcsc, we did also measurements
with a larger bitstream size of 80 KB in Test 5 at a modest data rate of 8 MB/s
(Practically IPCs do not feature too high rates as incoming raw data streams
do). We draw TE curves in Figure 3.25 for all the tests, and observe that the
measured throughput efficiency of the pipe may approach to the theoretical
value of 0.5 at the end of large pipe size. In addition, a lower data rate leads
to more efficient bandwidth utilization of the pipe channel. Both reasons come
from the approach to reduce the context switching frequency and decrease the
proportion of context switching overhead in the overall measurement time.

In FPGA-based adaptive computing, context switching overhead consists
of run-time reconfiguration time for switching IP cores and software overhead,
such as the time needed to stop the PRR outputs and to reset the newly loaded
module. To investigate context switching overhead in depth, we compare Test
2 and Test 5 with the same data rate, and profile the composition of the
overall measurement time. From the results shown in Figure 3.26(a) for Test
2.4 and 3.26(b) for Test 5.4, we observe that with a modest data rate of 8
MB/s and a large pipe size of 64 KB, effective pipe write and read operations
dominate the proportion of the overall measurement time (98.24% and 95.67%

3.8. Inter-Process Communications 59

Pipe Size (S, Bytes)

T
h

ro
u

g
h

p
u

t
E

ff
ic

ie
n

cy
 (

T
E

)

0

0.1

0.2

0.3

0.4

0.5

0.6
 = 800 KB/s, BS = 27 KBσ = ρTest1:
 = 8 MB/s, BS = 27 KBσ = ρTest2:
 = 80 MB/s, BS = 27 KBσ = ρTest3:
 = 800 MB/s, BS = 27 KBσ = ρTest4:
 = 8 MB/s, BS = 80 KBσ = ρTest5:

1KB 4KB 16KB 64KB

Figure 3.25. TE measurements on BRAM pipe

respectively). Therefore the measured throughput efficiency is very close to
the theoretical value of 0.5. The context switching overhead is very small in
this case. Moreover from these two sub-figures, we also see the PR time as well
as its proportion in Test 5.4 (340.4 ms, 3.98%) larger than in Test 2.4 (114.5
ms, 1.37%), due to the larger partial bitstream size. The software overhead is
stable (∼30 ms) in both tests. By contrast, we observe much larger overhead
proportions of 53.11% and 74.4% respectively in Test 2.1 and 5.1 for a small
pipe size of 1 KB, as shown in Figure 3.26(c) and 3.26(d). Because of the
small buffering capability, frequent context switching increases the overhead
proportion and less efficiently utilizes the pipe to transport IPC data. Test
5.1 is even worse than 2.1, due to its larger partial bitstream size.

Throughput and TE are also measured on DDR pipe. Results are illus-
trated in Figure 3.27. We see that DDR pipe can improve the data delivery
throughput and TE by further increasing the pipe size to 1 MB and 16 MB.
With the same pipe sizes from 1 KB to 64 KB, DDR pipe achieves simi-
lar results as BRAM pipe, with the only exception in the test for extra-fast
data rate of 800 MB/s. This is due to the situation that the memory con-
troller bandwidth is saturated by the too high data rate and generates bot-
tleneck to DDR pipe accesses (i.e. physical constraint on the channel). By

60 Chapter 3. Design Framework for Adaptive Computing

(a) Test 2.4 (b) Test 5.4

(c) Test 2.1 (d) Test 5.1

Figure 3.26. Composition of the measurement time

contrast, BRAM pipe provides sufficient bandwidth and achieves higher TE
than DDR pipe at the extra-fast IPC data rate.

Due to the time multiplexing feature of computing resources in reconfig-
urable designs, IPC packets cannot be directly delivered to the consumer and
they have to be contained in the pipe until context switching to the consumer
process. The latency evaluation has been discussed in Section 3.8.3, and we
did also practical measurements on the FPGA design. In the experimental
setup for BRAM pipe and DDR pipe, the producer transmits time tags as
IPC packets into the pipe. The consumer receives them and calculates the
delay from the time differences with a global timer. Large amounts of IPC
packets were sampled, and the arithmetic average results are listed and illus-
trated in Figure 3.28 for pipes with different sizes. We observe that the latency
of IPC packets deteriorates along with the increment of the pipe size (approx-
imately linearly), as well as the decrement of the data rate. With the same
pipe size, DDR pipe results in slightly higher latency than BRAM pipe, due
to the complex DDR access mechanism: IPC packets need more clock cycles
to be stored into or read out of the DDR memory. The latency of DDR pipe
apparently deviates from BRAM pipe only at the extra-high data rate of 800

3.8. Inter-Process Communications 61

Pipe Size (S, Bytes)

T
h

ro
u

g
h

p
u

t
E

ff
ic

ie
n

cy
 (

T
E

)

0

0.1

0.2

0.3

0.4

0.5

 = 800 KB/sσ = ρBRAM_pipe:
 = 8 MB/sσ = ρBRAM_pipe:
 = 80 MB/sσ = ρBRAM_pipe:
 = 800 MB/sσ = ρBRAM_pipe:

 = 800 KB/sσ = ρDDR_pipe:
 = 8 MB/sσ = ρDDR_pipe:
 = 80 MB/sσ = ρDDR_pipe:
 = 800 MB/sσ = ρDDR_pipe:

1KB 4KB 16KB 64KB 1MB 16MB

Figure 3.27. TE comparison of BRAM pipe and DDR pipe

MB/s, due to the saturated memory bandwidth.
There exists a pair of contradictions between throughput and latency in the

reconfigurable design: To shrink the context switching overhead and increase
the throughput efficiency, the pipe size is expected to be maximized. However
a large pipe size leads also to worse latency performance meanwhile. For this
reason the pipe size should be cautiously determined according to concrete
system requirements in communication throughput or realtime performance.

3.8.6 Result Matching with Formulas

All practical measurement results on throughput, TE, and latency are ver-
ified to match very well the theoretical analysis using derived formulas in
Section 3.8.3. As an instance in Test 2.1 (S=1 KB), the producer and the
consumer are coordinated at a same data rate of 8 MB/s. The dedicated
BRAM pipe write and read interfaces provide sufficient bandwidth. Thus
both the producer and the consumer can effectively work at the peak data
rate (ρ=σ). We measured the time overhead switching to the producer (Tcsp)
and to the consumer (Tcsc) respectively as 150.37 and 135.50 µs. Thus accord-
ing to Equation 3.4 and 3.5, we theoretically derive εreconf and TEreconf as
1.86 MB/s and 0.233 respectively. Both values match very well the measured

62 Chapter 3. Design Framework for Adaptive Computing

Pipe Size (S, Bytes)

, m
s)

av
g

A
ve

ra
g

e
L

at
en

cy
 (

L

-110

1

10

210

310

410

Pipe Size (S, Bytes)

, m
s)

av
g

A
ve

ra
g

e
L

at
en

cy
 (

L

-110

1

10

210

310

410

 = 800 KB/sσ = ρDDR_pipe:
 = 8 MB/sσ = ρDDR_pipe:
 = 80 MB/sσ = ρDDR_pipe:
 = 800 MB/sσ = ρDDR_pipe:

 = 800 KB/sσ = ρBRAM_pipe:
 = 8 MB/sσ = ρBRAM_pipe:
 = 80 MB/sσ = ρBRAM_pipe:
 = 800 MB/sσ = ρBRAM_pipe:

1KB 4KB 16KB 64KB 1MB 16MB

Figure 3.28. Latency measurements on BRAM pipe and DDR pipe

results of 1.83 MB/s and 0.229 listed in Table 3.4. With Equation 3.8 the
latency is calculated as 0.261 ms, also close to the 0.266 ms in Figure 3.28.
Other tests share the same analysis procedure except the ones for DDR pipe
at the extra-high data rate of 800 MB/s. In that case, the memory controller
bandwidth is saturated and hence the effective data generation or consump-
tion rate has to be lowered below the peak rate. Accordingly a pair of smaller
ρ and σ results in less εreconf , TEreconf and larger Li.

“Wisdom is knowing what to do next, skill is
knowing how to do it, and virtue is doing it.”

David Starr Jordan
(American ichthyologist, educator and writer, 1851 - 1931 A.D.)

63

64

Chapter 4

Case Study 1: A Peripheral
Controller Adaptable System

In order to verify our proposed design framework for adaptive
computing, we apply the self-adaptation concept to practical embed-
ded designs in this chapter. A NOR flash memory controller and an
SRAM controller time-share the programmable resources of a recon-
figurable slot on the FPGA, according to different memory access
requirements. Experimental results reveal more efficient on-chip re-
source utilization, on the basis of accomplishing the same function-
alities of flash and SRAM accesses as the conventional static design.
This chapter corresponds to the published papers of [24], [26] and
[30] listed in Section 1.4.

4.1 Background and Motivation

Flash memory (including NOR flash and NAND flash) is a computer stor-
age device that can be electrically erased and reprogrammed. Due to its non-
volatility, no power is needed to maintain the information stored in the chip.
In embedded systems designs, flash memory is often used to store non-volatile
data such as FPGA bitstreams or OS kernels. Because of its intrinsic access
mode, normally it does not feature such high speed read and write operations
as DDR SDRAM or SRAM.

65

66 Chapter 4. Case Study 1: A Peripheral Controller Adaptable System

SRAM features high-performance memory operations as well as middle-size
capacity. Because of its large data bandwidth as well as short access time, it
is well suited for fast and intensive random memory addressing, such as the
Look-Up Table (LUT) access for our application-specific computation [41]. In
many practical applications, flash memory is only used to hold non-volatile
data or programs which are expected to be retrievable after each time power
off. It is only addressed very occasionally or even never during the system run-
time. For example, a light-weight embedded OS kernel may be loaded from
flash into DDR for fast execution in case of system power-on. Afterwards,
the flash memory will never be addressed in the systems operation, unless
the OS kernel is scheduled to be updated. On account of the occasionality of
flash accesses, it generates resource utilization inefficiency if the flash memory
controller is statically mapped on the FPGA design but does not function
frequently. On the other hand, our application-specific computation using
SRAM as the LUT storage starts only after the FPGA firmware is configured
and the OS is successfully booted. These two types of memory accesses are
exclusive to some extent. Hence, we consider to make the flash memory and
the SRAM time-share the same on-chip resources as well as a common device
interface in the embedded design.

Both memory controller designs come directly from the Xilinx IP library.
We do not have to look into their in-depth design details. Instead we regard
them as blackboxes with the communication interfaces demonstrated in Fig-
ure 4.1. In the figure, the left side shows the interface to external memory
devices and the right side is to the system bus.

(a) Flash controller (b) SRAM controller

Figure 4.1. Blackboxes of the flash controller and the SRAM controller

4.2. System Implementation 67

4.2 System Implementation

The reconfigurable hardware design is shown in Figure 4.2: An off-chip
NOR flash memory and an SRAM share the same data, address and control
bus I/O pins of the FPGA. These two chips are exclusively selected by the
“CE” signal. The flash and the SRAM controllers are both slave devices on
the system bus. We pick the normal controller designs out of the Xilinx IP li-
brary, and directly regard them as PR modules without any modification. The
PLB bus slave interface is already included in the original design. Hence the
complete IP core including the interface block is entirely fitted in the reserved
PRR for run-time reconfiguration. With respect to the connections between
PR modules and the base system, disconnect logic is inserted to isolate the
unsteady reconfiguration state from the static design. They do not change the
interface communication standards (PLB and device-specific I/O standards)
and therefore little additional effort is needed to convert a conventional static
design into a partially reconfigurable one.

Figure 4.2. Hardware structure of the flash/SRAM PR design

An open-source Linux kernel runs on the host PowerPC 405 processor. To
manage run-time operations in Linux, device drivers for hardware IP cores
have been customized to provide programming interfaces to application pro-
grams. There are respective drivers needed for the flash memory, the LUT
block in SRAM, PLB GPIO and MST HWICAP. With the drivers loaded, de-
vice nodes will show up in the “/dev” directory of the Linux file system, and
can be accessed by pre-defined file operations. The drivers are compiled into
modules. They will be inserted into the OS kernel when the corresponding
device hardware is configured, or removed when no longer needed.

68 Chapter 4. Case Study 1: A Peripheral Controller Adaptable System

The hardware process scheduler is implemented in a C program. It detects
the memory access requirements on flash or SRAM from either the system inte-
rior or external user commands, and meanwhile manages the work sequence of
both types of memories. Figure 4.3 shows a flow chart, in which the scheduler
alternately loads the flash and the SRAM controller with context awareness.
During the device module reconfiguration, the Linux OS as well as the re-
maining hardware system keeps running without breaks. In this figure, steps
labeled with “a - g” are used to dynamically configure the SRAM controller,
and the ones labeled with “A - G” are to load the flash controller. Events
marked by the symbol “¿” are detected by the scheduler to trigger hardware
context switching. Main switching steps before the device operations include:

1. To save the register context of the to-be-unloaded device in DDR vari-
ables if necessary.

2. To remove the driver module of the to-be-unloaded device from the OS.

3. To disconnect the PRR outputs for isolating its unsteady state during
active reconfiguration from the static design.

4. To dynamically load the partial bitstream of the expected controller by
initiating the MST HWICAP core.

5. To solely reset the newly loaded device controller, and recover its register
context if there exists.

6. To re-enable the PRR outputs, restoring the communication links from
the PRR to the static design.

7. To insert the corresponding device driver in the OS, for the processor
access with high-level application software.

After these steps, the recently equipped controller module becomes ready for
memory accesses on the NOR flash or the SRAM.

In this design, IPC operations can be realized through the third-party
shared memory such as DDR. For example when the system is just powered
on, the SRAM LUT initialization data are retrieved from the non-volatile flash
and buffered in the system DDR memory. After the flash controller is unloaded
and the SRAM controller is activated in the PRR by dynamic reconfiguration,
the LUT data are then migrated into the SRAM chip for application-specific
computation. The IPC data flow is illustrated in Figure 4.4.

4.2. System Implementation 69

F
ig

u
r
e

4
.3

.
F
lo

w
ch

a
rt

o
f
m

u
lt

ip
le

x
in

g
fl
a
sh

/
S
R

A
M

in
L
in

u
x

70 Chapter 4. Case Study 1: A Peripheral Controller Adaptable System

Figure 4.4. Migrating LUT initialization data from the flash memory to the
SRAM

4.3 Results

Through enabling either the flash controller or the SRAM controller with
system self-awareness, multitasking has been accomplished within a single re-
configurable slot on the FPGA. Figure 4.5 demonstrates the rectangular shape
of the reserved PR region on a Virtex-4 FX20 FPGA layout, as well as two
controller implementations after place-and-route. The reconfigurable design
results in a more efficient utilization of hardware resources, as listed in Ta-
ble 4.1. We understand that both the flash memory controller and the SRAM
controller must be concurrently placed in the static system design, implying
a total resource consumption equivalent to the sum of both device modules.
A PR region is reserved in the reconfigurable design, sufficiently large to ac-
commodate all kinds of needed resources of both device modules. Moreover, a
little more resource margin is added for the place-and-route convenience of the
software tool. In contrast to the conventional static approach, we observe that
the reconfigurable system saves 43.7% LUTs, 33.8% slice registers and 47.9%
I/O pads, with both flash and SRAM services realized. The reduced resource

4.3. Results 71

Resources Static flash
controller

Static SRAM
controller

Total PRR Resource
saving

4-input
LUTs

923 954 1877 1056 43.7%

Slice Flip-
Flops

867 728 1595 1056 33.8%

I/O pads 56 61 117 61 47.9%

Table 4.1. Resource utilization of the static/reconfigurable flash/SRAM de-
signs

requirement not only enables to fit a large system design on small FPGA chips
for lower hardware cost, but also makes the I/O pads shared and simplifys the
PCB routing.

(a) The flash implementation
in PRR

(b) The SRAM implementa-
tion in PRR

Figure 4.5. Implementation of the flash and the SRAM controller within the
PRR on a Virtex-4 FX20 FPGA

72

“It would be possible to describe everything
scientifically, but it would make no sense; it

would be without meaning, as if you
described a Beethoven symphony as a

variation of wave pressure.”

Albert Einstein
(German born American physicist, Nobel Prize winner for Physics in 1921,

1879 - 1955 A.D.)

73

74

Chapter 5

Adaptive Computing in
Correlated Multi-stream
Processing

This chapter focuses on the performance analysis of adaptive
multi-stream processing. Correlated multi-stream processing acts
as the fundamental model of our target application of data acqui-
sition and triggering in nuclear and particle physics experiments.
We set up both static and adaptive correlated multi-stream models
and compare their theoretical performance by formula derivation.
Experimental results demonstrate also the benefits of high perfor-
mance/cost ratio as well as low resource requirements resulted from
the adaptive system. The theme of this chapter relates to paper [29]
listed in Section 1.4.

Stream processing is a computation paradigm in which data streams are
continuously generated and flow through processing steps until final results
come out. Compared to random data access architectures such as databases,
stream processing results in much faster real-time response and less storage
requirements for data archiving, but raises more challenges with regard to in-
termediate data buffering and computing capabilities to the system design [83].
For single-streaming applications, parallel computation architectures may be
easily organized to meet high performance requirements. However with re-

75

76 Chapter 5. Adaptive Computing in Correlated Multi-stream Processing

spect to multi-stream processing with data correlation needs, complex issues
on data dependency, synchronization and communication among processing
units must be taken into account. Our target application of data acquisition
and triggering in nuclear and particle physics experiments falls into this pro-
cessing category, and hence we model the system and analyze its characteristics
in this chapter.

5.1 Related Work

Computation features of stream processing have been discussed in [84],
[85] and [86]. The authors analyze the microarchitecture of processors and
raise their IMAGINE stream processor as an optimized solution for streaming
applications, such as computer graphics or media processing. In [87], the au-
thors propose a design optimization framework for adaptive realtime streaming
applications based on reconfigurable devices. They further investigate buffer
minimization and task scheduling issues for streaming applications in [88] and
[89]. However their investigations are restricted to single-streams and not
proper to model our specific applications. In [59], a resource allocation model
is presented for load-balancing processing of multi-tasks. But the complicated
hierarchical architecture makes it difficult and impractical for hardware im-
plementation, especially with expensive FPGA resources. In this chapter, we
will apply our proposed computation adaptation concept to multi-streaming
applications, with on-FPGA measurement results showing the performance
improvement and the ease of implementation.

5.2 Correlated Multi-streaming Models

5.2.1 Static Model

Synchronous Data Flow (SDF) [90][91] has been widely used to model and
analyze streaming applications. We establish the multi-streaming model with
static stream processors to appropriately describe multi-tasking applications.
As shown in Figure 5.1, multiple correlated producers (Pi, i∈[1, n]) continu-
ously generate data streams, and respective algorithm processors (consumer
Ci, i∈[1, n]) digest their relevant data to obtain sub-results. Afterwards all
sub-results are synchronized, correlated or assembled by the barrier synchro-
nizer (Sync) for final results. This model is able to properly describe the
DAQ and trigger system in nuclear and particle physics experiments: All data

5.2. Correlated Multi-streaming Models 77

streams originate from the nuclear or ion reactions by energetic particle col-
lisions (corresponding to the “events” at a reaction rate of ρ in Figure 5.1).
Various particle detectors (modeled as producers) generate raw data streams in
response to certain interesting physics reactions. Trigger algorithms (modeled
as consumers) are employed to search for expected data patterns and discard
the noise on the fly to reduce the data rate. The retained interesting sub-
events from all detector categories must be successfully correlated and then
assembled into the pre-defined event structure for final mass storage and offline
analysis (modeled as the synchronizer). In Chapter 2 we have introduced the
application background in physics experiments. Figure 2.4 may be referred to
for the application data flow, and it can be abstracted into the model shown
in Figure 5.1.

Figure 5.1. Static SDF model for multi-streaming applications

We quantify the peak data producing or consuming capabilities of different
nodes by Greek letters with Latin letters as coefficients. Specifically Pi gen-
erates data at a maximum rate of kiρ. It is proportional to an overall event
rate of ρ, since all producers react on the same events and strictly or statisti-
cally generate data at an approximately fixed ratio. For instance multimedia
processing features statistically proportional Audio/Video data streams in the
long run. Each consumer Ci consumes its respective data stream at a maxi-
mum rate of θi and produces sub-results at jiθi. Then the synchronizer collects
all sub-results belonging to the same event at jikiρ and recovers events which
occur at the rate ρ. We may assume a higher processing capability of the syn-
chronizer than algorithm processors. This is either true in many applications
containing very complex algorithms, or can be realized by a hierarchical archi-
tecture in which the overall synchronization work is partitioned into multiple
sub-synchronizers for parallel processing. This assumption aims to exclude the

78 Chapter 5. Adaptive Computing in Correlated Multi-stream Processing

synchronizer from the system bottleneck, focusing on the algorithm designs.
To indicate the assumption, we scale a coefficient h (h → ∞) on both input
and output parameters of the synchronizer.

Along the flow paths, intermediate data are buffered in finite-depth FIFOs.
When any consumer is not able to cope with the high-speed data generation,
data will be backlogged in the FIFO and then either pause the producer from
injecting, or be overflowed. In hardware implementations, the processing capa-
bilities on correlated data streams are hardly guaranteed to be equivalent and
synchronized, due to practical factors such as the algorithm complexity and
implementation differences, system integration constraints, etc. Therefore, if
excluding the synchronizer, the final result throughput is restricted by the
comparatively weakest consumer which generates the performance bottleneck
and leads to unbalanced processing. The system performance can be derived
from the following mathematical operations: We describe the performance pa-
rameters in a matrix format with rows for streams and columns for parameters
of different components as listed in Figure 5.1:

A =




k1ρ θ1 j1θ1 j1k1hρ
k2ρ θ2 j2θ2 j2k2hρ
...

knρ θn jnθn jnknhρ


 (5.1)

All data streams are normalized by being divided by the coefficient ki respec-
tively:




1
k1

0 ... 0
0 1

k2
... 0

...
0 0 ... 1

kn


 ∗A =




ρ θ1
k1

j1θ1
k1

j1hρ

ρ θ2
k2

j2θ2
k2

j2hρ

...

ρ θn

kn

jnθn

kn
jnhρ


 (5.2)

In the ideal situation when all consumers are capable of digesting their respec-
tive data streams instantly ({ θ1

k1
, θ2

k2
, ..., θn

kn
} ≥ ρ), the final result throughput

for the static design (Pstat) is equal to the event rate ρ and it presents a
balanced and realtime processing capability. Elsewise (θi

ki
< ρ), Pstat is pro-

portionally restricted by the weakest processor on path i whose normalized
data consumption rate is θi

ki
= Min(θ1

k1
, θ2

k2
, ..., θn

kn
), as formulated in Equa-

tion 5.3. In unbalanced processing of correlated multi-streams, all faster cores
have to wait for the slowest stream sub-results to reach the barrier, and hence
computing resources are wasted. We define the key parameter Degree of Un-
balance (DU) as the relative stream consuming capability difference between
the fastest consumer and the slowest one, as formulated in Equation 5.4.

5.2. Correlated Multi-streaming Models 79

Pstat = θi

ki
= Min(θ1

k1
, θ2

k2
, ..., θn

kn
) (5.3)

DU =
Max(

θ1
k1

,
θ2
k2

,..., θn
kn

)−Min(
θ1
k1

,
θ2
k2

,..., θn
kn

)

Min(
θ1
k1

,
θ2
k2

,..., θn
kn

)
(5.4)

5.2.2 Adaptive Model

The adaptive architecture for multi-streaming is modeled as shown in Fig-
ure 5.2. Reconfigurable slots of computing resources are reserved and they
can be sequentially loaded with different algorithm processors. Flexible cri-
teria may be adopted to select algorithms. To achieve balanced processing,
algorithms can be loaded for different time spans on each slot C. The con-
text switching overhead (mainly the reconfiguration overhead) is assumed ad-
equately small to be neglected for analysis simplicity. We equalize the nor-
malized data consuming capabilities of all algorithms on each slot as shown in
Equation 5.5, where ti (i∈[1, n]) stands for the effective work time of algorithm
processor i within a single time unit (i.e. the time proportion of processor i
occupying the slot C).

Figure 5.2. Adaptive SDF model for multi-streaming applications

{
θ1
k1
· t1 = θ2

k2
· t2 = ... = θn

kn
· tn = ψ

t1 + t2 + ... + tn = 1
(5.5)

Since the processing capabilities of all algorithms are well balanced as ψ, we
may derive its value as:

80 Chapter 5. Adaptive Computing in Correlated Multi-stream Processing

ψ = { θi

ki
· ti | i ∈ [1, n]} = 1

(
k1
θ1

+
k2
θ2

+...+ kn
θn

) (5.6)

With the same number of n parallel consumer modules (same resource uti-
lization) as in the static model, the normalized data consuming throughput
for each algorithm is n

(
k1
θ1

+
k2
θ2

+...+ kn
θn

)
, also equal to the final result throughput

Padpt. Because we know that the arithmetic mean of a set of numbers is no
greater than their maximum, as shown in Equation 5.7,

(
k1
θ1

+
k2
θ2

+...+ kn
θn

)

n ≤ Max(k1
θ1

, k2
θ2

, ..., kn

θn
) (5.7)

we conclude that the overall performance of balanced adaptive computing is
no less than static computing (Equation 5.8). The improvement level depends
on the parameter DU:

(Padpt = n

(
k1
θ1

+
k2
θ2

+...+ kn
θn

)
) ≥ (Pstat = Min(θ1

k1
, θ2

k2
, ..., θn

kn
)) (5.8)

5.3 Experiments

5.3.1 Experimental Setup

The multi-streaming models are implemented on a Xilinx Virtex-4 FX60
FPGA. Shown in Figure 5.3(a) for static and Figure 5.3(b) for adaptive com-
puting, producers generate data streams and buffer them in dedicated DDR
memory blocks (512 MB each). Algorithm consumers are statically or adap-
tively mapped on FPGA resources. The synchronizer has moderate buffering
capability and correlates sub-results into final results. For analysis simplicity,
we assume the following experimental setup:

1. There are two data streams with the correlation requirement.

2. Each consumer design features one unit resource utilization or on-chip
area occupation.

3. The synchronizer does only simple correlation work and is excluded from
the performance analysis.

4. In the adaptive design, one reconfigurable slot is reserved for implemen-
tation simplicity. Accordingly we measure and study the performance
per unit area.

5.3. Experiments 81

(a) Static computing

(b) Adaptive computing

Figure 5.3. Implementation of multi-streaming models on the FPGA

82 Chapter 5. Adaptive Computing in Correlated Multi-stream Processing

Producers and consumers are modeled with counters and they periodically
produce or consume fixed-size data packets. The consumer design consists of
the consumer core and a system interface, via which buffered data are fetched
from DDR by an integrated bus master and the CPU releases commands to
change parameters. To minimize the reconfigurable area, only the consumer
core is reserved as the PR region. The interface part is incorporated in the
static design.

The scheduler program for hardware management is implemented in C as
a standalone application on the PowerPC processor. It keeps track of the pro-
cessed data amount of each stream. Hardware processes are switched when
their processed data amount difference exceeds an adjustable threshold (e.g. 8
MB in the experiments). Thus this scheduling mechanism guarantees alternate
processing on multi-streams, and features an intrinsic capability to automati-
cally balance it. The simplified scheduler is demonstrated in Algorithm 3.

Algorithm 3 Simplified scheduler routine for balanced processing
{A simplified scheduler which automatically balances the processing on two
data streams.}

char schedule(void){
static char turn to which bit = 1; {By default bitstream 1 is active to process
stream 1.}
if (consumed data1 - consumed data2) >= THRESHOLD then

turn to which bit = 2; {Context switching to hw process 2 to consume
stream 2.}

else if (consumed data2 - consumed data1) >= THRESHOLD then
turn to which bit = 1; {Context switching to hw process 1 to consume
stream 1.}

else
turn to which bit = turn to which bit; {Elsewise the current hw process
keeps working.}

end if
return turn to which bit; {Return the decision to the main function.}
}

The consumer context includes buffered raw data in device FIFOs and
address information of the DDR buffers in registers. Context switching will
be postponed until all buffered raw data have been digested. In this way,
computing resources are kept busy and there is no need to save the FIFO
context. The register context can be read out via PLB and saved in DDR

5.3. Experiments 83

variables. It will be restored when the corresponding consumer resumes to
work.

5.3.2 Results

Referring to the normalized parameter matrix in Equation 5.2, we did
normalized-setup experiments at various degrees of unbalance, as shown in
Table 5.1. We choose ρ equal to 100 MB/s, which is a reasonable input data
throughput for a high-speed serial communication channel such as the optical
link in our practical applications. The coefficient ji of 10−3 implies a data
selection rate of 1/1000. Therefore the final result throughput is equal to 100
KB/s in ideal static processing when both data streams can be instantly and
evenly digested by algorithm processors. In the PR design, partial bitstreams
are 96 KB for both consumers. Based on Equation 5.3 and 5.8, theoretical
result throughput is separately listed in the table for static and adaptive com-
puting. Measurement results on experimental circuits involve bus conflicts
and dynamic reconfiguration overhead1, and are accordingly listed in the last
table column. Considering the double-unit area utilization in the static model,
both theoretical and measured result throughput per unit area are illustrated
in Figure 5.4 to compare the static and the adaptive multi-streaming models.
We observe that the self-schedulable adaptive computing intrinsically features
the capability to balance the processing on correlated streams. It can more effi-
ciently utilize the computing resources by keeping them less idle, and achieve a
much higher performance/cost ratio (throughput-per-unit-area increased from
11.9/2 to 10.6/1 by 78.2% in Test 3) in unbalanced processing scenarios. Prac-
tical measurement results are only slightly lower than the theoretical values.

To further investigate the context switching overhead in adaptive comput-
ing, we changed the bitstream sizes and measure on the sample setup of Test
2 (DU = 3). Experimental results are shown in Table 5.2. We record the
data processing time for 300 times reconfiguration. The total reconfiguration
time and the software overhead (including the context saving and restoring
time) are profiled and respectively listed. From the calculated percentages in
the sixth column, we observe that the overall PR and software overhead takes
only a tiny proportion of the overall measurement time (worst-case 0.30%).
The result throughput is not exacerbated much by context switching, due to
the dominant time proportion taken by the consumers to effectively process
the data.

1Even though we have neglected the context switching overhead in the model analysis in
Section 5.2.2, we do take it into account in practical experiments.

84 Chapter 5. Adaptive Computing in Correlated Multi-stream Processing

E
x
p
.

se
tu

p
P
e
a
k

d
a
ta

p
ro

d
u
c
in

g
ra

te
o
f

P
1

(ρ
)

P
e
a
k

d
a
ta

p
ro

d
u
c
in

g
ra

te
o
f

P
2

(ρ
)

P
ro

c
e
ssin

g
c
a
p
a
b
ility

o
f

C
1

(
θ
1

k
1
)

P
ro

c
e
ssin

g
c
a
p
a
b
ility

o
f

C
2

(
θ
2

k
2
)

D
e
g
re

e
o
f

u
n
-

b
a
la

n
c
e

(D
U

)

D
a
ta

se
le

c
tio

n
ra

te
(j

1
,
j
2
)

R
e
su

lts
T

h
e
o
re

tic
a
l

re
su

lt
th

ro
u
g
h
-

p
u
t

M
e
a
su

re
d

re
su

lt
th

ro
u
g
h
-

p
u
t

T
e
st

0
1
0
0

M
B

/
s

1
0
0

M
B

/
s

1
0
0

M
B

/
s

1
0
0

M
B

/
s

0
1
/
1
0
0
0

sta
tic

(a
re

a
=

2
)

1
0
0

K
B

/
s

9
5
.2

K
B

/
s

(id
e
a
l)

a
d
a
p
tiv

e
(a

re
a
=

1
)

5
0

K
B

/
s

4
7
.4

K
B

/
s

T
e
st

1
1
0
0

M
B

/
s

1
0
0

M
B

/
s

1
0
0

M
B

/
s

5
0

M
B

/
s

1
1
/
1
0
0
0

sta
tic

(a
re

a
=

2
)

5
0

K
B

/
s

4
7
.6

K
B

/
s

a
d
a
p
tiv

e
(a

re
a
=

1
)

3
3
.3

K
B

/
s

3
1
.6

K
B

/
s

T
e
st

2
1
0
0

M
B

/
s

1
0
0

M
B

/
s

1
0
0

M
B

/
s

2
5

M
B

/
s

3
1
/
1
0
0
0

sta
tic

(a
re

a
=

2
)

2
5

K
B

/
s

2
3
.8

K
B

/
s

a
d
a
p
tiv

e
(a

re
a
=

1
)

2
0

K
B

/
s

1
9
.0

K
B

/
s

T
e
st

3
1
0
0

M
B

/
s

1
0
0

M
B

/
s

1
0
0

M
B

/
s

1
2
.5

M
B

/
s

7
1
/
1
0
0
0

sta
tic

(a
re

a
=

2
)

1
2
.5

K
B

/
s

1
1
.9

K
B

/
s

a
d
a
p
tiv

e
(a

re
a
=

1
)

1
1
.1

K
B

/
s

1
0
.6

K
B

/
s

T
a
b
le

5
.1

.
E

x
p
erim

en
ta

l
resu

lts
o
f
th

e
sta

tic/
a
d
a
p
tiv

e
co

m
p
u
tin

g
p
erfo

rm
a
n
ce

5.3. Experiments 85

Degree of Unbalance
0 1 2 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
/ A

re
a

(K
B

/s
/u

n
it

_a
re

a)

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7
5

10

15

20

25

30

35

40

45

50 Static computing, theoretical performance

Static computing, measured performance

Adaptive computing, theoretical performance

Adaptive computing, measured performance

Figure 5.4. Result throughput-per-unit-area of static/adaptive computing

Partial bit-
stream size
(KB)

PR
counts

Measured
processing
time (s)

PR
time
(ms)

SW over-
head
(ms)

PR+SW
overhead
(%)

Measured
throughput
(KB/s)

9.6 300 125.83 12.77 187.2 0.16% 19.01
21.3 300 125.85 28.30 191.7 0.18% 19.01
61.2 300 125.90 81.24 188.8 0.21% 19.00
96.0 300 125.95 127.40 192.6 0.25% 19.00
145.3 300 126.01 192.87 187.1 0.30% 18.98

Table 5.2. Measurement results of the context switching overhead.

Although the above discussed experiments are based on two data streams,
the adaptive architecture will achieve the same performance improvement ef-
fect in more complex systems with more streams. The benefits originate from
the mechanism with which computing resources are efficiently kept busy on
data processing instead of being idle. Performance comparison with static
implementations can be estimated in practical applications with Equation 5.8
listed in Section 5.2.2.

86

“Religions die when they are proved to be
true. Science is the record of dead religions.”

Oscar Wilde
(Irish Poet, Novelist, Dramatist and Critic, 1854 - 1900 A.D.)

87

88

Chapter 6

Case Study 2: Adaptive
Particle Recognition
Computation

Based on the model analysis of multi-stream processing in the
previous chapter, we apply the proposed adaptive design framework
to our real application in nuclear and particle physics experiments.
This application features two particle pattern recognition algorithms
as well as their correlation requirement, fitting in the discussed multi-
streaming model very well. Through adapting two algorithm en-
gines within one reconfigurable slot on the FPGA, reduced on-chip
resource requirements are observed and most processing capability of
the peer static design can be retained. The content of this chapter
concerns paper [24], [38], [39], and [41] listed in Section 1.4.

6.1 Application Introduction

Our target application is the pattern recognition computation for iden-
tifying particles in nuclear and particle physics experiments [49] [51]. The
algorithms are implemented as hardware processing engines and integrated in
the system design on FPGAs. They search for the expected patterns appear-
ing on various particle detectors, retain only the interesting physics events
generated by certain types of particles and discard the noise data on the fly.

89

90 Chapter 6. Case Study 2: Adaptive Particle Recognition Computation

For instance in the HADES [44] experiment, the MDC track reconstruction
algorithm identifies particle flying tracks in the MDC detectors, in order to
study the momenta of charged particles through their deflection in the mag-
netic field [41]. The Cherenkov ring recognition algorithm recognizes dilepton
pairs based on the Nobel Prize winning discovery of the Cherenkov effect [92].
Detailed explanation on the physics principle as well as the hardware imple-
mentation of the MDC and RICH algorithms can be found in Appendix B. For
simple clarification, we use the following Petri Net model shown in Figure 6.1
to illustrate the computation requirement.

Figure 6.1. Petri Net model of the application computation

In Figure 6.1, transition T1 represents particle reactions which generate
event raw data. As shown in the first step (the top-left sub-figure), MDC and
RICH sub-events (position P1 and P2) are accordingly generated by MDC and
RICH detectors located in the experimental facility. MDC sub-events are to

6.2. System Implementation 91

be processed by the track reconstruction algorithm (T2), searching for particle
tracks penetrating the MDC detectors (step 2, the top-right sub-figure). The
result of each MDC sub-event (P3 and P4) may contain identified particle
flying tracks. These tracks also point to the RICH detector (P4) and specify
potential ring centers around which Cherenkov rings might be recognized. In
the third step (the bottom-left sub-figure), the ring recognition algorithm (T3)
digests RICH sub-events and identifies ring patterns (P5), with the help from
the particle tracks which imply potential ring centers. Finally (the bottom-
right sub-figure) recognized particle tracks and ring patters, which belong to
the same reaction event, are exported for event building and further mass
storage (T4). Till now, the complete processing of a single reaction event is
accomplished. In practice, incoming data are continuous and all the computing
stages (transitions in the Petri Net model) work in parallel and pipeline to
process the data streams.

6.2 System Implementation

Figure 6.2 demonstrates the design structure of the particle recognition
system using the conventional static design approach. The track reconstruction
algorithm and the Cherenkov ring recognition are respectively implemented
into hardware processing engines named Tracking Processing Unit (TPU) and
Ring Recognition Unit (RRU). Both cores are integrated in the system design
as discussed in Figure 3.4. Incoming raw sub-events are buffered in the DDR2
memory via external optical links. They are supplied by DMA transfers into
the algorithm cores via input FIFOs. With respect to the TPU module, it
features a master interface via which a projection LUT is fetched from DDR2
for the computation purpose. Identified particle tracks which are used to point
out potential ring centers are introduced to RRU through a buffer. After
processing, results of both algorithms are collected back into DDR2.

In the adaptive design framework, TPU and RRU time-share the same PR
region as shown in Figure 6.3. Both cores conform to the interface standard
(slave and master), and therefore little modification effort is needed to port
the static design into a reconfigurable one. TPU and RRU are individually
synthesized and implemented using the Xilinx PR design flow. Their partial
bitstreams are to be initialized in the DDR2 memory during the system run-
time. We still adopt MST HWICAP to dynamically load modules into the
PR region. A hardware pipe is looped to the PR region for delivering the
IPC information from TPU to RRU (i.e. identified particle tracks to point out
potential ring centers). TPU uses only the uplink to write, and the downlink

92 Chapter 6. Case Study 2: Adaptive Particle Recognition Computation

Figure 6.2. Static implementation of algorithm engines for particle recogni-
tion computation

Figure 6.3. Reconfigurable implementation of algorithm engines for particle
recognition computation

6.2. System Implementation 93

is only valid for RRU to read. In addition, RRU does not use the master
interface.

In Chapter 5, we have analyzed the scheduling effect on the overall per-
formance of correlated multi-stream processing with abstract models. In this
practical application, we adopt the following policy to schedule TPU and RRU,
in order to achieve balanced processing on particle reaction events: TPU keeps
working until the ring center pipe is almost full. The almost full signal informs
the software scheduler running on the PowerPC processor with interrupts. The
reason why we use almost full rather than full is due to the context switching
requirement, and will be explained in the coming paragraph. As the pipe is
filled up, meaning that the MDC portion of certain amount of events has been
processed, the scheduler will stop TPU and switch to RRU to finish RICH
sub-event processing. Along with RRU’s processing on RICH sub-events and
consumption of the IPC data in the pipe, the almost empty signal informs the
scheduler with interrupts to remove RRU and bring back TPU. This schedul-
ing policy is able to intrinsically balance the processing on TPU and RRU
data streams. It keeps the resources in the PR region busy and makes their
utilization efficient.

Taking into account the computation complexity and large quantities of
intermediate values during data processing, TPU and RRU are believed too
complicated and inefficient to save and restore their context in case of mod-
ule swapping. Therefore we intentionally generate and mark some contextless
states, in which PR modules can be directly swapped: Incoming raw data and
processing results are respectively buffered in the input or output FIFO. In
order to avoid saving/restoring this context or mixing the raw data for TPU
and RRU in a same buffer, two sets of dedicated FIFOs are arranged in the
common slave interface. They are statically placed and selected by the module
ID currently at work. Hence the raw data and the results do not have to be
swapped out in case of module switching. With respect to the computation
intermediate values in the PR region, they become contextless when the cur-
rent sub-event processing is completed and the next sub-event is not started
yet. Context switching is thus delayed even though the scheduler has received
the almost full or almost empty interrupt, until the current sub-event under
processing is totally completed. The almost full or almost empty signal will
also prohibit the algorithm core from further importing raw sub-events for
continuous processing. For this reason, the pipe should be ready for accept-
ing the processing results of one more sub-event after its almost full signal
is raised. The almost full or almost empty signal must inform the algorithm
cores in advance, to stop their continuous sub-event processing and generate
a “pause state” for contextless module switching.

94 Chapter 6. Case Study 2: Adaptive Particle Recognition Computation

Static design PR design PR/static
Resources TPU

IF.
RRU
IF.

TPU RRU Total Common
IF.

PRR Total Resource
saving

4-input
LUTs

992 720 5080 4008 10800 1060 5504 6564 39.2%

Slice Flip-
Flops

970 730 2845 2940 7485 1093 5504 6597 11.8%

Block
RAMs

2 2 46 29 79 4 46 50 36.7%

Table 6.1. Resource utilization

The scheduler software is implemented in a C program running on the
host PowerPC processor. For design simplicity, we did the test in a processor
standalone mode without OS support. With the device drivers of hardware
modules, the scheduler program can be easily ported into an OS.

6.3 Experimental Results

Table 6.1 lists the implementation results of the static and the reconfig-
urable design. In the reconfigurable design, both TPU and RRU are accom-
modated in a PR region which is large enough to hold either module. From the
last column in the table, we observe that the reconfigurable design saves 39.2%
LUT, 11.8% register and 36.7% BRAM resources compared to the conventional
static approach. Furthermore, the resource requirement will not increase if ad-
ditional algorithm engines are to be incorporated in the system design. The
scheduler can be extended to manage more algorithm modules in the same PR
region. The reconfigurable design not only enables the possibility to fit the
system design in a smaller FPGA chip for lower cost, but also provides the
flexibility to further upgrade the system.

In terms of the performance, we initialized some event data for test in the
DDR2 memory, consisting of MDC and RICH sub-events. In the static de-
sign, the TPU and the RRU module are simultaneously placed and working
in a parallel fashion, as shown in Figure 6.4(a). Because of the help from
TPU specifying potential ring regions on the RICH plane, the ring recognition
computation load is largely reduced and RRU features a high performance.
Due to the processing speed difference between TPU and RRU as well as the
synchronization requirement, RRU has often to wait until it receives the IPC
information from TPU. By contrast in the adaptive system, TPU and RRU
are scheduled to alternately monopolize the PR region (see Figure 6.4(b)).
The sequential execution mode removes the wait period and results in an effi-
cient resource utilization. Figure 6.5 demonstrates the normalized performance

6.3. Experimental Results 95

(a) Event processing in the static design

(b) Event processing in the reconfigurable design

Figure 6.4. Event processing time diagram of TPU and RRU

comparison with respect to the processing speed in the unit of Events/s. Mea-
surements have been conducted at various pipe sizes, which directly determine
the run-time reconfiguration overhead. The impact of the pipe size on recon-
figurable system performance has been discussed and quantified in Chapter 3.
In this case study, we observe that one time-shared reconfigurable slot in the
adaptive system achieves most of the processing capability of two statically
placed TPU and RRU modules, from 59.3% up to 72.8% when the pipe size
ranges from 512 Bytes to 32 KB.

Pipe
size

PR
counts

PR
time

SW ctrl.
time

Overall
exp. time

Context switch-
ing overhead
(PR + SW)

512 B 2399 3.59 s 89.97 ms 18.2 s 20.22%

2 KB 599 898.5 ms 22.46 ms 16.65 s 5.53%

8 KB 119 179.3 ms 4.52 ms 12.98 s 1.42%

32 KB 23 34.5 ms 0.86 ms 10.32 s 0.34%

Table 6.2. Context switching overhead at various pipe sizes

As the increment of the pipe size, the run-time reconfiguration overhead
is able to be alleviated and does not dominate in the overall processing time.
Table 6.2 lists the time profiling results to demonstrate the context switching
overhead: Along with the increment of the pipe size, the run-time partial re-
configuration counts happen less frequently, resulting in less reconfiguration

96 Chapter 6. Case Study 2: Adaptive Particle Recognition Computation

Figure 6.5. Normalized performance of the reconfigurable TPU/RRU design

time overhead out of the overall measurement time in the test. In compari-
son with the reconfiguration overhead, the software control overhead (e.g. to
disconnect or recover the PRR outputs, to reset the newly loaded PRM, etc.)
is very small. The total context switching overhead consisting of both the
PR and the SW overhead takes only a negligible proportion (0.34%) of the
overall experiment time at a pipe size of 32 KB. In this case, efficient event
data processing dominates the system operation time, and the programmable
resources in the PRR are optimally kept busy.

“Science is what you know, philosophy is
what you don’t know.”

Bertrand Russell
(English Logician and Philosopher, 1872 - 1970 A.D.)

97

98

Chapter 7

Case Study 3: A Light-weight
Routerless NoC Infrastructure

Based on the FPGA dynamic reconfigurability as well as our
proposed design framework, we present a novel on-FPGA intercon-
nection architecture in this chapter. It is regarded as an alterna-
tive interconnection method of canonical Network-on-Chips (NoC)
in some scenarios especially in light-weight applications. This in-
terconnection technology is superior to canonical wormhole NoCs in
many aspects including design complexity, resource utilization, work
frequency, power dissipation, etc. It is also observed to outperform
wormhole NoCs in terms of packet delivery throughput in some test
cases. This chapter relates to paper [25] listed in Section 1.4.

7.1 Introduction

Modern embedded applications such as mobile devices, handheld sets or
multimedia terminals raise increasing challenges on computation and commu-
nication capabilities as well as power efficiency. As the great development
of semiconductor technologies, immense number of transistors may be fab-
ricated on the chip, providing the possibility to integrate very complicated
systems designs. Nowadays computer systems designs have stepped into the
multi-core and many-core era, integrating and interconnecting heterogeneous
resources such as processors, DSPs, algorithm accelerators, memories, etc.

99

100 Chapter 7. Case Study 3: A Light-weight Routerless NoC Infrastructure

Both chip-level and system-level designs may enhance the computation ca-
pability by incorporating multiple processing cores, but become increasingly
communication-bound. To meet on-chip communication requirements, the
systems architecture has been driven to evolve from conventional bus-based
towards network-based ones. Network-on-Chip (NoC) is widely considered
superior to buses, in terms of performance, scalability and power consump-
tion [93] [94] [95].

Exploiting the programmability for design convenience, NoC implementa-
tions have been extended from ASICs on modern FPGAs [96] [97] [98] [99].
The router design is usually conducted in Hardware Description Language
(HDL) such as VHDL or Verilog. Hence it is straightforward to implement the
NoC backbone on FPGAs with interconnected routers. IP nodes attached on
routers may be either standardly obtained from commercial providers or cus-
tomized according to applications. However compared to the gate-based logic
implementation on ASICs, the chip area utilization efficiency and the system
clock speed are very low for FPGAs, on which Look-Up Tables (LUT) are em-
ployed instead to construct combinational logics (see our early discussion on
this issue in Section 1.3). Hence it is very inefficient to map NoCs on FPGAs:
They have to severely underperform if such high-performance interconnection
architectures are expected in FPGA-based programmable platforms.

In addition, design complexity is another unavoidable concern on imple-
menting a complete network architecture, both on FPGAs and on ASICs [100].
The central part of the design in a network, which is the router design, covers
many services to be implemented including routing, switching, channel arbitra-
tion, or even advanced Quality-of-Services (QoS). Moreover, global challenges
such as inter-router synchronization, deskewed clock distribution, deadlock-
free mechanisms etc., have also to be carefully considered from the network
point of view. The system complexity increases the design difficulty and plays
a negative role in popularizing NoCs, especially for FPGA-based applications
in which most of the design is to be tailored and customized by programmers.

Based on FPGA dynamic reconfigurability, we propose a novel on-chip
communication infrastructure in this chapter, which may conditionally act
as an alternative of NoCs for on-FPGA systems. It features a very simple
structure and does not rely on routers to deliver packets to expected destina-
tions. Hence not only the design process is largely simplified, but also on-chip
resource utilization can be significantly reduced. The operation speed and
power dissipation are accordingly improved as well.

7.2. Related Work 101

7.2 Related Work

On-chip communication infrastructures have always been a research focus
and correspondingly resulted in numerous advances. In the commercial IC
market, conventional arbitration-based buses are standardized for certain mi-
croprocessor architectures, for example the IBM CoreConnect bus [101] for
PowerPC processors and the ARM AMBA bus [102] for ARM processors.
These two buses have also been respectively ported on Xilinx and Altera FP-
GAs as soft IP cores, providing a systematic interconnection standard to en-
hance the FPGA design productivity. In [103] [104] and [105], the authors
improve the bus performance by grouping the communications among bus
masters and slaves, and implementing with multiple bus segments. In [106],
the authors enhance the AMBA AHB with a dynamically reconfigurable topol-
ogy. Up to 31.5% performance gain can be observed from their experimental
results, with negligible hardware overhead. Despite these improved versions
listed above, buses are still deemed inferior to NoCs, in terms of performance,
power efficiency and scalability [94].

In previous contributions, dynamic reconfigurability has been considered
to be adopted in the context of NoCs: In [107], the authors employ FPGA
reconfigurability to adapt functional nodes (Processing Elements, PE) on the
fly. In [108] and [109], the authors dynamically reconfigure the network topolo-
gies, customizing inter-node links to realize optimal interconnections for ap-
plications with different logical topology requirements. In [110] and [111],
the design complexity on reconfigurable switching, routing, and data encod-
ing strategies in network and transport layers is compensated with improved
system performance and transmission reliability. In the router design in [112],
the authors set up VIP connections over one virtual channel and bypass the
entire router pipeline for some packet traffics with high bandwidth require-
ments. The VIP circuits can be either constructed based on the application
task graph at design time, or dynamically configured during system run-time
by monitoring the NoC traffic. The above listed contributions are all based
on interconnected routers to deliver packets hop by hop (partly with shortcut
links in [112]) and cannot avoid the design complexity.

Distinguished from the conventional data delivery models of buses, cross-
bars, and interconnection networks, etc., the authors of [113] propose a novel
concept called “Move Logic Not Data (MLND)”. In an MLND system, data do
not have to be delivered among various processing steps. Instead, data wait in
partitioned memory pools while various logic modules (algorithm processors)
are brought to the data to conduct transformation functions in turn. Typically
logic modules may share the on-chip area through reconfiguration. Based on

102 Chapter 7. Case Study 3: A Light-weight Routerless NoC Infrastructure

Figure 7.1. A typical 2D-mesh network architecture

the MLND concept, we thoroughly break away from the canonical router-based
architecture in NoCs and present a virtually point-to-point on-chip intercon-
nection infrastructure: Data movement is minimized in the system. Source
and destination nodes are respectively multiplexed to create/digest data using
FPGA dynamic reconfigurability. Various source-destination pairs time-share
a same physical channel for packet delivery. We will come to more details of
the architectural discussion and comparison in Section 7.4.

7.3 Canonical NoC Architecture

Networks are usually classified into two categories: circuit-switching and
packet-switching. Compared to the circuit-switching network in which ded-
icated links are set up and reserved for transactions, packet switching with
buffering capability can more efficiently utilize links and provide higher com-
munication throughput. On-chip networks target on high performance appli-
cations and are mostly inclined to adopt packet-switching. Figure 7.1 demon-
strates a widely adopted 2D-mesh topology in many packet-switching NoCs.
The network architecture is constructed by interconnected routers (or switches,
S). Different types of resources (R) interface to the network through Resource
Network Interfaces (RNI), and eject packets to or receive from other nodes via

7.4. Light-weight Routerless NoC 103

hops of routers. For example, when R0 intends to talk to R8, packets may go
along the path of R0→S0→S1→S2→S5→S8→R8.

Figure 7.2 illustrates a canonical input-queuing wormhole router architec-
ture [43] [114]. A similar model has been proposed in [115], and used for
analyzing the delay feature of routers in [116]. The Æthereal NoC [117] also
features a similar design structure in its Best-Effort (BE) architecture. The
router has p Physical Channels (PC) and v Virtual Channels (VC) per PC.
It conducts credit-based link-level flow control to coordinate packet delivery
between adjacent routers to avoid buffer overflow and flit loss.

Figure 7.2. A canonical wormhole router structure

7.4 Light-weight Routerless NoC

7.4.1 Fundamental Principle

We propose a time-multiplexingly point-to-point on-chip communication
infrastructure, taking advantage of the FPGA dynamic reconfigurability and
the MLND concept. We name it RouterLess NoC (RL-NoC) to distinguish

104 Chapter 7. Case Study 3: A Light-weight Routerless NoC Infrastructure

Figure 7.3. The light-weight routerless NoC

it from the canonical router-based NoC. It does not contain routers in the
network, but is able to realize all kinds of logical interconnections among mul-
tiple nodes provided by canonical NoCs. RL-NoC reserves a simplex Physical
Channel (PC) and dynamically bridges various source and destination nodes
in an alternate way. As shown in Figure 7.3, one Producer Region (PR) and
one Consumer Region (CR) are reserved as partially reconfigurable regions
on the FPGA. All the resource nodes can be functionally split into producer
and consumer (see Figure 7.1), which are to be respectively loaded in PR or
CR during the system run-time. The PC consists of n Virtual Channels (VC)
corresponding to n consumer nodes, being simply implemented with buffer de-
vices (FIFOs). Each VC is designated to one consumer node for collecting its
destined packets from all the producers. A producer scheduler and a consumer
scheduler monitor the system status and respectively manage the switching of
producer or consumer nodes. The consumer scheduler also accordingly selects
the VC to be read out, since each consumer node at work in CR possesses
its own dedicated lane for flit buffering. The Network Interface (NI) consists
of a packet depacker module in the producer end and a packet packer in the
consumer end. The packet depacker segments the queued injected packets
into flits, and selects the VC lane to be written into by parsing the destina-
tion address section (dest addr) in the packet header (refer to Figure 7.8 in
Section 7.6.1 for the packet structure used in the experiments). The packet
packer restores the packet format from flits for the consumers. In this RL-NoC
model, a back-pressure flow control employs the “full” signals from VC buffers
to prevent the producer from further injecting packets into a VC. Moreover,

7.4. Light-weight Routerless NoC 105

the “almost full” signal of the VC will invoke the loading of its corresponding
consumer to digest the packets in this buffer (see the coming scheduling policy
discussion for details). With respect to the routing scheme, it is simply real-
ized by sorting packets to designated lanes of various destinations. Deadlock
and livelock possibilities are completely excluded by the single-hop routing
scheme. The current RL-NoC model conducts best effort deliveries, and QoS
mechanisms can be further extended to provide differentiated or guaranteed
services.

The source and the destination nodes are decoupled by asynchronous flit
FIFOs in RL-NoC. They may have respective clock domains for FIFO write
and read. In addition, various reconfigurable modules which share the same
reconfigurable region (PR or CR) are also allowed to feature different clock
domains [73]. This globally asynchronous clocking scheme provides much sim-
plicity for clock distribution consideration in the design.

In order to investigate the basic characteristics of RL-NoC, we separate
the producer and the consumer for simplifying the model and excluding node
design details from the network analysis. In practice, for example in many
streaming applications, the consumer and the producer are often tightly cou-
pled in a unified node design: The node digests incoming data from its preced-
ing stage, and meanwhile generates results which are to be used by the next
stage task. In this case, the reconfiguration unit becomes the unified complete
node design (see Figure 7.4) which obtains both downlink and uplink from and
to the network. The unified node can be technically achieved by simultane-
ously loading the consumer-producer pair in CR and PR, with their internal
communications realized through the links crossing these two reconfigurable
regions [73]. Hence the node is able to read out its incoming data from one VC
of the network and return results back to another. In the rest of the chapter,
we adopt the simple but general producer-consumer model to focus our study
on the RL-NoC infrastructure.

7.4.2 Scheduling Policy

In the specific RL-NoC model, the PR and the CR obtain their respective
schedulers. In our experimental studies, all the producers are fairly scheduled
to inject packets for equivalent time slots, so as to generate a general stimulus
for the RL-NoC investigation. The scheduling policy of producers is to be
tailored in practical applications, according to the concrete traffic generation
pattern or data incoming pattern. Along with packets injected into the VCs,
a certain consumer node will be marked as “to-be-loaded” when its dedicated
VC buffer is almost full. The software scheduler of consumers will be then

106 Chapter 7. Case Study 3: A Light-weight Routerless NoC Infrastructure

Figure 7.4. Node design with coupled producer-consumer in RL-NoC

informed with the data availability in that VC by CPU interrupts. The to-be-
loaded consumer module waits until the currently working consumer finishes
reading out its buffered flits, and then is configured to function by loading the
partial bitstream. In case of multiple to-be-loaded consumers competing for
utilizing the hardware resources in the reconfigurable CR, they are designated
as the winner in a Round-Robin fashion. This consumer scheduling policy can
largely utilize the buffering capability of VCs and reduce the module switch-
ing overhead. Thus the packet delivery throughput is able to be maximized,
resulting in a system design proper for large-scale streaming processing in our
target applications. On the other hand, packet latency performance is dete-
riorated since large chunks of data have to wait in the VC buffers for being
read out in a burst mode. Experimental results using this throughput-aware
scheduling policy will be discussed in Section 7.6.1.

7.4.3 Comparison with Other Communication Architec-
tures

In the RL-NoC model, multiple producers and consumers time-share the
PC to inject or retrieve packets for data exchanging. All kinds of logical in-
terconnections can be realized by dynamically allocating the PC front-end to
producers and the back-end to consumers. Dedicated flit buffer lanes work
as mailboxes to guide packets to their expected destinations. The concept
of Time-Division Multiplexing (TDM) has been widly employed to act as

7.4. Light-weight Routerless NoC 107

the fundamental principle in various communication approaches, for instance
canonical buses [101] [102], crossbar switches [119] [120], and circuit-switching
networks [121] [122]. Although sharing the principle of time-multiplexing mul-
tiple nodes in using the communication channels, RL-NoC is believed to essen-
tially differ from the above mentioned architectures. Firstly, RL-NoC removes
the address bus, and avoids the lane allocation and arbitration overhead for
channel occupation in networks. Secondly, it does not require all the nodes
to be statically placed and interconnected, therefore leading to more efficient
resource utilization as well as power consumption on FPGAs. This feature
is especially gainful in the situations, in which some resource nodes operate
exclusively or only occasionally. In addition, flit FIFOs decouple data trans-
mitting and receiving, thus differing RL-NoC from bufferless communications
(buses, crossbars and circuit-switching networks) in which PCs are completely
reserved for a source-destination pair. As packet-switching does, the buffered
communication not only improves the channel utilization efficiency, but also
saves the link setup time which is respectively the arbitration time for buses
and crossbars or the path setup time for circuit-switching networks. Therefore
due to the existence of packets and flits in the data delivery process as well as
a similar principle of decoupling transmitting and receiving with buffers, it is
more meaningful to compare RL-NoC with packet-switching NoCs.

7.4.4 Performance Scaling

To meet the bandwidth requirement from different applications, one PC
may not be sufficient to provide the expected data delivery throughput due to
the time-multiplexing feature of multiple nodes. In this case, the infrastruc-
ture shown in Figure 7.3 can be simply duplicated to provide parallel channels
for increased bandwidth (shown in Figure 7.5). When duplicated PCs are
completely independent with each other, the overall bandwidth will be lin-
early increased along with the count of PCs. In fact, the performance can
be even more than linearly scaled by optimally grouping the communications
among the nodes. For example Figure 7.6(a) shows the logical topology of an
application example which is to be implemented in circuits. In the figure, Rs
represent resource nodes or tasks, and they are assumed to be dividable into
the producer and the consumer part. We use bold arrows to indicate high-
bandwidth communication requirements. When mapping the topology on a
homogeneous 3 × 2 2D-mesh NoC, one optimal solution is to place the heavy-
traffic node R5 and R6 in the middle, as shown in Figure 7.6(b). However
traffic congestion will still probably happen on the links close to R5 and R6,
unless they are intentionally enhanced with high bandwidth. By contrast in

108 Chapter 7. Case Study 3: A Light-weight Routerless NoC Infrastructure

a channel-doubled RL-NoC solution shown in Figure 7.6(c), intelligent com-
munication grouping may be conducted as the following: To guarantee the
bandwidth requirement for R5 and R6, they monopolize one PC and the rest
nodes with low bandwidth requirement share the other one. Corresponding
to the number of reconfigurable consumer nodes, only 2 or 4 VCs are re-
spectively needed to collect destined packets in either PC. In addition, only
the producer nodes which have communication relationship with the consumer
nodes are to be included in the producer design database of PR. Fewer produc-
ers/consumers using the monopolized PC reduce the dynamic reconfiguration
overhead needed to switch tasks, and result in an effective throughput scaling
more than linearly. Moreover the resource utilization with the grouping ap-
proach is less than linearly increased because of the reduced count of flit lanes
in each PC.

Figure 7.5. Duplicated PCs for increasing communication bandwidth

One extreme case of duplicating PCs is to equalize the number of PCs to the
one of producers or consumers. Therefore we may dedicate a complete PC to
each producer or consumer. To dedicate a PC to a producer (static producer in
that PC) will completely remove the producer reconfiguration overhead. This
dedication pattern is well suited to realize the “one-to-many” traffic, in which
each producer equally transmits packets to all the consumers; on the other
hand, the PC dedicated to each consumer (static consumer) will completely
remove the consumer reconfiguration overhead. The resource consumption of
VC buffers can be significantly reduced as well, because each PC contains only
one single VC for a single consumer. This architecture is ideal for implementing
“many-to-one”, in which all the producers send packets to a consumer. In the
extreme cases described above, more than linear bandwidth scaling can be

7.4. Light-weight Routerless NoC 109

(a) Logical topology of an applica-
tion example

(b) Mapping on a canonical 2D-
mesh NoC

(c) Grouping the communications in RL-NoC for more-than-linearly per-
formance scaling and less-than-linearly resource utilization increment

Figure 7.6. An application example of grouping communications in RL-NoC

clearly derived considering the completely removed reconfiguration overhead
as well as the scheduling need for the static producer or consumer.

For each single PC in RL-NoC, packets are delivered through flit FIFOs in
the same order as they are sent. However like many packet-switching networks,
in-order delivery to the consumer cannot be guaranteed by the network itself
in duplicated PCs [123]. Hence node designs should coordinate with the re-
configuration scheduler to reassemble out-of-order packets and synchronize the
multiple PCs in use. An example solution is demonstrated in Figure 7.7: Pack-
ets to be routed in sequence to Consumer Ci are distributed in two PCs, with
their delivery order messed up. Ci reads out its packets in one VC, and mean-

110 Chapter 7. Case Study 3: A Light-weight Routerless NoC Infrastructure

Figure 7.7. In-order packet delivery in duplicated PCs. In case of packet
flow fragmentation, the active consumer node stops reading the current VC
and raises an interrupt to the scheduler. It voluntarily gives up the utilization
of the consumer region and waits to retrieve in-order packets from other PCs.

7.5. Implementation Results 111

while spies the serial number of the next packet in this VC. In case of packet
flow fragmentation (discontinuous serial number), Ci stops reading and raises
a fragmentation interrupt (frag intr) to the consumer scheduler. It voluntarily
gives up the utilization of the consumer region to other consumers, and waits
to be loaded in other PCs for retrieving continuous packet flow. Therefore,
segmented packets in multiple PCs can be collected by the consumer in the
correct order.

7.5 Implementation Results

We compare the practical hardware implementation of the proposed RL-
NoC with a 2D-mesh WormHole-switching NoC (WH-NoC). Both designs are
coded in synthesizable VHDL, and share a data width of 32 bits for fair com-
parison. The wormhole router infrastructure (see Figure 7.2) is described in
detail in [43] and popularly used in many other NoC projects such as [124]
and [116]. We observe in [43] its maximum clock frequencies up to 396 MHz
for the controlpath and 198 MHz for the datapath when using UMC18 (180-
nm) technology. To investigate the implementation on FPGAs, the wormhole
router design is ported on a Xilinx Virtex-4 FX60 FPGA (-11 speed level).
The timing report after implementation reveals a fastest clock frequency pair
of 66/33 MHz for controlpath/datapath. On the same FPGA chip, RL-NoC
can be clocked up to 222 MHz (single clock domain), which is 6.7 times faster
than the wormhole router. The timing improvement is understandable: The re-
configurable RL-NoC has a much simpler structure than the wormhole router.

Table 7.1 lists the resource utilization of both designs. The first column
corresponds to a single wormhole router. To construct a 4 × 4 homogeneous
2D-mesh, 16 routers are needed (the second column). In the router design,
slice registers are utilized to implement flit buffers distributed in all input
and admission channels. The last column lists the RL-NoC design. We see
that a complete network architecture capable of realizing all kinds of logi-
cal interconnections of 16 nodes consumes only a small amount of LUTs and
slice registers, even smaller than a single wormhole router. Intrinsic mecha-
nism differences lead to a light-weight resource consumption of RL-NoC: It
simply employs VC buffers to deliver packets, and removes the complex logic
required by WH-router for flow control, routing, arbitration, lane allocation,
etc. The performance/resource tradeoff can be flexibly adjusted in RL-NoC
by duplicating various numbers of PCs according to application requirements.
Given that 16 copies of PCs are adopted, the resource saving of RL-NoC is
still considerable compared to the 4 × 4 WH-NoC. In the RL-NoC results, the

112 Chapter 7. Case Study 3: A Light-weight Routerless NoC Infrastructure

size-configurable flit FIFOs are implemented with Block RAMs on the FPGA.
It is also feasible to migrate them into off-chip memories such as SRAMs or
DDR SDRAMs in order to save the precious on-chip memory resource. In the
listed statistics in Table 7.1, resource consumption of nodes are excluded for
both WH-NoC and RL-NoC.

WH-router WH-NoC (4×4 mesh) RL-NoC (1 PC for 16 nodes)

4-LUTs 19721 19721 × 16 2976
slice registers 4927 4927 × 16 1649
Block RAM 0 0 32 (1K depth flit FIFO)

Table 7.1. Resource utilization comparison of WH-NoC and RL-NoC

7.6 Performance Measurements

7.6.1 Experimental Setup

Cycle-accurate simulation using Modelsim has been conducted to compare
the performance of RL-NoC with the canonical WH-NoC. We exclude network
warm-up and cool-down cycles out of measurements and only take into account
the steady state. To make the comparison meaningful, both RL-NoC and WH-
NoC feature the same data width of 32-bits and run at a same datapath clock
frequency. The wormhole router features 4 VCs on each PC, and adopts the X-
Y routing mechanism to avoid deadlocks. In RL-NoC, the throughput-aware
scheduling policy (discussed in Section 7.4.2) is chosen to maximize the packet
delivery throughput for large-scale streaming applications (e.g. our targeted
data acquisition and trigger systems in particle physics experiments [34]). Par-
ticularly, the consumer node will only be switched on when its dedicated VC
buffer is almost full. It keeps working until all the buffered flits are read out.
All producer nodes are alternately loaded to generate packets for an equivalent
time slice. The time overhead for each node reconfiguration is assumed to be
10 µs, taking into account the practical ICAP designs in [31], [66] and [67]
which accomplish dynamic reconfiguration in the order of magnitude of mi-
croseconds. The measurements concern various network sizes, flit FIFO sizes
for RL-NoC and traffic patterns. The experimental setup for all the tests is
summarized in Table 7.2 for quick reference.

The packet structure used in the experiments is demonstrated in Figure 7.8.
For WH-NoC, each flit needs a domain VC ID for VC selection in the input
channel of routers. It can be dedicated to payload data in RL-NoC, leading
to a higher payload transmission efficiency.

7.6. Performance Measurements 113

Test 1 Test 2 Test 3
Test
1.1

Test
1.2

Test
1.3

Test
2.1

Test
2.2

Test
2.3

Test 2.4 Test
2.5

Test
3.1

flit FIFO depth
(RL-NoC)

1K 2K 1K 512 1K 1K 1K

VCF (RL-NoC) no no 2 VCFs no no
reconf. time
(RL-NoC)

10 µs 10 µs 0 10 µs

network size 2×2 4×4 6×6 4×4 4×4
traffic pattern random random hotspot
packet size 8 flits
VC No. per PC
(WH-NoC)

4

VC buffer depth
(WH-NoC)

4

Table 7.2. Experimental setup of performance measurements

Figure 7.8. Packet structure of WH-NoC and RL-NoC

7.6.2 Results

In Test 1, we firstly study RL-NoC for various network sizes, with middle-
size flit FIFOs of 1K depth for each lane. The traffic is in a random pattern,
meaning that all the nodes transmite data packets to a random destination
except itself. Figure 7.9 shows the packet delivery throughput results compared
to corresponding WH-NoCs in 2 × 2, 4 × 4 and 6 × 6 2D-meshes. Due to
the fact that all the producers are alternately multiplexed in the single node
region of PR in single-PC RL-NoCs, their effective data injection rate is in
fact only 1

i×i (i = 2, 4, or 6) of WH-NoCs, as well as the throughput (red
curves) before the network saturation. Hence in order to make the comparison
straightforward, we assume also i × i PCs in RL-NoC corresponding to i × i
routers and nodes in WH-NoC. The overall performance of duplicated PCs will
be roughly estimated by the one of a single PC timing i × i. We observe in the
figure that blue curves for the scaled performance of RL-NoCs are comparable

114 Chapter 7. Case Study 3: A Light-weight Routerless NoC Infrastructure

with WH-NoCs (black curves). Although the saturated throughput of RL-
NoC is lower than WH-NoC in the network sizes of 2 × 2 and 4 × 4, RL-NoC
performs better in the 6× 6 network. For different numbers of nodes occupying
the reconfigurable node region in turn, RL-NoC features a comparatively stable
capability to deliver packets until it is saturated. RL-NoC does not severely
deteriorate the performance in large network sizes, as nevertheless WH-NoC
does due to the increased traffic congestion in the random traffic pattern.
The slight performance difference comes from the variation of the dynamic
reconfiguration overhead with various node counts. This feature makes RL-
NoC easily and efficiently scalable when more nodes are to be incorporated in
the network.

32 28 24 20 16 12 8 4

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Th
ro

ug
hp

ut
 [p

ac
ke

ts
/c

yc
le

/n
od

e]

1/(Packet Injection Rate) [cycles/packet]

 2 x 2 WH-NoC
 4-node RL-NoC (1PC)
 4X 4-node RL-NoC
 4 x 4 WH-NoC
 16-node RL-NoC (1PC)
 16X 16-node RL-NoC
 6 x 6 WH-NoC
 36-node RL-NoC (1PC)
 36X 36-node RL-NoC

Figure 7.9. Throughput comparison of various network sizes

With a given reconfiguration throughput of the ICAP design, the overall
dynamic reconfiguration overhead is dependent on the switching frequency of
IP cores and directly affects the system performance. If the overhead is mini-
mized, most of the time can be dedicated to effective data processing, therefore
leading to an efficient resource utilization. In the producer-consumer reconfig-
urable model, the FIFO size determines the switching frequency of consumer
cores: The larger the FIFO is to buffer data, the more time a consumer core
can keep working for, and thus the less reconfiguration overhead it introduces.
To investigate the effect of the flit FIFO size in RL-NoC which is equal to the

7.6. Performance Measurements 115

readout burst size for consumer nodes, we conducted measurements in Test 2
on 2K, 1K and 512 FIFO depth per lane for the 4 × 4 network. As shown with
blue curves in Figure 7.10, we observe that a larger FIFO depth can alleviate
dynamic reconfiguration overhead and obtain higher packet delivery through-
put. If we completely ignore the reconfiguration time overhead, the network
saturation will be promoted to a higher packet injection rate and therefore
higher throughput (black curve). This is the physical limitation of perfor-
mance which may be approached by reducing the overhead. For instance as
represented by the red curve, we adopted two Virtual ConFigurations (VCF)
on the consumer region to partly hide the reconfiguration time. The measured
throughput is significantly enhanced and close to the ideal case without any
reconfiguration overhead.

32 28 24 20 16 12 8 4
0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

Th
ro

ug
hp

ut
 [p

ac
ke

ts
/c

yc
le

/n
od

e]

1/(Packet Injection Rate) [cycles/packet]

 FIFO_depth = 2K, no VCF, Reconf_time = 10 us
 FIFO_depth = 1K, no VCF, Reconf_time = 10 us
 FIFO_depth = 512, no VCF, Reconf_time = 10 us
 FIFO_depth = 1K, 2 VCFs, Reconf_time = 10 us
 FIFO_depth = 1K, no VCF, Reconf_time = 0

Figure 7.10. Throughput of various flit FIFO depths in RL-NoC

In addition to the random traffic pattern, we did Test 3 to compare RL-
NoC with WH-NoC in a hotspot traffic pattern. The hotspot traffic often
appears in the client-server communication mode, in which all other nodes
(clients) talk to one node (server) and this node responds to all the others.
In a baseline 4 × 4 mesh WH-NoC, the server is mapped on one of the four
center nodes. All other nodes send packets to it, very easily leading the four
direction links of the server node to saturation. Network congestion signifi-
cantly deteriorates the packet delivery throughput of the server node. On the
contrary, the uni-destination traffic pattern becomes an advantage in RL-NoC,

116 Chapter 7. Case Study 3: A Light-weight Routerless NoC Infrastructure

because the consumer region will be dominated by the server node for most of
the time and the reconfiguration overhead can be largely reduced. As shown
in Figure 7.11, a single PC (red curve) in RL-NoC achieves about 1/16 packet
throughput on the server node as WH-NoC before the network saturation, due
to the time-multiplexing packet injection of the 16 nodes. Thus 16X dupli-
cated PCs (blue curve) achieve a similar throughput performance as WH-NoC.
However the wormhole network is easily saturated after the packet injection
rate is increased to around 1 packet per 120 cycles. By contrast, RL-NoC
defers the channel saturation to around 1 packet per 5 cycles and enhances
the saturated throughput to 12.2 times higher than WH-NoC.

200 160 120 80 40 0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Th
ro

ug
hp

ut
 [p

ac
ke

ts
/c

yc
le

]

1/(Packet Injection Rate) [cycles/packet]

 4 x 4 WH-NoC
 16-node RL-NoC (1PC)
 16X 16-node RL-NoC

Figure 7.11. Throughput comparison in the hotspot traffic pattern

In all the above measurements, RL-NoC is assumed to run at the same
datapath clock frequency as WH-NoC. Taking into account the maximum
clock frequency of 6.7 times faster than WH-NoC (see Section 7.5), the RL-
NoC performance can be further linearly improved by scaling the system clock
frequency.

The packet latency comparison of the 4 × 4 WH-NoC and the 1K-FIFO
16-node RL-NoC is demonstrated in Figure 7.12 for both the random and the
hotspot traffic pattern. We discuss the average value of a certain amount of

7.6. Performance Measurements 117

30 24 18 12 6 0
1

10

100

1000

10000

100000

200 160 120 80 40 0

 4 x 4 WH-NoC with random traffic (bottom X-axis)
 16-node RL-NoC with random traffic (bottom X-axis)

A
ve

ra
ge

 la
te

nc
y

[c
yc

le
s]

1/(Packet Injection Rate) [cycles/packet]

 4 x 4 WH-NoC with hotspot traffic (top X-axis)
 16-node RL-NoC with hotspot traffic (top X-axis)

Figure 7.12. Latency comparison in the random/hotspot traffic pattern

packets. The latency is calculated from the instant when the packet is injected
into the source queue to that when the packet is received by the destination
node. It consists of two components: the queuing time in the source queue and
the network delivery time. We observe from the figure that RL-NoC has a two
to three orders of magnitude worse latency performance than WH-NoC in the
random traffic pattern (curves with solid symbols). WH-NoC only significantly
increases the latency after the network saturation when channel congestion
happens and packets have to wait for much longer time in the source queue.
In RL-NoC, various producers and consumers operate in sequence. Injected
packets must wait in flit FIFOs until their destination node is configured to
read them out in a burst mode. The scheduling policy which is supposed
to reduce the run-time reconfiguration overhead actually worsen the latency
performance. Before the channel saturation in RL-NoC, the delay is mostly
from the time waiting in flit FIFOs. Therefore faster packet injection speeds up
the configuration loading of consumer nodes and reduces the packet wait time
in VC lanes before the readout, resulting in the descending curve segment as
shown in the figure. After the channel is saturated, packets have also to wait in
the source queue, leading their latency obviously increased. By contrast in the
hotspot traffic pattern (curves with hollow symbols), the WH-NoC latency is
deteriorated due to the heavy channel congestion after the network saturation.

118 Chapter 7. Case Study 3: A Light-weight Routerless NoC Infrastructure

Figure 7.13. Power consumption of WH-router and RL-NoC

However the RL-NoC latency becomes lower, since most packets are destined
to a same node and need not wait for that long time in flit FIFOs. The reduced
reconfiguration overhead improves the latency performance of RL-NoC in the
hotspot traffic pattern.

7.7 Power Analysis

We use Xilinx XPower Analyzer to compare the power consumption of
WH-NoC and RL-NoC1. In order to estimate the power as accurately as pos-
sible, Modelsim is used to generate the signal switching activity file (VCD
file) in the simulation of random-traffic experiments. The power analysis has
been conducted in the context of a 4 × 4 WH-NoC and a 16-node RL-NoC,
both working at the peak packet injection rate of 1 packet/cycle/node to max-
imumly saturate the network. The quiescent and the dynamic power are re-
spectively recorded in Figure 7.13. As demonstrated by the first column, a
central wormhole router in the mesh is estimated to consume 1.386 W at a

1At present the software tool does not support power estimation of run-time reconfig-
urable designs on FPGAs. However according to the experiments in [126], the authors
reported an extra power consumption of partial reconfiguration in the order of magnitude
of mW. In our design, the throughput-aware scheduling policy infrequently enables mod-
ule reconfiguration, and hence makes the average reconfiguration power consumption even
tiny in the long term system run. Therefore we neglect the power overhead introduced by
run-time reconfiguration in RL-NoC.

7.7. Power Analysis 119

control/data clock frequency pair of 50/25 MHz. By contrast, RL-NoC with
one PC consumes much less power at the same datapath clock frequency of
25 MHz, as shown in the second, third and fourth columns. Results reveal
the power reduction of 32.0%, 33.1% and 33.7% for RL-NoC with 2K, 1K, and
512 FIFO depth respectively. Even at an extreme clock frequency of 222 MHz,
RL-NoC still consumes 15.6% less power than the wormhole router, as listed
in the last column in the figure.

In the above power analysis, we take only into account the backbone com-
ponents (router for WH-NoC and PC for RL-NoC) of the system interconnec-
tions. In the system level, RL-NoC may gain further benefits over router-based
NoCs by removing the energy-consuming inter-router long wires with mutu-
ally independent PCs. This can only be quantified with future FPGAs, which
must be large enough to accommodate the entire 2D-mesh WH-NoC with
many interconnected routers.

120

“Be happy. It’s one way of being wise.”

Sidonie Gabrielle Colette
(French novelist, 1873 - 1954 A.D.)

121

122

Chapter 8

Conclusion and Open Issues

In this chapter, we conclude the thesis work. We summarize
the advantages of the proposed design framework for adaptive com-
puting, in comparison with the conventional static development ap-
proach on FPGAs. In addition, open issues and design challenges
are listed as well to inspire the directions of subsequent researches
in this area.

8.1 Conclusion

In the latest two decades, FPGA has been evolved from simply acting as
programmable glue logics of ASICs into a genuine platform device containing
complete system designs. As its continuously increasing market share has been
seen, more and more engineers are taking the advantage of flexible programma-
bility and hardware-level performance acceleration of FPGAs in their designs.
Corresponding to the temporal parallelism of the multi-processing technology
on GPCPUs, traditionally the spatial parallelism is exploited in FPGA designs.
However along with the rapidly growing design complexity, new requirements
arise in terms of self-adaptivity as well as efficient run-time resource manage-
ment. Analogous to the software world in which multi-core technologies have
been and are being popularly investigated to add spatial parallelism, modern
FPGA run-time reconfigurability explores the time-multiplexity to meet new
design challenges. Hence based on the FPGA run-time reconfigurability, we
started the research on adaptive computing with self-awareness and led to this
doctoral thesis.

123

124 Chapter 8. Conclusion and Open Issues

We present a comprehensive and practical design framework for adap-
tive computing. Several design key issues are attributed into different hard-
ware/software layers: In the hardware layer, system designs are regulated
with application-specific tasks adaptively loaded into preserved reconfigurable
slots residing in a general computer architecture. With respect to the run-
time reconfiguration technical support, dynamic reconfiguration overhead is
minimized by optimizing the ICAP designs and employing virtual configura-
tions. In order to manage the reconfigurable system, scheduler is located in
the highest-level application software layer for easy implementation and porta-
bility. The scheduler program detects trigger conditions and optimally swap
hardware tasks, with the help from device drivers and the OS. In case of mod-
ule swapping, hardware context switching happens and mechanisms of saving
and restoring the context may be required. In addition, inter-process commu-
nications may exist among hardware modules. We analyze the characteristics
of one solution named pipe and demonstrate its hardware implementations.

To verify the proposed design framework, we apply the self-adaptation con-
cept to practical embedded designs. In the first case study, a NOR flash mem-
ory controller and an SRAM controller time-share the same programmable
resources on the FPGA. By means of being scheduled in an appropriate order,
both controller modules can be alternately loaded into the reconfigurable slot,
according to different memory access requirements on either the flash or the
SRAM. The adaptive design reveals less resource consumption in comparison
with statically placing both controllers in the system. The required function-
alities are entirely accomplished, including booting the system from the flash
memory and addressing the SRAM for application-specific computation.

In order to investigate our target application in nuclear and particle physics
experiments, we model the correlated multi-stream processing and compare
the adaptive architecture with the conventional static approach. Based on the
model analysis, a system design is constructed consisting of two real particle
recognition computing engines. Experimental results not only demonstrate
the expected benefits obtained by automatically adapting different algorithm
engines in a same reconfigurable slot, but also expose some design challenges
for which further studies might head.

We then put the FPGA run-time reconfiguration technology in the sce-
nario of on-chip communications. A routerless interconnection architecture is
presented on the basis of the adaptive design framework. Significantly distin-
guished from the existing interconnection architectures, such as buses, cross-
bars, or NoCs, the so-called RL-NoC takes advantage of the time-multiplexingly
point-to-point communication infrastructure with packet injection and retrieval
decoupled. Compared to the present hot topic of NoCs, the routerless archi-

8.1. Conclusion 125

tecture features lower design complexity, less resource consumption, higher
work frequency as well as more efficient power dissipation. RL-NoC is ob-
served to achieve comparable or even superior packet delivery efficiency of a
wormhole NoC in the experiments. It is regarded as a promising alternative of
canonical NoCs in some design scenarios on FPGAs, especially in light-weight
applications.

According to the analysis and experimental results, we may partly conclude
the merits of self-adaptive designs in the following items:

• Easy design management. Traditionally design components are man-
aged and incorporated in the system by designers during their develop-
ment period. The static and offline resource management is complex and
error prone, especially in massive processing systems with hundreds of
FPGAs. By contrast with our proposed framework for self-aware auto-
nomic designs, the base system architecture for all FPGA chips becomes
uniform by reserving PR slots as blackboxes. According to run-time trig-
ger conditions, the scheduler decides the most urgent task and dynami-
cally allocates computation resources. Adapting reconfigurable modules
on the fly not only simplifies the design management work of designers,
but also makes it more flexible and accurate.

• Reduced hardware cost. By dynamically loading different modules,
multitasking is realized within the same reconfigurable region. This fea-
ture is especially well suited for the cases in which some functionali-
ties are only occasionally or exclusively required. As payoff, the FPGA
chip capacity or count requirements are alleviated, which should be oth-
erwise large enough to contain all functional modules in conventional
static designs. The hardware platform may be retained if more func-
tional modules are to be added in the new product design. Moreover,
PCB designs may also be simplified by migrating inter-chip bandwidth
into inter-process communications within an FPGA.

• More efficient utilization of computing resources. Multitasking
in PR regions reduces the resource requirement for the same set of ex-
pected functionalities. In addition, flexible scheduling policies activate in
turn different modules according to certain conditions. FPGA resources
are less frequently kept idle and more efficiently utilized to accomplish
high performance/cost ratio. Energy consumption is also foreseen to be
reduced by removing unnecessary static placements in the system.

• Advanced features. The self-awareness using the scheduler program
to monitor the system, is the basis of several advanced technologies such

126 Chapter 8. Conclusion and Open Issues

as self-evolving or self-healing [127] [128] [129]. More intelligent systems
can be developed under this adaptive framework.

Meanwhile in the process of our research, we also see some issues or chal-
lenges on which special attention should be paid when applying this technology
to practical designs. The aspects mainly include:

• High throughput vs. low latency. Low latency packet delivery to
PR modules is a main challenge of run-time reconfigurable designs, be-
cause it is divergent with reducing the reconfiguration overhead for high
throughput by minimizing the module switching frequency. No matter
whether being the raw data or the IPC information between modules,
data packets have to wait in a buffer device until their destination mod-
ule is scheduled and activated in the shared reconfigurable slot. In order
to realize quick response with real-time requirements, the corresponding
module is to be immediately configured to react. This scheduling policy
will inevitably deteriorate the run-time reconfiguration overhead and do
harm to the overall throughput performance of the system.

• Fragmentation problem of module placement. When fitting mod-
ules in a preserved PR region, not all modules will perfectly occupy all
the resources. The unused resources will be kept idle and lead to ineffi-
cient utilization. This phenomenon is known as internal fragmentation,
and has been reflected in our second case study as an example. In prin-
ciple, various modular designs with similar sizes can be more efficiently
fitted in the same reconfigurable slot. Moreover more module counts
sharing the reconfigurable slot can alleviate this problem to some extent
as well.

8.2 Open Issues for Future Work

In this project, some issues remain still open due to the time reason and
limited manpower. We may list some of them as inspiration to the researchers
engaged in this field in their future work. The directions include:

• Design automation in software tools. With respect to run-time re-
configurable designs and online resource management, most of the design
loops are still done manually at present. Design automation in software
tools is expected to improve development productivity and ease the de-
signers.

8.2. Open Issues for Future Work 127

• Low latency packet delivery for real-time applications. As we
have discussed ahead, low latency packet delivery is not straightforwardly
achievable because of the intrinsic mechanism of reconfigurable designs.
To address this issue, one promising research direction might be to imple-
ment the Quality-of-Service (QoS) support in the scheduler to provide
prioritized traffics. Data packets with real-time requirement may mo-
nopolize dedicated lanes and be digested with latency awareness. Oth-
ers are delivered under the discipline of minimizing the reconfiguration
overhead. Through prioritizing the traffic, both the latency and the
bandwidth requirements might be simultaneously met.

• Fast reconfiguration speed and low reconfiguration overhead.
Currently the dynamic reconfiguration time overhead is estimated in the
order of magnitude from microseconds to milliseconds, depending on
the module size. Wider configuration bandwidth or other technologies
are expected to further minimize the reconfiguration overhead. We may
foresee that reconfigurable modules will be allowed to be more frequently
swapped as the reconfiguration overhead decreases. This situation will
certainly enhance the real-time performance of adaptive systems by im-
mediately equipping the corresponding functional modules.

• Fine-grained module placement. Concerning the aforementioned in-
ternal fragmentation problem, fine-grained module placement [130] [131]
is being under investigation to alleviate the resource waste problem in
run-time reconfigurable designs.

• Massive reconfigurable slot management. As the granularity of
reconfigurable slots decreases and accordingly their number increases,
the management and scheduling issue will become more complicated from
1D to 2D. In that case, how to allocate and combine several fine-grained
regions to fit a complete module design will be a challenging scheme.

• Online module placement and routing. As the performance ad-
vance of host processors in embedded systems, it might turn into the
reality to dynamically conduct design placement and routing on the fly.
This technology will contribute to flexibly locate design modules in dif-
ferent positions of any shape on the FPGA, without having to implement
all the module combinations offline.

128

Appendix A

Design and Development of
ATCA-based Compute Node

To manage the large data rate from detectors, we construct a hierarchical
network architecture which consists of interconnected Compute Nodes (CN).
The connectivity is classified in two categories: external connections and inter-
nal ones. The external channels are used to communicate with detectors and
the PC farm, to receive detector raw data for processing and forward results
for storage and offline analysis. Specifically they provide optical and Ethernet
links. The internal connections bridge all algorithms or algorithm steps for
parallel/pipelined processing. Both on-board I/Os and the inter-board back-
plane interface function as internal links. The detailed system architecture will
be introduced in the following sub-sections starting with the interconnected
network and working our way down to the node design.

The themes of this chapter concern paper [32], [33], [34], [35], [36] and [37]
listed in Section 1.4.

A.1 Global Computation Network

The Advanced Telecommunications Computing Architecture (AdvancedTCA
or ATCA) [58] standard is architected to provide the bandwidth needed for
the next generation computation platform. A full-mesh shelf backplane (see
Figure A.1) can support 2.1 Tbps of data transport when using 3.125 GHz sig-
naling and 8B/10B [132] encoding. In physics experiment applications, pattern
recognition algorithms are partitioned and distributed in many compute nodes

129

130 Appendix A. Design and Development of ATCA-based Compute Node

for high processing throughput. Up to 14 nodes can be fitted in one ATCA
shelf and they are mutually interconnected through the backplane. Direct
P2P connections provide much flexibility for various network configurations,
such as vertical pipelined processing, or horizontal parallel processing, or hy-
brid solutions with more complicated interconnections. This feature enhances
the platform general-purpose for different applications with different network
architectures. In addition it provides significant freedom and convenience to
partition processing logics across multiple boards.

Figure A.1. ATCA crate and full-mesh backplane (only 8 nodes shown)

Figure A.2 shows the network topology in experimental facilities, where
multiple ATCA crates are used to meet high communication and computation
requirements. Through bonded optical channels and switches, raw data are
dumped from the front-end circuits, which take care of sampling and digitizing
analog signals generated by detectors. Afterwards all data will be processed in
the network for pattern recognition, correlation, event building and filtering.
The processing modules are partitioned and reside in FPGA cells. All the steps
constitute the complete computation by communicating through the hierar-
chical interconnections, including on-board I/Os, inter-board shelf backplanes,
and perhaps also the inter-crate optical link or Ethernet switching if necessary.
On-board channels provide large bandwidth, while the inter-crate switching
has more communication overheads and will introduce latency penalty. Thus
trying to group the computation steps with high mutual communication re-
quirements on the same board or next in the same crate, is a basic rule to
implement the algorithms in practice. After pattern recognition and event

A.2. Compute Node 131

selection in the network, a large proportion of event data is discarded on the
fly while only a small part will be labelled as interesting and forwarded to the
PC farm via Ethernet for storage and in-depth offline analysis.

Figure A.2. Online pattern recognition network. The system features a
hierarchical architecture constituted by interconnected compute nodes.

A.2 Compute Node

The system uses Xilinx platform FPGAs (with hardcore embedded pro-
cessors) as primary processing components. For the first prototype Virtex-4
FX60 is chosen. On future products the up-to-date generation FPGAs might
be adopted instead. Figure A.3 shows the schematic of the Compute Node
(CN) board. Each board consists of five FPGAs, four of which (No. 1 to
4) work as algorithm processors and the fifth (No. 0) as a switch interfacing
to other CNs through the ATCA backplane. Each processor FPGA has two

132 Appendix A. Design and Development of ATCA-based Compute Node

RocketIO Multi-Gigabit Transceiver (MGT) based optical links, which can run
at a maximum baud rate of 6.5 Gbps per channel. In addition, all the FPGAs
are equipped with one Gigabit Ethernet as well as 2 GBytes DDR2 memory
each. The total 10 GBytes memory capacity is mainly for data buffering and
large Look-Up Table (LUT) storage purpose.

Figure A.3. Compute node schematic. Five FPGA chips are networked
with on-board connections. Memory and peripheral components as well as
communication links are placed on the board.

For many physics experiments in the future, their processing algorithms or
partitions are still unclear and may feature different traffic patterns in the
network. Thus to make the board design capable of easily porting high-
performance algorithms, all four processor FPGAs are interconnected with
each other in a full-mesh topology. The connectivity includes both 32-bit
General-Purpose IO (GPIO) buses and one full-duplex RocketIO link per con-
nection. These processor FPGAs also connect to the switch FPGA with dedi-
cated 32-bit GPIOs. Either circuit-switching or packet-switching is able to be
configured to communicate with other CNs in the crate. 16 RocketIO chan-
nels to the backplane feature the bandwidth of 104 Gbps at 6.5 GHz signaling.
Besides the switch structure, sub-event data from all four processor FPGAs
can be collected in the switch FPGA and conduct event building and filtering.

A.2. Compute Node 133

With the on-board P2P interconnections, it is convenient to partition unex-
pected algorithms for different experiments and aggregate all five FPGAs as a
virtual one with five times capacity.

NOR flash memories are mounted on the board for Operating System (OS)
kernel and FPGA bitstream storage. A customized Intelligent Platform Man-
agement Controller (IPMC) add-on card fullfills the ATCA requirements on
power negotiation, voltage monitoring, temperature sensoring, and FPGA con-
figuration check, etc. Figure A.4 shows the picture of our first prototype CN
PCB and Figure A.5 shows the second version. To meet the dimension re-
quirement, all main components are placed on the top side except five ultra
low profile Small Outline Dual In-line Memory Modules (SO-DIMM) DDR2
SDRAMs.

Figure A.4. Prototype PCB of the compute node

Each CN resides in one of the 14 slots in the ATCA crate. The power
budget for each slot from the crate is 200 Watts at maximum, larger than
the worst-case estimation of 170 Watts of the CN board. When all 14 nodes

134 Appendix A. Design and Development of ATCA-based Compute Node

Figure A.5. Compute node PCB version 2

are pluged in, such a crate can host up to 1890 Gbps inter-FPGA on-board
connections (GPIOs at 300 Mbps), 1456 Gbps inter-board backplane connec-
tions, 728 Gbps full-duplex optical bandwidth, 70 Gbps Ethernet bandwidth,
140 GBytes DDR2 SDRAM, and all computing resources of 70 Virtex-4 FX60
FPGAs.

A.3 HW/SW Co-design of the System-on-an-
FPGA

A.3.1 Partitioning Strategy

The DAQ and trigger system in physics experiments request more fea-
tures for convenient experiment operations than fundamental data processing.
For example due to temporal and spatial limitations, operators would like to
remotely and dynamically reconfigure and control the platform without ap-
proaching to the experimental facility. A friendly user interface also helps
physicists to easily adjust experimental parameters and monitor the system

A.3. HW/SW Co-design of the System-on-an-FPGA 135

status. In our platform, hardcore PowerPC microprocessors on FPGAs can be
utilized to implement versatile control tasks, while locating the performance-
critical computation in the FPGA fabric in hardware. Concrete criteria are
described as follows:

1. All pattern recognition algorithms are to be customized in the FPGA
fabric as hardware co-processors, working in parallel and/or pipeline to iden-
tify interesting events.

2. Slow control tasks are implemented in software by high-level application
programs which execute on top of embedded microprocessors and operating
systems.

3. The integrated soft TCP/IP stack in the operating system is employed
for Ethernet transmission.

A.3.2 Hardware Design

Based on the modular design approach, we develop the hardware sys-
tem on the FPGA using hardcore and softcore components. As shown in
Figure A.6, the PowerPC 405 processor, the Multi-Port Memory Controller
(MPMC) [133], and other peripherals constitute a complete embedded com-
puter system. Compared to the canonical bus-based design, MPMC provides
direct ports to memory-hungry modules and significantly speedup memory
accesses: Incoming detector sub-events are buffered in DDR2 via RocketIO-
based optical wrappers, and afterwards processed by detector-specific algo-
rithm co-processors. In this system, the PLB bus is used only for low data
rate peripheral communications and controls.

For various applications of physics experiments, the system architecture
is intended to be fixed and only to replace algorithm engines. It enables the
design re-usability and largely shrinks development time.

A.3.3 Software Design

The open-source embedded Linux kernel of version 2.6 was ported to the
PowerPC processor. The soft Linux TCP/IP stack (including UDP/IP) drives
the Ethernet transceiving with commodity PC clusters. Device drivers for
standard peripherals can be enabled when Linux is configured, including Tri-
mode Ethernet, RS232 UART, flash memories, etc. Others for algorithm
modules must be customized. Based on the operating system and software
development kits, flexible applications can be exploited varing from C/C++

136 Appendix A. Design and Development of ATCA-based Compute Node

Figure A.6. MPMC-based hardware design. In addition to general com-
ponents, customized algorithm engines are incorporated in the system for
application-specific computation.

or Java programs to high level scripts. Programs running on PowerPC proces-
sors mainly offer user friendly interfaces for system monitoring and parameter
adjustment, drive TCP/IP communications with PC farms, and also assist
hardware for co-processing.

One main feature of the software design is its zero budget. Components
including the OS, the file system generator, the cross-compilation tools, and
some benchmark programs all come from the open-source community.

Appendix B

Implementation of Particle
Recognition Algorithms

In our project timeline, HADES is the first experiment in using the com-
putation platform to upgrade the existing DAQ and trigger system for heavier
ion reactions and higher processing requirements. The promoted particle re-
action rate might reach 100 KHz, implying a maximum raw data rate up to
10 Gbytes/s. We estimate to use one single ATCA crate, two compute nodes
for each detector sector and twelve for six sectors in total.

Along with the detector construction, we have been developing and evaluat-
ing particle recognition algorithms on our reconfigurable platform, specifically
MDC particle track reconstruction (for MDC detectors) and Cherenkov ring
recognition (for the RICH detector). Both algorithm processors receive the
readout raw data and search for certain patterns. Their processing results are
also correlated for precisely identifying interesting physics events happened on
detectors. Only interesting events are assembled and forwarded to the mass
storage. The noise data are discarded on the fly.

The content of this chapter concerns paper [38], [39], [40], and [41] listed
in Section 1.4.

B.1 Track Reconstruction in MDCs

In high-energy physics experiments, the momenta of charged particles are
studied by observing their deflection in magnetic field. The so-called Mini
Drift Chamber (MDC) detectors are used to reconstruct the particle tracks

137

138 Appendix B. Implementation of Particle Recognition Algorithms

entering and leaving the magnetic field, for further deriving the deflection
angle inside it. The HADES tracking system consists of four MDC modules
which have six identical trapezoidal sectors (see Figure 2.1 for dismounted and
B.1(a) for mounted view). Two MDC layers are located before and two behind
the toroidal magnetic field which is produced by 6 superconducting coils, as
illustrated in Figure B.1(b). In first approximation the magnetic field does not
penetrate into the MDCs. Thus particle tracks only bend in the magnetic field
and the segments before or behind the coil could be approximately described
by straight lines. The two segments can be reconstructed separately with the
inner (I - II) and the outer (III - IV) MDC information. The basic principle is
similar and hence in this article we focus only on the inner part for explanation.

(a) Mounted view (b) Side view

Figure B.1. The HADES detector system

In the two inner MDC modules, a total number of 12660 sense wires (6
sectors) are arranged in 12 layers and 6 orientations: +40◦, -20◦, 0◦, 0◦, +20◦,
-40◦, shown in Figure B.2(a) for one trapezoidal sector. When the beam hit the
target, charged particles are emitted from the target position and go forward
through different wire layers in straight paths. Along their flying ways, pulse
signals are generated on sense wires close to the tracks with high probability
(>95%). We also say that the sense wires are “fired” by flying particles. Shown
in the coordinate system in Figure B.2(b), if the sensitive volumn of each wire
is projected from the boundary of the target onto a plane located between two
inner chambers, apparently the particle passed through the projection plane

B.1. Track Reconstruction in MDCs 139

(a) One sector of the MDC detector with
six orientation wires

(b) Track reconstruction in inner MDCs. The
track penetration point on the projection plane
can be identified from the projection overlap of
fired wires in different layers.

Figure B.2. Particle track reconstruction in HADES MDCs

x, (mm)

-400 -300 -200 -100 0 100 200 300 400

y,
 (

m
m

)

200

300

400

500

600

700

800

0

2

4

6

8

10

12
Event 74 Sector 4

(a) Projection plane with two passed parti-
cles. The color shows the number of over-
lapped wire projections on each pixel.

x, (m
m)

-250
-200

-150
-100

-50
0

50
100

150

y, (mm)
540

560
580

600
620

640
660

0

2

4

6

8

10

12

Event 74 Sector 4

(b) 3D display of projection accumulation
for a single track. The peak in the cen-
ter specifies the penetration point on the
projection plane.

Figure B.3. Track penetration points on the projection plane

140 Appendix B. Implementation of Particle Recognition Algorithms

at the point where all projections of fired wires from different layers overlap.
To search for such regions, the projection plane is treated as a two dimensional
histogram with the projection area as bins (pixels). For each fired sense wire,
all the pixels covered by its projection are increased by one. By finding the
locally maximum pixels whose values are also above a given threshold, track
points can be recognized and the tracks are reconstructed as straight lines
from the point-like target to those peak pixels. Figure B.3(a) demonstrates
the 2D projection plane for one sector with two penetrating particles. We
observe that the projection of fired wires from the total 12 layers overlap in
two dots, which feature the amplitude peaks and represent two particle tracks.
Figure B.3(b) is the 3D display of Figure B.3(a) for a single track, where the
coordinates of the peak in the center is recognized as a track point.

An offline built Look-Up Table (LUT) is employed to tell which pixels
on the projection plane are touched by the projection of every fired sense
wire. Thus realtime coordinate calculation can be avoided considering its
geometrical complexity for FPGA implementation. In practice, we choose the
resolution of 128 × 256 pixels for each sector. The projection LUT is about
1.5 MBytes per sector and is feasible to be initialized in the DDR2 memory.

B.2 Ring Recognition in RICH

The HADES Ring Image CHerenkov (RICH) detector is used to identify
dilepton pairs based on the Nobel Prize winning discovery of Cherenkov effect.
As explained in [92], a charged particle emits light cone (Cherenkov radiation)
when it travels through a transparent substance with a speed faster than the
speed of light in that material. Specifically in the HADES experiment, dilep-
tons are emitted from the collision. They fly at a high velocity through the
inner MDC detectors from the target. Therefore the generated Cherenkov
light cone can be reflected by the mirror and displayed on the RICH detector
in the shape of a ring. The ring pattern is searched on the RICH plane with a
resolution of 96 × 96 pixels per sector. According to the physics principle, the
Cherenkov ring from the dilepton pair features a constant diameter equivalent
to the distance of 8 pixels on the RICH plane. As shown in Figure B.4, the
ring pattern search is conducted within a fixed mask region of 13 × 13 pixels
for each potential ring center. The hits on a ring with a radius of 4 pixels are
added to the value ring region. There are two veto regions inside or outside
the ring region, where hit pixel counts are also accumulated. The ring pattern
can be identified only if both the ring region sum is above and the veto region

B.2. Ring Recognition in RICH 141

sums are below their respective thresholds. The thresholds are programmable
during the experiment.

Figure B.4. Fixed-diameter ring recognition on the RICH detector

Because of the constant diameter of ring patterns, the computation chal-
lenge falls on position identification of ring centers. In the original design of
[134] [135] from J. Lehnert et al., they treat all the 96 × 96 pixels on the RICH
plane as potential ring centers: With the received RICH sub-events containing
the position of all hit pixels from the detector readout circuits, the complete
hit information of the RICH plane is reconstructed in a memory device. After-
wards ring patterns are searched within respective mask regions of all the pixels
as ring centers, in parallel for 96 columns on 12 Xilinx FPGAs [134] [135]. To
treat all the pixels as ring centers is not only computation inefficient, but also
resource consuming on FPGAs. In addition, it requires extra work to correlate
the RICH results with the rest detector system (especially inner MDCs) in the
offline analysis. In order to simplify ring recognition and correlate the RICH
pattern with the inner MDC tracking information, identified particle tracks in
inner MDCs are introduced to point out potential ring centers. The particle
tracks are reflected by the mirror onto the RICH plane. Hence the coordinate
of the track penetration points on the MDC projection plane is converted into
the one of potential ring centers on the RICH plane. To avoid complex online
geometrical calculation, the coordinate conversion task is done offline to arrive
at a Look-Up Table (LUT). Taking into account the coordinate conversion

142 Appendix B. Implementation of Particle Recognition Algorithms

error due to the resolution difference from MDC to RICH, normally we map
a single particle track to multiple neighboured pixels in a search window (e.g.
5 × 5) on the RICH plane. Hence interesting ring patterns can be prevented
from being ignored due to the slight coordinate conversion error.

With the small number of specified ring center candidates, we do not have
to reconstruct the complete hit information for all the pixels on the RICH
plane, but need only traverse all the hit pixels belonging to the same RICH
sub-event to judge their positions. If they fall into the ring region of a center
candidate, they may come from the valid Cherenkov light generated by flying
dileptons; otherwise they are probably the noise to be discarded. The position
judgment is realized by geometrical calculation on the distance between the
hit pixel and the ring center, as demonstrated by the VHDL-syntax code in
Algorithm 4.

Algorithm 4 Position judgment of a hit pixel to a ring center candidate
{(x1, y1) : position coordinate of the hit pixel.}
{(x0, y0) : position coordinate of the ring center candidate.}
{x distance = |x1 - x0|; : distance on x axis from the hit pixel to the center candidate.}
{y distance = |y1 - y0|; : distance on y axis from the hit pixel to the center candidate.}
{hop = x distance + y distance; : hop distance from the hit pixel to the center candidate.}

position result = FARAWAY NOISE REGION; {by default the hit pixel is regarded as
noise.}

if hop ≤ 2 then
position result = INNER VETO REGION; {the hit pixel falls into inner veto region.}

end if

if ((hop = 5 or hop = 6) and x distance ≤ 4 and y distance ≤ 4) or (y distance = 0 and
x distance = 4) or (y distance = 0 and x distance = 4) then

position result = RING REGION; {the hit pixel falls into ring region.}
end if

if (hop = 9 and x distance ≤ 6 and y distance ≤ 6) or (y distance = 6 and x distance ≤
2) or (x distance = 6 and y distance ≤ 2) then

position result = OUTER VETO REGION; {the hit pixel falls into outer veto region.}
end if

return position result;

After the position judgment of all the hit pixels corresponding to all the
potential ring centers, the hit counts in the ring region as well as in the in-
ner/outer veto regions can be accumulated. They will be compared to the
thresholds for determining whether a ring pattern is successfully identified or

B.3. Implementation 143

not. Only the data with identified patterns are to be retained. The noise will
be discarded on the fly for reducing the data rate before storage.

B.3 Implementation

Both algorithms are implemented in the FPGA fabric as hardware pro-
cessing engines. Figure B.5 elaborates the design structure of the Tracking
Processing Unit (TPU) and the Ring Recognition Unit (RRU), which are to
be integrated in the system design shown in Figure A.6. In the system design,
event data are imported from the detector front-end circuits into the FPGA
via optical links [34]. They are continuously supplied to the input FIFO re-
siding in the slave interface of each algorithm engine. The TPU core extracts
the fired wire serial numbers and derives the address information for each wire
using an address LUT. With the storage address of the projection LUT in the
DDR2 memory and the position address on the projection plane specified,
a master device reads out the projection LUT data for each fired wire, and
feeds them to the accumulate unit in which the projection overlap histogram
is accumulated. Afterwards the peak finder module figures out the peaks by
comparing each pixel with all its eight neighbours. The comparison is con-
ducted simultaneously on all the 128 pixels in a row for parallel processing.
The complete projection plane is scanned row by row to identify peaks. Iden-
tified peak pixels represent the positions in which particle tracks penetrate on
the projection plane. These results are both collected in the output FIFO for
being recorded, and induced into the ring center buffer to specify potential
ring centers for RICH ring recognition.

The incoming RICH sub-events contain the positions of hit pixels on the
RICH plane. All the hit pixels belonging to the same event are to be ex-
tracted and buffered in the single event buffer in RRU. Meanwhile, ring cen-
ter candidates are derived from particle tracks, converting their position co-
ordinates in the MDC projection plane into the RICH plane with a LUT.
Therefore ring pattern search is conducted in ring search units within the
mask region of the specified ring center candidates. The number of paral-
lel ring search units is configurable according to the available resources on
the FPGA. Each ring search unit takes charge of one ring center pixel as
well as its neighboured pixels in a search window, which are also deemed
as center candidates for avoiding the coordinate conversion error from MDC
to RICH. Specifically for a search window of 5 × 5, there exist in fact 25
processing cores in each ring search unit corresponding to the single derived
center candidate and its 24 neighbours. Loading the ring center candidates

144 Appendix B. Implementation of Particle Recognition Algorithms

Figure B.5. Hardware design of the algorithm engines

in ring search units is also in the unit of a same event. If the number of
configured ring search units is larger than or equal to the center candidate
count of an event (i.e. the number of found particle tracks from MDCs), the
hit pixels in single event buffer can be simply read out and traversed for de-
ciding their positions and identifying rings from the accumulated values of
ring region, inner veto region and outer veto region. Otherwise ring centers
have to be loaded in ring search units for multiple computation rounds, and
accordingly all the hit pixels belonging to this event must be reiterated in the
single event buffer until all the centers are done. After each round computa-
tion, the center candidates with recognized ring patterns are shifted out and
collected in the output FIFO for result archiving.

Both TPU and RRU feature a parallel and pipelined design structure. With
many processing units instantiated for histogram accumulation and peak find-
ing in TPU, and ring pattern search in RRU, the hardware engines accelerate
the application-specific computation even though they work at lower clock
frequencies than General-Purpose microprocessors (GPCPU). Moreover, fine-

B.4. Results 145

grained memory inside the FPGA using Block RAMs is rather efficient to
implement fast memory accesses such as LUTs. This also contributes to the
hardware acceleration on pattern recognition algorithms.

B.4 Results

B.4.1 Implementation Results

Resource utilizations of RRU with 1 or 2 ring search unit configurations
are listed in Table B.1, as well as the TPU design. Interface blocks are in-
cluded in the reported results. We observe that both TPU and RRU consume
a reasonable fraction of available resources on a Xilinx Virtex-4 FX60 FPGA.
Taking into account the system design which consists of embedded processor,
Multi-Port Memory Controller (MPMC), peripherals plus the algorithm en-
gines, it is feasible to implement the complete computer system on a single
Virtex-4 FX60 FPGA for particle recognition computation. The resource uti-
lization is acceptable and still enables the possibility to upgrade the system in
future designs.

Resources RRU RRU TPU

(1 ring search unit) (2 ring search units)
4-input LUTs 4728 out of 50560 (9.4%) 8186 (16.2%) 6072 (12.0%)

Slice Flip-Flops 3670 out of 50560 (7.3%) 5190 (10.3%) 3815 (7.5%)

Block RAMs 31 out of 232 (13.4%) 31 (13.4%) 48 (20.7%)

Table B.1. Resource utilization of TPU and RRU

The timing reports reveal that the TPU module can run at 125 MHz max-
imumly. To match the speed of the PLB bus as well as the interface design, its
clock frequency is chosen as 100 MHz in practice. The RRU design features
two clock domains: The PLB interface runs at 100 MHz, and the RRU core
can run at a frequency up to 160 MHz. These two clock domains are coupled
by asynchronous input and output FIFOs.

B.4.2 Performance Estimation

Experimental measurements have been done on the TPU design with var-
ious wire multiplicities, meaning that different numbers of wires in different
positions are fired for each event. A single TPU core is observed to achieve
a processing speed ranging from 1.0 to 32.3 KSub-events/s, depending on the

146 Appendix B. Implementation of Particle Recognition Algorithms

wire multiplicity. This implies a performance speedup from 10.8 to 24.3 times
than an Intel Xeon 2.4 GHz CPU core in the particle track recognition pro-
cessing. Taking into account the ion reaction rate up to several tens of KHz in
HADES, roughly 18 to 30 TPU cores are required for the total 6 detector sec-
tors. With respect to the RRU design, the improved approach with specified
ring centers from particle tracks can outperform the previous system described
in [134] and [135] by about one hundred times, achieving a processing speed
in the order of magnitude of MSub-events/s. Therefore 6 RRU cores are more
than sufficient for HADES ring recognition, with one allocated for each sector.
Roughly estimating, one TPU/RRU pair achieves a computation capability
equivalent to several tens up to hundred of commodity PCs for HADES parti-
cle recognition. In our customized computation platform [34], up to 70 Xilinx
Virtex-4 FX60 FPGAs are accommodated within one ATCA shelf. Therefore
many TPU and RRU cores can be instantiated and distributed on the FPGA
cluster. They will work together to cope with the enormous raw data rate
from the particle detectors, in a fashion of Single-Instruction-Multiple-Data
(SIMD). One ATCA shelf full of 70 FPGAs implies an equivalent processing
capability of thousands of commodity PCs for the particle recognition compu-
tation in the HADES experiment.

Here the performance data are rough estimation based on our early-stage
measurements. Actual performance verification can only be conducted and
will be scheduled after the entire system construction is completed.

References

[1] S. Wong, S. Vassiliadis and S. D. Cotofana, “Future Directions of (Pro-
grammable and Reconfigurable) Embedded Processors”, In Proc. of the
International Samos Workshop on Systems, Architectures, Modeling, and
Simulation, Jul. 2002.

[2] P. Dillien, “An Overview of FPGA Market Dynamics”, SOCcentral web-
page, 2009.

[3] G. Estrin, Organization of Computer Systems – The Fixed Plus Variable
Structure Computer, In Proc. of the Western Joint Computer Conference,
New York, 1960, pp. 33-40.

[4] G. Estrin, Reconfigurable Computer Origins: The UCLA Fixed-Plus-
Variable (F+V) Structure Computer, IEEE Annals of the History of Com-
puting, vol. 24, no. 4, Oct.-Dec. 2002, pp. 3-9.

[5] N. Bhatia, S. R. Alam, and J. S. Vetter, “Performance Modeling of Emerg-
ing HPC Architectures”, In Proc. of HPCMP Users Group Conference, pp.
367-373, 2006.

[6] J. Fernando, D. Dalessandro, A. Devulapalli, and K. Wohlever, “Acceler-
ated FPGA Based Encryption”, In Proc. of the Cray Users Group Confer-
ence, 2005.

[7] C. B. Cameron, “Using FPGAs to Supplement Ray-Tracing Computations
on the Cray XD-1”, In Proc. of the DoD High Performance Computing
Modernization Program Users Group Conference, pp. 359-363, 2007.

[8] C. Hinkelbein, A. Kugel, R. Manner, M. Muller, M. Sessler, H. Simmler,
and H. Singpiel, “Pattern Recognition Algorithms on FPGAs and CPUs
for the ATLAS LVL2 Trigger”, IEEE Transactions on Nuclear Science,
vol. 48, no. 3, Part 1, pp. 296-301, 2001.

147

148 References

[9] Dinigroup, “www.dinigroup.com”.

[10] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: a high-end
reconfigurable computing system”, IEEE Design and Test of Computers,
vol. 22, no. 2, pp. 114-125, 2005.

[11] A. Tkachenko, D. Cabric, and R. W. Brodersen, “Cognitive Radio Ex-
periments using Reconfigurable BEE2”, In Proc. of the Fortieth Asilomar
Conference on Signals, Systems, and Computers, pp. 2041-2045, 2006.

[12] BEEcube, “www.beecube.com”.

[13] T. Gueneysu, T. Kasper, M. Novotny, and C. Paar, “Cryptanalysis with
COPACOBANA”, Transactions on Computers, pp. 1498-1513, 2008.

[14] O. Mencer, K. H. Tsoi, S. Craimer, T. Todman, W. Luk, and M. Y. Wong,
“CUBE: A 512-FPGA cluster”, In Proc. of the Southern Programmable
Logic Conference, pp. 51-57, 2009.

[15] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs”, In
Proc. of the International Symposium on Field-Programmable Gate Arrays,
Feb. 2006.

[16] S. Lu, P. Yiannacouras, T. Suh, R. Kassa, and M. Konow, “A Desk-
top Computer with a Reconfigurable Pentiumr”, ACM Transactions on
Reconfigurable Technology and Systems, vol. 1, no. 1, Mar. 2008.

[17] P. S. Zuchowski, et al., “A Hybrid ASIC and FPGA Architecture”, In
Proc. of the International Conference on Computer-Aided Design, Nov.
2002.

[18] S. J. Wilton, et al., “Design Considerations for Soft Embedded Pro-
grammable Logic Cores”, IEEE Journal of Solid-State Circuits, vol. 40,
no. 2, Feb. 2005.

[19] F. Sironi, M. Triverio, H. Hoffmann, M. Maggio, and M. D. Santambrogio,
“Self-aware Adaptation in FPGA-based Systems”, In Proc. of the Inter-
national Conference on Field Programmable Logic and Applications, Sep.
2010.

[20] A. Agarwal, “Self-aware Computing”, Massachusetts Institute of Tech-
nology, Final Technical Report, AFRL-RI-RS-TR-2009-161, Jun. 2009.

References 149

[21] C. Kao, “Benefits of Partial Reconfiguration”, Xcell Journal, Fourth
Quarter 2005, pp. 65-67.

[22] E. J. Mcdonald, “Runtime FPGA Partial Reconfiguration”, In Proc. of
2008 IEEE Aerospace Conference, pp. 1-7, Mar. 2008.

[23] C. Choi and H. Lee, “An Reconfigurable FIR Filter Design on a Partial
Reconfiguration Platform”, In Proc. of the First International Conference
on Communications and Electronics, pp. 352-355, Oct. 2006.

[24] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “A Hardware/Software De-
sign Framework for FPGA-based Self-aware Adaptive Computing”, under
submission.

[25] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “A Light-weight Routerless
Network-on-Chip Infrastructure using FPGA Dynamic Reconfigurability”,
under submission.

[26] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “Adaptively Reconfigurable
Controller for the Flash Memory”, Book of Flash Memory, invited book
chapter, InTech, ISBN: 978-953-307-272-2, 2011.

[27] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “Inter-Process Communica-
tions using Pipes in FPGA-based Adaptive Computing”, In Proc. of the
IEEE Computer Society Annual Symposium on VLSI, pp. 80-85, Jul. 2010.

[28] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “Reducing FPGA Reconfig-
uration Time Overhead using Virtual Configurations”, In Proc. of the In-
ternational Workshop on Reconfigurable Communication Centric System-
on-Chips, May 2010.

[29] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “FPGA-based Adaptive Com-
puting Architecture for Correlated Multi-stream Processing”, In Proc. of
the Design, Automation and Test in Europe conference, pp. 973-976, Mar.
2010.

[30] M. Liu, Z. Lu, W. Kuehn, S. Yang and A. Jantsch, “A Reconfigurable
Design Framework for FPGA Adaptive Computing”, In Proc. of the In-
ternational Conference on ReConFigurable Computing and FPGAs, pp.
439-444, Dec. 2009.

[31] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time Partial Reconfig-
uration Speed Investigation and Architectural Design Space Exploration”,

150 References

In Proc. of the International Conference on Field Programmable Logic and
Applications, pp. 498-502, Aug. 2009.

[32] M. Liu, W. Kuehn, S. Lange, S. Yang, J. Roskoss, Z. Lu, A. Jantsch, Q.
Wang, H. Xu, D. Jin, and Z. Liu, “A High-end Reconfigurable Computation
Platform for Nuclear and Particle Physics Experiments”, Computing in
Science and Engineering, vol. 13, no. 2, pp. 52-63, Mar./Apr. 2011.

[33] Q. Wang, A. Jantsch, D. Jin, A. Kopp, W. Kuehn, J. Lang, S. Lange, L.
Li, M. Liu, Z. Liu, Z. Lu, D. Muechow, J. Roskoss, and H. Xu, “Hard-
ware/Software Co-design of an ATCA-based Computation Platform for
Data Acquisition and Triggering”, In Proc. of the IEEE NPSS Real Time
Conference, pp. 485-489, May 2009.

[34] M. Liu, J. Lang, S. Yang, T. Perez, W. Kuehn, H. Xu, D. Jin, Q. Wang,
L. Li, Z. Liu, Z. Lu, and A. Jantsch, “ATCA-based Computation Platform
for Data Acquisition and Triggering in Particle Physics Experiments”, In
Proc. of the International Conference on Field Programmable Logic and
Applications 2008, pp. 287-292, Sep. 2008.

[35] M. Liu, W. Kuehn, Z. Lu, A. Jantsch, S. Yang, T. Perez, and Z. Liu,
“Hardware/Software Co-design of a General-Purpose Computation Plat-
form in Particle Physics”, In Proc. of the IEEE International Conference
on Field Programmable Technology, pp. 177-183, Dec. 2007.

[36] W. Kuehn, C. Gilardi, D. Kirschner, J. Lang, S. Lange, M. Liu, T.
Perez, L. Schmitt, D. Jin, L. Li, Z. Liu, Y. Lu, Q. Wang, S. Wei, H. Xu, D.
Zhao, K. Korcyl, J. T. Otwinowski, P. Salabura, I. Konorov, and A. Mann,
“FPGA-Based Compute Nodes for the PANDA Experiment at FAIR”, In
Proc. of the NPSS Real Time Conference, pp. 1-2, Apr. 2007.

[37] T. Perez, C. Gilardi, M. Liu, and S. Yang, “A FPGA-based Compute
Node for the PANDA Data Acquisition and Trigger System”, In Proc. of
the International Winter Meeting on Nuclear Physics, Apr. 2007.

[38] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “FPGA-based Particle Recog-
nition in the HADES Experiment”, IEEE Design and Test of Computers,
special issue on Design Methods and Tools for FPGA-Based Acceleration
of Scientific Computing, Jul./Aug. 2011 (accepted).

[39] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “FPGA-based Cherenkov
Ring Recognition in Nuclear and Particle Physics Experiments”, In Proc.

References 151

of the International Symposium on Applied Reconfigurable Computing, pp.
169-180, Mar. 2011.

[40] M. Liu, A. Jantsch, D. Jin, A. Kopp, W. Kuehn, J. Lang, L. Li, S.
Lange, Z. Liu, Z. Lu, D. Muenchow, V. Penchenov, J. Roskoss, S. Spataro,
Q. Wang, and H. Xu, “Trigger Algorithm Development on FPGA-based
Compute Node”, In Proc. of the IEEE NPSS Real Time Conference, pp.
478-484, May 2009.

[41] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “System-on-an-FPGA Design
for Real-time Particle Track Recognition and Reconstruction in Physics
Experiments”, In Proc. of the EUROMICRO Conference on Digital System
Design, pp. 599-605, Sep. 2008.

[42] D. G. Kirschner, G. Agakishiev, M. Liu, T. Perez, W. Kuehn, V.
Pechenov, and S. Spataro, “Level 3 Trigger Algorithm and Hardware Plat-
form for the HADES Experiment”, Nuclear Instruments and Methods in
Physics Research A, vol. 598, no. 2, pp. 598-604, 2008.

[43] Z. Lu, M. Liu, and A. Jantsch, “Layered Switching for Networks on
Chip”, In Proc. of the Design Automation Conference, pp. 122-127, Jun.
2007.

[44] High Acceptance Di-Electron Spectrometer (HADES) @ GSI 2008. Darm-
stadt, Germany, “www-hades.gsi.de”.

[45] antiProton ANnihilations at DArmstadt (PANDA) @ GSI 2008. Darm-
stadt, Germany, “www.gsi.de/panda”.

[46] BEijing Spectrometer (BES) @ IHEP 2008. Beijing, China,
“http://bes.ihep.ac.cn/bes3/index.html”.

[47] The Large Hadron Collider (LHC) @ CERN 2008. Geneva, Switzerland,
“http://lhc.web.cern.ch/lhc/”.

[48] Van der Wolf, P. 2007 “ Applications and Memory Organization”, Design
Automation and Test Conference (DATE) Tutorial-NoCs at the Age of six.

[49] I. Froehlich, A. Gabriel, D. Kirschner, J. Lehnert, E. Lins, M. Petri,
T. Perez, J. Ritman, D. Schaefer, A. Toia, M. Traxler, and W. Kuehn,
“Pattern recognition in the HADES spectrometer: an application of FPGA
technology in nuclear and particle physics”, In Proc. of the 2002 IEEE
International Conference on Field-Programmable Technology, pp. 443-444,
Dec. 2004.

152 References

[50] M. Traxler, “Real-time dilepton selection for the HADES spectrometer”,
November 2001, Ph.D thesis, II. Physikalisches Institute of Justus-Liebig-
Universität Giessen.

[51] C. Hinkelbein, A. Kugel, R. Manner, M. Muller, M. Sessler, H. Simmler
and H. Singpiel, “Pattern recognition algorithms on FPGAs and CPUs for
the ATLAS LVL2 trigger”, IEEE Transactions on Nuclear Science, vol. 48,
no. 3, Part 1, pp. 296-301, Jun. 2001.

[52] R. Merl, F. Gallegos, C. Pillai, F. Shelley, B. J. Sanchez and A. Steck,
“High speed EPICS data acquisition and processing on one VME board”,
In Proc. of the 2003 Particle Accelerator Conference, vol. 4, pp. 2518-2520,
May. 2003.

[53] Y. Tsujita, J. S. Lange, and C. Fukunaga, “Construction of a compact
DAQ-system using DSP-based VME modules”, In Proc. of the 11th IEEE
NPSS Real Time Conference, pp. 95-98, Jun. 1999.

[54] M. Drochner, W. Erven, P. Wustner, and K. Zwoll, “The second genera-
tion of DAQ-Systems at COSY”, IEEE Transactions on Nuclear Science,
vol. 45, no. 4, Part 1, pp. 1882-1888, Aug. 1998.

[55] Y. Nagasaka, I. Arai and K. Yagi, “Data acquisition and event filtering
by using transputers”, In Proc. of the Nuclear Science Symposium and
Medical Imaging Conference 1991, pp. 841-844, Nov. 1991.

[56] S. Anvar, F. Bugeon, P. Debu, J.L. Fallou, H. Le Provost, F. Louis, M.
Mur, S. Schanne, G. Tarte and B. Vallage, “The Charged Trigger System
of NA48 at CERN”, Nuclear Instruments and Methods in Physics Research
A, vol. 419, no. 2-3, pp. 686-694, 1998.

[57] A. Gregerson, “FPGA Design Analysis of the Clustering Algorithm for
the CERN Large Hadron Collider”, In Proc. of the IEEE Symposium on
Field Programmable Custom Computing Machines, Apr. 2009.

[58] PCI Industrial Computers Manufactures Group (PICMG), “PICMG 3.0
Advanced Telecommunications Computing Architecture (ATCA) specifi-
cation”, Dec. 2002.

[59] T. Ito, K. Mishou, Y. Okuyama, and K. Kuroda, “A Hardware Resource
Management System for Adaptive Computing on Dynamically Reconfig-
urable Devices”, In Proc. of the Japan-China Joint Workshop on Frontier
of Computer Science and Technology, pp. 196-202, Nov. 2006.

References 153

[60] F. Dittmann and M. Goetz, “Applying Single Processor Algorithms to
Schedule Tasks on Reconfigurable Devices Respecting Reconfiguration
Times”, In Proc. of the 20th International Parallel and Distributed Pro-
cessing Symposium, Apr. 2006.

[61] H. Walder and M. Platzner, “Online Scheduling for Block-partitioned
Reconfigurable Devices”, In Proc. of the Design Automation and Test in
Europe Conference and Exhibition, pp. 290-295, Dec. 2003.

[62] H. Walder and M. Platzner, “Non-preemptive Multitasking on FPGAs:
Task Placement and Footprint Transform”, In Proc. of the 2nd Interna-
tional Conference on Engineering of Reconfigurable systems and Architec-
tures, pp. 24-30, Jun. 2002.

[63] C. Steiger, H. Walder, and M. Platzner, “Operating Systems for Recon-
figurable Embedded Platforms: Online Scheduling of Real-Time Tasks”,
IEEE Transactions on Computers, pp. 1393-1407, Nov. 2004.

[64] H. K. So, A. Tkachenko, and R. Brodersen, “A Unified Hard-
ware/Software Runtime Environment for FPGA-based Reconfigurable
Computers using BORPH”, In Proc. of the 4th International Conference
on Hardware/Software Codesign and System Synthesis, pp. 259-264, Oct.
2006.

[65] F. Duhem, F. Muller and P. Lorenzini, “FaRM: Fast Reconfiguration
Manager for Reducing Reconfiguration Time Overhead on FPGA”, In
Proc. of the International Symposium on Applied Reconfigurable Comput-
ing, pp. 253-260, Mar. 2011.

[66] J. Delorme, A. Nafkha, P. Leray and C. Moy, “New OPBHWICAP In-
terface for Realtime Partial Reconfiguration of FPGA”, In Proc. of the
International Conference on Reconfigurable Computing and FPGAs, Dec.
2009.

[67] S. Liu, R. N. Pittman, and A. Forin, “Minimizing Partial Reconfiguration
Overhead with Fully Streaming DMA Engines and Intelligent ICAP Con-
troller”, Technical Report, MSR-TR-2009-150, Microsoft Research, 2009.

[68] H. Kalte and M. Porrmann, “Context Saving and Restoring for Multitask-
ing in Reconfigurable Systems”, In Proc. of the International Conference
on Field Programmable Logic and Applications, Aug. 2005.

154 References

[69] C. Huang and P. Hsiung, “Software-controlled Dynamically Swappable
Hardware Design in Partially Reconfigurable Systems”, EURASIP Journal
on Embedded Systems, Jan. 2008.

[70] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda, “The Erlangen Slot
Machine: A Dynamically Reconfigurable FPGA-Based Computer”, The
Journal of VLSI Signal Processing, vol. 47, no. 1, pp. 15-31, 2007.

[71] S. Fekete, J. van der Veen, M. Majer, J. Teich, “Minimizing Communica-
tion Cost for Reconfigurable Slot Modules”, In Proc. of the International
Conference on Field Programmable Logic and Applications, Aug. 2006.

[72] Xilinx Inc., “Early Access Partial Reconfiguration User Guide for ISE
8.1.01i”, UG208 (v1.1), Mar. 2006.

[73] Xilinx Inc., “Partial Reconfiguration User Guide”, UG702, May, 2010.

[74] Xilinx Inc., “OPB HWICAP (v1.00.b) Product Specification”, DS280,
Jul. 2006.

[75] Xilinx Inc., “XPS HWICAP (v1.00.a) Product Specification”, DS586,
Oct. 2007.

[76] Xilinx Inc., “ML405 Evaluation Platform User Guide”, UG210, Ma4,
2008.

[77] J. H. Pan, T. Mitra, and W. Wong, “Configuration Bitstream Compres-
sion for Dynamically Reconfigurable FPGAs”, In Proc. of the International
Conference on Computer-Aided Design, Nov. 2004.

[78] Y. Birk and E. Fiksman, “Dynamic Reconfiguration Architectures for
Multi-context FPGAs”, International Journal of Computers and Electrical
Engineering, vol. 35, no. 6, Nov. 2009.

[79] M. Hariyama, S. Ishihara, N. Idobata and M. Kameyama, “Non-volatile
Multi-Context FPGAs using Hybrid Multiple- Valued/Binary Context
Switching Signals”, In Proc. of International Conference Reconfigurable
systems and Algorithms, Aug. 2008.

[80] K. Nambaand H. Ito, “Proposal of Testable Multi-Context FPGA Ar-
chitecture”, IEICE Transactions on Information and Systems, vol. E89-D,
no. 5, May. 2006.

References 155

[81] J. Corbet, A. Rubini, and G. Kroah-Hartman, “Linux Device Drivers
(Third Edition)”, O’REILLY & Associates, Inc., ISBN: 0-596-00590-3.

[82] D. P. Bovet and M. Cesati, “Understanding the Linux Kernel, 3rd Edi-
tion”, O’REILLY & Associates, Inc., ISBN: 0-596-00565-2, Nov. 2005.

[83] M. Stonebraker, U. Cetintemel, and S. Zdonik, “The 8 Requirements of
Real-time Stream Processing”, ACM SIGMOD Record, vol. 34, no. 4, Dec.
2005.

[84] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das, “Evaluat-
ing the Imagine Stream Architecture”, In Proc. of the Annual International
Symposium on Computer Architecture, Jun. 2004.

[85] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson,
and J. D. Owens, “Programmable Stream Processors”, IEEE Computer,
pp. 54-62, Aug. 2003.

[86] U. J. Kapasi, W. J. Dally, S. Rixner, J. D. Owens and B. Khailany, “The
Imagine Stream Processor”, IEEE International Conference on Computer
Design, Sep. 2002.

[87] J. Zhu, I. Sander and A. Jantsch, “Performance Analysis of Reconfigura-
tion in Adaptive Real-time Streaming Applications”, In Proc. of the 6th
Workshop on Embedded Systems for Real-time Multimedia, Oct. 2008.

[88] J. Zhu, I. Sander and A. Jantsch, “Buffer Minimization of Real-Time
Streaming Applications Scheduling on Hybrid CPU/FPGA Architectures”,
In Proc. of Design Automation and Test in Europe, 2009.

[89] J. Zhu, I. Sander and A. Jantsch, “Constrained Global Scheduling of
Streaming Applications on MPSoCs”, In Proc. of the conference on Asia
South Pacific Design Automation, 2010.

[90] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow”, In Proc.
of the IEEE, vol. 75, no. 9, Sep. 1987.

[91] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous
Data Flow Programs for Digital Signal Processing”, IEEE Transactions on
Computers, vol. C-36, no. 1, Jan. 1987.

[92] P. A. Cherenkov, “Visible Radiation Produced by Electrons Moving in a
Medium with Velocities Exceeding that of Light”, Physics Review, vol. 52,
pp. 378-379, Aug. 1937.

156 References

[93] I. Cidon and I. Keidar, “Zooming in on Network-on-Chip Architec-
tures”, Lecture Notes in Computer Science, ISBN: 978-3-642-11475-5, vol.
5869/2010, Jan. 2010.

[94] Arteris Inc., “A comparison of Network-on-Chip and Buses”, White pa-
per, 2005.

[95] A. Agarwal, C. Iskander, and R. Shankar, “Survey of Network on Chip
(NoC) Architectures & Contributions”, Journal of Engineering, Computing
and Architecture, vol. 3, no. 1, 2009.

[96] A. Kumar, A. Hansson, J. Huisken, and H. Corporaal, “An FPGA De-
sign Flow for Reconfigurable Network-Based Multi-Processor Systems on
Chip”, In Proc. of the Design, Automation & Test in Europe Conference
& Exhibition, Apr. 2007.

[97] A. Ehliar, J. Eilert, and D. Liu, “A Comparison of Three FPGA Opti-
mized NoC Architectures”, In Proc. of the Swedish System-on-Chip Con-
ference, May 2007.

[98] B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri, “LiPaR: A
Light-weight Parallel Router for FPGA-based Networks-on-Chip”, In Proc.
of the Great Lakes Symposium on VLSI, Apr. 2005.

[99] A. Kumar, I. Ovadia, J. Huiskens, H. Corporaal, J. van Meerbergen, and
Y. Ha, “Reconfigurable Multi-Processor Network-on-Chip on FPGA”, In
Proc. of the Annual Conference of the Advanced School for Computing and
Imaging, 2006.

[100] A. S. Lee and N. W. Bergmann, “On-chip Communication Architectures
for Reconfigurable System-on-Chip”, In Proc. of the International Confer-
ence on Field-Programmable Technology, Dec. 2003.

[101] IBM Corporation, “The CoreConnect Bus Architecture”,
www.chips.ibm.com, 1999.

[102] ARM Corporation, “AMBA specification”, www.arm.com, 1999.

[103] T. Seceleanu, “Communication on a Segmented Bus Platform”, In Proc.
of the IEEE international SOC conference, Apr. 2004.

[104] W. B. Jone, J. S. Wang, H. I. Lu, I. P. Hsu, and J. Y. Chen, “De-
sign Theory and Implementation for Low-Power Segmented Bus Systems”,
ACM Transactions on Design Automation of Electronic Systems, vol. 8,
no. 1, Jan. 2003.

References 157

[105] F. Arifin, “Implementation and Evaluation of Segmented-Bus Architec-
ture”, Master Thesis, IMIT/LECS-2004-72, Dec. 2004.

[106] K. Sekar, K. Lahiri, A. Raghunathan, and S. Dey, “FLEXBUS: A High-
Performance System-on-Chip Communication Architecture with a Dynam-
ically Configurable Topology”, In Proc. of the Design Automation Confer-
ence, Jun. 2005.

[107] L. Moeller, I. Grehs, N. Calazans, and F. Moraes, “Reconfigurable Sys-
tems Enabled by a Network-on-Chip”, In Proc. of the International Con-
ference on Field Programmable Logic and Applications, Aug. 2006.

[108] M. B. Stensgaard and J. Sparso, “ReNoC: A Network-on-Chip Architec-
ture with Reconfigurable Topology”, In Proc. of the Second ACM/IEEE
International Symposium on Network-on-Chip, Apr. 2008.

[109] V. Rana, D. Atienza, M. D. Santambrogio, D. Sciuto, and G. D.
Micheli, “A Reconfigurable Network-on-Chip Architecture for Optimal
Multi-Processor SoC Communication”, In Proc. of the 16th IFIP/IEEE
International Conference on VLSI and System-on-Chip, Oct. 2008.

[110] B. Ahmad, A. T. Erdogan, and S. Khawam, “Architecture of a Dynam-
ically Reconfigurable NoC for Adaptive Reconfigurable MPSoC”, In Proc.
of the First NASA/ESA Conference on Adaptive Hardware and Systems,
Jun. 2006.

[111] J. Shen, C. Huang, and P. Hsiung, “Learning-based Adaptation to Appli-
cations and Environments in a Reconfigurable Network-on-Chip”, In Proc.
of the Design, Automation & Test in Europe Conference & Exhibition,
Mar. 2010.

[112] M. Modarressi, A. Tavakkol, and H. Sarbazi-Azad, “Virtual Point-to-
Point Connections for NoCs”, IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 29, no. 6, Jun. 2010.

[113] A. Hemani and M. A. Shami, “Move Logic Not Data : A Conceptual
Presentation”, In Proc. of the First International Workshop on Network
on Chip Architectures, Nov. 2008.

[114] M. Liu, “Improving the Performance of a Wormhole Router and Worm-
hole Flow Control”, Master Thesis, IMIT/LECS-2005-80, Royal Institute
of Technology, Sweden, Dec. 2005.

158 References

[115] A. A. Chien, “A Cost and Speed Model for K-ary N-cube Wormhole
Routers”, In Proc. of Hot Interconnects, Aug. 1993.

[116] L. S. Peh and W. J. Dally, “A Delay Model for Router Microarchitec-
tures”, IEEE Micro, vol. 21, no. 1, Jan./Feb. 2001.

[117] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal Network on
Chip: Concepts, Architectures, and Implementations”, IEEE Design and
Test of Computers, vol.: 22, no. 5, Sep./Oct. 2006.

[118] K. Paulsson, M. Huebner, S. Bayar, and J. Becker, “Exploitation of Run-
time Partial Reconfiguration for Dynamic Power Management in Xilinx
Spartan III-based Systems”, In Proc. of the International Workshop on
Reconfigurable Communication-centric System-on-Chip, Jun. 2007.

[119] N. Manjikian and E. Cote, “Implementation of a Configurable Crossbar
Switch for Prototyping of Single-Chip Multiprocessors”, In Proc. of the
IEEE North-East Workshop on Circuits and Systems, Jun. 2006.

[120] B. Hong, K. Cho, S. Kang, S. Lee, and J. Cho, “On the Configurable
Multiprocessor SoC Platform with Crossbar Switch”, In Proc. of the IEEE
Asia Pacific Conference on Circuits and Systems, Dec. 2006.

[121] W. J. Dally and B. Towles, “Principles and Practices of Interconnection
Network”, Morgan Kaufmann, ISBN 13: 978-0-12-200751-4, Dec. 2003.

[122] N. Chin-Ee and N. Soin, “A Study on Circuit Switching Merits in the
Design of Network-on-Chip”, In Proc. of the International Conference on
Computer and Communication Engineering, May. 2010.

[123] M. Lis, K. S. Shim, M. H. Cho, and S. Devadas, “Guaranteed In-order
Packet Delivery using Exclusive Dynamic Virtual Channel Allocation”,
MIT CSAIL Technical Report, MIT-CSAIL-TR-2009-036, 2009.

[124] R. Mullins, A. West, and S. Moore, “The Design and Implementation of
a Low-Latency On-Chip Network”, In Proc. of the Asia and South Pacific
Conference on Design Automation, Jan. 2006.

[125] Xilinx Inc., “Virtex-4 FPGA Configuration User Guide”, UG071, Apr.
2008.

[126] S. Liu, R. N. Pittman, and A. Forin, “Energy Reduction with Run-Time
Partial Reconfiguration”, Technical Report of Microsoft Research, MSR-
TR-2009- 2017, Sep. 2009.

References 159

[127] R. Shashikumar and L. C. S. Gouda, “Self-healing Reconfigurable FPGA
Based Fault Tolerant Security Model for Shared Internet Resources”, In
Proc. of the International Journal of Computer Science and Network Se-
curity, vol. 9, no. 1, Jan. 2009.

[128] A. Akoglu, A. Sreeramareddy, and J. G. Josiah, “FPGA based Dis-
tributed Self healing Architecture for Reusable Systems”, Cluster Comput-
ing, vol. 12, no. 3, pp. 269-284, 2009.

[129] H. Psaier and S. Dustdar, “A Survey on Self-healing Systems: Ap-
proaches and Systems”, Computing, ISSN (Print) 1436-5057, ISSN (On-
line) 0010-485X, Nov. 2010.

[130] D. Koch, C. Beckhoff, and J. Teich, “Minimizing Internal Fragmen-
tation by Fine-grained Two-dimensional Module Placement for Runtime
Reconfigurable Systems”, In Proc. of the IEEE Symposium on Field Pro-
grammable Custom Computing Machines, 2009.

[131] D. Koch, C. Beckhoff, and J. Torrison, “Fine-grained Partial Runtime
Reconfiguration on Virtex-5 FPGAs”, In Proc. of the IEEE Symposium on
Field Programmable Custom Computing Machines, 2010.

[132] A. X. Widmer, P. A. Franaszek, “A DC-Balanced, Partitioned-Block,
8B/10B Transmission Code”, IBM Journal of Research and Development,
vol. 27, no. 5, 1983, pp. 440-451.

[133] Xilinx, Inc., Multi-Port Memory Controller (MPMC) (v4.01.a), DS643,
March 12, 2008.

[134] J. Lehnert, et al., Ring Recognition in the HADES Second-level Trigger,
Nuclear Instruments and Methods in Physics Research A 433, pp. 268-273,
1999.

[135] J. Lehnert, et al., Performance of the HADES Ring Recognition Hard-
ware, Nuclear Instruments and Methods in Physics Research A 502, pp.
261-265, 2003.

