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Abstract

As an emerging and advanced technology, Network-on-Chip (NoC) may be-
come the alternative of the traditional bus-based System-on-Chip (SoC). In
an interconnection network structure, interconnected routers are the core of
the whole system and the network’s performance mainly depends on their
performance. There are many significant factors which determine the work-
ing mechanism of a router and its performance, such as topology, switching
strategy, routing algorithm, and flow control mechanism. The research topic
of this thesis, wormhole flow control, is an excellent flow control mechanism
and widely used in interconnection networks.

One purpose of this thesis is to enhance the performance of previous
wormhole virtual-channel router implementations. The improvement applies
to different flit-admission and flit-ejection models. Synthesis results show
that the speed of the previous wormhole router is increased from 76 MHz to
200 MHz, and the number of gate counts is reduced by 13.5%.

The other purpose of the project is to enhance the performance of worm-
hole virtual-channel router in general. Traditional wormhole routers arbi-
trate link usage flit-by-flit. By logically partitioning the flits of packets into
groups, we propose a new flow control mechanism which arbitrate link usage
group-by-group. This method makes efficient use of buffers, leading to re-
duced latency and improved network throughput. Its feasibility is validated
not only from theoretical analysis, but also from a great deal of simulation
results. In addition, synthesis results regarding speed and area show minimal
implementation overhead.
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Sammanfattning

Network-on-Chip (NoC), en avancerad teknologi p̊a framfart som kan komma
att bli ett alternativ till dagens traditionella bussystemsbaserade System-
on-Chip (SoC). I en kommunikations nätvärk struktur är kommunicevarde
switchar kärnan av hela systemet och nätverkets prestanda beror främst p̊a
deras prestanda. Det finns många viktiga faktorer som avgör en switchar
arbetsmekanism och dess prestanda; som topologi, switch strategi, routing
algoritm och flödes kontroll mekanism.Detta examensarbete tar upp worm-
hole flödes kontroll som är en utmärkt flödes kontroll mekanism och används
ofta i kommunikations nätvärk.

En anledning till detta examensarbete är att förbättra prestanda av tidi-
gare wormhole victuell-kanal switch implementeringar. Förbättringen tillämpar
olika flit-admission och flit-ejection modeller. Syntes resultaten visar att
hastigheten av tidigare wormhole switch har ökat fr̊an 76MHz till 200MHz
och antalet grindar har minskat med 13.5%.

Den andra anledningen är att generellt förbättra prestanda av victuell-
kanal switch. Traditionella wormhole routrar tilldelas användning av länk
flit-för-flit. Genom att partitionera flits fr̊an paket i grupper föresl̊ar vi
en ny flödes kontroll mekanism som tilldelar användning av länk grupp-
för-grupp. Denna metod utnyttjar buffrarna effektivt vilket leder till min-
skad fördröjning och förbättrad genomsläpplighet av nätverket. Metoden är
bekräftad b̊ade med teoretisk analys och med simulerings resultat. Utöver
detta visar även syntes resultaten av hastighet och area en minimal imple-
menterings overhead.
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Chapter 1

Background

1.1 Network-on-Chip

Nowadays System-on-Chip (SoC) technology has matured and been widely
used in many areas. In SoC technology buses and point-to-point connections
are two main means to connect some components for communicating. Point-
to-point connections are not efficient because of their extremely complex
structure when many components want to communicate with each other.
Buses are attractive because they provide high performance interconnections
while they can still be shared by several communication partners [2]. So for
a long time buses have been the primary structures when a digital system
is integrated on a single silicon die. While as the development of silicon
technology and increasing of system complexity, many problems related to
buses have appeared and need to be solved. First, it is not possible for buses
to scale to a large system which includes too many components. Normally
buses can efficiently connect 3-10 communication partners [2]. Too many
components will degrade the efficiency of communication because they share
the same bus to communicate. Second it is not easy to predict the behavior
of an individual component because of the sharing of buses with others. Also
from the physics of deep submicron technology, long, global wires and buses
become undesirable due to their low and unpredictable performance, high
power consumption and noise phenomenon [2]. So long wires in layout should
be avoided while buses always mean long wires. Moreover every system has
a different communication structure and it make reuse difficult [2].

Fortunately networks are good alternatives of buses which could conquer
the shortcomings above and give out better performance. Figure 1.1 shows
a typical structure of network. In this figure, R represents ‘Resource’ and
S represents ‘Switch’. Adjacent nodes are connected with each other by
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Figure 1.1: A typical 2D mesh structure of network.

switches or routers. Resources communicate with the network through an
interface called ‘Resource Network Interface’ (RNI). In the network, resources
can be any kind of IP such as processor core, DSP core, memory, FPGA or
ASIC, etc.. Each resource is connected to a switch or router and transmits
data with other resources through routers and channels.

It is easy for a network to include some tens or even more components
because of no common buses to be shared to communicate with each other.
Instead, one router is assigned to a corresponding resource to transmit and
receive data. Because of this structural characteristic networks can be scaled
with new resources easily. Also on the layout level we can avoid long inter-
connection wires which may generate many serious problems such as high
power consumption and noise, etc.. There are still many advantages with
the network structures built on chip and then many research groups have
dedicated to this new subject in recently years.

1.2 Wormhole and Virtual Channel Flow Con-

trol

1.2.1 Wormhole Flow Control

Flow control determines how the resources of a network such as channel
bandwidth and buffer capacity are allocated to packets traversing a network.

2



A good flow control method allocates these sources in an efficient manner
so the network achieves a high fraction of its ideal bandwidth and delivers
packets with low, predictable latency [3].

Wormhole flow control is a typical flit-buffered flow control which al-
locates channel bandwidth and buffers at a flit level. In this mechanism,
packets are divided into flits which are basic units in the process of advanc-
ing from source to destination node, as shown in figure 1.2. Wormhole flow

Packets

HB1T B2Flits

Figure 1.2: Packets are divided into flits.

control operates in the condition that channels and buffers are allocated to
flits rather than packets. When the head flits arrive at a node, they must
acquire three resources before they can be forwarded to the next hop along
a route: a virtual channel for the packet, one flit buffer and bandwidth cor-
responding to one flit. Body flits then use the virtual channel acquired by
the head flit and have to acquire one flit buffer and bandwidth to route. Tail
flits behave like body flits, but release the virtual channel allocated to the
packet. These flits of the message are transmitted through the network in
a pipelined fashion. The main advantage derives from the pipelined mes-
sage flow, since transmission latency is insensitive to the distance between
the source and the destination [4]. Moreover, because of the buffering at flit
level, buffers are well utilized and much chip area is saved when integrated.
The process of a packet (4 flits) going through a typical wormhole router is
shown as figure 1.3 [3]. Referring to the figure, in (a) the header arrives at
the node, while the virtual channel is in the idle state (I) and the desired
upper (U) output channel is busy — allocated to the lower (L) input. In (b)
the header is buffered and the virtual channel is in the waiting state (W),
while the first body flit arrives. In (c) the header and first body flit are
buffered, while the virtual channel is still in the waiting state. In this state,
which persists for two cycles, the input channel is blocked. The second body
flit cannot be transmitted, since it cannot acquire a flit buffer. In (d) the
output virtual channel becomes available and allocated to this packet. the
state moves to active (A) and the head is transmitted to the next node. The
body flits follow in (e) and (f). in (g) the tail flit is transmitted and frees
the virtual channel, returning it to the idle state.
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Figure 1.3: A 4-flit packet going through a wormhole router from the upper
input port to the upper output port.
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The distribution of flits in wormhole flow control is shown as figure 1.4.

B2

Router 3 Router 2 Router 1

B1T H

Figure 1.4: Distribution of flits in wormhole flow control.

1.2.2 Virtual Channel Flow Control

Virtual channel flow control, which associates several virtual channels (chan-
nel state and flit buffers) with a single physical channel, overcomes the block-
ing problems of wormhole flow control by allowing other packets to use the
channel bandwidth that would otherwise be left idle when a packet blocks [3].
Its work mechanism is stated as below.

From the figure 1.5 (a), we can recognize that with wormhole flow control,
when a packet B is blocked, channel p and q are left idle and cannot be used
by A because of the unique virtual channel associated with channel p and
allocated to packet B. This is a large waste of the channel bandwidth resource
which is very precious in the network. To solve this problem, virtual channel
flow control is introduced and multiple virtual channels are associated with
a same physical channel. Referring to the figure 1.5 (b), with virtual channel
flow control, packet A is able to proceed over channels p and q by using a
second virtual channel associated with channel p when packet B is blocked.

Due to the advantage of using multiple virtual channels to solve the block-
ing problem, wormhole flow control is normally used with multiple virtual
channels, combined with virtual channel flow control. A wormhole router
with only one virtual channel in each physical channel is not practical and
seldom used. So in this report, without special mentioning, the term of
‘wormhole’ should be referred as the combination of wormhole and multiple
virtual channels.

1.3 Project Objective

Interconnected routers compose the basic structure of a network and they
are the core of network. To a large degree, the performance of the network

5
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Figure 1.5: Comparison of channel bandwidth use with wormhole and virtual
channel flow control.

depends on the performance of routers. And flow control mechanism is one
of the most significant factors that determine the router’s performance. So
choosing a reasonable flow control method and designing a high performance
router are key points for realizing a successful network.

Based on the previous work, a decoupled-psink wormhole router model
should be enhanced to a practical maximum operation speed without much
additional area consumption. Also, the other three models, coupled-psink,
decoupled-ideal, coupled-ideal models should be implemented in hardware at
the updated high circuit speed. Area consumption and timing reports could
be recorded for comparison after synthesis.

Although an excellent mechanism and widely used in the interconnection
networks, wormhole flow control still has some disadvantages which have
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adverse effect on the performance of routers. In this thesis, its working
mechanism should be deeply investigated and new flow control methods are
expected to solve these problems. Large amount of experiments are also
needed to be performed for revealing the improvement of new mechanisms
and the tradeoff of hardware implementation.

1.4 Structure of this thesis

• Chapter 1 Background knowledge introduction. The concept of Network-
on-Chip (NoC) is first introduced. Also the scheme under discussion
in this thesis project, wormhole and virtual channel flow control mech-
anisms are explained roughly. Finally, problems to be solved are listed
in the end of this chapter.

• Chapter 2 The original model of previous work is enhanced to a much
higher operation speed. Synthesis results are listed to present the area
and timing information when implemented in hardware. Also other
three wormhole router models are implemented in hardware at the
modified circuit speed.

• Chapter 3 Deep investigation and analysis to the canonical wormhole
flow control reveal the problems that worsen the router’s performance.
Then new mechanism is introduced and validation executed not only
from the theoretical analysis, but also the practical experiment. Finally
hardware implementation results of the new flow control router model
are presented compared with the canonical wormhole model.

• Chapter 4 Summary for the whole thesis work. Conclusions are drawn
and future work is discussed in this chapter.
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Chapter 2

Performance Improvement of a
Wormhole Router

2.1 Four Models of Wormhole Routers

For a wormhole router, there are two admission models: decoupled admission
and coupled admission [5]. Two ejection models: ideal sink and p-sink [6].
From the admission aspect, if the packet in one admission lane could be
routed to any output physical channel, it is called a decoupled admission
model. In contrast, if the packet could only be routed to a specific direction or
output physical channel, it is called coupled admission. These two admission
models are shown in figure 2.1 and 2.2.

In the packet ejection part, the model in which each virtual channel at
the input channels has its own sink lane, is called ideal sink model, shown
in figure 2.3. In this model, if there are p physical channels and each has v
lanes, the total number of sink lanes needed is p ∗ v. If all virtual channels
sharing a same input physical channel use one lane to sink and only p sink
lanes are needed in total, this is the model called p-sink. Figure 2.4 shows
the structure of this type. It’s easy to see that p-sink model could save many
buffers compared with the ideal sink model, from p ∗ v to p.

According to different combinations of admission and ejection methods,
there exist four models of wormhole routers in total: decoupled-psink, coupled-
psink, decoupled-ideal, and coupled-ideal.
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Figure 2.1: Structure of the decoupled admission model.

2.2 Investigation of the Previous Implemen-

tation

A canonical decoupled-psink wormhole router model has been implemented
in VHDL by Mr. Bei Yin. For easy integration in NoC, dimension-order
routing, wormhole with multiple virtual channels flow control, Round-Robin
allocation and arbitration mechanisms are adopted in his design. Detailed
information could be referred to in his thesis [4].

Although realized, the performance of hardware implementation of his
design is not so satisfied for practical use due to a low hardware operation
speed. As shown in the report [4], a decoupled-psink router could run at
the data clock frequency of 76 MHz at most when optimized for timing by
Synopsys DC (The technology is 180nm and the library is UMC18.). Also,
consumed gate numbers are listed there.

Before commence on the modification of the original design, large amount
of time was devoted into investigating the program code and analyzing the
synthesized results of each module in the design. First, each module of the
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design was synthesized and optimized for timing separately to get a rough
overview of the whole design to be improved. When all results were collected,
a fact was revealed that three modules contained large logic blocks between
registers and generated long critical pathes. These modules are: arbiter,
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allo next, and allo sink. (There is a figure in Appendix A to show the
code structure of the design.) And the critical pathes generated by them
may become the bottleneck of the whole design, restricting the maximum
operation speed. So to improve the speed of the wormhole router, large logic
blocks in these three modules must be simplified or separated.

There are different mechanisms to realize the arbitration and allocation
operations [3]. In the original design of Bei’s, a ‘perfect’ mechanism is used
during the process of allocating resources to requesters. (In fact, arbitration
is also a process of allocating switching to requesters in virtual channels.)
We call it ‘perfect’ because it is a maximum matching, allocating the maxi-
mum possible number of resources to requesters [3]. In theory, this is surely
the most efficient allocation method that will lead to a good network per-
formance without any waste. This method is realized in VHDL by complex
nested ‘loop’ and ‘if’ structures: If there is an available resource needed by a
higher priority requester, it will be allocated to this requester and a flag will
be set representing that it will never be available for other requesters until
released. Then for a lower priority requester’s turn in the same clock cycle,
the requester may also need this resource while it is not available. So only
other left resources which are still available could be allocated to the lower
priority requester. Thus from the highest priority requester to the lowest
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one, matching operation is executed by a priority sequence within a single
clock cycle and maximum allocating is done for all requesters.

However, it is just this ‘perfect’ mechanism and the software-like coding
style that introduce long combinational logic into hardware implementation
and generate critical path: For a certain priority requester, the allocation re-
sult is not only dependent on the request signals and the status signals of the
resources, but also the allocation results from the higher priority requesters.
If the higher priority requesters have been engaged in some resources, these
resources are set unavailable. Signals representing their unavailability will
take part in the allocation process of the lower priority requester as late ar-
riving signals. Each allocation process is realized by some logic structure and
the dependency of each allocated result among all requesters generates a long
logic chain between registers and thus critical path, as shown in figure 2.5.

LC_1

LC_2

LC_n

.

.

.

req_1

req_2

req_n

gra_1

gra_2

gra_n

lane_status

if_allocated_1

if_allocated_2

if_allocated_n

Highest Priori ty

Lowest Priori ty

Long Logic Chain (Cri tical  Path)

FF

FF

Figure 2.5: Long logic chain generated in the original design.
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2.3 An Enhanced Implementation

To shorten the critical pathes of the three modules: arbiter, allo next, and
allo sink, long logic chains must be broken into pieces or the allocation
processes executed in parallel and independently for each requester. From
this point, it is not easy to realize the original maximum allocation method
with short logic path due to its complex algorithm.

A simple mechanism is then considered to substitute the complex one.
Let’s talk about the arbiter module first. Instead of the direct matching
between the requesters in each lane and the requested link resources, two
levels of arbitrations are adopted to make the allocation in parallel [7][8]. As
shown in figure 2.6, requesters from the lanes sharing a same input physical
channel of crossbar will arbitrate for the link bandwidth resource to switch.
Only at most one lane could be chosen to use the link. This is the first
level arbitration, shown as arb1 in the figure. For the requesters from the
admission channels, there is no arb1 because each admission lane doesn’t
share a link with others. After arb1, the winners will be combined with their
corresponding signals, routing result and sink allo result to generate request
signals for the second level arbitration. If they are routed to a certain output
channel or sink channel, the corresponding signal will be set high to show the
request. Then the second level arbitration for each output or sink channel is
executed among the requesters of the winners from different crossbar inputs.
This is a reasonable allocation mechanism because there is only one lane
winner for each input channel and output or sink channel of crossbar. No
confliction will happen.

Similarly, allo next and allo sink modules are also realized by two-level
arbitrations for allocating the next or sink lanes to requesters. Their struc-
tures are shown in figure 2.7 and 2.8. In these allocation modules, the first
arbitration is adopted to limit the requests for all the next possible lanes be-
longing to a same physical channel or all sink lanes to only one. The second
arbitration then relate one next or sink lane to only one requester.

How about the performance or efficiency of the two-level arbitration al-
location mechanism compared with the direct maximum matching method
used in the original design? Will this new method worsen the system per-
formance a lot? The simulation results could answer this question. Some
parameters of the network for simulation are:

• Mesh size: 4 x 4

• Number of VCs per PC: 4

• Number of admission VCs: 4
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• Number of sink VCs: 4

• Number of flits per packet: 4

• Depth of VC buffers: 4

• Injection rate (1 packet/n cycles, step=1): 1-30
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Figure 2.9: Latency comparison of the routers with different allocation mech-
anisms.

Figure 2.9 and 2.10 present the comparison of the latency and network
delivery time characteristics between the routers with two different alloca-
tion mechanisms. Figure 2.11 shows the throughput comparison. (These
parameters are all representations of the network performance. There are
more detailed definition and explanation in the next chapter of this report.)
Detailed and clear figures are collected and listed in table 2.11 for compar-
ing. From the figures and data in table, the conclusion could be drawn that
the newly adopted two-level arbitration allocation method will not exacer-
bate the performance of the whole system a lot. Only little reduction in the

1In this table, all parameter values are calculated from data collected when the network
is stable. That is, without data in network warm-up and cool-down periods, these values
are calculated. Also, ‘average latency’ and ‘delivery time’ refer to the typical values before
saturation, or called the ‘normally working area’ of a network. In this report, when these
parameters are listed or talked about again, the same ways are followed.
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maximum network load and throughput (2.5% and 3.6%). And even some
improvement in average latency and network delivery time before saturation
(Although it may not be improvement in fact, at least not great decrement in
performance.). In summary, because of the little decrement in performance
and great improvement in hardware speed, two-level arbitration allocation
method is prove to be practical and efficient instead of the original one.

Average
latency
(cycles)

Average
delivery
time
(cycles)

Max network
load (fraction
of link capac-
ity)

Max through-
put (packet/-
cycle/node)

router with maxi-
mum matching al-
location method

41.2 37.2 0.601 0.168

router with two-
level arbitration al-
location method

40.9 36.9 0.586 0.162

Performance decre-
ment (%)

-0.73% -0.81% 2.5% 3.6%

Table 2.1: Performance comparison of routers with two different allocation
mechanisms.

In addition to the structure modification to the three modules, some
coding styles were also paid much attention to achieve a fast hardware im-
plementation [10] [11]. For example, the widely used construct of nested ‘if’
statements has been given deep consideration. Normally an ‘if’ statement will
result in a multiplexer (mux) when synthesized. Different arrangements of
these VHDL statements will result in different circuit structures with differ-
ent area and timing. So when coding the design, try to imagine the hardware
structure of the VHDL statements and choose the one you want. In another
word, think in hardware, not like software programming.

2.4 Synthesis Result Comparison

After the modification to the whole design and function validation, the mod-
ified decoupled-psink wormhole router was synthesized by Synopsys DC. The
technology library is UMC18 (180nm) and in this technology a NAND gate
consumes 12.197µm2. The results of area consumption and timing are listed
in table 2.2, compared with the original design. Both designs have 4 virtual
channels in a physical channel and 4 admission and sink channels. From the
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figures in the table, we can see the great improvement in timing field, also
even the reduction of area consumption.

Original design Modified design Improvement (%)
Crossbar 2533 gates 2549 gates 0%
Arbiter 13087 gates 6212 gates 52.5%
Other logic 45242 gates 43909 gates 2.9%
Whole design2 60862 gates 52670 gates 13.5%
Max HW speed
(ctrl clk/data clk)

152/76 MHz 396/198 MHz 160.5%

Table 2.2: Area and timing comparison between the original decoupled-psink
wormhole router and the modified version.

2.5 Implementations of the Other Three Mod-

els

The other three models: coupled-psink, decoupled-ideal, and coupled-ideal
wormhole routers were then realized following the similar structure of the
decoupled-psink model mentioned above. Especially, the modules of arbitra-
tion and allocation use the same two-level arbitration mechanism to ensure
high operation speeds.

Not like the decoupled model, in the coupled admission model, routing
must be done before a packet enters one admission lane. Because each admis-
sion lane is only associated with one output physical channel, the exact lane
corresponding to the required output must be chosen to hold the packet after
the routing algorithm. In the ideal sink model, each virtual channel has its
own sink lane. These lanes do not need to be connected with the crossbar as
in the p-sink model. They are demuxed with the crossbar’s inputs. Packets
in virtual channels could either sink directly or traverse the crossbar to go
ahead. Detailed structure is referred to in figure 2.3 shown at the beginning
of this chapter.

After synthesis, the area and timing information is listed in table 2.4 for
reference. As mentioned before, the FIFOs from Altera library are used and
they are not included in the synthesis result. So the buffer consumptions
here are estimated manually. The buffer units in the admission, input and

2Since the FIFOs from Altera library are used, they are not counted in the synthesis
result [4]. So the area consumption of the whole design does not include the buffers in
input and admission lanes.
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sink VCs are counted and the results are the product of the counted number
and the area consumption of a storage unit in the technology library. In the
library of UMC18, the cell of DFFRSPB1 which is probably the storage unit
in the lanes consumes an area of 101.639999. A NAND gate consumes an
area of 12.197. The total gate consumption of buffers could be calculated by
the following formulas:

total fifo = input fifo + admi fifo + sink fifo (2.1)

input fifo = data width ∗ depth ∗ V C number ∗ PC number

∗ 101.6/12.197 (2.2)

admi fifo = packet fifo + flit fifo

= (packet data width ∗ packet depth

∗ packet admi V C number + flit data width

∗ flit depth ∗ flit admi V C number)

∗ 101.6/12.197 (2.3)

p sink fifo = data width ∗ depth ∗ sink V C number

∗ 101.6/12.197 (2.4)

ideal sink fifo = data width ∗ depth ∗ V C number ∗ PC number

∗ 101.6/12.197 (2.5)

data width depth VC number PC number
input fifo 303 2 4 4
packet admi fifo 112 2 4 none
flit admi fifo 30 3 4 none
sink fifo (p-sink) 28 3 4 none
sink fifo (ideal ejection) 28 3 4 4

Table 2.3: Parameters for calculating the buffer consumption.

For the four router models, the buffer numbers in the input channels
(input fifo) and admission channels (admi fifo) are the same. The differ-
ence is located in the sink buffers because the ideal ejection model has
more sink lanes and then more buffers (ideal sink fifo) than the p-sink model
(p sink fifo). Providing the practical parameters (listed in table 2.3) into the
formulas above, we can reach the results of 7997 gates for the input channel
buffers, 10462 gates for the admission channel buffers, 2799 gates for the

3Although the datapath is 32-bit wide in the design, there are some overhead bits which
do not need to be buffered in FIFOs.
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sink channel buffers in the p-sink model and 11195 gates in the ideal ejection
model, the sums of which (total fifo) are listed in the row labled ‘buffer’ in
table 2.4.

More detailed information about the performance comparison of the four
wormhole router models could be accessed in Zhonghai’s papers [5] and [6].

decoupled-
psink

coupled-
psink

decoupled-
ideal

coupled-
ideal

Crossbar 2549 gates 1485 gates 1280 gates 817 gates
Arbiter 6212 gates 5691 gates 3603 gates 3620 gates
Allo next 12604 gates 12604 gates 12604 gates 12604 gates
Allo sink 3109 gates 3109 gates 527 gates 527 gates
Other logic 28196 gates 24754 gates 48161 gates 44390 gates
Buffer 21258 gates 21258 gates 29654 gates 29654 gates
Whole design 73928 gates 68901 gates 95829 gates 91612 gates
Max HW speed
(ctrl clk/data
clk)

396/198
MHz

400/200
MHz

396/198
MHz

400/200
MHz

Table 2.4: Area and timing reports of the routers with different admission
and sink models.

21



Chapter 3

Development of the
Flit-grouped Mechanism

3.1 Investigation of the Wormhole Flow Con-

trol

3.1.1 Flit Level Link Arbitration

Wormhole flow control is a well-known switching technique and widely used
in parallel computers and Network-on-Chips. It has good performance due to
pipelined transmission of flits. In wormhole flow control, buffers and channels
are allocated to flits rather than packets. So it has small buffer requirement
since each switch stores flits instead of packets.

The most distinct character of wormhole flow control is the flit level link
arbitration. In this mechanism, all flits must compete for accessing the chan-
nel bandwidth before they could advance to the next node. That is, each flit
arbitrates to pass itself and the link resources are allocated at flit level. This
method generates a contrast with the one at packet level, such as the packet
level arbitration mechanism used in the virtual cut-through flow control.

There are many kinds of arbitration policies: fixed priority arbitration,
rotating priority arbitration, random priority arbitration, Round-Robin arbi-
tration, weighted Round-Robin arbitration, least recently used policy, etc. [3]
[12]. They are all practical policies and could be used as the arbitration or
allocation schemes in the wormhole flow control. While no matter which
policy is chosen in the wormhole arbiter, links are allocated at flit level.

22



3.1.2 Problem Description

Latency and throughput are two most important parameters which represent
the performance of a particular network. Latency is defined as the time
required for a message to traverse a network, from the time head arrives at
the input port to the time tail departs the output port. Throughput is the
data rate in bits per second that the network accepts per input port [3]. Much
work has been done and many models have been proposed for improving these
parameters and the performance of the network.

Through deep investigation of the canonical wormhole model, we found
some problems which have negative effect on the performance of the network.
They are related to the flit level arbitration scheme. Because buffers are allo-
cated at packet level while links at flit level, the flits of a packet are switched
independently, i.e., not synchronized. As a consequence, flits belonging to
the same packet may be distributed in a long range along the path from the
source to the destination node. Also along this path, buffers which have been
allocated to this packet by the head flit may be left idle (Body or tail flits
may not win link arbitrations at the same switching cycle and keep waiting
in the original positions.), resulting in buffer or link under-utilization.

As shown in figure 3.1, body flit B11 of a packet cannot win the link
arbitration competing with other flits (Shown in the figure, body flit B22
of another packet wins.), while the head flit H1 is lucky enough to keep
advancing and allocating buffers along the path for the whole packet. Because
of B11’s continuous losing in link arbitration and no advancing, buffers along
the path are allocated but kept idle. Also if there is no other flits in node
2 which apply for link 2, this link will also be kept idle and wasted. The
waste of precious buffer and link resources in the network will result in bad
throughput and latency performance.

B11B12

B22T2

B21

T1 H
1

Blocked

Node 1 Node 2 Node 3

.

.
.
.

.

.

A llocated but idle

A llocated but idle

Source node Destination node

Admission channel
Sink channellink 1 link 2

idle

H
2

Figure 3.1: Buffer and link under-utilization scenario of canonical wormhole
router.
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On the other hand, the design of a wormhole router is not a single cycle
design [4]. No matter what type the flit is, head, body or tail flit, it will
consume multiple clock cycles for a flit to traverse a wormhole router or
node. There are many FSM states which contribute to the multiple cycle
consumption, such as routing, virtual channel allocation, virtual channel
scheduling, and link arbitration, etc.. For a head flit, it must experience the
stages of routing, virtual channel allocation and link arbitration to finally
enter the next node. For a body or tail flit, the stages are virtual channel
scheduling and link arbitration [4]. Except for the waiting time when a flit
is blocked and cannot go ahead, the cycle or time consumption of traversing
a node to the next one contributes a lot to the latency of a packet.

For the flit level switching in the canonical wormhole flow control, each
flit (no matter head, body or tail flit) must experience a link arbitration
stage to access the channel bandwidth. In fact this is a waste of clock cycles
compared with other packet level flow controls such as virtual cut-through.
(In the packet level arbitration mechanism, the arbitration stage is executed
only once by the head flit and then the link will be reserved for the whole
packet.) Also, in addition to the lane allocation by head flits, body and tail
flits need schedule to check the status of the next lanes before they arbitrate
for advancing. These complex but necessary stages in the wormhole flow
control are all factors which induce multiple clock cycle consumption when
traversing a node. And if these stages could be simplified and reduced, much
time will be saved.

3.2 New Mechanism Development

Through theoretical analysis of the canonical wormhole model, we have ar-
rived at the conclusion that link arbitration at flit level consumes much time
for flits to wait in buffers and asynchronous moving of worms (flits) waste
precious buffer and link resources by allocating buffers while leaving them
idle. To improve the performance of a canonical wormhole router, these are
two main aims which should be focused on and solved.

After much analysis and thinking, a flit-grouped mechanism was proposed
to eliminate the disadvantages. The inspiration came from the life. We can
imitate the process of worm advancing to a real life event: A team of children
are checking in aboard to travel abroad on vacation. They must experience
some procedures to sit in their seats in the airplane. Also there are many
other passengers who will compete with this team to check in. This is just
similar to the process of a packet routing from the source to the destination
node. The airport lobby is the source and the plane is the destination. This
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team is just like a packet composed of many flits (many children). Other
passengers form other packets. During the process, each procedure could be
treated as the link arbitration to advance. If you have done this, you can
go ahead. Or you must wait in the queue. For canonical wormhole model,
a child must finish each procedure by him or herself. It is very likely to
distribute these children in a wide range from the lobby to the plane in such
a crowded and competitive condition: Some have arrived at their seats while
some are still waiting in the line of the first procedure. Then the arrived
ones must wait for the coming of others to make the team complete. It may
consume much time to collect all of the children in the cabin because of the
lagging of someone. To solve this embarrassing case, there is a good idea.
That is, combine some individuals into one group (e.g. the whole team into
one group) and vote out a leader or head. The head of the group checks in
each procedure for the whole group, and if permitted, the other members of
the group follow the head to go without doing anything. (Of course, if it is
allowed by the officers in the airport.) Through this method, it is not possible
to lag someone and the team could go ahead keeping a whole part. And, if
other passengers are also grouped to check in, the workload will largely shrink
for the officers and it will save much time to arrange all the passengers in
their seats.

From the life case described above, a new flow control method could
be reached: partition the flits of a packet into groups. Each group has some
members whose number is the same as the depth of buffers in virtual channels
(Normally it should be ensured in practice. Of course the buffer depth may
be larger than the group size. However in this condition the buffer resource
will not be used efficiently and it is better to enlarge the group size, equal
to the buffer depth.). In this condition, buffers are allocated at packet level
while links at group level. I.e. the head flit allocates buffers for the following
flits and the tail flit releases just as the canonical model of wormhole flow
control does. While links are arbitrated only by the flits in the first buffer
units called ‘group head’. If a group head win the arbitration, the obtained
link will be reserved for all other flits in this group. This method is described
in detail in the following paragraph.

As shown in figure 3.2 (b), every two consecutive flits (Suppose the buffer
depth is two.) are partitioned into a group and the former ones are assigned
as ‘head’. During delivery if there is one empty buffer unit in the allocated
virtual channel of the next hop, group heads arbitrate for the link. If winning
the arbitration, this group advances into the next hop flit by flit. Also H
allocates buffers for the whole packet and T releases them as in the canonical
model of wormhole.

It has been mentioned that if there is one idle buffer unit, not the number
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Figure 3.2: Link arbitration at group level.

of members in a group, in the allocated virtual channel of the next hop,
groups could arbitrate and go ahead. Why one buffer unit is enough to
advance a whole group? The reason is that in flit-grouped mechanism, flits
of the same group go ahead one by one without interval and interfering from
other group. So if there is one flit buffer unit idle, it means that the group
currently occupying this virtual channel is also moving and will give out more
buffer units for other coming groups step by step. Then one empty buffer
unit is enough for a coming group to move in the virtual channel, following
its front group and going together.

Of course, if the buffer resource could be provided large enough, the
4 flits of the packet could be partitioned into a single group, as shown in
figure 3.3, to achieve a better performance. In fact, in the condition when a
packet are partitioned into a single group, the router will operate just similar
to the virtual cut-through flow control. In another word, the virtual cut-
through flow control could be treated as a particular case of the flit-grouped
mechanism.

Compared with the flit level switching method, there are some advantages
with this new flow control mechanism. First, packets are delivered between
nodes in unit of group instead of flit. This is a behavior trying to compress
the widely distributed flits of a packet and flits belonging to a same packet
will go ahead in a more compact fashion than in the wormhole flow control.
Then the probability that some flits lag behind and distribute in a long
range of nodes along the path between the source and the destination, will
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Figure 3.3: 4 flits of a packet are partitioned into one group.

be reduced greatly. In another word, the probability of generating buffer or
link under-utilization will be reduced. For example, as an extreme case, if a
packet is partitioned into a single group, there will never appear the case that
buffers are allocated while kept idle and wasted. Second, for the flits other
than group heads, the clock cycles consumed by scheduling and arbitration in
the canonical wormhole model are removed (The member flits just follow the
group heads to advance without scheduling and arbitration.). This shortens
the packet latency and improve the performance of network.

3.3 Implementation of the Flit-grouped Router

The implementation of a flit-grouped router is based on the canonical worm-
hole design which has been realized and validated. Most of the difference
between these two models is represented in the control path. As mentioned
above, in the canonical wormhole router model, the head flit goes through
the routing, virtual channel allocation and link arbitration stages to traverse
a node. And the body or tail flit goes through the stages of virtual channel
scheduling and link arbitration. All of these operations are controlled by the
FSMs in the control path, shown in figure 3.4.

According to figure 3.4, a head flit will go through the states in the
sequence of ‘S8’-‘S9’-‘S1’-‘S2’-‘S3’-‘S7’-‘S8’(‘S0’), to traverse a node. While
a body or tail flit in the sequence of ‘S8’-‘S9’-‘S1’-‘S4’-‘S7’-‘S8’(‘S0’).

As a new control mechanism, a different FSM module should be realized
to match the flit-grouped switching technique. Figure 3.5 shows the flow of
the FSM in the flit-grouped router. In this figure, ‘S0’ is the initial state.
When there are flits in the FIFO, the FSM sends out a read signal to the
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Figure 3.5: The FSM of the flit-grouped router.
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FIFO and enters ‘S8’. If the present flit is a group head, ‘S9’ will be en-
tered then, and later ‘S1’. The reason to insert the states of ‘S8’ and ‘S9’ is
to generate a FIFO read signal of two control clock cycles, ‘fifo r1’, before
reaching the state of ‘S1’. To guarantee a stable read-out flit before ‘S1’, a
FIFO read signal of one data clock cycle which is equal to two control clock
cycles should be provided. In the state of ‘S1’, there will be some branches
to go: If the present flit is a group head (‘group num counter temp’=0) and
it is also a head flit of the packet (‘if rout i’=“000”), the state will be tran-
sited in the sequence of ‘S1’-‘S2’-‘S3’-‘S7’, finishing the operations of routing,
lane allocation, and link arbitration. This path is identical with the one for
a head flit in the canonical wormhole router model. If the present flit is
a group head (‘group num counter temp’=0) while it is a body or tail flit
(‘if rout i’=“001”), the state transition sequence will be ‘S1’-‘S4’-‘S7’, fin-
ishing the operations of lane scheduling and link arbitration. (Please don’t
suspect that a body or tail flit could also be a group head. As shown in fig-
ure 3.2 (b), flit B2 is the head of the second group.) In ‘S7’, if the arbitration
is granted and there is no flit in the FIFO, the state will goes to ‘S0’. Or if
there are still flits in the FIFO, goes to ‘S8’.

After the work of the group heads has been done, group members will
just follow their heads to go. Demonstrated in the FSM figure, the state is
transited between ‘S8’ and ‘S1’ repeatedly. In each repeat cycle, a member
flit is delivered and a FIFO read signal is generated to read out the next flit.
Member flits will do nothing: no lane scheduling, no link arbitration, just
go! After delivering all the flits of a group, the state will be changed from
‘S1’ to ‘S0’ or ‘S8’, according to the status of the FIFO.

In addition to the modification on the FSM, the module of arbiter should
also be redesigned for catching the characteristics of the flit-grouped flow
control mechanism. In the canonical wormhole router, if a link request wins
in the arbitration process, a grant of one data cycle will be ensured to send
out a flit. By contrast in the flit-grouped model, the grant signal must be long
enough to deliver all the flits belonging to a same group. Just as mentioned
before, members of a group will not do anything but follow the group head
to go. So in the arbitration process done by group heads, the grant signal is
to allow the going of not only the group head itself, but also its members.

There are still some adjustments in other modules accordingly except for
the changes in the FSM and arbiter listed above. After all the modifications
on the related modules, a synthesizable design of flit-grouped router has been
achieved for later investigation.
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3.4 Experiments

Till now, we have obtained the VHDL designs of the canonical wormhole
and the flit-grouped routers. Based on the two designs, a large amount
of simulation experiment has been done to demonstrate and compare the
performance of networks constituted by the two different router models.

3.4.1 Method of Measuring the Performance

A standard method to measure the network’s performance is shown in fig-
ure 3.6 [3]. To run the network, terminal instrumentations should be at-

Router 1
Packet source 1 source queue 1

Packet latency
Network delivery time

Source queuing time

Router 2
Packet source 2 source queue 2

Interconnec tion Netw ork

.

.

.
...

Terminal instrumentation 1

Term inal instrumentation 2

Figure 3.6: A standard method to measure the network’s performance.

tached to each terminal or port of the network. In each instrumentation, a
packet source generates packets according to a specific traffic pattern, packet
length, and interarrival time distribution. A source queue is added between
the source and the network, to buffer the packets before they enter the net-
work. To avoid overflow, it should be large enough, or say infinite. This
queue is not part of the network being simulated, but serve to isolate the
traffic processes from the network itself. To measure the performance of
network, three important time parameters should be recorded for analysis:
packet latency, source queuing time and network delivery time, as noted in
figure 3.6. It is clear that latency is the sum of the other two parameters.
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In practice, a testbench file is adopted to provide packets to be transmit-
ted and collect packets received for all nodes in the network. Also in this file,
the source queues which are large enough are also included. This testbench
file is the implementation of the terminal instrumentations of all nodes in
fact.

In the tests, packets are periodically injected into the network. For a 4 x 4
2D mesh network, the total number of the packets to be sent is 16000, 1000 for
each node. Through changing the injection rate of packets, various network
load instances could be reached. Also the uniform traffic patten is adopted
in the tests. Each router sends out packets to all the other nodes randomly.
The destination node number is generated by a uniform random function and
each node uses a different seed. Under these conditions, parameters such as
latency and throughput are recorded to represent the network’s performance.

Performance of the flit-grouped flow control model should be compared
with the decoupled-psink wormhole model, because it is also based on a
decoupled-psink model. Improvement then could be observed to present the
advantages of the new flow control method.

3.4.2 Simulation Results

At the beginning, some useful formulas are listed for processing the collected
data and calculating parameters [4]. Then curves are drawn for these para-
meters and results are compared.

• Network load (fraction of link capacity):

Sumactive link

Numberlink ∗ Cyclesimulation

• Average packet latency:

Sumlatency

Numberpacket received

• Packet injection rate:

Numberflit injected

Numbernode ∗ Cyclesimulation

• Throughput:
Numberflit received

Numbernode ∗ Cyclesimulation

32



test 1 test 2 test 3 test 4 test 5 test 6
Mesh size 4 x 4
No. of VCs per PC 4
No. of admission VCs 4
No. of sink VCs 4
No. of flits per packet
(packet size)

8 8 8 8 8 16

Depth of VC buffers 4 2 8 4 4 8
No. of flits per group
(group size)

4 2 8 4 4 8

Injection rate (1 pack-
et/n cycles, step=1)

6-35 6-35 6-35 6-35 6-35 21-50

Link arb. method R-R R-R R-R fixed p. rand p. R-R

Table 3.1: Network parameters in all test conditions.

Also for clearly consulting, table 3.1 lists the great deal of test conditions
under which results are collected and analyzed later.

1. Results in a Typical Simulation Condition

First the simulation was executed under a typical condition (test 11) of:

• Mesh size: 4 x 4

• Number of VCs per PC: 4

• Number of admission VCs: 4

• Number of sink VCs: 4

• Number of flits per packet (packet size): 8

• Depth of VC buffers: 4

• Number of flits per group (group size): 4 (only in the flit-grouped
mechanism)

• Injection rate (1 packet/n cycles, step=1): 6-35

Results of the decoupled-psink wormhole router and the flit-grouped one
are compared as the following.

1Let’s call the simulation under this condition ‘test 1’. In this report, the data and
figures marked by ‘test 1’ are collected and drawn in this scenario of the network. Also
the same marking method will be followed to differ the data and figures under different
simulation conditions.
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Figure 3.7: Latency comparison (test 1).

In figure 3.7, average latency values are recorded at different network
loads (corresponding to different packet injection rates) and curves are drawn
from them. From the figure it could be recognized that when the network
load is low, the average latency is to keep stable at some value and after
the network is saturated, the average latency increases very fast without
increasing the network load. This is because after saturation, the packet
injection rate will be larger than the absorbtion rate of the network and
packets will spend much time waiting in the source queues before entering
the network for delivery. Also, it is clear that the curve for the flit-grouped
router is below the one for wormhole router before saturation, and it arrives at
the saturation point at a much higher network load value than the wormhole
router. This represents the advantages of the flit-grouped mechanism that,
in the normally working area (area before saturation), the new mechanism
could achieve a lower average latency than the wormhole flow control. And it
could enlarge the normally working area to a higher network load and make
a better use of the link resource in the network.

Especially, delivery time consumed in the network should be given more
attention for analysis. The figure for the network delivery time is shown in
3.8.

As mentioned before, the network delivery time is defined as the time
interval from entering the network to leaving it. It is one of the most im-
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Figure 3.8: Network delivery time comparison (test 1).

portant parameters which represent the performance of a certain type of
network. Similar to the figure of latency comparison, great improvement is
exhibited by the reduction of time consumption before saturation and the
increment in fraction of network capacity when saturated. Correspondingly,
the enhancement in throughput is shown in figure 3.9.

Clearly, the improvement is represented by detailed figures in the follow-
ing table 3.2.

Average
latency
(cycles)

Average
delivery
time
(cycles)

Max network
load (fraction
of link capac-
ity)

Max through-
put (packet/-
cycle/node)

decoupled-psink
wormhole router

57.2 53.2 0.577 0.0810

Flit-grouped
router

40.9 36.9 0.658 0.0916

Performance im-
provement (%)

28.5% 30.6% 14.0% 13.1%

Table 3.2: Performance improvement of the flit-grouped mechanism (test 1).
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Figure 3.9: Throughput comparison (test 1).

More deeply, figure 3.10 and 3.11 show the packet distribution of the net-
work delivery time before and after saturation. They are direct explanations
of the performance improvement. From the figures, it could be observed that
the new flow control method has changed the distribution of the packet net-
work delivery time, increasing the number of packets with lower delay time
and moving the distribution columns to the side of lower time consumption.
And so the average value of the network delivery time is reduced a lot.

2. Results for Different Group Sizes

To discover the performance of the new flow control mechanism in a
deeper level, more tests should be done except for the typical one above.
Because the performance of the flit-grouped router has much to do with its
group size, a good idea is to consider the two extreme cases of this important
parameter, while keeping the packet size constant. First the worst-case test
(test 2) which has a smallest group size of 2, with some different network
parameters listed:

• Number of flits per packet (packet size): 8

• Depth of VC buffers: 2

• Number of flits per group (group size): 2 (only in the flit-grouped
mechanism)
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Figure 3.10: Packet distributions before saturation (test 1, packet injection
rate = 1 packet/20 cycles).
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Figure 3.11: Packet distributions after saturation (test 1, packet injection
rate = 1 packet/6 cycles).
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Then the best-case test (test 3) for the group size of 8, which is equal to
the flit number of a whole packet:

• Number of flits per packet (packet size): 8

• Depth of VC buffers: 8

• Number of flits per group (group size): 8 (only in the flit-grouped
mechanism)

Comparing the flit-grouped router with the wormhole router, the corre-
sponding simulation results are listed in figures B.1, B.2, and B.3 in Appendix
B for the minimum possible group size of 2 (If the group size is 1, it returns
to a wormhole model, no longer the flit-grouped router.). In the condition
of the maximum possible group size of 8, the performance comparison is
demonstrated by the figures B.4, B.5, and B.6.

From the detailed figures listed in table 3.3 and 3.4, advantages could be
represented by the improvement of all the parameters. Moreover, adding the
corresponding figures in table 3.2, it could be revealed that, the performance
improvement (especially improvement in the items of the ‘average latency’
and ‘average delivery time’) increases a lot with the growth of the group size,
from 2 to 4 then to 8. (It is difficult for the items of the ‘max network load’
and ‘max throughput’ to continue a high improvement in percentage when
the group size is large, because the load fraction of the link capacity in the
network has already been so high and almost reached its limit.) It could be
explained by the fact: In the test condition of a large group size (e.g. 8), one
arbitration of a group head will take away more flits. For example, when the
group size is 8, 7 flits will be taken away by their head without any action.
While if the group size is 2, just one. The less frequently happened arbitration
actions will save much time and lead to smaller latency and delivery time in
the network. As well, a larger group size could reduce the possibility of buffer
or link under-utilization, moving packets in a more compact way. Then from
these reasons we can conclude that, for better performance, try to partition
as many flits into one group as possible.

3. Results for Different Arbitration Policies

Till now all of the simulation tests are based on the designs with a Round-
Robin arbitration policy. According to the analysis into the flit level arbi-
tration, the flit-grouped flow control mechanism should be adaptive in im-
proving the performance of any kind of arbitration policy at flit level. To
validate this conclusion, two other experiments have been done except for
the Round-Robin method.
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Average
latency
(cycles)

Average
delivery
time
(cycles)

Max network
load (fraction
of link capac-
ity)

Max through-
put (packet/-
cycle/node)

decoupled-psink
wormhole router

58.5 54.5 0.505 0.0713

Flit-grouped
router

55.2 51.2 0.532 0.0749

Performance im-
provement (%)

5.6% 6.1% 5.3% 5.0%

Table 3.3: Performance improvement of the flit-grouped mechanism (test 2).

Average
latency
(cycles)

Average
delivery
time
(cycles)

Max network
load (fraction
of link capac-
ity)

Max through-
put (packet/-
cycle/node)

decoupled-psink
wormhole router

57.1 53.2 0.620 0.0863

Flit-grouped
router

36.8 32.8 0.686 0.0953

Performance im-
provement (%)

35.6% 38.3% 10.6% 10.4%

Table 3.4: Performance improvement of the flit-grouped mechanism (test 3).

First, the fixed priority arbitration mechanism was chosen, in the same
typical condition (test 4) of the network as the Round-Robin’s stated before.
That is, in addition to the same network parameters, the packet size is 8 and
the group size is 4. In addition, another arbitration policy of random priority
was tested with the same network parameters (test 5). Similar to the results
of the Round-Robin’s, related figures could be referred to in Appendix B.3
and B.4 to exhibit the great improvement of the flit-grouped flow control
mechanism. Table 3.5 and 3.6 are listed to summarize the final results.

From the figures in the item of ‘performance improvement’ in table 3.5, 3.6
and 3.2, we can see that similar great improvement could be achieved by
the flit-grouped flow control method, no matter what arbitration policy is
adopted in the router design.

4. Results for Different Packet Sizes
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Average
latency
(cycles)

Average
delivery
time
(cycles)

Max network
load (fraction
of link capac-
ity)

Max through-
put (packet/-
cycle/node)

decoupled-psink
wormhole router

57.3 53.3 0.580 0.0806

Flit-grouped
router

40.8 36.8 0.670 0.0932

Performance im-
provement (%)

28.8% 31.0% 15.5% 15.6%

Table 3.5: Performance improvement of the flit-grouped mechanism (test 4).

Average
latency
(cycles)

Average
delivery
time
(cycles)

Max network
load (fraction
of link capac-
ity)

Max through-
put (packet/-
cycle/node)

decoupled-psink
wormhole router

57.3 53.3 0.577 0.0810

Flit-grouped
router

40.9 36.9 0.651 0.0911

Performance im-
provement (%)

28.6% 30.8% 12.8% 12.5%

Table 3.6: Performance improvement of the flit-grouped mechanism (test 5).

Another simulation test (test 6) has been done to get an overview of the
performance improvement at different packet sizes. The network condition
for testing is listed as the following:

• Mesh size: 4 x 4

• Number of VCs per PC: 4

• Number of admission VCs: 4

• Number of sink VCs: 4

• Number of flits per packet (packet size): 16

• Depth of VC buffers: 8

• Number of flits per group (group size): 8 (only in the flit-grouped
mechanism)
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• Injection rate (1 packet/n cycles, step=1): 21-50

Average
latency
(cycles)

Average
delivery
time
(cycles)

Max network
load (fraction
of link capac-
ity)

Max through-
put (packet/-
cycle/node)

decoupled-psink
wormhole router

90.3 86.3 0.607 0.0423

Flit-grouped
router

52.7 48.7 0.674 0.0471

Performance im-
provement (%)

41.6% 43.6% 11.0% 11.3%

Table 3.7: Performance improvement of the flit-grouped mechanism (test 6).

Compared with the best-case test when the packet size and group size
are both 8, in the new simulation condition the packet size has been ex-
tended to 16 while keeping the same VC buffer depth and group size. The
corresponding figures to show the performance comparison are collected in
Appendix B.5, and the final statistical results are listed in table 3.7. From
the figures in percentage of the performance improvement in table 3.7 and
3.4, it’s clear that when the group size keeps fixed, a longer packet size nor-
mally means a similarly large or even larger improvement on the performance
of the network.

We can evaluate the base average packet latency (i.e. the minimum aver-
age latency with a low injection rate and no contention) using the following
formula [4]:

Base average packet latency = Cyclesource queue + Cyclehead admission

+(
2

3
∗ N − 1) ∗ Cyclehead pass + Cyclehead sink

+Cyclebody sink ∗ Lengthbody + Cycletail sink (3.1)

In the listed formula, the word ‘admission’ means that a flit goes through
the source node from its admission packet queue to the input of the next
node. ‘Pass’ means a flit goes through a node along the path from the input
to the output or the input of the next node. ‘Sink’ means a flit traverse the
destination node and is ejected from the network in the format of a packet.
In our multi-cycle designs, the cycle numbers consumed by different flit types
to finish the behavior of admission, pass or sink are described in table 3.8
and 3.9. Also for a packet, the number of cycles consumed in the source
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queue is 4. The unit is data clock cycle (One data clock cycle consists of two
control clock cycles).

Pass Admission Sink
Head flit 6 7 7

Body or tail flit 4 4 4

Table 3.8: Consumed cycle numbers for the wormhole router.

Pass Admission Sink
Group head (packet head flit) 6 7 7
Group head (packet body flit) 4 4 4

Group member of body or tail flit 1 1 1

Table 3.9: Consumed cycle numbers for the flit-grouped router.

With the detailed figures in table 3.8 and 3.9 and the formula listed
above, the theoretical base average latency of the two models in different
test conditions could be computed and shown in table 3.10. By contrast, the
measured base average latency of the two models are listed in table 3.11

wormhole router
(cycles)

flit-grouped router
(cycles)

Improvement
(%)

test 1 56 38 32.1%
test 2 56 44 21.4%
test 3 56 35 37.5%
test 4 56 38 32.1%
test 5 56 38 32.1%
test 6 88 46 47.7%

Table 3.10: Computed base average latency comparison for two models.

It could be seen that there are some differences in the corresponding base
average latency couples between the computed and the measured one. The
reason is that in our test platform the sixteen nodes inject packets into the
network at a same cycle. Although the injection rate is very low, there are
still some contentions happened in the network. Then the measured base
latency includes both the computed part in theory and the blocking time in
practice. The test platform is to be improved to realize a random injection for
each node and then the latency couples will be more similar than the present
scenario. Also, the measured performance improvement will be much closer
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wormhole router
(cycles)

flit-grouped router
(cycles)

Improvement
(%)

test 1 56.5 40.4 28.5%
test 2 57.2 54 5.6%
test 3 56.5 36.5 35.4%
test 4 56.6 40.4 28.6%
test 5 56.6 40.4 28.6%
test 6 90.2 52.7 41.6%

Table 3.11: Measured base average latency comparison for two models.

to the computed values (e.g. in test 1, 2 and 3, 32.1%, 21.4% and 37.5%
respectively), which are much larger than our measured ones listed before
(28.5%, 5.6% and 35.6%).

3.5 Synthesis Results

After simulation, the flit-grouped router was then synthesized for revealing
its hardware character in practice. The bottom-up method [9] was still used
in this task. Each module was optimized and the corresponding report infor-
mation was recorded separately. The top level in the hierarchy, router, was
then synthesized with the combination of different modules. After finishing
this time-consuming work, timing and area reports are recorded for the com-
parison with the decoupled-psink wormhole router. The results are listed in
table 3.12.

decoupled-psink
wormhole router

Flit-grouped
router

Increment (%)

Crossbar 2549 gates 2549 gates 0%
Arbiter 6212 gates 10650 gates 71.4%
Allo next 12604 gates 13172 gates 4.5%
Allo sink 3109 gates 3511 gates 12.9%
Other logic 28196 gates 26033 gates -7.7%
Buffer 21258 gates 21258 gates 0%
Whole design 73928 gates 77173 gates 4.4%
Max HW speed
(ctrl clk/data clk)

396/198 MHz 392/196 MHz -1.0%

Table 3.12: Area and timing reports.

From the figures in the table, it proves that the new flow control, flit-
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grouped mechanism, could be easily implemented in hardware with little
additional area consumption (4.4%) and almost the same maximum oper-
ation speed of the hardware. So it is a practical mechanism and useful in
improving the performance of routers and networks.

3.6 Limitations

Like almost all the things in the world, flit-grouped flow control mechanism
is not perfect and also has some short-comings or limitations in practical use.
First, the packet size (flit number per packet) must be an integer times of
the virtual channel buffer depth (also the group size). As in the tests before,
8 (flits/packet) is one time of 8 (storage units in each VC buffer) and there
is only one group in a packet; 8 (flits/packet) is two times of 4 (storage units
in each VC buffer) and there are two groups in a packet. And so on. In some
conditions that flit number per packet is not an integer times of the VC buffer
depth, additional flits with no information need be filled in for partitioning
flits into groups. This is a waste of the network resources and will exacerbate
the performance of network. Second, for better performance, as many flits
as possible are expected to be grouped together, as shown in the simulation
results before. However it is inconsistent with the viewpoint that buffer units
should be saved as possible because of their large area-consumption. Then
in practice, a well-balanced point should be found between performance and
area consumption to achieve a practical and reasonable network. Fortunately,
as the development of semiconductor technology, more and more gates could
be integrated in a single chip. Thus more buffer units may appear in a virtual
channel in the coming days and the advantages of flit-grouped flow control
mechanism will be well performed then.
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Chapter 4

Summary

In the thesis project, two main tasks have been executed and realized: the
first one was that enhancing a hardware implementation of the decoupled-
psink wormhole router’s RTL design. Also, based on the enhanced version,
the other three models, coupled-psink, decoupled-ideal and coupled-ideal were
implemented in hardware and the corresponding area and timing information
was reported. The second task was to develop a new flow control mechanism
to improve the performance of the canonical wormhole router. According to
this requirement, the flit-grouped flow control mechanism was introduced,
with simulation and synthesis results validated its feasibility and large im-
provement on the network’s performance.

4.1 Conclusion

From experimental results, conclusions are drawn as follows:

• After modifying the modules of arbiter, allo next and allo sink from
a maximum allocation mechanism to a two-level arbitration mecha-
nism, circuit operation speed has been improved from 76MHz to almost
200MHz. (This speed is referred to as the data path clock frequency of
routers. The control clock speed is twice as fast as the data clock.)

• Coupled-psink, decoupled-ideal and coupled-ideal wormhole models were
implemented in hardware based on the speed-up version of the router’s
RTL design. From the reported information, it could be recognized
that these four models could achieve the almost same circuit operation
speed, and the two ideal sink models will consume more area than p-
sink models because of large buffer and control logic consumption in
the sink lanes.
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• A new flow control mechanism, flit-grouped mechanism is introduced
after revealing the disadvantages of wormhole flow control. From the
simulation results, this new method could improve many performance
parameters a lot, such as the average latency, average network deliv-
ery time, maximum throughput, and maximum network load. Simula-
tion results observe up to 43.6% network delivery time, 41.6% packet
latency, 15.5% network load, and up to 15.6% network throughput.
From the synthesis results, it induces little additional area consump-
tion (4.4%) and speed penalty (1%).

4.2 Future Work

Future work is expected in the following directions:

• To achieve higher operation speed of the hardware circuit, pipelined
structures of the complex logic block, such as arbiter, allo next and
allo sink, could be considered and realized. In a pipelined model, la-
tency and throughput parameters will be greatly enhanced for improv-
ing the network’s performance.

• A flit-grouped router which is able to deal with packets of various sizes
is to be modeled and implemented. For better performance, new mech-
anisms should be adopted to reduce the overhead when the packet size is
not regular and some additional flits without information are inserted.
Or consider to combine the wormhole with the flit-grouped flow con-
trol in one router: That is, try to make the flit level and the group
level arbitration methods cooperate to achieve good performance. The
final design should be validated to have better performance when deal-
ing with the various size packets, compared with the pure wormhole
router.

• Power investigation could be done for deeper performance comparison
between the canonical wormhole router and the flit-grouped one.
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Appendix A

Code Structure

The structure of the VHDL files is shown in figure A.1. The listed files in the
dashed-line box should be compiled first before the compilation of others.
The files of “altera mf.vhd” and “altera mf components.vhd” are used for
“fifo.vhd”. They are generated from Altera Quartus II 4.1 version. The file of
“DWpackages.vhd” is a library from Synopsys. The “global parameters.vhd”
file defines the global parameters of the whole design for easy configuration.
The “func pack.vhd” file is a package file which defines a function of arbi-
tration. This file is widely used in the modules of arbiter, allo next and
allo sink to construct the structure of two level arbitrations.
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mesh.vhd   router.vhd    admi_channel.vhd    admi_c trlpath.vhd

   admi_datapath.vhd

   admi_fsm.vhd

   admi_routing.vhd

   allo_next.vhd

   allo_sink.vhd

   arbiter.vhd

   c ross_bar.vhd

   forw ard_lane.vhd

   input_channel.vhd

   sch_next.vhd

   sch_sink.vhd

   s ink_channel.vhd

   s ink_lane.vhd

   f ifo_r.vhd

   input_c trlpath.vhd

   input_datapath.vhd

   f ifo_r.vhd

    admi_fsm.vhd

   routing_selec tor.vhd

   routing.vhd

    mux_data.vhd

   demux_data.vhd

altera_mf.vhd
altera_mf_components.vhd
DWpackages.vhd
global_parameters.vhd
fifo.vhd
func_pack.vhd

Figure A.1: The structure of VHDL files.
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Appendix B

Performance Comparison

B.1 Performance Comparison in the condi-

tion of ‘test 2’

Performance comparison figures in the simulation condition of ‘test 2’ for
two networks constructed by the canonical wormhole routers and the flit-
grouped routers. In this test, the packet size is 8 and the group size is 2.
The arbitration policy is Round-Robin for both router models.
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Figure B.1: Latency comparison (test 2).
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Figure B.2: Network delivery time comparison (test 2).
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Figure B.3: Throughput comparison (test 2).
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B.2 Performance Comparison in the condi-

tion of ‘test 3’

Performance comparison figures in the simulation condition of ‘test 3’ for
two networks constructed by the canonical wormhole routers and the flit-
grouped routers. In this test, the packet size is 8 and the group size is 8.
The arbitration policy is Round-Robin for both router models.
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Figure B.4: Latency comparison (test 3).
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Figure B.5: Network delivery time comparison (test 3).
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Figure B.6: Throughput comparison (test 3).
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B.3 Performance Comparison in the condi-

tion of ‘test 4’

Performance comparison figures in the simulation condition of ‘test 4’ for
two networks constructed by the canonical wormhole routers and the flit-
grouped routers. In this test, the packet size is 8 and the group size is 4.
The arbitration policy is the fixed priority mechanism for both router models.
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Figure B.7: Latency comparison (test 4).
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Figure B.8: Network delivery time comparison (test 4).
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Figure B.9: Throughput comparison (test 4).
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B.4 Performance Comparison in the condi-

tion of ‘test 5’

Performance comparison figures in the simulation condition of ‘test 5’ for
two networks constructed by the canonical wormhole routers and the flit-
grouped routers. In this test, the packet size is 8 and the group size is 4.
The arbitration policy is the random priority mechanism for both router
models.
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Figure B.10: Latency comparison (test 5).
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Figure B.11: Network delivery time comparison (test 5).
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Figure B.12: Throughput comparison (test 5).
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B.5 Performance Comparison in the condi-

tion of ‘test 6’

Performance comparison figures in the simulation condition of ‘test 6’ for
two networks constructed by the canonical wormhole routers and the flit-
grouped routers. In this test, the packet size is 16 and the group size is 8.
The arbitration policy is Round-Robin for both router models.
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Figure B.13: Latency comparison (test 6).
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Figure B.14: Network delivery time comparison (test 6).
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Figure B.15: Throughput comparison (test 6).
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