
A High-end Reconfigurable
Computation Platform

for Particle Physics Experiments

Ming Liu

Stockholm 2008

Thesis submitted to the Royal Institute of Technology in partial
fulfillment of the requirements for the degree of Licentiate of

Technology

Liu, Ming
A High-end Reconfigurable Computation Platform for Particle Physics

Experiments

ISBN 978-91-7415-145-9
TRITA-ICT/ECS AVH 08:08
ISSN 1653-6363
ISRN KTH/ICT/ECS AVH-08/08--SE

Copyright © Ming Liu, September 2008

Royal Institute of Technology
School of Information and Communication Technology
Department of Electronic, Computer, and Software Systems
Forum 120
SE-164 40 Kista, Sweden

Abstract

Modern nuclear and particle physics experiments run at a very high re-
action rate and are able to deliver a data rate of up to hundred GBytes/s.
This data rate is far beyond the storage and off-line analysis capability. For-
tunately physicists have only interest in a very small proportion among the
huge amounts of data. Therefore in order to select the interesting data and
reject the background by sophisticated pattern recognition processing, it is
essential to realize an efficient data acquisition and trigger system which
results in a reduced data rate by several orders of magnitude. Motivated
by the requirements from multiple experiment applications, we are devel-
oping a high-end reconfigurable computation platform for data acquisition
and triggering. The system consists of a scalable number of compute nodes,
which are fully interconnected by high-speed communication channels. Each
compute node features 5 Xilinx Virtex-4 FX60 FPGAs and up to 10 GBytes
DDR2 memory. A hardware/software co-design approach is proposed to de-
velop custom applications on the platform, partitioning performance-critical
calculation to the FPGA hardware fabric while leaving flexible and slow con-
trols to the embedded CPU plus the operating system. The system is ex-
pected to be high-performance and general-purpose for various applications
especially in the physics experiment domain.

As a case study, the particle track reconstruction algorithm for HADES
has been developed and implemented on the computation platform in the
format of processing engines. The Tracking Processing Unit (TPU) recog-
nizes peak bins on the projection plane and reconstructs particle tracks in
realtime. Implementation results demonstrate its acceptable resource uti-
lization and the feasibility to implement the module together with the sys-
tem design on the FPGA. Experimental results show that the online track
reconstruction computation achieves 10.8 - 24.3 times performance acceler-
ation per TPU module when compared to the software solution on a Xeon
2.4 GHz commodity server.

iii

iv

Acknowledgments

This project has been accomplished under the collaboration between
Department of Electronic, Computer and Software Systems (ECS) of Royal
Institute of Technology (KTH) in Stockholm, Sweden, II. Physics Institute of
Justus-Liebig-University (JLU) in Giessen, Germany, and Institute of High
Energy Physics (IHEP) of Chinese Academy of Sciences in Beijing, China.
It was supported by grants of the BMBF: 06GI179, 06GI180.

Most of all, I would like to thank my supervisors Professor Axel Jantsch,
Professor Wolfgang Kühn and Dr. Zhonghai Lu for providing me the oppor-
tunity to do such an interesting interdisciplinary work. Professor Jantsch
is a very respectable person for his personality, knowledge and inspiration
to students. I still clearly remember his words when I was enrolled as a
Ph.D student: “Ph.D study is exactly like the sailing Columbus on the sea.
You can never know which new land you will arrive at unless you go ahead
and try to search for.” Professor Kühn is my local supervisor. I learned
from him different cultures in physics and also different methods to solve
problems. His broad knowledge in physics, computer and electronics area
impresses me very much. Dr. Lu is my direct supervisor who gave me most
instructions. He devoted quite much time on my study and work in the last
two years. I give my great appreciation to him for his fruitful advice on
the process of problem targeting, solution proposal, experimental setup and
scientific writing.

I am also thankful to all my colleagues in Stockholm, Giessen, and Bei-
jing. The discussion and suggestion from them are so helpful to improve my
professional knowledge and technical skills. My Giessen colleagues, specifi-
cally Sören Lange, Vladimir Pechenov, Geydar Agakishiev, Olga Pechenova,
Marco Destefanis, Stefano Spataro, Daniel Kirschner, Camilla Kirchhübel,
Johannes Roskoss, Andreas Kopp, Johannes Lang, Zoltán Gagyi-Pálfy, Tiago
Perez and so on, explained me plenty of physics background knowledge which
makes me understand the application very clearly. I also thank Ingo Sander,

v

vi Acknowledgments

Johnny Öberg, and Vladimir Vlassov for their interesting lectures and dis-
cussion on the modern techniques, as well as Huimin She, Geng Yang, Xi-
aolong Yuan, Zhuo Zou, Peng Wang and Jiayi Zhang for exchanging our
experience of graduate study. Many thanks are given to the Chinese group
including Zhen’an Liu, Hao Xu, Qiang Wang, Dapeng Jin for their nice work
on the compute node PCB design.

I appreciate Christa Momberger, Thomas Köster, Lena Beronius, Agneta
Herling for their administrative and non-technical assistance in traveling,
device ordering, and other issues.

Many thanks to my parents and relatives who are far away in China.
Their continuous encouragement and support gave me strength to overcome
difficulties in all aspects.

Special thanks go to my girlfriend Shuo Yang who provided her full
support to my study. I will forever remember the days we spent altogether,
busily but happily.

Ming Liu

September 2008, Giessen

Contents

Abbreviations xiii

1 Introduction 1
1.1 Background in Particle Physics Experiments 1
1.2 Reconfigurable Computing 4
1.3 Related Work . 5
1.4 Motivation . 6
1.5 Thesis Outline and Author’s Contributions 6

2 Computation Platform Architecture 11
2.1 Global Computation Network 11
2.2 Compute Node . 16

2.2.1 FPGA Component and Interconnections 16
2.2.2 DDR2 Memory Module 19
2.2.3 FPGA Configuration and OS Loading 19
2.2.4 IPMC module . 21
2.2.5 Clock and Power Distribution 21
2.2.6 PCB Design . 22

3 HW/SW Co-design of the System-on-an-FPGA 25
3.1 Partitioning Strategy . 25
3.2 Hardware Design on the FPGA 27
3.3 Software Development . 30

3.3.1 Porting Linux to the Compute Node 30
3.3.2 Device Drivers in Linux 30
3.3.3 Application Programs 31

4 Algorithm Implementation and Evaluation 33
4.1 The HADES Spectrometer 35

vii

viii Contents

4.2 Particle Track Reconstruction in MDCs 35
4.2.1 Physics Principle of the Tracking Algorithm 35
4.2.2 Hardware Design on FPGA 38
4.2.3 Device Driver . 47
4.2.4 Implementation Results 47
4.2.5 Performance Measurements 48

5 Summary 51
5.1 Conclusion . 51
5.2 Future Work . 52

A Porting Linux on Xilinx FPGA Boards 53
A.1 Introduction . 53
A.2 Steps to Port Linux on Xilinx Boards 54
A.3 Summary . 62

References 63

List of Figures

1.1 Combining sub-events from detectors into events 2
1.2 Some particle physics experiments with different event sizes

and reaction rates . 3
1.3 Data flow and consecutively reduced data rate in the DAQ

and trigger system . 3

2.1 DAQ and Trigger system for PANDA experiment 12
2.2 Full-mesh network topology of compute nodes via the ATCA

backplane (only 8 nodes shown) 13
2.3 ATCA chassis . 14
2.4 Computation network for online pattern recognition 15
2.5 Peripherals connected to the FPGA 18
2.6 Compute node schematic 19
2.7 JTAG chain on the compute node 20
2.8 Backup configuration in the flash memory 21
2.9 Power distribution tree on the compute node 22
2.10 Prototype PCB of the compute node 23

3.1 Functional partitioning strategy 26
3.2 Block diagram of the ML405 development board 27
3.3 Bus-based hardware design 29
3.4 MPMC-based hardware design with P2P switching connections 30

4.1 Data flow in HADES DAQ and trigger system 34
4.2 Algorithm partition and distribution on two CNs for one sector 34
4.3 The HADES detector system 36
4.4 One sector of the MDC with six orientation wires 37
4.5 Track recognition and reconstruction in inner MDCs 37
4.6 Particle tracks in the projection plane of one sector 39

ix

x List of Figures

4.7 Block diagram of the TPU structure 40
4.8 Projection and touched bins of a +20◦ wire on the projection

plane . 42
4.9 Pipelined structure of the accumulate unit 43
4.10 Selection of the peak bin in the neighbourhood 44
4.11 Pipelined peak finding process 45
4.12 The RTL structure of the peak finder 46
4.13 HW & SW processing capability on MDC sub-events 49
4.14 Speedup of the TPU module over SW solution 50
4.15 Interleaved data transport from the DDR/DDR2 projection

LUT . 50

A.1 Steps to bring up Linux on Xilinx boards 54
A.2 Linux kernel configuration interface 57

List of Tables

2.1 Available resources of the Virtex-4 FX family FPGAs . . . 17

3.1 IP cores in the system . 28

4.1 Resource utilization of the MPMC-based system and the TPU 48

xi

xii

Abbreviations

API Application Programming Interface
ATCA Advanced Telecommunications Computing Architecture
BSP Board Support Package
CN Compute Node
CPLD Complex Programmable Logic Device
DAQ Data Acquisition
DDR Double Data Rate
DSP Digital Signal Processor
EDA Electronic Design Automation
EDK Embedded Development Kit
EMC External Memory Controller
FEE Front-End Electronics
FIFO First-In-First-Out
FPGA Field Programmable Gate Array
FRU Field Replaceable Unit
GUI Graphical User Interface
HDTV High Definition Television
HW Hardware
IP Intelligent Property
IPMC Intelligent Platform Management Controller
IPU Image Processing Unit
ISE Integrated Software Environment
ISR Interrupt Service Routine
JTAG Joint Test Action Group
LUT Look-Up Table
MAC Media Access Control
MDC Mini Drift Chamber
MOPS Mega Operations per Second
MGT Multi-Gigabit Transceiver

xiii

xiv Abbreviations

MMU Memory Management Unit
MPMC Multi-Port Memory Controller
NFS Network File System
OS Operating System
P2P Point-to-Point
PCB Printed Circuit Board
PE Processing Element
RdFIFO Read First-In-First-Out
RICH Ring Imaging CHerenkov
RPC Resistive Plate Chambers
RTL Register Transfer Level
SADC Sampling Analog-to-Digital Converter
SDRAM Synchronous Dynamic Random Access Memory
SRAM Static Random Access Memory
SW Software
TOF Time-Of-Flight
TPU Tracking Processing Unit
WrFIFO Write First-In-First-Out

Chapter 1

Introduction

1.1 Background in Particle Physics Experiments

Particle physics is a branch of physics that studies the elementary con-
stituents of matter and the interactions between them. It is also called
high energy physics because many elementary particles do not occur under
normal circumstances in nature, but can be created and detected during
energetic collisions of other particles as is done in particle colliders. In
particle physics experiments, beam particles are accelerated to the velocity
approaching to the speed of light and then collide with target particles. A
huge and complex detector system is constructed to inspect the character-
istics of produced particles from the collision, including energy, momentum,
mass, charge, etc.. In this domain, an “event” normally describes the re-
sult of a single reaction between a projectile particle and a target particle.
Typically an “event” consists of “sub-events” referring to the activities of
different detectors recording reaction products. Figure 1.1 shows an exam-
ple event structure which consists of sub-events from various detectors such
as Ring Imaging Cherenkov (RICH) detector, Mini Drift Chamber (MDC)
detector, Time-Of-Flight (TOF) detector, Shower detector, and so on. The
event data generated by detectors are to be recorded during experiments
and afterwards physicists will extensively analyze the events to search for
interesting ones, such as new types of particles.

Modern nuclear and particle physics experiments, for example HADES [1]
and PANDA [2] at GSI, BESIII [3] at IHEP, ATLAS, CMS, LHCb, ALICE
at the LHC [4] at CERN, WASA [5] at FZ-Juelich, are expected to run at
a very high reaction rate (e.g. PANDA, 10-20 MHz) and able to deliver a

1

2 Chapter 1. Introduction

data rate of up to hundred GBytes/s or even higher (PANDA, up to 200
GBytes/s). Compared to the bandwidth needed by some other applica-
tions [6], such as H.264, HDTV, etc., Figure 1.2 lists some experiments by
their event sizes and reaction rates. Their data rate, which is the product of
the event size and the reaction rate, ranges from 107 up to more than 1011

Bytes/s. The huge amount of data cannot be entirely recorded in the disk
or tape storage medium. Furthermore the supercomputers will take forever
to process all the data during offline analysis.

Figure 1.1. Combining sub-events from detectors into events

Fortunately, physicists have interest only in a very small proportion of
all the event data. It might occur only once within one million interactions.
Hence it provides the possibility to utilize an efficient online Data Acquisi-
tion (DAQ) and Trigger system to reject uninteresting events while identify
and retain interesting ones in realtime. Depending on the physics focus of
the experiment, sophisticated realtime pattern recognition algorithms such
as Cherenkov ring recognition, particle track reconstruction, Time-Of-Flight
processing, Shower recognition [7] [8] [9] and high level correlations are im-
plemented for recognizing interesting data. Only the events which meet
expected patterns and correlations receive a positive decision and will be
forwarded to the mass storage for later offline analysis. Others are discarded
on the fly. As a result, the data rate can be reduced by several orders of
magnitude and to a reasonable level for storage. Figure 1.3 shows the data
flow in the DAQ and trigger system, with the arrow width representing the
consecutively reduced data rate.

1.1. Background in Particle Physics Experiments 3

Figure 1.2. Some particle physics experiments with different event sizes
and reaction rates

Figure 1.3. Data flow and consecutively reduced data rate in the DAQ and
trigger system

4 Chapter 1. Introduction

1.2 Reconfigurable Computing

Reconfigurable computing is a computing paradigm combining both the
flexibility of software and the high performance of hardware by using pro-
grammable computing fabrics like FPGAs. The principle difference com-
pared to the ordinary microprocessor computing is the capability to make
substantial changes to the datapath in addition to the control flow. Actually
the basic concept can be traced back to the 1960s, when Gerald Estrin’s
landmark paper proposed the concept of a computer made of a standard
processor and an array of “reconfigurable” hardware [10] [11]. The main
processor controls the behavior of the reconfigurable hardware. The latter
can be tailored to perform a specific task as quickly as a dedicated piece
of hardware. Unfortunately this idea was far ahead of its time in needed
electronics technology. Only after the large development of configurable de-
vices especially FPGAs/PLDs and corresponding EDA tools in the recent
decade, reconfigurable computing could be really widely adopted to achieve
performance benefits and flexible re-programmability.

Although normally running at a much lower clock frequency, FPGA-
based reconfigurable computing is believed to have a 10-100X accelerated
performance but far lower power consumption compared to CPUs. The
development methodology on the conventional PC clusters focuses on flex-
ible control flows with limited number of Processing Elements (PE), while
more concerns are placed on the datapath design and optimization through
parallel and pipelined approaches, when developing hardware reconfigurable
platforms. The on-chip memory concurrency and fine-grained computation
parallelism can overcome the bottleneck in the computer memory system.
More efficiently utilizing the expensive chip area, reconfigurable computing
creates an unprecedented opportunity for orders of magnitude improvement
in MOPS/dollar, MOPS/watt, and just MOPS.

In physics experiment applications, FPGA-based reconfigurable solu-
tions have important advantages to implement the pattern recognition algo-
rithms. We have comparatively simple control flows during data processing,
and the application-specific datapath design can result in high performance
with the on-chip memory concurrency and fine-grained computation paral-
lelism and/or pipeline support. In addition, the re-programmability enables
to change the designs to satisfy different experimental requirements.

1.3. Related Work 5

1.3 Related Work

Traditionally modular approaches with commercial bus systems, such as
VMEbus, FASTbus, and CAMAC, were utilized to construct the DAQ and
trigger system for high-energy physics experiments [12][13][14][15]. These
bus-based systems can be interfaced to commodity computers, typically
high-end workstations at that time. However due to the largely increased
data rate generated by the detector systems, these deprecated technolo-
gies cannot meet the current experimental requirements any longer. The
time-multiplexing nature of the system bus not only exacerbates the data
exchange efficiency among algorithms residing on different pluggable mod-
ules, but also restricts the flexibility to partition complicated algorithms.
Nowadays the networking and switching technologies make it efficient to
construct large-scale systems for parallel and pipelined processing. In addi-
tion, as the tremendous development on re-programmable devices especially
FPGAs, it provides the practicability to migrate some complex algorithms,
which were conventionally implemented as software on desktop computers
or embedded processors/DSPs, into the FPGA fabric for high-performance
hardware processing.

Reconfigurable computing satisfies the simultaneous demands of appli-
cation performance and flexibility. In the present era when cluster-based
supercomputers still dominate the fields of super computation tasks, re-
configurable computing begins showing large potential and perspective on
some performance-critical areas such as realtime scientific computing. Cur-
rently many commercial and academic projects are developing hardware and
software systems to employ the raw computational power of FPGAs. One
commercial example is the latest products from Cray Inc., such as XD1,
XT4, XT5 series supercomputers. FPGAs are integrated in the system to
embody various digital hardware designs and augment the processing ca-
pabilities of the AMD Opteron processors [16][17][18]. However most of
these projects are augmented computer clusters with FPGAs attached to
the system bus as accelerators. One major weakness of such systems is the
bandwidth bottleneck between the microprocessor and the FPGA acceler-
ator. An instance in physics experiment applications is the ATLAS level 2
trigger [19]. Their design appears as PCI cards in commodity PCs, in which
only those simple but computing-intensive steps are released to FPGAs while
others remain on CPUs. In that case, the computation work relies much on
the PC and the limited bandwidth between CPUs and FPGAs via the PCI
bus becomes the bottleneck when partitioning the algorithm steps between

6 Chapter 1. Introduction

the CPU and the FPGA. Other standalone platforms for example the Dini
Group products [20], target mainly the hardware emulation applications.
It is not straightforward to upgrade the system to a supercomputer equiv-
alent scale due to the lack of efficient communication standards for inter-
board connectivity. The Berkeley Emulation Engine 2 (BEE2) did provide
a good platform which is powerful and scalable for large scale data process-
ing [21][22]. However the external links use only Infiniband, which results
in an inflexible and expensive interface to the detector front-end circuits
and PC clusters in physics experiments. Moreover its all-board-switched or
tree-like topology may cause large communication latency and throughput
penalty when complex algorithms are partitioned and span over multiple
boards.

1.4 Motivation

Motivated by multiple high-energy physics experiment projects, for in-
stance the HADES and BESIII upgrade and the PANDA construction, we
propose a high-end reconfigurable, scalable, and general-purpose computa-
tion platform as the solution. The system is entirely built with the commer-
cial off-the-shelf components. Cutting-edge FPGA technologies as well as
high-speed communications are adopted to guarantee both high processing
capability and high channel bandwidth. Easy scalability is an important
feature of the platform. The dynamically and remotely configurable proper-
ties have also been considered to overcome temporal and spatial limitations.
To standardize the application development on the platform, we propose
a hardware/software co-design approach, with which functional tasks are
partitioned between embedded microprocessors and modular FPGA cores.
Thus the system design could be largely re-utilized for various experimental
facilities with little performance penalty or modification effort.

1.5 Thesis Outline and Author’s Contributions

The thesis is constructed as follows:

• Chapter 1: Background introduction. The targeted application of
high-energy physics experiments is first introduced. We describe the
functionalities and requirements of a powerful data acquisition and
trigger system, which processes massive data with pattern recognition

1.5. Thesis Outline and Author’s Contributions 7

algorithms in nuclear and particle physics experiments. After that the
scheme of this thesis project, reconfigurable computing, is briefly ad-
dressed. Some related work in the domain of reconfigurable computer
design is discussed then. We point out a few disadvantages of those
designs in the physics experiment scenario and propose the motivation
to build our own computation platform.

• Chapter 2: We present the computation platform architecture in a top-
down approach. First the global computation network architecture is
described with the focus on the hierarchical interconnections in the
system. Second we come to the compute node design, which appears
as elementary Field Replaceable Units (FRU) in the ATCA crates.
The main contributions of this chapter have been published in paper
1, 4, 5 and poster 8 listed below.

• Chapter 3: Corresponding to the platform design, we propose a hard-
ware/software co-design approach as the standard method to develop
applications on our computation platform. Versatile control tasks
will be allocated to the embedded microprocessors as application pro-
grams, while performance-critical data processing is implemented in
the FPGA fabric in the format of hardware processing modules. These
application-specific modules are customized and integrated in the uni-
versal bus-based or Multi-Port Memory Controller (MPMC) based sys-
tem design. To facilitate the development of software applications, an
embedded Linux operating system is ported to the PowerPC architec-
ture in the FPGA. The device drivers provide the interface with which
the embedded CPU manages all peripherals in the design. The main
contributions concerning to the HW/SW co-design can be referred to
in the published papers 1 and 3 listed below.

• Chapter 4: In this chapter, one physics application for the HADES
upgrade project is implemented and evaluated on the platform as a
case study. The Tracking Processing Unit (TPU) is integrated in the
system design to recognize track candidates and reconstruct particle
tracks in realtime. The modular structure is presented in detail, and
from the experimental results we see its acceptable resource utiliza-
tion, as well as the performance speedup compared to the software
solution on commodity PCs. The contributions of the algorithm im-
plementation on FPGAs can be referred to in paper 2 and poster 6
and 7 listed below.

8 Chapter 1. Introduction

• Chapter 5: Summary of the thesis. Conclusions are drawn and future
work is proposed in this chapter.

This thesis is mainly based on the following publications:

Papers:

1. Ming Liu, Johannes Lang, Shuo Yang, Tiago Perez, Wolfgang Kuehn,
Hao Xu, Dapeng Jin, Qiang Wang, Lu Li, Zhenan Liu, Zhonghai Lu,
and Axel Jantsch, “ATCA-based Computation Platform for Data Ac-
quisition and Triggering in Particle Physics Experiments”, In Proceed-
ings of the International Conference on Field Programmable Logic and
Applications 2008 (FPL’08), Heidelberg, Germany, Sep. 2008.

Introduction: The paper presents both the ATCA-based computa-
tion platform architecture and the compute node design for data ac-
quisition and triggering purpose in particle physics experiments. The
FPGA development approach and some experimental results are also
described and demonstrated in the paper.

Author’s contribution: The author established the network model
of interconnected nodes, developed applications on the FPGA with
a HW/SW co-design approach, and did experiments to evaluate the
performance of the compute node.

2. Ming Liu, Wolfgang Kuehn, Zhonghai Lu and Axel Jantsch “System-
on-an-FPGA Design for Real-time Particle Track Recognition and Re-
construction in Physics Experiments”, In Proceedings of the 11th EU-
ROMICRO Conference on Digital System Design (DSD’08), Parma,
Italy, Sep. 2008.

Introduction: The paper demonstrates a hardware implementation
of the particle track recognition and reconstruction algorithm for the
HADES [1] experiment. The modular design structure is described in
the paper, and experimental results of FPGA resource utilization as
well as performance measurements are presented.

Author’s contribution: The author implemented the algorithm in
hardware and performed the evaluation experiments.

3. Ming Liu, Wolfgang Kuehn, Zhonghai Lu, Axel Jantsch, Shuo Yang,
Tiago Perez and Zhenan Liu, “Hardware/Software Co-design of a

1.5. Thesis Outline and Author’s Contributions 9

General-Purpose Computation Platform in Particle Physics”, In Pro-
ceedings of the IEEE International Conference on Field Programmable
Technology 2007 (ICFPT’07), Kitakyushu, Kokurakita, Japan, Dec.
2007.

Introduction: The paper describes the HW/SW co-design of the
system-on-an-FPGA on the computation platform. The hardware ar-
chitecture is presented, with which customized algorithm processors
are integrated in the system for application-specific processing. The
software development for slow control tasks based on the embedded
Linux OS is also introduced.

Author’s contribution: The author implemented the hardware sys-
tem design and brought up the embedded Linux platform for software
application development.

4. Wolfgang Kuehn, Ming Liu, et al., “FPGA-Based Compute Nodes
for the PANDA - Experiment at FAIR”, 15th IEEE-NPSS Real Time
Conference 2007, Fermilab, Batavia, IL, USA, Apr. 2007.

Introduction: The paper introduces the FPGA-based compute node
design for the future PANDA [2] experiment.

Author’s contribution: The author was engaged in the FPGA in-
terconnection model design of the compute node.

5. Tiago Perez, Camilla Gilardi, Ming Liu and Shuo Yang, “A FPGA-
based Compute Node for the PANDA Data Acquisition and Trigger
System”, In Proceedings of the XLV International Winter Meeting on
Nuclear Physics, Bormio, Italy, Apr. 2007.

Introduction: The paper presents the hierarchical architecture of
the PANDA data acquisition and trigger system. The compute node
design is proposed to be utilized to construct a powerful network for
high-performance data acquisition and triggering computation.

Author’s contribution: The author participated in the compute
node based architecture design of the data acquisition and trigger sys-
tem for the PANDA project.

Posters:

10 Chapter 1. Introduction

6. Ming Liu, Wolfgang Kuehn, Tiago Perez, Vladimir Pechenov, and
Shuo Yang, “Implementation of an FPGA-based MDC Track Recon-
struction Algorithm for the HADES Upgrade”, German Physics Soci-
ety 2008 Meeting (DPG’08), Darmstadt, Germany, Mar. 2008. (Best
Awards)

7. Johannes Roskoss, Daniel Kirschner, Andreas Kopp, Ming Liu, and
Shuo Yang, “New Event-building and Trigger Algorithms for the HAD-
ES DAQ Upgrade”, German Physics Society 2008 Meeting (DPG’08),
Darmstadt, Germany, Mar. 2008.

8. Tiago Perez, Daniel Kirschner, Wolfgang Kuehn, Soeren Lange, Ming
Liu, Zhenan Liu, “An FPGA Compute Node for the PANDA DAQ”,
German Physics Society 2007 Meeting (DPG’07), Giessen, Germany,
Mar. 2007.

In addition, a paper not included in this thesis, is:

9. Zhonghai Lu, Ming Liu and Axel Jantsch, “Layered Switching for
Networks on Chip”, In Proceedings of the 44th Design Automation
Conference (DAC’07), San Diego, CA, USA, Jun. 2007.

Chapter 2

Computation Platform
Architecture

To manage the large data rate from detectors, we construct a hierarchi-
cal network architecture which consists of multiple interconnected Compute
Nodes (CN). The connectivity is sorted in two categories: external connec-
tions and internal ones. The external channels are used to communicate
with detectors and the PC farm, to receive raw data for processing and for-
ward selected results for storage and offline analysis. Specifically they pro-
vide optical links and Ethernet interfaces. The internal connections bridge
all algorithms or algorithm steps for parallel/pipelined processing. Both
on-board I/O channels and the inter-board backplane interface function as
internal links. The details of the system architecture will be introduced in
the following sections from the interconnected network top-down to the node
design.

The topics of this chapter cover paper 1, 4, 5 and poster 8 listed in
Section 1.5.

2.1 Global Computation Network

Figure 2.1 [23] shows the DAQ and trigger system for the PANDA
project, as an instance of modern particle physics experiments. It demon-
strates the overall steps in which detector data are processed and analyzed.
Physics detectors generate analog signals for detected particle reactions.
This information is converted into digital signals by Sampling Analog-to-
Digital Converters (SADC) in Front-End Electronic (FEE) circuits mounted

11

12 Chapter 2. Computation Platform Architecture

Figure 2.1. DAQ and Trigger system for PANDA experiment

2.1. Global Computation Network 13

on the detector devices. Through a large bunch of high-speed serial links
(commonly more than 105 individual channels) and via massive storage ca-
pacity of concentrators or buffers, huge amounts of data are supplied to the
computation network for pattern recognition processing. The background
data which are not interesting to physicists will be discarded on the fly.
The interesting ones which meet the expected patterns are forwarded to PC
clusters for storage and offline analysis.

Figure 2.2. Full-mesh network topology of compute nodes via the ATCA
backplane (only 8 nodes shown)

In this thesis project, our focus is on the reconfigurable computation
network design for online data processing. In practice, pattern recogni-
tion algorithms are to be partitioned and distributed in many compute
nodes to work in parallel and/or pipeline for high processing throughput.
The Advanced Telecommunications Computing Architecture (ATCA or Ad-
vancedTCA) [24] standard was architected to provide the bandwidth needed
for the next generation computation platform. The backplane provides
Point-to-Point (P2P) 100 Ω differential signal connections between the boards
and does not use a data bus like VMEbus or FASTbus. It is typically used
to move data between the Field Replaceable Units (FRU) in each slot and
the outside network. The Fabric Interface on the backplane supports differ-
ent architectures such as Dual-Star, Dual-Dual-Star, Full-Mesh, Replicated-
Mesh, and others. A full-mesh shelf (the topology shown in Figure 2.2), that
we plan to use to build our platform, can host 2.1 Tbps of data transport

14 Chapter 2. Computation Platform Architecture

when using 3.125 GHz signaling and 8B/10B [25] encoding on the back-
plane. These direct connections provide much flexibility for network config-
urations, such as the vertical pipelined processing, or the horizontal parallel
processing, or hybrid solutions with more complicated interconnections ver-
tically and horizontally. This feature makes the platform general-purpose
for various applications with different network architectures. It also provides
significant freedom and convenience to partition the processing logic across
multiple boards. In one ATCA chassis (see Figure 2.3) , up to 14 nodes
can be fitted. Practically we plug in 13 compute nodes plus one Ethernet
switch.

Figure 2.3. ATCA chassis

2.1. Global Computation Network 15

Figure 2.4. Computation network for online pattern recognition

Figure 2.4 shows the computation network architecture in the experi-
mental facilities, where multiple ATCA chassises are required to meet high
communication and computation requirements. Through bonded optical
channels, raw data are dumped from the detector front-end circuits into the
computation network. The front-end circuits samples and digitizes the ana-
log signals directly from detectors. After that, all the data will be processed
in the pattern recognition network, which is made up of compute nodes and
ATCA crates, for pattern recognition, correlation, event building and event
filtering. All these processing algorithms are partitioned and distributed in
the FPGA logic cells. And all of the steps constitute the complete algorithm
computation by communicating through the hierarchical interconnections
including on-board I/O links, inter-board shelf backplane connections, and
perhaps the inter-chassis optical link or Ethernet switching if necessary. Of
course the on-board communication has the fastest speed, while the inter-
chassis switching has more communication overhead and will introduce extra

16 Chapter 2. Computation Platform Architecture

latency and throughput penalty. Thus trying to locate the computing steps
with more communication requirements on the same board or next in the
same chassis is a basic rule to implement these algorithms in practice. After
pattern recognition computation and event selection in the network, a large
proportion of events is discarded on the fly while only a small part will be
labeled as interesting and forwarded to the PC cluster over Ethernet for
storage and in-depth analysis.

2.2 Compute Node

2.2.1 FPGA Component and Interconnections

The computation platform uses Xilinx platform FPGAs as the primary
processing components. The first prototype chose Virtex-4 FX60. In the
real products the latest generation FPGAs might be adopted instead. Ta-
ble 2.1 [27] lists the available resources of Virtex-4 FX family chips.

Virtex-4 FX family platform FPGAs target mainly the embedded pro-
cessing and serial connectivity application domains. Except for plenty of
programmable logic cells, storage RAM components, and General-Purpose
I/Os (GPIO), some hard IP cores are also embedded on the die. Specifically
PowerPC 405 processors are useful for designs which expect high-level soft-
ware management of the system or HW/SW hybrid processing. Tri-mode
Ethernet MACs ease interconnections of the embedded systems and desktop
PCs using the popular Ethernet and TCP/IP protocol. RocketIO [26] serial
transceiving is well suited for high-bandwidth data transport. It supports
many types of commercial standards including Infiniband, Gigabit Ethernet,
Fibre channel, PCI Express, Aurora, and also customized definitions. These
factors were all in the range of our consideration when component devices
were selected. In our case we chose FX60 which is a good balance between
the resources and the price.

Figure 2.5 shows the peripheral connections of each FPGA on the board.
We will discuss them one by one in the following part.

Figure 2.6 shows the block diagram of the Compute Node (CN). Each
board consists of five FPGAs, four of which (No. 1 to 4) work as algo-
rithm processors and the fifth (No. 0) as a switch interfacing to other mod-
ules via the ATCA backplane. Each processor FPGA has two RocketIO
Multi-Gigabit Transceiver (MGT) based optical links, which may run at the
maximum baud rate of 6.5 Gbps per channel. In addition, all the FPGAs

2.2. Compute Node 17

Virtex-4 FX (Embedded Processing & Serial Connectivity)

FX12 FX20 FX40 FX60 FX100 FX140

CLB Array 64 x 24 64 x 36 96 x 52 128 x 52 160 x 68 192 x 84

CLB Slices 5,472 8,544 18,624 25,280 42,176 63,168

Resources Logic Cells 12,312 19,224 41,904 56,880 94,896 142,128

Flip Flops 10,944 17,088 37,248 50,560 84,352 126,336

Max Distributed
RAM bits

87,552 136,704 297,984 404,480 674,816 1,010,688

Memory
Resources

Block RAM/FIFO
(18 kbits each)

36 68 144 232 376 552

Total Block RAM
(kbits)

648 1,224 2,592 4,176 6,768 9,936

Digital Clock
Managers (DCM)

4 4 8 12 12 20

Clock Re-
sources

Phase-matched
Clock Dividers
(PMCD)

0 0 4 8 8 8

Max Select I/O 320 320 448 576 768 896

Total I/O Banks 9 9 11 13 15 17

Digitally Con-
trolled Impedance

Yes Yes Yes Yes Yes Yes

I/O
Resources

Max Differential
I/O Pairs

160 160 224 288 384 448

LDT-25, LVDS-25, LVDSEXT-25, BLVDS-25, ULVDS-25, LVPECL-25,

I/O Standards LVCMOS25, LVCMOS18, LVCMOS15, PCI33, LVTTL, LVCMOS33,

PCI-X, PCI66, GTL, GTL+, HSTL I (1.5V,1.8V), HSTL II (1.5V,1.8V),

SSTL2I, SSTL2II, SSTL18 I, SSTL18 II

DSP Re-
sources

XtremeDSP Slices 32 32 48 128 160 192

PowerPC Proces-
sor Blocks

1 1 2 2 2 2

Embedded
Hard IP
Resources

10/100/1000 Eth-
ernet MAC Blocks

2 2 4 4 4 4

RocketIO Serial
Transceivers

0 8 12 16 20 24

Commercial (slow-
est to fastest)

-10, -
11, -12

-10, -
11, -12

-10, -
11, -12

-10, -11,
-12

-10, -11,
-12

-10, -11

Speed
Grade

Industrial (slowest
to fastest)

-10, -
11

-10, -
11

-10, -
11

-10, -11 -10, -11 -10, -11

Table 2.1. Available resources of the Virtex-4 FX family FPGAs

18 Chapter 2. Computation Platform Architecture

Figure 2.5. Peripherals connected to the FPGA

are equipped with one Gigabit Ethernet each, over which the results are
forwarded to the PC farm.

All four processor FPGAs are interconnected with each other in a full-
mesh topology. The connectivity includes both 32-bit General-Purpose IO
(GPIO) buses and one full-duplex RocketIO link per connection. These pro-
cessor FPGAs also connect to the switch FPGA with dedicated 32-bit GPIO
channels. Depending on application requirements, either circuit-switching or
packet-switching design can be configured in the FPGA fabric to communi-
cate with other CNs in the chassis. 16 RocketIO channels to the backplane
feature the bandwidth of 104 Gbps at 6.5 GHz signaling. Except for the
switch fabric, sub-event data from all four processor FPGAs can be col-
lected in the switch FPGA and do the event building and filtering. With
the on-board P2P interconnections, it is convenient to partition complex
algorithms and aggregate all five FPGAs as a virtual one with five times
capacity.

2.2. Compute Node 19

Figure 2.6. Compute node schematic

2.2.2 DDR2 Memory Module

On the compute node, all five FPGAs have their respective 2 GBytes
DDR2 memories. The total 10 GBytes SDRAM memory capacity is mainly
used for data buffering and large Look-Up Tables (LUT). In the design, we
employ five ultra low profile Small Outline Dual In-line Memory Modules
(SO-DIMM) DDR2 SDRAM modules. The data bus is 64-bit wide and the
maximum data rate is 6400 MBytes/s (PC2-6400@800 MHz).

Considering the large overhead of the DDR2 memory access, SRAM
chips may be added in later versions of the prototype board. They will
be used to improve the memory access speed for middle-size LUTs or data
buffering.

2.2.3 FPGA Configuration and OS Loading

Each FPGA has 64 MBytes NOR flash memory to store the embedded
Linux Operating System (OS) kernel and other non-volatile data. Two
flash chips, each of which has 16 bit data bus, are combined to form a

20 Chapter 2. Computation Platform Architecture

32 bit data bus interfacing to GPIOs of the FPGA. All the bitstreams for
five FPGAs are merged and placed in the flash for the switch FPGA. A
CPLD (Xilinx XC95144) helps to configure the FPGA chain in a serial
mode during power on. After the hardware configuration of all five FPGAs,
a bootloader program executes to copy the OS kernel to the main memory
(DDR2 SDRAM) and start the OS for each respective FPGA.

The JTAG chain is a good choice to download bitstreams as well as
software applications to FPGAs during system debugging. Figure 2.7 lists
the components in the JTAG chain including the CPLD and five FPGAs.

Figure 2.7. JTAG chain on the compute node

The file system of the embedded OS will reside in the storage device of
PC clusters. They will be mounted as the root directory through Ethernet
with the support of the Network File System (NFS) [28] protocol in Linux
(see sub-section 3.3.1). To remotely reconfigure the system, including both
the FPGA configurations and the OS kernels, what we need to do is to over-
write the old bitstreams and kernel image files in the NOR flash memory
with the new versions and then restart the platform. Afterwards the system
will be configured and booted with new hardware designs and operating
systems. The Memory Technology Device (MTD) driver provides the ap-
plication interface to read and write the flash memory in Linux. Operators
can remotely login the embedded Linux from a PC and issue the upgrade
and restart commands. To avoid fatal errors during the upgrading process,
which may destroy the data in the flash and disable normal booting in the
next power-on, backups are stored in the flash memory (see Figure 2.8). In
case of upgrading errors, Linux can be booted from the backup bitstream
and the backup kernel image to resume the data copy to the normal bit-
stream and kernel space in the flash chips. Switching between the normal
booting and the backup booting is controlled by the Intelligent Platform
Management Controller (IPMC) module on the compute node.

2.2. Compute Node 21

Figure 2.8. Backup configuration in the flash memory

2.2.4 IPMC module

A customized IPMC fulfills the ATCA requirements on power negotia-
tion, voltage monitoring, temperature sensoring, and FPGA configuration
check, etc.. It talks to the on-board sensors and the ATCA shelf manager
with three I2C buses. The design is based on the AVR microcontroller and
appears as an add-on card on the compute node.

2.2.5 Clock and Power Distribution

The FPGA network is a pseudo-synchronous clock domain, i.e. the clock
frequency for each FPGA node is the same but the clock phases may vary.
On the board, each FPGA has a dedicated 100 MHz oscillator providing the
clock for the system design. In addition, each Ethernet PHY chip has a 125
MHz and each RocketIO column has a 200 MHz high precision oscillator,
both of which are in separate packages.

ATCA crates provide -48 V DC power supply. With the on-board con-
version, different voltage supplies are obtained for chips and circuits. Fig-
ure 2.9 shows the power distribution tree on the board. We pessimistically
accumulated all the power hungry components and arrived at the maximum
consumption of 170 W per board. The power budget for each ATCA slot is
200 Watt at most, which should be enough for each module.

22 Chapter 2. Computation Platform Architecture

Figure 2.9. Power distribution tree on the compute node

2.2.6 PCB Design

Figure 2.10 is the picture for our first version PCB of the compute node.
To meet the dimension requirement from the ATCA chassis, all main com-
ponents are placed on the top side except five SO-DIMM DDR2 SDRAM
memories. The board is in a standard ATCA 12U size of 280 x 322 mm
and the layout has 14 layers. In the next version PCB product, two or more
layers may be added due to newly placed components such as SRAMs.

Each CN module resides in one of the 14 slots in ATCA chassis. When
all 14 modules are plugged in, such a chassis can host up to 1890 Gbps
inter-FPGA on-board connections (assuming GPIO running at 300 Mbps),
1456 Gbps inter-board backplane connections, 728 Gbps full-duplex optical
bandwidth, 70 Gbps Ethernet bandwidth, 140 GBytes of DDR2 SDRAM,
and all computing resources of 70 Virtex-4 FX60 FPGAs.

2.2. Compute Node 23

Figure 2.10. Prototype PCB of the compute node

24

Chapter 3

HW/SW Co-design of the
System-on-an-FPGA

Xilinx platform FPGAs, such as the Virtex-4 FX family we used, contain
both programmable resources and embedded hardcore PowerPC processors.
They will be both utilized as computational resources in our design. In this
chapter, we begin from the concrete partitioning strategy for various tasks
in particle physics experiments. Afterwards, the hardware design and the
software development will be addressed. This HW/SW co-design approach is
explicitly formulated, which will be adopted as a general method for different
application development on the computation platform.

This chapter presents the contributions published in paper 1 and 3 listed
in Section 1.5.

3.1 Partitioning Strategy

System partitioning, also referred to as functional partitioning is an es-
sential problem, since it affects overall system cost, development effort, and
performance directly. In our hybrid processing scenario, embedded PowerPC
processors execute software programs and the FPGA fabric is customized for
mathematical and logic operations. For such a huge and complex system as
the DAQ and trigger in particle physics experiments, many features beyond
the fundamental functionality of data processing are expected for experiment
operations. For example, due to temporal and spatial limitations, operators
would like to remotely and dynamically reconfigure and control the platform.

25

26 Chapter 3. HW/SW Co-design of the System-on-an-FPGA

A clear and friendly user interface also helps physicists to easily adjust ex-
perimental parameters and monitor the system status. In our platform, two
hardcore PowerPC processors in each FPGA could be just utilized to im-
plement those versatile control tasks, while leaving the performance-critical
calculation to the FPGA fabric in hardware. Figure 3.1 shows the functional
partitioning strategy and concrete criteria are described as follows:

1. All pattern recognition algorithms are to be customized in the FPGA
fabric as hardware processor modules, working in parallel and/or pipeline
to identify interesting events.

2. Slow control tasks, including monitoring the system status, modifying
experimental parameters, re-programming HW/SW designs, etc., are imple-
mented in software by high-level application programs which execute on top
of embedded microprocessors and operating systems.

3. The existing soft TCP/IP stack in the operating system is employed
for Ethernet communication.

Figure 3.1. Functional partitioning strategy

3.2. Hardware Design on the FPGA 27

3.2 Hardware Design on the FPGA

Before obtaining the prototype compute node PCB, most development
work has been done on the Xilinx commercial board ML405 [29]. It has a
Virtex-4 FX20 FPGA chip whose main features are identical with FX60, ex-
cept for smaller capacity. Figure 3.2 [29] shows all peripheral components on
the board. Except the 32-bit DDR SDRAM instead of the 64-bit DDR2, we
see ML405 has similar peripheral connections and is suited for the compute
node development.

Figure 3.2. Block diagram of the ML405 development board

28 Chapter 3. HW/SW Co-design of the System-on-an-FPGA

In Xilinx software suite including EDK, ISE, Chipscope, etc., we develop
the hardware system in the FPGA with both hardcore and softcore com-
ponents. Specifically the PowerPC 405 processors, RocketIO Multi-Gigabit
Transceivers (MGT), Digital Clock Managers (DCM) and Gigabit Ethernet
MACs are hardcores residing in the silicon fabric of the FPGA chip. Some
other peripheral components have to be implemented as softcores by pro-
grammable resources. Table 3.1 summarizes all useful cores with their types
and functions in our design.

IP cores Hard or Soft Functions

PowerPC 405 Hardcore Embedded hardcore processor for software execution.

RocketIO MGTs Hardcore High-speed duplex serial links for communication. It sup-
ports many industrial standards. In our system, the optical
links and the backplane channels are all RocketIO based.

Tri-mode Ethernet
MACs

Hardcore Ethernet communication between the computation platform
and the commodity PC farm.

DCMs Hardcore Digital clock managers.

SDRAM memory
controller

Softcore Memory controller for external DDR or DDR2 SDRAM.

PLB BRAM Softcore Small but fast system memory made out of the on-chip
Block RAM resource.

Interrupt con-
troller

Softcore Interrupt management for PowerPC 405.

RS232 UART Softcore UART console terminal of PowerPC 405.

External Memory
Controller (EMC)

Softcore Memory controller for external flash or SRAM. It is useful
to upgrade the bitstream and OS kernel in the flash memory.

PLB Softcore Fast system bus.

OPB Softcore Slow system bus.

PLB2OPB Softcore Bus bridge of PLB and OPB.

JTAGPPC Softcore JTAG controller for PowerPC 405.

GPIO Softcore IO pins for buttons and displays.

Chipscope icon Softcore Chipscope integrated controller.

Chipscope ila Softcore Chipscope integrated logic analyzer.

Chipscope iba Softcore Chipscope integrated bus analyzer.

Customized Pro-
cessing Engines

Softcore Processing Units for application-dependent data processing.

Table 3.1. IP cores in the system

The interconnections among these components are flexible. They might
be a traditional bus-based topology, as well as a high-performance P2P
switching architecture. Figure 3.3 shows the two level bus system, in which

3.2. Hardware Design on the FPGA 29

high speed components are connected to the Peripheral Local Bus (PLB)
while slow ones to the bridged On-chip Peripheral Bus (OPB). The hardware
processing engines for pattern recognition appear also as fast devices on the
PLB bus. They address memory modules and receive controls from the CPU
through the bus. All communications among components go through the
buses, which may be congested in case of heavy traffic of data transport.
To overcome the bandwidth bottleneck, a Multi-Port Memory Controller
(MPMC) [30] based solution (see Figure 3.4) is employed to connect some
memory-hungry modules directly to the memory controller. With dedicated
links and time-sharing the memory bandwidth, the memory access time will
be significantly reduced. Hence the pattern recognition processors benefit
from such an architecture when they frequently address buffered detector
data and LUT data in the memory. In this system, the PLB bus is used
only for low data rate communications and controls.

Figure 3.3. Bus-based hardware design

In both Figure 3.3 and 3.4, The I/O arrows from/to the pattern recog-
nition processors may stand for either RocketIO-based optical links from
detectors or General-Purpose I/O (GPIO) connections with other modules.
Through these channels, custom processors receive incoming data and trans-

30 Chapter 3. HW/SW Co-design of the System-on-an-FPGA

Figure 3.4. MPMC-based hardware design with P2P switching connections

mit processing results to the next stage. The data may also be temporarily
buffered in the system memory.

In various application designs, the system architecture is intended to be
fixed as a template and only to replace customized processing engines. This
maximizes the design re-usability and largely shrinks the time-to-market.

3.3 Software Development

3.3.1 Porting Linux to the Compute Node

To make the software development easy and flexible, an open-source
embedded Linux kernel of version 2.6 was ported to the PowerPC 405 ar-
chitecture in Virtex-4 FX series FPGAs. The main steps [31][32][33][34] can
be referred to in Appendix A for details.

3.3.2 Device Drivers in Linux

Device drivers for the Xilinx peripherals in the system design, such as
Ethernet, RS232 UART, flash memories, etc., have been already included in

3.3. Software Development 31

the kernel’s package and can be enabled during the kernel configuration pro-
cess. Other customized modules, for example the Tracking Processing Unit
(TPU) which will be discussed in the next chapter, need to be programmed
by ourselves. These processing units are modeled as character devices [35],
which process data streams coming from the memory or I/O ports. In their
drivers, common file operations are implemented including “open”, “close”,
“read”, “write”, and “ioctl”, as well as the DMA initiation and Interrupt
Service Routines (ISR). Their device entries will appear in the “/dev” di-
rectory after loading driver modules. The devices can then be opened and
accessed in application programs.

3.3.3 Application Programs

With the support from the OS and the Application Programming Inter-
face (API), flexible applications can be exploited on the computation plat-
form. The developing tools vary from C/C++ programming to high level
scripts. Given as an example, an Apache HTTP server [36] was ported to the
embedded Linux. We are using the Common Gateway Interface (CGI) [37]
to develop web pages on the server, with which the current experimental
status can be remotely shown to operators and commands can be issued to
the system. Another example is Linux socket programming in C used to
forward selected interesting events to the PC farm over Ethernet.

32

Chapter 4

Algorithm Implementation and
Evaluation

In our project timeline, HADES is the first experiment which will use
the computation platform to upgrade the existing DAQ and trigger system.
The detectors generate a raw data rate of less than 10 GBytes/s and we
plan to employ one single ATCA crate, specifically two compute nodes for
each detector sector and twelve for six sectors in total. Plus one more re-
dundant board for backup purpose, there will be thirteen compute nodes
in the chassis. Driven by the HADES requirements, we have been devel-
oping and evaluating the pattern recognition and correlation algorithms on
our platform, including Cherenkov ring recognition (for RICH detector),
MDC particle track reconstruction (MDC detector), Time-Of-Flight (TOF)
processing (TOF detector and RPC, short for Resistive Plate Chambers
detector), Shower recognition (Shower detector), event building, and event
selection. All algorithm processors receive readout data from their corre-
sponding detector and search for specific patterns, as the data flow shown
in Figure 4.1. Their processing results will be shared and correlated with
each other. And all sub-events which meet expected patterns and have been
successfully correlated, are preserved and assembled into the pre-defined
event structure before storage. According to the data flow, Figure 4.2 shows
a feasible approach to partition and distribute all algorithms on two com-
pute nodes for one sector. Representatively the particle track reconstruction
in MDCs is described in the following as a case study.

This chapter focuses on the main topics in paper 2 as well as poster 6
and 7 listed in Section 1.5.

33

34 Chapter 4. Algorithm Implementation and Evaluation

Figure 4.1. Data flow in HADES DAQ and trigger system

Figure 4.2. Algorithm partition and distribution on two CNs for one sector

4.2. Particle Track Reconstruction in MDCs 35

4.1 The HADES Spectrometer

The High Acceptance Di-Electron Spectrometer (HADES) [1] is installed
at the heavy ion synchrotron of the GSI facilities in Darmstadt, Germany.
Its main objective is the measurement of lepton pairs (dileptons) produced
in the decay of light vector mesons at a reaction rate of less than 106 Hz
with an accuracy of 4p

p ' 1% particle momentum resolution [38][39]. The
HADES spectrometer is composed of several different specialized particle
detectors, as shown in Figure 4.3(a) for exploded view, Figure 4.3(b) for
mounted shape, and Figure 4.3(c) giving a lateral cut view.

From the figures, we see in the HADES spectrometer, there have been
RICH, MDC, TOF, TOFino, Shower detectors installed. In the upgrade
project, the RPC detector will also be mounted as the replacement of the
TOFino detector for higher timing resolution. All the detectors consist of 6
assembled trapezoidal sectors. When the accelerated beam particles collide
the target, product particles will be emitted, and they fly through these
detectors and generate signals on them.

4.2 Particle Track Reconstruction in MDCs

4.2.1 Physics Principle of the Tracking Algorithm

The tracking of charged particles in HADES is accomplished by the so-
called Mini Drift Chambers (MDC) detectors. The name “MDC” arises from
the comparably small size of the individual drift cells. The HADES tracking
system, as an instance of modern experimental facilities, consists of four
MDC modules which have six identical trapezoidal sectors (see Figure 4.3).
Two MDC layers are located before and two behind the toroidal magnetic
field produced by 6 superconducting coils (see Figure 4.3(c)). Practically
the magnetic field does not penetrate into MDCs. Thus particle tracks only
bend in the magnetic field and the segments before or behind the coil can
be approximately described by straight lines. The two segments can be
reconstructed separately with the inner (I - II) and the outer (III - IV)
MDC information. The basic principle is similar and hence we focus only
on the inner part implementation.

In the two inner MDC modules, a total number of 12660 sense wires (6
sectors) are arranged in 12 layers and 6 orientations: +40◦, -20◦, 0◦, 0◦,
+20◦, -40◦, with Figure 4.4 showing one sector. When beam particles hit
the target, charged particles are emitted from the target position and go

36 Chapter 4. Algorithm Implementation and Evaluation

(a) Exploded exhibition of the HADES detector system

(b) HADES detector system view when
mounted

(c) Lateral cut view of the HADES detector
system

Figure 4.3. The HADES detector system

4.2. Particle Track Reconstruction in MDCs 37

Figure 4.4. One sector of the MDC with six orientation wires

Figure 4.5. Track recognition and reconstruction in inner MDCs

38 Chapter 4. Algorithm Implementation and Evaluation

forward through different wire layers in straight paths. Along their flying
ways, pulse signals are generated on the wires close to the tracks with high
probability (>95%). We also say that the sense wires are “fired” by flying
particles. As shown in Figure 4.5, if the sensitive volumn of each wire is
projected from the boundary of the target onto a plane located between
two inner chambers, apparently the particle passed through the projection
plane at the point where all projections of fired wires from different layers
overlap. To search for such regions the projection plane is treated as a two
dimensional histogram with the projection area as bins (grids). For each
fired sense wire, its projection bins are all increased by one. By finding
the locally maximum bins whose values are also above a given threshold,
track candidates can be recognized and the inner segments of tracks are
reconstructed as straight lines from the point-like target to those bins.

Figure 4.6(a) demonstrates the 2D projection plane for one sector with
2 passed particles. The scale on the right side shows the correspondence
between the bin values and the colors in the plot. Figure 4.6(b) is the 3D
display of Figure 4.6(a) for a single track, where the coordinates of the peak
in the center are recognized as the track’s position. Normally we do not
consider the peak with less than 8 fired wires out of 12 layers. Therefore
assuming the threshold is 10, the peak bin in the center is recognized as the
candidate which is most likely caused by a charged particle passing through
this point of the projection plane.

4.2.2 Hardware Design on FPGA

The Tracking Processing Unit (TPU) has been developed and imple-
mented on FPGA for online particle track reconstruction during experi-
ments [40]. It is to be integrated in the system architecture for MDC data
processing. The TPU module receives the serial numbers of fired wires in
each MDC sub-event as inputs and outputs the position of track candidates.
The position of track candidates is possible to be represented by the position
of peak bins, which can be further converted into coordinate information in
space. The tracking information will then be correlated with both RICH
and TOF results; If there is a charged particle passing through the MDC
detectors, in principle there should also be corresponding indications on the
RICH and the TOF detector. This correlation is to be done by supplying
the tracking results to the RICH and the TOF processing modules which
reside also in the computation platform.

4.2. Particle Track Reconstruction in MDCs 39

x, (mm)

-400 -300 -200 -100 0 100 200 300 400

y, (
mm

)

200

300

400

500

600

700

800

0

2

4

6

8

10

12
Event 74 Sector 4

(a) Projection plane with two passed tracks

x, (m
m)

-250
-200

-150
-100

-50
0

50
100

150

y, (mm)
540

560
580

600
620

640
660

0

2

4

6

8

10

12

Event 74 Sector 4

(b) 3D display of the accumulated bins for a single track

Figure 4.6. Particle tracks in the projection plane of one sector

The TPU design can be decomposed into sub-modules as shown in Fig-
ure 4.7, specifically the wire number Write FIFO (WrFIFO), the address
Look-Up Table (LUT), the bus master, the projection LUT, the accumulate
unit, and the peak finder. For the buffered fired wire numbers in WrFIFO,

40 Chapter 4. Algorithm Implementation and Evaluation

Figure 4.7. Block diagram of the TPU structure

the address LUT stores their storage and projection address information.
With the help of the bus master, the projection LUT supplies data to the ac-
cumulate unit, to show which bins on the projection plane have been touched
by the wires’ projection. The accumulate unit accumulates the histogram of
the touched times for all the bins. Finally the peak finder compares the bins
in the neighbourhood and figures out the exact peak points where particles
probably passed through. We will describe these sub-modules in detail as
follows.

Wire Number WrFIFO:

The wire number Write FIFO is an asynchronous FIFO which buffers the
incoming fired wire sequential numbers. The source of the input might be
either the previous level data buffer in the external large-capacity memory, or
directly from the I/O inputs of the FPGA chip. Due to the small size of the
WrFIFO, probably in the Kilo-byte order of magnitude, it is implemented
on FPGA with the Block RAM resource.

Projection LUT and Address LUT:

For each fired wire, we should decide which bins on the projection plane
will be touched by its projection shadow and increased by one on the his-

4.2. Particle Track Reconstruction in MDCs 41

togram correspondingly. This geometrical problem is too complicated to be
calculated in realtime, considering there are 2110 sense wires with six ori-
entations in each inner MDC sector. Hence a simpler solution is to lookup
the touched bins of a specific wire in a “projection LUT” with its serial
number as the entry. The LUT is built offline, and thus if any modification
on it, we have to download the new one into the memory. The LUT’s size
is proportional to the quantity of bins on the projection plane. At present
we configure the resolution as 128 x 256 bins for each sector.

In principle each wire should have the LUT mapping for all the bins. One
bit per bin is to show whether it is touched by the projection (“1”) or not
(“0”). Hence 2110 wires need around 8.6 MBytes for the 128 x 256 resolution
configuration (128 x 256 x 2110 = 69140480 bits ≈ 8.6 MBytes). In practice,
we observe that some wires will never touch the bins far away from their
shadow on the projection plane. For example, Figure 4.8 shows the situation
of a fired +20◦ sense wire. We see only the bins in the bottom are covered
by the shadow and it is not necessary to include the ones on the top in the
projection LUT of this wire. Thus only the relevant bins from the plane
starting address and within the length will be built into the LUT mapping
for a specific sense wire. In this mechanism, another small LUT is adopted
to derive a wire’s plane starting address in the projection plot and the length
from its sequential number. We call it “address LUT” to distinguish from
the “projection LUT”. Compared to the solution which covers all the bins for
wire entries, the shrinked projection LUT has two advantages: (1) It results
in a smaller size of 1.5 MBytes for storage; (2) Although it needs extra clock
cycles to derive the plane starting address and the length from the address
LUT, the shrinked projection LUT saves many cycles during the procedure
of supplying data for accumulation. This feature avoids meaningless data
transportation and computation. It significantly improves the processing
throughput and decreases the output latency of the TPU device.

Except for the plane starting address, the address LUT provides also the
LUT starting address, which indicates the physical starting locations of the
wires’ mapping in the projection LUT memory. Altogether with the length,
the LUT starting address is fed to the bus master to initiate data transfers
from the memory to the TPU module.

Bus Master:

The master interface to the memory device initiates data transfers from
the projection LUT to the accumulate unit sub-module, with the address

42 Chapter 4. Algorithm Implementation and Evaluation

Figure 4.8. Projection and touched bins of a +20◦ wire on the projection
plane

information from the address LUT. It supports burst mode transfers to
reduce the data movement overhead. In the bus-based system design, the
master device will be interfaced to the system PLB; In an MPMC-based
system, it will be directly connected to an MPMC port to move data via
the local link using also the PLB protocol.

Accumulate Unit:

The accumulate unit is the sub-module which accumulates the histogram
of the shadow-touched-times for all the bins on the projection plane. It is
constructed by using a dual-port BRAM block, adders and registers, as
shown in Figure 4.9. The BRAM block is 3-dimensional and has 4 bits per
bin which allow to represent the maximum 12 layer wires in two MDCs.
Initially all the bits are reset to zero. As the projection LUT provides data
which show whether a specific bin is touched (a bit of ’1’) by a fired wire or
not (a bit of ’0’), the values of bins are correspondingly either increased by

4.2. Particle Track Reconstruction in MDCs 43

one or not. For each wire, the accumulation only happens on those bins from
the plane starting address and within the length, which are both from the
address LUT outputs. The computation process is pipelined in two stages.
One is to write the accumulated results into the BRAM block. The other is
to read out the values of the next address and get them ready for the next
cycle accumulation. After the processing of all fired wires within one MDC
sub-event, the entire BRAM block will be exported to the next level peak
finder, searching for peak bins or track candidates. Then the BRAM block
will be reset again and get ready for the next round computation.

Figure 4.9. Pipelined structure of the accumulate unit

For each bin on the projection plane, there are extra 12 BRAM bits
needed to record whether the 12 layers have already been accumulated on
this specific bin. It is used to resolve the situation where multiple wires
belonging to the same layer are all fired and take effect on one bin. This
happens most frequently when two neighboured wires in the same layer have
projection overlap on some bins. In this case duplicated accumulation should
be avoided. If a bin has already increased by one with a fired wire belonging
to a specific layer of the total twelve, this layer should be recorded in the
corresponding bit and not take effect on this bin any longer until the next
sub-event.

44 Chapter 4. Algorithm Implementation and Evaluation

Peak Finder:

The peak finder is the most computation-intensive part in the entire
TPU design. It indicates not only which bins have values not less than
the threshold, but also the exact peak bins in their neighbourhoods where
particles probably passed. Figure 4.10 shows the necessity to build such
a sub-module. There are seven bins meeting the threshold requirement
assuming the threshold is 10. However in fact they belong to a single track.
So more delicate computation should be done to find out the peak in this
area, which is most probably the point a particle passed through on the
projection plane. In case of multiple peak bins with the same value and
neighboured with each other, we can export any one of them or directly all
of them according to the system requirement.

Figure 4.10. Selection of the peak bin in the neighbourhood

To indicate the peak in one area, each bin is arranged to be compared
with all its eight neighbours, except for those in the boundaries which have
fewer neighbours. If none of the neighbours is larger than that bin, it is
identified as the peak. Otherwise the larger neighbours overcome it and
keep on searching. This calculation was implemented as pipelined compar-
isons in our design. As shown in Figure 4.11, the input data go downwards
cycle by cycle from “data in”, passing two levels of registers “Reg1 array”
and “Reg2 array” until the results come out. Using the same data from
Figure 4.10, the pipelined peak finding process is demonstrated by four sub-
figures for four clock cycles. Each square in “Reg1 array” which represents a
single bin with its value inside, is being compared with four of its neighbours:
the upper-left, the upper, the upper-right, and the left, with an arrow rep-
resenting a comparison. It is also being compared with its right neighbour

4.2. Particle Track Reconstruction in MDCs 45

Figure 4.11. Pipelined peak finding process

since the comparison is initiated by its right neighbour bin. Moreover the
bins in “Reg2 array” are being compared with their respective lower-left,
lower and lower-right neighbours by using the same comparators. Hence in
summary, each bin has been compared with its three lower neighbours when
it stays in “Reg2 array”, and with its five upper and horizontal neighbours
after it steps to “Reg1 array” in the next clock cycle. The comparison re-
sults with the lower neighbours are stored in the register “lower result reg”
temporarily. A bit of “1” means none of its lower neighbours is larger than
that bin while “0” means it cannot be the peak and will be ignored. In case
of two neighboured bins having the same value, the one in the higher address
direction (right and upper) wins the comparison and may go on being com-
pared with those at even higher addresses. The bit from “lower result reg”
will be ANDed with the results from the five upper and horizontal compar-
isons and the threshold comparison. If the final result is ’1’, that bin is the
peak in its area and is recognized as a track candidate. Figure 4.12 illus-
trates the Register Transfer Level (RTL) schematic of the pipelined peak
finder. We can also observe the signal transmission process leading to the
final decision within two clock cycles. For simplicity, only the registers for
one bin and its eight neighbours are shown in the figure.

46 Chapter 4. Algorithm Implementation and Evaluation

(a) The object bin (col. N and row L) is compared with its three lower neighbours.
The result will be buffered in “lower result reg”.

(b) The object bin (col. N and row L) is compared with its five upper and horizontal
neighbours. The results will be ANDed with the previous one in “lower result reg”
and the one from the threshold comparison to make the final decision. An output of
’1’ means that the object bin is a peak bin and there is a track candidate.

Figure 4.12. The RTL structure of the peak finder

4.2. Particle Track Reconstruction in MDCs 47

4.2.3 Device Driver

In order to fully utilize the hardware acceleration and avoid the large
software overhead, as much calculation as possible has been partitioned in
hardware to prevent the PowerPC processor from interfering the track re-
construction computation. The CPU takes only care of feeding fired wire
numbers from the DDR/DDR2 buffer to the WrFIFO, or initializing DMA
transfers to do this. Hence in the device driver for Linux, the “write” oper-
ation or the DMA initiation are implemented to supply wire numbers to the
WrFIFO. Also experimental parameters such as the threshold can be stored
in device registers and addressed with “ioctl” operations, to read and display
the experiment status or modify them according to different experimental
requirements.

4.2.4 Implementation Results

The TPU design was described in VHDL and implemented on FPGA
using Xilinx ISE software. Its master device can be either interfaced to the
system PLB bus, or connected to one MPMC port directly for accessing the
projection LUT data in the external DDR/DDR2 memory. We prefer the
latter solution in order to relieve the system bus from heavy data transport.
When the resolution of the projection plane is configured as 128 x 256 bins,
the resource consumption statistics are shown in table 4.1. The utilized
percentages of the Xilinx Virtex-4 FX60 FPGA are also demonstrated. This
module will be integrated in the MPMC-based system and so the resource
utilization of the FPGA system design is also listed. From the statistics, we
observe that 12.3% LUT resource and 5.9% Flip-Flops contribute to mainly
construct the computational logic and registers. In addition 19.4% Block
RAM resource is dedicated to the storage components in the TPU design,
including the dual-port BRAM block after accumulation, the address LUT,
and the wire number FIFO. The last column in the table indicates the
resource consumption of the entire system with one TPU integrated. From
the figures we conclude that the total resource utilization is acceptable, and
it is feasible to implement the online inner track reconstruction computation
on the Virtex-4 FX60 FPGA.

The timing summary shows that the TPU design can run at 125 MHz
without further optimization effort. To match the speed of the MPMC core
and the PLB bus, we fix its clock frequency at 100 MHz.

48 Chapter 4. Algorithm Implementation and Evaluation

Resources MPMC-based FPGA
system design (no ap-

plication processor)

TPU module MPMC-based sys-
tem with the TPU

4-input LUTs 10008 out of 50560
(19.8%)

6210 out of 50560
(12.3%)

16218 out of 50560
(32.1%)

Slice Flip-Flops 8440 out of 50560
(16.7%)

2966 out of 50560
(5.9%)

11406 out of 50560
(22.6%)

Block RAMs 53 out of 232 (22.8%) 45 out of 232
(19.4%)

98 out of 232 (42.2%)

DSP Slices 0 0 0

Table 4.1. Resource utilization of the MPMC-based system and the TPU

4.2.5 Performance Measurements

We measured the processing capability of the TPU module in the fol-
lowing experimental setup: the TPU is incorporated in the system design.
Its slave interface accepts fired wire numbers as input and the master inter-
face requests projection LUT data from the external DDR2 memory via the
MPMC port. The TPU and the MPMC port run at 100 MHz. The MPMC
core as well as the DDR2 memory run at 200 MHz. The PowerPC CPU ini-
tializes the projection LUT and supplies randomly generated wire numbers
to the WrFIFO. Due to the case that wires in different positions or orien-
tations have different projection areas, they have various data block sizes
in the projection LUT for transportation and computation. With the ran-
domly generated wire numbers, the average projection LUT size is around
5.7 Kbits per wire (1.5 MBytes for 2110 wires). In case of heavy ion reactions
implying more emitted particle tracks from the target and hence more fired
wires in each MDC sub-event, it takes more clock cycles to fetch the projec-
tion LUT data and execute the track reconstruction processing. Therefore
we took into account the number of fired wires in each sub-event during the
experiments and measured the processing speed of the TPU module at five
wire multiplicities, specifically assuming that 10, 30, 50, 200, and 400 wires
are fired in a single sub-event. The results demonstrate the processing ca-
pability of 32.3, 12.2, 7.5, 2.0, 1.0 Kilo sub-events/s respectively. Compared
to the software solution in C program, which runs on an Intel Xeon 2.4 GHz
CPU/1GB DDR2 memory server with the Gentoo Linux OS, the measured
results are shown in Figure 4.13. This reveals a highest hardware acceler-
ation of 24.3 times for light ion reactions and a lowest one of 10.8 times
for heavy reactions. The processing speedup of the TPU design over the

4.2. Particle Track Reconstruction in MDCs 49

Figure 4.13. HW & SW processing capability on MDC sub-events

software solution is listed in Figure 4.14 for five assumed wire multiplicities.
The above results come from the practical measurements on the com-

pute node. In this experimental setup, there are some non-TPU factors
which introduce overhead and restrict the TPU’s performance. Particularly
the DDR2 memory altogether with its controller has complex address mech-
anism which results in a large access latency. And it supports the data
transfer burst mode of only 8 beats at most. In addition the MPMC core
leads to clock cycle loss when arbitrating the memory access among mul-
tiple ports. All these factors interleave the data transport from the DDR2
projection LUT and waste clock cycles during this process, as clearly shown
in the waveform of figure 4.15. In order to efficiently utilize the data bus
bandwidth of the TPU module, SRAM memory devices would replace the
DDR2 SDRAM to store the projection LUT and be interfaced directly to
the TPU master interface. With the dedicated bandwidth and more efficient
memory access features of SRAM, the processing speed of the TPU module
is foreseen to be doubled, achieving a speedup ranging from about 20 to 50
times for various wire multiplicities over the software solution.

50 Chapter 4. Algorithm Implementation and Evaluation

Figure 4.14. Speedup of the TPU module over SW solution

Figure 4.15. Interleaved data transport from the DDR/DDR2 projection
LUT

Chapter 5

Summary

5.1 Conclusion

In this thesis, we have presented a hierarchical computation platform
based on the ATCA standard and FPGA technologies. It features high
bandwidth interconnections, large processing power and large storage ca-
pacity. Specifically in each ATCA crate which hosts 14 compute nodes, up
to 1890 Gbps inter-FPGA on-board channels, 1456 Gbps inter-board back-
plane connections, 728 Gbps full-duplex optical links, 70 Gbps Ethernet, 140
GBytes DDR2 SDRAM, and all computing resources of 70 Xilinx Virtex-4
FX60 FPGAs are available. The system is easily scalable, reconfigurable,
and well suited for various applications of nuclear and particle physics ex-
periments, for large-scale data acquisition and triggering computation.

In order to easily and quickly develop different applications on the plat-
form, we propose a hardware/software co-design approach. With a rea-
sonable functional partition between the embedded microprocessor and the
FPGA fabric, slow control tasks and Ethernet protocol processing are im-
plemented in software programs running on top of device drivers and the
embedded Linux operating system, while the application-specific computa-
tion is customized in hardware as processing modules to accelerate perfor-
mance. This development approach is expected to be standard for various
application designs, where only specific processing modules and the corre-
sponding software are customized, trying to reuse the system design as much
as possible.

Driven by the HADES upgrade project, the particle track reconstruction
computation has been studied and implemented as a hardware processor on

51

52 Chapter 5. Summary

FPGA. Implementation results have been listed to show the integration
feasibility. Experimental results reveal significant performance speedup of
10.8 - 24.3 times compared to the software solutions on a Xeon 2.4 GHz
commodity server.

5.2 Future Work

Future work is planned in the following respects:

• All pattern recognition algorithms are supposed to be implemented on
FPGAs as modular designs. They should be reasonably partitioned
and distributed in multiple FPGA nodes to process the massive data
from detectors in parallel and/or pipeline.

• More studies and experiments are to be done on the overall network
architecture for performance evaluation and improvement. In the next
version of compute nodes, we will produce 3 or 4 PCBs which are
interconnected by the ATCA backplane for network experiments.

• The switching mechanism using packet switching or circuit switching
will be studied and the switch design in the switch FPGA is to be
implemented.

• More FPGA features such as the dynamic partial reconfiguration are
interesting to be exploited in our development methodology. It is
useful during the experiments when custom processing units need to
be modified or re-parameterized while the rest system cannot stop
functioning normally.

• We are going to program the software applications running on the
embedded PowerPC microprocessor and the Linux OS, which provide
a user interface to operators for monitoring the system status and
issuing control commands.

Appendix A

Porting Linux on Xilinx FPGA
Boards

A.1 Introduction

Xilinx Virtex-4 FX and Virtex-5 FXT series FPGAs have embedded
hardcore PowerPC processors (PowerPC 405 in Virtex-4 and PowerPC 440
in Virtex-5 respectively) on the die. For embedded systems designs, in-
stalling an Operating System (OS) makes the application development eas-
ier, more portable and more flexible when compared to the standalone ap-
proach. Among all kinds of embedded OSes, Linux is very preferable to many
engineers and researchers due to its merits of open-source, stable running,
a wide range of hardware architecture support, advanced memory manage-
ment techniques, powerful network support, etc.. In this technical report,
we will introduce our work on porting embedded Linux on the Xilinx FPGA
boards.

The experimental devices we adopted are Xilinx commercial boards ML405
and ML403, with Virtex-4 FX20 and FX12 FPGAs installed respectively.
We worked also on our customized PCBs, and it needs a little more effort
and tricks to run all customized peripherals on the board. Concerning the
PowerPC 440 architecture in Virtex-5 FXT family FPGAs, it shares the
same principle and process to bring up the Linux kernel. Recently Xilinx
has added the Memory Management Unit (MMU) functionality to its soft-
core CPU Microblaze. It enables the possibility to run a “full Linux” on
the Microblaze architecture. However for the MMU-less Microblaze design,

53

54 Appendix A. Porting Linux on Xilinx FPGA Boards

Figure A.1. Steps to bring up Linux on Xilinx boards

µClinux should be used instead. In this report, we focus only on the Pow-
erPC 405 architecture, on which we have worked for our project.

A.2 Steps to Port Linux on Xilinx Boards

To port Linux on FPGA boards concerns both hardware and software
design effort. First of all, the hardware platform design should be verified to
work correctly. Then aiming at the specific hardware architecture, the kernel
image containing device drivers is to be compiled with cross-compilation
tools running on a host system. Main steps are briefly shown in Figure A.1.
We will discuss more details as follows.

1. Building the HW platform and creating the bitstream file

To get started, build a hardware project using Base System Builder in
EDK for the specific board. Necessary modules should be included in
the design, in our case specifically PowerPC 405 processor, Tri-mode
Ethernet MAC, SDRAM controller, PLB BRAM, interrupt controller,
UART, external memory controller for flash memory, and other needed
customized modules. They are interconnected altogether, either in
the PLB/OPB bus-based topology or the MPMC-based architecture.

A.2. Steps to Port Linux on Xilinx Boards 55

After synthesis and implementation, the hardware bitstream is gen-
erated. A bootloader program can be assembled in the bitstream file
and located in the reset vector of the PowerPC processor to load the
OS kernel from the flash memory into the DDR/DDR2 SDRAM and
start executing. Alternatively when using JTAG to debug the sys-
tem, bootloader is not needed and the OS kernel image file can be
downloaded to DDR/DDR2 by PowerPC through the JTAG chain.

2. Generating the Board Support Package (BSP) in EDK

The BSP contains device drivers and header files required by the OS
kernel. It is automatically generated by EDK, with the specification
of board parameters.

In EDK’s “Software Platform Settings” window:

(a) Set PPC405 0 processor to generate BSP for Linux kernel (e.g.
linux 2 6 and version 1.01b in EDK 10.1)

(b) Specify the OS and library parameters for the board, including
connected peripherals, memory size, UART clock frequency, tar-
get directory, etc.. All the peripheral information will be included
in the generated header file “xparameters ml40x.h”.

(c) Set all device drivers with the same name as the peripherals.

Then “Generate Libraries and BSPs” will start generating the BSP
package, which will be located in the folder specified by the target
directory.

3. Creating the cross-compiler for PowerPC

A cross-compiler will compile C codes to PowerPC machine code on
an arbitrary host. In our case we use an X86 PC running Linux as the
host to develop PowerPC executables.

Building a cross-compiling toolchain is typically regarded as an awk-
ward and error-prone process. Fortunately, Dan Kegel [41] has de-
veloped a set of shell scripts to automate the toolchain build process.
After successful compilation and installation on the host machine, the
cross-compilation toolchain provides us binaries, for instance powerpc-
405-linux-gnu-gcc, powerpc-405-linux-gnu-as, powerpc-405-linux-gnu-
ld, and so on.

56 Appendix A. Porting Linux on Xilinx FPGA Boards

4. Getting the Linux sources

Different versions of Linux kernels may be downloaded from the Linux
kernel archives at http://www.kernel.org/. To make the development
easier, Xilinx, Secretlab [42] and MontaVista [43] have all set up their
kernel trees for PowerPC 405 architecture at http://git.xilinx.com,
http://git.secretlab.ca/, and http://source.mvista.com/ respectively.
In their kernel versions, device drivers of some standard IP cores in
Xilinx FPGAs have been included in the source package. During the
kernel configuration, they can be enabled optionally. In our work, we
have downloaded and brought up two version kernels, 2.6.10 and 2.6.24
for the bus-based and the MPMC-based PowerPC 405 architectures
respectively.

5. Configuring the Linux kernel

The Linux kernel will be built using the above created cross-compiler.
The file .config is used to control which features or functions in Linux
are included in the kernel image file. It is not recommended to edit
.config directly. Instead, “make xconfig” or “make menuconfig” should
be used to configure the kernel. Figure A.2 shows the top level config-
uration interface of “make menuconfig” and in the hierarchical struc-
ture, many options are available to be enabled or disabled.

If not properly configured, the kernel is very error prone during compi-
lation. Hence the best solution is to make a minimal “.config” file as a
starting point and add more options later step by step. The following
items show a fundamental example configuration for our platform in
the kernel version of 2.6.24.

• General Setup
∗ Prompt for development and/or incomplete code/drivers

• Enable Loadable Module Support
∗ Module unloading
∗ Module versioning support
∗ Automatic kernel module loading

• Processor
Processor Type → 40x
∗ Math emulation
IBM 4xx options

A.2. Steps to Port Linux on Xilinx Boards 57

Figure A.2. Linux kernel configuration interface

Machine type (Xilinx-ML405)
TTYS0 device and default console (UART0)

• Platform Options
∗ Kernel support for ELF binaries
∗ Kernel support for MISC binaries
∗ Default bootloader kernel arguments
(“console=ttyUL0, 38400 root=/dev/nfs ip=192.168.0.4:192.168.
0.1:192.168.0.1:255.255.255.0, rw nfsroot=192.168.0.1:/home/mi-
ngliu/ml403 rootfs mem=64M”)

• Networking
∗ Networking support
Networking options
∗ Packet socket
∗ Unix domain sockets
∗ TCP/IP networking

58 Appendix A. Porting Linux on Xilinx FPGA Boards

• Device Drivers

∗ Memory Technology Device (MTD) support
∗ MTD partitioning support
∗ Direct char device access to MTD devices
RAM/ROM/FLASH chip drivers →
∗ Detect flash chips by Common Flash Interface (CFI) probe
∗ Support for Intel/Sharp flash chips

Mapping drivers for chip access →
∗ Support non-linear mappings of flash chips
∗ CFI Flash device in physical memory map
(0xff000000) Physical start address of flash mapping
(0x00800000) Physical length of flash mapping
(4) Bank width in octets

∗ Block devices
∗ Loopback device support
∗ Network block device support

∗ Network device support
∗ Ethernet (1000 Mbit)
∗ Xilinx LLTEMAC 10/100/1000 Ethernet MAC driver

Character devices
∗ Virtual terminal
∗ Support for console on virtual terminal

Serial drivers →
∗ Xilinx uartlite serial port support
∗ Support for console on Xilinx uartlite serial port

• File Systems

∗ Kernel automounter support
Pseudo filesystems →
∗ /proc file system support
∗ sysfs file system support
∗ Virtual memory file system support

∗ Network File Systems
∗ NFS file system support
∗ Provide NFSv3 client support
∗ Root file system on NFS
∗ Support for rpcbind version 3 & 4

• Kernel hacking

∗ Kernel debugging
∗ Compile the kernel with debug info

A.2. Steps to Port Linux on Xilinx Boards 59

6. Incorporating the BSP and compiling the kernel

If the kernel source code is from Xilinx, Secretlab or MontaVista, they
have already integrated device drivers in the package. The only thing
one needs to do is to copy and overwrite the header file “xparam-
eters ml40x.h”, where system parameters are defined. If using the
package from the Linux kernel archives, generated BSP files should be
copied into the kernel source and correspondingly modify “Kconfig”
and “Makefile” to visualize and enable driver options in the kernel
configuration interface.

Before compilation, the architecture and software toolchain in the
“Makefile” need to be specified as:

ARCH := ppc
CROSS COMPILE = powerpc-405-linux-gnu-

Then “make dep” and “make zImage” will start the compilation and
generate the executable file “zImage.elf” in “arch/ppc/boot/images/”
directory. “zImage.elf” is the executable file which will be downloaded
to the memory for starting the Linux OS. By the “powerpc-405-linux-
gnu-objcopy” tool, the .elf file is also able to be converted into the
.srec format, which is used for the flash memory storage.

7. Generating the root file system

The root file system contains the startup files necessary to get the
system up to a fully running state where users can log in. It provides
also some utilities (ls, chmod, ...) as well as hierarchical file directories.
In our case the root file system will reside in a desktop PC and be
accessed through Network File System (NFS).

The root file system can be generated by BusyBox [44]. After genera-
tion, all folders are copied to the PC at “/home/mingliu/ml403 rootfs”,
which behaves as the NFS server.

8. Booting the system

If all the previous steps are correct, the system is runnable now. No
matter what booting mechanism is used (JTAG, flash memory, ...), the
booting information of the Linux kernel will show on the UART console
terminal. The information can be referred to as follows. Except no
Graphical User Interface (GUI), the embedded PowerPC platform with
the Linux OS can be operated in the same way as we do on a normal
desktop PC with Linux.

60 Appendix A. Porting Linux on Xilinx FPGA Boards

A.2. Steps to Port Linux on Xilinx Boards 61

62 Appendix A. Porting Linux on Xilinx FPGA Boards

A.3 Summary

In this report, we have presented the work to install an open-source Linux
on Xilinx Virtex-4 FX series FPGA boards. The discussion above includes
only summaried steps which lead the direction to a running Linux OS. Much
more effort needs to be devoted to solve specific problems both in hardware
and in software, for example, kernel compilation errors and hardware design
bugs.

References

[1] High Acceptance Di-Electron Spectrometer (HADES) @ GSI, Darm-
stadt, Germany, www-hades.gsi.de.

[2] antiProton ANnihilations at DArmstadt (PANDA) @ GSI, Darmstadt,
Germany, www.gsi.de/panda.

[3] BEijing Spectrometer (BES) @ Institute of High Energy Physics, Beijing,
China, http://bes.ihep.ac.cn/bes3/index.html.

[4] The Large Hadron Collider (LHC) @ CERN, the European Organization
for Nuclear Research, http://lhc.web.cern.ch/lhc/.

[5] Wide Angle Shower Apparatus (WASA) @ Research Center Juelich,
Juelich, Germany, http://www.fz-juelich.de/ikp/wasa/index.shtml.

[6] Pieter van der Wolf, “ Applications and Memory Organization”, Design
Automation and Test Conference (DATE) Tutorial - NoCs at the Age of
six, Apr. 2007.

[7] I. Froehlich, A. Gabriel, D. Kirschner, J. Lehnert, E. Lins, M. Petri, T.
Perez, J. Ritman, D. Schaefer, A. Toia, M. Traxler, and W. Kuehn, “Pat-
tern recognition in the HADES spectrometer: an application of FPGA
technology in nuclear and particle physics”, In Proc. of the 2002 IEEE
International Conference on Field-Programmable Technology, pages 443-
444, Dec. 2004.

[8] Michael Traxler, “Real-time dilepton selection for the HADES spectrom-
eter”, November 2001, Ph.D thesis, II.Physikalisches Institut, Justus-
Liebig-Universitaet Giessen.

[9] C. Hinkelbein, A. Kugel, R. Manner, M. Muller, M. Sessler, H. Simmler
and H. Singpiel, “Pattern recognition algorithms on FPGAs and CPUs

63

64 References

for the ATLAS LVL2 trigger”, IEEE Transactions on Nuclear Science,
Volume 48, Issue 3, Part 1, pp. 296-301, Jun. 2001.

[10] G. Estrin, Organization of Computer Systems – The Fixed Plus Vari-
able Structure Computer, In Proc. of the Western Joint Computer Con-
ference, New York, 1960, pp. 33-40.

[11] G. Estrin, Reconfigurable Computer Origins: The UCLA Fixed-Plus-
Variable (F+V) Structure Computer, IEEE Annals of the History of
Computing, Volume 24, Issue 4, Oct.-Dec. 2002, pages 3-9.

[12] R. Merl, F. Gallegos, C. Pillai, F. Shelley, B. J. Sanchez and A. Steck,
“High speed EPICS data acquisition and processing on one VME board”,
In Proc. of the 2003 Particle Accelerator Conference, volume 4, pages
2518-2520, May. 2003.

[13] Y. Tsujita, J. S. Lange, and C. Fukunaga, “Construction of a com-
pact DAQ-system using DSP-based VME modules”, In Proc. of the 11th
IEEE NPSS Real Time Conference, pages 95-98, Jun. 1999.

[14] M. Drochner, W. Erven, P. Wustner, and K. Zwoll, “The second genera-
tion of DAQ-Systems at COSY”, IEEE Transactions on Nuclear Science,
Volume 45, Issue 4, Part 1, pp. 1882-1888, Aug. 1998.

[15] Y. Nagasaka, I. Arai and K. Yagi, “Data acquisition and event filtering
by using transputers”, In Proc. of the Nuclear Science Symposium and
Medical Imaging Conference 1991, pp. 841-844, Nov. 1991.

[16] N. Bhatia, S. R. Alam, and J. S. Vetter, “Performance Modeling of
Emerging HPC Architectures”, In Proc. of HPCMP Users Group Con-
ference 2006, pp. 367-373, Jun. 2006.

[17] J. Fernando, D. Dalessandro, A. Devulapalli, and K. Wohlever, “Ac-
celerated FPGA Based Encryption”, In Proc. of the 2005 Cray Users
Group Conference, May. 2005.

[18] C. B. Cameron, “Using FPGAs to Supplement Ray-Tracing Compu-
tations on the Cray XD-1”, In Proc. of the DoD High Performance
Computing Modernization Program Users Group Conference 2007, pp.
359-363, Jun. 2007.

References 65

[19] C. Hinkelbein, A. Kugel, R. Manner, M. Muller, M. Sessler, H. Simmler
and H. Singpiel, Pattern Recognition Algorithms on FPGAs and CPUs
for the ATLAS LVL2 Trigger, IEEE Transactions on Nuclear Science,
Volume 48, Issue 3, Part 1, pp. 296-301, Jun. 2001.

[20] Dini Group, “www.dinigroup.com”

[21] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: a high-end
reconfigurable computing system”, IEEE Design & Test of Computers,
Volume 22, Issue 2, pp. 114-125, March-April 2005.

[22] A. Tkachenko, D. Cabric, and R. W. Brodersen, “Cognitive Radio Ex-
periments using Reconfigurable BEE2”, In Proc. of the Fortieth Asilo-
mar Conference on Signals, Systems, and Computers 2006, pp. 2041-
2045, Oct. -Nov. 2006.

[23] PANDA Collaboration, “Technical Progress Report for PANDA”,
http://www-panda.gsi.de/db/papersDB/PC19-050217 panda tpr.pdf,
February 2005.

[24] PCI Industrial Computers Manufactures Group (PICMG), PICMG 3.0
Advanced Telecommunications Computing Architecture (ATCA) speci-
fication, Dec. 2002.

[25] A. X. Widmer, P. A. Franaszek, “A DC-Balanced, Partitioned-Block,
8B/10B Transmission Code”, IBM Journal of Research and Develop-
ment, Volume 27, Issue 5, 1983, pages 440-451.

[26] Xilinx, Inc., ”RocketIO Transceiver User Guide”, UG024(v3.0), Feb,
2007.

[27] Xilinx, Inc., ”Virtex-4 Product Table”, Jan, 2007.

[28] Hal Stern, Mike Eisler, and Ricardo Labiaga, “Managing NFS and NIS
(Second Edition)”, O’REILLY & Associates, Inc., ISBN: 1-56592-510-6.

[29] Xilinx, Inc., “ML405 Evaluation Platform User Guide”, UG080(v1.3)
May 2, 2007.

[30] Xilinx, Inc., Multi-Port Memory Controller (MPMC) (v4.01.a), DS643,
March 12, 2008.

66 References

[31] Brent Nelson and Brad Baillio, “Configuring and Installing Linux on
Xilinx FPGA Boards”, November, 2005, BYU Configurable Computing
Laboratory.

[32] Dan Burke, James Player, and Nacho Navarro, “Building a Xilinx
ML300/ML310 Linux Kernel”, November, 2004, UIUC Soft Systems
Lab.

[33] Wolfgang Klingauf and Uwe Klingauf, “Virtex2Pro & Linux”, January,
2004, www.klingauf.de.

[34] Jonathon W. Donaldson, “Porting MontaVista Linux to the XUP
Virtex-II Pro Development Board”, August, 2006, Master Thesis, De-
partment of Computer Science, Rochester Institute of Technology.

[35] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman,
“Linux Device Drivers (Third Edition)”, O’REILLY & Associates, Inc.,
ISBN: 0-596-00590-3.

[36] Apache HTTP Server Project, “http://httpd.apache.org/”

[37] The Common Gateway Interface, “http://hoohoo.ncsa.uiuc.edu/cgi/”

[38] HADES collaboration, “A proposal for a High Acceptance Di-Electron
Spectrometer”, 1994, GSI Darmstadt.

[39] Daniel Kirschner, “Level 3 Trigger Algorithm and Hardware Platform
for the HADES Experiment”, Oct. 2007, Ph.D thesis, II. Physics Insti-
tute of Justus-Liebig-University Giessen.

[40] Ming Liu, Wolfgang Kuehn, Zhonghai Lu, and Axel Jantsch, “System-
on-an-FPGA Design for Real-time Particle Track Recognition and Re-
construction in Physics Experiments”, In Proc. of the 11th EUROMI-
CRO Conference on Digital System Design, Parma, Italy, Sep. 2008.

[41] Dan Kegel’s Web Hostel, “http://www.kegel.com/”

[42] Secret Lab, “http://www.secretlab.ca/”

[43] MontaVista Linux, “http://www.mvista.com/”

[44] Busybox, “http://www.busybox.net/”

