HW/SW Co-design of a General-Purpose Computation Platform in Particle Physics

Ming Liu^{3,2}, Axel Jantsch³, Dapeng Jin¹, Wolfgang Kuehn², Zhenan Liu¹, Zhonghai Lu³, Tiago Perez², Hao Xu¹, Shuo Yang^{3,2}

Experimental Physics Center, Institute of High Energy Physics, China

II. Physics Institute, Justus-Liebig-University in Giessen, Germany

Dept. of Electronic, Computer and Software Systems, Royal Institute of Technology, Sweden

Dec. 14, 2007

Outline

- Background & Motivation
- System Architecture
 - Network Architecture
 - Compute Node Architecture
- Partitioning Strategy
- HW Design
- SW Design
- Experimental Results
- Status and Outlook

Detector System in Physics Experiments

Detectors: RICH, MDC, TOF

Signals generated when particles fly through the detectors

Data Acquisition System

Feature Extraction Example

Ring recognition

- Typically 36K pixels on the RICH detector in total
- Reaction rate @ 10 MHz
- Computation task: to scan all 36K pixels for rings per 100 ns
- Other even heavier computation tasks such as MDC track reconstruction, etc.
- HW parallel and pipelined processing in FPGA to achieve the high performance.

Motivation

- The DAQ system in modern nuclear and particle physics experiments desires:
 - High data processing capability. (reaction rate up to 20MHz, data rate up to 200 GB/s)
 - Various on-line feature extraction algorithms. (Ring recog., MDC tracking, etc.)
 - To be general-purpose for different experiments.
 - To be highly and remotely reconfigurable.
- Purpose:
 - To design the system, based on the platform FPGA technology and HW/SW co-design.

Network Architecture

- Feature extraction algo. implemented in the computation network.
- Compute node boards internally interconnected by the full-mesh ATCA backplane.
- External interconnections:
 - Optical links
 - Gigabit Ethernet

ATCA Full-mesh Backplane

- Full-mesh backplane network
- High flexibility to correlate results from different algorithms
- High performance

Compute Node (CN) Architecture

- Prototype board with 5 Xilinx Virtex-4 FX60 FPGAs
- 4 FPGAs as algo. processors
- I FPGA as a switch
- Full-mesh communication on-board
- External links:
 - Optical links
 - Gigabit Ethernet

Partitioning Strategy

- Computation-intensive algorithms implemented in the FPGA fabric for high performance.
- Parallel and pipelined computation in HW.
- Slow controls in SW (OS + Applications):
 - To remotely upgrade the HW and SW designs.
 - Network test and measurement.
 - To display and modify the experimental parameters.
 - • • •
- Soft TCP/IP stack in Linux OS.

HW Design (FPGA Node)

- Bus-based platform
 - PLB (fast)
 - OPB (slow)
- PowerPC 405 CPU
- Algo. Processing engines
- Other peripherals:
 - Gigabit Ethernet
 - DDR memory
 - Flash memory
 - RS232

.

HW Design (toy-model event selector)

Event selector as a simple instance of the algo. processing engines:

SW Design

- Open-source embedded Linux on the embedded PowerPC
- Device drivers:
 - For Ethernet, RS232, Flash memory, etc.
 - For the customized processing modules
- Applications for slow controls:
 - High level scripts
 - C/C++ programs

Implementation Results

- Experiment platform: Xilinx Dev. Board ML403
- Virtex-4 FX 12 platform FPGA
- In the real product: Virtex-4 FX 60
- Softwares:
 - XPS 8.2
 - ISE 8.2
 - Modelsim 6.1e
 - Bus Functional Models (BFM)
- PLB bus: 100 MHz
- PowerPC: 300 MHz

Resources	System with- out computing engine	Tri-mode Ethernet	Event Selec- tor module (4kBytes WrFIFO RdFIFO and Event Buffer)
4-input LUTs	8531 out of	5346 out of	4674 out of
	10944 (77%)	10944 (48%)	10944 (43%)
Slice Flip-	5724 out of	4093 out of	2830 out of
Flops	10944 (52%)	10944 (37%)	10944 (25%)
FIFO16/	18 out of 36	18 out of 36	6 out of 36
RAMB16s	(50%)	(50%)	(17%)
DSP48s	8 out of 32	8 out of 32	0
	(25%)	(25%)	
DCMs	3 out of 4	0	0
	(75%)		

Communication Speed per Ethernet link

Protocol Type	Direction	Max. Throughput (Mbps)
UDP/IP	Board \rightarrow PC	394.5 (TX)
UDP/IP	$PC \rightarrow Board$	\geq 394.5 ¹ (RX)
TCP/IP	Board \rightarrow PC	297.8
TCP/IP	$PC \rightarrow Board$	316.6

- Board to PC, p2p interconnection of Gigabit Ethernet
- All features enabled to improve the communication speed, such as jumbo frame, S/G DMA, check-sum offloading, etc.
- Embedded PowerPC 405 CPU is the bottleneck: only 300 Mhz
- Results matching the thumb rule: 1 bps ~ 1 hz

Dec. 14, 2007

Computing Throughput of Event Selector

- Performance measurements of the event selector
- Experimental setup
 - Two DDR blocks
 - Event selector connected to the PLB
 - DMA transfers to feed data and collect results
 - 100% and 25% interesting event rates
- Calculation:

Computing throughput

Computing Throughput of Event Selector

- Maximum results (32 KB FIFOs):
 - 148.1 MB/s (25% interesting event rate)
 - 97.3 MB/s (100% interesting event rate)

Dec. 14, 2007

Status and Outlook

- Algorithm designs in FPGA fabric
 - Ring recognition for RICH detector
 - Particle track reconstruction (tracking) for MDC detectors
 - TOF processing for TOF detector
 - Shower recognition for Shower detector
 - Event builder
- Algorithm partition and distribution in CNs for parallel processing
- PCB layout for the CN boards
 - Prototype board ready in the early next year
- System implementation & debugging

Summary

- Motivation
 - Computation network with high processing capabilities in physics experiments
 - Reconfigurable general-purpose platform
 - Feature extraction algorithms
- Solution:
 - Co-design and FPGA based computation platform
- Results:
 - Implementation results
 - Communication and computation performance measurements
- Future work
 - Feature extraction algorithm implementations
 - Network study for parallel processing

Dec. 14, 2007

Thanks for your attention!