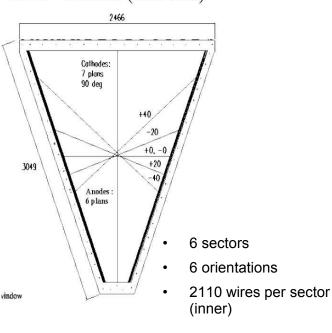
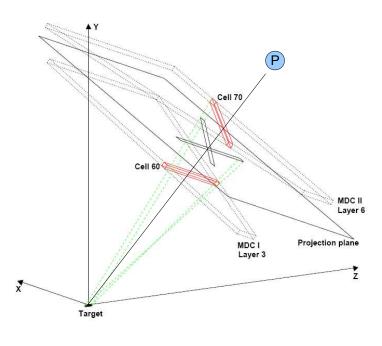

HW Implementation of Track Reconstruction for the New HADES LVL2 Trigger

Justus-Liebig-University in Giessen

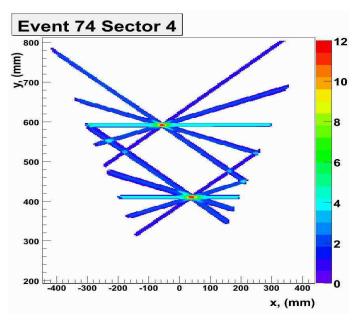
Ming Liu

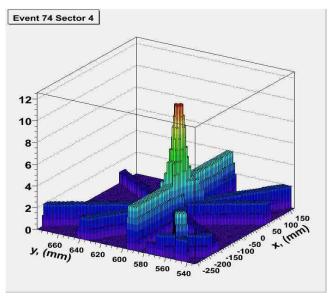
Tracking in MDCs




- 4 MDCs
- Particles' tracks bended in the magnetic area
- Straight line tracks from target to MDC II, and from MDC III to MDC IV
- Inner and outer tracks pointing to RICH (Johannes Roskoss) and TOF (Andreas Kopp) respectively and helping them to find patterns
- Inner tracking being implemented in HW currently. Both inner and outer algorithms ready in SW.

Tracking Principle


MDC – Chamber (front view)

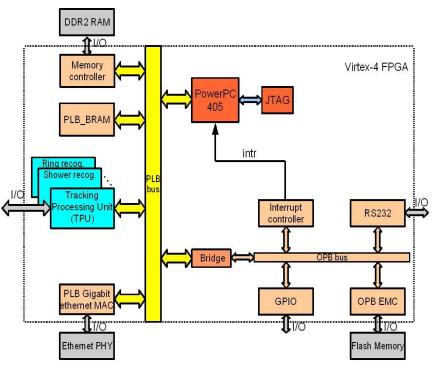


Tracking Principle

Special thanks to: Vladimir Pechenov

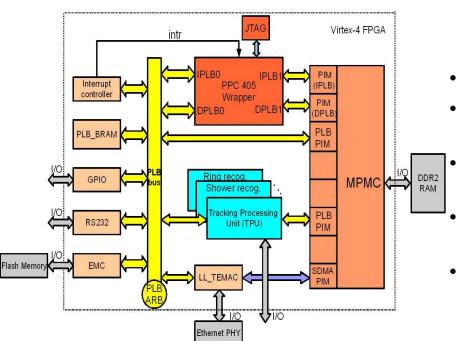
Daniel Kirschner

Geydar Agakishiev

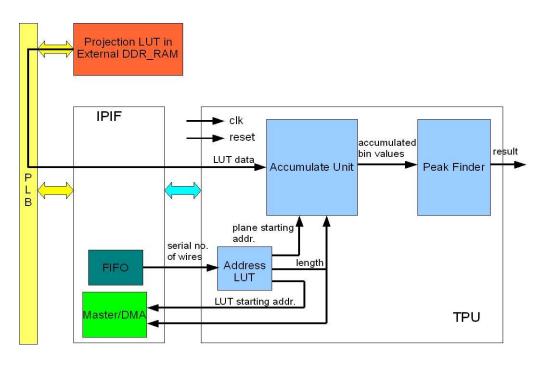


HW Platform

- 5 FPGAs on a compute node (Shuo Yang)
- External and internal links
- Large memory capability
- Embedded hardcore PowerPC CPUs on the FPGA chip (embedded Linux OS)
- Peripheral cores on the FPGA
- Development work on Xilinx commercial boards with same family FPGAs


Bus-based Design in FPGA

- Bus-based platform
 - PLB (fast)
 - OPB (slow)
- PowerPC 405 CPU
- Algo. Processing engines (Tracking Processing Unit)
- Other peripherals:
 - Gigabit Ethernet
 - DDR memory
 - Flash memory
 - RS232
 -


LocalLink-based Design in FPGA

- LocalLink-based platform
- Multi-Port Memory Controller (8 ports)
 - Heavy traffic avoided on the PLB bus
- Direct access to the memory from the device
- Large performance improvement expected

TPU Design

- Addr. LUT
- Projection LUT
- Accumulate Unit
- Peak finder
- IP interface (IPIF)

Implementation Results

Resources	TPU	compute node platform	PLB-IPIF	system with TPU (sum)
4-input LUTs	5175 out of 50560 (10.2%)	8531 out of 50560 (16.9%)	2900 out of 50560 (5.7%)	16606 out of 50560 (32.8%)
Slice Flip- Flops	1715 out of 50560 (3.4%)	5724 out of 50560 (11.3%)	1640 out of 50560 (3.2%)	9079 out of 50560 (18.0%)
Block RAMs	41 out of 232 (17.7%)	18 out of 232 (7.8%)	0	59 out of 232 (25.4%)
DSP Slices	0	8 out of 128 (6.3%)	0	8 out of 128 (6.3%)

Table 1. Resource consumption

- Resource utilization is acceptable for Virtex4 FX60 FPGA.
- Timing limitation: 125 MHz without optimization
- We choose 100 MHz, matching the speed of PLB.

Performance Evaluation

- A C program running on the server (Xeon 2.4G) as the software reference
- Measurement setup: 30 fired wires/sub-event, 5.7 Kbits LUT/wire in average (1,510,256 bytes/2110 wires)
- **SW performance** = 0.82K sub-events/s
- When DMA_done interrupt used, HW performance = 0.83K sub-events/s
- When DMA_done polling used, HW performance = 4.5K sub-events/s (5.5 times speedup)
- PowerPC was engaged in the DMA initialization and DMA_done interrupt handler. Software overhead was largely introduced then.
- A HW master logic will take the place of the CPU+DMA solution for small overhead and higher performance.
- In theory, speedup of around 20~30 per module is expected according to the simulation

Summary and Future Work

- Basic principle of the inner track reconstruction was implemented in Xilinx FPGA.
- Working as a processing engine in compute nodes, the TPU works to find out track candidates.
- It is feasible to implement the entire system in FPGA. The speedup of 20~30 is expected.
- Multiple TPU modules will be inserted in the system for high processing speed.
- Design for inner tracking is to be optimized. Outer tracking implementation will also be the future work.

Thanks for your attention!