

A Reconfigurable Design Framework for FPGA Adaptive Computing

-- Application for Online Trigger Algorithms

II. Physikalisches Institut,Justus-Liebig-Universität Giessen, Germany

Ming Liu for the PANDA collaboration group

23 April 2010

Justus-Liebig-University in Giessen, Germany

Outline

- Introduction & Motivation
- Reconfigurable Framework for Adaptive Computing
 - HW infrastructure
 - OS, device drivers & scheduler SW
 - Context saving and restoring
 - Inter-Process Communication (IPC)
- Technical Perspectives in applications
- Conclusion & Future Work

23 April 2010

Justus-Liebig-University in Giessen, Germany

Introduction & Motivation

- Adaptive computing: algorithms adapted to ambient conditions during system run-time.
- Benefits:
 - Higher performance
 - Lower power consumption
 - Multitasking on limited resources
- Conventional adaptive multitasking on general-purpose CPUs + OSes: well-fledged as the development of OSes & scheduler
 - Computing resources (CPU) intelligently and efficiently utilized
- In the FPGA world???
 - Static designs? Not adaptive
 - Partial Reconfiguration (PR)? Technical support
- Motivation: a complete design framework for more efficient hardware resource management, based on FPGA PR technology.

23 April 2010

Justus-Liebig-University in Giessen, Germany

Design Framework for Adaptive Computing

- A comprehensive framework in different HW/SW layers
 - HW PR design (static computer systems + reconfigurable algorithm modules as HW processes)
 - OS kernel for the base computer systems
 - Device drivers for algo. modules
 - Software scheduler for HW processes
- Reconfiguration speed is critical for performance
 - Module reconf. time in the order of magnitude of Micro-seconds (us), with our customized MST_HWICAP design
 - Reconf. time depending on design complexity

Justus-Liebig-University in Giessen, Germany

Partial Reconfiguration Technology

- PR Region (PRR) dynamically loaded with different design modules (partial bitstreams)
- Designs can be switched in the system run-time for different algorithms
- HW resources are multiplexed by different PR Modules (PRM)

23 April 2010

Justus-Liebig-University in Giessen, Germany

OS, Drivers & Scheduler

- Embedded OS or Standalone
- Device drivers for algorithm modules
 - Software control registers
 - Interrupts
- Algorithm scheduler
 - Application programs (flexible & portable)
 - Monitors ambient conditions and triggers algorithm switching
 - HW processes are preemptable and comply with the scheduler
 - Flexible disciplines

<pre>int scheduling(void) { if((data_in_fifo0 - data_in_fifo1) > THRESHOLD) { switching_to_hw_process = 0; // Context switching to hw process 0,</pre>	<pre>int scheduling(void) { if(event_in_fifo0 != 0) { switching_to_hw_process = 0; // Context switching to hw process 0 at once, // since algorithm 0 has higher priority. } else if(event_in_fifo1 != 0) { switching_to_hw_process = 1; // Context switching to hw process 1. // It has lower priority, but also RT requirement. } else { switching_to_hw_process = switching_to_hw_process; // No event happened. } }</pre>
<pre>switching_to_hw_process = switching_to_hw_process; // Keep unchanging,</pre>	<pre>switching_to_hw_process = switching_to_hw_process; // No event happened.</pre>

23 April 2010

Justus-Liebig-University in Giessen, Germany

Context Switching

- Context
 - Control registers
 - Buffered incoming data
 - Intermediate calculation results
 - To be saved and restored for algorithm modules in many cases
- Concrete approaches [1][2]:
 - Register read and write
 - Bitstream readout and analysis

[1] H. Kalte and M. Porrmann, "Context Saving and Restoring for Multitasking in Reconfigurable Systems", *In Proc. of the International Conference on Field Programmable Logic and Applications*, Aug. 2005.
[2] C. Huang and P. Hsiung, "Software-controlled Dynamically Swappable Hardware Design in Partially Reconfigurable Systems", *EURASIP Journal on Embedded Systems*, Jan. 2008.

23 April 2010

Justus-Liebig-University in Giessen, Germany

Inter-Process Communication (IPC)

- Static process communications: pipes (FIFOs) between nodes
- Time-multiplexing process communications: writing to pipes by A_n and reading by A_{n-1} (A_n -> A_{n-1})
- Larger pipe sizes: smaller reconfiguration overhead, higher throughput, but longer latency

Adaptive Computing for online Triggering

Motivation:

- Multiple pattern recognition algorithms in DAQ & trigger systems (RICH ring recog., MDC tracking, TOF, Shower, ...)
- Multiple cores for each algorithm for massive parallel processing
- Computation steps distributed on FPGAs
- Difficult to manage and modify the large system (many FPGAs, many algorithms, many cores, different FPGA bitstreams, long design synthesis & implementation time, ...)
- Different computation features for algorithms (computationbounded, memory-bounded, ...)
- Traditionally all partitions are considered by designers during system development process -- NEITHER flexible, NOR efficient!!!

23 April 2010

Justus-Liebig-University in Giessen, Germany

Adaptive Computing for online Triggering

One promising solution: Adaptive computing

- Algorithm cores designed as PR modules
- Modules can be adaptively loaded during experiments, according to external factors (workload, sub-event types, ...)
- Uniform DAQ & trigger design to interface with optical hubs, which delivers all kinds of sub-events
- Performance improvement due to the balance of computation and memory accesses, as well as more efficient utilization of FPGA resources?
- Other merits?... (to be explored)

Justus-Liebig-University in Giessen, Germany

²³ April 2010

- No data distribution requirements for optical hubs (all kinds of sub-events fed into all FPGAs)
- Uniform design in adaptive computing easy to maintain system designs
- Balanced computing and more efficient FPGA resource utilization

23 April 2010

Justus-Liebig-University in Giessen, Germany

Summary

- FPGA PR-based adaptive computing is introduced in particle physics applications for online triggering.
- A comprehensive design framework is under research.
- Large benefits are foreseen with adaptive computing, in terms of design version control, system performance, HW utilization efficiency, costs, etc.

In the future:

- Trigger algorithms are to be implemented on FPGAs.
- The adaptive design framework is to be elaborated in different aspects.
- Real algorithm cores are to be applied for adaptive triggering

23 April 2010

Justus-Liebig-University in Giessen, Germany

Thanks for your attention!

23 April 2010

Justus-Liebig-University in Giessen, Germany