

FPGA-based Compute Node for Data Acquisition and Trigger in HADES and PANDA

Under the collaboration of

JLU (Giessen) and IHEP (Beijing)

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

<u>Ming Liu¹</u>, Johannes Lang¹, Zhen'an Liu², Hao Xu², Qiang Wang¹², Dapeng Jin², Soeren Lange¹, Johannes Roskoss¹, Andreas Kopp¹, David Muenchow¹, Wolfgang Kuehn¹

Acknowledgement: BMBF&GSI 06GI179 06GI180, FZ-Juelich COSY-099 41821475

Outline

- Physics background of HADES & PANDA
- ATCA platform architecture
- Compute Node (CN) HW design
- HW/SW co-design on FPGAs
- Detector-specific algorithm development
- Current status and outlook

Physics Background

Modern experiments such as HADES and PANDA at Fair require the data acquisition and trigger system with features:

- High reaction rate and high data rate (PANDA, 10-20 MHz, >200 GB/s)
- Large channel count from detectors (>10⁵ channels)
- General-purpose use for multiple experiments
- A design methodology for easy application development
- Scalability for new detectors and higher data rate

•

Motivation: a **powerful**, **scalable**, and **universal** platform for DAQ and triggering.

Computation Platform Architecture

- Pattern recognition algorithms implemented for triggering
- Multiple CNs for algorithm partition and parallel/pipelined processing
- CNs internally interconnected by the full-mesh ATCA backplane
- The number of crates to be decided according to the incoming data rate and computation needs
- External interconnections:
 - Optical links
 - Gigabit Ethernet

ATCA Full-mesh Backplane

- Full-mesh backplane network
- High flexibility to correlate results from different algorithms
- High performance

Compute Node

Gigabit enet

- Prototype board with 5 Xilinx Virtex-4 FX60 FPGAs
- 4 FPGAs as algo. Processors
- 1 FPGA as a switch
- 2 GB DDR2 per FPGA
- Full-mesh communication onboard
- IPMC, Flash, CPLD, ...
- External links

Optical links Gigabit Ethernet

HW/SW Co-design on FPGAs

Aim: to ease and accelerate development on CNs for different experiments & algorithms

Partitioning strategy:

- Computation-intensive algorithms implemented in the FPGA fabric for high performance and real-time features (parallel & pipelined processing in HW)
- Slow controls in SW (OS + Applications):
 - To remotely upgrade the HW and SW designs
 - Network test and measurements
 - To display and adjust experimental parameters

—

• Communication stack processing (TCP/IP) in Linux OS in SW

HW Design on FPGAs

- A uniform system design for all applications (MPMC-based)
- Customized processing modules for different algorithms
- Easy system integration with the guarantee of high performance

SW Design

- Open-source Linux on embedded PowerPCs
- Physicists favorite OS and easy to operate and program
- Device drivers:
 - For Ethernet, UART, Flash memory, etc.
 - For customized processing units
- Applications for slow controls:
 - High level scripts
 - C/C++ programs
 - Webpages on Apache server
 - Java program on VM
 - ...
- Many tools provided, NFS, telnet, ...
- Software cost: almost zero

Remote Reconfigurability

- Remote reconfigurability is provided to solve the spatial constraint in experiments.
- Both the OS kernel and the FPGA bitstreams are stored in the NOR flash memories.
- With the support of the MTD driver, the bitstreams and the kernel can be overwritten and upgraded in Linux.
- Commands are issued remotely through network.
- Backup mechanism to guarantee the system alive.

Algorithm Development

Example: HADES track reconstruction (inner)

- Particle tracks bent in the magnetic field between the coils
- Straight lines before & after the coil approximately
- Inner and outer tracks pointing to RICH and TOF detector respectively and helping them to find patterns (correlation)
- Similar principle for inner and outer segments. Only inner part discussed
- The particle track reconstruction algorithm for HADES was previously implemented in SW, due to the complexity.
- Now implemented and investigated as a case study in HW

Basic Principle

Basic Principle

HADES Track Reconstruction

- PLB slave interface (PLB IPIF) for system control
- LocalLink master interface for data movement from/to memory
- Algorithm processor (tracking processor)

Modular Design

- TPU for track reconstruction computation
- Input: fired wire Nos.
- Output: position of track candidates on the proj. plane
- Sub-modules:
 - Wire No. Wr. FIFO
 - Proj. LUT & Addr.
 LUT
 - Bus master
 - Accumulate unit
 - Peak finder

Implementation Results

Resources	MPMC-based FPGA system design (no ap- plication processor)	TPU module	MPMC-based sys- tem with the <i>TPU</i>
4-input LUTs	10008 out of 50560 $(19.8%)$	6210 out of 50560 (12.3%)	16218 out of 50560 (32.1%)
Slice Flip-Flops	8440 out of 50560 (16.7%)	2966 out of 50560 (5.9%)	11406 out of 50560 (22.6%)
Block RAMs	53 out of 232 (22.8%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	98 out of 232 (42.2%)
DSP Slices	0	0	0

- Resource utilization of Virtex-4 FX60 (<1/5 of the FPGA, acceptable!)
- Timing limitation: 125 MHz without optimization effort
- Clock frequency fixed at 100 MHz, to match the PLB speed

Performance Evaluation

Experimental setup:

- A C program running on the Xeon 2.4 GHz computer as the software reference
- Measurement points on different wire multiplicities (10, 30, 50, 200, 400 fired wires out of 2110)
- Speedup of 10.8 24.3 times per module compared to the software solution
- Multiple cores integrated on each FPGA for parallel processing (performance speedup of more than two orders of magnitude expected for each CN)

Other Algorithms for HADES & PANDA

Except for the HADES MDC tracking, other algorithms are also being developed for HADES and PANDA:

- HADES ring recognition for RICH (Johannes Roskoss, HK 67.105)
- HADES shower recognition for Electromagnetic Shower (Andreas Kopp , HK 67.105)
- PANDA tracking for Straw Tube Tracker (David Muenchow, HK 67.101)
- •

All algorithms are to be implemented on CNs for HW processing.

Current Status

- The first version CN PCB has been tested
 - Optical links (@ 2Gbps to TRB2, 0 bit error for 150-hour test)
 - Gigabit Ethernet (UDP/IP:~400 Mbps, TCP/IP:~300 Mbps)
 - JTAG chain
 - CPLD+Flash system start-up mechanism and remote reconfigurability
 - DDR2 SDRAM
 - Other peripherals
- Algorithms under development & implementation

Outlook

- The next version PCB will be produced soon.
- More than 3 boards for network investigation.
- All algorithms to be implemented.
- Network parallel/pipelined processing investigation with multiple CNs.
- In the end of 2009, one running ATCA crate for HADES upgrade.
- PANDA in the future ...

Thanks for your attention!

Algorithm Development

Example 2: A universal event selector

Event Selector

Measurement results:

- Processing capability of data flow
- Event selection rates of 100% & 25%
- Different FIFO sizes (DMA sizes)
- Processing throughput of ~150 & ~100 MB/s (could be higher)